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ABSTRACT: Material point methods (MPM) are widely used to tackle large displacement problems in geotechnical engineer-

ing. However, current multiphase MPM formulations are mainly implemented on the basis of explicit time integration schemes 

and are inefficient for simulating long time processes, such as the consolidation and seepage in saturated and unsaturated soils. 

To improve that, this study proposes a new strategy for the initialization of MPM simulations, where kernel interpolation is used 

to map the previously derived field variables (e.g., soil properties, pore pressure, stress and strain) to the material points of the 

model for the large deformation analysis. These field variables can be the results with a generic distribution obtained from model 

experiments, in-situ tests, or numerical simulations. Two typical kernel functions, i.e., the cubic spline and Gaussian functions, 

are used for the mapping procedure. Parametric analysis indicates that the smoothing length of kernel functions highly depends 

on the distribution of field variables. The proposed strategy is applied to investigate the runout behavior of an instrumented slope 

failure caused by artificial rainfall. It shows a good agreement between results obtained from the strategy and the experiment.  
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1 INTRODUCTION 

In the past decades, mesh-based and mesh-free numeri-

cal techniques have been developed to solve large dis-

placement problems in geotechnical engineering (Soga 

et al., 2016), such as Arbitrary Lagrangian Eulerian, 

Coupled Eulerian Lagrangian, Discrete Element Meth-

ods, Material Point Methods, Smooth Particle Hydrody-

namics, and Particle Finite Element Method. These 

methods overcome the limitations of traditional Lagran-

gian finite element method (FEM) applied in computa-

tional geomechanics, which are very well suited for 

small deformation problems but fail to simulate large 

displacement because of issues with element distortions. 

In this paper, the material point method (MPM) is 

used. It was first developed by Sulsky et al. (1994) for 

one-phase material in solid mechanics, and it has been 

significantly improved since then and largely applied in 

geomechanics (Fern et al. 2019). The material body is 

discretized with a set of material points (MPs) which 

carry all information (e.g., kinematic variables, stresses, 

soil properties and state variables), and the problem 

domain is covered by the background mesh. The 

balance equations are solved on the background mesh 

and used to update the information on the MPs. Large 

deformations are simulated with MPs moving through 

the mesh. 

In recent years, many researchers have extended 

MPM to multiphase materials; see, e.g. Bandara et al., 

2016; Wang et al., 2018; Ceccato et al., 2021, among 

others, which provide useful insights to solve saturated 

and unsaturated soil problems based on MPM. However, 

most of the available multiphase MPM formulations are 

dynamic, in which explicit time discretization 

algorithms are applied (Yerro et al., 2022). Such 

algorithms usually require small time increments to 

ensure the numerical stability. Thus, current MPM 

formulations are proper to simulate fast dynamic 

processes, but inefficient to handle long time processes, 

such as consolidation and infiltration. 

In order to exploit the potentialities of these 

numerical tools, a new strategy for the initialization of 

the MPM simulations is proposed. The strategy consists 

of generating the initial conditions of the MPM analysis 

with a more efficient method and using a interpolation 

algorithm to map a generic spatial distribution of field 

variables (e.g., porosity, pore pressure, stress, and 

strain) from this previous analysis to MPs for the 

subsequent dynamic large displacement analysis. The 

mapping procedure is explained and validated in Sec. 2. 

The advantage of this algorithm is its wide applicability 

to different variables and spatial distribution; indeed, 

field variables can be obtained in different ways, such 

as numerical analyses, model experiments, and in-situ 

tests. 

In this paper, the proposed strategy is applied to the 

simulation of an experimental rainfall-induced landslide 

in Sec. 3. The triggering phase, during which infiltration 

occurs with small displacement, is simulated with FEM 

(Sec. 3.1), then pressure and total stresses are mapped 

to MPM for the simulation of the fast collapse phase 
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(Sec. 3.2). The displacements obtained numerically are 

compared with the experimental evidences. 

