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A B S T R A C T

Measuring the risk exposure of TSOs on the dispatching market is a crucial task for the correct management
of liberalized electricity markets. To fill a gap in the literature, the notion of Cost-at-Risk (CaR) is defined
in the context of the dispatching market. Moreover, we propose a set of semi-parametric and non-parametric
models for the estimation of the Cost at Risk (CaR) for the Italian TSO (Terna) and evaluate the corresponding
out-of-sample forecasting performance. The empirical analysis relies on a rich hourly dataset provided by
Terna, including several costs’ drivers. The results, in terms of 1-day and 30-day ahead predictions, suggest
that the model with the globally best performance is the semi-parametric GAM-GARCH model.
1. Introduction

The dispatching market (in Italian Mercato dei Servizi di Dispaccia-
mento, MSD) is the place where Terna, the Italian Transmission System
Operator (TSO), procures the resources needed to manage and control
the system, generically called ‘‘ancillary services’’ (Kaushal and Van
Hertem, 2019; Lobato Miguélez et al., 2008). To obtain the needed
resources, Terna accepts sell and buy offers submitted by market partic-
ipants, acting as central counterpart. Costs borne while getting ancillary
services are relevant (Li and Ho, 2022; Graf et al., 2021; Ghiani et al.,
2020; Graf et al., 2020; Liu and Wu, 2007) and are charged onto the
end-consumers.

In the last years, the increasing penetration of renewable energy
resources has led to a greater uncertainty about the level of power
production and, hence, to a growing need of flexibility and of ancillary
services (Lamadrid and Mount, 2012; Godoy-González et al., 2020). In
turn, this has led to an increasing cost risk when operating in the MSD
market.

Thus, measuring the risk exposure connected to the costs paid on the
MSD market becomes crucial (Falvo et al., 2022) for TSOs. Identifying
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in advance potential risks in terms of incurred costs allows the TSO to
activate in advance proper countermeasures (if available) to mitigate
the risk in the short term. Risk models, measuring the effect of each
single variable on the expected costs, support also the TSO in setting
the priority list of mid-term actions and to perform sensitivity/scenario
analyses. Despite its importance, the issue of risk assessment for ancil-
lary services costs has not been adequately considered in the literature
and only very few works have been produced with the aim of predicting
expected costs/prices incurred in spot ancillary service markets (Hadzic
and Bisanovic, 2019). This may be also related to the heterogeneous
design adopted for these markets across the world. To fill the gap, in
this work we are going to investigate how to model costs dynamics
and evaluate the cost risk related to a market-based ancillary services
procurement by an electricity TSO.

The first contribution of this paper is the extension of the idea of the
Value at Risk (VaR), a well-known risk measure used in the literature on
financial markets, to the risk analysis connected to costs borne on the
MSD. To this aim, we re-formulate the idea of VaR focusing on costs.
The VaR, introduced in the early 1990s, is typically used to quantify the
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risk related to volatility and fluctuations of prices. It has been widely
used in finance (Jorion, 2006; Alexander, 2009) and in energy finance,
the area of energy markets analysis looking at energy products/markets
from a financial perspective (Sadeghi and Shavvalpour, 2006; Fioren-
zani, 2006; Chiu et al., 2010; Laporta et al., 2018). In analogy with
the VaR, we define the Cost-at-Risk (𝐶𝑎𝑅𝑡,𝛼,ℎ) as the maximum amount
of money expected to be borne over a given horizon (ℎ), with a given
probability (𝛼), under normal market conditions. For example, if for a
one-day ahead horizon we have 𝐶𝑎𝑅𝑡,𝛼,1 = 1 million, costs in the next
day will not exceed 1 million with a (1 − 𝛼) probability. CaR can also
be defined as the 𝛼−th percentile of the ℎ−day costs distribution.

Costs borne in the MSD may depend on the kind of services bought,
as well as on several other factors, including the renewable power
production, the available level of the ramping capability of thermal
power plants, possible calendar effects, the price of gas, etc.

As a further contribution, we propose a set of models able to capture
the main empirical characteristics of costs and to select among them the
best specification. The dynamics of costs and corresponding CaR are
described in function of a vector of covariates 𝑿𝑡. In particular, CaR
is defined as the quantile of the costs 𝐶𝑡 conditioned to the covariates
𝑿𝑡. We will focus on ℎ = 1-day and ℎ = 30-day Car at level 𝛼 = 10%.
This probability level has been set in agreement with the TSO, who
considers it adequate because the interest is centered on high, but not
extreme, level of costs.

The distinctive feature of the procedure we are going to introduce
is that, differently from the usual context where the VaR is applied,
costs cannot be assumed to be generated by a null conditional mean
process, as in the case of financial returns. This implies that the
conditional mean equation of costs time series must be modeled and
all its characteristics have to be accounted for.

In the following sections, we consider five classes of CaR models
and analyze their performances in the conditional CaR estimation.
Four models are based on a two-step procedure involving a non-
parametric GAM model for the conditional mean of costs and four
different approaches for the conditional quantile of the residuals and,
hence, of CaR. Conditional quantiles of residuals are estimated using
(i) non-parametric kernel density, estimated under the assumption of
homoscedasticity; (ii) a semi-parametric GARCH model; (iii) a lin-
ear parametric1 quantile regression model and (iv) a the parametric
CAViaR model. The fifth model describes the dynamics of CaR us-
ing a single-step approach based on a Q-GAM model and is fully
nonparametric.

Models are estimated and compared using the time series of the
costs incurred in by Terna during the time interval 2017–2021. A final
empirical contribution is connected to the introduction of relevant ex-
ogenous regressors that can be reasonably considered as possible costs’
drivers. The set of exogenous regressors contains: actual consumptions,
levels of reserve requirements, network nodal and zonal constraints, as
well as prices of the main commodities affecting the Italian electricity
market (namely, natural gas and carbon dioxide). Calendar variables
are also included to account for periodic and other deterministic effects.

