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Abstract. 
 
Cancer is a rooted evolutionarily disease, born with the development of the 
multicellularity, and inherently caused by mutations occurring at somatic level or 
inherited through the germline. Yet, there is a whole world behind this simple 
academic definition. Some authors argue that it is not just a disease, but it rather 
represents a force able to drive the biological systems, acting itself as evolutionary 
mechanism able to selectively shape the adaptation of a species. Surprisingly, at 
phylogenetic level, susceptibility to cancer greatly varies from one species to another. 
Indeed, it is known that within the same species body size and lifespan are strongly 
correlated with the probability of developing cancer, whereas, across different ones, 
this association disappears, being replaced by what it is recognized as Peto's Paradox 
biological dilemma: theoretically, over time, cells acquire and accumulate mutations 
that, in some cases, can lead to the development of a tumorigenic event. Since every 
cell in the body has the same potential to become cancerous, larger and longer-living 
species should proportionally have a higher risk of cancer. However, Peto teaches us 
that some of them have evolved cancer suppression strategies able to parallelly coexist 
alongside their grater size and longevity. In this framework, oncology and 
comparative genomics are the only tools able to answer those question wondering 
why some species are more resistant to cancer compared to others, despite their 
phenotypic constraints such as size and high longevity. Understanding how Nature 
has solved the problem of cancer suppression during evolution could, therefore, be 
translated into cancer prevention strategies for human and veterinary research. To 
date, mechanisms proposed for the resolution of Peto's paradox include the reduction 
in the number of oncogenes copies, or, conversely, the increase in the number of 
suppressor genes. In particular, Copy Number Variations (CNVs), are regions of DNA 
found deleted and/or duplicated within the genome, which may reflect a phenotypic 
variation, causing, in some cases, disease. Therefore, investigating the copy number 
composition of genes in the genome of long-living and/or big size animals showing a 
low cancer rate could shed light on new molecular targets related to ageing and 
cancer-resistance that are still unknown. Specifically, Chapter II describes 
VarNuCopy, the first online tool that I developed during the course of my Ph.D, that 
collects and compares CNVs from the genome of 233 organisms (mammalian and non-
mammalian), correlating, for a selected subset, the copy number with some 
phenotypic traits of the species. Chapter III, exploiting VarNuCopy data, identifies 
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for the first time the microRNAs family as a new biomarker able to discriminate the 
cancer predisposition of a species. Finally, Chapter IV explains how and why the 
single-cell organism S. cerevisiae can be considered as a key model in the study of 
ageing processes and cancer-related pathways, reporting also my personal research 
experience carried out during the nine months of my Ph.D spent abroad. 
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Riassunto. 
 
Il cancro è una malattia che evolve seguendo le regole della selezione naturale, nata 
con lo sviluppo della multicellularità, e intrinsecamente causata da mutazioni che si 
verificano sia a livello somatico che ereditate attraverso la linea germinale. Eppure, 
aldilà di questa semplice definizione accademica, dietro lo sviluppo delle malattie 
oncologiche, si cela un mondo molto più ampio, per la maggior parte ancora 
sconosciuto. Alcuni autori sostengono che il cancro non sia solo una malattia, ma che 
rappresenti una forza evolutiva in grado di modellare selettivamente l’adattamento 
di una specie. Sorprendentemente, a livello filogenetico, la suscettibilità al cancro varia 
notevolmente. Infatti, è noto che all'interno della stessa specie le dimensioni del corpo 
e la durata della vita siano fortemente correlate alla probabilità di sviluppare un 
tumore, mentre, tra specie diverse, questa associazione scompare, lasciando il posto a 
quello che viene definito come il paradosso di Peto: teoricamente, poiché ogni cellula 
del corpo ha la stessa probabilità di diventare cancerosa, le specie dotate di una massa 
maggiore e quelle più longeve dovrebbero proporzionalmente avere un rischio 
maggiore di tumorigenesi. Tuttavia, Peto ci insegna che alcune di esse hanno evoluto 
strategie di soppressione in grado di coesistere con la loro grande dimensione e 
l’elevata longevità. In questo contesto, l'oncologia e la genomica comparativa sono gli 
unici strumenti in grado di rispondere a quelle domande sul perché, nonostante i loro 
vincoli fenotipici come dimensioni ed elevata longevità, alcune specie siano più 
resistenti al cancro rispetto ad altre. Nel corso del tempo, le cellule acquisiscono e 
accumulano mutazioni che, in alcuni casi, possono portare allo sviluppo di tumore. 
Capire in che modo la Natura abbia risolto il problema della soppressione del cancro 
durante l'evoluzione, potrebbe quindi essere tradotto in strategie di prevenzione 
nell’ambito della ricerca umana e veterinaria. Ad oggi, tra i meccanismi proposti per 
la risoluzione del paradosso di Peto si trovano la riduzione del numero di copie degli 
oncogeni o, al contrario, l'aumento del numero di geni soppressori. In particolare, le 
Copy Number Variations (CNVs), sono regioni di DNA delete e/o duplicate all'interno 
del genoma, e portano ad una variazione fenotipica, causando, in alcuni casi, malattia. 
Pertanto, indagare la composizione in copy number nel genoma di animali longevi e/o 
di taglia grande, ma che mostrano un basso tasso di incidenza di neoplasia, potrebbe 
far luce su nuovi target molecolari legati all'invecchiamento ad oggi ancora 
sconosciuti. In particolare, il Capitolo II descrive VarNuCopy, il database che ho 
sviluppato durante il corso del mio dottorato, e che raccoglie e confronta le CNVs del 



 6 

genoma di 233 organismi (mammiferi e non), correlando, per un sottoinsieme 
selezionato, il numero di copie con alcuni tratti fenotipici della specie. Il Capitolo III, 
sfruttando i dati di VarNuCopy, riporta per la prima volta la famiglia dei microRNA 
come un nuovo target molecolare in grado di discriminare per la predisposizione al 
cancro di una specie. Infine, il Capitolo IV spiega come e perché il lievito unicellulare 
S. cerevisiae possa essere considerato un modello chiave nello studio dei processi di 
invecchiamento e del cancro, riportando anche la mia esperienza di ricerca personale 
svolta durante i nove mesi trascorsi all'estero.  
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Introduction. 
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1. General Overview 
 
Aging is defined as the process of accumulation of structural, molecular, cellular, and 
functional changes affecting a cell or an organism over the passage of time. According 
to the World Health Organization (https://www.who.int/), in the next thirty years, 
the number of persons aged older than 80 is expected to triple, potentially impacting 
the entire economic sectors of multiple nations. Indeed, in the light of this imminent 
demographic change, all countries must be prepared to face multiple challenges in 
order to ensure that their health and social systems will be ready to withstand the high 
pressure of this event. In this framework, global efforts are required to implement 
existing knowledge about the prevention and the treatment of age-related diseases, 
such as cardiovascular disease, Parkinson, Alzheimer, and cancer. Indeed, it is 
possible that life expectancy will keep increasing until a stable plateau defined by 
individual intrinsic genetics is reached. At this point cardiovascular failure or cancer 
will be the principal hazard of human life (Kirkwood, 2017). Nowadays, one of the 
goals of aging research is to promote the investigation on the study of age-related 
diseases, moving towards the development of technologies capable to delay the 
process of aging and extend human health and life. Because this process is defined as 
a progressive deterioration of physiological functions accompanied by an increase in 
vulnerability and mortality, the primary focus of aging research must be based on two 
fundamental concepts: (i) health benefits, with the aim to preserve the health of the 
individual by postponing the onset of disease, and (ii) life extension, obtained slowing 
down, tackle, and therapeutically curing aging in order to enable people to live longer. 
Although in the last two centuries it has been subject of numerous studies, currently, 
within the scientific community, it is not possible to identify a common consensus on 
what the nature of the aging process is. In particular, the issues on which different 
scientists are still debating are how aging is related to mortality rate, functional decline 
and damage accumulation, and whether it is biologically programmed (Cohen et al., 
2020a). Lack of consensus on an aging biology paradigm clearly emerged after the 
‘Biology of Aging Symposium’ held in Montreal in 2019, which gathered 44 expert 
speakers of the field (Cohen et al., 2020b). As pointed out by A.A. Cohen, the main 
discussion dynamically revolved around the question ‘Do we know what ageing is?’. 
Surprisingly, the debate highlighted lack of agreement and common vision both on 
the core question and its basic principles. On the other hand, all the scientists agreed 
on the heterogeneity and the multifactorial nature of the process, emphasizing the 
need to reach a common consensus on key issues. Personally, what I found interesting 
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for the purpose of this manuscript, is the diversity in the answers to the additional 
question “describe your understanding of what causes aging, and what it is, or is not, at a 
mechanistic level”, that are partly summarized in Table 1. In my opinion, all the 
definitions given by the audience raise important questions regarding the topic, but 
they may be imbalanced according to the different scientific background and expertise 
of the speaker. As a young scientist who has just approached the aging research field 
for a few years, I cannot myself identify a global and fulfilling definition of aging, 
besides the usual and academic one. Probably, my personal point of view is a 
combination between multiple perspectives. I agree on the idea of the imperfect 
optimization in maintaining a balance between evolutionary constraints, 
environmental constraints, and cellular dynamical equilibrium proposed by 
Vanhaelen Q.; on the other hand, I also think that with time, a gradual break-down of 
cellular components caused by multiple factors such as DNA damage, mutations, 
genetic/epigenetic pre-programmed senescence occurs, leading to a dysregulation of 
the system, which fails to balance internal and external damages (as hinted by 
Gourbunova V., and Anglas U.) 

 Aging definition 

L. Ferrucci 
“Aging is the progressive shrinking of the biological mechanisms that surveil 
and repair cellular and intercellular damage and miscommunication. Since the 
manifestations of aging are observable and stereotyped, the mechanisms of 
aging should be discovered using these manifestations as gold standard.” 

J.F. Lemaître 

“As an evolutionary biologist, I see aging as the decrease in the age-specific 
contribution to fitness. In fact, I prefer the term senescence to describe this 
evolutionary process. […] In that case, aging could represent the effect of time 
on organisms from birth to death while senescence should represent the decline 
in survival and reproductive probabilities with increasing age (themselves 
underpinned by a decline in physiological functions). […]  At a mechanistic 
level, aging (or I should say senescence) correspond to any deterioration of 
cellular/physiological traits that will ultimately impact fitness.” 

Q. Vanhaelen 
“Mechanistically, aging is a disruption of the homeostasis established between 
cellular processes. […] Aging is the result of this imperfect optimization to 
maintain a balance between evolutionary constraints, cellular dynamical 
equilibrium, and environmental constraints […]. Aging is not a programmed 
process but a consequence of this search for an equilibrium.” 

J. Van Raamsdonk 
“Aging is the progressive decline of function with increasing chronological age 
due to internal factors that are not dependent on environment, which leads to 
an increased probability of death. Aging is caused by a genetically programmed 
switch that downregulates cellular pathways involved in homeostasis, stress 
response, repair etc. […]”  

V. Gorbunova “Repair machineries fail to keep up with internal and external damage; systems 
become dysregulated and eventually collapse.” 

G. Pawelec 
“Ageing is caused by a breakdown in repair mechanisms due to a shift of 
resource allocation after reproduction, modulated according to the 
environmental niche of the organism.”  

D. Frasca 
“Aging is the result of the ability of an individual to adapt to the progressive 
accumulation of stress stimuli that accumulate throughout life at different rates 
in all tissues and organs. […]” 



 18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
While writing this thesis, I was wondering how other researchers with different 
interests and backgrounds would think in this respect. Recently, during a routine 
discussion, I brought the topic on the table, asking some colleagues to choose a 
definition of ageing among the ones proposed by the experts panel in 2019. I was 
curious about how they might define the process from their (scientific) point of view, 
to verify if there were any repetitive common words or concepts among their quotes. 
For the moment, this is just a personal and informal questioning, but I think that 
inquiring on external opinions, especially given by people who are not familiar with 
the field, can be extremely interesting in order to recognize similar identity patterns. 
Indeed, the words used to describe the phenomena can be used as proxies of how the 
ageing paradigm is seen by the general public and the society, and most importantly, 
to define a universal concept of aging to guide future research (Gladyshev, 2016).  
  

V.N. Gladyshev 

“In its essence, aging is the accumulation of deleterious changes. More 
specifically, aging is the increase in deleterious changes (the deleteriome) as a 
by-product of life (metabolism) under ecological/ evolutionary constraints, 
with its rate adjusted by genetic (a major contributor), environmental and 
stochastic processes (these two primarily contribute to variation within 
species). Aging starts very early in life and may be tracked by a combination of 
clocks and biomarkers as well as by functional assays and mortality (the latter 
is not always, e.g. not in all life stages, not in all species that age).” 

Anatoli I. Yashin 
“Aging results from the imperfect design of our bodies to deal with existing 
environment. […] It might be a reason for the evolution to develop mortal 
organisms with different lifespans and different rates of aging. This reason 
could deal with the need to maintain sustainability of the Earth's ecological 
system in the condition of limited energy supply (sun energy) […].  

M. Ivanchenko 

“Aging is a continuous dynamical process, starting as development, then 
adaptation, and at the later stage accumulation of damage, garbage, adaptation 
controversies and failures. It is a product of genetic background and 
environmental factors, and as a result highly heterogeneous among 
individuals.” 

U. Anglas 
“The gradual break-down of cellular components, leading to the eventually 
death of the organism, associated with time. This is caused by DNA damage, 
mutations, genetic/epigenetic pre-programmed senescence, protein aggregates 
and environmental stress.”  

V. Legault 
“I view aging as the gradual exhaustion of the system (organism), arising from 
the repeated responses to external and internal perturbations. The system 
might find alternative stable states along the way but will eventually collapse 
at a certain point.”  

F. Dufour 
“Aging is not programmed. Aging is the result of complex interactions between 
the genome and physiological and environmental changes, with feedback loops 
that lead to physical and mental impairment. Organisms are not adapted to 
naturally live indefinitely.” 

Table 1: Subset of the different definition of Aging, presented at the “Biology of Aging Symposium” 
              (2019)  
              (Source: adapted from Table1 & Supplementary Material1 - Cohen et al., 2020a)  
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1.1. Aging theories  
Currently, several different theories exist, all of them covering different aspects of 
aging (Moldakozhayev et al., 2021). The most important and relevant, are summarized 
below: 

1) programmed theory: aging as an altruistic advantageous genetic program that 
has evolved to benefit future generations, freeing up resources consumed by 
the older ones in order to be used by future organisms (Longo et al., 2005);  

2) evolutionary theory: mutations can accumulate in the genomes over 
evolutionary time scales when the forces of natural selection decline as a 
function of age. Although they may show a beneficial or neutral effect during 
early life stages, they can turn to be detrimental when accumulating during 
evolution, causing ageing (Medawar, 1952; Williams, 1957); 

3) free radical theory: reactive oxygen species (ROS) are a by-product of cellular 
metabolic processes, being one of the primary cellular damage sources 
(Harman, 1956). Accumulation of these damages leads to aging and senescence. 

4) disposable soma theory: the inability of organisms to support both 
maintenance and reproduction, lead to damage accumulation (Kirkwood, 
1977). Recently, this theory has been replaced by the hyperfunction theory of 

ageing, according to which the excessive gene functions replaced the concepts 
of molecular damages caused by the unbalanced allocation of the available 
resources (Blagosklonny, 2008). 

 

Aging theories are very different, each of them describing a particular aspect of the 
whole process. A new hypothesis supported by the recent reinterpretation of the 
Second Law of Thermodynamics (Lambert, 2007), argues that these changes are the 
result of modifications in the entropy levels. Indeed, energy state levels capable of 
maintaining high fidelity during the molecular processes tend to be evolutionarily 
selected until, during aging, their alteration renders those molecules inactive or 
malfunctioning (Hayflick, 2007; Fariselli and Taccioli et al., 2021). The only biological 
feature able to overcome the evolutionary scale of time is the information encoded 
within DNA molecules, but even this one is not entirely immune to mutation or 
change (Hayflick, 2000). For this reason, in 2016, Gladyshev V.N., developed a 
principle capable of enclosing in a single point of view all the existing perspectives: 
the deleteriome model. According to his vision, the deleteriome is described as the 
accumulation of all the molecular damage of an organism, due to the imperfect 
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activity of all biological systems. Therefore, the biological age mirrors the set of 
cumulative, deleterious age-related changes, that can be measured through the 
biomarkers of aging. Biological molecules and processes are imperfect, leading to 
unwanted and disordering damaging consequences that produce different traits 
which are not selected during evolution (Gladyshev, 2013). In 2012, the same author, 
proposed a new fascinating metaphor, describing lifespan as the time needed for the 
water of a river to flow from the mountain to the ocean (Gladyshev, 2012). This time 
can be extended by building a dam for example, but this would not provide any 
explanation regarding the reason why the water continues to flow down the river, 
which is well known to be gravity. Similarly, any interventions that might regulate 
the aging process, such as lifespan extension, do not provide any answer related to 
what causes aging itself. In this context, the measures of the deleteriome are the best 
markers of aging. The origin of these aging damages has not been well defined yet, 
and we are still missing a satisfactory explanation about the reason why the cells are 
not able to clear them thanks to their protective machineries.  
 

1.2. The aging hallmarks 
As previously mentioned, in the last decades, a quasi-consensus opinion on the 
heterogeneity and the multifactorial aspect of aging has clearly emerged (Taffett, 
2003). Figure 1 briefly summarizes how various authors integrated the different types 
of cumulative aging damage into (i) seven major damage types, (Matise, 2018), (ii) nine 
synthetic and twenty analytic hallmarks (Otin et al., 2013; Lemoine, 2021), (iii) and 
seven pillars (Kennedy et al., 2014). The seven major damage types suggested by the 
authors to be the main targets of anti-ageing research are extracellular aggregates, 
death-resistant cells, extracellular matrix stiffening, intracellular aggregates, 
mitochondrial mutations, cancerous cells, and cell loss, or tissue atrophy (Matise, 
2018). The nine hallmarks include instability of the genome, telomere exhaustion, 
epigenetic changes, proteostasis loss, alteration of nutrient sensing, mitochondrial 
dysfunction, cellular senescence, stem cell shortage, and aberrated intercellular 
communication (Lemoine, 2021; López-Ótin et al., 2013). The seven pillars concept are 
represented by macromolecular damage, changes in the epigenome, chronic 
inflammation, loss of adaptation to stress conditions, proteostasis loss, stem cell 
shortage, and metabolism alteration (Kennedy et al., 2014).  



 21 

 
Figure 1: The hallmarks of aging  
               (Source: Lemoine., 2021; López-Otín et al., 2013). 

 
Different forms of cellular damage are capable of causing variable effects on the 
organism's fitness. Natural selection can interact during evolution by removing those 
traits that present a more severe form of damage, in turn promoting the survival of 
those armed with more effective protective systems. On the contrary, if the damage 
exists in a lesser strength, this can rapidly accumulate during the life cycle, becoming 
impossible to compensate by the cellular protective systems. Moreover, an elevated 
number of protective mechanisms would not be sustainable in terms of fitness costs. 
For all these reasons, the cell is not able to repair the whole accumulation of damages 
it may encounters during its life, and therefore it must somehow select the most severe 
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ones to be treated with specific mechanisms. In this regard, it is believed that cells are 
able to prevail over the overload of damage through its dilution at the time of cellular 
division, optimizing the balance between damage generation and dilution 
(Gladyshev, 2012). 

 
According to this theory, damage dilution is the simplest life-sustaining biological 
strategy for the cell, which, in this way, no longer needs to maintain expensive 
protective systems. Many differentiated cells accumulate damage, albeit by dividing 
symmetrically. In fact, this can accumulate faster than it is diluted, causing clonal 
senescence and eventually death. In this context, mammalian cells possess control 
systems capable of activating apoptotic processes that limit the proliferation of one 
cell compared to another, thus limiting the potential development of cancer. These 
systems are capable of killing newly emerged cancer cells until they themselves fail, 
as a result of damages accumulation. Therefore, cancer can be seen as a condition that 
removes these check-point mechanisms, manifesting as mutations, which directly or 
indirectly disrupt apoptotic and related protective systems.  
 

1.3. Damage accumulation and Cancer 
Regarding the damage accumulation and its dilution, cancer is directly linked to 
aging: the damage accumulated during the aging process is removed by the protective 
systems, which in turn age and undergo mutations. Some cells can re-set their 
metabolism evading the cell cycle check-point systems, thus becoming cancerous. 
Cancer and aged cells represent the two different side of the same coin, characterized 
by shared or highly divergent pathways and molecular mechanisms (Table 2) (Aunan, 
et al., 2017). 

Figure 2: Damage dilution theory. Mild damage (red dots) is diluted during cell divisions progression  
               (Source: Gladyshev, 2012). 
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Mirroring those of aging, cancer hallmarks summarize the disease, and include 
proliferation, evasion of the suppression mechanisms, resistance to cell death, 
replicative immortality, angiogenesis, invasion, and metastasis (Hanahan and 
Weinberg, 2011). Additionally, genome instability and inflammation are placed at the 
base of all these processes (Hanahan and Weinberg, 2011). Specifically, genomic 
instability can lead to uncontrolled cell proliferation, giving rise to cancer phenomena 
due to deleterious mutations accumulation (Aunan et al., 2017). Indeed, during their 
life-span human cells undergo through billions of rounds of DNA replications, during 
which the risk of introducing mutational events is highly elevated. Being not 
particularly harmful, most of them can be repaired by the DNA repair complexes; 
however, during time, a certain level of DNA damage is still accumulated (Moskalev 
et al., 2013). Human cancers are usually characterized by genome instability and high 
mutational rates, while normal tissues control cell division through their life cycle. 
Cancer cells, by deregulating these pathways, sustain the proliferative signaling in 

 Aging Cancer 

Genomic Instability Increased Increased 

Telomere Attrition Shortened telomers Shortened telomers, but telomerase 
activation 

Epigenetic 
Alteration 

• Global hypomethylation 
• Complex non-coding 

downregulation (miRNAs) 

• Hyper- of tumor suppressors 
• Hypo- of oncogenes 
• Complex 

miRNA deregulation  

Deregulated 
Nutrient 
Sensing 

Inhibition of mTOR signaling that 
increases lifespan 

Inhibition of mTOR signaling is 
antineoplastic 

Cellular Senescence Increased 
• Prevalent in premalignant 

tumors 
• Evaded in fully malignant 

tumors 

Proteostasis 

Impairment of: 
• Chaperoning 
• Proteasome activity 
• Autophagy-lysosome 

activity  

Augmented in: 
• Chaperoning 
• Proteasome activity 
• Autophagy-lysosome 

activity 

Stem Cells Exhausted Potential nidus for tumorigenesis 

Table 2: shared/divergent hallmarks between Aging and Cancer               
              (Source: adapted from Table1 - Aunan et al., 2017) 
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alternative and independent ways. In this context, they can avoid those programs that 
arrest cell proliferation, such as the ones performed through suppressor genes. For 
example, TP53 gene in a stressed intracellular environment, is able to stop the 
progression of the cell cycle. Alternatively, if the damage is irreparable, it can trigger 
apoptosis through the activation of programmed cell death, thus acting as a natural 
barrier against the cancer development. 
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2. Intersection between Aging, DNA repair and Cancer 
 

“Age is the single largest risk factor for an enormous number of diseases. 

So, if you can essentially postpone aging, then you can have beneficial 

effects on a whole wide range of disease.” 

Cynthia Kenyon 

 
The existence of a direct connection between aging and the possible development of 
cancer has been already demonstrated (Frank, 2007). However, what is still unclear, is 
the complex mechanism by which the interaction of aging-related changes may be 
associated with cancer progression. Surely, cancer cells adopt a kind of invasive-
selfish behavior, through which they modify the normal functioning of tissues (and 
sometimes organs), causing, in the worst case, the death of the individual itself 
(Nunney et al., 2015). Nevertheless, it is also true, that other mechanisms normally 
develop over the course of an organism’s life that can inhibit the process of tumor 
development, whereas others may even hamper it (de Magalhães, 2013). As 
repeatedly emphasized throughout the introduction of this thesis, aging, represents 
the main risk factor for the development of many cancers. In fact, as time progressed, 
there is an implicit risk of accumulation of DNA mutations and damage. In the same 
way, the risk of developing errors in the newly synthesized DNA increases, as the 
number of cell divisions rises over the lifetime of the organism. Therefore, cells 
naturally become damaged and/or mutated during DNA replication, but many of 
these molecular errors can be repaired. For all these reasons, it is known that ageing 
is somehow closely related to the number of unresolved mutations due to the 
continuous proliferation of the cell cycle (Nunney et al., 2015). On the other hand, 
many dark sides regarding the intrinsic biological link between aging and 
tumorigenesis have not been revealed yet. To date, 70 years after its formulation, the 
multistage model of carcinogenesis proposed by Nordling in 1953, is still the most 
used to describe the increasing in cancer incidence rate in relation to the age of an 
individual (Jacobs et al., 2012; Nordling, 1953). According to this, a cell becomes 
malignant once it has accumulated a sufficient number of sequential mutations, which 
obviously increases with age (Anisimov, 2003). The species that we commonly 
identify as “cancer-resistant”, have somehow developed a complex multistep 
trajectory, whereby it is more complicated for a somatic mutation to propagate its 
deleterious effects (Nunney, 2016). For these reasons, understanding which are the 
mechanisms preventing cancer development in different species could lay the 
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foundation for a new therapeutic perspective in humans biomedical research (Caulin 
and Maley., 2011). 
 

