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ON RIGID ANALYTIC UNIFORMIZATIONS OF JACOBIANS OF SHIMURA

CURVES

MATTEO LONGO, VICTOR ROTGER AND STEFANO VIGNI

Abstract. The main goal of this article is to give an explicit rigid analytic uniformization of
the maximal toric quotient of the Jacobian of a Shimura curve over Q at a prime dividing exactly
the level. This result can be viewed as complementary to the classical theorem of Čerednik and
Drinfeld which provides rigid analytic uniformizations at primes dividing the discriminant. As
a corollary, we offer a proof of a conjecture formulated by M. Greenberg in his paper on Stark–
Heegner points and quaternionic Shimura curves, thus making Greenberg’s construction of local
points on elliptic curves over Q unconditional.

1. Introduction

In an attempt to investigate analogues in the real setting of the theory of complex multipli-
cation, Darmon introduced in his fundamental paper [8] the notion of Stark–Heegner points on
elliptic curves over Q. These points are expected to be defined over abelian extensions of real
quadratic fields K (see [4] for partial results in this direction) and to satisfy analogous proper-
ties to those enjoyed by classical Heegner points rational over abelian extensions of imaginary
quadratic fields.

Darmon’s Stark–Heegner points were later lifted from elliptic curves to certain modular Ja-
cobians by Dasgupta in [10]. More precisely, let M be a positive integer and let p be a prime
number not dividingM . By working with modular symbols for the congruence subgroup Γ0(pM),
Dasgupta defines a certain torus T over Qp and a lattice L ⊂ T , and he proves that the quotient
T/L is isogenous to the maximal toric quotient J0(pM)p-new of the Jacobian of the modular curve
X0(pM). This statement, which can be phrased as an equality of L-invariants, turns out to be a
strong form of the conjecture of Mazur–Tate–Teitelbaum ([21]), now a theorem of Greenberg and
Stevens ([15]). The very construction of T/L allows Dasgupta to introduce Stark–Heegner points
on it, and these points map to Darmon’s ones under modular parametrizations. As a by-product,
an efficient method for calculating the p-adic periods of J0(pM)p-new is also obtained (in contrast
with the less explicit approach of de Shalit in [12]).

It is important to observe that both Darmon’s and Dasgupta’s strategies, making extensive use
of the theory of modular symbols, depend crucially on the presence of cusps on classical modular
curves, and this prevents their arguments from extending in a straightforward way to the situation
where modular curves are replaced by more general Shimura curves. In more explicit terms, the
above methods apply only under the following Stark–Heegner hypothesis:

(1) p is inert in K and all the primes dividing M split in K.

When E is an elliptic curve over Q of conductor N = pM , condition (1) implies that the sign
σ(E/K) of the functional equation of the L-function attached to E over K is −1; the existence of
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Darmon’s Stark–Heegner points is thus predicted by the conjecture of Birch and Swinnerton-Dyer
for E/K .

The starting point of our investigation is the recent article [13] of M. Greenberg, in which the
author proposes a program to generalize Darmon’s constructions to totally real number fields and
situations in which σ(E/K) = −1 but condition (1) is not satisfied. To give an idea of Greenberg’s
approach in the special case where the base field is Q, assume that K is a real quadratic field such
that the conductor N of the elliptic curve E/Q admits a factorization N = pDM into relatively
prime integers, whereD is the square-free product of an even number of primes, the prime divisors
of pD are inert in K and the prime divisors of M split in K. Then σ(E/K) = −1 and Greenberg
describes a p-adic construction of Stark–Heegner points on E which are conjectured to be rational
over ring class fields of K and to satisfy a suitable Shimura reciprocity law, as in the original
work of Darmon. The key idea in [13] is to reinterpret Darmon’s theory of modular symbols in
terms of the cohomology of Shimura curves attached to the quaternion algebra of discriminant
D and, ultimately, of group cohomology. Greenberg’s construction of Stark–Heegner points on E
depends on the validity of an unproved statement ([13, Conjecture 2]) which is the counterpart of
Dasgupta’s version ([10, Theorem 3.3]) of the theorem by Greenberg and Stevens; as a corollary
to the main theorems in this paper, we give a proof of [13, Conjecture 2] over Q, thus making
Greenberg’s results unconditional. This conjecture has also been proved, independently and by
different methods, by Dasgupta and Greenberg in [11].

More generally, the chief goal of our article is to give an explicit rigid analytic uniformization
of the maximal toric quotient of the Jacobian of a Shimura curve associated with a non-split
quaternion algebra at a prime dividing exactly the level, in the spirit of [10]. This result can
be viewed as complementary to the classical theorem of Čerednik and Drinfeld (for a detailed
exposition of which we refer to [6]) that provides rigid analytic uniformizations at primes dividing
the discriminant of the quaternion algebra. As will be made clear in the rest of the paper, our
strategy is inspired by ideas in [10] and [13], to which we are indebted, and introduces several new
ingredients for attacking the uniformization result; most remarkably, the explicit construction of
a cocycle with values in a space of measures on P1(Qp) and an analysis of the delicate properties
of a lift of it to a suitable bundle over P1(Qp), which are crucial for the proof of our main theorem.
Beyond its theoretical interest, the construction of this cocycle is significant for a second reason:
it is amenable to computations and – with notation to be explained below – paves the way to the
calculation of the period matrix of JD

0 (pM)p-new, as Dasgupta does in [10, Section 6] for modular
Jacobians.

Finally, we would like to highlight one more feature of our work. Although we devote no effort
to this issue here, our results make it possible to define suitable lifts of Greenberg’s Stark–Heegner
points to Jacobians of Shimura curves, much in the same vein as the constructions in [10] lift
Darmon’s points to modular Jacobians. In fact, one of the long-run motivations of this article
is to extend to broader contexts the results on the arithmetic of Stark–Heegner points, special
values of L-functions and modular abelian varieties that are described by Bertolini, Darmon and
Dasgupta in [5]. Details in this direction will appear in future projects (see, e.g., [20]); we hope
that the results in the present paper may represent a first step towards a general and systematic
study of special values of L-functions and congruences between modular forms over real quadratic
fields as envisioned, for instance, in [3, Section 6] and [5].

Now let us describe the results of this paper more in detail; this will also give us the occasion to
introduce some basic objects that will be used throughout our work. Let D > 1 be a square-free
product of an even number of primes and let M ≥ 1 be an integer coprime with D. Let B be the
(unique, up to isomorphism) indefinite quaternion algebra over Q of discriminant D and choose
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an isomorphism of algebras

ι∞ : B ⊗Q R
≃−→ M2(R).

Let R(M) be a fixed Eichler order of level M in B and write ΓD
0 (M) for the group of norm 1

elements in R(M). Fix a prime p ∤ MD and an Eichler order R(pM) ⊂ R(M) of level pM in
B, and define as above ΓD

0 (pM) to be the group of norm 1 elements in R(pM). Consider the
compact Riemann surfaces

(2) XD
0 (M) := ΓD

0 (M)\H, XD
0 (pM) := ΓD

0 (pM)\H
where H is the complex upper half-plane and the subgroup of elements in B× with positive norm
acts on H by Möbius transformations via the embedding B →֒ B ⊗Q R and the isomorphism ι∞.
The curves in (2) are the Shimura curves attached to B of level M and pM , respectively.

Let

π1, π2 : X
D
0 (pM) −→ XD

0 (M), ΓD
0 (pM)z

π17−→ ΓD
0 (M)z, ΓD

0 (pM)z
π27−→ ΓD

0 (M)ωpz

be the two natural degeneracy maps; here ωp is an element in R(pM) of reduced norm p that
normalizes ΓD

0 (pM). Denote by H the maximal torsion-free quotient of the cokernel of the map

π∗ := π∗1 ⊕ π∗2 : H1

(
XD

0 (M),Z
)2 −→ H1

(
XD

0 (pM),Z
)

induced by pull-back on homology. Let JD
0 (pM) be the Jacobian variety of XD

0 (pM) and let
JD
0 (pM)p-new be its p-new quotient, whose dimension will be denoted by g; the abelian group H

is free of rank 2g. Now consider the torus

T := Gm ⊗Z H

where Gm denotes the multiplicative group (viewed as a functor on commutative Q-algebras).
Following the strategy of Dasgupta in [10], we define a (full) lattice L in T and study the quotient
T/L. In order to do this, fix an isomorphism of algebras

(3) ιp : B ⊗Q Qp
≃−→ M2(Qp)

such that ιp
(
R(M) ⊗ Zp

)
is equal to M2(Zp) and ιp

(
R(pM) ⊗ Zp

)
is equal to the subgroup

of M2(Zp) consisting of upper triangular matrices modulo p. As done in [8] when D = 1, we
introduce the group

Γ :=
(
R(M)⊗ Z[1/p]

)×
1

ιp−֒→ GL2(Qp),

which acts on Drinfeld’s p-adic half-plane Hp := Cp − Qp with dense orbits. We will regard H
and T as Γ-modules with trivial action.

In Sections 2 and 3 we review some well-known facts on Hecke algebras, Shimura curves and
L-invariants. In Sections 4, 5 and 6 we introduce an explicit element in the cohomology group
H1
(
Γ,Meas

(
P1(Qp),H

))
which defines by cup product an integration map on the homology

group H1(Γ,Div0Hp) with values in T (Cp). We then consider the boundary homomorphism

H2(Γ,Z) → H1(Γ,Div0Hp) induced by the degree map; the composition of these two maps
produces a further map H2(Γ,Z)→ T (Cp) whose image we denote by L. As we will see, it turns
out that L is a lattice of rank 2g in T (Qp) which is preserved by the action of a suitable Hecke
algebra. Finally, let Kp denote the unramified quadratic extension of Qp.

The following is a precise formulation of the main result of this article, which is proved in
Section 7.

Theorem 1.1. The quotient T/L admits a Hecke-equivariant isogeny over Kp to the rigid analytic
space associated with the product of two copies of JD

0 (pM)p-new.
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We conclude this introduction by remarking that a proof of the conjecture proposed by M.
Greenberg in [13, Conjecture 2] and alluded to above is given in §7.7.

Notation and conventions. If M and N are two abelian groups we write M ⊗N for M ⊗Z N .
If R is a ring and M is a left R-module we endow M with a structure of right R-module by

the formula m|r := r−1 ·m, where (r,m) 7→ r ·m is the structure map of M as a left R-module.
For any ring A and any A-moduleM the symbolMT denotes the maximal torsion-free quotient

of M .
For any discontinuous cocompact subgroup G of PSL2(R) there are canonical isomorphisms

H1(G\H,Z) ≃ H1(G,Z)T ≃ Gab
T .

In the sequel we shall freely identify these three groups, and for every g ∈ G we shall denote
by [g] ∈ Gab

T the class of g in any of them. If G0 is a subgroup of G then the natural map
π : G0\H → G\H of Riemann surfaces induces by pull-back and push-forward homomorphisms

π∗ : H1(G,Z)T −→ H1(G0,Z)T , π∗ : H1(G0,Z)T −→ H1(G,Z)T

which respectively translate, under the above identifications, to restriction and corestriction in
homology of groups.

If G is a group we denote by (F•, ∂•) the standard resolution of Z by left Z[G]-modules and,
in non-homogeneous notations, we write [g] = [g1| . . . |gr] for the elements of a Z[G]-basis of Fr

as described in [7, p. 18].
For any right Z[G]-module M we write, as usual, Br(G,M) ⊂ Zr(G,M) ⊂ Cr(G,M) for the

modules of r-coboundaries, r-cocycles and r-cochains, respectively, andHr(G,M) := Zr(G,M)/Br(G,M)
for the rth cohomology group of G with values inM . We use a similar notation, with lower indices
this time, for homology.

We represent an element of Hr(G,M) by an r-cycle c =
∑

gmg⊗ [g] in Zr(G,M). Likewise, we

represent an element of Hr(G,M) by a function f : Gr →M in Zr(G,M) and denote sometimes
the value f(g1, . . . , gr) by fg1,...,gr . Finally, we adopt the description of boundary and coboundary
maps given in [7, p. 59].

Acknowledgements. We would like to thank the anonymous referee for the careful reading and
for valuable remarks and suggestions. The second and third authors also thank the Centre de
Recerca Matemàtica (Bellaterra, Spain) for its warm hospitality in Autumn 2009, when part of
this research was carried out.

2. Hecke operators on homology and cohomology

2.1. Review of the general theory. In this subsection we essentially follow [1, §1.1]. Let G
be a group; a Hecke pair (for G) consists of a subgroup G of G and a subsemigroup S of G such
that

• G ⊂ S;
• G and s−1Gs are commensurable for every s ∈ S.

Now let (G,S) be a Hecke pair and let M be a left Z[S]-module. Fix a double coset GsG with
s ∈ S and form the finite disjoint decomposition GsG =

∐
i siG. Define the function ti : G→ G

by the equation g−1si = sj(i)t
−1
i (g). The Hecke operator T (s) on the chain c =

∑
gmg ⊗ [g] in
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Cr(G,M) is defined by the formula

T (s) · c :=
∑

i

s−1
i (mg)⊗

[
ti(g1)| . . . |ti(gr)

]
,

where g = [g1| . . . |gr] in non-homogeneous notation. Likewise, we define the Hecke operator T (s)
on the cochain f ∈ Cr(G,M) by the formula

T (s) · f(g1, . . . , gr) :=
∑

i

sif
(
ti(g1), . . . , ti(gr)

)
.

These operators induce operators, denoted by the same symbols, on Hr(G,M) and Hr(G,M).
If M and N are left Z[G]-modules we may consider the cup product

[ , ] : H1(G,M)×H1(G,N) −→ H0(G,M ⊗N),

which is defined as follows. Choose representatives c =
∑

gmg ⊗ [g] of c ∈ H1(G,M) and f of

f ∈ H1(G,M); then [c,f ] is represented by

[c, f ] :=
∑

g

mg ⊗ f(g).

It is easy to check that

(4) [T (s) · c, f ] = [c, T (s) · f ],
for all s ∈ S, from which one gets the equality

[
T (s) · c,f

]
=
[
c, T (s) · f

]
.

2.2. Hecke algebras attached to Eichler orders over Z. We apply the previous formal
considerations to our arithmetic setting. Let B be the quaternion algebra over Q of discriminant
D ≥ 1; the requirement that D > 1 will be made only from §4.2 on. Fix an integer N ≥ 1 prime
to D and let R ⊂ B be an Eichler order of level N ; set ΓR := R×. For every integer n ≥ 1 and
every prime ℓ define

Γloc
0 (ℓn) :=

{(
a b
c d

)
∈M2(Zℓ) | c ≡ 0 (mod ℓn)

}
.