The rest of the paper is organized as follows: Section 2 contains
a short introduction to the Italian electricity market, a description of
the dataset and some descriptive features of the data; in Section 3, we
outline the general form of CaR models used in the work; Section 4 is
devoted to the in-sample models estimation and out-of-sample forecast-
ing performance in the case of 1-day-ahead CaR; results referring to the
30-day-ahead CaR are described in Section 5. Section 6 concludes.

1 Note that, even if the quantile representation is parametric, no
istributional assumptions are required on the error terms.
2

2. The Italian market of ancillary services and data description

The Italian electricity market is the place where transactions in-
volving electricity are conducted and consists of two main segments:
the spot market and the forward market. In the former, products are
traded for immediate or day-ahead delivery while, in the latter, future
deliveries and withdrawals are negotiated. In turn, the spot market con-
sists of an energy market and a dispatching market. The energy market
includes a day-ahead market (in Italian, Mercato del Giorno Prima,
MGP) and an intra-day market (ID) where producers, wholesalers and
end customers buy and sell wholesale quantities of electricity for the
next day. Although the injections and withdrawals schedules accepted
in the MGP account for interconnection capacity among market zones,
they do not consider intra-zonal congestions or any other network
security constraint which could make the physical delivery of energy
unfeasible. Moreover, schedules defined in the MGP represent only
a first schedule of actual injections and withdrawals occurring the
next day, which can be affected by demand and generation forecast
uncertainties and unplanned outages (e.g. fault) of generation units.
More specifically, demand and generation forecast is mainly related to
weather conditions which, in turn, can impact on the demand level as
well as on intermittent renewable energy sources, such as wind and
solar energy. As mentioned in the introduction, power systems must
comply with several technical constraints in order to work correctly
and safely; to this purpose, law provides for an institutional subject
called TSO (in Italy Terna), who operates in the MSD and takes care
that the balance between injections and withdrawals, as well as all
other security criteria, are always satisfied. Terna (Caprabianca et al.,
2020) operates within the MSD in order to (i)balance injections and
withdrawals in real-time keeping the system frequency within the
security ranges, accepting balancing energy offers; (ii) procure reserve
capacity, ensuring the availability of balancing resources; (iii) relieve
congestions, ensuring that each element of the power system operates
inside its security limits.

Both MGP and MSD generate massive datasets that could help oper-
ators to understand the underlying processes. In this paper, we collect
a rich dataset in order to estimate reliable CaR models. Originally, data
have hourly frequency but, since we are interested in ℎ−day ahead CaR,
we move to daily data by (algebraically) summing them over the 24 h.

Data cover the period January 1, 2017–September 20, 2021 and,
for this period, the following time series are available for each day 𝑡
𝑡 = 1,… , 1826):

- 𝐶𝑡: total daily costs incurred in by Terna in the dispatching
market;

- 𝐷𝑡: daily national demand for energy (in MWh);
- 𝑊 𝑖𝑛𝑑𝑡, 𝑃𝑉 𝑡, 𝐻𝑦𝑑𝑟𝑜𝑡: time series of daily wind, photo-voltaic,

hydro (excluding pumping units) energy production (in MWh);
- 𝑎𝐹𝑅𝑅𝑡: national needs of automatic frequency restoration reserve

(in MWh), also called secondary reserve. The secondary control
is automatic and based on the secondary reserve provided by
generators connected to the grid which have to vary their power
supply in order to restore the nominal value of the frequency
after any deviation. The service must be completely delivered
within 180 s, so only some generators can provide it. In Europe,
the secondary reserve is called ‘‘automatic Frequency Restoration
Reserve’’ (aFRR) and is defined as the active power reserves,
available to re-establish the frequency to the rated value and,
for synchronous areas comprising more than one Load-Frequency
Control area, to bring back the power balance to the scheduled
value.

- 𝑅𝑅𝑡: sum of the ‘‘manual frequency restoration reserve’’ and of
the ‘‘replacement reserve’’ (in MWh). This sum is also called
tertiary reserve. It is the active power reserve available to restore
and support the required level of FRR and it must be prepared for
further system imbalances and unexpected events, including gen-
eration reserve. There are two types of tertiary control reserve: (i)
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Spinning tertiary control reserve, fully delivered within 15 min,
in order to restore the secondary reserve. It can be activated
manually and it is the same as the European ‘‘manual Frequency
Restoration Reserve’’ (mFRR).
(ii) Replacement tertiary control reserve, fully delivered within
120 min and necessary to restore the tertiary reserve against shifts
in demand, injection from renewable sources, long-lasting faults
of power plants. It corresponds to the European ‘‘Replacement
Reserve’’ (RR).

- 𝑉 𝑅𝐼 𝑡: number of generation units with must run constraints to
provide system services in order to ensure voltage control and
stability of the power system.

- 𝑇𝑇𝐹 𝑡: price of gas at the TTF index (in Euros);
- 𝐸𝑇𝑆𝑡: cost of the green certificates (in Euros) according to the

EU Emissions Trading System (ETS).

In addition, for each 𝑡, (𝑡 = 1,… , 𝑛), the following calendar variables
are used:

- 𝑇𝑡: it represents the ‘‘trend’’ variable or the long-run dynamics of
the costs at day 𝑡;

- 𝐷𝑌 𝑡: day of the year; it represents the yearly periodicity of
the data and is described by a vector repeating the sequence
1, 2,… , 365 (366for leap years). For 2021 the sequence stops at
𝑡 = 273;

- 𝐷𝑊 𝑡: day of the week; it represents the weekly periodicity of the
data and is described by repeating the periodic sequence 1,… , 7;

- 𝑏𝑎𝑛𝑘𝑡: a dummy variable accounting for bank holidays. It assumes
value 1 if day 𝑡 is an Italian bank holiday, 0 otherwise.

In this work, 𝐶𝑡 is the response variable we want to model, while all
other variables define the set 𝑿𝑡 (or, equivalently, 𝑰 𝑡 =

{

𝑿𝑠, 𝑠 ≤ 𝑡
}

),
describing the information available at time 𝑡, with respect to the
predictions to which they are conditioned.