2 A NEW INITIALIZATION STRATEGY 

The key of the proposed strategy is to map field 

variables with a spatial distribution to the initial position 

of material points (MPs), which can be carried out on 

the basis of interpolation tecniques. In the literature, 

spatial interpolation is generally divided into two cate-

gories (Lam, 1983), namely, exact (e.g., kriging and 

spline interpolation) and approximate models (e.g., ten-

sion finite difference, inverse distance weighting and 

kernel interpolation). In this study, the kernel interpola-

tion is used since it has the simplest parameter and reli-

able prediction performance. Moreover, as indicated in 

parametric analysis, which will be shown later, the pa-

rameter of the kernel interpolation has a good relation-

ship with the distribution of field variables for ease of 

application.  

The principle of the kernel interpolation is to make a 

prediction at an unknown point according to observed 

points close to the unknown point. More weights are 

given to an observed point which has a shorter distance 

from the unknown point (Mühlenstädt and Kuhnt, 2011). 

The weight function is indeed called the kernel function, 

denoted as w. The kernel interpolation can be written 

using the following equation: 
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in which f(x, h) is an unknown funcion at point x; f(xi) is 

the funcions observed at point xi; di is the actual distance 

between x and xi; h is the smoothing length; and m is the 

number of observed points. 

Many kernel functions have been developed. 

Particularly, the cubic spline and Gaussian functions are 

most widely used. Let R denote di/h. The cubic spline 

function can be expressed using the following equation 

(Monaghan and Lattanzio, 1985): 
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in which the values of  for one, two, three-dimensional 

space adopt, repectively, 1/h, 15/7h2, and 3/2h3 for 

the unity requirement. It can be seen from Eq. (2) that 

when distances between observed points and unknown 

points are longer than two times of smoothing length, 

the data at these observed points are not used for the 

prediction. On the other hand, the Gaussian function can 

consider all observed points for the prediction, which 

can be written as follows (Gingold and Monaghan, 

1977): 
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where in one, two, and three-dimensional space,  = 

1/1/2h, 1/h2, and 1/3/2h3, respectively. In the next sec-

tion, these two kernel functions are both examined for 

the mapping procedure.  

The above technique has been incorporated into the 

in-house version of the open-source MPM software 

Anura3D (www.anura3d. com). 

2.1 Calibration and performance evaluation 

As an illustration, consider a finite element model of a 

square block with the size of 50  50 m, which is shown 

in Fig. 1(a). The triangular mesh is used and the mesh 

size is 5 m. Zero pore pressure is applied to the upper 

side of the block, and the other sides are impermeable. 

After the steady-state analysis conducted with the 

commercial FEM software SEEP/W of Geostudio, the 

pore pressure distribution of the block is derived as 

shown in Fig. 1(b). It suggests that the pore pressure 

linearly increases with the depth. The task here is to 

build the kernel interpolation model based on the pore 

pressure of the block. 

 

 
Figure 1. (a) Geometry, discretization, and boundary condi-

tions of a square block based on the FEM. (b) Pore pressure 

distribution of the square block based on the FEM model 

 

There are 135 mesh nodes in the finite element model, 

thus 135 data points of pore pressure are first extracted. 

Then, these points are divided into two parts, that is, 1 

and 134 points. The 134 data points are used to predict 

the 1 data point, i.e., m = 134 in Eq. (1). The smoothing 

length h can be calibrated through minimizing the error 

between the prediction and the observation as follows: 
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where f(xj) is the pore pressure at xj observed from the 

finite element model; f(xj, h) is the pore prssure at xj 

predicted on the basis of the other 134 points using Eq. 

(1); and n is the number of predictions. In this example, 

n = 135 as all data points are used to be predicted. 

0

100

200

300

400

500

Pore pressure (kPa)
Zero pore pressure

Im
p

er
m

ea
b

le

5
0

 m

50 m

(a) (b)



A new strategy for the initialization of MPM simulations 

       3 NUMGE 2023 - Proceedings 

Eventually, Eq. (4) is solved with the simulated 

annealing algorithm (Henderson et al., 2003). The 

smoothing lengths of cubic spline and Gaussian kernel 

functions are respectively 5.07 and 4.17 m. 