If ℓ ∤ N define SR,ℓ to be the set of elements in R ⊗ Zℓ with non-zero norm. If there exists an
integer nℓ ≥ 1 such that ℓnℓ |N and ℓnℓ+1 ∤ N fix an isomorphism of algebras

ιℓ : B ⊗Q Qℓ
≃−→ M2(Qℓ)

such that ιℓ(R ⊗ Zℓ) = Γloc
0 (ℓnℓ), and define SR,ℓ to be the inverse image of the semigroup

consisting of matrices
(
a b
c d

)
∈ M2(Zℓ) with c ≡ 0 (mod ℓnℓ), a ∈ Z×

ℓ and ad− bc 6= 0. Finally, set

SR := B× ∩
∏

ℓ

SR,ℓ,

where the product is taken over all prime numbers ℓ. Then (ΓR, SR) is a Hecke pair. Write
nr : B → Q for the reduced norm; for every integer n ≥ 1 define

Tn :=
∑

α∈SR

nr(α)=n

T (α),

and for every integers n ≥ 1 prime to ND define

Tn,n := T (n).
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If ℓ is a prime then we have Tℓ = T (g0) for a certain g0 = g0(ℓ) ∈ R; moreover,

ΓRg0ΓR =
∐

i

giΓR

for some gi = gi(ℓ) ∈ R of reduced norm ℓ and i ∈ {0, . . . , ℓ} if ℓ ∤ N (respectively, i ∈ {0, . . . , ℓ−1}
if ℓ|N). As customary, if ℓ|N is a prime we will also denote Tℓ by Uℓ to emphasize that we are
considering an operator at a prime dividing the level. The Hecke algebra H(ΓR, SR) of the pair
(ΓR, SR), defined in [1, p. 194], is commutative and can be explicitly described as

H(ΓR, SR) = Z
[
Tℓ for all primes ℓ, Tℓ,ℓ for primes ℓ ∤ ND

]
.

See [23, §5.3] for details and proofs. As before, let ωp ∈ R(pM) be a fixed element of reduced
norm p which normalizes ΓD

0 (pM); as a piece of notation, for R = R(M), R = R(pM) and

R = R̂(pM) := ωpR(pM)ω−1
p we denote H(ΓR, SR) by H(M), H(pM) and Ĥ(pM), respectively.

We will be particularly interested in the Hecke operator Up ∈ H(pM). In this case, Up = T (g0)
for a fixed choice of g0 ∈ R(pM) of reduced norm p such that ιp(g0) =

(
1 0
0 p

)
u0 for some u0 ∈

Γloc
0 (p); the element g0 gives rise to a coset decomposition

ΓD
0 (pM)g0Γ

D
0 (pM) =

p−1∐

i=0

giΓ
D
0 (pM)

with the gi such that ιp(gi) =
(

1 0
pi p

)
ui for some ui ∈ Γloc

0 (p) and every i ∈ {0, . . . , p− 1}.
Fix once and for all an element ω∞ ∈ R(pM) of reduced norm −1 which normalizes ΓD

0 (pM).
In addition to the operators described above, the involutions Wp = T (ωp) and W∞ = T (ω∞) in
H(pM) will also play a key role in our discussion. More precisely, ωp can be taken such that

ιp(ωp) ∈
(
0 −1
p 0

)
· Γloc

0 (p).

A direct computation then shows that the αi := ω−1
p gi lie in ΓD

0 (M) and that, actually, {α∞ =

1, α0, . . . , αp−1} is a set of representatives of ΓD
0 (M)/ΓD

0 (pM); from this one deduces the well-
known fact that Up = −Wp on H.

2.3. A Hecke algebra attached to R(M)⊗Z[1p ]. The formalism described in §2.1 can also be

applied to the Hecke pair (Γ, S(p,M)) where Γ is as in the introduction and

S(p,M) := B× ∩
∏

ℓ 6=p

SR(M),ℓ,

the product being taken over all prime numbers different from p. Throughout we shall write
H(p,M) as a shorthand for the Hecke algebra corresponding to the pair (Γ, S(p,M)), which is
again commutative.

Similarly as before, in this algebra one defines Hecke operators Tℓ for primes ℓ 6= p and
involutions Wp and W∞. These operators correspond to double coset decompositions Γg0(ℓ)Γ =∐

i gi(ℓ)Γ, ΓωpΓ = ωpΓ and Γω∞Γ = ω∞Γ, respectively, with exactly the same choices of the
gi(ℓ), of ωp and of ω∞ in R(pM) as made before. Finally, in complete analogy with what has
just been done, one can also introduce the Hecke operator Up. However, since ΓgΓ = ωpΓ for any
g ∈ S(p,M) of reduced norm p, now we have Up =Wp.
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3. L-invariants
3.1. Singular homology groups. Recall the isomorphism ιp : B ⊗Q Qp ≃ M2(Qp) of (3) and
the Eichler order R = R(M) of B of level M chosen in the introduction. For every integer r ≥ 1

let Cr ⊂ R̂× denote the subgroup of elements whose p-component is mapped by ιp to a matrix(
a b
c d

)
such that a ≡ 1 (mod pr) and c ≡ 0 (mod pr). Moreover, let ΓD

r be the subgroup of norm

1 elements in Cr∩B×; we shall write ΓD
r (M) whenever the level of R is not fixed from the outset.

Note that Γ1
r = Γ0(M) ∩ Γ1(p

r) as a congruence subgroup of SL2(Z). Finally, in order to have
uniform notations, set XD

0 := XD
0 (pM) and ΓD

0 := ΓD
0 (pM).

For every r ≥ 1 define the compact Riemann surfaces

XD
r := Γr\H if D > 1, X1

r := Γr\H ∪ {cusps},
where X1

r is the compactification of the open modular curve Y 1
r := Γr\H obtained by adding a

finite number of cusps.
Let S2(Γ

D
r ,C) be the C-vector space of holomorphic 1-forms on XD

r , which is isomorphic to
H1(XD

r ,R) as an R-vector space (see, e.g., [27, Theorem 8.4]). In particular, if gDr is the genus
of XD

r then the dimension of H1(XD
r ,R) over R is 2gDr . Since XD

r is compact, Poincaré duality
gives an isomorphism

H1
(
XD

r ,R
)
≃ H1

(
XD

r ,R
)

of R-vector spaces. As a consequence, the universal coefficient theorem for homology yields
canonical isomorphisms of R-vector spaces

(5) S2
(
ΓD
r ,C

)
≃ H1

(
XD

r ,R
)
≃ H1

(
XD

r ,Z
)
⊗Z R

In particular, the abelian group H1(X
D
r ,Z) is free of rank 2gDr . The above discussion and the

universal coefficient theorem for homology show that H1(X
D
r ,Zp) is also free of rank 2gDr as a

Zp-module.
There are canonical projection maps

π1,r : X
D
r −→ XD

0 (M), XD
r −→ XD

s

for r ≥ s ≥ 0. For every integer r ≥ 0 let Wp denote the Atkin–Lehner involution on XD
r defined

as in [2, §1.5] via the adelic description of XD
r as the double coset space

XD
r = B×

∖(
B̂× ×H

)/
Cr.

Explicitly, Wp is the map [(g, z)] 7→
[((

0 −1
p 0

)
· g, z

)]
. Define

π2,r := π1,r ◦Wp : X
D
r −→ XD

0 (M).

This gives rise to a map

πr := π1,r × π2,r : XD
r −→ XD

0 (M)×XD
0 (M)

and thus, by pull-back, to a map

π∗r : H1

(
XD

0 (M),Zp

)
⊕H1

(
XD

0 (M),Zp

)
−→ H1

(
XD

r ,Zp

)

on homology groups. (Note that for r = 0 these maps coincide with the maps π1, π2, π, π
∗
1, π

∗
2 ,

π∗ appearing in the introduction.) For r ≥ 0 define the Zp-module

HD
r :=

[
H1

(
XD

r ,Zp

)
/Im(π∗r )

]
T

and let TD
r denote the image in EndZp(H

D
r ) of the Hecke algebra H(pM)⊗Zp; as above, we shall

rather write TD
r (M) if needed. Thanks to isomorphisms (5), it follows that TD

r is canonically
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identified with the p-new quotient of the classical Hecke algebra acting on S2
(
ΓD
r ,C

)
as defined,

for example, in [18, §2].

3.2. Jacquet–Langlands correspondence. Denote by T1,D-new
r (DM) the quotient of the Hecke

algebra T1
r(DM) acting faithfully on the C-vector space of weight 2 cusp forms on Γ1

r(DM) which
are new at D. For every r ≥ 0 the Hecke-equivariance of the Jacquet–Langlands correspondence
between classical and quaternionic modular forms (see, e.g., [19, Theorem 2.30]) gives a canonical
isomorphism of rings

(6) JLr : T
1,D-new
r (DM)

≃−→ TD
r (M)

making the natural diagram

T1,D-new
r (DM)

JLr //

��

TD
r (M)

��

T1,D-new
s (DM)

JLs // TD
s (M)

commutative.

3.3. Quaternionic Hida theory. Being finitely generated as a Zp-module, the algebra TD
r (M)

is isomorphic to the product of the localizations at its (finitely many) maximal ideals; write

TD,ord
r = TD,ord

r (M) for the product of those local components in which the image of Up is a unit.
Following Hida, define the ordinary Hecke algebra as

TD,ord
∞ := lim←−

r

TD,ord
r (r ≥ 1).

Furthermore, if we set
T1,D-new
∞ (DM) := lim←−

r

T1,D-new
r (DM)

then isomorphism (6) shows that there is a canonical isomorphism

T1,D-new,ord
∞ (DM) ≃ TD,ord

∞ (M).

Denote by
Λ := Zp[[1 + pZp]], Λ̃ := Zp[[Z

×
p ]]

the Iwasawa algebras of 1+pZp and Z×
p , respectively, so that Λ̃ has a natural Λ-algebra structure.

There is a structure of Λ̃-module on TD,ord
∞ (M) defined on group-like elements d ∈ Z×

p by d 7→ 〈d〉.
Since, as a consequence of the Jacquet–Langlands isomorphism, TD

r (M) is a quotient of T1
r(DM)

and the projection map takes Up to Up, there is a canonical surjective map of Λ̃-algebras

T1,ord
∞ (DM) −։ TD,ord

∞ (M).

Thanks to [17, Theorem 3.1], T1,ord
∞ (DM) is a Λ-algebra which is free of finite rank as a Λ-

module. In particular, it immediately follows that TD,ord
∞ (M) is finitely generated as a Λ-module.

Thanks to [17, Corollary 3.2] (see also [10, Theorem 5.6] for the result in this form), if IΛ̃ is the

augmentation ideal of Λ̃ then the canonical projection

T1,ord
∞ (DM) −։ T1,ord

0 (DM)

induces an isomorphism of Zp-algebras

(7) ρ : T1,ord
∞ (DM)

/
IΛ̃T

1,ord
∞ (DM)

≃−→ T1,ord
0 (DM).
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The next result is the counterpart of isomorphism (7) in our general quaternionic setting.

Proposition 3.1. For every D ≥ 1 the canonical projection TD,ord
∞ (M) ։ TD,ord

0 (M) induces an
isomorphism of Zp-algebras

ρD : TD,ord
∞ (M)

/
IΛ̃T

D,ord
∞ (M)

≃−→ TD,ord
0 (M)

which sits in the commutative diagram

T1,ord
∞ (DM)

/
IΛ̃T

1,ord
∞ (DM)

ρ1 //

����

T1,ord
0 (DM)

����

TD,ord
∞ (M)

/
IΛ̃T

D,ord
∞ (M)

ρD // TD,ord
0 (M)

where the vertical arrows are the canonical surjections.

Proof. For D = 1 this is simply (7). In general, we only have to show that the kernel of the
canonical projection

(8) TD,ord
∞ (M) −։ TD,ord

0 (M)

is IΛ̃T
D,ord
∞ (M). It is straightforward to check that IΛ̃T

D,ord
∞ (M) is indeed contained in the kernel

of the homomorphism in (8), hence there is a surjection

ρD : TD,ord
∞ (M)

/
IΛ̃T

D,ord
∞ (M) −։ TD,ord

0 (M)

of Zp-algebras. For every integer r ≥ 0 let us denote by T1,D-old,ord
r (DM) the kernel of the

projection T1,ord
r (DM) ։ TD,ord

r (M) induced by the Jacquet–Langlands correspondence recalled
in §3.2, so that we have a canonical short exact sequence

(9) 0 −→ T1,D-old,ord
r (DM) −→ T1,ord

r (DM) −→ TD,ord
r (M) −→ 0.

After setting T1,D-old,ord
∞ (DM) := lim←−T1,D-old,ord

r (DM) and tensoring by Λ̃/IΛ̃ over Λ̃, from se-

quence (9) we obtain the diagram

T1,D-old,ord
∞ (DM)

/

IΛ̃T
1,D-old,ord
∞

//

����

T1,ord
∞ (DM)

/

IΛ̃T
1,ord
∞ (DM) //

ρ≃

��

TD,ord
∞ (M)

/

IΛ̃T
D,ord
∞ (M) //

ρD

����

0

0 // T1,D-old,ord
0 (DM) // T1,ord

0 (DM) // TD,ord
0 (M) // 0

with exact rows and surjective left vertical arrow. The snake lemma then implies that the kernel
of ρD is trivial, which shows that ρD is an isomorphism. �

3.4. Definition of the L-invariant. The map [d− 1] 7→ d yields a canonical identification

IΛ̃/I
2
Λ̃

≃−→ Z×
p .

Composing with the branch logp : Z×
p → Zp of the p-adic logarithm satisfying logp(p) = 0 we

then obtain a map

logp : IΛ̃/I
2
Λ̃
−→ Zp

which, by a notational abuse, will be denoted by the same symbol. The composition of the
isomorphism

IΛ̃T
D,ord
∞ (M)

/
I2
Λ̃
TD,ord
∞ (M) ≃ TD,ord

∞ (M)⊗Λ̃

(
IΛ̃
/
I2
Λ̃

)
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with the map

id⊗ logp : T
D,ord
∞ (M)⊗Λ̃

(
IΛ̃/I

2
Λ̃

)
−→ TD,ord

∞ (M)⊗Λ̃ Zp

produces a map

(10) IΛ̃T
D,ord
∞ (M)

/
I2
Λ̃
TD,ord
∞ (M) −→ TD,ord

∞ (M)⊗Λ̃ Zp.