Fig. 1, panel in position (1,1), shows the series of costs in million
euros and some calendar effects present in its dynamics. Real costs are
described by negative values which mean an overall payment from the
consumers to the producers, while positive values represent an overall
payment from the generators to the consumers. Indeed, in the ancillary
services market, generators are paid to increase their grid injection
infeed, while they pay back money for decreasing their infeed from the
scheduled value (since they are saving, at least, their short-run marginal
cost of production). In the observed period the daily average cost is
around 5,392,000 Euros with a standard deviation of 3,000,000 Euros.
Average daily costs for each month (panel (1,2)) and for each day of
the week (panel (2,1)) clearly suggest the presence of an yearly periodic
component and a weekly periodic component. Note that, in the week-
end, costs are higher than in the working days. The explanation is that
average daily costs for bank/no-bank holidays define the impact of a
bank holiday. These findings result in the need to include in the model
some calendar variables to model the structural components.

It is important to take note that true costs assume negative values,
so that smaller (negative) values denote higher costs. Table 1 lists the
main descriptive statistics of all variables. The daily average amount of
costs borne by Terna for ancillary services is around five million euros
and this explains the importance of controlling such source of risk.

3. CaR models

This section is devoted to find a model that suitably describes the
dynamics of 𝐶𝑎𝑅𝑡, defined as the quantile of the costs 𝐶𝑡 conditionally
to a set of covariates 𝑿𝑡

𝐶𝑎𝑅𝑡,𝛼,ℎ = 𝑞𝐶𝑡,𝛼,ℎ(𝐗𝑡).

To this end, we are going to identify and estimate five different com-
petitive models and compare their performance with respect to CaR.2

2 Henceforth, when we refer to costs the superscript 𝐶 will be omitted.
3

The first four models are semi-parametric and are based on a two-step
procedure: first, the conditional mean is estimated, and then, using
the residuals from the mean, the (dynamic) quantile of residuals is
estimated and added to the conditional mean to produce the 𝐶𝑎𝑅𝑡. The
ifth model, otherwise, is fully nonparametric and estimates CaR in a
ingle step.

The general specification of the two-step models is given by

𝑡 = 𝜇
(

𝑿𝑡
)

+ 𝜀𝑡 (1)

here 𝜇
(

𝑿𝑡
)

≡ 𝜇𝑡 = 𝐸(𝐶𝑡|𝑿𝑡) is the conditional mean of costs with
espect to a vector of covariates (exogenous or not) and 𝜀𝑡 is a random
ariable whose characteristics depend on the approach and will be
pecified case-by-case.

The four two-step models share the same specification of the condi-
ional mean, which follows a GAM model (Hastie and Tibshirani, 1986):

(

𝑿𝑡
)

= 𝜇 +
𝑝
∑

𝑖=1
𝑓𝑖(𝑋𝑖,𝑡). (2)

unctions 𝑓𝑗 are smoothers describing the expectation of the response
ariable, 𝐶𝑡, conditionally to all other regressors. They do not have
specific functional form, allowing for both linear and non-linear

pecifications, but they are required to be smooth, i.e. continuous
ogether with their first and second derivatives 𝑓 ′

𝑖 and 𝑓 ′′
𝑖 . To avoid

roblems of identifiability, it is usually assumed that 𝐸(𝑓𝑖(𝑋𝑖)) = 0, for
= 1, 2,… , 𝑝. Parameter 𝜇 is the unconditional mean.

There are different ways to represent the non-linear function 𝑓𝑗 (𝑋𝑗 )
ut in this work spline functions are used (Hastie and Tibshirani, 1986;
ood, 2006). The smooth components of the model can be estimated

sing the back-fitting algorithm, according to the (Hastie and Tib-
hirani, 1986) approach, or by penalized likelihood maximization, in
hich the model (negative log) likelihood is modified adding a penalty

actor for each smooth function, penalizing its ‘wiggliness’ (Wood,
006). In this paper we follow the second approach.

For the error term 𝜀𝑡 = 𝐶𝑡 −𝜇
(

𝐗𝑡
)

, we consider four different cases,
ased on proper assumptions:

1. homoscedasticity, i.e. a sequence of i.i.d random variables, 𝜀𝑡 ∼
𝐷(0, 𝜎2). In this case the expression of the CaR is given by:

𝐶𝑎𝑅𝑡,𝛼,ℎ = 𝜇
(

𝑿𝑡
)

+ 𝑞𝜀𝛼

= 𝜇 +
𝑝
∑

𝑖=1
𝑓𝑖(𝑋𝑖,𝑡) + 𝑞𝜀𝛼 (3)

where 𝑞𝜀𝛼 is the 𝛼−th quantile of 𝜀𝑡.
We estimate the distribution 𝐷 and, hence, 𝑞𝜀𝛼 , using nonpara-
metric kernel methods (Silverman, 1986). For this reason, we
refer to this model as GAM-K.

2. heteroscedasticity and GARCH dynamics. In this case we can
write 𝜀𝑡 = 𝜎𝑡 𝑧𝑡, where 𝑧𝑡 ∼ 𝑖𝑖𝑑(0, 1), 𝜀𝑡|𝑰 𝑡 ∼ 𝐷(0, 𝜎2𝑡 ) and

𝜎2𝑡 = 𝛾0 + 𝛾1𝜀
2
𝑡−1 + 𝛾2𝜎

2
𝑡−1.

The conditional distribution 𝐷 depends on the distribution of 𝑧𝑡.
Parameters 𝛾𝑖 can be estimated using Maximum Likelihood (ML)
or Quasi-Maximum Likelihood (QML) methods.
In this approach, the conditional quantile of 𝜀𝑡 is time-varying
and is a function of the conditional variance. The CaR for 𝐶𝑡 is
given by:

𝐶𝑎𝑅𝑡,𝛼,ℎ = 𝜇
(

𝐗𝑡
)

+ 𝑞𝜀𝑡,𝛼

= 𝜇 +
𝑝
∑

𝑖=1
𝑓𝑖(𝑋𝑖,𝑡) + 𝑞𝑧𝛼𝜎𝑡. (4)