To evaluate the prediction performance of kernel 

interpolation, the mesh size of the finite element model 

is changed to 3 m, and the pore pressure of the block at 

new points is observed. Then, the pore pressures at these 

new points are predicted on the basis of the kernel 

interpolation, respectively, with cubic spline and 

Gaussian functions. Fig. 2 compares the pore pressure 

of the block predicted by the kernel interpolation and 

observed from the FEM model. It suggests that the co-

efficients of determination R2 between these two results 

are 0.99, indicating that the kernel interpolation with the 

cubic spline and Gaussian functions both has the high 

prediction accuracy. 

 

 
Figure 2. Comparison of pore pressures predicted based on 

the kernel interpolation and FEM analysis 

2.2 Effect of the mesh size 

The effect of mesh size on the kernel interpolation is 

investigated in this section. The same example of the 

previous section is considered. First of all, the mesh size 

is a significant factor to influence the distribution of 

data points. Using the calibration method illustarted in 

the above subsection, Fig. 3 shows the variation of 

smoothing lengths of cubic spline and Gaussian 

functions as the triangular mesh sizes are, respectively, 

0.1, 0.5, 1, 5, and 10 m. It is interesting to observe that 

the optimal smoothing length linearly increases as the 

triangular mesh size increases. The smoothing length in 

the cubic spline function is roughly equal to the 

triangular mesh size, and the smoothing length in the 

Gaussian function is around 80% of the triangular mesh 

size. 

2.3 Effect of the mesh type 

In addition to the size of the mesh, the distribution of 

data points is also influenced by the type of mesh. To 

solve this problem, the mesh type of the block is 

changed to the quadrangle. On the basis of Eq. (4), 

smoothing lengths of cubic spline and Gaussian 

functions as the quadrangular mesh sizes vary from 0.1 

to 10 m, are calculated and the results are shown in Fig. 

3. The smoothing length also linearly increases with the 

quadrangular mesh size. Compared with the triangular 

mesh, the smoothing length for the quadrangular mesh 

is smaller. The optimal smoothing length in the cubic 

spline function is approximately 70% of the quadrangu-

lar mesh size, and the smoothing length in the Gaussian 

function is approximately 25% of the quadrangular 

mesh size.  

Overall, the smoothing length in the kernel interpola-

tion highly depends on the distribution of field variables. 

When the field variables are derived on the basis of 

FEM, there is an obviously linear relationship between 

the smoothing length and the mesh size. According to 

the result shown in Fig. 3, the optimal smoothing length 

can be determined based on the mesh size and type. 

With the cubic spline function, we can consider that the 

optimal smoothing length is between 0.7l and l, where l 

is a reference distance between two observed points. 

 

 
Figure 3. Variation of the smoothing length with mesh size 

for different mesh types and kernel functions. The number de-

notes the slope of a line. 

3 APPLICATION 

In this section, the procedure presented in the previous 

section is applied to the simulation of an experimental 

rainfall-induced landslide presented in Lora et al. 

(2016). As shown in Fig. 4, the model slope is 3.5 m-

high, and 6m-long, with the maximum sloping angle of 

32°. A layer of loose silty sand with a thickness of 60 

cm is placed over a compacted sandy clay. The slope toe 

consists of a porous wall made of hollow bricks, allow-

ing water to drain from the subsurface (Lora et al., 

2016).  