2.1. Peto’s paradox and Cancer 
Although its evolutionary origin remains a mystery, many authors suggest that cancer 
should be as ancient as the appearance of multi-cellular organisms (Domazet-Lošo et 
al., 2014). Tumor incidence is not the same for all metazoans. For example, this value 
is low for elephants, blind and naked mole rats, while, on the contrary, it is extremely 
high for mice and dogs. In this context, the question that has been haunting 
researchers for decades is always the same: how to explain this difference? At the very 
beginning, the multistage process of tumorigenesis is triggered by a single oncogenic 
mutation that initiates the disease. From a theoretical point of view, since the 
probability of accumulating mutations increases during cell division progression, it is 
reasonable to argue that cancer should affect predominantly those organisms that are 
large, with a higher number of cells, and long-lived, with a greater number of cell 
divisions (Leroi, Koufopanou, and Burt, 2003). Indeed, somatic mutations that give 
rise to cancer events can appear whenever a cell enters its division cycle. In theory, we 
can assume that the risk of developing some form of tumor increases as a function of 
the number of cell divisions, where large, long-lived organisms have a greater chance 
of accumulating cancer-causing mutations (Caulin et al., 2015; Gaughran et al., 2016). 
However, throughout the evolution of multicellularity, longer-lived animals have 
been equipped with powerful tumor suppression mechanisms (Wolf, 2021). In fact, 
numerous studies have shown that some animals have solved the problem of cancer, 
by subjectively excelling at different molecular mechanisms of protection, being able 
to limit malignant tumor growth, whereas ensuring longer life spans and larger body 
size (Boddy et al., 2020; Seluanov et al., 2018; Tollis et al., 2017). This phenomenon is 
referred to Peto's Paradox, a biological enigma raised for the first time by the English 
statistician and epidemiologist Richard Peto in 1975 (Peto., 1975). According to this 
evolutionary conundrum, species that are very large and long-living have evolved 
additional suppression mechanisms that make them less prone to cancer development 
compared to their close relatives (Caulin and Maley, 2011). Recently, different 
mathematical models have been developed, showing that animals such as elephants 
and whales could not survive if they carried the equivalent risk of cancer by cell 
division as humans do (Caulin and Maley, 2011; Gaughran et al., 2016). 
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Obviously (and fortunately), elephants, whales, and other giant animals continue to 
populate our planet. Moreover, there is not a single evidence highlighting higher 
cancer rates for these species, confirming, instead, the hypothesis of the super-human 
cancer suppression development, which acted on big size and high longevity during 
the evolution of the anti-tumoral defenses. Furthermore, because size is one of the 
phenotypic traits that has evolved independently many times among the tree of life 
(Keane et al., 2015), it is reasonable to hypothesize that different species use multiple 
strategies to resolve this paradox, likely due to family subjective evolutionary 
pressures and trajectories (Callier, 2019). Parallelly, along the tree-of life, the so called 
'trade-off' evolutionary phenomena, can compensate the presence of tumor 
suppression mechanisms against the other survival processes, such as the 
reproductive success (Boddy et al., 2015). Indeed, the defense machineries, DNA 
repair or cell cycle control for example, can be very costly in terms of fitness, and 
therefore they must be balanced in order to ensure the evolution of the species (Tollis 
et al, 2017). Nowadays, different researchers are benefitting from the genome of those 
animals that represent size and longevity outlier, in order to study and unravel the 
knot hiding this biological puzzle. However, a single answer does not exist. At least, 
not for the moment I would add (Vischioni, this thesis, 2022). What is certain is that 
different longevity pathways are conserved in multiple eukaryotic species, and that, 

Figure 3: Cancer prediction model for large-bodied animals. 
                (Source: Gaughran et al., 2016 – adapted from Caulin and Maley., 2011). 
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in this context, comparative studies are the ideal target for the identification of the 
genetic mechanisms underlying longevity and cancer suppression. 
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3. Alternative animal models for cancer research 
Turning away from a single model organism to a set of different species, could be the 
key to understanding and developing a new knowledge about unknown molecular 
mechanisms. Furthermore, limiting the investigation to only a few model species, 
undermines the efforts to gain a broad and general understanding of the mechanisms 
behind the biological processes that determine aging. Homo sapiens, per se, is a long 
living species. Therefore, short living models are not sufficient to study the entire 
dynamics of its ageing processes. Indeed, why an organism that live for just three or 
four years, such as the mouse or the rat, should have developed additional resources 
to sustain up to the age of 80? None. Recently, researcher’s attention has shifted 
towards the study of those animals that are beyond the usual standard models in 
biomedicine, and that can equal, if not exceed, the human longevity rate. From an 
evolutionary perspective, during chronological aging, a high mortality risk associated 
with a lower reproductive success represents a general decrease in organisms’ fitness 
(Reichard, 2017). Mortality and fitness loss are generally found throughout the entire 
animal kingdom, but it seems that some species can age more slowly than others. In 
this context, the term “senescence” denotes a generic definition used to describe the 
physiological deterioration which led towards a mortality increase and/or a fertility 
decline with age. This phenomenon is often considered inevitable, and if this is true, 
all mortality rates among species should increase with age, correlating with the 
physiological deterioration itself. However, since the 1990s, researchers have 
identified some species whose mortality rates appear to be against this tendency 
(Finch, 1994), exhibiting a level of senescence which was later called "negligible”. 
Shortly, there are some species which that do not show increased mortality rates with 
age, such as lobsters (Homarus spp.), the quahog bivalve, the Sebastes spp. fish, and 
Testudinidae (turtles) for example (Finch 1994). Generally, studying organisms with 
longer lifespans could help to better understand the mechanisms underlying their 
successful aging and life expectancy optimization, while minimizing the physical 
deterioration, potentially paving the way for new therapeutic interventions in age-
related diseases, or providing insights into successful strategies for healthy aging 
(Reichard, 2016). The basic idea is that the acquisition of larger bodies and higher 
lifespans, have themselves favored the need to develop powerful mechanisms of 
tumor suppression. Parallelly, in this optics, Evolution would have been able to 
balance the costs and the benefits of such defensive machineries, maximizing the 
reproductive success of the species (DeGregori, 2011). From one side, this 
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evolutionary "trade-off" increases the cancer-vulnerability in long living species, 
whereas, from the other, it pushes to the development of compensatory strategies 
against the disease onset (Aktipis et al., 2013; Nunney et al., 2015). To date, animals 
such as the mouse (Mus musculus) and the rat (Rattus norvegicus), have been the most 
widely used conventional models in the field of aging research. However, presenting 
a lifespan of only few months, they are not always able to recapitulate the wide range 
of variability across the whole animal kingdom (Holtze et al., 2021). Indeed, until now, 
mice are primarily used to confirm targets identified in large screenings involving 
invertebrate models. For example, invertebrates such as the yeast Saccharomyces 

cerevisiae (Chapter IV), have been instrumental in the discovery of aging-related genes 
and pathways, that are conserved throughout the eukaryotic domain (Guarente and 
Kenyon, 2000). In recent decades, many laboratories have specialized in the study of 
unconventional model organisms, which by their phenotypic and genotypic 
characteristics differ from traditional ones, and which have specific peculiarities, often 
displaing unusual biological features, as illustrated in Figure 4 (Shepard and Kissil., 
2020).  

 
All these species carrying exceptional life expectancy could help discovering 
strategies, pathways, and/or gene variants that, although possibly absent in the 
human genome, could shed light on how to delay aging, while inhibiting related 
diseases (Brunet, 2020). Not only that. Precisely, because of their uniqueness, non-

Figure 4: Canonical and Alternative animal models of aging and comparative research                
                (Source: Holtze et al., 2021). 
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canonical organisms offer a whole new pull of species-specific cancer resistance 
molecular targets to be further explored ex-novo (Holtze at al., 2021). Indeed, according 
to Cohen and co-authors (2020a), each aging mechanism is often typical for a single 
organism, whereas the upstream regulatory pathways would be conserved across 
species (Cohen et al., 2020b). Indeed, recent analyses based on whole-genome 
sequencing, transcriptomics, omics, and metabolomics suggested the presence of anti-
aging mechanisms that might contribute to their extreme longevity, while failing the 
functional and physiological decline (Ma & Gladyshev 2017; Tian et al. 2017), allowing 
them to eventually become senescent, but to age much slower compared to humans, 
for example (de Magalhães., 2015). Finally, a comparative analysis of the so-called 
longevity outliers will allow the generation of new transversal information applicable 
to all the biological systems, having great impact on understanding the unique 
biological proprieties of multiple cancer resistance mechanisms (Brunet, 2020). 
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3.1. Loxodonta africana, elephant 
The African savannah elephant (Loxodonta africana) is one of the representatives of the 
cancer-resistant species category. In 2015, researchers began to unravel the secret 
underlying how this organism is able to overcome Peto’s paradox, maintaining such 
a large size, but simultaneously, living so long (Abegleen et al., 2015). Indeed, these 
giants organisms show an high resistance to cancer thanks to the amplification of the 
number of copies of TP53 gene (Sulak et al., 2016), which is also associated with the 
alteration of other tumor suppressors copy number (Vazquez and Lynch, 2021). TP53 
gene functions as “guardian” of the cellular cycle, detecting the molecular damages, 
and triggering cell death. Therefore, thanks to the extra TP53s, the elephant genome 
appears more stable, and able to get rid of the deleterious mutations that could 
possibly lead to irreparable DNA damage, thus promoting tumor development. While 
in the human genome TP53 is present in singular copy (as well as in many other 
mammals), the one of the elephant encodes 20 copies of the same one, including 
pseudogenes. Having a higher number of copies of TP53 ensures greater efficiency in 
activating apoptotic pathway during uncontrolled cellular proliferation. Moreover, in 
more recent years, Lynch and collaborators have also discovered that the genome of 
Loxodonta africana codes for 11 copies of a gene called LIF. One of them, LIF6, if over-
expressed and activated by the cellular damage, can act as another powerful apoptotic 
factor, even in the absence of TP53 itself (Vazquez et al., 2018). 
 

3.2. Heterocephalus glaber, naked mole rat 
Although several organisms are intriguing for many different reasons, the 
Heterocephalus glaber has recently attracted scientist’s research interests in the field of 
cancer comparative genomics. Despite its small size, the naked mole rat (NMR), with 
a lifespan of more than 30 years, is, to date, the longest-living member of the rodent 
family. Nonetheless, being about the same size as a mouse, it suffers from a very low 
level of cancer incidence (Buffenstein, 2005; Lewis et al., 2016; Miyawaki et al., 2016; 
Seluanov et al., 2018; Shepard and Kissil, 2020; Tian et al., 2013), especially compared 
to the 90% rate found in the common rat (Lipman et al., 2004). Indeed, numerous 
studies have shown that this organism is able to resist to a whole range of age-related 
diseases such as, for example, sarcopenia (O’ Connor et al., 2002; Stoll et al., 2016), and 
neurodegeneration (Edrey et al., 2013). Just a few months ago, Rochelle Buffenstein, 
one of the pioneers of cancer genomics and ageing research, relaunched the paradigm 
according to which NMR is, and will be, a fundamental key character in order to 
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understand how evolution has adapted the biology of the species to survive in 
extreme and adverse conditions (Buffenstein et al., 2021). The first report showing 
unusual values of cancer mortality for this animal dates to 2008 (Buffenstein, 2008). 
Since this time, many other studies have been performed, which seem to reflect and 
confirm a common low susceptibility to the cancer insurgence. In this context, in 2009, 
Seluanov and co-authors were able to demonstrate the existence of a particular 
cellular phenomenon called early contact inhibition (Seluanov et al., 2009). Few years 
later, this hypothesis was confirmed through the investigation of the extracellular 
matrix environment, that, in the naked mole rat, possess peculiar characteristics able 
to prevent the onset of cancer. Indeed, the cellular division of naked mole rat cells 
would stop as soon as the environment becomes too crowded, mediated by ultra-high 
molecular mass hyaluronan (Tian et al., 2015, 2013). In other words, regulatory 
feedbacks can order the cell to abort division cycles (Tian, 2016; Rankin and Frankel, 
2016) ensuring the reestablishment of the equilibrium condition. However, the contact 
inhibition phenomenon is not the only mechanism involved into its resistance 
towards tumorigenesis. To give a general overview, Figure 5 summarizes all the 
processes by which the naked mole rat can delay aging and prevent cancer (Shepard 
and Kissil., 2020). Among the most significant ones, we retrieve the overexpression of 
alpha-2 macroglobulin (Thieme et al., 2015), a more efficient repair system of the DNA 
damage (MacRae et al., 2015), and efficient pathways of apoptosis and autophagy 
against the damaged cells (Evdokimov et al., 2018). 
  

Figure 5: NMR’s cancer resistance mechanisms overview 
                (Source: Shepard and Kissil., 2021). 
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3.3. Spalax spp., blind mole rat 
The super-species Spalax ehrenbergi possess anti-aging properties that render it 
particularly attractive in cancer research (Lagunas-Rangel., 2018). Even with its high 
longevity (~20 years), in more than 40 years of investigations, there have been identify 
approximately zero cases of neoplasia, or any other phenotypic changes associated 
with aging for this animal (Fang et al., 2014; Manov et al., 2013;). Despite living in a 
stressful environment, the blind mole rat has developed a surprising resistance to 
cancer, allowing it to overcome the damages caused by the oxidative stress and the 
genomic instability due to the constant hypoxia and the rapid re-oxygenation coming 
from its natural habitat (Manov et al., 2013). Moreover, analyzing the transcriptomes 
of Spalax, compared to the one of the others shorter-living rodents, some authors 
found a specific blind mole rat signature of over-expressed genes involved in DNA 
repair, metabolism, and recombination pathways, and cell cycle mechanisms (Malik 
et al., 2016). In the previous section, I described how Heterocephalus glaber resolved 
tumor initiation through the “early contact inhibition” strategy (Seluanov et al., 2009). 
In contrast, Spalax, adopts another type of process that was described in 2012 as 
"concerted cell death" (Gorbunova et al., 2012). This represents a specific mechanism 
mediated by a combination of necrotic and apoptotic processes, involving also p53 
protein among others. Specifically, genomic analyses revealed that duplications of 
genes involved in the interferon signaling pathway such as IFNβ1, would be involved 
in the regulation of cell death and inflammation, modulating necrosis and 
inflammatory responses (Fang et al., 2014). Thus, Spalax is protected from the 
persistence of damaged cells, which could eventually give rise to carcinogenic events. 
Furthermore, the blind mole rat possesses specific amino-acid changes in the DNA 
binding domain of p53 protein. Normally, p53 monitor cellular adaptations against a 
variety of stress conditions, including DNA damage and hypoxia, resulting in cell 
cycle arrest and apoptosis. However, this substitution creates a bias against apoptosis, 
for which the genes associated to the promotion of the cell cycle arrest are favored 
compared to the ones related to the apoptotic targets (Ashur-Fabian et al., 2004; Avivi 
et al., 2007). 
 

3.4. Balena mysticetus, bowhead whale (and other cetacea) 
Despite the extreme conditions of food deprivation and cold temperatures, Arctic and 
Antarctic are the natural habitat of some of the longest-living species on Earth. In such 
a challenging environment characterized by a predominance of frost and ice, high 
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salinities, and limited resources, some animals have evolved physiologically and 
behaviorally to support the species survival and reproduction (Blix, 2016). Generally, 
these are primarily studied in order to understand their adaptations to temperature, 
diet, and metabolism, which, in turn, are closely related factors to the extension of life 
expectancy (Keane et al., 2015). For example, whales are among the longest-living 
mammals on Earth, which exhibit some age-associated physiological aspects together 
with an extremely low cancer incidence rate (Lagunas-Rangel, 2021). Species such as 
the bowhead whale (BWH) (Balaena mysticetus), with a record of 211 years (George et 
al., 1999; George and Bockstoce, 2008), represents the longest-lived mammal on our 
planet. Actually, many members of the Mysticeti cetacean order have a lifespan 
exceeding 100 years, fully satisfying and respecting Peto's paradox criteria. Their high 
life expectancy, coupled with their very low tumorigenic events, make them an ideal 
study model for human age-related diseases, such as cancer. Even if the genome and 
the transcriptome of some whale species have already been sequenced and are 
currently publicly available, the molecular mechanisms underlying their longevity and 
resistance to age-related diseases have not yet been fully elucidated. According to 
Omotoso and co-author (2021), such a low risk of neoplasia development would be the 
result of the combination between the evolution of large body size and very efficient 
genes suppression networks, which, interacting together in a balanced harmony, 
provide higher protection against cancer (Caulin et al., 2015; Caulin and Maley, 2011; 
Nunney et al., 2015; Wensink, 2016). Remarkably, cetacean genomes present multiple 
duplication events, occurring in those genes related to cell cycle control and cancer 
protection. Surprisingly, comparative analyses found that the bowhead whale genome 
does not exhibit TP53 gene duplication, as the elephant does. However, in 2021, Tejada-
Martinez demonstrated that the "large body" phenotype significantly correlates with 
the number of different tumor suppression pathways, involving genes such as 
EEF1A1, H2AFX, HSPD1, MAPK9, GSTP1, PTPN11, which are known to be key 
players in aging as well as in senescence processes (Tejada-Martinez et al., 2021). This 
founding would confirm the hypothesis that the duplication in suppressor genes 
among the cetacean clade underwent through positive selection during the course of 
evolution. Moreover, sequencing of the BHW genome and comparative analysis 
revealed several SNPs and amino acids substitutions in those genes associated to 
ecological adaptation and to the disease resistance, such as PCNA, LAMTOR1, 
PSMD4, UCHL3, ARPP19, STOML2, HSBP1, DLD, SMS, and ST13 (Keane et al., 2015). 
Additionally, the longevity associated EIF2 and PABP genes have been found 
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significantly expensed in her genome (Doherty and de Magalhães, 2016). All together, 
these insights provide evidence that the evolution of cancer resistance and longevity 
in these species have been modeled under the molecular adaptation of DNA repair 
genes, and other genes related to DNA replication, cell cycle, cellular damage and 
survival, as shown in Figure 6. 

 
Finally, the LINEs transposable elements family appears to be highly active within the 
bowhead whale genome (Keane et al., 2015; Tollis et al., 2019). The percentage of active 
TEs, which in BWH is around 30%, normally increases as a function of the organism 
age, becoming potentially highly mutagenic in older individuals (Anwar et al., 2017; 
Bravo et al., 2020). However, those from cetaceans appear to possess an extremely slow 
mutation rate, that would prevent the cancer cells progression (Tollis et al., 2019). 
  

Figure 6: BHW’s cancer resistance and longevity mechanisms overview 
                 (Source: Lagunas-Rangel., 2021). 
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4. Copy Number Variations (CNVs) 
Peto's paradox evidence implies that the evolution of species with high cancer 
resistance rates should overlap and coexist directly with the maintenance of large 
body sizes and long-lived organisms. However, scientists still question the genetic 
mechanisms underlying the interspecies diversity of lifespan and cancer rates. In this 
perspective, comparative genomics and new sequencing studies may help in 
understanding the mechanisms responsible for the extreme longevity of some 
animals. Currently, a unanimous solution that could totally explain the Peto’s enigma 
does not exist yet. Among the multiple hypotheses, the increased copy number of 
tumor suppressor (TS) genes as protective defense against cancer is one of the most 
widely acclaimed. An alteration of the CNV landscape of TS could, in fact, limit the 
uncontrolled cell proliferation in the presence of molecular damage (Domazet-Lošo 
and Tautz, 2010). In the last 10-15 years, there have been many efforts in sequencing 
the genome of an increasing number of long-lived species, in order to understand 
whether there is a common mechanism of positive selection regarding the 
conservation of suppressor genes among different species, and clarify which targets 
are involved in maintaining the paradox (Árnason et al., 2018; Fang et al., 2014; 
Gorbunova et al., 2014; Howe et al., 2021; Keane et al., 2015; Kim et al., 2011; Lewis et 
al., 2016; Seim et al., 2013; Zepeda Mendoza et al., 2018). Indeed, since mutations in 
suppressor and oncogenic genes (OG) are directly related to cancer (Stratton et al., 
2009), many researchers have begun to investigate individual cases of gene 
duplication involved in disease development (Abegglen et al., 2015; Sulak et al., 2016; 
Vazquez et al., 2018), believing that this phenomenon is a key player in addressing 
cancer resistance, especially for those species with a high theoretical risk of neoplasia. 
The first discovery in this field, which can be seen as one of the founders of this 
research line, was undoubtedly the amplification of TP53 in the elephant genome 
proposed in 2015 and 2016 (Abegglen et al., 2015, Sulak et al., 2016), and subsequently 
confirmed in 2018 (Vazquez et al., 2018). It is already well known that many ageing-
related pathways have evolved thanks to the duplication of certain genes (Ritter et al., 
2013), and that even complex human traits, such as disease susceptibility or drug 
response (Gamazon and Stranger., 2015), depend on CNVs of specific markers. Many 
authors, nowadays, argue that studying CNVs in a comparative perspective is the key 
to understand the maintenance of particular traits, where gene duplication itself is one 
of the main actors of the evolution of the “long living” and the “cancer resistant” 
phenotypes (Caulin et al., 2015; Doherty and de Magalhães, 2016).  
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According to Caulin and Maley (2011), multiple copies of tumor suppressor genes and 
a reduced presence of proto-oncogenes are two among the possible reasons why 
organisms with high longevity rates can outcompete cancer onset, despite their size 
and lifespan (Caulin and Maley, 2011).  
Specifically:  

1) to become cancerous, a cell needs to develop an oncogenic mutation. Reducing 
the number of proto-oncogenes, therefore, would also decrease the probability 
of triggering a tumorigenic event (Davenport et al., 2002). At the same time, 
however, each oncogene has his own function and the lack of this genomic 
elements would be deleterious in term of fitness and survival; 

2) a higher number of suppressor genes could prevent the onset of cancer, since 
more mutagenic events would be needed to produce a malignant phenotype 
(Nunney, 1999). 

 
By definition, copy number variation (CNV) represents a biological event in which 
sequences in a genome are duplicated, creating an important source of genetic 
variation. They are often involved in diseases and important molecular pathways such 
as cancer, metabolic and neurodegenerative disorders. Therefore, elucidating the role 
of genes driving copy number alteration, and investigating how this may protect or 
promote cancer is an important new promising field of research (Zack et al., 2013). In 
this context, the exploration of cancer development, its maintenance processes, and 
the mechanisms that prevent its occurrence in different species offers enlightened 
potential knowledge to be translated into the field of biomedical research in order to 
uncover the mechanisms of cancer susceptibility for humans, and possibly propose 
new strategies for studying and developing treatments for the disease (Nunney et al., 
2015).  
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In the following paragraphs, I will provide a brief summary of each chapter of my 
thesis. At the beginning of every chapter, I have included an introductory description 
of the ideas, concepts, and main findings contained within. For the study that has been 
published (Chapter II), I have included the article in the format of the journal.  
 
There are two limitations affecting this kind of scientific investigations, which led me 
to the two main findings of this thesis. First, to date, there are few available sources of 
data collecting the true prevalence of cancer incidence in different mammals (Vittecoq 
et al., 2013). For this reason, I developed VarNuCopy, a user-frendly open source 
database that collects CNVs data from the genome of 233 organisms, allowing 
researchers, not only to obtain the CNVs landscape for each animal, but to correlate it 
with some phenotypic traits such as cancer rate and lifespan, by means of statistical 
models (Chapter II).  
 
Secondly, many of these studies have focused on genes that are chosen a priori based 
on a sub-selection of those already known to be involved in tumor development, 
maintenance, and progression. In particular, I analyzed the entire genes copy number 
landscape of 9 representative species, discovering that some of the most important 
human onco-miRNAs and miRNAs suppressor are able to discriminate cancer prone 
and cancer resistant organism categories (Chapter III). This highlights the potential 
of microRNAs as tumor/anti-tumors regulators, not only strengthening their value 
as future anticancer molecular targets, but also paving the way of a new trajectory in 
trying to solve the puzzling Peto's Paradox dilemma. 

 
In the framework of comparative genomics and the study of alternative organisms in 
cancer and ageing research, Chapter IV underlies the potentiality of using the yeast 
S. cerevisiae as a model system in these fields. In particular, I highlight the general 
biology and the main features of the species, coupling it with the description of its two 
ageing paradigms, which were also the topics and the aim of the project I carried out 
during the Ph.D period spent abroad. 
 
Finally, in my concluding remarks (Chapter V and Chapter VI), I briefly return to the 
main concepts listed and discussed throughout the entire manuscript, highlighting 
the current limitations of cancer comparative genomics research, with an eye on the 
possible future directions and developments.  
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It has been suggested that gene duplication is one of the main factors driving genetic 
diversity. Indeed, it is not only responsible for the adaptation towards different 
environmental fluctuations, but it also somehow manages to shape the genome of 
certain species, contributing to the emergence of alternative traits and pathways of 
developmental programs (Magadum et al. 2013). In this context, for example, an 
altered number of TS genes can play a key role in forging the route leading to cancer 
resistance in large size and long-lived organisms (Vazquez and Lynch, 2021). In 
particular, CNVs are gains or losses in copies of genes contained in cell DNA, which 
can be associated with phenotypic variations, including disease (Feuk et al., 2006). 
Moreover, the variation in CNVs has recently been correlated with longevity and 
cancer resistance. According to the hypothesis that positively selected CNVs tend to 
recur during cancer progression (Beroukhim et al., 2010; Bignell et al., 2010), but also 
during the evolution, during the course of my Ph.D, I developed VarNuCopy, the first 
database of genome Copy Number Variation across the animal kingdom. In the actual 
version, it includes the variation landscape of genes copies among the genome of 233 
organisms, combining, for some of them, CNV, longevity, mass, metabolism, gene 
names and other important biological and genomic parameters. The database is built 
under two main parallel sections: the first one provides a general analysis, describing 
the genes copy number panel in a particular species, or, inversely, searching for a 
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specific gene presence in multiple organisms. The second analysis is more cancer-
oriented: together with my collaborators, I created some models able to correlate the 
copy-number variation of genes, and in particular of tumour suppressors and 
oncogenes of 24 organisms, with the phenotypical characteristics described above. In 
few words, the platform allows the exploration of complex data-sets to assess copy 
number variation of any given gene throughout the referenced species. Moreover, by 
performing a basic query in the Genes Exploration section, researchers investigating 
particular gene copies gain/loss can easily retrieve and analyze the difference in copy 
number in an inter-species comparison approach. Finally, VarNuCopy Descriptive 
Analysis Models (DAMs), which are exclusively built using both the species cancer 
incidence and the genomic copy number variation, can help scientists to statistically 
discriminate between cancer–prone and cancer–resistant organisms. The final aim of 
this unique tool is, indeed, to easily compare patterns of copy number changes, in 
order to identify new oncogenes or tumour suppressors targets, related to species 
longevity, weight, and metabolism. According to our bioinformatics analysis, 
VarNuCopy is able to confirm that a gene can be (possibly) involved in biological 
processes of cancer onset. As far as I know, this is the only tool of its kind, that is able 
to compare the CNVs landscape of multiple species, both for model and non-model 
organisms in biomedicine, pinpointing towards the discovery of specific genes and 
pathways that might play a role in cancer resistance. 
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Abstract  
The study of Copy Number Variations (CNVs) is recently emerging as a hot topic for 
biomedical cancer research. While different data sources, websites, and tools 
concerning genomic CNVs have been made publicly available, CNV data is still a 
largely unexplored source of biological information, due to the limitations of currently 
available analysis tools. To this respect, we propose a novel platform, named 
VarNuCopy, that overcomes such limitations by pursuing the core principles of 
Exploratory Data Analysis (EDA) in the context of Copy Number Variation (CNV) 
data. The platform has been made publicly available as a web application, and is, to 
our best knowledge, the first tool enabling visual, interactive exploration and analysis 
of the CNV landscape of multiple species. Through novel client and server-side 
optimizations inspired by scalable data science, VarNuCopy implements a 
comprehensive and efficient data exploration solution that empowers researchers to 
easily recognize complex trends and patterns within a huge amount of data 
concerning CNVs, and to identify new target genes that might function as tumor 
suppressor and oncogenes. 
 
Keywords: Copy Number Variations (CNVs); Interactive visualization; Exploratory 
Data Analysis (EDA); Scalable data science; Data analysis models. 
 
  



 52 

1. Introduction 
The study of the species showing peculiar properties in terms of cancer resistance and 
high rates of longevity is recently emerging as a hot topic for biomedical research, 
producing fundamental insights into the mechanisms which could protect an 
organism against the development of tumorigenesis (Serrano., 2015). A promising 
area of research is the study of Copy Number Variations (CNVs), which are defined as 
the number of gene copies within a genome, that might be also related to genome 
instability (Feuk et al., 2006) and phenotype alteration. For this reason, in the last 
years, different data sources, websites, and tools covering genomic CNVs have been 
made publicly available (Bragin et al., 2014; Chen et al., 2009; Howe et al., 2021; Qiu et 
al., 2012; Zarrei et al., 2019). However, despite their potentialities in providing useful 
insights for the identification of oncogenes and tumor suppressors, these data still 
represent a largely unexplored source of biological information, due to the poor 
analysis functionalities offered by the currently available tools. Generally speaking, 
databases of biological knowledge have become essential resources that are used daily 
by biologists around the world, and different biogenetics databases are nowadays 
available to support comparative genomics, i.e., the branch of science in which 
computational tools are used to compare the genome sequences of multiple species, 
distinguishing different pattern of similarity and/or variation. In this context, we 
developed VarNuCopy, a new tool able to compare and correlate the CNV landscape 
of different organisms, allowing the identification of genomic regions of high 
instability. In VarNuCopy, we address the problem of providing access to large and 
rich biogenetics databases for biomedical research by starting from the 
methodological aspect, where the issue is that of database usability, and propose to 
adopt the Exploratory Data Analysis (EDA) principles (Behrens., 1997) to provide visual 
and interactive ways to explore, summarize, and analyze data in a simple and user-
friendly manner. The contributions of the VarNuCopy platform, whose current 
version has been made publicly available as a web application at 
http://isgroup.mat.unimore.it:8083 (as done in the past for other genomic exploration 
tools) (Lomonaco et al., 2014), are the following:  

a. the platform is based on a unique and rich database that combines CNV 
data among different species with other vital parameters; 

b. the information is retrieved from public on-line genomic libraries; 
c. exploratory data analysis is made possible through a variety of tools, 

allowing researchers to: (i) freely combine and use different Data 
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Analysis Models (DAMs), newly introduced analytical tools useful to 
generate visual and interactive reports and plots, (ii) access additional 
related data available in reference online sources, (iii) submit 
sophisticated research questions by means of custom queries over the 
database schema; 

d. the client technologies are coupled with server-side optimizations 
inspired by scalable data science that together enable the necessary real-
time interaction experience on large amounts of data. 