The quantile 𝑞𝑧𝛼 can be estimated assuming for 𝑧𝑡 a parametric
or a non parametric distribution without distributional assump-
tions.
As 𝜀𝑡 follows a GARCH(1,1) process, we denote the model as
GAM-GARCH.
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Fig. 1. Time series of daily costs in million euros (panel 1,1); average daily costs for each month (panel 1,2); average daily costs for each day of the week (panel 2,1); average
daily cost for bank/no-bank holidays (panel 2,2).
Table 1
Descriptive statistics for the considered variables. Q1 and Q3 are the first and third quartiles, 𝑆𝑘 and 𝐾𝑢𝑟𝑡
are skewness and kurtosis coefficients, respectively. Costs are expressed in million euros, while Demand,
Wind, PhotoVoltaic, Hydro, aFFR and RR in thousands of MWh.
Variable Q1 Mean Median Q3 St.Dev. 𝑆𝑘 𝐾𝑢𝑟𝑡

𝐶𝑡 −6.421 −5.132 −4.564 −3.315 2.596 −1.087 4.362
𝐷𝑡 695.113 786.347 813.917 872.484 117.248 −0.393 2.414
𝑊 𝑖𝑛𝑑𝑡 22.862 50.821 44.152 71.662 33.395 0.788 2.828
𝑃𝑉𝑡 31.693 53.502 56.729 74.318 23.132 −0.232 1.794
𝐻𝑦𝑑𝑟𝑜𝑡 88.087 119.158 114.370 149.060 41.611 0.304 2.515
𝑎𝐹𝐹𝑅𝑡 13.679 15.134 14.982 16.402 2.374 0.553 3.592
𝑅𝑅𝑡 82.312 87.918 87.185 93.158 7.835 0.363 2.953
𝑉 𝑟𝑖𝑡 515 606 584 677 127.285 0.849 3.882
𝑇𝑇𝐹𝑡 12.112 18.043 16.750 21.575 9.618 2.376 12.865
𝐸𝑇𝑆𝑡 11.100 22.640 22.905 26.688 13.958 0.890 3.539
3. 𝜀𝑡 = 𝛽0,𝛼 +
∑𝑚

𝑖=1 𝛽𝑖,𝛼𝑌𝑖,𝑡 + 𝑧𝑡, where, in the general case, regressors
𝑌𝑖,𝑡 can be lagged values of 𝜀𝑡 or other exogenous variables.
Under the further assumption3 that 𝑞𝑧𝛼(𝒀 𝑡) = 0, the conditional
quantile of 𝜀𝑡 is given by

𝑞𝜀𝛼(𝒀 𝑡) = 𝛽0,𝛼 +
𝑚
∑

𝑖=1
𝛽𝑖,𝛼𝑌𝑖,𝑡

This approach corresponds to a quantile regression (QR) on 𝜀𝑡
and does not require distributional assumptions on 𝑧𝑡 (Koenker,
2005). In the context of the quantile regression, estimates of
parameters 𝛽𝑖 can be obtained by solving a problem of least
absolute deviation (LAD). This can be achieved using the simplex
algorithm where the initial LAD problem is reformulated as a
linear programming problem (Koenker and Bassett, 1978).

3 This is a standard assumption in the quantile regression and is the
equivalent to require that the expectation of the error term of a regression
model is zero.
4

The related CaR for 𝐶𝑡 is given by:

𝐶𝑎𝑅𝑡,𝛼,ℎ = 𝜇
(

𝐗𝑡
)

+ 𝑞𝜀𝛼(𝒀 𝑡)

= 𝜇 +
𝑝
∑

𝑖=1
𝑓𝑖(𝑋𝑖,𝑡) + 𝛽0,𝛼 +

𝑚
∑

𝑖=1
𝛽𝑖,𝛼𝑌𝑖,𝑡 (5)

We call this model GAM-QR.
4. A variant of the previous model assumes that the conditional

quantile of 𝜀𝑡 can be written as:

𝑞𝜀𝑡,𝛼 = 𝛽0,𝛼 + 𝛽1,𝛼𝑞
𝜀
𝛼,𝑡−1 + 𝛽2,𝛼𝜀

+
𝑡−1 + 𝛽3,𝛼𝜀

−
𝑡−1 (6)

where 𝜀+𝑡 and 𝜀−𝑡 denote positive and negative values of 𝜀𝑡, re-
spectively. The unknown parameters are estimated using Koenker
and Bassett (1978) regression quantile framework. Eq. (6) corre-
sponds to the CAViaR model proposed by Engle and Manganelli
(2004): thus, the whole model is called GAM-CAViaR. For the
GAM-CAViaR model, the time-varying CaR for 𝐶𝑡 is given by

𝐶𝑎𝑅𝑡,𝛼,ℎ = 𝜇
(

𝐗𝑡
)

+ 𝑞𝜀𝑡,𝛼

= 𝜇 +
𝑝
∑

𝑓𝑖(𝑋𝑖,𝑡) + 𝛽0,𝛼 + 𝛽1,𝛼𝑞
𝜀
𝛼,𝑡−1 + 𝛽2,𝛼𝜀

+
𝑡−1 + 𝛽3,𝛼𝜀

−
𝑡−1.
𝑖=1
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Finally, in the fifth approach, we model the conditional quan-
tile of costs (the CaR) in just one step. It is a generalization
of the GAM model (1), introduced by Fasiolo et al. (2021),
which directly refers to conditional quantiles, rather than to the
conditional mean and it is known as Quantile-GAM (QGAM).
In this approach a nonparametric quantile regression is applied
to 𝐶𝑡 by assuming that

𝐶𝑡 = 𝛽0,𝛼 +
𝑝
∑

𝑖=1
𝑓𝑖,𝛼(𝑋𝑖,𝑡) + 𝜀𝑡. (7)

Under the assumption that 𝑞𝜀𝑡𝛼 (𝑋𝑡) = 0, the 𝛼−th quantile of 𝐶𝑡,
conditionally to 𝑋𝑡, and coinciding with the CaR, is:

𝐶𝑎𝑅𝑡,𝛼,ℎ ≡ 𝑞𝐶𝑡,𝛼 = 𝛽0,𝛼 +
𝑝
∑

𝑖=1
𝑓𝑖,𝛼(𝑋𝑖,𝑡) (8)

where functions 𝑓𝑖,𝛼 have the same meaning as in model (1),
but in this case, they (their parameters) depend on the quantile’s
level (Fasiolo et al., 2021).
This approach will be referred to as Q-GAM. In this model, unlike
the GAM-QR models, the conditional quantile of 𝐶𝑡 is directly
modeled, while in the GAM-QR the quantile regression is applied
to the residuals of the conditional mean.