Artificial rain with a steady intensity of 150 mm/h 

was applied on the slope surface until the silty sand 

layer collapsed. The infiltration process evolved for 

more than 1.5 h, and the failure occurred suddenly with-

out any warning signs. The collapse duration lasted 

about 3 seconds. A camera recorded the entire process 

0

100

200

300

400

500

0 100 200 300 400 500

K
er

n
el

 i
n
te

rp
o
la

ti
o

n
 r

es
u
lt

 (
k
P

a)
 

FEM result (kPa)

Cubic spline

Gaussian

R2 = 0.99

0

2

4

6

8

10

0 2 4 6 8 10

S
m

o
o

th
in

g
 l

en
g
th

 (
m

) 

Mesh size (m)

Triangle, cubic spline

Triangle, Gaussian

Quadrangle, cubic spline

Quandrangle, Gaussian

1

0.8

0.25

0.7



Finite element, finite difference, discrete element, material point and other methods 

       4 NUMGE 2023 - Proceedings 

and the video was used to determine the displacement 

field applying the PIV technique (Stanier et al., 2016) 

of the soil surface, as shown in Fig. 5.  

The numerical simulation of this case can be fully 

performed with the two-phase one-point formulation for 

unsaturated soil implemented in Anura3D (Ceccato et 

al. 2021); however, the triggering phase, which lasted 

about 1.5 h in the experiment, can take several days or 

weeks to simulate on a desktop computer (Intel proces-

sor i7-1165G7 2.80GHz). In contrast, FEM software, 

e.g., SEEP/W of Geostudio, can simulate it in a few 

minutes thanks to the use of an implicit time discretiza-

tion algorithm. 

 

 
Figure 4. Geometry and soil layers of the experimental model 

(dimensions in cm) 

 

 
Figure 5. Final displacements of the experimental model ex-

tracted from the video: the black arrows show the directions, 

and the contour plot the total quantities 

 

For this reason, rainfall infiltration before failure is 

simulated with a FEM seepage analysis, and then the 

pore pressure and total stress of the slope at the failure 

time are mapped into the MPM model for the subse-

quent large deformation analysis. The failure time is as-

sessed with slope stability analysis. 

3.1 FEM analysis 

SEEP/W is utilized for transient seepage analysis of the 

slope under rainfall. The liquid flow in the soil is gov-

erned by the Darcy law. The hydraulic constitutive 

equations adopt the Van Genuchten model (Eq. 5 and 6) 

(Van Genuchten, 1980): 
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where  is the relative degree of saturation;  is the 

negative pore pressure; k is the hydraulic conductivity; 

ks is the saturated conductivity; , m, n, and l are the 

fitted parameters, and m = 1 - 1/n. Table 1 gives the soil 

parameter values used in the FEM, which are derived 

from Lora et al. (2016). 

 
Table 1. Soil parameters in the FEM and MPM models 

Soil parameter Values 

Solid density (kg/m3) 2718 

Liquid density (kg/m3) 1000 

Young’s modulus (kPa) 2500 

Poisson’s ratio 0.3 

Saturated conductivity (m/s) 2.047  10-4 

Liquid viscosity (kg/m·s) 1  10-3 

Porosity 0.58 

Initial degree of saturation 0.31 

Liquid bulk modulus (kPa) 4.5  104 

Residual degree of saturation 0.1 

Parameters of the Van Genuchten model 
 = 0.51 

n = 2.73 

Effective cohesion (kPa) 0 

Effective friction angle () 33 

Effective dilatancy angle () 0 

 

 
Figure 6. Geometry and discretization of the FEM model 

 

Only the sand layer is simulated and the clay layer is 

assumed to be an impermeable boundary (Fig. 6). In this 

model, the bottom and the left side of the slope are im-

permeable, while the right side is a potential seepage 

face. A flux equal to 150 mm/h is applied on the slope 

surface to simulate rainfall infiltration. The triangular 

mesh is used and the mesh size is 0.05 m. The total num-

ber of element nodes is 1829 (Fig. 6). 

The transient seepage analysis adopts a time 

increment of 0.01 h (36 s) and for each step the slope 
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stability analysis with SLOPE/W is performed to 

calculate the factor of safety (FS) on the basis of the 

Mongenstern-Price method (Morgenstern and Price, 

1965).  