 
In this way, VarNuCopy implements a comprehensive and efficient solution of data 
exploration that empowers researchers to easily recognize complex trends and 
patterns within a huge amount of data concerning CNVs. By building their own data 
exploration paths according to their deductions, researchers can hypothesize new 
possible target genes based on previous predictions, highlighting which are the ones 
possibly linked to cancer resistant species and/or long-living organisms. Following 
the idea that copy number variation of important genes can theoretically protect a 
species from cancer insurgence, the platform allows the exploration of complex data-
sets to assess copy number variation of any given gene throughout the referenced 
species. Moreover, researchers investigating particular gene copies gain/loss can 
easily retrieve and analyze the difference in copy number in an inter-species 
comparison approach to underlie the higher/lower need for that gene. Finally, 
VarNuCopy DAMs models, which are exclusively built using both the species cancer 
incidence and the genomic copy number variation, can help scientists to statistically 
discriminate between cancer–prone and cancer–resistant organisms and eventually to 
discover new possible genetic mechanisms involved in oncogenesis. 
This paper is based on the preliminary results presented in (Bove et al., 2020) and 
significantly extends the previous work by providing new detailed descriptions of the 
platform functionalities (including up-dated database and analysis tools), 
comprehensive background and related work discussions and novel insights on 
technological, ar- chitectural and performance evaluation aspects, as well as on the 
potential of the platform from a bioinformatic research point of view. 
The paper is structured in the following way: Section 2 discusses the 
background/methodological claim of EDA as a mean for biogenetics database 
usability. Section 3 describes the database on which the platform is built on, whereas 
the platform itself is described in Sections 4 (high-level overview), 5 (EDA 
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functionalities) and 6 (implementation strategies). A performance evaluation is 
presented in Section 7, while Section 8 analyzes and compares related works to our 
proposal. Finally, Section 9 concludes the paper and discusses future works. 
 

2. EDA as a mean for biogenetics database usability 
In this background section, we recall the principles, applications and issues of EDA 
and graphical analysis, and discuss the methodological claim of this work, i.e., how 
EDA can effectively support biogenetics research. 
EDA and Graphical analysis. Researchers often struggle to develop hypotheses 
despite data availability abundance. In recent years, EDA and data visualization 
techniques (Tufte., 2001) have been suggested as effective steps for pattern and 
hypothesis generation in a data science process (Di Blas et al., 2017; Ma et al., 2017; 
Schutt & O’Neil., 2013). EDA is a well-established statistical tradition that provides 
conceptual and computational tools to discover patterns in a data science context 
(Behrens., 1997). EDA is typically characterized by an emphasis on: (i) a substantive 
understanding of data; (ii) graphic representations of data; (iii) tentative model 
building in an iterative/inter- active process; (iv) flexibility regarding which is the best 
method to apply. The final aim is to discover patterns within data. In 1977, Tukey 
proposed the data analyst as the one able to listen to the data in different ways, until 
a plausible “story” becomes clear. The works (Hoaglin et al., 1991; Tukey., 1977; 
Velleman et al., 1992) are among the most important ones in the classical EDA 
tradition. EDA data science method is equivalent to the data-driven abductive 
approach (Ma et al., 2017), in which it is possible to obtain plausible information 
starting from the phenomenon observation; conversely, deduction is the process to 
refine the hypothesis with new supportive evidence, while induction approach 
extrapolates the hypothesis based on a general law or theory. Graphical analysis plays 
a central role in the EDA context: by increasing the number of algebraic summaries, 
graphics can simultaneously show numerous data values, thus avoiding missing 
important patterns. Indeed, in recent years, researchers have proposed that data 
visualization should be applied in each data science process (Fox & Hendler., 2011). 
The incorporation of modern visualization tools into the analytics process enables 
scientists to easily understand large scientific datasets, and to produce, in an easy-to-
use way, quick methods to explore new hypotheses. 
Data management issues in EDA: scalable data science. In order to achieve these 
goals, the scientific community has to overcome a wide range of analysis problems 
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(Fox & Hendler., 2011). First of all, it is not always obvious which is the best and the 
most effective method to visualize specific data at each analysis stage. For this reason, 
from one side, many visualization techniques have been developed, including 
histograms, scatter and box plots, mind maps (Buzan., 2015), and conceptual maps 
(Novak & Cañas., 2006), but, on the other side, the development of new approaches is 
still required. Moreover, in order to quickly and easily provide scientists the requested 
data, it is important to merge particular kinds of statistics with proper ways of 
visualization (Card et al., 1999). Generally speaking, one of the biggest challenges 
related to EDA is data management (Di Blas et al., 2017; Buoncristiano et al., 2015). On 
one hand, the amount of data that has to be analyzed often requires the linking of an 
extremely large number of complex and difficult-to-model data sources. On the other, 
EDA tools require instant responses to each user interaction, where even a single click 
on the user interface can trigger very complex processing and manipulations in the 
back-end. In order to utilize high-performance computing resources, most of the 
existing workflow systems submit jobs to external resource management systems 
(such as HTCondor) (Thain et al., 2015). Recently, new big data management 
techniques have been proposed to integrate the workflow and resource management 
facilities (Tang et al., 2013). These include the use of materialization and materialized 
views, to improve the performance of query workloads in the underlying database 
engines (Du et al., 2017; Elghandour & Aboulnaga., 2012). These techniques can allow 
the creation of standalone analysis platforms able to provide sufficient capacity and 
performance needed in the EDA workflows. Following the scalable data science trend, 
many analytic platforms are becoming available, empowering the domain sciences, 
healthcare, humanities, governance, journalism, among others, ready to be studied at 
scales and granularities which were impossible before: from cloud data mining 
solutions (Talia., 2019) to data streams visualization (Breve et al., 2020), from large 
social network analysis (Cao et al., 2015; Birkholz et al., 2012) to the medical field, 
where platforms such as (McPadden et al., 2019) are proposed as new ways to real-
time access health care research data. 
Biogenetics Database Usability through EDA. In particular, from a biogenetics 
database point of view, in the last few decades the availability of (biological) data has 
been constantly increasing day by day, making data science, analysis and 
visualization a fundamental instrument to deal with such a rise in information sources 
(Schmidt., 2020). Databases play an important role in exploring, understanding, and 
finding new insights among different datasets, allowing humans to benefit from a 



 56 

better data representation (Tufte., 2001). In this context, performance and functionality 
alone are not enough to support data analysis itself, but they also need to be associated 
with the usability of the platform. Therefore, in recent years, since usability plays a 
pivotal role in human-computer interaction, issues related to that topic have gained 
more and more importance within the database community (Li & Jagadish., 2012). 
Regarding this, the methodological claim of this work is that EDA can become a very 
effective way to support biogenetics research and, more specifically, biogenetics 
database usability. The platform we propose, VarNuCopy, follows both the principal 
criteria of the so-called “database usability”: innovative query interface design and 
database personalization. Moreover, it can be also described by all the multiple 
components of the usability description proposed in (Nielsen., 1994) and discussed 
later by Catarci (Catarci., 2000): (i) learnability, rapidly and easy to learn, (ii) efficiency, 
efficient to use, (iii) memorability, easy to remember, (iv) low error rate, (v) 
satisfaction, system pleasant to use, and (vi) human-centered system design. 
 

3. The Dataset 
VarNuCopy allows researchers to access a unique dataset that combines different 
kinds of information regarding genes, organisms, and families with the number of 
copies of each gene in a species genome (CNVs). Data originates from different 
sources: the CNV landscape for each species was obtained from Ensembl comparative 
genomics resources (Yates et al., 2019); the list of oncogenes and tumor suppressors 
was collected from NCBI Genome (http://www.ncbi.nlm.nih.gov/genome), Tumor 
Suppressor Gene (TS-Gene) (Zhao et al., 2016), and Oncogene Database (Liu et al., 
2017), whereas gene families data were downloaded from Gene Ontology 
(http://geneontology.org). The dataset is stored in a relational database that has the 
following schema (see also Figure 1 for the ER diagram): 
Gene (ID_gene, gene_name, is_oncogene, is_tumor_suppressor) 
Species (ID_species, species_name, is_long_lived, is_cancer_prone, 

metabolism, avg_weight, necropsies,class) 

Family (ID_family, family_name)  

Classification (ID_gene, ID_family) 

FK: ID_gene REFERENCES Gene 

FK: ID_family REFERENCES Family  

CopyNumber (ID_gene, ID_species, qty) 

FK: ID_gene REFERENCES Gene 

FK: ID_species REFERENCES Species 
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It contains the following number of tuples per table: 21,067 tuples for the Gene table; 
9,996 tuples for the Family table; 233 tuples for the Species table; 3,473,365 tuples 
for the CopyNumber table; 835,089 tuples for the Classification table. The Gene 
table contains two boolean attributes, is_oncogene and is_tumor_suppressor, that 
indicate whether the instance is known to be an oncogene or a tumor suppressor, 
respectively. This information is available only for a small portion of the genes (12% 
of the total). The Species table, instead, reports a list of phenotypic parameters that 
are someway related to the process of cancer insurgence (Myers et al., 
http://animaldiversity.org): metabolism contains the species metabolic rate 
measured in Watt, avg_weight is the average weight of the organism measured in 
Kg, longevity represents the maximum longevity of the species, necropsies 
represents the number of necropsies performed on a single organism to obtain the 
percentage of cancer incidence, class refers to the phylogenetic classification of the 
species. Finally, is_cancer_prone (boolean) distinguishes species between cancer-
prone and cancer resistant, whereas is_long_lived (boolean) assesses whether the 
instance is a long-living species or a short-living one. Globally, this information is 
currently available for 11% of the species. 

 
4. Platform overview 

VarNuCopy is a web-based platform built with the aim to compare and correlate the 
CNVs of different organisms, in order to understand if they have any role in tumors 
onset and, ultimately, to identify new potential genes that might be function as tumor 
suppressor and oncogenes. To this end, VarNuCopy implements a comprehensive 
approach of data exploration over the rich dataset presented in Section 3. The main 
challenges we addressed cover four different aspects (Di Blas et al., 2017): (1) the user 
point of view, (2) the user experience during exploration, (3) the possible outcomes, 
and (4) the relevance of the data output. The platform is geared towards researchers 
having different background and exploratory goals, spanning from the ones with no 

Figure 1: VarNuCopy Database schema: ER Diagram 
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knowledge on CNVs domain, and therefore with very generic exploratory goals, to 
those who want to explore the dataset through sophisticated research questions. 
Therefore, an exploratory session can start with an in-depth or with a generic 
information request and can proceed in an on-going conversation between the user 
and the system, sustained by search forms and interactive plots showing query 
analysis results. These graphical representations can be Descriptive Analysis Models 
(DAMs), that show CNVs trends of groups of species known to have properties in 
terms of longevity and cancer rate, or contained in target reports, in which a summary 
of CNV statistics about target genes or species is shown. The system supports users in 
progressively gathering the information of interest by highlighting the CNVs 
statistical properties that can be exploited to identify interesting subsets of the query 
analysis results that are worth of further explorations. As shown in Figure 2, our web 
application is organized in four areas and seven different data exploration 
components: 

 
• The “Home” area welcomes researchers and proposes a basic overview of the 

platform; moreover, it allows simple search functionalities on genes, species 
and families. 

• The “Species Exploration” and “Genes Exploration” areas provide advanced 
search queries on species and genes, respectively. 

• The “Analysis” area proposes several DAMs and an advanced query form 
useful for ad-hoc searching and filtering. 

• Target reports implement the different models, measures, and statistical tests, 
allowing the user to interact with them. 

 

Figure 2: Platform schema: interactions between the different areas of the platform (shown in orange), and their 
components (in blue and italics). 
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Following the “exploratory” philosophy, where the EDA process is flexible and the 
result is uncertain (Behrens., 1997), the users can incrementally build their own data 
exploration path according to their deductions. In the following, we describe a 
possible EDA session showcasing how VarNuCopy can support a biologist in the 
challenging task of hypothesis generation and testing. The example focuses on the 
Heterocephalus glaber species, whose common name is naked mole rat, and the test is 
aimed at searching its CNV trends to verify if this organism has particular molecular 
targets that can underlie its high longevity rate and its low incidence tumor 
percentage, compared to the other species. Such a session, whose main exploratory 
interactions are shown in Figure 3, starts with a simple query on the target species as 
follows: 

A) knowing that the naked mole rat is a well-defined cancer resistant species (Tian 
et al., 2013), the user starts from the “Home” area and enters the species name 
to obtain its entire genomic copy number landscape. This is depicted in the 
corresponding target report as a pie plot where the CNV ratio between tumor 
suppressors and oncogenes are made evident through two different colors, 
blue for the former and green for the latter, and where each gene bar width is 
proportional to its CNV. The same report also includes the description of the 
vital parameters of the species (lifespan, weight, metabolism, and cancer 

Figure 3: Descriptive Analysis Models (DAMs) UI - Interaction example starting the analysis from the 
Heterocephalus glaber species. 



 60 

incidence). Moreover, it shows relevant statistical measures concerning its 
genome, such as the total number of genes, and the fraction of tumor 
suppressor/oncogenes in respect to the entire genome composition (as shown 
by the bar plot in Figure 3). 

B) The user is interested in a specific gene, B23, which presents a copy number 
expansion in the naked mole rat genome. By clicking on its gene bar in the pie 
plot, the researcher gets the gene CNVs across different species and can easily 
compare their distribution within cancer -prone and -resistant organisms 
through a box plot. The result is shown in a new target report, from which the 
user can start to perform DAM analysis. 

C) For example, in the figure, it is depicted the “Common Genes in Species Group” 
model on B23 gene, which provides the bar plot of its copy number distribution 
in decreasing order of species. 

D) These statistical measures allow the biologist to make a new hypothesis: as B23 
is a new molecular target that can potentially discriminate between the 2 
groups (p-value < 0.05), it is an interesting gene to be further investigated and 
experimentally validated. 

E) The user can now try to verify if the same gene expansion happens in some 
other species. Starting from the previous DAM and clicking on one of the 
species represented in the bar plot, it is possible to iterate the EDA process on 
this species for new investigations. 

 
In order to efficiently support the above EDA functionalities, VarNuCopy implements 
data caching and parallel threading solutions enabling rapid and effective response 
from the platform, also against expensive requests. The design of such mechanisms, 
inspired by the scalable data science trend, will be described in Section 6. 

 

5. Exploratory Data Analysis functionalities 
EDA functionalities constitute the core of the platform analytical power. Data analytic 
requests can be: 

• triggered in different ways: (a) by means of the query forms; or (b) by 
interacting in a recursive way with one of the plots from previous analyses (i.e., 
from a DAM or target report) 
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• targeted on different objects: (a) specific database entities (i.e., genes, species, 
families, and groups) as prescribed by each DAM; or (b) custom subsets of the 
dataset for even greater flexibility. 

 

5.1. Descriptive Analysis Models (DAMs) 
Descriptive Analysis Models (DAMs) are novel analytical tools developed to support 
effective exploratory data analysis over CNVs properties related to both genes and 
species. VarNuCopy includes different DAMs for different analytical needs, which are 
dynamically generated by selecting one of the available models applied to a specific 
target group. Four default target groups are provided: cancer resistant and cancer-
prone species, long-living and non- long-living species. Finally, through response 
formatting, the output of the analysis is generated, and the results are sorted on the 
basis of different ranking strategies. Figure 4 shows these schema elements.  
 

 
The user interfaces of the four different DAMs coupled with the response output are 
instead shown in Figure 5: 

• Common Genes Model: bar plot of the CNVs of genes of the species of the 
selected group (e.g., cancer -prone or long-living species) where results are 
ranked in decreasing CNV order. This is essential to highlight the most 
promising genes; for instance, the example introduced in Section 4 allowed the 
selection of B23 gene; 

Figure 4: Descriptive Analysis Models (DAMs) schema: a model is applied to a group, 
while the resulting report is created as response. 
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• Genes CNVs for Species Group Model: box plot of CNVs statistical measures 
such as mean, standard deviation, max and min. It is useful to know which are 
the genes with highest CNV in one species of the selected group and how their 
statistical measures fluctuate. Results are sorted by decreasing maximum 
number of gene copies; 

• Genes Intersection Model: this model requires two different target groups and 
shows in a Sankey plot the maximum number of copies of the genes in the 
species belonging to one of the two. The thickness of the lines connecting each 
gene with each group allows researchers to easily identify those genes that, 
showing remarkable differences between the two different groups, prove to be 
interesting for further investigation;  

• Genes Trend: differently from the other models, this model does not require 
the selection of a group but works on both cancer-prone and cancer resistant 
species data. It provides a multi-series plot showing the diffusion of the 
different genes across the available species, using an ad-hoc ranking criterion 
(see Section 5.4 for details). 

 

 

5.2. Target reports 
A target report provides detailed information about a selected gene or species. Reports 
contain interactive graphs constructed from CNV data related to the specific target in 
the dataset, and additional information provided by dynamically generated links to 

Figure 5: User interfaces of the four main DAMs: Common genes in Species Group (top left), Genes CNVs for 
Species Group (top right), Genes Intersection for different Species Groups (bottom left) and Genes Trend 
(bottom right). 
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external knowledge sources, such as Gene Cards and Gene Ontology for genes 
(https://www.genecards.org/; http://geneontology.org/), and ADW 
(http://animaldiversity.org/) for species. Specifically, additional resources for target 
genes include gene families and function descriptions, while mean copies of the genes 
and variance in cancer-prone and cancer resistant species, associated with the 
Kruskal-Wallis H-test p-value, are computed from the databases. The H-test is used 
to determine if there are significant differences between two groups of species, where 
a p-value lower than 0.05 can be used to discriminate between cancer-prone and cancer 
resistant. Conversely, for a subset of 24 species, the platform returns cancer rate, 
longevity, metabolism, average weight and number of copies of oncogenes and tumor 
suppressors within the genome. Most of this information is presented in graphical 
form to give a quick glance of the results. For instance, an interactive box plot is used 
to represent the CNV statistics described above for gene B23 (as shown in Figure 3, 
step B). 
 

5.3. Custom queries 
Custom queries aim to support advanced research questions and can be specified in a 
dedicated free text form. Unlike the basic forms, where the queries concern genes or 
species and are suggested by auto-complete mechanisms, custom queries give the user 
access to the whole database by means of a simple easy-to-use syntax. When 
prompting for a custom query, the system helps the user by showing a popup window 
summarizing the database schema and the different available attributes. 
The syntax allows the user to: 

• request any attribute (column) of any table in the database (show clause) (the 
syntax is simply a list of the attributes required in the output, including 
possible attributes involved in filtering clauses); 

• filter the retrieved information according to conditions over the values of the 
selected columns (filter clause, to limit the results to the ones satisfying the 
condition(s), and exclude clause, to exclude from the results the ones satisfying 
the condition(s)). Conditions are simply expressed in the form <attribute> 
<comparator> <value>, where possible comparators are =, >=, <=, >, 
<. String values require quotes. 

 
For instance, the following query (QA) retrieves the genes and the related CNVs of the 
Homo Sapiens species: 
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show:(species_name, gene_name, qty)  

filter:(species_name = HOMO SAPIENS) 
whereas the following query (QB) retrieves the species where the copy number of the 
gene TP53 is less than 5: 

show: (species_name, gene_name, qty)  

filter: (gene_name=’’TP53’’) filter: (qty<5) 

 

5.4. Ranking analysis 
Data analytics requests often output a very large number of results, either genes or 
species. It is therefore of utmost importance to implement ranking strategies that 
reward the genes or species that are the most representatives in the selected group. 
For most plots, ranking is in CNV decreasing order. Moreover, VarNuCopy 
introduces a new ranking mechanism, named “genes trend”, which relies on the CNV 
property, and which is used in the corresponding DAM. Its aim is to identify other 
genes within the genome of mammalian organisms with a CNV behavior similar to 
TP53 gene in Loxodonta africana genome, another well-known long-living species. 
Indeed, this gene presents a high amplification in the number of copies which has been 
described as a protective mechanism against the cancer insurgence for the elephant 
(Sulak et al., 2016). Since the amplification of TP53 gene copies is not present in any 
other analyzed species, we consider elephant TP53 CNV as an “anomaly” compared 
to the other organisms. By definition, anomalies represent data patterns that have 
different data characteristics from normal instances, and the ability to detect 
anomalies has significant relevance, providing critical and actionable information that 
is worth of further investigation. To this end, the ranking formula we propose assigns 
high raking scores to genes having an elevated number of copies in cancer-resistant 
species, but a low distribution of gene copies in the rest of the population. The ranking 
formula for the gene g is the following: 
 

"#$%	(') = 	 (*#+,-.'!"#$%&'%()(*"#$% − 	01',-.'+,,-.%$)%() *#+,-.'!"#$%&/&0#%2  

 
where MaxCNV stands for the maximum value of number of copies of a gene in the 
cancer resistance and cancer prone group respectively, whereas AvgCNV represents 
the CNVs mean value, considering all the species. The higher the rank(g) value is, the 
more the gene is interesting in terms of copy number variation across species, and in 
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particular within the two groups (cancer-prone vs -resistant organisms). For example, 
considering again Loxodonta africana genome, among the top ranked genes, besides 
TP53, we can find two other important hits, MT1G and BEX2, which seem to be 
promising for further experimental validation. Indeed, from a biological point of view, 
we know that MT1G can indirectly increase the stability of TP53 and lead to cell cycle 
arrest and apoptosis by inhibiting the expression of MDM2 gene TP53 ubiquitination 
factor (Wang et al., 2019), while BEX2 gene encodes a protein detected in some types 
of cancer, such as breast tumors (Naderi et al., 2010). 
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6. Implementation strategies 
VarNuCopy has been implemented with advanced server- and client-side 
technologies and optimizations, also inspired by scalable data science, enabling the 
needed real-time interaction experience on a large amount of data. The following 
sections describe the exploited architectural optimizations (Section 6.1) and how data 
requests are managed (Section 6.2). 
 

6.1. Detailed architecture and optimizations 
The platform is implemented as a web application written in Python and based on 
several up-to-date technologies for an efficient client-server web application 
development and data management (Figure 6).  
Specifically, it is composed of: 

• a client-side part (top of figure, green color), offering an analysis interface for 
the final user, and an administrator interface for platform and data 
maintenance. The front-end is implemented in Django 
(http://www.djangoproject.com/) and FusionCharts 
(http://www.fusioncharts.com/). 

• a server-side part (bottom of figure, blue color) offering data management 
functionalities, exploiting Pandas (http://pandas.pydata.org/), Scikit-Learn 
(http://scikit-learn.org/), and PostgreSQL (http://www.postgresql.org/). 
Pandas was used for data caching, manipulation, and analysis, providing the 
facilities for the management of data frames and time series, while PostgresSQL 
was chosen for database storage. A relational database ensures good write 
performances (in the future we plan to allow users to store user-defined data) 
and is able to deliver shorter time-to-insight than big data management 
frameworks due to its capability of analyzing non-huge data sets in real or near-
real-time. Moreover, it best fits the well-defined and stable database structure 
the dataset presents. 

The advanced and interactive analysis functions offered by the platform would be 
nearly useless without efficient processing strategies allowing immediate response 
time even for complex requests. The platform forms require the querying, retrieval 
and presentation of large amounts of data (as highlighted in Figure 6 for the detailed 
architecture and the operation flow). In particular, the user interacts with the platform 
(upper left part of figure) and triggers the generation and visualization of new results 
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in form of reports (upper right part); this requires a number of processing operations 
that are performed at client-side and/or at server-side, depending on the specific 
request. For efficient processing, VarNuCopy implementation exploits server-side 
caching and threading as well as client-side caching and chunking optimizations. 
Before considering typical examples of requests submitted to our platform and 
discussing what kinds of operations and optimizations are performed in order to 
efficiently answer them, we will start by giving general details on the specific 
optimizations: 

• Server-side caching. As a commonly used technique in scalable data analysis 
research (Du et al., 2017; Elghandour & Aboulnaga., 2012), we store 
intermediate materialized results and create highly modular caches (“server-
side caches” in Figure 6) containing the data views that are most often required 
in the analyses. To this end, we assumed the platform workload would, for the 
majority of times, be triggered by DAM generation requests and DAM 
interactions, and selected the intermediate query results to be materialized 
according to the model in the DAM schema (Figure 4). VarNuCopy stores 
cached data in three main repositories: 
– a “Species” cache containing the information about the different species 
as available from the Species table (see Section 3) 
– a “Gene” cache containing the copy numbers information with their 
gene names (Gene and CopyNumber tables). This information is available in 
two versions: as it is, or joined with the involved species 
– a “Family” cache containing the families (Family table) already joined 
with the Classification table (and ready to be joined with the involved 
genes). 
Server-side caches are implemented by means of Pandas dataframes, where 
information is already available in memory, indexed, joined (if needed) and 
ready to be further manipulated. Since data ordering is also critical to the 
production of the final reports, the cached data is also kept ordered w.r.t. the 
most used sorting options. 

• Server-side threading. Further response latency reduction is achieved by 
threading, enabling the parallelization of the processes needed for the 
construction of the form responses (parallelized tasks are shown in Figure 6 as 
vertically aligned boxes and will be discussed in detail in Section 6.2 for 
different use cases). 
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• Client-side caching and chunking. User requests inevitably produce a high 
number of results, typically close to 20,000 records and beyond. Trying to 
visualize this data without any pre-processing would lead to an inefficient plot 
rendering, resulting in a bad user experience and compromising the platform 
functionality. The solution to this problem has been the division of the results 
of each DAM in multiple chunks (this process is done client-side) and the 
exploitation of client-side result caching. Each chunk includes the information 
already organized in such a way to be readily visualized. 

 

 

6.2. Data requests processing 
In this section we describe how the three kinds of data requests are dealt with. 
Use case 1: DAM request. The user requests an analysis on one of the available DAMs 
(for example, the Genes Copy Number Quantity for TP53 gene in cancer-prone 
species). The following are the performed steps (please also consider Figure 6, in 
which the numbers within the circles reference the step numbers): 

1) after the parameters have been selected (in this case, gene TP53 and the cancer-
prone group), the client performs “Client cache evaluation” in order to determine 
if the data needed to produce the results are already in its cache. If the results 

Figure 6: VarNuCopy architecture schema detailing client-side (upper part) and server-side (lower part) 
operations. 
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are in the client-side caches, the execution continues in the client alone with 
“Plot creation” (see step 4) and concludes with step 5; 

2) if they are not (which is the standard case), the full client-server interaction is 
needed: a request is sent to the server, which parses the query, then 
“cache/view selection” is performed in order to determine how the views 
stored in the server-side caches can help to obtain the final results. In general, 
data requests are dealt by rewriting the query according to the materialized 
views associated to the cache repositories of interest (query rewriting under 
views approach) (Halevy., 2001). In our case, a thread will access the “Gene” 
cache to retrieve the materialized join between the Gene, CopyNumber and 
Species tables, then a selection will be performed to restrict the result to the 
gene and species of interest. In the case where more than one cache is needed, 
different threads will access each of them; 

3) after the data are merged and the caches are updated, other threaded 
operations are performed in order to efficiently send the response back to the 
client (lower right part of figure). One thread deals with the construction of the 
structures necessary for formatting report table data and retrieving additional 
resources: it computes statistical measures and retrieves data from external 
sites. The second one is dedicated to preparing the data for the plot (prepare 
the correct data structures to pass to the client, sort their contents, etc.); 

4) the response is sent back to the client: first of all “Response chunking” is 
performed on the results, dividing the large data of the response in smaller 
chunks. Then, while the first chunk is visualized in a plot (“Plot creation” step), 
another thread (“Chunk caching”) performs the storage of the other chunks in 
the client-side cache: the other cached results will be in case subsequently used 
without the need to send new requests to the server; 

5) Finally, the plot and the additional information are shown to the user. 
Use case 2: custom query. In the case of an advanced search (custom query), query 
parsing, cache and data merging proceeds in the following way (then, processing 
proceeds as discussed in steps 3-5 for Use Case 1): 

1) the show clause list is scanned, and the different schema attributes are 
identified based on their names (there is no ambiguity since the schema 
attributes names are unique); 

2) the involved tables are identified (i.e., minimum subset of tables containing all 
the required attributes, multiple instances of the same table are not allowed) 
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and caches are accessed in order to retrieve their join. With respect to Use case 
1, in the case of custom queries server-side parallelism for step 2 is even higher: 
a thread that retrieves the cached data is created for each needed materialized 
view in order to make the results available for the subsequent phases in the 
shortest amount of time; 

3) filtering conditions in the filter/exclude clauses are applied to the results. 
For instance, for queries QA and QB (Section 5.3), the required information contained 
in the Gene, CopyNumber and Species tables is extracted, already in joined form, 
from the “Gene” cache, then filtering conditions are applied. 
Use case 3: plot interaction. Finally, let us consider the iterative nature of the analyses 
performed on the platform, where a simple interaction by the user on a report will 
trigger new requests to the platform (note the “new interaction” loop in the upper part 
of the figure). For instance, when the user receives the report, the data used for the 
plot (showing the genes CNV) has already been chunked and cached in the client-side 
cache. Therefore, when the user interacts with the plot in order to focus on a single 
gene (e.g., TP53), the answer is almost instantaneous: being the data already in the 
cache, the updated plot with the highlighted gene and its information can be directly 
created and shown without passing further requests to the server. 
 