Now note that

TD,ord
∞ (M)⊗Λ̃ Zp ≃ TD,ord

∞ (M)⊗Λ̃

(
Λ̃/IΛ̃

)
≃ TD,ord

∞ (M)
/
IΛ̃T

D,ord
∞ (M) ≃ TD,ord

0 (M),

the last isomorphism following from Proposition 3.1. Composing this chain of isomorphisms with
(10) yields a map

IΛ̃T
D,ord
∞ (M)

/
I2
Λ̃
TD,ord
∞ (M) −→ TD,ord

0 (M).

Finally, composing with the canonical projection IΛ̃T
D,ord
∞ (M) ։ IΛ̃T

D,ord
∞ (M)

/
I2
Λ̃
TD,ord
∞ (M) we

obtain a map

(11) IΛ̃T
D,ord
∞ (M) −→ TD,ord

0 (M)

which is denoted by t 7→ t′.
As discussed in §2.2, Up +Wp = 0 on HD

0 ; hence, since W 2
p = 1, we conclude that the image

of 1− U2
p in TD,ord

0 (M) is trivial. It follows that

1− U2
p ∈ IΛ̃TD,ord

∞ (M).

Definition 3.2. The L-invariant
LDp = LDp (M) :=

(
1− U2

p

)′ ∈ TD,ord
0 (M)

is the image of 1− U2
p under the map (11).

Observe that L1p is equal to the L-invariant defined by Dasgupta in [10, Definition 5.2].

Proposition 3.3. The L-invariant LDp (M) is the image of L1p(DM) under the canonical surjec-

tion T1,ord
0 (DM) ։ TD,ord

0 (M).

Proof. This follows immediately from the definition of the L-invariants and the commutativity of
the diagram in Proposition 3.1. �

3.5. Singular points and L-invariants. The arguments in this subsection are essentially a
formal variation on those in [15] and [10, §5.4], so we will be rather sketchy.

Let X := Div0(S) denote the group of degree zero divisors on the set S of supersingular points
of XD

0 (M) in characteristic p, and write X∗ := HomZ(X,Z) for its Z-dual. As explained, e.g., in
[16, §1.7], the group X has a natural Hecke action; moreover, the Hecke algebra of X canonically
identifies with that of HD

0 . There is a non-degenerate, symmetric pairing

Q : X ×X −→ Q×
p

for which the Hecke operators are self-adjoint. The map Q defines an injection

j : X −֒→ X∗ ⊗Q×
p

by setting j(x)(y) := Q(x, y). For simplicity, put Gp := Gal (Q̄p/Qp) for the local Galois group
at p; there is a short exact sequence

(12) 0 −→ X
j−→ X∗ ⊗ Q̄×

p −→ JD
0 (pM)p-new(Q̄p) −→ 0



UNIFORMIZATIONS OF JACOBIANS OF SHIMURA CURVES 11

of left TD
0 (M)[Gp]-modules. Composing the pairing Q with the p-adic valuation ordp gives rise

to the non-degenerate monodromy pairing

ordp ◦Q : X ×X → Z

at p. Now set ordX(x)(y) := ordp
(
Q(x, y)

)
, thus obtaining an injection

ordX : X −֒→ X∗.

Analogously, if logp is the branch of the p-adic logarithm such that logp(p) = 0 then we obtain a
map

logX : X −→ X∗ ⊗Z Zp

defined by logX(x)(y) := logp
(
Q(x, y)

)
.

Recall that LDp := LDp (M); the next result seems to be well known to experts.

Proposition 3.4. There is an equality LDp · ordX = logX of maps from X to X∗ ⊗ Zp.

There are at least two ways of proving the above statement but, for the sake of brevity, we
will not provide any details, as the methods are very similar to the standard ones in the classical
modular setting, already present in the literature ([10], [15]). One way of showing it is to proceed
as in the proof of [10, Proposition 5.20], upon noticing that the arguments of [22, §8] can be
adapted to our quaternionic setting. Besides, more indirectly, one can also prove Proposition 3.4
by exploiting the commutativity of the diagram of Proposition 3.1 combined with [10, Proposition
5.20].

4. Measure-valued 1-cocycles

4.1. Bruhat–Tits tree, harmonic cocycles and measures on P1(Qp). Let T be the Bruhat–
Tits tree of M2(Qp), whose set V = V(T ) of vertices consists of the maximal orders of M2(Qp).

We denote by v∗ the vertex M2(Zp) and by v̂∗ the vertex
{(

a p−1b
pc d

)
| a, b, c, d ∈ Zp

}
.

The set E = E(T ) of oriented edges of T is the set of ordered pairs (v1, v2) with v1, v2 ∈ V such
that v1 ∩ v2 is an Eichler order of level p. We call v1 = s(e) and v2 = t(e) the source and the
target of e, respectively, and write ē for the reversed edge (v2, v1). Set e∗ := (v∗, v̂∗).

Given v, v′ ∈ V, the distance between v and v′ is the length of a path without backtracking
from v to v′, i.e., the smallest number of edges needed to connect v with v′.

The group GL2(Qp) acts transitively and isometrically on V by the rule v 7→ gvg−1 for v ∈ V
and g ∈ GL2(Qp). Hence, it also gives rise to a natural action of GL2(Qp) on E , which is again
transitive. As a piece of notation, write v̂ := ωp(v) and ê := ωp(e) for any v ∈ V and any e ∈ E ,
respectively. Similarly, for any γ ∈ GL2(Qp) and any subgroup G of GL2(Qp) write γ̂ := ωpγω

−1
p

and Ĝ := ωpGω
−1
p . Observe that ê∗ = ē∗ for all e ∈ E .

We say that a vertex of T is even (respectively, odd) if its distance from v∗ is even (respectively,
odd). We write V+ (respectively, V−) for the subset of V consisting of even (respectively, odd)
vertices, and we write E+ (respectively, E−) for the subset of E made up of those oriented edges,

called even (respectively, odd), whose source is even (respectively, odd). Notice that V− = V̂+
and E− = Ē+ = Ê+.

Let GL+
2 (Qp) be the subgroup of GL2(Qp) whose elements are the matrices γ such that

ordp(det(γ)) is even, and recall from the introduction the subgroup

Γ :=
(
R(M)⊗Z Z[1/p]

)×
1

ιp−֒→ GL+
2 (Qp).



12 MATTEO LONGO, VICTOR ROTGER AND STEFANO VIGNI

It follows from [26, Ch. II, Theorem 2] that the segment connecting v∗ and v̂∗ is a fundamental
domain for the action of Γ on T , by which we mean a subgraph T ′ of T such that every vertex
(respectively, edge) of T is Γ-equivalent to a vertex (respectively, edge) in T ′. The stabilizers of

v∗, v̂∗ and e∗ in Γ are ΓD
0 (M), Γ̂D

0 (M) and ΓD
0 (pM), respectively. Furthermore, by [26, Ch. II,

Theorem 3], we know that

(13) Γ = ΓD
0 (M) ∗ΓD

0 (pM) Γ̂
D
0 (M),

that is, Γ is the amalgamated product of the stabilizers of v∗ and v̂∗ over the stabilizer of e∗.
The free abelian group Z[E+] over E+ can be canonically identified, via projection, with the

quotient CE of Z[E ] by the relations e+ ē = 0 for all e ∈ E . Setting CV := Z[V], we obtain a short
exact sequence

(14) 0 −→ CE
ϕ−→ CV

deg−−→ Z −→ 0

where ϕ(e) := t(e)− s(e) and deg is the degree map.
If X and A are sets write F(X,A) for the set of functions from X to A. Now suppose that A

is an abelian group; there are two degeneracy maps

ϕs, ϕt : F(E , A) −→ F(V, A)

ν 7−→
(
ϕs(ν) : v 7→

∑
s(e)=v ν(e)

)

ν 7−→
(
ϕt(ν) : v 7→

∑
t(e)=v ν(e)

)
.

Put

F0(E , A) :=
{
ν ∈ F(E , A) | ν(ē) = −ν(e) for all e ∈ E

}
.

An A-valued harmonic cocycle is a function ν ∈ F0(E , A) such that ϕs(ν) = 0; we write Fhar(A)
for the abelian group of A-valued harmonic cocycles.

Finally, assume further that A is a left G-module for some subgroup G of PGL2(Qp). Then
F(E , A) and its submodules F0(E , A) and Fhar(A) are endowed with a structure of left G-modules
by the rule gν(e) := g · ν(g−1e). The next result is proved in [13, §8].

Lemma 4.1 (Greenberg). The sequence of Γ-modules

0 −→ Fhar(A) −→ F0(E , A)
ϕs−→ F(V, A) −→ 0

is exact.

By applying Shapiro’s lemma, the short exact sequence of Lemma 4.1 induces a long exact
sequence

0 −→ Fhar(A)
Γ −→ AΓD

0 (pM) −→ (A×A)Γ0(M)

−→ H1
(
Γ,Fhar(A)

) ̺−→ H1
(
Γ,F0(E , A)

)
,

(15)

where

Im(̺) ≃ H1
(
Γ0(pM), A

)
p-new

:= ker
(
H1
(
Γ0(pM), A

)
−→ H1

(
Γ0(M), A

)2)
.

The group GL2(Qp) acts on the left on P1(Qp) by fractional linear transformations and this action,
as before, factors through PGL2(Qp).
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Set Ue∗ := Zp. Since GL2(Qp) acts transitively on E and the stabilizer of e∗ in GL2(Qp) is
GL2(Zp), we may define a map from E to the family of compact open subsets of P1(Qp) by

e 7−→ Ue := γ(Ue∗),

where γ ∈ GL2(Qp) is any element such that e = γ(e∗). Notice that Uē = P1(Qp)− Ue. The sets
{Ue}e∈E form a basis of compact open subsets for the p-adic topology of P1(Qp).

Let A be a free module of finite rank over either Z or Zp, equipped with a left action of a
subgroup G of PGL2(Qp). LetM(A) := Meas

(
P1(Qp), A

)
denote the space of A-valued measures

on P1(Qp) and write M0(A) ⊂ M(A) for the submodule of measures of total mass 0. Define a
left action of Γ onM(A) by imposing that

(γ · ν)(U) := ν
(
γ−1(U)

)

for all compact open subsets U of P1(Qp). Thanks to the above observation (see also, e.g., [10,
§2.3] and [13, Lemma 27]), there is a canonical isomorphism of G-modules

(16) Fhar(A)
≃−→M0(A), c 7−→ νc

given by the rule νc(Ue) := c(e).

4.2. Construction of the measure-valued 1-cocycle. From here until the end of the paper
we assume that D > 1. In this subsection we define a measure-valued cohomology class µ which
will be a crucial ingredient for our purposes. The construction of µ will be done in stages.

Choose a system Y of representatives for the cosets ΓD
0 (pM)\Γ. Since Γ acts transitively on

E+ and ΓD
0 (pM) is the stabilizer of e∗, we have Y = {γe}e∈E+ with γe ∈ Γ such that γe(e) = e∗.

Any other system of representatives is of the form Y ′ = {γ′e}e∈E+ with

(17) γ′e = f(e)γe

for a suitable f(e) ∈ ΓD
0 (pM).

Definition 4.2. The universal 1-cochain associated with Y is the 1-cochain

µYuniv : Γ −→ F0

(
E ,H1

(
ΓD
0 (pM),Z

)
T

)
≃ F0

(
E ,ΓD

0 (pM)abT
)

determined for all γ ∈ Γ by the following rules:

• for all e ∈ E+ let gγ,e ∈ ΓD
0 (pM) be defined by the equation γeγ = gγ,eγγ−1(e), then set

µYuniv(γ)(e) :=
[
gγ,e
]
;

• for all e ∈ E− set

µYuniv(γ)(e) := −µYuniv(γ)(ē).
As in the introduction, let

H = HD
0 :=

[
H1

(
ΓD
0 (pM),Z

)
T

/
Im(π∗)

]
T
.

Fix a non-zero torsion-free quotient H of H and let

πH : H1

(
ΓD
0 (pM),Z

)
≃ ΓD

0 (pM)ab −→ H

be the quotient map. In subsequent sections we will specialize to H = H, which represents
the most relevant case for this article. However, in connection with [13, Conjecture 2], other
interesting instances arise for H = H1(A,Z) where A/Q is a modular abelian variety (e.g., an

elliptic curve) that is a p-new quotient of JD
0 (pM).
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Let µYH ∈ C1
(
Γ,F0(E ,H)

)
be the 1-cochain defined, in terms of the universal 1-cochain of

Definition 4.2, by

(18) µYH(γ)(e) := πH
(
µYuniv(γ)(e)

)

for all γ ∈ Γ and all e ∈ E . The following properties of µYH, whose verification is easy but
somewhat tedious, will be used repeatedly.

Proposition 4.3. (i) The cochain µYH lies in Z1
(
Γ,F0(E ,H)

)
, i.e., it is a 1-cocycle.

(ii) The class of µYH in H1
(
Γ,F0(E ,H)

)
is independent of the choice of Y.

(iii) If ν ∈ Z1
(
Γ,F0(E ,H)

)
is cohomologous to µYH then there exists a system of representatives

Y ′ for ΓD
0 (pM)\Γ such that ν = µY

′

H .

We will denote the class of µYH in H1
(
Γ,F0(E ,H)

)
by µY

H; although, by part (ii) of the propo-
sition above, this class is independent of the choice of a system of representatives, we keep the
superscript Y in the notation because we reserve the unadorned symbol for a slightly different
cohomology class (cf. Definition 4.10).

Proof. Part (i) follows straightly by unwinding the definition of µYH. As for (ii), a direct compu-

tation reveals that if Y ′ is another system of representatives for ΓD
0 (pM)\Γ then

µYH − µY
′

H = δ([f ]),

the coboundary associated with the function [f ] : E → H such that [f ](e) := πH
(
[f(e)]

)
for e ∈ E+

and [f ](e) := −πH
(
[f(ē)]

)
for e ∈ E−; here f(e) is as in (17). Finally, to prove claim (iii) let g be

a function in F(E+,H) = F0(E ,H) whose image under the cobounday map is µYH − ν, and let

f ′ : E+ −→ ΓD
0 (pM)

be an arbitrary lift of g; then it can be checked that ν = µY
′

H for Y ′ :=
{
f ′(e)γe

}
e∈E+ . �

Now recall the map

̺ : H1
(
Γ,Fhar(H)

)
−→ H1

(
Γ,F0(E ,H)

)

from (15), with A = H.

Lemma 4.4. The class µY
H lies in Im(̺).

Proof. By (15) and Shapiro’s lemma, there are exact sequences fitting in the commutative diagram

. . . // H1
(

Γ,Fhar(H)
) ̺ //

≃

��

H1
(

Γ,F0(E ,H)
) //

≃

��

H1
(

Γ,F(V,H)
) //

≃

��

. . .