At 1.56 h, FS = 1.009 and this can be considered as 

the failure time of the slope, which agrees well with the 

evidence in the experiment. Fig. 7 depicts the critical 

slip surface and the pore pressure distribution of the 

slope at the failure time. The total stress of the slope at 

the failure time is computed with SIGMA/W. 
 

 
Figure 7. Pore pressure and critical slip surface at the failure 

time in the FEM model (t = 1.56 h, FS = 1.009) 

3.2 MPM analysis 

The MPM model of the slope is built with Anura3D as 

shown in Fig. 8. Its hydraulic boundary conditions are 

the same as those of the FEM model. Zero solid dis-

placements are prescribed at the bottom boundary, and 

roller boundary conditions are applied on the lateral 

surfaces and at the toe of the slope. A triangular compu-

tational mesh is used. There are 3 material points in each 

element of the slope domain. In total, around 1700 com-

putational meshes and 3700 material points are used in 

the MPM model. Five MPs are monitored for 

displacement (A-E in Fig. 8). 

 

 
Figure 8. Geometry and discretization of the MPM model 

 

In the MPM model, the effective stress of the slope is 

calculated based on the Bishop’s equation (𝜎 = 𝜎′ + 𝑆𝑝, 

𝜎 = total stress, 𝜎 = effective stress, p = pore pressure, 

and S = degree of saturation). The mechanical 

constitutive equations use the elastoplastic model with 

Mohr-Coulomb failure criterion. The hydraulic 

constitutive models are identical to the FEM model. The 

values of soil parameters used in the MPM model are 

also shown in Table 1 (Lora et al., 2016). 

Stresses are initialized with the procedure explained 

in the previous section and they are depicted in Fig. 9. 

The cubic spline function is used for the kernel 

interpolation. First, the pore pressure and total stress are 

extracted at each element node of the FEM model. 

There are 1829 data points in total. Based on these 

points, the smoothing length h is calibrated using Eq. 

(4), which is equal to 0.046 m, close to the mesh size of 

0.05 m. Using Eq. (1), the pore pressure and total stress 

at the failure time are mapped to the MPs. 

Although in reality small displacements in the slope 

have already occurred before failure, they are neglected 

and the displacements of MPs at the initial condition are 

assumed to be zero. 

 

 
Figure 9. Initial pore pressure (top), effective stress (middle) 

and total stress (bottom) in the MPM model 

 

 
Figure 10. Evolution of Kinetic Energy (KE) and displace-

ment in the MPM model 

 

The results of MPM analysis, show that the slope 

develops large displacements reaching a new stable 

configuration in about 1.7 s as presented in Fig. 10 and 

the magnitude of displacement is in agreement with the 
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experiment. In Fig. 11(d) the black arrows indicate the 

experimental displacement obtained from experiment 

and the numbers below indicate the displacement 

magnitude, the blue dotted lines indicate the 

displacement of reference MPs and the numbers in 

brackets above indicate the magnitude. It can be 

observed that there is a relatively good agreement 

between experiment and simulation, proving the 

validity of the proposed strategy. 

 

 
Figure 11. Displacement at different times after failure in the 

MPM model: (a) 0.3 s, (b) 0.8 s, (c) 1.2 s, (d) 3.0 s 

4 CONCLUSION 

This study proposes a general and practical strategy for 

the initialization of MPM simulations to improve com-

putational efficiency. It is a mapping technique imple-

mented based on the kernel interpolation, and also in-

corporated into the in-house version of the open source 

MPM software Anura3D. The smoothing length in the 

kernel interpolation depends on the distribution of the 

original data points. With the cubic spline function, the 

optimum smoothing length should be between 0.7 and 

1.0 times the reference distance between two observed 

points. 

The strategy is used to simulate an experimental 

rainfall-induced landslide coupling FEM and MPM 

analysis, thus significantly decreasing the 

computational cost compared to the sole use of MPM 

for the entire process. The numerical results agree well 

with the observations of the experiment. 
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