4. 1-day-ahead CaR

In this section the previous general specifications are applied to
our dataset for 1-day-ahead CaR computation. Their performance is
evaluated and compared both in-sample and out-of-sample in order to
choose the best model.

To that end, the whole dataset, ranging from January 1, 2017 to
September 30, 2021 was divided into two periods: an in-sample period
covering the interval January 1, 2017–September 30, 2020 and an out-
of-sample period covering the interval October 1, 2020–September 30,
2021, that is the last 365 days. The in-sample set was further divided
in a training set, from January 1, 2017 to September 30, 2019, used
to identify and estimate models, and a validation set, from October 1,
2019 to September 30, 2020, used to evaluate the CaR performance in
a dataset different from the one used for estimation.

In all analyses, we use lagged values only for costs, while we use
the actual values for the exogenous variables. For calendar variables
this is not a problem, because they are known at any time. For the
other variables, this choice is motivated by the consideration that the
Italian TSO has access to some kind of predictions for the variables
used as regressors up to 2-day-ahead but, for privacy issues, they
are not publicly available. The important point, however, is that the
comparison is done for all models under the same conditions.

To calibrate the models, we consider a mixed strategy based on
parameters significance, analysis of residuals, 𝑅2, value of MAE in the
training set and on the comparison of real versus nominal coverage
in the validation set. With respect to the last point, in particular, we
use several tests: (i) the Kupiec (1995) test of correct unconditional
coverage; (ii) the Christoffersen (1998) test of correct conditional cov-
erage, which jointly tests if CaR violations appear independently, and
the right unconditional coverage; (iii) the Engle and Manganelli (2004)
test, which considers the dynamic quantile and can be interpreted as an
overall goodness-of-fit test for the estimated CaR process.

4.1. In sample analyses and results

The GAM model which best fits the in-sample data includes sev-
eral calendar variables, lagged costs, hydro and wind energy produc-
tion, secondary and tertiary reserve requirements and the number of
units needed to ensure control and stability of the power system. The
expression of the conditional mean is:
5

𝜇𝑡 = 𝛽0 + 𝑓1(𝑇𝑡) + 𝑓2(𝐷𝑌𝑡) + 𝑓3(𝐷𝑊𝑡) + 𝑏𝑎𝑛𝑘𝑡 + 𝑓4(𝐶𝑡−1) + 𝑓5(𝐶𝑡−7) c
+ 𝑓6(𝐻𝑦𝑑𝑟𝑜𝑡) + 𝑓7(𝑊 𝑖𝑛𝑑𝑡) + 𝑓8(𝑎𝐹𝑅𝑅𝑡) + 𝑓9(𝑅𝑅𝑡) + 𝑓10(𝑣𝑟𝑖𝑡) (9)

For 𝑇𝑡 and 𝐷𝑌𝑡 we consider adaptive basis splines, which use
weighted penalty matrix, where the weights are allowed to vary

moothly over the range of the covariate. For the other variables,
therwise, thin plate regression basis splines are used. Fig. 2 shows
he estimated effects, and their variability bands, of hydro and wind
nergy production, of the reserve requirements (aFRR and RR) and
f the number of ‘‘must-run’’ units (VRI). For any specific level of a
ariable, a positive value means that it reduces costs, given the values
f all other variables, while a negative value suggests an increasing of
osts.

Results show that increasing volumes of hydro from river basins
nd wind energy production are associated to an increase (more neg-
tive values of) costs. The relationship with the hydro power can be
xplained by a seasonal effect: hydro is higher in the spring season
due to the snow melting process) when the load is lower and system
onstraints are typically higher.

As far as wind is concerned, interpretation is less straightforward.
igh wind scenarios could imply higher costs due to higher reserve

equirements to cope with its uncertainty, possible congestions in the
ower system to be solved and a lower amount of conventional gen-
ration units online. This, in turn, could require some re-dispatching
ctions from the TSO in order to activate a minimum amount of units
o ensure the stability of the power system.

For the analysis of the impact of renewable sources penetration
n electricity market volatility see Bigerna et al. (2017). With respect
o the reserve requirements, the effect of the secondary reserve is to
ncrease the costs’ expectation up to around 16 000 MWh and, after
his threshold, to decrease them. As in almost 77% of days aFRR is
elow 16 000 MWh, most of times an increase in the secondary reserve
eads to an increase in costs. Also regarding the tertiary reserve needs,
e observe a parabolic relationship but with a downward concavity.
he interpretation is that the need for RR and electricity demand are

inked by a direct relation (more demand, more RR needs). Thus, it is
easonable to assume that low values of RR are associated to low levels
f demand and, at the same time, also the number of production units
ctive after market results is low, so that Terna has to look for other
nits in order to build a reserve. Finally, as expected, the relation with
RI is positive so that an increase in the number of units needed to
nsure control and stability of the power system leads to an increase
n costs. The curve of the relation becomes more sloped approximately
eyond 650 units.4

Eq. (9) allows to compute 𝜇̂𝑡 and, thus, the residuals 𝜀̂ = 𝐶𝑡 − 𝜇̂𝑡, on
which second-step-models are estimated.

For the GAM-K model the marginal distribution of 𝜀̂ is estimated by
means of nonparametric gaussian kernel methods. The quantile is then
computed using numerical integration.

In the GAM-GARCH approach we estimate a zero-mean GARCH(1,1)
model 𝜀̂𝑡 = 𝜎𝑡𝑧𝑡 whose estimated conditional variance is

𝜎̂2𝑡 = (2565.5 ⋅ 108) + 0.118 𝜀̂2𝑡−1 + 0.728 𝜎̂2𝑡−1

The estimation is performed by QML and, to avoid distributional as-
sumptions, the conditional quantile of 𝜀̂ is based on the empirical
quantile of 𝑧̂𝑡.