. . . // H1
(

ΓD
0 (pM),H

)

p-new
// H1

(

ΓD
0 (pM),H

) // H1
(

ΓD
0 (M),H

)

×H1
(

Γ̂D
0 (M),H

) // . . .

Let Y be any system of representatives for ΓD
0 (pM)\Γ. The class in H1

(
ΓD
0 (pM),H

)
correspond-

ing to µY
H under the above isomorphism can be represented by the cochain

g ∈ ΓD
0 (pM) 7−→ µYH(g)(e∗) ∈ H

which, according to Definition 4.2, is equal to πH
(
[g]
)
. If G ∈

{
ΓD
0 (M),ΓD

0 (pM), Γ̂0(M)
}
then G

acts trivially on H, so there is a canonical isomorphism

H1(G,H) ≃ Hom
(
H1(G,Z),H

)
.
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Under these identifications, the map in the lower right corner of the above diagram is

H1
(
ΓD
0 (pM),H

)
−→ H1

(
ΓD
0 (M),H

)
×H1

(
Γ̂D
0 (M),H

)

f 7−→ f ◦
(
cor

ΓD
0 (M)

ΓD
0 (pM)

, cor
Γ̂D
0 (M)

ΓD
0 (pM)

)

with cor indicating corestriction. Now observe that for H = H there is an equality of maps
(
cor

ΓD
0 (M)

ΓD
0 (pM)

, cor
Γ̂D
0 (M)

ΓD
0 (pM)

)
= (π∗1 , π

∗
2)

where the π∗i for i = 1, 2 are the pull-backs defined in the introduction. Since H is a quotient of

H :=
[
H1

(
ΓD
0 (pM),Z

)
T

/
Im(π∗1) + Im(π∗2)

]
T
,

we deduce that the image of µY
H in H1

(
ΓD
0 (M),H

)
×H1

(
Γ̂D
0 (M),H

)
is trivial, and the lemma is

proved. �

Remark 4.5. Some words of caution are in order here: Lemma 4.4 does not prove that the cocycle
µYH lies in Z1

(
Γ,Fhar(H)

)
. Rather, it only shows that some cocycle cohomologous to it takes values

in Fhar(H). However, by part (iii) of Proposition 4.3 this implies that there do exist choices of Y
such that µYH belongs to Z1

(
Γ,Fhar(H)

)
.

The last observation in Remark 4.5 motivates the following

Definition 4.6. A system of representatives Y for ΓD
0 (pM)\Γ is said to be harmonic if µYH

belongs to Z1
(
Γ,Fhar(H)

)
.

Let us introduce a class of systems of representatives for the cosets ΓD
0 (pM)\Γ which can be

explicitly constructed and shown to be harmonic. This construction will be useful in §5.2 but
may be also of independent interest, as it is amenable to explicit calculations: building on the
computational tools developed in [14], our recipe can be implemented in order to compute the
lattice of p-adic periods that we introduce in Section 6.

Definition 4.7. A system of representatives Y = {γe}e∈E+ for ΓD
0 (pM)\Γ is called radial if the

two conditions

(1) {γe}s(e)=v = {γiγv}pi=0 for all v ∈ V+,
(2) {γe}t(e)=v = {γ̃iγv}pi=0 for all v ∈ V−

hold for suitable choices of sets of representatives {γi}pi=0, {γ̃i}
p
i=0, {γv}v∈V+ and {γv}v∈V− for

the cosets ΓD
0 (pM)\ΓD

0 (M), ΓD
0 (pM)\Γ̂D

0 (M), ΓD
0 (M)\Γ and Γ̂D

0 (M)\Γ, respectively, such that
γ0 = γ̃0 = γv∗ = γv̂∗ = 1.

The next result justifies the formal introduction of the notion of radial systems.

Proposition 4.8. Radial systems of representatives exist and are harmonic.

Proof. The existence of radial systems follows from the fact that T is a tree. More precisely, for
any choice of sets of representatives {γi}pi=0 and {γ̃i}

p
i=0 of Γ

D
0 (pM)\ΓD

0 (M) and ΓD
0 (pM)\Γ̂D

0 (M),
respectively, with γ0 = γ̃0 = 1 conditions (1) and (2) in Definition 4.7 uniquely determine sets
{γv}v∈V+ and {γv}v∈V− satisfying them.

Let us now prove that radial systems are harmonic. According to Lemma 4.1, we need to
show that, with slightly abusive but self-explaining notation, ν := ϕs

(
µYH
)
∈ Z1

(
Γ,F(V,H)

)
is

identically zero. Firstly, notice that

(19) νγ(v∗) = 0 for all γ ∈ ΓD
0 (M), νγ̂(v̂∗) = 0 for all γ̂ ∈ Γ̂D

0 (M).
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Indeed, once again with a slight abuse of notation, for γ ∈ ΓD
0 (M) one has

νγ(v∗) =
∑

s(e)=v∗

[
gγ,e
]
=
[
cor

ΓD
0 (pM)

ΓD
0 (M)

([γ])
]
= π∗1([γ]) ∈ π∗1

(
H1

(
XD

0 (M),Z
))
,

hence the image of νγ(v∗) in H vanishes. Similar considerations apply to elements γ̂ in Γ̂D
0 (M).

Secondly, one has

(20) νγv (v∗) = 0 for all v ∈ V+, νγv(v̂∗) = 0 for all v ∈ V−.
In fact, with notation as in Definition 4.7, for v ∈ V+ there are equalities

νγv (v∗) =

p∑

i=0

µYH,γv
(γ−1

i e∗) =
∑

i

γiµYH,γv
(e∗) =

∑

i

(
µYH,γiγv

− µYH,γi

)
(e∗),

and this vanishes in H because the γi and the γiγv belong to Y by definition of µYH.
Similarly, if v ∈ V− then

νγv (v̂∗) =

p∑

i=0

µYH,γv
(γ̃−1

i ē∗) =
∑

i

γ̃iµYH,γv
(ē∗) =

∑

i

(
µYH,γ̃iγv

− µYH,γ̃i

)
(ē∗),

which is again trivial because the γ̃i and the γ̃iγv are in Y.
This is enough to prove the lemma, as one can check that ν is uniquely determined by conditions

(19) and (20). �

Let Y be an arbitrary harmonic system. Before proceeding with our arguments, we make an
observation which will prove useful later.

Remark 4.9. The analogue of part (ii) of Proposition 4.3 for µYH does not hold true inH1
(
Γ,Fhar(H)

)
.

Indeed, there exist several choices of harmonic systems Y ′ such that the classes of µYH and µY
′

H in

H1
(
Γ,Fhar(H)

)
are different; this is due to the fact that ker(̺) is not trivial. More precisely, it

is immediate to check from (15) that

ker(̺) = (H×H)/H0

where H0 is the image of H in H×H under the embedding a 7→
(
(p + 1)a,−(p + 1)a

)
.

Fix once and for all, for the rest of this article, a prime r ∤ pDM and set

tr := Tr − r − 1,

which we regard as an operator in either H(M), H(pM) or H(p,M) according to the context.

Definition 4.10. The class µH is the image of tr · µYH in H1
(
Γ,Fhar(H)

)
.

Dropping Y from the notation is justified by the following

Lemma 4.11. The class µH is independent of the choice of Y.
Proof. It suffices to show that tr vanishes on the kernel of ̺, i.e., that ker(̺) is an Eisenstein
submodule of H1

(
Γ,Fhar(H)

)
. If this is true then tr also acts on Im(̺) →֒ H1

(
Γ,F0(E ,H)

)
, and

the lemma follows from part (ii) of Proposition 4.3.
As pointed out in Remark 4.9, ker(̺) is equal to the image of H × H = H0

(
Γ,F(V,H)

)
in

H1
(
Γ,Fhar(H)

)
. Since Hecke operators commute with the connecting maps of the long exact

sequence (15) by [1, Lemma 1.1.1], it is enough to show that H0
(
Γ,F(V,H)

)
is Eisenstein.
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Let f ∈ H0
(
Γ,F(V,H)

)
. According to Section 2, Tr(f) =

∑r+1
i=0 si · f where the si ∈ R(pM)

are elements of norm r. Since the elements in R(pM) fix both v∗ and v̂∗, it follows that

Tr(f)(v∗) = (r + 1)f(v∗), Tr(f)(v̂∗) = (r + 1)f(v̂∗).

Since Tr(f) is again Γ-invariant, it is completely determined by these two values. Hence Tr(f) =
(r + 1)f , and we are done. �

In light of isomorphism (16), we shall denote by µH also the measure-valued cohomology class
in H1

(
Γ,M0(H)

)
associated with µH. In the special case where H = H, we denote µH simply

by µ.

5. Multiplicative integration pairings

5.1. An integration pairing for Shimura curves. As in §4.2, let H be a non-zero torsion-free
quotient of H, which now we further assume to be stable for the action of H(pM). This holds for
all the cases we are interested in, like H = H or H = H1(A,Z) where A/Q is a modular abelian

variety that is a p-new quotient of JD
0 (pM).

The aim of this section is to introduce a suitable analogue of the integration pairing defined
by Dasgupta in [10, §3.2]. Notice though that when D > 1 there is no natural action of Γ
on Div P1(Q) and consequently Dasgupta’s pairing makes no sense. Instead, following ideas of
Greenberg ([13]), we shall construct a pairing

〈 , 〉 : H1(Γ,D)×H1
(
Γ,M0(H)

)
−→ C×

p ⊗H

where, for notational convenience, from here on we set

D := Div0Hp.

Notice that if H = H then C×
p ⊗ H = T (Cp). Let C

(
P1(Qp),Cp

)
denote the Cp-algebra of Cp-

valued continuous functions on P1(Qp); since it is naturally a submodule of F
(
P1(Qp),Cp

)
, it

inherits a left action of GL2(Qp). The multiplicative group C
(
P1(Qp),Cp

)×
of invertible elements

of C
(
P1(Qp),Cp

)
consists of the C×

p -valued functions in C
(
P1(Qp),Cp

)
. As in [10, Definition 2.2],

given a function f ∈ C
(
P1(Qp),Cp

)×
and a measure ν ∈ M0(H) we define the multiplicative

integral of f against ν as a limit of Riemann products

×
∫

P1(Qp)
fdν := lim

‖U‖→0

∏

U∈U

f(tU)⊗ ν(U) ∈ C×
p ⊗H.

In the above formula the limit is taken over finer and finer covers U of P1(Qp) by compact open
disjoint subsets, and tU is an arbitrary point of U for every U ∈ U . The limit converges in C×

p ⊗H
because ν is a measure. This produces a pairing

(21) ( , ) : C
(
P1(Qp),Cp

)× ×M0(H) −→ C×
p ⊗H.

One can easily verify that the pairing (21) satisfies

(γ · f, γ · ν) = (f, ν)

for all γ ∈ GL2(Qp), f ∈ C
(
P1(Qp),Cp

)×
and ν ∈ M0(H). Since the multiplicative integral of a

non-zero constant against a measure ν ∈ M0(H) is 1, the above pairing induces another pairing

(22) ( , ) : C
(
P1(Qp),Cp

)×/
C×
p ×M0(H) −→ C×

p ⊗H.
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For any d ∈ D let fd denote a rational function on P1(Cp) such that div(fd) = d. The function fd
is not unique; more precisely, it is well defined only modulo multiplication by constant non-zero
functions. Since the divisor d is not supported on P1(Qp), the function fd restricts to a function

in C
(
P1(Qp),Cp

)×
, which will be denoted in the same fashion by an abuse of notation. Thus the

map d 7→ fd defines an embedding

D −֒→ C
(
P1(Qp),Cp

)×/
C×
p

which is invariant under the natural left actions of GL2(Qp). Hence, composing this injection
with (22) yields a GL2(Qp)-invariant pairing (denoted, by a slight abuse of notation, by the same
symbol)

(23) ( , ) : D ×M0(H) −→ C×
p ⊗H, (d, µ) := ×

∫

P1(Qp)
fd dµ

which, by construction, factors naturally through (D ⊗M0(H))Γ. By cap product, we finally
obtain the desired pairing

(24) 〈 , 〉 : H1(Γ,D)×H1
(
Γ,M0(H)

)
−→ C×

p ⊗H.

5.2. Hecke-equivariance of the integration map. Recall from above that D := Div0Hp and
let also µH be as in §4.2. Fixing µH in the second variable of the pairing 〈 , 〉 of (24) yields a
homomorphism

(25)

∫
: H1(Γ,D) −→ C×

p ⊗H.

The group H1(Γ,D) is an H(p,M)-module, while C×
p ⊗H is naturally an H(pM)-module, because

of our assumptions on H. Our present aim is to prove the following

Proposition 5.1. The integration map
∫

is equivariant for the actions of the Atkin–Lehner
involutions Wp and W∞ and of the Hecke operators Tℓ with ℓ ∤ pDM .

We devote the rest of this subsection to the proof of this proposition. Let

T ∈
{
Tℓ | ℓ ∤ pDM

}
∪ {Wp,W∞}

and let Y be a harmonic system of representatives for ΓD
0 (pM)\Γ; we want to show that

〈
T · c, tr · µYH

〉
= T ·

〈
c, tr · µYH

〉

for all c ∈ H1(Γ,D). Thanks to (4) and the commutativity of the Hecke algebras, this is equivalent
to showing that

(26)
〈
T · c, µYH

〉
= T ·

〈
c, µYH

〉

for all c ∈ tr ·H1(Γ,D). Note that, by Lemma 4.11 and (4) again, it follows that both
〈
T · c, µYH

〉

and
〈
c, µYH

〉
are independent of the chosen harmonic system Y.

Let W ∈ {Wp,W∞} denote any of the two involutions. We shall prove (26) by computing the
two sides of the equality by means of two different choices of harmonic systems Y.

In both Hecke algebras H(p,M) andH(pM) one has thatW = T (ω) for an element ω ∈ R(pM)
satisfying Γω = ωΓ and ΓD

0 (pM)ω = ωΓD
0 (pM). On H1(Γ,D) the involution W acts as

c =
∑

k

dk[γk] 7−→
∑

k

(ω−1dk)[ω
−1γkω], dk ∈ D for all k,

hence
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(27)
〈
W · c, µYH

〉
= ×
∫
fω−1dk(t)dµ

Y
H,ω−1γkω

(t) = lim
U

∏

k

∏

U∈U

fdk(tU )⊗ µYH,ω−1γkω
(ω−1U).

On the other hand, W acts on H simply by conjugation by ω, so that

(28) W ·
〈
c, µYH

〉
= lim

U

∏

k

∏

U∈U

fdk(tU )⊗ ω−1µYH,γk
(U)ω.