7. Performance evaluation 
In this section we present a selection of the tests we performed to quantify the 
performance of the platform. In particular, we measured the overall response time for 
typical requests with and without server-side caching and threading optimizations 
(Section 7.1). Then, we deepened the analysis with additional tests designed to 
evaluate the benefits provided by server-side caching (Section 7.2). Finally, we 
consider user and client interactions benefits given by client-side optimizations 
(Section 7.3). All tests were performed on a server with AMD Ryzen 1920X CPU, 32 
GB RAM, 256 GB SSD and 2 TB HDDs. 

 
7.1. Overall response time 

Figure 7 shows two response time comparisons. The first one (left side, blue bars) is 
relative to the mean response time measured for standard interaction/querying on 
the genes and species exploration forms (similarly to the Use case 1 discussed in 
previous section), with and without threading. As depicted, threading optimizations 
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almost produce a 4x speedup, making all interactions almost real-time. The second 
comparison (on the right side, orange bars) quantifies the advantages offered by 
server-side caching, in particular in the complex case of custom queries (as in the Use 
case 2 discussed in previous section). A large number of queries are avoided on the 
database, leading to a sharp reduction in time response. In particular, the required 
time depends on the number of tables involved in the user query. For this test, we 
considered the worst case (all tables involved): the measured speedup reaches 10x, 
going from 25 seconds (no caching) to less than 3 seconds (caching active). 
 

 

7.2. Server-side caching optimization benefits 
We designed a benchmark composed of 8 different queries, representative of different 
data retrieval operations performed in response to custom querying or DAM user 
interactions. We considered only the time required to fetch the data and compare 
optimized (server-side caching on, time required to retrieve data from the caches) and 
non-optimized time (time required to fetch the data directly from the relational 
database and put it in dataframe format for further elaboration) on 100 executions for 
each query. Table 1 below lists the complete query specifications. 

Figure 7: Response time tests (mean time in seconds). 

 Involved	tables	(Join)	    Filtering	 Aggregation	  Sorting	
 Gene	 Species	 Family	 CopyNumber	 Classification	 On	 Aggr	funct	 

Q1	 V 
Q2	 V 
Q3	 V 
Q4	 V 
Q5	 V 
Q6	 V  V  V  tumor suppressor 
Q7	 v  V  V
 qty (desc) 
Q8	 V  V  V  gene name avg(qty)
 avg(qty) desc 

 Attributes	in	output	 Custom	query	syntax	

Q1	 * show: (ID_gene, gene_name, is_oncogene, is_tumor_suppressor) 
Q2	 * show: (ID_species, species_name, is_long_lived, is_cancer_prone, metabolism, avg_weight, necropsies, class) 
Q3	 * show: (ID_family, family_name) 
Q4	 * show: (ID_gene, ID_species, qty) 
Q5	 * show: (ID_gene, ID_family) 
Q6	 species_name, gene_name, qty show: (species_name, gene_name, qty) 

  filter: (is_tumor_suppressor=TRUE) 
Q7	 species_name, gene_name, qty, cancer_rate n/a 
Q8	 gene_name, avg(qty) n/a 

	 Table 1: Test queries specifications: involved tables, filtering, aggregation (aggregation column and 
applied aggregate function), sorting operations (top), attributes required in output (* stands for all 
attributes in tables), and custom query syntax (bottom). 
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Table 2, instead, shows the complete statistics (mean, minimum, maximum, standard 
deviation and sum) for the 100 executions of the first five queries (Q1-Q5): such queries 
are designed to plainly retrieve the information on the genes (Q1), species (Q2), 
families (Q3), copy numbers (Q4) and classifications (Q5) available in the platform 
data, without specific elaborations (joins, selections, etc.). By looking at the mean 
response time, we can see that the caching strategies enable consistent time savings 
on delivering the required data (of 13.46x, 1.21x, 6.38x, 75x and 177x for Q1-Q5, 
respectively).  

 
Finally, Table 3 shows the response time statistics for queries Q6-Q8, which represent 
more elaborate requests (involving multiple tables with joins and sorts): species 
having tumor suppressor genes with relative CNVs (Q6), genes, CNVs and cancer rate 
information (ordered by decreasing CNVs) for each species (Q7), average copy 
number for each gene (results ordered by decreasing average CNV) (Q8). Note that 
queries Q7 and Q8 also involve aggregations and sorting and are therefore 
representative of elaborations which go beyond custom query requests but are 
constantly automatically performed by the system in response to user interactions.  

  

Q1	 -	 Gene	 Q2	 -	 Species	 Q3	 -	 Family	 Q4	 -	 CopyNumber	 Q5	-	Classification	
 Non-opt	 Opt	  Non-opt	 Opt	  Non-opt	 Opt	 Non-opt	 Opt	 Non-opt	 Opt	  

mean	 0.089	 0.007	 0.001	 0.001	 0.016	 0.002	 7.444	 0.098	 1.487	 0.008	  
min	 0.086	 0.005	 0.001	 0.001	 0.013	 0.002	 6.964	 0.091	 1.413	 0.007	  

max	 0.147	 0.007	 0.004	 0.002	 0.028	 0.003	 7.962	 0.126	 1.767	 0.016	  

dev	std	 0.007	 0.000	 0.000	 0.000	 0.001	 0.000	 0.179	 0.006	 0.057	 0.001	  

sum	 8.923	 0.663	 0.122	 0.101	 1.572	 0.246	 744.432	 9.832	 148.699	 0.839	  

	 Table 2: Response time statistics for server-side caching tests (queries Q1-Q5) 

 Q6	   Q7	   Q8	   

Non-opt	 Opt	  Non-opt	 Opt	  Non-opt	 Opt	
mean	 1.875	 1.051	  6.249	 2.025	  2.415	 1.460	  
min	 1.851	 1.009	  5.937	 1.488	  2.344	 1.231	  

max	 1.996	 1.148	  7.172	 2.218	  2.613	 1.656	  

dev	std	 0.018	 0.026	  0.203	 0.122	  0.028	 0.111	  

sum	 187.520	 105.101	 624.897	 202.462	 241.501	 146.041	 

	 Table 3: Response time statistics for server-side caching tests (queries Q6-Q8) 
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Also in this case, VarNuCopy caching strategies are able to deliver good average 
speedups (1.78x, 3.08x and 1.65x, respectively for Q6-Q8). Indeed, Figure 8 shows an 
overall mean response time comparison between all queries.  

 
As a concluding remark, the queries have different selectivity (as they are designed to 
retrieve small and large parts of the dataset) and the data volume retrieved by the 100 
executions of the queries is 279.46 MB (Q1), 5.98 MB (Q2), 101.68 MB (Q3), 11.11 GB 
(Q4), 20.04 GB (Q5), 35.15 GB (Q6), 56.84 GB (Q7) and 155.13 MB (Q8). 
 

7.3. Client-side optimization benefits 
We concluded our tests with two experiments designed to evaluate the benefits of the 
client-side optimizations (caching, chunking) and the interactive nature of the reports. 
We considered a situation similar to Use case 3 (Section 6.2) where a user interacts on 
a received report plot: to search for a gene (TP53) within the DAM showing the 
genome of the Loxodonta africana species. The non-optimized scenario requires server 
access (17 ms) also to perform the gene search; moreover, result rendering is also 
slightly faster in the optimized scenario, since the data in the chunks of the client cache 
are already organized for visualization. The total time in the optimized scenario is 
nearly halved (33.5  ms  instead of 60 ms): this would allow the server to manage more 
than 3300 of such user requests per minute, instead of less than 1800 in the non-
optimized case. Finally, in our last test we quantified the benefits given by the 
interactive nature of the reports returned by the platform. More specifically, as 
described in the previous test, we considered the situation where the user searches for 
a genome of a species, focusing then on a specific gene: we measured the overall time 
(including user interaction time) required in the optimized case (with client-side 
optimizations and interactive reports) and non-optimized (where reports do not allow 

Figure 8: Mean response time comparison between all queries 
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to trigger new searches and therefore a new search for the gene has to be submitted 
from scratch).  

 
Figure 9 shows that in this case user productivity is nearly tripled in the optimized 
version, allowing a much larger number of analyses in less time. 
 

8. Comparison with related works 
From a pragmatic point of view, one of the hardest challenges that scientists have to 
face in the NGS (Next Generation Sequencing) era, is the handling and the 
organization of a huge volume of information. Since the availability of genomic data 
is constantly increasing in time, refined computational methods are needed to manage 
them, especially through the construction and the use of (bio)informatics databases. 
Visualization techniques are essential, even if they are currently mostly applied 
during the report stage, at the very end of the data science workflow (Schmidt., 2020). 
In this context, CNVs have been studied in several research works, highlighting their 
importance in many biological processes (Feuk et al., 2006; Stratton et al., 2009). 
Nowadays, a unique and comprehensive catalogue of animal gene copies across the 
genome of different organisms doesn’t exist; nonetheless, an extended literature 
regarding CNVs events, especially related to human (Bragin et al., 2014) or human 
related diseases is available (Qiu et al., 2012). In particular, CNVD website collects and 
organizes information regarding copy number variations events related to human 
diseases manually mined from more than 6000 research papers, with the aim of 
providing a platform to study the role of CNVs in many diseases based on literature 
research (Qiu et al., 2012). In 2009, Chen and collaborators, developed CNVVdb (Chen 
et al., 2009), a database of putative copy number variations across 16 vertebrate 
genomes, built using the pairwise alignment of sequences. However, both CNVD and 
CNVVdb, besides the low number of analyzed species, do not contain, for example, 
any comparative statistical analysis based on the number of gene copies, or advanced 
graphical representations of the results. VarNuCopy is the first tool that can compare 

Figure 9: User interaction test: number of searches that can 
be performed in 1 minute time window (including user 
interaction time) 
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the CNVs landscape of multiple species, both for model and non-model organisms in 
biomedicine. Using a comparative approach, we developed this new web-platform 
which includes the variation landscape of genes copies among the genome of 233 
organisms, combining, for 24 of them, the gene presence in multiple or deleted copies, 
together with cancer related parameters, such as longevity, mass, and metabolism. To 
our knowledge, VarNuCopy is the first tool allowing a multi-species gene copy 
number comparison. Thanks to the EDA approach and the DAMs analysis, our 
platform easily performs and retrieves statistical information on the number of gene 
copies among different target groups (cancer-prone and -resistant organism, long- and 
short-living species), guiding the users to the discovery of known and/or unknown 
molecular mechanisms related to the cancer predisposition of a species. Building a 
personalized research path, following the exploratory analysis paradigm, it is possible 
to combine simple genomic features of a species with advanced queries based 
exclusively on both cancer incidence and genomic CNVs. Indeed, the final aim of the 
platform is to deeply investigate the genes copy number relationship among different 
species, and eventually retrieve new biomarkers involved in the oncogenic processes. 
Among related biogenetic research tools, Ensembl “gene gain/ loss” feature (Herrero 
et al., 2016) is probably one of the available tools which, in some ways, is most similar 
to the platform we propose. In fact, it can map the number of copies of each gene in 
multiple species, providing the number of extant homologues. Other tools such as 
EnsemblCNV (Howe et al., 2021) include human-readable and machine-readable 
information about the functions of genes from different species; they can be used 
together only through APIs and, despite being a powerful resource in the field, they 
present a certain number of shortcomings: 

I. typically, slow and time-expensive research speed; 
II. “heavy” graphical style, often difficult to read, which can make the user 

interaction less friendly and less immediate; 
III. lack of proper data visualization techniques. 
 
VarNuCopy is aimed to go beyond the current offerings of publicly available 
repositories in terms of data/feature availability, efficiency, and ease of use: 

i. the client offers ad-hoc visualization facilities associated with convenient plots 
representing the data distribution. Reports are presented as single panels or 
multiple dashboards, but, in any case, are designed to be as easy-to-understand 
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as possible, allowing scientists to look at data from multiple directions and 
studying different aspects to understand their structure; 

ii. the scalable data science implementations include ad-hoc data structures for a 
faster and less expensive management of information, allowing real-time 
results and interaction; 

iii. the EDA tools enable recursive searches directly from the output charts and 
visualizations, and personalized and advanced searches through which the 
user can specify complex search patterns on the database; 

iv. the peculiar database and analysis features include, for a subset of mammals, 
the possibility to show and analyze their vital parameters, with the aim to 
correlate the gene number of copies with their cancer incidence rate. This is an 
exclusive novelty in the field of biological databases. 

 

9. Conclusions and future works 
One of the goals of information visualization when dealing with large and rich 
datasets is to give the observer sets of query results, which may themselves be large, 
as quickly as possible, thus effectively highlighting the most relevant ones. 
VarNuCopy leverages statistical measures related to the genome CNVs to quantify 
gene relevance and supports different types of plots and ranking criteria for their 
effective visualization. For example, the DAM model “Genes CNVs for Species 
Group” is associated with the representation of two different box plots coupled with 
stat and p-value measures, to give the user the opportunity to straightforwardly check 
if the CNV distribution is able to significantly discriminate the gene within two 
different categories (e.g. cancer-prone vs cancer resistant species). As pinpointed 
through the paper, the user who wishes to find interesting patterns can explore the 
platform personalizing his research process that can involve repeated cycles of 
visualization and interactive commands. In other words, the human and the computer 
system are solving a problem as two different actors of the same play: the former looks 
for patterns thinking which presentation may be most informative, while the latter is 
crunching through large quantities of data to develop the best informative visual 
representation. 
 
In the future, we plan to expand VarNuCopy capabilities by: 

• extending the biogenetic database with further related publicly available data 
sources concerning, for instance, biological pathways and perturbations; 
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• incorporating machine learning algorithms for gene classification; 

• studying data mining approaches for the discovery of such parameters that can 
cooperate in the cancer onset. 
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Genes containing CNVs are related to several molecular pathways, and are involved 
in diseases such as cancer, metabolic and neurodegenerative disorders. As already 
mentioned in the previous chapters, it is already well known that an altered number 
of tumor suppressors/oncogenes can protect/expose a species to a lower/higher 
cancer incidence rate, but previous works have often focused just on the comparative 
analysis of candidate genes which were selected a priori. Leveraging on the new online 
tool that I have recently developed (and presented in Chapter II), I analyzed the entire 
genomic CNVs spectra of multiple mammals, in order to identify which are the best 
molecular targets able to statistically discriminate between cancer -prone and - 
resistant species. Contrary to what is usually done, I did not sub-select only for those 
genes that are already known to be involved in tumor development, maintenance and 
progression, such as tumor suppressors or oncogenes, but I kept the entire species 
genomic CNVs landscape, including noncoding RNAs (ncRNAs), that are often 
discarded from this kind of analysis. Indeed, ncRNAs, and microRNAs (miRNAs) in 
particular, may represent non-canonical genomic features that might contribute to 
genome stability. For the first time, I proposed miRNAs gene family as one of the most 
important key players in determining the cancer predisposition of a species, 
suggesting that an altered microRNAs copy number patterns may help lower its 
cancer risk. In this context, I have classified miRNAs as oncogenes or tumor 
suppressors along the discussion, justifying their specific behavior using different 
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examples described in literature. Given the double side behavior of microRNAs genes, 
which can act both as oncogenes or TSGs, I have firstly performed the statistical 
analysis to identify the target, and secondly verified its possible functioning as onco-
miRNA, or onco-suppressor. This allowed me to detect, for example, amplifications 
of microRNAs known as oncogenes in cancer-resistant species, or conversely, 
suppressors microRNAs in cancer-prone species. Moreover, this kind of approach 
allows me to include as significant results those microRNAs not usually known as 
cancer related genes, but also to straighten the hypothesis that, indeed, microRNAs 
genes function as hallmarks and discriminants of a species cancer predisposition. 
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Abstract  
Aging is one of the hallmarks of multiple human diseases, including cancer. However, 
the molecular mechanisms associated with high longevity and low cancer incidence 
percentages characterizing long-living organisms have not been fully understood yet. 
In this context, we hypothesized that variations in the number of copies (CNVs) of 
specific genes may protect some species from cancer onset. Based on the statistical 
comparison of gene copy numbers within the genomes of cancer -prone and -resistant 
organisms, we identified novel gene targets linked to the tumor predisposition of a 
species, such as CD52, SAT1 and SUMO protein family members. Furthermore, for 
the first time, we were able to discover that, considering the entire genome copy 
number landscape of a species, microRNAs (miRNAs) are among the most significant 
gene families enriched for cancer progression and predisposition. We identified 
through bioinformatics analysis, several alterations in miRNAs copy number patterns, 
represented by duplication of miR-221, miR-222, miR-21, miR-372, miR-30b, miR-30d 
and miR-31 among others. Therefore, our analysis provides the first evidence that an 
altered copy number miRNAs signature is able to statistically discriminate species 
more susceptible to cancer than those that are tumor resistant, helping researchers to 
discover new possible therapeutic targets involved in tumor predisposition. 
 
Keywords: CNVs; cancer resistance; miRNAs 
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1. Introduction 
Aging is one of the hallmarks of cancer insurgence, being considered also one of its 
possible related risk factors (Serrano., 2016). Therefore, it is probable that, in order to 
maintain high longevity rate, some species have developed intrinsic molecular 
mechanisms that protect them from cancer onset or development (Tian et al., 2017). 
Along this assumption, as two binary parallel lines, those organisms that live longer 
should theoretically possess a higher risk of cancer occurrence. Nevertheless, 
considering different species, according to Peto’s Paradox theory (Peto et al., 1975), 
the body size of an organism and/or its lifespan expectation are not directly correlated 
with the species percentage of cancer incidence. After more than 40 years of research, 
the solution to this puzzling paradox is still an open challenge to be solved. For 
example, despite its small size, the naked mole rat, being able to live more than 30 
years, is, to date, the longest-living member of the rodent family. Several studies 
highlighted that, besides the delayed aging, this species also shows the capacity to 
resist spontaneous and experimentally induced tumorigenesis (Buffenstein, 2008; Kim 
et al., 2011; Liang et al., 2010; Seluanov et al., 2009). Conversely, in mice, the cancer-
related mortality can reach 90%, coupled with a species maximum life expectancy of 
four-five years (Lipman et al., 2004). The long-living Myotis lucifugus bat species, has 
been recently identified as prospective organism for comparative cancer research 
(Boddy, Harrison, et al., 2020). Given their extended life-span (Wilkinson & Adams, 
2019), it has been suggested that bats develop very low cancers events, as confirmed 
from different pathological studies performed in different area of the world (Tollis, 
Schiffman, et al., 2017; Wang et al., 2011). The elephant has been pinpointed as another 
cancer resistant species (Abegglen et al., 2015), with a cancer incidence rate value 
considerably low compared to the human one for example (~5% vs approximately 
22%) (Ferlay et al., 2015). Interestingly, various authors recently reported that the 
genome of the African elephant encodes multiple copies of the TP53 gene, also known 
as the “guardian of the genome stability”. This amplification could be at the basis of 
its anti-cancer and longevity mechanisms, leading, for example, to increased levels of 
apoptotic events in response to DNA damage (Abegglen et al., 2015; Sulak et al., 2016). 
Indeed, according to Caulin and Maley (2011), the genome of large long-living 
organisms can reveal an altered number of tumor suppressors and oncogenes (in 
multiple or reduced copies), that might represent a possible mechanism underlying 
their capacity of exceeding the threshold of cancer onset, despite their phenotypic 
predisposition such as size and longevity (Caulin & Maley, 2011). Copy Number 
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Variations (CNVs) are duplications or deletions of genomic regions which can be 
associated with phenotypic alterations, including tumorigenic diseases (Feuk et al., 
2006). In particular, a variation in the gene copy numbers can activate or inactivate 
tumor suppressors and oncogenes, leading to the development of cancer (Stratton et 
al., 2009). Within this framework, long-living animals have to rely on compensatory 
mechanisms to suppress and prevent cancer progression, that can be straightened by 
different molecular and genomics mechanisms such as altered gene copy numbers 
that increase the number of tumor suppressors paralogues or reduce copies of 
oncogenes (Tollis, Boddy, et al., 2017; Tollis et al., 2020). As previously mentioned, 
mammals have evolved lifespan and cancer incidence rates which vary among species 
(Boddy, Abegglen, et al., 2020), however mechanisms underlying these differences are 
still unclear. In order to test the hypothesis that genomic CNVs are related to the 
cancer incidence rate of a species, we compared the entire genomic copy number 
landscape of 9 different mammals (5 cancer resistant and 4 cancer prone organisms), 
to retrieve among their genomes, which target genes are able to significantly 
discriminate between these two groups. 
 

2. Material and Methods 
 

2.1. Data collection 
In a comparative biology framework, taking advantage of the advancement of the 
Next Generation Sequences (NGS) technologies, it is now possible to investigate and 
speculate about new factors that can control longevity and cancer susceptibility. 
According to the hypothesis that positively selected CNVs tend to recur during cancer 
progression (Beroukhim et al., 2010; Bignell et al., 2010), but also during the evolution 
(Iskov et al., 2012), we have recently developed VarNuCopy database, a tool unique 
of its kind, which collects the CNVs landscape for multiple organisms, with the aim 
to compare patterns of copy number changes across the genome of different species 
(Vischioni et al., 2022). We used a homemade script written in Perl 5.14 and Python 3 
in order to download the CNV data from Ensembl comparative genomics resources 
(http://www.ensembl.org) (Howe et al., 2021), an ideal system to perform and 
support vertebrate comparative genomic analyses, given the consistency of gene 
annotation across the genomes of different vertebrate species. In this context, we 
leveraged Ensembl's “gene gain/loss tree” feature, which maps the number of copies 
of extant homologous gene for each species, as a taxonomic tree view (Herrero et al., 
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2016). Remarkably, these data are estimated through CAFE, a computational tool 
useful to study gene family evolution, which, when calculating CNVs data, takes into 
account a priori the species phylogenetic tree (De Bie et al., 2006; Herrero et al., 2016). 
The Perl API script provided by the Ensembl website was used to access the genomic 
databases and used to download all the available CNVs data. We encoded a new 
Python script in order to format the CNVs data counts as a readable tab delimited 
matrix, useful to perform the subsequent analysis. 
 

2.2. Statistical comparison 
Using a comparative approach, we analyzed the variation landscape of genes copies 
among the genome of 9 organisms sub-set in two categories: “cancer resistant” 
(Heterocephalus glaber [Hg], Nannospalax galili [Ng], Dasypus novemcinctus [Dn], 
Loxodonta africana [La], Myotis lucifugus [Ml]), and “cancer prone” (Mus musculus 
[Mm], Rattus norvegicus [Rn], Canis familiaris [Cf], and Homo sapiens [Hs]) species. We 
classified as “cancer resistant” those species that, based on the literature review, are 
known to possess a low cancer incidence rate. Conversely, “cancer prone” organisms, 
were referred to those for which the percentage of tumors found in a certain number 
of necropsies is known to be high. To determine whether microRNAs CNVs 
independently contribute to the variation in cancer incidence percentages among our 
species, we applied a linear regression model through PGLS R package (Orme., 2013), 
in order to check for potential bias due to species phylogeny or population structure 
(Figure 1D; Supplementary Data S1). The phylogenetic tree included in the analysis 
was derived from VertLife (Upham et al., 2019) and created through the Interactive 
Tree of Life web-tool (Figure 1C) (Letunic & Bork, 2019), while cancer rate data were 
collected from different recently published literature (Boddy, Abegglen, et al., 2020; 
Boddy, Harrison, et al., 2020; Lagunas-Rangel, 2018; Seluanov et al., 2018; Sulak et al., 
2016; Wang et al., 2011). We performed a statistical comparison between the CNVs of 
the two different species groups, cancer prone and resistant organisms, with the aim 
to identify new possible gene targets able to discriminate between the two categories. 
Thus, a statistical unpaired 2-group Wilcoxon test was performed using R.3.1.1 
(https://www.r-project.org/), to compare their entire CNVs spectra. Data processing, 
plots, and statistical tests were performed with R.3.1.1 (www.cran.r-project.org) and 
RStudio 1.4.1717 (https://www.rstudio.com/). Figures were made using the ggplot2 
R package, in association with different R Shiny apps such as BoxPlotR, PlotsOfData, 
and ClustVis (Metsalu & Vilo, 2015; Postma & Goedhart, 2019; Spitzer et al., 2014). 
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2.3. Pathway analysis 
To determine if CNVs are enriched in specific gene families, we used Gene SeT 
AnaLysis Toolkit, a tool for the interpretation of lists of interesting genes which is 
commonly used to extract biological insights from targets of interest (Liao et al., 2019). 
The set of significant genes were tested for pathway associations using the hyper-
geometric test for over-representation analysis (ORA) (Khatri et al., 2012) 
(Supplementary Table3 [S3]). We selected different pathway enrichment categories 
(KEGG: https://www.genome.jp/; Wikipathway: https://www.wikipathways.org; 
Reactome: https://reactome.org/; PANTHER: http://www.pantherdb.org/), 
considering over-represented those molecular networks with FDR significance level 

Figure 1: CNVs landscapes comparisons: A, Boxplot of the distribution of significant genes CNVs in cancer prone vs 
cancer resistant species. B, Boxplot of the distribution of significant microRNAs CNVs in cancer prone vs cancer resistant 
species. Cancer resistant species are highlighted in green, cancer prone species in red. In the boxplots, the Y-axis scale 
has been changed to log one. The boxplots are built considering the average number of copies of each gene in the two 
different target groups. C, heatmap representing the MicroRNAs CNVs repertoire within the 9 analyzed species. [Hg]: 
Heterocephalus glaber; [Ng]: Nannospalax galili; [Dn]: Dasypus novemcinctus; [La]: Loxodonta Africana; [Ml]: Myotis 
lucifugus; [Mm]: Mus musculus; [Rr]: Rattus norvegicus; [Cf]: Canis familiaris; [Hs]: Homo sapiens. [Hg], [Ng], [Dn], 
[La] and [Ml] have been previously described as cancer resistant species. [Mm], [Rr], [Cf] and [Hs] are known to be 
“cancer prone” species. Phylogeny was inferred from VertLife (Upham et al., 2019), and created through the Interactive 
Tree of Life web-tool (Letunic & Bork, 2019). D., PGLS correlating Cancer incidence rate ∼ Number of significant 
microRNAs copies across the 9 species included in the analysis. The blue line represent a positive correlation between 
the two variables (Adjusted R2 = 0.5173; p-value = 0.01746). 
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lower than 0.05, after a correction with Benjamini–Hochberg method. In this context, 
the ORA analysis was the preferred option among the others (e.g. gene set enrichment 
or network topology-based analysis) in order to obtain biological information 
underlying the significantly enriched genes, resulting in a reduction in the complexity 
of the data interpretation (Khatri et al., 2012). 