The best results for the GAM-QR model are obtained by considering
the estimated conditional quantile given by

𝑞(𝜀̂,0.10,𝑡) = −1.27 ⋅ 106 + 0.197 𝜀̂𝑡−1 + 0.186 𝜀̂𝑡−7 − 2.25 ⋅ 10−7 𝑚𝑚𝜀̂2𝑡−1,

where 𝑚𝑚𝜀̂2𝑡 is a 7-day moving average of 𝜀̂2𝑡 .
Parameters have been estimated using a modified version of the

Barrodale and Roberts’ algorithm for l1-regression, described in detail
in Koenker and d’Orey (1994).

4 Hourly values of the VRI requirements are summed up and some VRI
onstraints overlap.
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Fig. 2. Estimated effects of different variables on the conditional mean of costs. Panel (1,1): hydro energy production; panel (1,2): wind energy production; panel (1,3): secondary
reserve; panel (2,1): tertiary reserve; panel (2,2): number of units in service.
Fig. 3. Estimated effects of different variables on the 10% quantile of costs. Panel (1,1): hydro energy production; panel (1,2): wind energy production; panel (1,3): secondary
eserve; panel (2,1): tertiary reserve; panel (2,2): number of units in service.
𝑞

H
l

The dynamics of the conditional quantile of 𝜀̂𝑡 estimated within the
AM-CAViaR model is

(̂𝜀̂,0.10,𝑡) = −0.197 + 0.877𝑞(𝜀̂,0.10,𝑡−1) − 0.140𝜀̂+𝑡−1 + 0.260𝜀̂−𝑡−1,

here 𝜀̂+𝑡 and 𝜀̂−𝑡 denote positive and negative values of 𝜀̂𝑡, respectively.
All variables entering these models are significant at 5% level. Fig. 3

hows the results related to a Q-GAM specification including the same
ariables entering the model for the conditional mean. Even if the
irection of the impact of the variables is the same as for the conditional
ean, it is clear that the impact itself on the 10% conditional quantile

s not the same. In particular, the graphs show that, in the Q-GAM
odel, aFRR and RR are not significant and the wind production is

ignificant only for high levels of production. This implies that variables
6

significantly impacting on the conditional mean are always significant
also for a specific quantile. Furthermore, the impact of the number of
activated units (VRI) is much stronger for the 10% quantile, than for
the mean. The model including only the significant variables (therefore
denoted by Q-GAM𝑠𝑖𝑔) is

̂𝐶0.10,𝑡 = 𝛽0 + 𝑓1(𝐷𝑌𝑡) + 𝑓2(𝐷𝑊𝑡) + 𝑏𝑎𝑛𝑘𝑡 + 𝑓3(𝐶𝑡−1) + 𝑓4(𝐶𝑡−7)

+ 𝑓5(𝐻𝑦𝑑𝑟𝑜𝑡) + 𝑓6(𝑊 𝑖𝑛𝑑𝑡) + 𝑓7(𝑣𝑟𝑖𝑡)

owever, it turned out that for this model the observed coverage is
arger than the expected one with an observed level5 of 6.3% versus

5 The same results are obtained including aFRR and RR.
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𝑞

Fig. 4. Left panel: time series of daily costs (in million euros) October 1, 2020–September 30, 2021 (in black) and related CaR series (in red). Right panel: hits sequence in the
out-of-sample period. 𝐻𝑖𝑡𝑡 = 1: a CaR violation occurred at time 𝑡; 𝐻𝑖𝑡𝑡 = 0, otherwise. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Table 2
Observed level (𝛼𝑜𝑠𝑠) versus nominal level of 10% in the validation set (365 daily
observations) and p-values of the corresponding tests for CaR models: Kupiec test (Kup),
Christoffersen test (Chris) and Dynamic Quantile test (DQ).

Model 𝛼𝑜𝑠𝑠 Kup Chris DQ

GAM-K 0.0739 0.0836 0.0290 0.978
GAM-GARCH 0.1062 0.665 0.906 0.980
GAM-QR 0.0876 0.423 0.622 0.768
GAM-CAViaR 0.0876 0.423 0.305 0.977
QGAM𝑠𝑖𝑔 0.0630 0.012 0.036 0.257
QGAM𝑐𝑜𝑣 0.1051 0.794 0.739 0.997

a nominal level of 10% (see Table 2). This suggests that the model is
too conservative. Thus, we looked for the Q-GAM model performing at
best with respect to the in-sample CaR, at the cost of excluding some
significant variable, and we found that the simple model,

̂𝐶0.10,𝑡 = 𝛽0 + 𝑓1(𝐷𝑌𝑡) + 𝑓2(𝐷𝑊𝑡) + 𝑏𝑎𝑛𝑘𝑡 + 𝑓3(𝐶𝑡−1) + 𝑓4(𝐶𝑡−7) (10)

denoted by Q-GAM𝑐𝑜𝑣 (cov stands for coverage) leads to an in-sample
observed level of 10.5%, which looks acceptable.

When these six models have been used to estimate CaR𝑡 in the
validation set, they have led to the results showed in Table 2, which
lists the observed level and the p-values of the three considered tests.
We can see that, apart from the GAM-K and the Q-GAM𝑠𝑖𝑔 models, the
tests never reject the null hypothesis although most of the models tend
to be too conservative. The best empirical coverages are observed for
the GAM-GARCH and Q-GAM𝑐𝑜𝑣 models, fitting the quantile very well.

Since excluding significant variables is an unusual strategy, we
temporarily conclude that the first choice is the GAM-GARCH model,
while the Q-GAM𝑐𝑜𝑣 model is the second best.

4.2. Out-of-sample results

The analyses shown in the previous section refer to the in-sample pe-
riod. Now we extend them to the out-of-sample period keeping fixed the
models estimated in-sample. Ideally, we should consider only the in-
sample ‘‘winner’’ model, that is the GAM-GARCH model. Nevertheless,
as a further check, in Table 3 observed levels are listed for all models.
Results point out that all methods, including the too conservative ones,
show a number of CaR exceedances larger than the expected level. In
particular, the observed coverage for the QGAM𝑐𝑜𝑣 model is only 84.5%
in the face of a nominal coverage of 90%. This confirms the doubts
stated in Section 4.2 about this model.