Given a radial (hence harmonic, by Lemma 4.8) system Y = {γe}e∈E+ , let us introduce the system

ωY :=
{
ωγω−1(e)ω

−1
}
e∈E+ .

Notice that ωY is again radial, because conjugation by ω∞ (respectively, ωp) leaves each of

ΓD
0 (pM), ΓD

0 (M), Γ̂0(M) and Γ invariant (respectively, leaves ΓD
0 (pM) and Γ invariant and

interchanges ΓD
0 (M) and Γ̂0(M)). Again by Lemma 4.8 we obtain that ωY is harmonic, and thus

the above observations apply.
If one computes (27) with respect to Y and computes (28) with respect to ωY it follows that

(27) is equal to (28), as we wished to show.
Now let ℓ ∤ pDM be a prime number and fix a radial system Y.

Lemma 5.2. Let µ
(ℓ)
H ∈ Z1

(
Γ,F0(E ,H)

)
be the cocycle determined by the rule

µ
(ℓ)
H,γ(e) :=

∑

i

πH
([
ti(gγ,e)

])

for every γ ∈ Γ and every even edge e ∈ E+. Then

(i) µ
(ℓ)
H is a cocycle which takes values in Fhar(H);

(ii) Tℓ
(
µYH
)
= µ

(ℓ)
H + b for some b ∈ ker(̺) ⊂ Z1

(
Γ,Fhar(H)

)
.

Proof. For simplicity, write ν := µYH ∈ Z1
(
Γ,Fhar(H)

)
and ν(ℓ) := µ

(ℓ)
H . Set I(ℓ) := {0, . . . , ℓ}. An

easy computation shows that

Tℓ(ν)γ = −
∑

i

γgj · νt−1
i (γ)

for all γ ∈ Γ, where j = j(i) is the permutation of I(ℓ) such that ti(γ) = g−1
i γgj .

For every edge e ∈ E+ one has
(
γgj · νt−1

i (γ)

)
(e) = πH

([
gt−1

i (γ),g−1
j γ−1e

])

with gt−1
i (γ),g−1

j γ−1e ∈ ΓD
0 (pM) satisfying the equation

(29) γg−1
j γ−1et

−1
i (γ) = gt−1

i (γ),g−1
j γ−1eγtig−1

j γ−1(e) = gt−1
i (γ),g−1

j γ−1eγg−1
i (e).

For every g ∈ GL2(Qp) and every γ ∈ Γ with g−1γg ∈ Γ there exists hg,e ∈ ΓD
0 (pM) such that

γg−1(e) = hg,eg
−1γeg. Using the equality γγ−1(e)γ

−1 = gγ−1,γ−1(e)γe, one shows that

γg−1
j γ−1et

−1
i (γ) = hgj ,γ−1(e)

(
g−1
j gγ−1,γ−1(e)gi

)
h−1
gi,eγg−1

i (e).

Comparing with formula (29), we deduce that

gt−1
i (γ),g−1

j γ−1e = hgj ,γ−1(e)

(
g−1
j gγ−1,γ−1(e)gi

)
h−1
gi,e.
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Since gt−1
i (γ),g−1

j γ−1e, hgj ,γ−1(e) and h
−1
gi,e are in ΓD

0 (pM), we conclude that g−1
j gγ−1,γ−1(e)gi belongs

to ΓD
0 (pM) as well. Accordingly, in H we have

[
gt−1

i (γ),g−1
j γ−1e

]
=
[
g−1
j gγ−1,γ−1(e)gi

]
+
[
hgj ,γ−1(e)

]
− [hgi,e].

An easy calculation now yields that g−1
γ,e = gγ−1(e),γ−1 . Hence

Tℓ(ν)γ(e) =
∑

i

πH
(
[ti(gγ,e)]

)
−
∑

i

πH
([
hgi,γ−1(e)

])
+
∑

i

πH
(
[hgi,e]

)
.

Let us introduce the function

ϕ : E+ −→ H, e 7−→
∑

i

πH
(
[hgi,e]

)

and extend it to an element of F0(E ,H) by the obvious recipe. Since

(γϕ)(e) = ϕ
(
γ−1(e)

)
=
∑

i

πH
([
hgi,γ−1(e)

])
,

it follows that the cocycle ν(ℓ) represents the same class as Tℓ(ν) in Z1
(
Γ,F0(E ,H)

)
. In other

words, the class of b := Tℓ(ν)− ν(ℓ) in H1
(
Γ,F0(E ,H)

)
is trivial.

Let us now prove that ν(ℓ) ∈ Z1
(
Γ,Fhar(H)

)
. In order to show this, write i 7→ σ(i) for the

permutation of I(ℓ) such that ti(gγ,e) = gigγ,egσ(i). Note that
∑

i

[ti(gγ,e)] =
∑

i

[
g−1
i gγ,egσ(i)

]
=
∑

s∈S

[
g−1
s gms

γ,egs
]
=
∑

s∈S

ms

[
g−1
s gγ,egs

]

where S is a suitable subset of I(ℓ) and ms ∈ Z for all s ∈ S. Therefore it suffices to show that
the cocycle defined on Γ by the rule

γ 7−→
(
e 7→ πH

([
g−1
s gγ,egs

]))

for e ∈ E+ is harmonic. Keep the notation of Definition 4.7 for the radial system Y. For every
s ∈ S define

Hs := g−1
s ΓD

0 (pM)gs, Γs := g−1
s Γgs

as subgroups of GL2(Qp). Then a system of representatives for the cosets Hs\Γs is given by the
set {

γ′e := g−1
s γiγvgs

}
.

Arguing as in Lemma 4.8, one immediately shows that the cocycle in Z1
(
g−1
s Γgs,F0(E ,H)

)
defined

on e ∈ E+ by the rule

g−1
s γgs 7−→

(
e 7→ πH

([
g′γ,e
]))

,

where γ′eg
−1
s γgs = g′γ,eγ

′
e′ , is harmonic. Since g′γ,e = g−1

s gγ,egs, this is enough to conclude that

ν(ℓ) takes values in Fhar(H) as well. Hence b actually lies in Z1
(
Γ,Fhar(H)

)
. By the above

observation, if b is the class of b in H1
(
Γ,Fhar(H)

)
then ̺(b) = 0, as we wanted. �

Now the equivariance of the integration map under Tℓ follows easily. In fact, keeping the
notation introduced before, Lemma 5.2 implies that

〈Tℓ(c), ν〉 = 〈c, Tℓ(ν)〉 = 〈c, ν(ℓ)〉 = Tℓ
(
〈c, ν〉

)
,

which concludes the proof of Proposition 5.1.
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5.3. The p-adic valuation of the integration map. Unless otherwise stated, for the rest of
the article set H := H. Let

red : Hp −→ T
be the GL2(Qp)-equivariant reduction map which is described, e.g., in [6, I.2] and choose a base
point τ ∈ Kp −Qp such that red(τ) = v∗.

Let γ1, γ2 be two arbitrary elements of Γ. Let {e1, . . . , en} be the even geodesic joining v∗ with
red
(
γ1(τ)

)
= γ1(v∗) ∈ V+. By this we mean that ei ∈ E+ are even edges such that

• s(e1) = v∗, s(en) = γ1(v∗) =: vn;
• t(ei) = t(ei+1) =: vi for odd indices in {1, . . . , n− 1};
• s(ei) = s(ei+1) =: vi for even indices in {2, . . . , n− 2}.

Notice that, above, the integer n is always even. It is our aim here to prove the following result,
which will be used in the next section.

Proposition 5.3. Keep notation as above. If the gi for i = 1, . . . , n are elements of ΓD
0 (pM)

such that γeiγ2 = giγe′i with e
′
i ∈ E+ then

ordp

(
×
∫

P1(Qp)

t− γ1(τ)
t− τ dµYH,γ2

(t)

)
=

n∑

i=1

(−1)i[gi] ∈ H.

In order to prove the formula in the proposition, let τ0 := τ , τn := γ1(τ) and for every
i = 1, . . . , n − 1 choose τi ∈ Kp −Qp such that red(τi) = vi. Since

t− γ1(τ)
t− τ =

t− τn
t− τn−1

· t− τn−1

t− τn−2
· · · · · t− τ1

t− τ0
,

it is easy to check that

ordp

(
×
∫
t− γ1(τ)
t− τ dµYH,γ2

(t)

)
=

n−1∑

i=0

×
∫

ordp

(
t− τi+1

t− τi

)
dµYH,γ2

(t).

Proposition 5.3 now follows recursively from the next computation.

Lemma 5.4. Let v1, v2 ∈ V be consecutive vertices and let τ1, τ2 ∈ Kp−Qp be such that red(τi) =
vi for i = 1, 2. Set e := (v1, v2) if v1 ∈ V+ and e := (v2, v1) otherwise. If γ ∈ Γ then

×
∫

ordp

(
t− τ2
t− τ1

)
dµYH,γ(t) =




−[g] if v1 ∈ V+

[g] if v1 ∈ V−

where g ∈ ΓD
0 (pM) is such that γeγ = gγe′ for some e′ ∈ E+.

Proof. Let us give the details only for v1 ∈ V+, the other case being analogous. Consider the
points τv̂∗ := γe(τ2) and τv∗ := γe(τ1), so that

red(τv∗) = v∗, red(τv̂∗) = v̂∗.

Thanks to the Γ-equivariance of (21), we have

×
∫

ordp

(
t− τ2
t− τ1

)
dµYH,γ(t) = ×

∫
ordp

(
t− τv̂∗
t− τv∗

)
· d(γeµYH,γ)(t).
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Now, by [6, I.2] (see also [10, p. 444]), there is an equality

ordp

(
t− τv̂∗
t− τv∗

)
=




−1 if t ∈ Zp

0 if t 6∈ Zp

,

hence

×
∫

ordp

(
t− τ2
t− τ1

)
dµYH,γ(t) = −µYH,γ(γ

−1
e Zp).

By definition, we have

µYH,γ

(
γ−1
e · Zp

)
= µYH,γ

(
γ−1
e (e∗)

)
= [g]

where γeγ = gγγ−1(e). Thus we find that

×
∫

ordp

(
t− τ2
t− τ1

)
dµYH,γ(t) = −[g],

which is the searched-for equality. �

6. The lattice of p-adic periods

From the long exact sequence in Γ-homology associated with the short exact sequence

0 −→ D −→ DivHp
deg−−→ Z −→ 0

we extract the boundary homomorphism

∂ : H2(Γ,Z) −→ H1(Γ,D).
Set

Φ :=

∫
◦ ∂ : H2(Γ,Z) −→ T (Cp)

and let L be the image of Φ in T (Cp).

Proposition 6.1. The module L is contained in T (Qp) and is preserved by the action of the
Hecke algebra.

Proof. Let F be a non-trivial finite extension of Qp. Any point τ ∈ F −Qp can be used as base
point in order to compute the map ∂ on Z2(Γ,Z); explicitly, one has

∂

(
∑

i

ai[γi,1|γi,2]
)

=
∑

i

(
γ−1
i,1 (τ)− τ

)
⊗ ai[γi,2]

on a generic 2-cycle in Z2(Γ,Z). This shows that ∂
(
H2(Γ,Z)

)
⊂ H1

(
Γ,Div0Hp(F )

)
, and from

the very definition of the integration pairing it then follows that L ⊂ T (F ). Since this holds for
all finite extensions F of Qp, we deduce that L is contained in T (Qp).

Finally, the submodule L is invariant under the action of the Hecke operators because the map
Φ is Hecke equivariant. In fact, the boundary map ∂ is Hecke equivariant by, e.g., [9, Lemma
5.1.3] (one just needs to formally replace Dasgupta’s ∆Q = PGL2(Q) with Γ), and the integration
map

∫
is Hecke equivariant as well by Proposition 5.1. �

Set

π∗ := (π1)∗ ⊕ (π2)∗ : H1

(
XD

0 (pM),Z
)
−→ H1

(
XD

0 (M),Z
)2
,

where (πi)∗ is the push-forward of the map πi for i = 1, 2.
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Lemma 6.2. There is a canonical injection λ : ker(π∗) →֒ H which has finite cokernel and is
equivariant for the action of W∞.

Proof. As endomorphisms of H1

(
XD

0 (M),Z
)2
, there is an equality

π∗ ◦ π∗ =
(
p+ 1 Tp
Tp p+ 1

)
.

But the eigenvalues of Tp are bounded by 2
√
p, so the above endomorphism is injective and has

finite cokernel. A formal argument concludes the proof. �

There is yet another way to interpret ker(π∗). Namely, applying Shapiro’s lemma to the long
exact sequence in homology attached to (14) gives an exact sequence of abelian groups

(30) H2

(
ΓD
0 (M),Z

)2 −→ H2(Γ,Z)
θ−→ H1

(
ΓD
0 (pM),Z

) π∗−→ H1

(
ΓD
0 (M),Z

)2
,

with θ being the connecting homomorphism; it follows that

(31) ker(π∗) = Im(θ).

Below, fix τ ∈ Kp −Qp such that red(τ) = v∗ and use it to compute the map ∂ on Z2(Γ,Z) as in
the proof of Proposition 6.1.

Proposition 6.3. The diagram

H2(Γ,Z)
θ //

∂

��

Φ

%%L

L

L

L

L

L

L

L

L

L

L

L

ker(π∗)
λ // H

−tr

��
H1(Γ,D)

∫

// T (Kp)
ordp // H

is commutative.

Proof. Thanks to relation (4) and the obvious commutativity

(32) ordp ◦ tr = tr ◦ ordp : T (Qp) = Q×
p ⊗H −→ H,

it suffices to show that the diagram

H2(Γ,Z)
θ //

∂

��

ker(π∗)
λ // H

−id

��
H1(Γ,D)

∫

// T (Kp)
ordp // H

is commutative. To compute the integration map
∫
, fix a harmonic (e.g., radial) system of

representatives Y for ΓD
0 (pM)\Γ.