3. Results 
A two-group comparison was performed using a Wilcoxon rank sum test, in order to 
identify an existing distinction in terms of distribution in the number of gene copies 
between cancer-prone and cancer-resistant species. A list of the most significant hits 
(p-value < 0.05), including known tumor suppressors and oncogenes, is reported in 
Table 1 (See SupplementaryTable2 [S2] for the extended version). Our analysis, which 
exclusively considered the variation in number of gene copies within different species, 
was able to identify those genes involved in biological processes related to cancer 
development and maintenance. 
 

Gene p-value Known_TS Known_OG  References 
CD52 0.007 NO NO Wang et al., 2020 
SAT1 0.007 NO NO Thakur et al., 2019 

MIR424 0.009 YES NO Xu et al., 2013 
MIR372 0.010 NO YES Sun & Gao, 2018 
DMD 0.014 YES NO Jones et al., 2021 
EIF5 0.017 NO NO Spilka et al., 2013 

MIR107 0.022 YES YES Turco et al., 2020 
MIR124-1, MIR124-2, MIR124-3 0.022 YES NO Wang et al., 2014 

SUMO2, SUMO3, SUMO4 0.024 NO NO Schneeweis et al., 2021 
MIR506 0.029 YES YES Wen et al., 2015 

MIR509-1 0.029 NO NO Zhai et al., 2012 
MIR511 0.029 YES NO Squadrito et al., 2012 

MIR514A1, MIR514A3, MIR514B 0.029 NO NO Ren et al., 2018 
MIR378A 0.030 YES NO Chen et al., 2016 
S100A16 0.030 NO NO Zhu et al., 2016 

MBD1, MBD2, MBD3 0.031 NO YES (MDB1) Miremadi et al., 2007 
FGFBP1 0.032 NO NO Zhang et al., 2019 
FOXJ1 0.032 NO NO Xian et al., 2018 

MIR1-1, MIR1-2 0.032 YES NO Nohata et al., 2011 
MIR206 0.032 YES NO Zhang et al., 2013 
MIR340 0.032 YES NO Wu et al., 2011 
MIR542 0.032 NO NO Kureel et al., 2014 
NUPR1 0.032 YES NO Cano et al., 2011 

SELENOW 0.032 NO NO Yim et al., 2019 
JUND 0.034 NO YES Elliott et al., 2019 

 
Table 1: Genomic CNVs landscape comparison. Subset of 25 significant hits resulting from the unpaired 2-group 
Wilcoxon test (p-value < 0.05). The statistical comparison was made in order to identify those genes able to 
discriminate between cancer -prone and -resistant species groups, relying exclusively on the genomic copy number 
values. Some of these genes are already known to be tumor suppressor and/or oncogenes, whereas the others can 
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play pivotal roles in tumorigenesis events, and, for this reason, can be considered as targets to be further 
investigated and validated in the context of cancer development. 

 
3.1. Best candidate cancer-related genes 

The distribution of the average number of each gene copy plotted in Figure 1A 
highlights a difference between the two species categories, which appears even higher 
if we only refer to the microRNAs CNVs landscape (Figure 1B). Among the most 
significant genes presenting an altered number of copies we found CD52 (p-value = 
0.007), SAT1 (p-value = 0.007), DMD (p-value = 0.014), EIF5 (p-value = 0.017), SUMO2, 
SUMO3, SUMO4 (p-value = 0.024), S100A16 (p-value = 0.030), MBD1, MBD2, MBD3 
(p-value = 0.031), FGFBP1 (p-value = 0.032), FOXJ1 (p-value = 0.032), NUPR1 (p-value 
= 0.032), SELENOW (p-value = 0.032) and JUND (p-value = 0.034). Some of these, such 
as DMD, MDB1, NUPR1 and JUND have been already well described as tumor 
suppressors or oncogenes (Cano et al., 2011; Elliott et al., 2019; Jones et al., 2021; 
Miremadi et al., 2007), whereas the others do not officially belong to any of these two 
categories and they have been proposed as key regulators in biological processes such 
as cell proliferation, migration, and cancer development and progression (Müller et 
al., 2004; Peters et al., 2018; Schneeweis et al., 2021; Spilka et al., 2013; Thakur et al., 
2019; J. Wang et al., 2020; Xian et al., 2018; Yim et al., 2019; Zhu et al., 2016). A Principal 
Component Analysis (PCA) of CNVs values of the 9 species reported in Figure 2A-B, 
showed a clear dichotomy between cancer -prone and -resistant groups, supporting 
the hypothesis that an altered landscape of CNV is able to discriminate between the 
two categories. To confirm these results, we performed another unsupervised 
clustering analysis using Euclidean distance (Figure 2C).  
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As depicted in the heatmap, each cluster has a distinct set of copy number values, and 
the main branches representing cancer -prone and -resistant organisms perfectly 
distinguish the two groups. No additional information was given to the algorithm 
(other than copy numbers), which was able to discriminate between the two groups. 
In particular, we applied the Euclidean distances, with both ‘complete’ and ‘ward’ 
methods (criteria that direct how the subclusters are merged) (Supplementary 

Figure 2: A, PCA based on the CNVs of all the significant genes. B, PCA based on the CNVs of the significant 
microRNAs subset. Both plots show a dichotomy between cancer resistant (blue) and cancer prone species (red). 
C, Heatmap of the significant microRNAs, clustered with Euclidean distance and complete linkage. D,E Bar- and 
Box- plot of significant microRNAs CNVs in cancer prone species, cancer resistant species, and Loxodonta 
Africana. The microRNAs repertoire of Loxodonta africana seems to reflect the cancer prone miRNAs copy number 
alteration landscape, rather than the one typical of the cancer resistant organisms. In the boxplots, the Y-axis scale 
has been changed to log one. The boxplots are built considering the average number of copies of each gene in the 
two different target groups. 

C- Resistant
C- Prone

0.3

1.0

3.0

MIR30B

MIR30D

MIR221

MIR222

MIR21

MIR31

MIR506

MIR509−1

MIR107

MIR124−1

MIR124−2

MIR124−3

MIR372

MIR424

0 2 4 6 8

microRNAs CNVs

MIR30B

MIR30D

MIR221

MIR222

MIR21

MIR31

MIR506

MIR509−1

MIR107

MIR124−1

MIR124−2

MIR124−3

MIR372

MIR424

0

MIR203B
MIR504
MIR374A
MIR374B
MIR653
MIR514B
MIR514A3
MIR514A1
MIR511
MIR506
MIR509-1
MIR107
MIR103A1
MIR103A2
MIR206
MIR1-1
MIR1-2
MIRLET7F2
MIRLET7A3
MIRLET7A1
MIR99B
MIR99A
MIR873
MIR671
MIR652
MIR490
MIR489
MIR433
MIR339
MIR31
MIR223
MIR21
MIR199B
MIR199A2
MIR199A1
MIR193B
MIR193A
MIR187
MIR185
MIR15B
MIR15A
MIR140
MIR129-2
MIR129-1
MIR1282
MIR10B
MIR100
MIR10A
MIR30C2
MIR30C1
MIR221
MIR222
MIR219A2
MIR219B
MIR30E
MIR30D
MIR30A
MIR30B
MIR27B
MIR27A
MIR23A
MIR23B
MIR124-3
MIR124-1
MIR124-2
MIRLET7I
MIR98
MIRLET7G
MIR770
MIR378D2
MIR378A
MIR378B
MIR424
MIR371A
MIR372
MIR29B1
MIR29B2
MIR340
MIR542

-1

0

1

2

[Ng] [Ml] [Hg] [Dn] [Mm] [Rn][La] [Cf] [Hs]

C

D

EC- Resistant

C- Prone
L. africana

C- Resistant C- ProneL. africana
m

ic
ro

R
N

A
s 

C
N

V
s

[Hg]
[Ng]

[Dn]

[La]

[Ml]

[Mm]

[Rn]

[Cf]

[Hs]

-30

-20

-10

0

10

20

-40 -20 0 20

PC1 (59.7%)

PC
2 

(1
0.

3%
)

A

PC1 (85.1%)

[Hg]

[Ng]

[Dn]

[La]

[Ml]

[Mm]

[Rn]

[Cf]

[Hs]

-15

-10

-5

0

5

10

-20 -10 0 10

B

PC
2 

(4
.9

%
)



 93 

materials). Remarkably, also using this method, Loxodonta africana microRNAs CNV 
landscape seems to have a different pattern as compared to the other cancer resistant 
species (Figures 2C, and Supplementary material), confirming, our idea of identifying 
the elephant as outlier species of the cancer -resistant group (See Discussion 
paragraph). 
 

3.2. Cancer related MicroRNAs pathways are the most enriched 

biological families. 
Our analysis shows an enrichment of onco-miRNAs amplifications in the cancer -
prone species group. According to our results, important tumor-related miRNAs are 
able to discriminate between the two organism categories. In particular, miR-424 (p-
value = 0.009), miR-372 (p-value = 0.010), miR-107 (p-value = 0.022), miR-124 (p-value 
= 0.022), miR-506 (p-value = 0.029), miR-511 (p-value = 0.029), miR-378A (p-value = 
0.030), miR-1 (p-value = 0.032), miR-206 (p-value = 0.032), and miR-340 (p-value = 
0.032), are the most significant microRNA hits, which possess a suppressor and/or 
oncogenic role (Figure 1C). Given the high diversity among our species, we used the 
generalized least squares (PGLS) phylogenetic method (Orme., 2013) in order to assess 
whether copy number and cancer incidence rates evolved in a dependent manner 
along the tree, or if their relationship might be the consequence of common ancestry, 
resulting in similar patterns of miRNAs copy number alteration (Supplementary Data 
S1). Indeed, as shown in Figure 1C-D, the PGLS comparative method was used to 
establish the association between the cancer incidence rate and the number of the total 
significant microRNAs taking into account the genetic structure of the population, 
which outputted a significant correlation between the two traits independently of the 
shared evolutionary history of the species (adjusted R2 = 0.5173; p-value = 0.01746). 
 

3.3. ORA analysis confirms a significant enrichment in the 

miRNAs gene family. 
To confirm the hypothesis that microRNAs CNVs can represent one of the most 
important gene family that can potentially discriminate for cancer predisposition, we 
also performed an Over-Representation Analysis (ORA) (Liao et al., 2019) on the total 
list of significant genes, in order to underlie functional enriched candidates potentially 
related to cancer (Table 2). The most enriched pathways outputted by ORA analysis 
were: “MicroRNAs in cancer”, “miRNAs involved in DNA damage response”, 
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“Metastatic brain tumor”, “miRNA targets in ECM and membrane receptors'', “let-7 
inhibition of ES cell reprogramming”, and “miRNAs involvement in the immune 
response in sepsis” (Kanehisa, 2019; Martens et al., 2021). These results indicate that 
the most deregulate genes were miRNAs involved in cancer initiation, chronic 
inflammation, and immune response. Remarkably, performing the ORA analysis 
applying PANTHER algorithm (Thomas., 2003), we also found a significant 
enrichment in the “Cadherin signaling network”, which is a well-known molecular 
pathway de-scribed as a key player in cancer (Kourtidis et al., 2017). 
 

 Description FDR (BH) Genes 

KEGG 

MicroRNAs in 
cancer 

0 

MIR103A1; MIR103A2; MIR107; MIR124-1; MIR124-2; 
MIR124-3; MIR1-1; MIR1-2; MIR206; MIR100; MIR10A; 

MIR10B; MIR129-1; MIR129-2; MIR15A; MIR15B; MIR193B; 
MIR199A1; MIR199A2; MIR199B; MIR203B; MIR21; 

MIR223; MIR31; MIR99A; MIRLET7A1; MIRLET7A3; 
MIRLET7F2; MIR29B1; MIR29B2; MIRLET7G; MIRLET7I; 

MIR221; MIR222; MIR23A; MIR23B; MIR27A; MIR27B; 
MIR30C1; MIR30C2; MIR30A; MIR30B; MIR30D; MIR30E. 

Taste transduction 3.16E-10 
TAS2R10; TAS2R13; TAS2R14; TAS2R19; TAS2R20; 
TAS2R3; TAS2R30; TAS2R31; TAS2R42; TAS2R43; 

TAS2R45; TAS2R46; TAS2R50; TAS2R7; TAS2R8; TAS2R9 
Progesterone-
mediated oocyte 
maturation 

2.43E-04 
SPDYE1; SPDYE11; SPDYE16; SPDYE17; SPDYE2; 

SPDYE2B; SPDYE3; SPDYE4; SPDYE5; SPDYE6; INS 

Oocyte meiosis 2.73E-04 
PPP3R2; SPDYE1; SPDYE11; SPDYE16; SPDYE17; SPDYE2; 

SPDYE2B; SPDYE3; SPDYE4; SPDYE5; SPDYE6; INS 

PANTHER Cadherin signaling 
pathway 

0.040196 
PCDHB14; PCDHB7; PCDHGB1; PCDHB16; PCDHB6; 

PCDHGB4; PCDHGA6; PCDHGB6; PCDHGB7 

Wikipathway 

miRNAs involved 
in DNA damage 
response 

3.76E-09 
MIR371A; MIR372; MIR542; MIR100; MIR15B; MIRLET7A1; 

MIR374B; MIR221; MIR222; MIR23A; MIR23B; MIR27A; 
MIR27B 

Alzheimers Disease 5.31E-05 
MIR124-1; MIR124-2; MIR124-3; MIR10A; MIR129-1; 

MIR129-2; MIR199B; MIR21; MIR433; MIR671; MIR873; 
PPP3R2; MIR29B1; MIR30C2; MIR219A2 

Metastatic brain 
tumor 

0.00230738 
MIRLET7A1; MIRLET7A3; MIRLET7F2; MIR29B1; 

MIR29B2; MIRLET7G 
miRNA targets in 
ECM and 
membrane receptors 

0.00230738 
MIR107; MIR15B; MIR30C1; MIR30C2; MIR30B; MIR30D; 

MIR30E 

MicroRNAs in 
cardiomyocyte 
hypertrophy 

0.00276823 
MIR103A1; MIR103A2; MIR140; MIR15B; MIR185; 
MIR199A1; MIR199A2; MIR23A; MIR27B; MIR30E 

Cell Differentiation 
- Index 

0.01250606
3 

MIR1-1; MIR206; MIR199A1; MIR199A2; MIR221; MIR222 

let-7 inhibition of ES 
cell reprogramming 

0.01250606 MIRLET7A1; MIRLET7F2; MIRLET7G; MIRLET7I 

miRNAs 
involvement in the 
immune response in 
sepsis 

0.01427985 
MIR187; MIR199A1; MIR199A2; MIR203B; MIR223; 

MIR29B1; MIRLET7I 
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Cell Differentiation 
- Index expanded 

0.02382508 MIR1-1; MIR206; MIR199A1; MIR199A2; MIR221; MIR222 

Role of Osx and 
miRNAs in tooth 
development 

0.03346077 MIRLET7A1; MIRLET7F2; MIR29B1; MIRLET7G; MIRLET7I 

 
Table 2: Pathway analysis. Gene Over-Representation Analysis (ORA) using KEGG, PANTHER, and 
Wikipathway. The enrichment test used Benjamini-Hochberg's FDR correction (FDR < 0.05). CNVs data were 
previously analyzed by an unpaired 2-group Wilcoxon test (p-value < 0.05). Significant genes altered in their 
number of copies within the entire genomic landscape were used to perform the ORA analysis, which highlighted 
a significant enrichment in MicroRNAs and cancer related pathways. 

 
4. Discussion 

Being theoretically more susceptible to cancer, big and long living species need 
additional cancer defense molecular mechanisms. On the other hand, short living and 
small size organisms might not need them because of their lower intrinsic 
predisposition to cancer due to their short lifespan rate. CNVs can therefore be 
considered one of the multiple protection ways against tumor insurgence that can 
explain Peto’s paradox. In fact, we hypothesized that, all cancer resistant organisms 
implemented a series of molecular mechanisms aimed to preserve themselves from 
their cancer predisposition, which in turn depends on and derives from their own 
specific evolutionary history. We believe that CNVs that increase the onco-
suppressive capacity of specific genes, can be one of the excellent defenses against 
tumor diseases in species at risk. Indeed, some authors have recently suggested that 
one of the most effective cancer resistance strategies is represented by an 
augmentation in the number of copies of tumor suppressor genes (Vazquez & Lynch, 
2021). Parallelly, at a macromolecular level, a reduced cancer resistance rate could be 
caused by a selective loss of the same suppressor genes (Glenfield & Innan, 2021). For 
instance, CD52 gene (higher number of copies in the cancer prone group), a membrane 
glycoprotein expressed on the surface of mature lymphocytes, monocytes and 
dendritic cells, resulted as one of the most significant hits of our analysis (p-value = 
0.007). Recently, Wang and co-authors (J. Wang et al., 2020) identified CD52 as a key 
role player in tumor immunity, affecting tumor behavior by regulating the associated 
tumor microenvironment. With the same significant p-value of 0.007, we also 
identified SAT1 gene (higher number of copies in the cancer prone group) as one of 
the possible targets to be further investigated in the context of tumor onset. In 
particular, this gene can regulate and drive brain tumor aggressiveness, promoting 
molecular pathways in response to DNA damage and regulation of cell cycle (Thakur 
et al., 2019). Another significant gene resulting from our analysis was represented by 
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the SUMO protein family members (higher number of copies in the cancer resistant 
group). During cell cycle progression, many tumor suppressors and oncogenes are 
regulated via SUMOylation (Eifler & Vertegaal, 2015), a biological process that, if 
deregulated, can lead to genome instability and altered cell proliferation (Müller et al., 
2004). In this context, it is evident that some tumors could be dependent on the 
functional SUMO pathway, but whether it is required for tumor growth remains to be 
established. For this reason, SUMO2, SUMO3, and SUMO4 can be potentially 
exploited in further anti-cancer mechanisms investigations (p-value = 0.024 in the 
present study), in order to shed light on the regulatory mechanisms underlying the 
activity of SUMO machinery in an oncogenic framework. Among the most significant 
hits, we also retrieved some genes that are already known to be tumor suppressor or 
oncogenes (DMD and JUND respectively). Indeed, mutation or deregulated 
expression of Duchenne Muscular Dystrophy gene (DMD), is often linked to the 
development and progression of some major cancer types (Jones et al 2021), such as 
sarcomas, carcinomas, melanomas, lymphomas and brain tumors (Gallia et al., 2018; 
Ruggieri et al., 2019), being a well-known tumor suppressor in different types of 
human cancers. On the other hand, JUND (member of the AP-1 family), that is related 
to MYC signaling pathway, regulates cell cycle and proliferation, and its 
overexpression is linked to many types of cancer cell (PCA i.e.) (Elliott et al., 2019).  
Notably, our results show that miRNAs are the most enriched gene family in dis-
criminating between cancer-prone and cancer-resistant species. The specific role of 
these miRNAs is not yet fully understood, but we speculate that some of them possess 
important regulatory functions aimed at defending some species (big size and long 
lifespan organisms) from cancer, while, at the same time, they are capable of exposing 
others to tumorigenesis (small size and short lifespan mammals). MicroRNAs 
(miRNAs) are small post-transcriptional molecular regulators, which are able to 
modify gene expression levels increasing the amount of mRNA degradation or 
inhibiting protein translation (Schmiedel et al., 2015). Since each single miRNA can 
regulate the expression of dozens of genes, many authors were able to correlate their 
activity with cell development, homeostasis, and disease (Martinez-Sanchez & 
Murphy, 2013), including cancer (Iorio et al., 2007; Jansson & Lund, 2012). Indeed, 
some tumorigenic events are caused by a malfunction in the heterogeneous regulatory 
activity of microRNAs inside the eukaryotic cells. Depending on the specific tissue 
and on the relationship with the immune system, they can behave both as tumor 
suppressors and as oncogenes (Svoronos et al., 2016). Furthermore, epigenetic factors 
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and species genetic predisposition can drive their double side behavior, although 
some of them are evolutionarily conserved within vertebrate taxonomic families 
(Bartel, 2018). Several miRNAs have been already previously described in literature 
as oncogenes and tumor suppressors. For example, miR-424 is known to be a human 
tumor suppressor that can inhibit cell growth enhancing apoptosis or suppressing cell 
migration (Xu et al., 2013). MiR-372, instead, can participate in WNT cancer molecular 
pathway (Fan et al., 2018), whereas the overexpression of miR-107, mediating p53 
regulation of hypoxic signaling, can suppress tumor angiogenesis and growth in mice 
(Yamakuchi et al., 2010). MiR-1 is another example of tumor suppressor microRNA 
that has been previously found significantly down-regulated in squamous carcinoma 
cells (Nohata et al., 2011). MiR-30b and miR-30d are considered suppressors in those 
tumors that do not involve immune cells, whereas they have been found upregulated 
in melanoma (Gaziel-Sovran et al., 2011). Similarly, for the first time, our analysis 
revealed several miRNAs candidates that might be involved in a mammalian species 
cancer predisposition (Figure 1C). 
 
Interestingly, all the miRNAs we have found show many more copies in the cancer 
prone group compared to the cancer free species, and most of them are well known as 
oncogenes (miR-221, miR222, and miR-372, etc.). MiR-372, for instance, is not present 
in cancer free species, whereas it shows multiple copies in almost all those ones 
belonging to the cancer prone group. This microRNA can play a pivotal role in the 
initiation of breast cancer and may activate WNT and E2F1 pathway during the 
epithelial-mesenchymal transition process (Fan et al., 2018; Sun & Gao, 2018). We also 
found an amplification in the cancer prone category for miR-221 and miR-222. 
Extensive literature has described these two RNAs as oncogenes, being deregulated 
in primary brain tumors and in Acute Lymphoid Leukemia among other malignancies 
(Ciafrè et al., 2005; Di Leva et al., 2010). According to our results, surprisingly, cancer 
prone species showed an amplification of miR-15 tumor suppressor, which is known 
to be able to regulate cancer proliferation initiation by targeting BCL2 gene (Cimmino 
et al., 2005). Our hypothesis is that this apparent paradox may underlie a defensive 
role of this microRNA in those species that are, a priori, susceptible to tumor 
insurgence. Indeed, according to the so-called “gene dosage hypothesis”, gains or 
losses of specific gene copies can have a dramatic impact on the fitness of a species, 
leading to altered phenotypes due to the change in the expression levels of the affected 
genes (Tang & Amon, 2013). On the other hand, oncogenes amplification or tumor 
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suppressors deletions are not always detrimental, but can recapitulate tumorigenic 
events, being drivers or modulators of the disease (Gordon et al., 2012). As mentioned 
before, in fact, differences in ecology and evolutionary history are believed to give rise 
to significant differences between short and long living animals (Kirkwood, 2017), and 
consequently in cancer prone and resistant species. In 2020, Tollis and co-authors 
(Tollis et al., 2020) showed that, mammalian lifespan can be correlated to both 
suppressor genes and of oncogenes CNV, a phenomenon that they themselves called 
"paradoxical". Interestingly, our analysis also leans in the same direction, suggesting 
that where high copy numbers of oncogenes might shorten lifespan, they must 
somehow be counterbalanced by higher copy numbers of TSGs. 
In this framework, compared to the other mammals, elephant miRNAs amplification 
signature resembles the organisms of cancer prone group (Figure 1C-D). In fact, it 
showed an alteration in the copy numbers of known oncogenes, such as miR-221 and 
miR-222, together with miR-30b/d and miR-31. In our opinion, Loxodonta africana, 
should be placed in a new category of organisms, which share both oncogenic and 
cancer free characteristics, being also clustered as outlier species of the cancer resistant 
group (Figure 2B). During the evolution, elephants may have selected molecular 
defenses, such as the amplification of TP53 and pseudogenes (Abegglen et al., 2015; 
Sulak et al., 2016), with the aim to defend their cells from the tumorigenic action of a 
high percentage of onco-miRNAs copy number amplification and high longevity. 
Consequently, an additional amplification in the number of tumor suppressor 
microRNAs would have not been sustainable/useful in term of fitness and/or 
survival. The hypothesis is that species with bigger sizes and longer lifespans have an 
expanded number of TSGs, which is even higher than the one of their oncogenic 
counterparts. In this way the direct elimination of oncogenes which implies elevated 
costs in terms of growth and cellular functions maintenance can be avoided, thus 
reducing the cancer incidence risk. In support of this, recently, Vazquez and Lynch 
(2021) (Vazquez & Lynch., 2021) reported that, within the Afrotheria order, the tumor 
suppressor genes found in an altered number of copies was relatively lower compared 
to what might be expected. This finding can mirror the trade-off mechanism that 
natural selection has developed during evolution in order to compensate for the multi 
copies effect which can lead to an increased risk of cancer, due to the unbalanced 
number of copies of the same genes. Indeed, long-living species might possess 
mechanisms which are capable of maintaining the equilibrium between proliferation 
and tumor control. Their regulatory networks can create positive feedback in which 
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the amplification of tumor suppressor families functions as a buffer against the 
oncogene co-expansion, or vice-versa (Tollis et al., 2020). On the other hand, cancer-
prone organisms included in our analysis, do not develop these gene defenses because 
they have a lower lifespan, which does not make them particularly exposed to a severe 
lack of fitness due to cancer progression (except in the case of Homo sapiens that has 
reached a high lifespan only recently, thanks to the advance of medicine treatments 
and health care). 
 

5. Limitations and Perspectives 
Gene duplication is a fundamental process that can lead to the emergence of new 
phenotypic traits. Analyzing patterns of gene copy number alteration across the 
genome of large and long-living organisms, may reveal new insights about those 
mechanisms underlying cancer resistance in mammals (Abegglen et al., 2015; Tejada-
Martinez et al., 2021; Tollis et al., 2020). Here, we have developed a simple way to test 
the hypothesis that CNVs confer protection or increase vulnerability to cancer among 
species. Using the absolute number of copies of each gene by species, we were able to 
identify, for the first time, an alteration in miRNA CNVs, that are overrepresented and 
enriched in molecular pathways related to cancer. Further analyses will help to 
validate these findings by better defining the correlation between miRNAs and their 
targets. In our opinion, studying microRNAs that are related to human malignancies 
from a comparative genomics perspective, can provide additional clues about their 
role, and potentially point towards novel targets involved in tumorigenic diseases. 
Focusing on patterns of miRNAs copy number changes may, for the first time, give 
new insights into the conserved molecular pathways influencing cancer incidence 
across species, and may lead to the discovery of novel therapeutic approaches. 
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<0.05) applied on the total genomic CNVs landscape of the selected species. 
Table S4: Pathway analysis – extended version. Gene Over-Representation Analysis 
(ORA). The enrichment test used Benjamini-Hochberg's FDR correction (FDR < 0.05). 
CNVs data were previously analyzed by an unpaired 2-group wilcoxon test (p-value 
< 0.05). 
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S1: PGLS modelling results: Cancer incidence rate ~ miRNAs CNVs. 
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Chapter IV:  
 
 
Saccharomyces cerevisiae: a 
budding model for cancer and 
ageing research. 
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Even though the quest of eternal youth has always fascinated mankind, the interest in 
aging research only boomed around the beginning of the 1990. At that time, Johnson 
and Kenyon were among the first scientists to identify genes that appear to control 
lifespan, challenging former beliefs according to which longevity was predetermined 
and immutable. Specifically, a mutation in age-1 gene was found to increase the mean 
lifespan of C. elegans by about the 65%, whereas the deletion of the gene daf-2 granted 
adult hermaphrodites worms as much as a twice longer longevity compared to their 
wild-type counterpart (Johnson, 1990; Kenyon et al., 1993). This guided the current 
currents of thought towards the idea of aging as a process not genetically immutable. 
From this point and forward, hundreds and hundreds of genes regulating lifespan 
have therefore been identified, in multiple species and different conditions, leading to 
the fundamental conclusion that the mechanisms underlying aging are highly 
conserved from yeast to humans (Kenyon, 2010). The budding yeast Saccharomyces 

cerevisiae is a single-cell organism from the fungi kingdom, which has extensively been 
exploited by humans for thousands of years in food and beverage making processes. 
Although unicellular, yeasts usually live included into a colony organization. Yeasts 
mostly reproduce by asexual mitotic growth through a process called budding, during 
which the "mother cell" produces a protrusion, commonly referred to as a “bud”, that 
eventually forms a genetically identical newborn daughter cell. However, S. cerevisiae 
is also able to enter sexual reproduction when subjected to stress or nutrient depletion, 
initiating both meiosis and sporulation at the same time to form dormant gametes 
embedded into a protective spore wall (Figure 1).  