The best in-sample model, the GAM-GARCH, performs quite well
even out-of-sample, with an observed level of 11.7%, implying a cov-
erage of 88.3%. A posteriori, among all models, it is also the one giving
the most stable results. The 𝑝-value of the Christoffersen test for this
model is 0.041, which could suggest possible problems connected with
7

the independence of the hits. However, the 𝑝-value is not too far from
Table 3
Observed level (𝛼𝑜𝑠𝑠) versus nominal level of 10% in the out-of-sample period (365
daily observations) and p-values of the corresponding tests for CaR models. Kupiec test
(Kup), Christoffersen test (Chris) and dynamic quantile test (DQ).

Model 𝛼𝑜𝑠𝑠 Kup Chris DQ

GAM-K 0.159 <0.001 <0.001 0.331
GAM-GARCH 0.117 0.347 0.041 0.998
GAM-QR 0.139 0.024 0.007 0.989
GAM-CAViaR 0.148 0.004 <0.001 0.739
QGAM𝑠𝑖𝑔 0.151 0.002 0.001 0.684
QGAM𝑐𝑜𝑣 0.153 0.001 <0.001 0.772

Fig. 5. Estimated distribution of 𝐶𝑎𝑅𝑡,0.10.

the 5% threshold and, in addition, the CaR hits sequence (see Fig. 4)
shows that hits distribute almost uniformly in the out-of-sample period.
Thus, we can conclude that the GAM-GARCH model works quite well
also out-of-sample.

The above tests and criteria only consider whether the violations
occur independently and in the right proportion, but do not give any
piece of information about the magnitude and the variability of the
CaR forecasts. To assess these features Table 4 lists the average and
median CaR in the out-of-sample period, as well as the first and the
third quartile of the CaR distribution, given in Fig. 5. The same table
contains the value of the expected shortfall (ES), i.e. the average cost
conditionally to a CaR exceedance.

5. 30-day CaR

In this section we cope with the 1-month CaR, assuming that a
month is composed of 30 days. Thus, the problem is equivalent to
finding the 30-day-ahead CaR.

This problem is much more complex than the 1-day-ahead CaR
because, if we use cumulated costs over rolling windows of thirty
consecutive days, we induce a very strong autocorrelation due to the
overlapping of two of the windows over which costs are cumulated. On
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Table 4
Descriptive statistics for 1-day CaR in the out-of-sample period (million euros) using the GAM-GARCH model.
Average 𝐶𝑎𝑅𝑡,0.10 Median 𝐶𝑎𝑅𝑡,0.10 𝑄0.25(𝐶𝑎𝑅𝑡,0.10) 𝑄0.75(𝐶𝑎𝑅𝑡,0.10) ES

−8.176 −7.916 −9.124 −6.819 −9.752
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Table 5
Observed level (𝛼𝑜𝑠𝑠) versus a nominal level of 10% in the out-of-sample period (336
observations) and p-values of the corresponding tests for CaR models. Kupiec test (Kup),
Christoffersen test (Chris) and dynamic quantile test (DQ).

Model 𝛼𝑜𝑠𝑠 Kup Chris DQ

GAM-GARCH 0.108 0.665 <0.001 0.817

the other hand, if we consider non-overlapping windows, the number
of observations scales as 30−1, producing a too short time series.

o bypass this problem, and since the best model for 1-day-ahead
as the GAM-GARCH, we adapt the method of the filtered historical

imulation (Barone-Adesi, 2015) to our context.
Similarly to the 1-day CaR, the general expression for the 30-day

aR is given by

𝑎𝑅𝑡,𝛼,30 = 𝜇̂(30)|𝑡 + 𝑞
𝜀̂(30)|𝑡
𝛼 (11)

here, with respect to time 𝑡, 𝜇̂(30)|𝑡 denotes the prediction of costs
orne by the TSO over the next 30 days while 𝑞

𝜀(30)|𝑡
𝛼 is the 𝛼−quantile

f the 30-day-ahead error distribution.
To obtain the 30-day-ahead CaR we apply the following procedure:

1. for a given time 𝑡, we first get a 30-day-ahead prediction of the
conditional mean for the time series of daily costs using a GAM
model. Let us denote the predictions as 𝜇̂𝑡+𝑖, (i=1,2, . . . ,30). Then
we sum the daily predicted costs in order to obtain the total
predicted cost over the 30 days: 𝜇̂(30)|𝑡 =

∑30
𝑖=1 𝜇̂𝑡+𝑖;

2. after that, we need to compute the right quantile of the 30-
day-ahead error around the predicted conditional mean. To this
purpose, we assume that daily residuals, 𝜀𝑡, follow a GARCH(1,1)
and:

- using the estimated GARCH model up to time 𝑡, we sim-
ulate 1000 trajectories 𝜀(𝑗)𝑡+1,… , 𝜀(𝑗)𝑡+30, (𝑗 = 1,… , 1000) ac-
cording to the (Barone-Adesi, 2015) approach, which is
described in Appendix A. In this context, each trajectory
represents a sequence of costs not accounted by the condi-
tional mean;

- for each trajectory, we sum up the simulated values, given
by 𝜀̂(𝑗)(30)|𝑡 =

∑30
𝑖=1 𝜀̂

(𝑗)
𝑡+𝑖. This provides a single realization of

the 30-day-ahead prediction errors;
- the 1000 simulated values 𝜀̂(𝑗)(30)|𝑡 allow us to compute the
𝛼−quantile 𝑞

𝜀̂(30)|𝑡
𝛼

or the 30-day-CaR computation, we identify the best model following
he same approach as for the 1-day-CaR. In this case, the model for
he conditional mean which gives the best in-sample results and which
as hence used out-of-sample is the same used for 1-day but without

ncluding 𝑣𝑟𝑖𝑡. The rest of the procedure is the same but, clearly, with
ifferent estimated GARCH parameters.