Let a =
∑

i ai
[
γi,1|γi,2

]
, with ai ∈ Z, be an element of Z2(Γ,Z); it follows from Proposition 5.3

and the definitions of ∂ and of pairing (24) that

ordp

( ∫
∂(a)

)
= ordp

(
〈∂(a),µ〉

)
=
∑

i

aiordp

(
×
∫
t− γ−1

i,1 (τ)

t− τ dµYH,γi,2
(t)

)

=
∑

i

ni∑

j=1

(−1)jai[gi,j ]
(33)

where the gi,j ∈ ΓD
0 (pM) are defined as follows:
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• consider an even geodesic {e(i)1 , . . . , e
(i)
ni } from v∗ to γ−1

i,1 (v∗);

• define gi,j ∈ ΓD
0 (pM) via the equation γ

e
(i)
j

· γi,2 = gi,j · γe′
i, j

for some e′i, j ∈ E+.
This accounts for half of the above diagram. As for the other half, the map λ is just the
restriction to ker(π∗) of the projection H1

(
ΓD
0 (pM),Z

)
→ H, whereas the explicit descrip-

tion of θ is somewhat more involved, since θ is the composition of the connecting homomor-
phism H2(Γ,Z) → H1(Γ, CE) in the long exact sequence attached to (14) with the isomorphism
H1(Γ, CE) ≃ H1

(
ΓD
0 (pM),Z

)
provided by Shapiro’s lemma. By unwinding definitions and writing

down explicit expressions of these two maps at the level of chains, one obtains that

(34) λ
(
θ(a)

)
=
∑

i

∑

e∈E+

αe,i · ai ⊗ [ge,i]

where

• Ei =
∑

e∈E+ αe,i · e ∈ CE , with αe,i ∈ Z, is such that ϕ(Ei) = γ−1
i,1 (v∗)− v∗;

• γe · γi,2 = ge,i · γe′i for e
′
i ∈ E+ and ge,i ∈ ΓD

0 (M).

Here recall from (14) that ϕ(e) := t(e)− s(e). In our case, for all i we may choose

Ei :=

n∑

j=1

(−1)j−1e
(i)
j ∈ Z[E+].

The claim of the proposition follows immediately by comparing (33) and (34). �

We can now prove the main result of this section.

Theorem 6.4. The submodule L of T (Qp) is a lattice of rank 2g.

Proof. According to [25, §4.2], it suffices to show that the image of L under the map

ordp : T (Qp) −→ H ⊂ H ⊗ R

is a lattice of rank 2g in the R-vector space H ⊗R. Since H2(Γ,Z) is a finitely generated abelian
group, the same is true of ordp(L). Moreover, by construction, H is a free discrete submodule of
H⊗R, hence ordp(L) is a free discrete submodule of H⊗R as well. Now, extending our previous
notation by linearity, observe that

rankZ
(
ordp(L)

)
= dimQp

(
ordp ◦

∫
◦ ∂
(
H2(Γ,Qp)

))
.

By Proposition 6.3, we know that

ordp ◦
∫
◦ ∂ = −(tr ◦ λ ◦ θ)⊗Z Qp.

The map λ ⊗ Qp is surjective by Lemma 6.2, while so is tr ⊗ Qp because the absolute values of
the Hecke operator Tr acting on H are bounded from above by 2

√
r. Combining this with (31),

we obtain that the image of ord ◦
∫
◦ ∂ is H ⊗Qp, whose dimension over Qp is 2g. �

7. The p-adic uniformization

7.1. The main theorem. The ultimate goal of this section is to prove Theorem 1.1, which
represents the main contribution of this article. We start by observing that, in analogy with [10],
Theorem 1.1 is a consequence of the following result.

Theorem 7.1. The equality of maps LDp · ordp = logp holds on the lattice L.
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For the convenience of the reader, let us explain why Theorem 7.1 implies Theorem 1.1; we
follow [10, pp. 449–450] closely. For any Z[W∞]-module M and sign ǫ ∈ {±1} we set Mǫ :=
M/(W∞ − ǫ). This applies in particular to the Hecke module H; define

Tǫ := Gm ⊗Z Hǫ.

Since, as shown in the proof of Proposition 6.1, the map Φ is equivariant for the action of W∞

and the cokernel of the canonical map H → H+ ⊕ H− is supported at 2, it follows that there
exists an isogeny of 2-power degree

T/L −→ T+/L+ ⊕ T−/L−

of rigid analytic tori over Qp.
Fix a sign ǫ; we prove Theorem 1.1 by showing that Tǫ/Lǫ admits a Hecke-equivariant isogeny

over Kp to the rigid analytic space associated with JD
0 (pM)p-new.

Notice that it follows from Lemma 6.2 that ker(π∗) ⊗ Q is canonically isomorphic to H ⊗ Q
and that there is a canonical injection λǫ : ker(π∗)ǫ →֒ Hǫ. Write

T := TD
0 (M) ⊂ End(H ⊗Q)

for the image in End(H ⊗Q) of the Hecke algebra H(pM).
Now we freely use the notation of §3.5; in particular, X is the group of degree zero divisors on

the set of supersingular points of XD
0 (M) in characteristic p and X∗ is its Z-dual. Since X ⊗Q,

X∗⊗Q, Hǫ⊗Q and ker(π∗)ǫ⊗Q are free T-algebras of rank one (see [16, Ch. 1]), we can choose
Hecke-equivariant maps ξǫ and ηǫ making the diagram

(35) ker(π∗)

ηǫ

��

λǫ // Hǫ
−tr // Hǫ

ξǫ

��
X

ordX // X∗

commute.
The map Φ, being W∞-equivariant, restricts to a map Φǫ : H2(Γ,Z)ǫ → Tǫ(Kp). Consider the

diagram

(36) H2(Γ,Z)ǫ
Φǫ //

θǫ

��

Tǫ(Kp)
ξǫ // X∗ ⊗K×

p

ker(π∗)ǫ
ηǫ // X

j

OO

with the map θ having already made its appearance in the exact sequence (30).
In the statement below, let

ordp, logp : X
∗ ⊗K×

p −→ X∗ ⊗ Zp

denote the usual valuation and logarithm maps.

Proposition 7.2. Diagram (36) commutes up to elements in ker(logp) ∩ ker(ordp).

Proof. To begin with, the map ordp ◦Φǫ is equal to −tr ◦ λǫ ◦ θǫ by Proposition 6.3. Thus

ordp ◦ ξǫ ◦ Φǫ = −ξǫ ◦ tr ◦ λǫ ◦ θǫ = ordX ◦ ηǫ ◦ θǫ = ordp ◦ j ◦ ηǫ ◦ θǫ,
where the first equality follows from the commutativity of ordp and ξǫ, the second is a consequence
of the commutativity of diagram (35) and the third follows from the definition of ordX . Hence
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diagram (36) commutes up to elements in ker(ordp). Since the maps in diagram (36) are Hecke
equivariant, Theorem 7.1 and Proposition 3.4 imply that diagram (36) is commutative also up to
elements in ker(logp), from which the result follows. �

Notice that ker(logp) ∩ ker(ordp) is a finite subgroup of X∗ ⊗K×
p whose order is supported at

the prime divisors of p− 1 if p > 2 (at 2 if p = 2). We are ready to prove Theorem 1.1, which we
reformulate below in terms of the ǫ-components.

Theorem 7.3. There is a Hecke-equivariant isogeny over Kp between Tǫ/πǫ(L) and the rigid

analytic space associated with JD
0 (pM)p-new whose degree is divisible only by 2 and the primes

dividing the order of ker(logp) ∩ ker(ordp) and coker(ηǫ ⊗ id) for ǫ = ±.

Proof. Recall exact sequence (12), which gives a rigid-analytic uniformization of JD
0 (M)p-new in

terms of X and the map j. Since ker(logp) ∩ ker(ordp) is finite, Proposition 7.2 shows that the
map ξǫ induces an isogeny

Tǫ/πǫ(L) −→ JD
0 (M)p-new

which is defined over Kp. The Hecke-equivariance is immediate and the statement on the degree
of the isogeny follows from the bounds given above. �

As already mentioned, Theorem 7.3 immediately implies Theorem 1.1 in the introduction.
Furthermore, thanks to the Hecke-equivariance of the isogeny in the theorem above, a proof of
Greenberg’s conjecture [13, Conjecture 2] is also a consequence of Theorem 7.3: see §7.7 for
details.

The rest of the article will be devoted to proving Theorem 7.1.

7.2. A lifting theorem for measure-valued cohomology classes. As a piece of notation, in
the sequel writeM :=M(H ⊗ Zp) for the Zp-module of measures on P1(Qp) (of arbitrary total
mass) with values in H ⊗ Zp.

Define Y := Z2
p; we view the elements of Y as column vectors

( x
y

)
– sometimes written as rows

only for notational convenience – and let the semigroup M2(Zp) act on Y by left multiplication,
so that

γ · ξ := (ax+ by, cx+ dy)

for every γ =
(
a b
c d

)
∈ M2(Zp) and every ξ =

( x
y

)
∈ Y.

Similarly as before, writeMY for the Zp-module of measures on Y with values in H ⊗Zp. The
above action can be used to define a left action of M2(Zp) on MY, like the one introduced in
§4.1. If ν ∈ MY we let Supp(ν) denote the support of ν, and we say that ν is supported on a
compact open subset U of Y if Supp(ν) ⊂ U. For any compact open subset U of Y we denote by
MU the Zp-submodule of MY consisting of those measures supported on U. It is immediate to
check that if γ ∈M2(Zp) and ν ∈ MU then γ · ν ∈ MγU.

Let X := (Z2
p)

′ denote the set of primitive vectors in Y, that is, the set of elements (a, b) ∈ Y
such that a and b are not both divisible by p. Again, writeMX for the Zp-module of H⊗Zp-valued
measures on X. We omit the proof of the following

Lemma 7.4. The kernel of the canonical projection q :MY →MX is preserved by the action of
M2(Zp).

As a consequence of Lemma 7.4, one can define a left action of M2(Zp) onMX by the formula

γ · ν := q
(
γ · i(ν)

)
= q(γ · ν̃)
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for every ν̃ such that q(ν̃) = ν.
Now consider the map

π : X −→ P1(Qp), (a, b) 7−→ [(a, b)],

whose fibers are principal homogeneous spaces for Z×
p . The action of M2(Zp) on Y restricts to

an action of GL2(Zp) on X and π is a homomorphism of left GL2(Zp)-modules, where the left
action of GL2(Zp) on P1(Qp) is by fractional linear transformations. The fibration π induces by
push-forward a map π∗ : MX → M where π∗(ν) := ν

(
π−1(U)

)
for every ν ∈ MX and every

compact open subset U of P1(Qp). With a slight abuse of notation, we then get a map π∗ from
Z1
(
ΓD
0 (M),MX

)
to Z1

(
ΓD
0 (M),M

)
by the rule π∗(ν)γ := π∗(νγ), and finally a map

π∗ : H
1
(
ΓD
0 (M),MX

)
−→ H1

(
ΓD
0 (M),M

)
.

Recall the class µ ∈ H1(Γ,M0(H)) defined in §4.2, which we can naturally regard now as an
element of H1(Γ,M).

Theorem 7.5. There exists µ̃ ∈ H1
(
ΓD
0 (M),MX

)
such that π∗(µ̃) is the restriction of µ to

ΓD
0 (M).

In order to prove Theorem 7.5, for every integer r ≥ 1 let Xr be the set of primitive vectors
in (Zp/p

rZp)
2, again endowed with the natural left action of GL2(Zp). One immediately verifies

that X ≃ lim←−Xr with respect to the canonical projection maps.

For r ≥ 1 let Γr := ΓD
1 (p

r) ∩ ΓD
0 (M), which is a congruence subgroup of ΓD

0 (p
rM).

Proposition 7.6. For every r ≥ 1 set

Ũr :=
{
(x, y) ∈ X | x ∈ 1 + prZp, y ∈ prZp

}
⊂ X

and
Ur :=

{
[x : y] ∈ P1(Qp) | x ∈ 1 + prZp, y ∈ prZp

}
⊂ P1(Qp).

The maps

(i) H1
(
ΓD
0 (M),MX

) ≃−→ lim←−
r

H1(Γr,H ⊗ Zp), µ̃ 7→ {µ̃r}r≥1, µ̃r(γ) := µ̃γ(Ũr),

(ii) H1
(
ΓD
0 (M),M

) ≃−→ lim←−
r

H1
(
ΓD
0 (p

rM),H ⊗ Zp

)
, µ 7→ {µr}r≥1, µr(γ) := µγ(Ur)

are isomorphisms.

Proof. We provide details for (i) only, as (ii) is completely analogous. For all r ≥ 1 the action
of GL2(Zp) on Xr is transitive and the stabilizer of (1, 0) is the subgroup Σ(pr) consisting of the
matrices

(
a b
c d

)
with a ≡ 1 (mod pr) and c ≡ 0 (mod pr). Thus the map

(
a b
c d

)
7→ (a, c) describes

a bijection between the set of classes GL2(Zp)/Σ(p
r) and Xr.

Let MXr be the Zp-module of H ⊗ Zp-valued measures on Xr. Since Xr is a finite set, the
moduleMXr identifies canonically with the Zp-module of H ⊗ Zp-valued functions on Xr. Then
we have a canonical isomorphism of GL2(Zp)-modules

(37) MX ≃ lim←−
r

MXr , µ 7−→
[
v 7→ µ

(
v + prZ2

p

)]

where the inverse limit is computed with respect to the norm maps νr :MXr → MXr−1 which,
for r ≥ 2, are defined by µ 7→ [x 7→

∑
πr(y)=x µ(y)]. Here πr : Xr → Xr−1 stands for the canonical

projection.
Note that ΓD

0 (M) injects into GL2(Zp) via ιp, and in this way it acts on Xr. Since ΓD
0 (M) is

dense in GL2(Zp) with respect to the p-adic topology, it follows that the action of ΓD
0 (M) on Xr



28 MATTEO LONGO, VICTOR ROTGER AND STEFANO VIGNI

induced by ιp is transitive. Hence, since Γr = Σ(pr)∩ΓD
0 (M), for all r ≥ 1 there exists, as above,

a bijection between ΓD
0 (M)/Γr and Xr.

The set of functionsMXr is then identified with the set of functions from the cosets ΓD
0 (M)/Γr

to H ⊗ Zp, which is in bijection with the set of functions φ : ΓD
0 (M) → H ⊗ Zp such that

φ(γ · δ) = φ(γ) for all γ ∈ ΓD
0 (M) and all δ ∈ Γr, namely, the coinduced ΓD

0 (M)-module

Coind
ΓD
0 (M)

Γr
(H ⊗ Zp). Thus Shapiro’s lemma shows that

(38) H1
(
ΓD
0 (M),MXr

)
≃ H1

(
ΓD
0 (M),Coind

ΓD
0 (M)

Γr
(H ⊗ Zp)

)
≃ H1(Γr,H ⊗ Zp).

Finally, we obtain

H1
(
ΓD
0 (M),MX

)
≃ H1

(
ΓD
0 (M), lim←−

r

MXr

)
≃ lim←−

r

H1
(
ΓD
0 (M),MXr

)
≃ lim←−

r

H1(Γr,H ⊗ Zp)

where the first isomorphism follows from (37), the second from [24, Corollary 2.3.5] and the fact
that ΓD

0 (M) is finitely generated, and the third from (38). �

Now we prove a result which obviously implies Theorem 7.5.