 
The co-evolution of gametogenesis and sporulation is thought to result from a 
selective advantage driven in wild habitats as it leads to an increased genetic diversity 

Figure 1: Heterogenous population of single, budding, and tetrad cells 
of Saccharomyces spp. under the microscope. 
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to better cope with changing environments, while it offers an enhanced protection 
against external stresses such as heat, desiccation, or digestive tract enzymes (Coluccio 
et al., 2008; de Chiara et al., 2022). In the last decades, S. cerevisiae has become a pivotal 
eukaryotic model system which led to the discovery of major biological processes in 
eukaryotes, owing to the remarkable properties of this simple organism (Botstein and 
Fink, 2011). Firstly, with a doubling time of less than 2 hours, it can be easily cultured 
in laboratory conditions, allowing rapid production and maintenance of multiple 
strains at very low costs. Secondly, S. cerevisiae was the first fully sequenced eukaryotic 
organism (Goffeau et al., 1996), and its small genome (12Mb) split in 16 chromosomes 
is the best annotated one as of today (www.yeastgenome.org). Taking advantage of 
its proficient homologous recombination repair machinery, S. cerevisiae can be easily 
genetically engineered with gene deletions or insertions, controlled gene expression, 
or recombinant DNA (Ito et al., 1983). Thanks to these features, researchers can tweak 
yeast genomes in almost any possible way and within a very short time-lapse. This 
enabled the construction of multiple genome-wide yeast collection mutants, which 
allowed to unravel gene functionality at an unprecedented level (Ho et al., 2009; Huh 
et al., 2003; Giaever et al., 2002; Winzeler et al., 1999). Thirdly, being eukaryote, yeasts 
share most cellular, molecular, and metabolic processes in common with multicellular 
eukaryotes. In addition, numerous genetic pathways are conserved from yeasts to 
mammals and about 17% of S. cerevisiae genes belong to orthologous gene families 
associated with human diseases (Heinicke et al., 2007). For all these reasons, S. 

cerevisiae is at the forefront of the new emerging fields of functional genomics and 
systems biology, which aim at developing a more holistic understanding of the 
cellular machinery and how it eventually defines any given living entity. 
 
Maybe more unexpectedly, S. cerevisiae is also used as a prime model in ageing 
research to study two distinct paradigms: the replicative and the chronological 
lifespans. The replicative lifespan (RLS), refers to the total number of divisions a yeast 
cell can undergo before entering senescence (~25, depending on the strain 
background) (Stumpferl et al., 2012; Zhang et al, 2012;  Kaeberlein, 2010; Mortimer and 
Johnston, 1959), whereas the chronological lifespan (CLS) is defined as the duration 
yeast cells can survive in a non-proliferative state (up to several weeks, depending on 
the strain background and the environment) (Longo et al., 2012; Fabrizio & Longo, 
2003; MacLean, Harris, and Piper, 2001). In particular, RLS helps to investigate the 
ageing processes affecting proliferative tissues, such as lymphocytes or fibroblasts 
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(Wasko and Kaeberlein, 2014; Longo et al., 2012; Steinkraus et al., 2008), while CLS is 
used to untangle the mechanisms underlying maintenance of post-mitotic tissues, 
such as mature neurons or muscular cells (Ruetenik and Barrientos, 2015; Longo and 
Fabrizio, 2012; Longo et al., 2012; Longo et al., 1996;) (Figure 2). 
 

 
In nutrient rich conditions, S. cerevisiae asymmetrically divides by mitosis leading to a 
different partitioning of cellular components between mother and daughter cells. The 
latter specifically inherits damage free material through a tightly regulated filtering 
process occurring at the bud neck, whereas the former retains altered constituents 
such as carbonylated proteins, deficient mitochondria, impaired vacuoles, and 
episomal DNA. This leads to the rejuvenation of newborn daughters at each division 
and fully resets their replicative potential, thus preventing the senescence and 
extinction of the cellular lineage (Denoth Lippuner et al., 2014). However, because 
nutrients are scarce in natural habitats and because yeasts divide exponentially and 
readily saturate their environment, yeast cells have mostly evolved in non-
proliferative conditions, a situation in which they tend to exit the cell cycle and to 
sustain in a reversible and resilient quiescent state (de Virgilio, 2012; Gray et al., 2004). 
Interestingly though, it was observed that not all cells are able to enter quiescence 
upon nutrient exhaustion and that stationary phase cultures are a complex mixture of 
heterogeneous cell types with very variable life expectancies (Allen et al., 2006). 
During aging, both models exhibit signs of physiological decline as observed in 
multicellular organisms. Cells undergoing RLS exhibit a gradually slower growth rate 
and experience a drop in fertility and mating efficiencies (Lee et al., 2012), while 
chronologically ageing cells progressively lose their replicative potential (Ashrafi et 
al., 1999). However, the common denominator between the RLS and CLS paradigms 
lies on the innate damage limit a cell can tolerate before becoming irreversibly 

Figure 2: The two ageing paradigms of S. 
cerevisiae. Chronological Life Span (CLS) 
represents the time cells can sustain under 
non-proliferative conditions; Replicative 
Life Span (RLS) refers to the number of 
divisions a mother cell can undergo before 
senescence. 
(Source: Wauters, Britton, & Verstrepen 
2021). 



 113 

impaired. Nowadays, there is a wide understanding of the genetic factors controlling 
both aging models. Indeed, hundreds of genes regulating lifespan have been 
described and linked to cellular processes involved in aging, such as: 

• mitochondrial functioning, 

• amino acid homeostasis, 

• glycogen accumulation, 

• apoptosis, 

• regulation of the cell cycle, 

• TOR and protein kinase A (PKA) signaling, 

• autophagy, 
(Campos et al., 2018; Garay et al., 2014; Gresham et al., 2011; Fabrizio et al., 2010; 
Alvers et al., 2009; Powers et al., 2006). Additionally, aging is accompanied with a raise 
in genomic instability that occurs in both yeast aging systems, akin to what is observed 
in higher eukaryotes. Indeed, it was found that the rate of Loss of Heterozygosity 
(LOH), which results from the semi-conservative repair of double strand breaks by 
homologous recombination, exponentially scales in old cells during replicative 
lifespan, fostered by increasing replication stress and mitochondrial dysfunction 
(Lindstrom and Gottschling, 2011; Veatch et al., 2009; McMurray and Gottschling, 
2003). During CLS, DNA damage mainly occurs in the form of base substitutions, 
indels, gross chromosomal rearrangements (Wei et al., 2009; Fabrizio et al., 2004; 
Maclean et al., 2003; Longo et al., 1999), and also as LOH (Qin et al., 2008). Moreover, 
induction of replicative stress through deletion of genes involved in DNA repair 
shortens CLS by preventing cells from entering into quiescence (Weinberger et al., 
2013; Weinberger et al., 2007; Laschober et al., 2010). 
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1. My experience with S. cerevisiae ageing research 
Starting in September 2020, I spent 9 months as a visiting Ph.D student in the 
"Population Genomics and Complex Traits" team led by Dr. Gianni Liti, at the Institute 
for Research on Cancer and Aging (IRCAN), in Nice, France. The team uses both 
experimental approaches and bioinformatics to discover and untangle the architecture 
and the evolution of S. cerevisiae genome, and to understand how genetic diversity 
drives phenotypic variation. In 2018, they contributed to the development of the 1011 
Yeast Genomes Project (Peter et al., 2018), which provides genomics data from over a 
thousand natural yeast isolates and thus constitutes the most comprehensive study of 
yeast population genomics to date. Besides genome evolution, downstream 
applications of this resource will substantially help to dissect the architecture of 
complex traits as it enables the usage of Genome-Wide Association studies in yeasts 
for the first time. Specifically, during my stay, I have been working on two projects 
related to genetic instability in chronologically ageing cells, and to the identification 
and validation of natural genetic drivers of CLS, thus having the opportunity to 
combine my bioinformatics background to the exploration and the learning of 
advanced experimental approaches already used in the team. During chronological 
aging, cell survival can be measured in different ways (Figure 3B). Generally, counting 
the colony forming units (CFU) able to grow on solid selective medium over time is 
the gold standard approach (Mirisola et al., 2014; Piper, 2011). However, because this 
method is poorly accurate, error prone, and low-throughput, scientists started to 
develop alternative procedures to substantially increase the scalability of yeast CLS 
assays and to allow systematic screening of large collections. One of these methods 
relies on the usage of fluorescent viability markers, such as Propidium Iodide (PI), 
which is unable to enter living cells, while it specifically stains dead cells upon 
membrane disruption. This approach can readily be coupled with high-throughput 
flow cytometry and enables to automatically obtain a direct estimation of cell viability 
at any given time point (Barré et al., 2020). Specifically, this is the technology I have 
learnt and used in the following projects I was involved with. 
As previously mentioned, genome instability is one of the hallmarks of cancer and 
ageing. Earlier studies in S. cerevisiae have provided direct evidence of increased 
genomic instability in replicative old cells, and more particularly of LOH, which 
however has not been studied in CLS so far (McMurray & Gottschling., 2003). 
Accordingly, my task was to use yeast genetics and genomics tools to determine the 
occurrence of LOH in chronologically aged cells. I have applied a simple genetic 
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system described in Mozzachiodi et al., (2021), in order to measure the LOH rate in 
five different diploid yeast backgrounds. In a few words, I used engineered yeast 
strains carrying a replacement of the LYS2 gene with the URA3 one, and measured 
how often this URA3 marker was lost due to LOH events (Figure 3A). To do this, I 
used a so-called “URA3-LYS2” system, based on the counterselection of clones able to 
grow in a solid media containing 5-fluoroorotic Acid Monohydrate (5-FOA). In 
normal conditions, 5-FOA is specifically recognized as a substrate of the enzyme 
encoded by URA3 gene and is metabolized into a toxic compound for the cells. Hence, 
only cells becoming URA3-/URA3-, by substitution of URA3 with LYS2 resulting 
from a LOH, can grow on media supplemented with 5-FOA. Thanks to this simple 
approach, it is possible to count, select and identify URA3- cells, and therefore to 
quantify the LOH rate of yeast cells at different ages (Figure 3C).  
 

I hypothesized that yeast capacity to maintain genomic integrity during ageing should 
gradually decrease and may underlie or, at least, correlate with the variation in 
chronological lifespan of the different strains tested. In this context, the rate of LOH 
events, measured as described below (Equation 1), is expected to represent the level 
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Figure 3: CLS-LOH experiment: methods and preliminary results.  
A, URA3-LYS2 system used for measuring LOH rate 
(Source: adapted from Mozzachiodi & Tattini et al., 2021).  
B, Experimental procedure of CLS assay 
(Source: adapted from Chadwick et al., 2016; Kwolek-Mirek & Zadrag-Tecza., 2014; Longo et al., 2012). 
C, Preliminary results of my CLS-LOH assay, performed in the NA/NA yeast strain background, using 
three different genetic constructions (wild-type, NDT80 gene knock-out, and IME1 gene knock-out). 
From the left to the right: row LOH rate, NA/NA Cell Survival, and LOH rate ~ Cell Viability. 
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of genomic instability occurring during chronological lifespan, which should correlate 
with the loss of cell viability. 

 
Parallelly, in addition, I participated in a population genomics project whose scope 
was to understand how human domestication remodeled key features of the yeast life 
cycle by studying a large collection of 1011 natural yeast isolates (de Chiara and Barré 
et al., 2022). Relying on a gene candidate approach and on Genome-Wide Association 
studies (GWAS), the final objective was to identify and validate the genetic variants 
driving this domestication syndrome. In this context, I had the opportunity to learn 
innovative techniques of molecular biology such as cloning and genome editing. Then, 
I leveraged these techniques to validate by genetic engineering multiple candidate 
polymorphisms falling in different categories: single nucleotide variants, Copy 
Number Variations, gene presence/absence, and losses of function. More specifically, 
I focused on the validation of CLS candidates, for which we mapped potential 
causative variants in the genes WHI2 and HPF1 (Figure 4A). We found loss of function 
mutations in the transcription factor WHI2, which were associated with short living 
isolates. I substituted the impaired WHI2 allele with a functional one, which rescued 
the short lifespan of the strains tested (Figure 4B). Therefore, I could validate the effect 
of WHI2 loss-of-function on CLS as predicted in silico. Moreover, one of the strongest 
hits mapped as a genetic determinant of the CLS variation, was the presence/absence 
of a sequence we called HPF1-like, which was also associated with shorter lifespan 
when present. This gene corresponds to a functionally unknown open reading frame 
(ORF) that shares identity with the gene HPF1 that encodes for a cell wall protein. 
Accordingly, to test the detrimental incidence of HPF1-like on CLS, I fully deleted this 
gene in five different strain backgrounds. In three out of five strains, I observed a 
significant lifespan extension after removing HPF1-like. Likewise, I was able to relate 
the presence of HPF1-like to chronological life span shortening as predicted, even 
though the different results observed across genetic backgrounds suggest the 
existence of epistatic interactions that may buffer the effect of this gene (Figure 4C). 
 
 

!"#(%) = 	)*+,-.	/0	1-223	45	5 − 8/9 )*+,-.	/0	1-223	45	:;<= × 100	

Equation 1: LOH rate calculation 
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Figure 4: Genetics variants impairing yeast CLS. A, GWAS-Manhattan plot showing different CLS hits 
(experimental condition: Caloric Restriction, Day7). B, WHI2 Loss-of-function variants depicted in the 
upper panel have been associated with yeasts lifespan shortening. The replacement of the functional 
allele extended the lifespan rate in 3 out of the 4 tested strains. C, HPF1-like presence/absence variant 
have been associated to a yeast life span shortening. Knock-out of HPF1-like extended the lifespan rate 
in 3 out of 5 tested strains. 
(Source: adapted from de Chiara & Barré et al., 2022) 
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“It’s easy to make things worse [with a single mutation], but it’s much 

more difficult to make them better.” 

Vadim Gladyshev 

 
Aging is considered one of the risk factors of cancer insurgence due to the mutational 
burden derived from cell division and DNA replication. By definition, the cancer 
process is triggered by a cell that begins to behave abnormally, thus starting to divide 
in an uncontrolled manner probably due to a somatic genomic alteration. Previous 
theories (Burnet., 1974; Kirkwood & Holliday., 1979) have predicted an inverse 
correlation between the rate of somatic mutation and the species lifespan (Cagan et 
al., 2022). Indeed, as an organism ages, its cells might constantly accumulate DNA 
damage in time. Theoretically, each cell has the same probability to develop cancer, 
converging towards the idea that organisms possessing more cells and higher life 
expectancy should be more prone to the disease development. Therefore, animal of 
extreme large size such as whales or elephants, which possess thousands more cells 
than humans, should have a much higher risk of developing cancer, and consequently 
a relatively shorter life span. As extensively described in the introductory chapter, 
however, the scenario is not always as theoretically thought. The non-correlation 
between cancer occurrence and body size among species has been coined as Peto’s 
paradox, which states that, although the association between the size/longevity of a 
species and its cancer incidence should be positively correlated, in nature, this 
relationship is not always respected (Peto et al., 1975). According to this, since each 
cell division has an identical probability of generating these errors and bring to a 
malignant transformation, all those species representing positive longevity outliers in 
relation to their body-size, should present greater cancer rates than their smaller 
counterpart, mainly because of the higher number of cell divisions (Caulin & Maley, 
2011). Indeed, the disparity with this Peto’s null hypothesis, in which each cell is 
assumed to have an identical probability of malignant transformation, is particularly 
important for understanding additional and more efficient mechanisms serving as 
defense weapons against cancer onset. Since these rates are expected to raise the risk 
of cancer occurrence, special mechanisms must necessarily exist to make large and 
long-lived species different from all the others. Scientists often use logic in order to 
show relationships between the parts of an idea and the whole thought, but it is not 
always easy to find logic confirmations in Natural laws. As Albert Einstein would say, 
logic would bring us straight from A to B, while imagination would take us 
everywhere. Here, we are not speaking about pure imagination, but mainly referring 
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to some unknown strategies whereby some animals have increased their size and life 
expectancy, overcoming the threshold of the disease onset, or increasing its 
suppression. Indeed, there are some animals that, in addition of being huge and make 
up by an enormous number of cells, not only survive to reach what we would call “old 
age”, but they also show very low cancer incidence rates. What is currently known 
and accepted is that natural selection on large size and/or extended longevity must 
intrinsically walk parallel and inseparably from the anti-cancer defenses evolution. In 
this context, what we can learn from solving this enigma, could therefore greatly 
contribute to increase the understanding of natural anticancer mechanisms, which 
could potentially be exploited in the future (bio) medical research. In this context, 
comparative genomics is just one of the multiple methods and biological tool required 
to investigate the mechanisms underlying Peto's paradox. Few months ago, Vincze 
and collaborators (Vincze et al., 2022), published on the prestigious Nature journal one 
of the most thorough review and examination of the paradox across species to date, 
finally concluding and confirming the independence of the cancer risk from body size 
and life expectancy. Interestingly, according to the authors, the solution to the paradox 
lies in the co-evolution of potent cancer resistance strategies and tumor suppressive 
mechanisms, which appear to have evolved along with the high longevity of very 
large and long-living animals. 
 
In the framework of this work, I have examined a precise and determined angle by 
which Peto's paradox can be resolved. On the one hand, this includes the duplication 
of tumor suppressor genes, whereas, more generally, on the other, it considers the 
overall alteration of the CNVs landscape of cancer-related and non-cancer-related 
genes as biomarkers of the species tumor predisposition. Gene duplication, in 
addition to being one of the fundamental strategies for the emergence of new genetic 
traits (Ohta, 1989), is also one of the main contributors to the adaptation to unfavorable 
conditions and environments, as well as responsible for the evolution and the 
maintenance of growth, development, and cell regulatory pathways (Magadum et al. 
2013). Therefore, in order to shed light on what are the mechanisms underlying cancer 

resistance and high longevity of certain mammals, it is fundamental and promising 
to investigate gene copy number alteration in these outliers organisms using a 
genomic approach, and, more specifically, performing comparative oncology analysis 
across species from an evolutionary and candidate gene perspectives (Abegglen et al., 
2015; Caulin et al., 2015; Caulin and Maley, 2011; Fang et al., 2014; Gorbunova et al., 
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2014; Keane et al., 2015; Kim et al., 2011; Seim et al., 2013; Tollis et al., 2017; Vazquez 
et al., 2018; Vazquez and Lynch, 2021). 
 
In Chapter II, I have presented and described VarNuCopy, the new database I have 
developed during the course of my doctoral studies, and which represents the first 
online database of CNVs across the animal kingdom (Vischioni et al., 2022), enabling 
visual, interactive exploration, and analysis of gene copies alterations landscape 
among multiple species. From the very beginning, the goal of my project was to build 
a useful tool freely available for the scientific community, which would have filled the 
the lack of a user-friendly instrument able to investigate the relationship between 
genes number of copies among species, having the ultimate aim of identifying new 
molecular markers involved in the processes of tumorigenesis. In fact, nowadays, 
VarNuCopy is the first tool allowing a multi-species gene copy number comparison, 
both for model and non-model organisms in biomedicine. More specifically, it exploits 
CNVs data to highlight genes relevance, supporting different types of statistical 
measures, graphs, and classification criteria for their effective visualization. Therefore, 
users can explore the platform performing customize research processes by repeating 
multiple cycles of visualization and interactive commands. With the help of my 
collaborators, I built our database following an Exploratory Data Analysis approach, 
thanks to which the platform is able to perform and easily return the statistical 
information related to the genes number of copies, thus comparing them among the 
different target groups. This type of interaction, coupled with the outputs of the DAMs 
reports, guides the users towards the discovery of new molecular mechanisms, or the 
deepening of those already known to be related to the cancer susceptibility of a 
species. The data underlying VarNuCopy have been obtained through a homemade 
script written in Perl 5.14 and Python 3, specifically coded to download CNVs values 
from Ensembl resources (http://www.ensembl.org). This allowed us to retrieve gene 
copy numbers across species without performing multiple pairwise and various 
genome alignments, thus using less computational resources. Moreover, these data 
are collected from CAFE algorithm estimations (De Bie et al., 2006), which has the 
advantage of including a priori the species phylogenetic tree and the related lineage 
information when outputting the CNVs data. As of today, the current version of 
VarNuCopy is freely available at http://isgroup.mat.unimore.it:8083/, but we plan 
to expand the functionalities of the database including other biological features such 
as networks and pathways information to the analysis and categorization, 
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implementing new genes classification algorithms such as the machine learning ones, 
and exploring new data mining and data discovery approaches. 
 
In Chapter III I have described the first results obtained thanks to the use of this new 
resource, which allowed me to identify the alteration of the microRNAs CNVs pattern 
as a hallmark of the cancer predisposition of a species. In particular, I developed a 
simple way to test the hypothesis that CNVs confer protection or increase 
vulnerability to cancer. In this context, we were able to identify, for the first time, an 
over-representation of the microRNAs CNV signature as enriched in cancer-related 
pathways. Although we have found statistical support in our hypothesis, this test did 
not pass the significance criteria after correction for multiple testing. However, we 
performed a generalized least squares (PGLS) phylogenetic method in order to 
establish the association between copy number and cancer incidence rates 
independently of the shared evolutionary history, the ancestry phenomena, or the 
species population structure. As a result, we obtained a significant and strong 
correlation between the two traits (adjusted R2 = 0.5173; p-value = 0.01746), confirming 
our hypothesis that additional data, such as a higher number of species, may be 
sufficient to straighten the statistical power of the different tests. Moreover, another 
caveat of the work can be represented by the fact that, sometimes, genomic data from 
online repositories can be incomplete, thus carrying assembly errors which can be 
translated into a misidentification of real deletions or expansion events. Because of the 
poor quality of many non-model-organism genomes, noncoding RNAs has been 
almost completely uncovered in the context of Peto’s paradox research. Conversely, 
thanks to the nature of our data, we were able to overcome these limitations, avoiding 
obtaining biased and unreliable CNVs data which can result from the commonly used 
BLAST alignment approaches. The Discussion paragraph included in Chapter III 
focused on giving examples from the literature of the identified miRNAs being 
involved in cancer. Here, we have classified miRNAs as oncogenes or tumor 
suppressors, justifying their specific behavior using different examples described in 
literature. We have chosen not to use an a priori classification in order to avoid failures 
in discovering new possible targets. Given the double side nature of microRNAs 
genes, which, as pointed above can act both as oncogenes or TSGs, we preferred to 
perform firstly the statistical analysis to identify the target, and secondly verify its 
possible functioning as onco-miRNA, or onco-suppressor. We think that this kind of 
approach allowed us not only to include as significant results those microRNAs not 
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usually known as cancer genes, but also to straighten our hypothesis that, indeed, 
microRNAs genes function as hallmarks and discriminants of a species cancer 
predisposition.  
 
An interesting future direction of this work would include an evolutionary analysis 
of duplicated genes relative to each other. Throughout the whole manuscript, I 
categorized the identified molecular targets in three different groups, represented by 
tumor suppressors, oncogenes, and other non-cancer-related genes. However, the 
dividing line between these classes is far from being defined. Indeed, as it also 
happens in the case of the microRNAs family, many genes can act as either 
suppressors or oncogenes, depending, for example, on their expression condition or 
the variation signatures they are subjected with time. A recent paper published by 
João Pedro de Magalhães (de Magalhães, 2021), has highlighted that, nowadays, 
relying on literature and public databases, such as PubMed 
(https://pubmed.ncbi.nlm.nih.gov/), any human gene have been studied and 
possibly associated in the context of cancer. Surprisingly, according to his work, the 
87.7% of human genes reported in scientific literature, can be also found in at least one 
paper mentioning cancer, underlying that, most of the genes has been already studied 
in the context of this disease. Indeed, I do agree with the author in thinking that the 
real challenge of our genomics era is to identify which are the real key players acting 
in the disease, and to determine which are the promising therapeutic targets to direct 
the efforts and the resources of the scientific research. 
 