The application of this methodology leads to the results listed in
able 5. They show a good unconditional coverage but they also point
ut the presence of an inadequate distribution of the hits, which high-
ights some problems concerning their independence. This unsatisfying
utput is very clearly shown in Fig. 6 and, particularly, in the right
anel where we can see that, in the out-of-sample period, the hits are
ainly concentrated in a window of 45 days. As for the 1-day-CaR,

ig. 6 lists the descriptive statistics for 30-day-ahead CaR using the
AM-GARCH model.

Finally, as for 1-day-Car, Table 6 contains some descriptive statistics
8

or the 30-day-ahead CaR. f
. Conclusions

In this paper we have dealt with the issue of assessing the cost risk
o which a Transmission System Operator (TSO) is exposed. To the best
f our knowledge this topic has been considered only in very few works.

First, we have defined the notion of Cost-at-Risk, then we have
ooked for a suitable model able to evaluate CaR as a time-varying value
epending on some calendar and market variables.

Five competitive models, with different features, have been esti-
ated and their performance in CaR evaluation has been studied both

n-sample and out-of-sample. Four models are based on a two-step
rocedure, where the conditional mean is modeled using a nonpara-
etric GAM model and the final quantile is obtained assuming for

he residuals: homoscedasticity, a GARCH dynamics and a quantile
egression dynamics declined in two different ways. The fifth model, on
he other hand, directly estimates, in a nonparametric way, the quantile
f costs.

All these models are quite robust because they are nonparametric
r work under very weak conditions. Nonparametric methods are not
ased on specific functional or distributional assumptions and, as they
ocally fit the data, can account for possible structural changes. On the
ther hand, also methods which are not fully nonparametric have been
stimated without using strong assumptions, as well. For example, in
he GAM-GARCH model, the conditional quantile of 𝜀𝑡 is based on the
mpirical quantile of 𝑧𝑡 and does not assume any specific distribution.
ethods based on quantile regression are also robust because they do

ot rely on distributional assumptions.
For 1-day-ahead CaR computation, results suggest that the GAM-

ARCH model is the best one, non only because it shows the best and
atisfactory out-of-sample performance, but also because it turned out
o be the most stable among the considered models.

To estimate a 30-day-ahead CaR we have resorted to the historical
iltered simulation method in a GAM-GARCH context. This approach,
lthough it works well in terms of correct coverage, shows some
roblems with respect to the independence of the hits and, thus, it
hould be improved in this direction.

Thus, finding other methods for h-day-ahead computation of CaR
s one of the future research targets. Further research can focus on
ncluding in the models other possible market variables and/or account-
ng for possible interactions between variables, for example introducing
ivariate splines within GAM models. Another point for future research
s to test models using predicted regressor variables, when available.
n turn, this may require to find suitable methods to predict the costs
rivers. Finally, it would be interesting to study the performance of
hese methods in different periods, for example in the last two turbulent
ears, and in other different markets across the world.
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Fig. 6. Left panel: time series of 30-day daily costs (million euros), October 1, 2020–September 30, 2021 (in black) and related 30-day-CaR series (in red). Right panel: hits
equence in the out-of-sample period. 𝐻𝑖𝑡𝑡 = 1: a CaR violation occurred at time 𝑡; 𝐻𝑖𝑡𝑡 = 0, otherwise. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
Table 6
Descriptive statistics for 30-day-ahead CaR using the GAM-GARCH model in the out-of-sample period (in
million euros).
Average 𝐶𝑎𝑅𝑡,0.10 Median 𝐶𝑎𝑅𝑡,0.10 𝑄0.25(𝐶𝑎𝑅𝑡,0.10) 𝑄0.75(𝐶𝑎𝑅𝑡,0.10) ES

−201.583 −205.004 −198.375 −212.650 −189.839
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Appendix A

In this Appendix we are going to describe the procedure for the
application of the filtered historical simulation used to obtain the
quantile of the ℎ step-ahead distribution, when the underlying model
s a zero mean GARCH(1,1), i.e 𝜀𝑡 = 𝜎𝑡 ⋅𝑧𝑡, with 𝜎2𝑡 = 𝛾0 + 𝛾1𝜀2𝑡−1 + 𝛾2𝜎2𝑡−1
Barone-Adesi, 2015).

The procedure was originally proposed for the VaR computation in
financial context where the variable of interest is a financial return.

t requires the following steps:

1. assume to have the time series 𝜀𝑡, 𝑡 = 1,… , 𝑛 and to have
estimated the parameters of a GARCH(1,1) using these data;

2. at 𝑡 = 𝑛, simulate the 𝜀𝑡 for times 𝑛 + 1, . . . , 𝑛 + ℎ according to
this scheme:

𝜎2𝑛+1 = 𝛾̂0 + 𝛾̂1𝜀
2
𝑛 + 𝛾̂2𝜎

2
𝑛 ⟹ 𝜀̂𝑛+1 = 𝑧∗1𝜎𝑛+1

𝜎2𝑛+2 = 𝛾̂0 + 𝛾̂1𝜀̂
2
𝑛+1 + 𝛾̂2𝜎

2
𝑛+1 ⟹ 𝜀̂𝑛+2 = 𝑧∗2𝜎𝑛+2
... ... ...

𝜎2𝑛+ℎ = 𝛾̂0 + 𝛾̂1𝜀̂
2
𝑛+ℎ−1 + 𝛾̂2𝜎

2
𝑛+ℎ−1 ⟹ 𝜀̂𝑛+ℎ = 𝑧∗ℎ𝜎𝑛+ℎ

3. 𝑧∗𝑖 are sampled independently either from a parametric distribu-
tion or from the empirical distribution of 𝑧̂𝑡.

4. In the original work, the value 𝜀̂(30)|𝑡 =
∑ℎ

𝑖=1 𝜀̂𝑛+𝑖 represents
the ℎ−day-ahead return of a financial asset; in our case, it is a
realization of the sum of the daily errors made in a 30-day-ahead
prediction at time 𝑡 = 𝑛

5. Iterating 𝑀 times steps 1–4 leads to 𝑀 simulated values 𝜀̂(𝑗)(30)|𝑡
which allow to find the quantile of the h-day-ahead cumulated
error.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eneco.2023.106625.
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