Proposition 7.7. The map

π∗ : H
1
(
ΓD
0 (M),MX

)
−→ H1

(
ΓD
0 (M),M

)

is surjective.

Proof. A simple computation shows that there is a commutative square

H1
(
ΓD
0 (M),MX

) π∗ //

≃

��

H1
(
ΓD
0 (M),M

)

≃

��
lim←−
r

H1(Γr,H ⊗ Zp)
lim←− corr

// lim←−
r

H1
(
ΓD
0 (p

rM),H ⊗ Zp

)

in which

corr := cor
ΓD
0 (prM)

Γr
: H1(Γr,H ⊗ Zp) −→ H1

(
ΓD
0 (p

rM),H ⊗ Zp

)

is the corestriction (or transfer) map as defined, e.g., in [7, Ch. III, §9] and the vertical isomor-
phisms are those in Proposition 7.6. By Poincaré duality, and because H is a free abelian group
endowed with the trivial action of Γ, one has

H1(Γr,H ⊗ Zp) ≃ H1(Γr,Zp)⊗H ≃ Tap(Jr)⊗H.
Here Jr stands for the Jacobian variety of Xr = Γr\H and Tap(Jr) is the p-adic Tate module of
Jr. The restriction maps

H1(Γr,H ⊗ Zp) −→ H1(Γr−1,H ⊗ Zp)

turn out to be induced by the canonical maps between Tate modules

Tap(Jr) −→ Tap(Jr−1)

arising from the universal property of Albanese varieties. Let us introduce the projective limit

Tap(J∞) := lim←−
r

Tap(Jr).

The diamond operators act on Tap(Jr) and induce an action of 1 + pZp on Tap(J∞). In this way
the limit Tap(J∞) becomes a module over the Iwasawa algebra Λ := Zp[[1 + pZp]].
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Similarly, for all r ≥ 1 there is an isomorphism

H1
(
ΓD
0 (p

rM),H ⊗ Zp

)
≃ Tap

(
JD
0 (prM)

)
⊗H,

and we can again form the projective limit Tap
(
JD
0 (p∞M)

)
:= lim←−Tap

(
JD
0 (prM)

)
.

If IΛ is the augmentation ideal of Λ then the map

lim←−
r

H1(Γr,H ⊗ Zp)
lim←− corr
−−−−−→ lim←−

r

H1
(
ΓD
0 (p

rM),H ⊗ Zp

)

corresponds, via the above isomorphisms, to the map

(39) Tap(J∞)⊗H −→
(
Tap(J∞)/IΛ · Tap(J∞)

)
⊗H ≃ Tap

(
JD
0 (p∞M)

)
⊗H

because JD
0 (prM) is precisely the quotient of Jr by the action of the diamond operators. The

map (39) is visibly surjective, and the proposition is proved. �

7.3. Splitting cocycles. Recall the homomorphism Φ : H2(Γ,Z) → T (Cp) from Section 6,
whose image is contained in T (Qp) and is, by definition, the lattice L. Since T (Cp) is divisible,
by the universal coefficient theorem there is a natural isomorphism

H2
(
Γ, T (Cp)

)
≃ Hom

(
H2(Γ,Z), T (Cp)

)
,

and Φ defines in this way an element d ∈ H2
(
Γ, T (Cp)

)
. By construction, the image in

H2
(
Γ, T (Cp)/L

)
≃ Hom

(
H2(Γ,Z), T (Cp)/L

)

of the class d is trivial, and L is the smallest subgroup of T (Qp) with this property. Fix a point
τ ∈ Kp − Qp, i.e., a Kp-rational point on Hp. Independently of this choice, the class d can be
represented by the 2-cocycle d ∈ Z2

(
Γ, T (Kp)

)
given by

(40) dγ1,γ2 := ×
∫

P1(Qp)

t− γ−1
1 (τ)

t− τ dµγ2(t),

where µ is a cocycle in Z1
(
Γ,M0(H)

)
representing µ, which we fix for the rest of this section.

Set Hp := H ⊗Kp for the rest of the article and consider the map

βL : T (Kp) −→ Hp, h⊗ k 7−→ h⊗ logp(k) −LDp · h⊗ ordp(k)

and the 2-cocycle βL ◦ d ∈ Z2(Γ,Hp), whose image in H2(Γ,Hp) we denote by dL. Then βL(L)
is the smallest subgroup of Hp such that the image of dL in H2

(
Γ,Hp/βL(L)

)
is trivial.

Theorem 7.1 is a direct consequence of the following result.

Theorem 7.8. The cohomology class dL ∈ H2(Γ,Hp) is trivial.

This is the statement that we will prove in various steps in the remaining subsections. To
begin with, as in §6.4, we pick the base point τ ∈ Kp −Qp appearing in (40) in such a way that
red(τ) = v∗. In order to show that dL is trivial in H2(Γ,Hp), we shall first prove that it splits
when restricted to the subgroup ΓD

0 (M).
With obvious notation, the first observation is that

(41) (dL)|ΓD
0 (M) = logp(d)|ΓD

0 (M).

In fact, since red(τ) = v∗ and γ1 lies in the stabilizer of this vertex, we have

red
(
γ−1
1 (τ)

)
= γ−1

1

(
red(τ)

)
= v∗,
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thanks to the GL2(Qp)-invariance of the reduction map. Thus the geodesic joining red(τ) with

red
(
γ−1
1 (τ)

)
is trivial and Proposition 5.3 asserts that

ordp

(
×
∫
t− γ−1

1 (τ)

t− τ dµYH,γ2
(t)

)
= 0.

Since ordp ◦ tr = tr ◦ ordp, it follows from (4) and (40) that ordp(d) vanishes on ΓD
0 (M), whence

equality (41).
Now let µ̃ ∈ H1

(
ΓD
0 (M),MX

)
be as in Theorem 7.5 and choose µ̃ ∈ Z1

(
ΓD
0 (M),MX

)
repre-

senting µ̃. We claim that, at the cost of replacing it by a cohomologous cocycle, µ̃ can be chosen
such that π∗(µ̃)γ = µγ for all γ ∈ ΓD

0 (M). For this, notice that it suffices to prove that the
push-forward map π∗ :MX →M is surjective. This can be shown, for example, using arguments
borrowed from the proof of Proposition 7.6, the crucial facts being that a measure inM can be
identified with a compatible sequence of maps ΓD

0 (M)/ΓD
0 (Mpr) → H ⊗ Zp for integers r ≥ 1

and that we have a canonical projection ΓD
0 (M)/Γr ։ ΓD

0 (M)/ΓD
0 (Mpr) at our disposal, so that,

after fixing compatible sets of representatives for ΓD
0 (Mpr)/Γr, we can easily define a lifting to

MX of an element inM. Observe that these are cocycles with values in measures taking values
in H ⊗ Zp, which naturally embeds into Hp.

Definition 7.9. The 1-cochain ρ = ρτ ∈ C1
(
ΓD
0 (M),Hp

)
is defined as

ργ := −
∫

X
logp(x− τy)dµ̃γ(x, y).

Note that ρ depends both on the choice of µ̃ and on the choice of τ , but we shall drop any
reference to either in order to lighten the notation.

Proposition 7.10. The 1-cochain ρ splits the 2-cocycle (dL)|ΓD
0 (M) = logp(d)|ΓD

0 (M).

Proof. We must show that

γ1ργ2 + ργ1 − ργ1γ2 = logp(dγ1,γ2)

for all γ1, γ2 ∈ ΓD
0 (M). Since the action of ΓD

0 (M) on H ⊗Kp is trivial, one has

γ1ργ2 + ργ1 − ργ1γ2 = −
∫

X
logp(x− τy)d

(
µ̃γ1 + µ̃γ2 − µ̃γ1γ2

)
(x, y)

= −
∫

X
logp(x− τy)d

(
µ̃γ2 − γ1 µ̃γ2

)
(x, y).

Thus if γ1 =
(
a b
c d

)
then

γ1ργ2 + ργ1 − ργ1γ2 = −
∫

X
logp(x− yτ)d

(
µ̃γ2 − γ1dµ̃γ2

)
(x, y)

= −
∫

X
logp

(
x− τy

ax+ by − τ(cx+ dy)

)
dµ̃γ2(x, y).
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Now we argue as in [10, Proposition 5.14]. Since the integrand above depends only on x/y, we
deduce that

γ1ργ2 + ργ1 − ργ1γ2 =

∫

P1(Qp)
logp

(
at+ b− (ct+ d)τ

t− τ

)
dµγ2(t)

=

∫

P1(Qp)
logp

(
t− γ−1

1 (τ)

t− τ

)
dµγ2(t)−

∫

P1(Qp)
logp (a− cτ) dµγ2(t).

Since µγ2 has total mass 0, the last integral in the above expression vanishes, and the result
follows from (40). �

7.4. Passing from ΓD
0 (M) to Γ̂D

0 (M). Notations and some of the ideas in this subsection are
borrowed from [1, §1]. Let Y be a locally compact and totally disconnected (p-adic) topological
space endowed with a left action of M2(Zp).

Recall from §2.2 the elements gi = gi(p) for i = 0, . . . , p − 1, which give rise to the decom-
position of the double cosets associated with the Hecke operator Up, and recall also the set of
representatives {

α∞ := 1, α0 := ω−1
p g0, . . . , αp−1 := ω−1

p gp−1

}

for the cosets ΓD
0 (M)/ΓD

0 (pM). Assume there exists a compact open subset Y∞ of Y satisfying
the following conditions:

(I) γY∞ = Y∞ for all γ ∈ ΓD
0 (pM);

(II) if Yi := αi · Y∞ for i = 0, . . . , p− 1 and Yaff :=
∐p−1

i=0 Yi then Y = Y∞
∐
Yaff ;

(III) gi · Y∞ ⊂ Y∞ and
∐p−1

i=0 gi · Y∞ = Y∞;
(IV) ωp · Yaff = Y∞ and ωp · Y∞ = pYaff , so that ωp · Y = Y∞

∐
pYaff .

Then it follows from (I) and (II) that

MY ≃ Coind
ΓD
0 (M)

ΓD
0 (pM)

(MY∞
),

and Shapiro’s lemma produces an isomorphism

S : H1
(
ΓD
0 (M),MY

) ≃−→ H1
(
ΓD
0 (pM),MY∞

)
.

Conditions (III) and (IV) on Y∞ ensure that the Hecke operator Up is well defined and well
behaved on H1

(
ΓD
0 (pM),MY∞

)
. In the spirit of [1, Lemma 1.1.4], we transport the operator Up

to an operator on H1
(
ΓD
0 (M),MY

)
by means of the isomorphism S . Namely, define

(42) U p := S
−1UpS .

The same argument applied to Γ̂D
0 (M) in place of ΓD

0 (M) shows the existence of an isomorphism

Ŝ : H1
(
Γ̂D
0 (M),Mωp·Y

) ≃−→ H1
(
ΓD
0 (pM),Mωp·Y∞

)
.

Lemma 7.11. For every ν ∈ H1
(
ΓD
0 (M),MY

)
one has

(i) W−1
p Up

(
resΓD

0 (pM)(ν |Y∞
)
)
= resΓD

0 (pM)(ν |Yaff
);

(ii) U2
p

(
resΓD

0 (pM)ν |Y∞

)
=
(
WpUpresΓD

0 (pM)ν
)
|Y∞

;

(iii)
(
WpUpresΓD

0 (pM)ν
)
|pYaff

=WpUp

(
resΓD

0 (pM)ν |Y∞

)
=
(
W 2

p resΓD
0 (pM)(ν)

)
|pYaff

.

Moreover, for every ν ∈ H1
(
Γ̂D
0 (M),Mωp·Y

)
one has

(iv) UpW
−1
p

(
resΓD

0 (pM)(ν |pYaff
)
)
= resΓD

0 (pM)(ν |Y∞
).
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Proof. Let us show (i) first, the remaining statements being applications of or variations on
it. Let ν ∈ H1

(
ΓD
0 (M),MY

)
and fix a representative ν of ν in Z1

(
ΓD
0 (M),MY

)
; set n :=

resΓD
0 (pM)(ν|Y∞

). An easy formal calculation shows that for all γ ∈ ΓD
0 (pM) the equality

(43) αi · να−1
i γαj(i)

= νγ − ναi
+ γ · ναj(i)

holds in Z1
(
ΓD
0 (M),MY

)
. Here i 7→ j(i) is the permutation of indices such that α−1

i γαj(i) ∈
ΓD
0 (pM).
Since αi · nα−1

i γαj(i)
is supported on Yi, we deduce that

αi · nα−1
i γαj(i)

= νγ|Yi
− ναi|Yi

+ (γναj(i)
)|Yi

.

Note, however, that γ(ναj(i)|Yj(i)
) = (γναj(i)

)|Yi
; the reason is that, since γ belongs to αi ·

ΓD
0 (pM)α−1

j(i), both measures are supported at Yi and are in fact the restriction of ναj(i)
to this

compact open subset of Y .
Setting m :=

∑p−1
i=0 ναi|Yi

∈MYaff
, equality (43) shows that

p−1∑

i=0

αiνα−1
i γαj(i)

=

p−1∑

i=0

νγ|Yi
+ γm−m.

Since αi = ω−1
p gi, by definition the first term is W−1

p Up(n). On the other hand, the second term

equals resΓD
0 (pM)(ν|Yaff

) in H1
(
ΓD
0 (pM),MYaff

)
, and (i) is proved.

For (iii), it suffices to show that

WpUp

(
resΓD

0 (pM)ν |Y∞

)
=W 2

p resΓD
0 (pM)

(
ν |Yaff

)
,

and this is is deduced from (i) upon applying W 2
p .

Part (iv) follows from (i) by taking into account that for every compact open subset U of Y
the map Wp induces an isomorphism

Wp : H
1
(
ΓD
0 (M),MU

) ≃−→ H1
(
Γ̂D
0 (M),Mωp·U

)
.

Finally, to check (ii) it is again enough to prove that

U2
p

(
resΓD

0 (pM)ν |Y∞
) =WpUpresΓD

0 (pM)

(
ν|Yaff

)
,

which follows by applying (iv) to WpUpν. �

Since ω2
p = p · gp for some gp ∈ ΓD

0 (pM), the map W 2
p sends an element ν ∈ Z1

(
ΓD
0 (M),MU

)

to the cocycle γ 7→ p · gpνg−1
p γgp

. A straightforward calculation then shows that

gpνg−1
p γgp

= νγ + γνgp − νgp .