Human genes orthologs and homologs were used for my analyses, but, in doing this, 
we made the assumption that they perform the same function in the other species. 
However, we lack the experimental evidence that miRNAs and genes we have 
identified share the same molecular role in all mammalian species. In this perspective, 
all our targets need to be tested and validated in order to confirm their involvement 
in tumorigenic events and maintenance. Regarding this point, during my visiting 
period at IRCAN in Nice, besides the results I have already described along Chapter 

IV, I have also performed other experimental and computational works relevant for 
the final aim of this Ph.D thesis. Specifically, leveraging the CRISPR/Cas9 genome 
editing system (Hsu, Lander, and Zhang., 2014), I have started to set up a yeast-based 
genetic model to investigate the effect of copy number variation on candidate cancer-
related genes, using chronologically aged cells. Briefly, in this system, Cas9 enzyme is 
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used to cut the specific DNA region we are interested in, being leaded by a small guide 
RNA; once the sequence is targeted and cut, a synthetic cassette will, indeed, function 
as repair template in order to add, delete, or change the original DNA sequence, 
giving, as a result, the new edited fragment. In this framework, I have engineered 
some yeast strains with an additional copy of some of those genes found to be 
significant in the previously described analyses (Chapter II and Chapter III), such as 
HPA2, SCP1, and SMT3 yeasts orthologs/homologs genes (p-value of 0.007, 0.005 and 
0.01 respectively). My final aim was to investigate the effect of the extra-copy on the 
yeast ageing processes, verifying if this may impair CLS, and finally measure its 
impact on the strain genomic instability. Unfortunately, mainly due to timing 
constraints, I was unable to complete these experiments. However, this is still a 
promising open project that I would like to finalize, and through which possibly 
validate my bioinformatics results.  
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Chapter VI: 
 
 
Conclusion.  
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Age is one of the major risk factors for the development of cancer. With time, the 
interrelated connections between the mechanisms underlying aging and the ones 
responsible of tumorigenesis cause progressive deleterious changes affecting cells and 
organisms (Piano and Titorenko, 2015). Therefore, longer-living species must 
necessarily interface with the risk of fitness decrease, primarily due to changes in 
entropy levels or DNA molecular damages. In this perspective, comparative cancer 
research based on genetic and genomic investigations is a fundamental resource 
which can lead to the entanglement of the mechanisms behind cancer risk and 
development (Wong et al., 2019). Given the high heterogeneity level of tumor 
incidence values across species, to date, aging and cancer are studied using both 
standard and non-standard models, ranging from yeast and worms microorganisms 
(Kaphai et al., 2017; Longo et al., 2012), to bigger species such as mice or naked mole 
rats (Yuan et al., 2011; Ruby et al., 2018), elephants or whales (Vazquez and Lynch., et 
al., 2021; Abegglen et al., 2015; Keane et al., 2015). By exploiting the conserved features 
along the phylogenetic tree, multiple studies are shedding light on the protective 
mechanisms present in some species, with the final aim of improving our general 
understanding of cancer biology (Tollis, Schiffman, et al. 2017; Seluanov et al., 2018). 
Focusing on the resolution of Peto’s paradox, throughout this entire manuscript, I 
have examined different and unexplored area of comparative cancer genomics, 
coupling the evolutionary bioinformatic investigation of sequencing data with the 
development of new analytical tools. Indeed, in Chapter II, I have presented and 
described VarNuCopy, a new on-line resource representing the first database of CNVs 
across the animal kingdom (Vischioni et al., 2022). In Chapter III I have described for 
the first time the alteration of the microRNAs CNVs pattern as a hallmark of the cancer 
predisposition of a species. Finally, since most of the vertebrates aging hallmarks are 
also conserved in yeasts, Chapter IV, describes a new genetic system that I started to 
develop, which is useful to investigate the effect of copy number variation on 
candidate cancer-related genes and genomic instability. Altogether, I think that, 
nowadays, the current challenge is to develop and optimize new experimental design 
and strategies able to test the theoretical hypotheses deriving from this type of 
comparative studies, and to transfer the new acquisitive knowledge into the human 
(Holtze et al., 2021), and veterinary biomedical research. Indeed, whenever a potential 
cancer suppression mechanism is discovered in a species, there is the real possibility 
of identifying a new molecular target or therapeutic approach for the prevention of 
the disease. In conclusion, I personally believe that the bioinformatics results 
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highlighted in this thesis can be seen as a first starting point for a new wave of research 
in CNVs studies, opening the door to a new era of experimental validation in the 
context of comparative cancer genomics and evolution. 
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Species Common_name Mass_kg Lifespan_max_yr Metabolism Cancer
Heterocephalus_glaber Naked_mole_rat 0.035 32 0.136 NO
Nannospalax_galili Blind_mole_rat 0.325 21 0.585 NO
Dasypus_novemcinctus Armadillo 3.95 22.34 4.55 NO
Loxodonta_africana Elephant 4500 80 NA NO
Myotis lucifugus Little_brown_bat 0.01 34 0.051 NO
Mus_musculus Mouse 0.02 6 0.271 YES
Rattus_norvegicus Rat 0.28 5 1404 YES
Canis_familiaris Dog 40 24 17.25 YES
Homo_sapiens Human 70 80 76825 YES

Table S1: Species description. Phenotype characteristics the 9 species included in our analysis: name, mass (kg), 
maximum lifespan (years), metabolism (W), and “Cancer YES/NO” labelling. 

a https://genomics.senescence.info/ (Tacutu, R., Thornton, D., Johnson, E., Budovsky, A., Barardo, D., Craig, T., ... & de Magalhães, J. P. 
(2018). Human ageing genomic resources: new and updated databases. Nucleic acids research, 46(D1), D1083-D1090.)
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Cancer_rate (%) 0 0 2.7 4.81 0 43.5 87 23 22
ID [Hg] [Ng] [Dn] [La] [Ml] [Mm] [Rn] [Cf] [Hs] p-value
CD52 0 0 0 0 0 1 1 1 1 0.0072
CSN1S1 0 0 0 0 0 1 1 1 1 0.0072
EEF1AKMT4 0 0 0 0 0 1 1 1 1 0.0072
GP2 0 0 0 0 0 1 1 1 1 0.0072
IQCM 0 0 0 0 0 1 1 1 1 0.0072
PCDHB14 0 0 0 0 0 1 1 1 1 0.0072
PCDHB7 0 0 0 0 0 1 1 1 1 0.0072
RNF224 0 0 0 0 0 1 1 1 1 0.0072
SAT1 2 2 2 2 2 3 3 3 3 0.0072
SATL1 2 2 2 2 2 3 3 3 3 0.0072
SMIM31 0 0 0 0 0 1 1 1 1 0.0072
ZNF169 0 0 0 0 0 1 1 1 1 0.0072
ABCG2 0 0 0 0 0 1 2 1 1 0.0093
MIR424 0 0 0 0 0 1 2 1 1 0.0093
SCARNA21 0 0 0 0 0 3 2 2 2 0.0093
DPPA3 0 0 0 0 0 1 8 2 1 0.0104
MIR371A 0 0 0 0 0 4 8 2 2 0.0104
MIR372 0 0 0 0 0 4 8 2 2 0.0104
CNGB1 1 1 0 1 1 2 2 2 2 0.0108
CNGB3 1 1 0 1 1 2 2 2 2 0.0108
GAR1 1 1 0 1 1 2 2 2 2 0.0108
GJA9 3 3 2 3 3 4 4 4 4 0.0108
GJD2 3 3 2 3 3 4 4 4 4 0.0108
GJD3 3 3 2 3 3 4 4 4 4 0.0108
GJD4 3 3 2 3 3 4 4 4 4 0.0108
GJE1 3 3 2 3 3 4 4 4 4 0.0108
NANOS1 1 2 2 2 2 3 3 3 3 0.0108
NANOS2 1 2 2 2 2 3 3 3 3 0.0108
NANOS3 1 2 2 2 2 3 3 3 3 0.0108
NOS3 1 2 2 2 2 3 3 3 3 0.0108
DMD 2 2 3 3 6 1 1 1 1 0.0142
SCARNA20 0 1 0 1 0 3 3 5 3 0.0155
SPAG11A 0 1 0 1 1 3 2 2 2 0.0155
SPAG11B 0 1 0 1 1 3 2 2 2 0.0155
EIF5 6 3 3 2 2 1 1 0 1 0.0170
EID1 2 1 1 1 1 3 3 2 3 0.0184
EID2 2 1 1 1 1 3 3 2 3 0.0184
EID2B 2 1 1 1 1 3 3 2 3 0.0184
PCDHGB1 0 0 0 0 1 2 2 1 2 0.0184
HIST1H4D 2 3 2 1 1 5 4 9 6 0.0189
HIST1H4J 2 3 2 1 1 5 4 9 6 0.0189
HIST2H4A 2 3 2 1 1 5 4 9 6 0.0189
HIST4H4 2 3 2 1 1 5 4 9 6 0.0189
RETN 1 2 1 1 1 4 4 3 2 0.0201
RETNLB 1 2 1 1 1 4 4 3 2 0.0201
SCARNA16 0 0 0 1 0 2 5 2 1 0.0201
MIR103A1 0 0 0 2 1 2 3 3 3 0.0219
MIR103A2 0 0 0 2 1 2 3 3 3 0.0219
MIR107 0 0 0 2 1 2 3 3 3 0.0219
MIR124-1 1 0 0 2 0 3 3 2 3 0.0219
MIR124-2 1 0 0 2 0 3 3 2 3 0.0219
MIR124-3 1 0 0 2 0 3 3 2 3 0.0219
RPLP1 4 4 4 3 7 2 3 1 1 0.0237
SUMO2 15 8 8 4 6 3 4 3 3 0.0237
SUMO3 15 8 8 4 6 3 4 3 3 0.0237
SUMO4 15 8 8 4 6 3 4 3 3 0.0237
ZFP41 1 2 1 1 0 5 2 7 22 0.0243
ZNF100 1 2 1 1 0 5 2 7 22 0.0243
ZNF114 1 2 1 1 0 5 2 7 22 0.0243
ZNF253 1 2 1 1 0 5 2 7 22 0.0243
ZNF257 1 2 1 1 0 5 2 7 22 0.0243
ZNF430 1 2 1 1 0 5 2 7 22 0.0243
ZNF431 1 2 1 1 0 5 2 7 22 0.0243
ZNF479 1 2 1 1 0 5 2 7 22 0.0243
CRYGA 1 0 0 0 0 1 2 2 1 0.0260
KRTAP24-1 4 3 3 3 3 5 4 5 4 0.0260
KRTAP3-1 4 3 3 3 3 5 4 5 4 0.0260
KRTAP3-2 4 3 3 3 3 5 4 5 4 0.0260
KRTAP3-3 4 3 3 3 3 5 4 5 4 0.0260
SPACA7 0 1 0 0 0 2 2 1 1 0.0260
TGIF2LX 0 0 0 1 0 2 1 1 2 0.0260
TGIF2LY 0 0 0 1 0 2 1 1 2 0.0260
CLEC2D 0 0 1 0 0 5 7 1 1 0.0267
CNTNAP3 0 1 0 0 0 1 1 2 3 0.0267
CNTNAP3B 0 1 0 0 0 1 1 2 3 0.0267
CNTNAP3C 0 1 0 0 0 1 1 2 3 0.0267
RHOXF1 0 0 0 0 1 2 1 3 1 0.0267
SCARNA14 0 0 0 1 0 3 4 1 1 0.0267
FAM237A 1 0 0 0 1 2 1 2 2 0.0282
FAM237B 1 0 0 0 1 2 1 2 2 0.0282
MIR506 0 0 0 5 0 2 11 6 11 0.0289
MIR509-1 0 0 0 5 0 2 11 6 11 0.0289
MIR511 0 0 0 5 0 2 11 6 11 0.0289
MIR514A1 0 0 0 5 0 2 11 6 11 0.0289
MIR514A3 0 0 0 5 0 2 11 6 11 0.0289
MIR514B 0 0 0 5 0 2 11 6 11 0.0289
SCARNA4 0 0 0 2 0 8 4 1 3 0.0297

Table S2: Cancer Prone vs Cancer Resistant: a two-group statistical comparison. List of the significant hits resulting from the 
unpaired 2-group wilcoxon test (p-value <0.05) applied on the total genomic CNVs landscape of the selected species. Our analysis, 
which exclusively considered the variation in the number of gene copies within different species, was able to identify genes 
involved in biological processes related to cancer development and maintenance.
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DEFB105A 1 0 0 0 1 2 1 3 2 0.0304
DEFB105B 1 0 0 0 1 2 1 3 2 0.0304
DEFB130A 1 2 1 0 2 4 4 2 4 0.0304
DEFB130B 1 2 1 0 2 4 4 2 4 0.0304
DEFB4A 1 2 1 0 2 4 4 2 4 0.0304
DEFB4B 1 2 1 0 2 4 4 2 4 0.0304
FLG 1 2 3 3 2 4 4 3 4 0.0304
FLG2 1 2 3 3 2 4 4 3 4 0.0304
HRNR 1 2 3 3 2 4 4 3 4 0.0304
MIR378A 0 1 0 1 0 2 2 1 3 0.0304
MIR378B 0 1 0 1 0 2 2 1 3 0.0304
MIR378D2 0 1 0 1 0 2 2 1 3 0.0304
RPTN 1 2 3 3 2 4 4 3 4 0.0304
S100A16 1 2 3 3 2 4 4 3 4 0.0304
MBD1 3 3 4 3 5 5 5 6 9 0.0312
MBD2 3 3 4 3 5 5 5 6 9 0.0312
MBD3 3 3 4 3 5 5 5 6 9 0.0312
MBD3L1 3 3 4 3 5 5 5 6 9 0.0312
MBD3L2 3 3 4 3 5 5 5 6 9 0.0312
MBD3L2B 3 3 4 3 5 5 5 6 9 0.0312
MBD3L3 3 3 4 3 5 5 5 6 9 0.0312
MBD3L4 3 3 4 3 5 5 5 6 9 0.0312
MBD3L5 3 3 4 3 5 5 5 6 9 0.0312
PCM1 3 3 4 3 5 5 5 6 9 0.0312
C4orf3 0 0 0 1 0 1 1 2 1 0.0318
ERVFRD-1 0 1 0 0 0 3 1 1 1 0.0318
FGFBP1 1 1 2 1 1 2 2 2 3 0.0318
FGFBP2 1 1 2 1 1 2 2 2 3 0.0318
FGFBP3 1 1 2 1 1 2 2 2 3 0.0318
FOXJ1 1 2 2 2 2 1 0 1 1 0.0318
FRG2 0 0 1 0 0 1 1 1 3 0.0318
FRG2B 0 0 1 0 0 1 1 1 3 0.0318
FRG2C 0 0 1 0 0 1 1 1 3 0.0318
MIR1-1 0 0 0 3 0 3 3 4 3 0.0318
MIR1-2 0 0 0 3 0 3 3 4 3 0.0318
MIR206 0 0 0 3 0 3 3 4 3 0.0318
MIR340 0 0 0 1 0 1 2 1 1 0.0318
MIR542 0 0 0 1 0 1 3 1 1 0.0318
NUPR1 1 2 1 1 1 2 3 2 2 0.0318
NUPR2 1 2 1 1 1 2 3 2 2 0.0318
SELENOW 0 1 0 0 0 1 2 1 1 0.0318
SPINK14 0 0 1 0 0 1 3 1 1 0.0318
SYNE1 2 2 2 1 2 1 0 1 1 0.0318
CCDC8 6 8 8 5 6 13 9 8 14 0.0334
MOAP1 6 8 8 5 6 13 9 8 14 0.0334
PNMA1 6 8 8 5 6 13 9 8 14 0.0334
PNMA2 6 8 8 5 6 13 9 8 14 0.0334
PNMA3 6 8 8 5 6 13 9 8 14 0.0334
PNMA5 6 8 8 5 6 13 9 8 14 0.0334
PNMA6A 6 8 8 5 6 13 9 8 14 0.0334
PNMA6E 6 8 8 5 6 13 9 8 14 0.0334
PNMA6F 6 8 8 5 6 13 9 8 14 0.0334
PNMA8A 6 8 8 5 6 13 9 8 14 0.0334
PNMA8B 6 8 8 5 6 13 9 8 14 0.0334
PNMA8C 6 8 8 5 6 13 9 8 14 0.0334
ZCCHC12 6 8 8 5 6 13 9 8 14 0.0334
ZCCHC18 6 8 8 5 6 13 9 8 14 0.0334
ACOXL 1 0 0 0 0 1 1 1 1 0.0339
ADRA2C 1 0 0 0 0 1 1 1 1 0.0339
AGBL4 2 2 2 1 2 1 1 1 1 0.0339
AKAP14 0 0 1 0 0 1 1 1 1 0.0339
C2CD4C 0 0 1 0 0 1 1 1 1 0.0339
C3orf22 0 0 1 0 0 1 1 1 1 0.0339
C6orf201 0 0 0 0 1 1 1 1 1 0.0339
CCDC179 0 1 0 0 0 1 1 1 1 0.0339
CCDC185 0 0 1 0 0 1 1 1 1 0.0339
CNBD1 0 0 0 1 0 1 1 1 1 0.0339
COL27A1 0 0 0 0 1 1 1 1 1 0.0339
EXOC6 3 2 3 3 3 2 2 2 2 0.0339
EXOC6B 3 2 3 3 3 2 2 2 2 0.0339
FAM227B 0 0 1 0 0 1 1 1 1 0.0339
FMR1NB 0 0 0 1 0 1 1 1 1 0.0339
FOXL1 0 1 0 0 0 1 1 1 1 0.0339
GALP 0 1 0 0 0 1 1 1 1 0.0339
GAS1 0 0 1 0 0 1 1 1 1 0.0339
GFRA4 0 1 0 0 0 1 1 1 1 0.0339
GIMAP8 0 0 0 0 1 1 1 1 1 0.0339
GPR160 0 0 0 0 1 1 1 1 1 0.0339
GPR88 0 1 0 0 0 1 1 1 1 0.0339
HNRNPA0 2 2 2 1 2 1 1 1 1 0.0339
HSBP1L1 1 0 0 0 0 1 1 1 1 0.0339
IGIP 0 1 0 0 0 1 1 1 1 0.0339
IGKC 0 0 1 0 0 1 1 1 1 0.0339
IGSF23 0 0 0 0 1 1 1 1 1 0.0339
JUND 0 1 0 0 0 1 1 1 1 0.0339
KLF16 0 1 0 0 0 1 1 1 1 0.0339
KPRP 0 0 1 0 0 1 1 1 1 0.0339
KRT9 0 1 0 0 0 1 1 1 1 0.0339
LMLN2 0 0 1 0 0 1 1 1 1 0.0339
LRIT2 1 0 0 0 0 1 1 1 1 0.0339
LRWD1 1 1 2 1 1 2 2 2 2 0.0339
LSMEM2 0 0 0 1 0 1 1 1 1 0.0339
MAGEE2 0 0 0 1 0 1 1 1 1 0.0339
MAP4K4 2 2 1 2 2 1 1 1 1 0.0339
MIR100 0 0 0 3 0 3 3 3 3 0.0339
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MIR10A 0 0 0 2 0 2 2 2 2 0.0339
MIR10B 0 0 0 2 0 2 2 2 2 0.0339
MIR1282 0 0 0 1 0 1 1 1 1 0.0339
MIR129-1 1 1 1 2 1 2 2 2 2 0.0339
MIR129-2 1 1 1 2 1 2 2 2 2 0.0339
MIR140 0 0 0 1 0 1 1 1 1 0.0339
MIR15A 1 1 1 2 1 2 2 2 2 0.0339
MIR15B 1 1 1 2 1 2 2 2 2 0.0339
MIR185 0 0 0 1 0 1 1 1 1 0.0339
MIR187 0 0 0 1 0 1 1 1 1 0.0339
MIR193A 0 0 0 2 0 2 2 2 2 0.0339
MIR193B 0 0 0 2 0 2 2 2 2 0.0339
MIR199A1 1 1 1 3 1 3 3 3 3 0.0339
MIR199A2 1 1 1 3 1 3 3 3 3 0.0339
MIR199B 1 1 1 3 1 3 3 3 3 0.0339
MIR203B 1 0 0 0 0 1 1 1 1 0.0339
MIR21 0 0 0 1 0 1 1 1 1 0.0339
MIR223 0 0 0 1 0 1 1 1 1 0.0339
MIR31 0 0 0 1 0 1 1 1 1 0.0339
MIR339 0 0 0 1 0 1 1 1 1 0.0339
MIR433 0 0 0 1 0 1 1 1 1 0.0339
MIR489 0 0 0 1 0 1 1 1 1 0.0339
MIR490 0 0 0 1 0 1 1 1 1 0.0339
MIR652 0 0 0 1 0 1 1 1 1 0.0339
MIR671 0 0 0 1 0 1 1 1 1 0.0339
MIR873 0 0 0 1 0 1 1 1 1 0.0339
MIR99A 0 0 0 3 0 3 3 3 3 0.0339
MIR99B 0 0 0 3 0 3 3 3 3 0.0339
MIRLET7A1 0 0 0 3 0 3 3 3 3 0.0339
MIRLET7A3 0 0 0 3 0 3 3 3 3 0.0339
MIRLET7F2 0 0 0 3 0 3 3 3 3 0.0339
NHLRC4 2 3 2 2 2 3 3 3 3 0.0339
NLRP10 0 0 0 0 1 1 1 1 1 0.0339
NPB 0 2 0 0 0 2 2 2 2 0.0339
NPW 0 2 0 0 0 2 2 2 2 0.0339
OPTC 1 1 2 1 1 2 2 2 2 0.0339
PBX4 0 1 0 0 0 1 1 1 1 0.0339
PCDHB16 0 0 0 0 1 1 1 1 1 0.0339
PCDHB6 1 0 0 0 0 1 1 1 1 0.0339
PHF3 2 2 2 1 2 1 1 1 1 0.0339
PMAIP1 0 1 0 0 0 1 1 1 1 0.0339
PMM1 3 3 3 2 3 2 2 2 2 0.0339
PMM2 3 3 3 2 3 2 2 2 2 0.0339
PPM1N 0 0 0 0 1 1 1 1 1 0.0339
PRR35 2 3 2 2 2 3 3 3 3 0.0339
PRR9 0 0 0 0 1 1 1 1 1 0.0339
RBM17 2 2 2 1 2 1 1 1 1 0.0339
RNF14 2 1 2 2 2 1 1 1 1 0.0339
RNF225 0 1 0 0 0 1 1 1 1 0.0339
SCFD2 1 2 2 2 2 1 1 1 1 0.0339
SP8 0 1 0 0 0 1 1 1 1 0.0339
SRRM5 0 0 1 0 0 1 1 1 1 0.0339
TEX11 0 0 0 0 1 1 1 1 1 0.0339
UFSP1 0 0 1 0 0 1 1 1 1 0.0339
UMOD 2 2 2 2 1 1 1 1 1 0.0339
UNCX 0 1 0 0 0 1 1 1 1 0.0339
UTS2B 0 0 0 1 0 1 1 1 1 0.0339
WFDC13 0 1 0 0 0 1 1 1 1 0.0339
ZBED9 0 0 1 0 0 1 1 1 1 0.0339
ZFP57 0 0 0 1 0 1 1 1 1 0.0339
HNRNPH1 4 3 3 3 4 2 2 3 2 0.0362
HNRNPH2 4 3 3 3 4 2 2 3 2 0.0362
MIR374A 1 0 0 1 1 2 1 2 2 0.0362
MIR374B 1 0 0 1 1 2 1 2 2 0.0362
PCDHGB4 1 0 1 0 1 2 2 1 2 0.0362
PCDHGB5 1 0 1 0 1 2 2 1 2 0.0362
ZNF383 1 1 1 0 0 1 2 2 2 0.0362
C10orf95 0 0 0 0 0 1 0 1 1 0.0369
C2orf92 0 0 0 0 0 1 0 1 1 0.0369
C6orf226 0 0 0 0 0 1 1 0 1 0.0369
CCDC192 0 0 0 0 0 1 0 1 1 0.0369
CFB 1 1 1 1 1 2 2 1 2 0.0369
CTXND2 0 0 0 0 0 1 0 1 1 0.0369
DEFB115 0 0 0 0 0 1 1 0 1 0.0369
DPEP2NB 0 0 0 0 0 1 0 1 1 0.0369
FDCSP 0 0 0 0 0 0 1 1 1 0.0369
FREM3 0 0 0 0 0 1 1 0 1 0.0369
HBE1 0 0 0 0 0 1 1 0 1 0.0369
HIGD2A 1 1 1 1 1 1 2 2 2 0.0369
HIGD2B 1 1 1 1 1 1 2 2 2 0.0369
IER2 2 2 2 2 2 3 2 3 3 0.0369
IER5 2 2 2 2 2 3 2 3 3 0.0369
IER5L 2 2 2 2 2 3 2 3 3 0.0369
KDM5C 1 1 1 1 1 2 2 1 2 0.0369
KDM5D 1 1 1 1 1 2 2 1 2 0.0369
LRPPRC 0 0 0 0 0 1 0 1 1 0.0369
LTB4R 1 1 1 1 1 1 2 2 2 0.0369
LTB4R2 1 1 1 1 1 1 2 2 2 0.0369
MFSD10 0 0 0 0 0 1 0 1 1 0.0369
MIR504 0 0 0 0 0 1 0 1 1 0.0369
MIR653 0 0 0 0 0 0 1 1 1 0.0369
MIR770 0 0 0 0 0 1 1 0 1 0.0369
PATE4 0 0 0 0 0 1 1 0 1 0.0369
PCDHGA6 0 0 0 0 0 1 1 0 1 0.0369
PCDHGA9 0 0 0 0 0 1 1 0 1 0.0369
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PCDHGB6 0 0 0 0 0 1 1 0 1 0.0369
PCDHGB7 0 0 0 0 0 1 1 0 1 0.0369
PPP3R2 0 0 0 0 0 1 1 0 1 0.0369
PRR18 0 0 0 0 0 1 1 0 1 0.0369
SMIM36 0 0 0 0 0 1 0 1 1 0.0369
SMIM38 0 0 0 0 0 1 1 0 1 0.0369
SMIM41 0 0 0 0 0 1 1 0 1 0.0369
SRY 0 0 0 0 0 1 1 0 1 0.0369
TEX54 0 0 0 0 0 1 1 0 1 0.0369
TIMM10B 1 1 1 1 1 2 2 1 2 0.0369
TMEM249 0 0 0 0 0 1 0 1 1 0.0369
TMEM41A 1 1 1 1 1 0 0 0 1 0.0369
WFDC12 0 0 0 0 0 1 1 0 1 0.0369
ZBTB42 0 0 0 0 0 1 1 0 1 0.0369
ZNF142 0 0 0 0 0 1 1 0 1 0.0369
ZNF235 1 1 1 1 1 0 0 0 1 0.0369
EIF4A1 4 3 2 2 2 1 1 2 1 0.0371
FAM110A 3 4 3 3 2 4 4 5 4 0.0371
FAM110B 3 4 3 3 2 4 4 5 4 0.0371
FAM110C 3 4 3 3 2 4 4 5 4 0.0371
FAM110D 3 4 3 3 2 4 4 5 4 0.0371
MIR29B1 0 1 0 2 0 2 3 2 2 0.0371
MIR29B2 0 1 0 2 0 2 3 2 2 0.0371
PPP1R14A 3 4 2 4 4 5 5 5 4 0.0371
PPP1R14B 3 4 2 4 4 5 5 5 4 0.0371
PPP1R14C 3 4 2 4 4 5 5 5 4 0.0371
PPP1R14D 3 4 2 4 4 5 5 5 4 0.0371
MIR98 1 1 1 3 1 4 4 2 3 0.0389
MIRLET7G 1 1 1 3 1 4 4 2 3 0.0389
MIRLET7I 1 1 1 3 1 4 4 2 3 0.0389
SPDYE1 1 2 3 1 2 3 3 3 16 0.0389
SPDYE11 1 2 3 1 2 3 3 3 16 0.0389
SPDYE16 1 2 3 1 2 3 3 3 16 0.0389
SPDYE17 1 2 3 1 2 3 3 3 16 0.0389
SPDYE2 1 2 3 1 2 3 3 3 16 0.0389
SPDYE21P 1 2 3 1 2 3 3 3 16 0.0389
SPDYE2B 1 2 3 1 2 3 3 3 16 0.0389
SPDYE3 1 2 3 1 2 3 3 3 16 0.0389
SPDYE4 1 2 3 1 2 3 3 3 16 0.0389
SPDYE5 1 2 3 1 2 3 3 3 16 0.0389
SPDYE6 1 2 3 1 2 3 3 3 16 0.0389
SPDYE8P 1 2 3 1 2 3 3 3 16 0.0389
SPDYE9P 1 2 3 1 2 3 3 3 16 0.0389
DUSP18 3 1 11 2 2 1 1 0 1 0.0398
HLA-DRB1 3 2 2 2 5 1 0 0 2 0.0398
HLA-DRB5 3 2 2 2 5 1 0 0 2 0.0398
C15orf65 2 1 1 1 0 2 2 2 2 0.0400
C9orf116 2 1 1 1 0 2 2 2 2 0.0400
CRIPT 4 4 4 3 6 3 3 3 3 0.0400
DNAJC19 1 2 6 2 2 1 1 1 1 0.0400
GALR1 1 1 0 2 1 2 2 2 2 0.0400
GALR3 1 1 0 2 1 2 2 2 2 0.0400
INS 1 1 0 1 1 2 2 1 2 0.0400
INS-IGF2 1 1 0 1 1 2 2 1 2 0.0400
MIR221 1 0 1 2 1 2 2 2 2 0.0400
MIR222 1 0 1 2 1 2 2 2 2 0.0400
MIR23A 1 1 1 2 0 2 2 2 2 0.0400
MIR23B 1 1 1 2 0 2 2 2 2 0.0400
MIR27A 1 1 1 2 0 2 2 2 2 0.0400
MIR27B 1 1 1 2 0 2 2 2 2 0.0400
MIR30C1 1 0 1 2 1 2 2 2 2 0.0400
MIR30C2 1 0 1 2 1 2 2 2 2 0.0400
NACA 5 2 1 2 2 1 1 1 1 0.0400
POLR1C 4 4 4 3 6 3 3 3 3 0.0400
POLR2C 4 4 4 3 6 3 3 3 3 0.0400
PPP2R2A 11 5 5 4 5 4 4 4 4 0.0400
PPP2R2B 11 5 5 4 5 4 4 4 4 0.0400
PPP2R2C 11 5 5 4 5 4 4 4 4 0.0400
PPP2R2D 11 5 5 4 5 4 4 4 4 0.0400
RB1CC1 3 2 1 2 2 1 1 1 1 0.0400
RNF113A 1 1 0 1 2 2 2 2 2 0.0400
RNF113B 1 1 0 1 2 2 2 2 2 0.0400
SUB1 1 3 2 2 2 1 1 1 1 0.0400
ZNF112 1 1 1 0 1 2 2 1 2 0.0400
C19orf33 0 0 0 0 0 1 2 0 2 0.0404
C20orf141 0 0 0 0 0 1 0 1 2 0.0404
GBP2 0 0 0 0 0 2 1 0 1 0.0404
GOLGA2 1 1 1 1 1 2 2 1 19 0.0404
GOLGA6A 1 1 1 1 1 2 2 1 19 0.0404
GOLGA6B 1 1 1 1 1 2 2 1 19 0.0404
GOLGA6C 1 1 1 1 1 2 2 1 19 0.0404
GOLGA6D 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8A 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8B 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8F 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8G 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8H 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8J 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8K 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8M 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8N 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8O 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8Q 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8R 1 1 1 1 1 2 2 1 19 0.0404
GOLGA8S 1 1 1 1 1 2 2 1 19 0.0404