Thus, since the map γ 7→ γνgp − νgp is a coboundary, the equality

(44) W 2
p ν = p · ν

holds in H1
(
ΓD
0 (pM),MU

)
for every compact open subset U of Y .
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7.5. Splitting on Γ̂D
0 (M). Define ˆ̃µ := WpUpµ̃ ∈ H1

(
Γ̂D
0 (M),MωpX

)
and let ˆ̃µ be a 1-cocycle

representing ˆ̃µ. As above, we can define a Z×
p -bundle

π̂ : ωpX −→ P1(Qp), (x, y) 7−→ x/y

which induces a map π̂∗ on cohomology.

Lemma 7.12. π̂∗
(
ˆ̃µ
)
= resΓ̂D

0 (M) (µ).

Proof. It is immediate to check that WpUpµ̃ is a lift of WpUp · resΓD
0 (M)(µ), that is

π̂∗
(
ˆ̃µ
)
=WpUp · resΓD

0 (M)(µ).

According to (42), one has Up = S −1 · Up ·S . Since ΓD
0 (pM) is a subgroup of finite index in

ΓD
0 (M), [1, Lemma 1.1.4] ensures that Shapiro’s isomorphism S commutes with the action of

Wp. More precisely, we have Ŝ −1 ·Wp =Wp ·S −1, hence we must show that

Ŝ
−1 ·Wp · Up ·S

(
resΓD

0 (M)(µ)
)
= resΓ̂D

0 (M) (µ).

Thanks to part (iii) of Lemma 7.11 applied to ν := resΓD
0 (M)(µ), we have

Wp · Up ·S (ν) =W 2
p

(
resΓD

0 (pM)(ν |Zp
)
)

in H1
(
ΓD
0 (pM), pZp

)
. Noting that P1(Qp)aff = Zp, it thus suffices to show that

Ŝ
(
resΓ̂D

0 (M)(µ)
)
=W 2

p

(
resΓD

0 (pM)(µ|Zp
)
)
.

On the left hand side, Ŝ
(
resΓ̂D

0 (M)(µ)
)
is equal, by definition, to resΓD

0 (pM)

(
µ|Zp

)
, since ωp

(
P1(Qp)−

Zp

)
= Zp. On the right hand side, since the action of GL2(Qp) on P1(Qp) factors through

PGL2(Qp), we can argue as in (44) and obtain thatW 2
p (m) = resΓD

0 (pM)

(
µ|Zp

)
form = resΓD

0 (pM)(ν |Zp
),

as we wished to show. �

Thanks to Lemma 7.11 and equality (44), for all γ̂ ∈ Γ̂D
0 (pM) we can write

(45) ˆ̃µγ̂ = U2
p µ̃γ̂ + γ̂m1 −m1 on X∞, ˆ̃µγ̂ = pµ̃γ̂ + γ̂m2 −m2 on pXaff

with m1 ∈ MX∞
and m2 ∈ MXaff

. The same argument as in the proof of Lemma 5.2 shows that

the cocycle µ
(p)
H ∈ Z1

(
Γ,Fhar(H)

)
given by

µ
(p)
H,γ(e) :=

∑

i

πH
([
ti(gγ,e)

])

for γ ∈ Γ and e ∈ E+ (where the functions ti are relative to the Hecke operator Up) satisfies the
equation

(46) Up

(
µYH
)
= µ

(p)
H + b

for some b ∈ ker(̺) ⊂ Z1
(
Γ,Fhar(H)

)
. Since ker(̺) is Eisenstein (cf. the proof of Lemma

4.11), applying tr to (46) and recalling that the action of Up on H is by ±1 yields the equality
Up(µγ) = ±µγ , from which we finally deduce that

U2
p (resΓD

0 (pM)µ)γ = U2
p (µγ) = µγ .

Furthermore, it is clear that pµγ = µγ for all γ ∈ ΓD
0 (pM), because the action of GL2(Qp) on

P1(Qp) factors through PGL2(Qp). Thus we find from (45) and Lemma 7.12 that π̂∗(m1) and
π̂∗(m2) are ΓD

0 (pM)-invariant Hp-valued measures on P1(Qp) and Zp, respectively. One easily
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shows that the groups of such measures are trivial; the reason for this is that the ΓD
0 (pM)-

invariance would otherwise contradict the fact that measures have to be p-adically bounded.
Thus π̂∗(m1) = 0 on P1(Qp)− Zp and π̂∗(m2) = 0 on Zp.

Now define the 1-cochain ρ̂ ∈ C1
(
Γ̂D
0 (M),Hp

)
by the rule

ρ̂γ̂ :=−
∫

ωpX
logp(x− τy)dˆ̃µγ̂(x, y) +

∫

X∞

logp(x− τy)d(γ̂m1 −m1)(x, y)

+

∫

pXaff

logp(x− τy)d(γ̂m2 −m2)(x, y)

for all γ̂ ∈ Γ̂D
0 (M). As above, this cochain depends on τ and on the choices made for the

representatives of the cohomology classes. Nevertheless, we can prove

Proposition 7.13. The 1-cochain ρ̂ splits the 2-cocycle logp(d)|Γ̂0(M).

Proof. As in the proof of Proposition 7.10, if γ̂1 =
(
a b
c d

)
then γ̂1ρ̂γ̂2 + ρ̂γ̂1 − ρ̂γ̂1γ̂2 is the sum of

the three integrals

A := −
∫

ωpX
logp

(
x− τy

ax+ by − τ(cx+ dy)

)
dˆ̃µγ̂2(x, y),

B :=

∫

X∞

logp

(
x− τy

ax+ by − τ(cx+ dy)

)
d(γ̂2m1 −m1)(x, y),

C :=

∫

pXaff

logp

(
x− τy

ax+ by − τ(cx+ dy)

)
d(γ̂2m2 −m2)(x, y).

Since B and C depend only on x/y, from the vanishing of π∗(m1) and π∗(m2) we deduce that
B = C = 0. As in the proof of Proposition 7.10, the claim follows from Lemma 7.12. �

7.6. Proof of Theorem 7.8. Set U := P1(Qp) − Zp and write µ for a cocycle in Z1(Γ,M)

representing µ. Since every γ ∈ ΓD
0 (pM) leaves U invariant, the cochain µU given by the rule

µU(γ) :=
(
µ|ΓD

0 (pM)

)
γ
(U)

is independent of the choice of µ and belongs to Z1
(
ΓD
0 (pM),Hp

)
. Below, by

LDp · µU
we obviously mean the cocycle γ 7→ LDp · µU(γ), with LDp acting on H as usual.

Lemma 7.14. The equality (ρ− ρ̂)|ΓD
0 (pM) = LDp · µU holds in Z1

(
ΓD
0 (pM),Hp

)
.

Proof. Let γ ∈ ΓD
0 (pM). Using the decompositions X = X∞

∐
Xaff and ωpX = X∞

∐
pXaff we

split the difference

ργ − ρ̂γ =−
∫

X
logp(x− τy)dµ̃γ +

∫

ωpX
logp(x− τy)dˆ̃µγ

−
∫

X∞

logp(x− τy)d(γm1 −m1)−
∫

pXaff

logp(x− τy)d(γm2 −m2)

into the sum of A and B with

A := −
∫

X∞

logp(x− τy)dµ̃γ +
∫

X∞

logp(x− τy)dˆ̃µγ −
∫

X∞

logp(x− τy)d(γm1 −m1)
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and

B := −
∫

Xaff

logp(x− τy)dµ̃γ +
∫

pXaff

logp(x− τy)dˆ̃µγ −
∫

pXaff

logp(x− τy)d(γm2 −m2).

By formulas (45), one has

A = −
∫

X∞

logp(x− τy)
(
1− U2

p

)
dµ̃γ .

As for B, since logp(p) = 0, using again (45) we can write
∫

pXaff

logp(x− τy)d
(
W 2

p µ̃
)
γ
=

∫

Xaff

logp(px− τpy)dµ̃γ +
∫

pXaff

logp(x− τy)d(γm2 −m2)

=

∫

Xaff

logp(x− τy)dµ̃γ +
∫

pXaff

logp(x− τy)d(γm2 −m2),

whence B = 0. Therefore

(47) (ρ− ρ̂)γ = −
∫

X∞

logp(x− τy)
(
1− U2

p

)
dµ̃γ .

By [10, Lemma 5.16] (once one makes the obvious modifications in the notation; namely, replace
m by γ and −ψ(m) by µγ(U)), the integral in (47) is equal to LDp · µγ(U), and the proof is
complete. �

Since Γ = ΓD
0 (M) ∗ΓD

0 (pM) Γ̂
D
0 (M) by (13), the Mayer–Vietoris long exact sequence for amal-

gamated products of groups (cf. [28, Theorem 2.3]) yields an exact sequence

H1
(
ΓD
0 (pM),Hp

) ∆−→ H2(Γ,Hp)→ H2
(
ΓD
0 (M),Hp

)
⊕H2

(
Γ̂D
0 (M),Hp

)
→ H2

(
ΓD
0 (pM),Hp

)

which, by means of the identifications provided by Shapiro’s lemma, can also be regarded as the
long exact sequence in cohomology associated with the short exact sequence of Γ-modules

0 −→ Hp −→ F(V,Hp)
F−→ F0(E ,Hp) −→ 0

with F (f)(e) := f
(
t(e)

)
−f
(
s(e)

)
for all e ∈ E . Observe that this exact sequence is nothing other

than the dual of (14).
Let ρ − ρ̂ denote the class of the cocycle (ρ−ρ̂)|ΓD

0 (pM) inH
1
(
ΓD
0 (pM),Hp

)
. The last ingredient

we need is the following

Proposition 7.15. ∆(ρ − ρ̂) = LDp · ordp(d).

Proof. Writing µU for the class of the cocycle µU in H1
(
ΓD
0 (pM),Hp

)
, by Lemma 7.14 it is

enough to prove that

∆(µU ) = ordp(d)

in H2(Γ,Hp). This equality, which is the counterpart of [13, Equation (22)], follows by combining
Proposition 5.3, the commutativity relation (32) and the explicit description of the map ∆. �

Now we can prove Theorem 7.8, which implies Theorem 7.1.

Proof of Theorem 7.8. The combination of Propositions 7.10 and 7.13 ensures that logp(d) lies
in the image of ∆; in fact, it follows from the definition of the maps involved in the above
Mayer–Vietoris sequence that

logp(d) = ∆(ρ − ρ̂),
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because ρ and ρ̂ split logp(d)|ΓD
0 (M) and logp(d)|Γ̂0(M), respectively. Proposition 7.15 then asserts

that

logp(d) = LDp · ordp(d),
hence dL is trivial in H2(Γ,Hp). �

7.7. Proof of a conjecture of M. Greenberg. As an application of Theorem 7.1, we give
a proof of the conjecture formulated by M. Greenberg in [13, Conjecture 2] in the special case
where the totally real field appearing in [13] is Q.

To state this result, let E/Q be an elliptic curve of conductor N = pMD and let K be a real
quadratic field in which the primes dividing M split and the primes dividing pD are inert. In
particular, the completion Kp of K at the unique prime above p is the unramified quadratic
extension of Qp, so this notation is consistent with the one used in the rest of the paper. Observe
that E acquires split multiplicative reduction over Kp, write qE ∈ pZp for Tate’s p-adic period of
E and let 〈qE〉 be the lattice in K×

p generated by qE.
Now, as in [13, §3.4], choose a sign ǫ ∈ {±1} and set HE := H1(E,Z)

ǫ. With the notation
used in the previous sections of this paper, there are natural Hecke-equivariant surjections

H1

(
ΓD
0 (pM),Z

)
−→ H

πE−→ HE.

One can attach to E the measure-valued cohomology class µE := µHE
∈ H1

(
Γ,M0(HE)

)
intro-

duced at the end of §4.2.
Fix an isomorphism HE ≃ Z. For every prime ℓ write aℓ(E) for the ℓ-th Fourier coefficient

in the q-expansion of the newform associated with E by modularity. Thanks to Proposition
5.1 and Lemma 5.2, it is immediate to show that µE spans the one-dimensional subspace of
H1
(
Γ,M0(Q)

)
on which the Hecke algebra H(p,M) acts via the map

λE : H(pM) −→ Z

attached to E such that

λE(Tℓ) := aℓ(E) if ℓ ∤ pDM, λE(Wp) := ap(E), λE(W∞) := ǫ.

Hence we conclude that our measure-valued class is an explicit version of the one considered in
[13, §8, (17)]. Recall from Sections 5 and 6 that there is a pairing

〈 , 〉E : H1(Γ,D)×H1
(
Γ,M0(HE)

)
−→ C×

p ⊗HE ≃ C×
p

and a Hecke-equivariant integration map
∫

E
: H1(Γ,D) −→ C×

p

which fits into the commutative triangle

H1(Γ,D)
∫

//

∫
E $$I

I

I

I

I

I

I

I

I

I

I

I

T (Cp)

id⊗πE

��
C×
p .

Set

ΦE :=

∫

E
◦ ∂ : H2(Γ,Z) −→ C×

p
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and let LE ⊂ C×
p denote the image of ΦE. Arguing as in the proof of Theorem 6.4, or invoking

[13, Proposition 30], it follows that LE is a lattice in K×
p .

As in [13, Definition 29], we say that two lattices Λ1 and Λ2 in K×
p are homothetic if Λ1 ∩ Λ2

has finite index in both Λ1 and Λ2.
The result we want to prove, which was originally proposed in [13, Conjecture 2], is the following

Theorem 7.16. The lattices LE and 〈qE〉 are homothetic in K×
p .

Proof. Multiplicity one ensures that the Tate elliptic curve K×
p /〈qE〉 is, up to isogeny, the unique

quotient of JD
0 (pM)p-new on which the action of the Hecke operators Tℓ for ℓ ∤ pDM and of the

Atkin–Lehner involutions Wp and W∞ factors through λE . Similarly, K×
p ⊗ HE ≃ K×

p is the

unique quotient of K×
p ⊗H on which the action of these operators factors through λE .

Hence it follows from Theorem 1.1 that K×
p /〈qE〉 and K×

p /LE are isogenous over Kp, which

amounts to saying that the lattices LE and 〈qE〉 are homothetic in K×
p . �

Remark 7.17. If f ∈ S2(N)p-new is a normalized p-new eigenform with not necessarily integral
Fourier coefficients then Theorem 7.16, with the obvious modifications in the statement and in
the proof, holds true as well.
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M. L.: Dipartimento di Matematica, Università di Milano, Via C. Saldini 50, 20133 Milano, Italy

Current address: Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste 63, 35121
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Girona 1-3, 08034 Barcelona, Spain

E-mail address: victor.rotger@upc.edu
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