 143   

GOLGA8T 1 1 1 1 1 2 2 1 19 0.0404
HUS1 1 1 1 1 1 2 3 1 2 0.0404
HUS1B 1 1 1 1 1 2 3 1 2 0.0404
IGKV1OR2-108 0 0 0 0 0 1 2 0 1 0.0404
SEC61G 1 1 1 1 1 2 5 2 1 0.0404
SERPINA1 1 1 1 1 1 6 2 1 2 0.0404
SERPINA2 1 1 1 1 1 6 2 1 2 0.0404
SH2D1B 0 0 0 0 0 2 2 0 1 0.0404
SMIM40 0 0 0 0 0 2 0 1 2 0.0404
IGKV6-21 0 0 0 0 0 5 2 0 3 0.0416
IGKV6D-21 0 0 0 0 0 5 2 0 3 0.0416
IGKV6D-41 0 0 0 0 0 5 2 0 3 0.0416
RBMY1A1 0 0 0 0 0 10 1 0 6 0.0416
RBMY1B 0 0 0 0 0 10 1 0 6 0.0416
RBMY1D 0 0 0 0 0 10 1 0 6 0.0416
RBMY1E 0 0 0 0 0 10 1 0 6 0.0416
RBMY1F 0 0 0 0 0 10 1 0 6 0.0416
RBMY1J 0 0 0 0 0 10 1 0 6 0.0416
SEMG1 0 0 0 0 0 3 6 0 2 0.0416
SEMG2 0 0 0 0 0 3 6 0 2 0.0416
TRAV18 0 0 0 0 0 9 11 0 1 0.0416
ACKR4 4 2 3 3 2 4 4 4 4 0.0421
CUL2 4 2 2 1 4 1 1 1 1 0.0421
CXCR1 4 2 3 3 2 4 4 4 4 0.0421
CXCR2 4 2 3 3 2 4 4 4 4 0.0421
CXCR5 4 2 3 3 2 4 4 4 4 0.0421
MIR219A2 0 0 1 2 1 2 2 2 2 0.0421
MIR219B 0 0 1 2 1 2 2 2 2 0.0421
MIR30A 0 0 1 4 1 4 4 4 4 0.0421
MIR30B 0 0 1 4 1 4 4 4 4 0.0421
MIR30D 0 0 1 4 1 4 4 4 4 0.0421
MIR30E 0 0 1 4 1 4 4 4 4 0.0421
THOC7 3 3 2 1 2 1 1 1 1 0.0421
TRAPPC13 3 1 3 2 2 1 1 1 1 0.0421
AP3S1 9 5 4 4 3 3 3 3 3 0.0431
AP3S2 9 5 4 4 3 3 3 3 3 0.0431
AP4S1 9 5 4 4 3 3 3 3 3 0.0431
C1D 2 4 2 1 3 1 1 1 1 0.0431
CSNK1A1 5 4 2 1 2 1 1 1 1 0.0431
GLUL 6 2 3 1 2 1 1 1 1 0.0431
HNRNPA2B1 2 4 3 1 2 1 1 1 1 0.0431
LPA 1 1 1 1 0 3 2 1 2 0.0431
NUCKS1 3 6 7 2 3 2 2 2 2 0.0431
PRSS56 1 1 1 1 0 3 2 1 2 0.0431
RAD51AP1 3 6 7 2 3 2 2 2 2 0.0431
RWDD1 8 3 2 2 1 1 1 1 1 0.0431
TAF13 4 2 3 1 2 1 1 1 1 0.0431
TCAF1 2 2 1 2 2 3 4 2 3 0.0431
TCAF2 2 2 1 2 2 3 4 2 3 0.0431
TCAF2C 2 2 1 2 2 3 4 2 3 0.0431
PRELID1 11 5 6 4 8 4 4 4 4 0.0442
PRELID2 11 5 6 4 8 4 4 4 4 0.0442
PRELID3A 11 5 6 4 8 4 4 4 4 0.0442
PRELID3B 11 5 6 4 8 4 4 4 4 0.0442
SSX1 0 1 1 1 1 14 4 1 8 0.0442
SSX2 0 1 1 1 1 14 4 1 8 0.0442
SSX2B 0 1 1 1 1 14 4 1 8 0.0442
SSX3 0 1 1 1 1 14 4 1 8 0.0442
SSX4 0 1 1 1 1 14 4 1 8 0.0442
SSX4B 0 1 1 1 1 14 4 1 8 0.0442
SSX5 0 1 1 1 1 14 4 1 8 0.0442
SSX7 0 1 1 1 1 14 4 1 8 0.0442
KRTAP4-12 0 2 1 0 0 7 3 1 3 0.0444
KRTAP4-6 0 2 1 0 0 7 3 1 3 0.0444
KRTAP4-7 0 2 1 0 0 7 3 1 3 0.0444
ANKRD62 0 2 0 0 1 7 10 8 1 0.0453
ZNF195 3 5 0 0 0 21 7 13 3 0.0453
ZNF429 3 5 0 0 0 21 7 13 3 0.0453
TAS2R10 2 14 3 4 6 25 24 6 15 0.0491
TAS2R13 2 14 3 4 6 25 24 6 15 0.0491
TAS2R14 2 14 3 4 6 25 24 6 15 0.0491
TAS2R19 2 14 3 4 6 25 24 6 15 0.0491
TAS2R20 2 14 3 4 6 25 24 6 15 0.0491
TAS2R3 2 14 3 4 6 25 24 6 15 0.0491
TAS2R30 2 14 3 4 6 25 24 6 15 0.0491
TAS2R31 2 14 3 4 6 25 24 6 15 0.0491
TAS2R42 2 14 3 4 6 25 24 6 15 0.0491
TAS2R43 2 14 3 4 6 25 24 6 15 0.0491
TAS2R45 2 14 3 4 6 25 24 6 15 0.0491
TAS2R46 2 14 3 4 6 25 24 6 15 0.0491
TAS2R50 2 14 3 4 6 25 24 6 15 0.0491
TAS2R7 2 14 3 4 6 25 24 6 15 0.0491
TAS2R8 2 14 3 4 6 25 24 6 15 0.0491
TAS2R9 2 14 3 4 6 25 24 6 15 0.0491
CENPJ 1 2 2 1 1 4 2 2 4 0.0495
CMTM1 0 0 1 0 1 2 1 1 2 0.0495
CMTM2 0 0 0 1 1 2 2 1 1 0.0495
KRTAP15-1 0 1 1 0 0 2 1 2 1 0.0495
SCARNA2 0 1 0 1 0 2 2 1 1 0.0495
SCART1 0 0 1 0 1 2 2 1 1 0.0495
TCP10 1 2 2 1 1 4 2 2 4 0.0495
TCP10L 1 2 2 1 1 4 2 2 4 0.0495
TCP10L2 1 2 2 1 1 4 2 2 4 0.0495
ZNF420 1 0 1 0 0 2 1 1 2 0.0495
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ID [Hg] [Ng] [Dn] [La] [Ml] [Mm] [Rn] [Cf] [Hs] p-value
Cancer- Resistant Resistant Resistant Resistant Resistant Prone Prone Prone Prone
MIR424 0 0 0 0 0 1 2 1 1 0.0093
MIR371A 0 0 0 0 0 4 8 2 2 0.0104
MIR372 0 0 0 0 0 4 8 2 2 0.0104
MIR103A1 0 0 0 2 1 2 3 3 3 0.0219
MIR103A2 0 0 0 2 1 2 3 3 3 0.0219
MIR107 0 0 0 2 1 2 3 3 3 0.0219
MIR124-1 1 0 0 2 0 3 3 2 3 0.0219
MIR124-2 1 0 0 2 0 3 3 2 3 0.0219
MIR124-3 1 0 0 2 0 3 3 2 3 0.0219
MIR506 0 0 0 5 0 2 11 6 11 0.0289
MIR509-1 0 0 0 5 0 2 11 6 11 0.0289
MIR511 0 0 0 5 0 2 11 6 11 0.0289
MIR514A1 0 0 0 5 0 2 11 6 11 0.0289
MIR514A3 0 0 0 5 0 2 11 6 11 0.0289
MIR514B 0 0 0 5 0 2 11 6 11 0.0289
MIR378A 0 1 0 1 0 2 2 1 3 0.0304
MIR378B 0 1 0 1 0 2 2 1 3 0.0304
MIR378D2 0 1 0 1 0 2 2 1 3 0.0304
MIR1-1 0 0 0 3 0 3 3 4 3 0.0318
MIR1-2 0 0 0 3 0 3 3 4 3 0.0318
MIR206 0 0 0 3 0 3 3 4 3 0.0318
MIR340 0 0 0 1 0 1 2 1 1 0.0318
MIR542 0 0 0 1 0 1 3 1 1 0.0318
MIR100 0 0 0 3 0 3 3 3 3 0.0339
MIR10A 0 0 0 2 0 2 2 2 2 0.0339
MIR10B 0 0 0 2 0 2 2 2 2 0.0339
MIR1282 0 0 0 1 0 1 1 1 1 0.0339
MIR129-1 1 1 1 2 1 2 2 2 2 0.0339
MIR129-2 1 1 1 2 1 2 2 2 2 0.0339
MIR140 0 0 0 1 0 1 1 1 1 0.0339
MIR15A 1 1 1 2 1 2 2 2 2 0.0339
MIR15B 1 1 1 2 1 2 2 2 2 0.0339
MIR185 0 0 0 1 0 1 1 1 1 0.0339
MIR187 0 0 0 1 0 1 1 1 1 0.0339
MIR193A 0 0 0 2 0 2 2 2 2 0.0339
MIR193B 0 0 0 2 0 2 2 2 2 0.0339
MIR199A1 1 1 1 3 1 3 3 3 3 0.0339
MIR199A2 1 1 1 3 1 3 3 3 3 0.0339
MIR199B 1 1 1 3 1 3 3 3 3 0.0339
MIR203B 1 0 0 0 0 1 1 1 1 0.0339
MIR21 0 0 0 1 0 1 1 1 1 0.0339
MIR223 0 0 0 1 0 1 1 1 1 0.0339
MIR31 0 0 0 1 0 1 1 1 1 0.0339
MIR339 0 0 0 1 0 1 1 1 1 0.0339
MIR433 0 0 0 1 0 1 1 1 1 0.0339
MIR489 0 0 0 1 0 1 1 1 1 0.0339
MIR490 0 0 0 1 0 1 1 1 1 0.0339
MIR652 0 0 0 1 0 1 1 1 1 0.0339
MIR671 0 0 0 1 0 1 1 1 1 0.0339
MIR873 0 0 0 1 0 1 1 1 1 0.0339
MIR99A 0 0 0 3 0 3 3 3 3 0.0339
MIR99B 0 0 0 3 0 3 3 3 3 0.0339
MIRLET7A1 0 0 0 3 0 3 3 3 3 0.0339
MIRLET7A3 0 0 0 3 0 3 3 3 3 0.0339
MIRLET7F2 0 0 0 3 0 3 3 3 3 0.0339
MIR374A 1 0 0 1 1 2 1 2 2 0.0362
MIR374B 1 0 0 1 1 2 1 2 2 0.0362
MIR504 0 0 0 0 0 1 0 1 1 0.0369
MIR653 0 0 0 0 0 0 1 1 1 0.0369
MIR770 0 0 0 0 0 1 1 0 1 0.0369
MIR29B1 0 1 0 2 0 2 3 2 2 0.0371
MIR29B2 0 1 0 2 0 2 3 2 2 0.0371
MIR98 1 1 1 3 1 4 4 2 3 0.0389
MIRLET7G 1 1 1 3 1 4 4 2 3 0.0389
MIRLET7I 1 1 1 3 1 4 4 2 3 0.0389
MIR221 1 0 1 2 1 2 2 2 2 0.0400
MIR222 1 0 1 2 1 2 2 2 2 0.0400
MIR23A 1 1 1 2 0 2 2 2 2 0.0400
MIR23B 1 1 1 2 0 2 2 2 2 0.0400
MIR27A 1 1 1 2 0 2 2 2 2 0.0400
MIR27B 1 1 1 2 0 2 2 2 2 0.0400
MIR30C1 1 0 1 2 1 2 2 2 2 0.0400
MIR30C2 1 0 1 2 1 2 2 2 2 0.0400
MIR219A2 0 0 1 2 1 2 2 2 2 0.0421
MIR219B 0 0 1 2 1 2 2 2 2 0.0421
MIR30A 0 0 1 4 1 4 4 4 4 0.0421
MIR30B 0 0 1 4 1 4 4 4 4 0.0421
MIR30D 0 0 1 4 1 4 4 4 4 0.0421
MIR30E 0 0 1 4 1 4 4 4 4 0.0421

Table S3: Cancer Prone vs Cancer Resistant: a two-group statistical comparison. List of the significant microRNAs resulting from the 
unpaired 2-group wilcoxon test (p-value <0.05) applied on the total genomic CNVs landscape of the selected species.
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Enrichment_category_1 Enrichment_category_2 Reference_list FDR_method Significance_level
A gene_ontology biological_proc genome BH FDR<0.05
B Pathway Kegg genome BH FDR<0.05
C Pathway Panther genome BH FDR<0.05
D Pathway Reactome genome BH FDR<0.05
E Pathway Wikipathway genome BH FDR<0.05

geneSet description enrichmentRatio pValue FDR Genes

GO:0001580 detection of chemical stimulus involved in sensory perception of bitter taste 2.422E+13 2.220E-16 2.019E-12 TAS2R10;TAS2R13;TAS2R14;TAS2R19;TAS2R20;TAS2R3;TAS2R30;TAS2R31;TAS2R43;TAS2R46;TAS2R50;TAS
2R7;TAS2R8;TAS2R9

GO:0050913 sensory perception of bitter taste 2.197E+01 8.882E-16 4.037E-12 TAS2R10;TAS2R13;TAS2R14;TAS2R19;TAS2R20;TAS2R3;TAS2R30;TAS2R31;TAS2R43;TAS2R46;TAS2R50;TAS
2R7;TAS2R8;TAS2R9

GO:0050912 detection of chemical stimulus involved in sensory perception of taste 2.099E+01 1.887E-15 5.719E-12 TAS2R10;TAS2R13;TAS2R14;TAS2R19;TAS2R20;TAS2R3;TAS2R30;TAS2R31;TAS2R43;TAS2R46;TAS2R50;TAS
2R7;TAS2R8;TAS2R9

GO:0050909 sensory perception of taste 1.453E+01 5.317E-13 1.208E-09 TAS2R10;TAS2R13;TAS2R14;TAS2R19;TAS2R20;TAS2R3;TAS2R30;TAS2R31;TAS2R43;TAS2R46;TAS2R50;TAS
2R7;TAS2R8;TAS2R9

GO:0006346 methylation-dependent chromatin silencing 2.841E+01 1.365E-10 2.481E-07 MBD1;MBD2;MBD3;MBD3L1;MBD3L2;MBD3L3;MBD3L4;MBD3L5

GO:0007030 Golgi organization 7.442E+00 1.679E-09 2.544E-06 SYNE1;GOLGA2;GOLGA6A;GOLGA6B;GOLGA6C;GOLGA6D;GOLGA8A;GOLGA8B;GOLGA8H;GOLGA8J;GOLGA
8M;GOLGA8N;GOLGA8O;GOLGA8R;CSNK1A1

GO:0051225 spindle assembly 7.762E+00 1.253E-08 1.628E-05 GOLGA2;GOLGA6A;GOLGA6B;GOLGA6C;GOLGA6D;GOLGA8A;GOLGA8B;GOLGA8H;GOLGA8J;GOLGA8M;GOL
GA8N;GOLGA8O;GOLGA8R

GO:0007051 spindle organization 5.012E+00 2.128E-06 2.418E-03 GOLGA2;GOLGA6A;GOLGA6B;GOLGA6C;GOLGA6D;GOLGA8A;GOLGA8B;GOLGA8H;GOLGA8J;GOLGA8M;GOL
GA8N;GOLGA8O;GOLGA8R

GO:0006342 chromatin silencing 7.687E+00 2.488E-06 2.513E-03 HIST4H4;MBD1;MBD2;MBD3;MBD3L1;MBD3L2;MBD3L3;MBD3L4;MBD3L5
geneSet description enrichmentRatio pValue FDR Genes

hsa05206 MicroRNAs in cancer 7.795E+00 0.000E+00 0.000E+00

MIR103A1;MIR103A2;MIR107;MIR124-1;MIR124-2;MIR124-3;MIR1-1;MIR1-
2;MIR206;MIR100;MIR10A;MIR10B;MIR129-1;MIR129-
2;MIR15A;MIR15B;MIR193B;MIR199A1;MIR199A2;MIR199B;MIR203B;MIR21;MIR223;MIR31;MIR99A;MIRLE
T7A1;MIRLET7A3;MIRLET7F2;MIR29B1;MIR29B2;MIRLET7G;MIRLET7I;MIR221;MIR222;MIR23A;MIR23B;MIR
27A;MIR27B;MIR30C1;MIR30C2;MIR30A;MIR30B;MIR30D;MIR30E

hsa04742 Taste transduction 1.021E+01 1.940E-12 3.163E-10 TAS2R10;TAS2R13;TAS2R14;TAS2R19;TAS2R20;TAS2R3;TAS2R30;TAS2R31;TAS2R42;TAS2R43;TAS2R45;TAS
2R46;TAS2R50;TAS2R7;TAS2R8;TAS2R9

hsa04914 Progesterone-mediated oocyte maturation 5.886E+00 2.238E-06 2.432E-04 SPDYE1;SPDYE11;SPDYE16;SPDYE17;SPDYE2;SPDYE2B;SPDYE3;SPDYE4;SPDYE5;SPDYE6;INS
hsa04114 Oocyte meiosis 5.126E+00 3.346E-06 2.727E-04 PPP3R2;SPDYE1;SPDYE11;SPDYE16;SPDYE17;SPDYE2;SPDYE2B;SPDYE3;SPDYE4;SPDYE5;SPDYE6;INS
geneSet description enrichmentRatio pValue FDR Genes
P00012 Cadherin signaling pathway 3.808E+00 3.557E-04 4.020E-02 PCDHB14;PCDHB7;PCDHGB1;PCDHB16;PCDHB6;PCDHGB4;PCDHGA6;PCDHGB6;PCDHGB7
geneSet description enrichmentRatio pValue FDR Genes

R-HSA-420499 Class C/3 (Metabotropic glutamate/pheromone receptors) 2.65E+01 0.00E+00 0.00E+00 TAS2R10;TAS2R13;TAS2R14;TAS2R19;TAS2R20;TAS2R3;TAS2R30;TAS2R31;TAS2R43;TAS2R46;TAS2R50;TAS
2R7;TAS2R8;TAS2R9

R-HSA-500792 GPCR ligand binding 4.08E+00 7.15E-10 6.17E-07
ADRA2C;NPB;NPW;UTS2B;LTB4R;LTB4R2;GALR1;GALR3;ACKR4;CXCR1;CXCR2;CXCR5;TAS2R10;TAS2R13;TAS2
R14;TAS2R19;TAS2R20;TAS2R3;TAS2R30;TAS2R31;TAS2R43;TAS2R46;TAS2R50;TAS2R7;TAS2R8;TAS2R9

R-HSA-418594 G alpha (i) signalling events 4.17E+00 5.26E-09 3.03E-06 CNGB1;ADRA2C;NPB;NPW;GALR1;GALR3;CXCR1;CXCR2;CXCR5;TAS2R10;TAS2R13;TAS2R14;TAS2R19;TAS2R2
0;TAS2R3;TAS2R30;TAS2R31;TAS2R43;TAS2R46;TAS2R50;TAS2R7;TAS2R8;TAS2R9

R-HSA-1461957 Beta defensins 1.20E+01 1.58E-06 6.83E-04 DEFB105A;DEFB105B;DEFB130A;DEFB130B;DEFB4A;DEFB4B;DEFB115
R-HSA-1461973 Defensins 9.66E+00 6.98E-06 2.41E-03 DEFB105A;DEFB105B;DEFB130A;DEFB130B;DEFB4A;DEFB4B;DEFB115
R-HSA-6803157 Antimicrobial peptides 5.92E+00 5.94E-05 1.71E-02 DEFB105A;DEFB105B;DEFB130A;DEFB130B;DEFB4A;DEFB4B;DEFB115;SEMG1
R-HSA-3214842 HDMs demethylate histones 8.45E+00 7.08E-05 1.75E-02 HIST1H4D;HIST1H4J;HIST2H4A;HIST4H4;KDM5C;KDM5D
R-HSA-6803204 TP53 Regulates Transcription of Genes Involved in Cytochrome C Release 1.44E+01 1.47E-04 3.18E-02 PMAIP1;PRELID1;PRELID3A;ZNF420
geneSet description enrichmentRatio pValue FDR userId

WP1545 miRNAs involved in DNA damage response 1.323E+01 7.077E-12 3.758E-09 MIR371A;MIR372;MIR542;MIR100;MIR15B;MIRLET7A1;MIR374B;MIR221;MIR222;MIR23A;MIR23B;MIR27A;
MIR27B

WP2059 Alzheimers Disease 5.088E+00 2.000E-07 5.311E-05 MIR124-1;MIR124-2;MIR124-3;MIR10A;MIR129-1;MIR129-
2;MIR199B;MIR21;MIR433;MIR671;MIR873;PPP3R2;MIR29B1;MIR30C2;MIR219A2

WP2249 Metastatic brain tumor 1.090E+01 1.365E-05 2.307E-03 MIRLET7A1;MIRLET7A3;MIRLET7F2;MIR29B1;MIR29B2;MIRLET7G
WP2911 miRNA targets in ECM and membrane receptors 8.282E+00 1.738E-05 2.307E-03 MIR107;MIR15B;MIR30C1;MIR30C2;MIR30B;MIR30D;MIR30E
WP1544 MicroRNAs in cardiomyocyte hypertrophy 5.037E+00 2.607E-05 2.768E-03 MIR103A1;MIR103A2;MIR140;MIR15B;MIR185;MIR199A1;MIR199A2;MIR23A;MIR27B;MIR30E
WP2029 Cell Differentiation - Index 7.268E+00 1.516E-04 1.251E-02 MIR1-1;MIR206;MIR199A1;MIR199A2;MIR221;MIR222
WP3299 let-7 inhibition of ES cell reprogramming 1.357E+01 1.649E-04 1.251E-02 MIRLET7A1;MIRLET7F2;MIRLET7G;MIRLET7I
WP4329 miRNAs involvement in the immune response in sepsis 5.653E+00 2.151E-04 1.428E-02 MIR187;MIR199A1;MIR199A2;MIR203B;MIR223;MIR29B1;MIRLET7I
WP2023 Cell Differentiation - Index expanded 6.105E+00 4.038E-04 2.383E-02 MIR1-1;MIR206;MIR199A1;MIR199A2;MIR221;MIR222
WP3971 Role of Osx and miRNAs in tooth development 7.066E+00 6.301E-04 3.346E-02 MIRLET7A1;MIRLET7F2;MIR29B1;MIRLET7G;MIRLET7I

Table S3: Pathway analysis – extended version. Gene Over-Representation Analysis (ORA) using both Gene Ontology (biological processes) and Pathway analysis (KEGG, PANTHER, Reactome and Wikipathway) as enrichment
categories. ORA was performed by the WebGesTalt functional enrichment analysis tool available at http://www.webgestalt.org. The enrichment test used Benjamini-Hochberg's FDR correction (FDR < 0.05). CNVs data were previously analyzed by an unpaired 2-group wilcoxon test (p-value < 0.05).
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Supplementary Data S1: 
Statistical results of the PGLS model correlating Cancer incidence rate ∼ Number of 

significant microRNAs copies across the 9 species included in the analysis, which has 
been applied in order to check for potential bias due to species phylogeny or 

population structure. 

 
Model <- pgls(cancer_rate ~ CNV, lambda="ML", data = comp.data) 

summary(Model) 

 

pgls(formula = cancer_rate ~ CNV, data = comp.data, lambda = 

"ML") 

kappa[Fix]: 1.000 

lambda[ ML]: 0.460 

delta[Fix]: 1.000 

 

Coefficients: 

• Residual standard error: 2.235 on 7 degrees of freedom 

• Multiple R-squared: 0.5776,  

• Adjusted R-squared: 0.5173  

• F-statistic: 9.574 on 1 and 7 DF 

• p-value: 0.01746  
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Supplementary Data S2-S4. 
 

The heatmap plots shown below highlight the relationships between individual data 
points, and the corresponding relationships within clusters.  

 
Each group has a distinct set of copy number values, and the main branches 

representing cancer- prone and resistant organisms perfectly distinguish the species. 
No additional information was given to the algorithm other than copy number. 

The model was able to discriminate between the two groups only using CNVs data. 
Euclidean distances, with both ‘complete’ and ‘ward’ methods have been applied. 
 
Figure S2: Heatmap of all the significant genes, clustered with Euclidean distance and 

ward linkage. 
 
 

 
 
  

[La]

[Hg]

[Ng]

[Dn]

[M
l]

[Hs]

[Cf]

[M
m

]

[Rn]

PPP2R2D
PPP2R2C
PPP2R2A
PPP2R2B
RWDD1
AP4S1
AP3S1
AP3S2
GLUL
TAF13
EIF5
SUMO4
SUMO2
SUMO3
EIF4A1
THOC7
CSNK1A1
MAP4K4
NACA
RB1CC1
HNRNPH1
HNRNPH2
CUL2
PRELID3B
PRELID3A
PRELID1
PRELID2
FOXJ1
SCFD2
SUB1
UMOD
TMEM41A
ZNF235
DUSP18
DNAJC19
TRAPPC13
RNF14
EXOC6
EXOC6B
HLA-DRB1
HLA-DRB5
POLR2C
CRIPT
POLR1C
DMD
RPLP1
SYNE1
RBM17
PHF3
AGBL4
HNRNPA0
PMM1
PMM2
NUCKS1
RAD51AP1
C1D
HNRNPA2B1
SPDYE9P
SPDYE8P
SPDYE6
SPDYE5
SPDYE4
SPDYE3
SPDYE2B
SPDYE21P
SPDYE2
SPDYE17
SPDYE16
SPDYE1
SPDYE11
GOLGA8T
GOLGA8S
GOLGA8R
GOLGA8Q
GOLGA8O
GOLGA8N
GOLGA8M
GOLGA8K
GOLGA8J
GOLGA8H
GOLGA8G
GOLGA8F
GOLGA8B
GOLGA8A
GOLGA6D
GOLGA6C
GOLGA6B
GOLGA2
GOLGA6A
ZNF479
ZNF431
ZNF430
ZNF257
ZNF253
ZNF114
ZFP41
ZNF100
CNTNAP3C
CNTNAP3
CNTNAP3B
PCM1
MBD3L5
MBD3L4
MBD3L3
MBD3L2B
MBD3L2
MBD3L1
MBD3
MBD1
MBD2
FGFBP3
FGFBP1
FGFBP2
FRG2C
FRG2
FRG2B
ZCCHC18
ZCCHC12
PNMA8C
PNMA8B
PNMA8A
PNMA6F
PNMA6E
PNMA6A
PNMA5
PNMA3
PNMA2
PNMA1
CCDC8
MOAP1
TCP10L2
TCP10L
CENPJ
TCP10
RBMY1J
RBMY1F
RBMY1E
RBMY1D
RBMY1A1
RBMY1B
SSX7
SSX5
SSX4B
SSX4
SSX3
SSX2B
SSX1
SSX2
GBP2
IGKV6D-41
IGKV6-21
IGKV6D-21
LPA
PRSS56
ERVFRD-1
KRTAP4-7
KRTAP4-12
KRTAP4-6
SCARNA4
SERPINA1
SERPINA2
EID2B
EID1
EID2
ZNF420
PCDHGB4
PCDHGB5
PCDHGB1
ZNF112
DEFB4B
DEFB4A
DEFB130A
DEFB130B
CMTM1
SCART1
C19orf33
ZNF142
ZBTB42
WFDC12
TEX54
SRY
SMIM41
SMIM38
PRR18
PPP3R2
PCDHGB7
PCDHGB6
PCDHGA9
PCDHGA6
PATE4
MIR770
HBE1
FREM3
C6orf226
DEFB115
TIMM10B
KDM5D
CFB
KDM5C
INS
INS-IGF2
TCAF2C
TCAF1
TCAF2
TAS2R9
TAS2R8
TAS2R7
TAS2R50
TAS2R46
TAS2R45
TAS2R43
TAS2R42
TAS2R31
TAS2R30
TAS2R3
TAS2R20
TAS2R19
TAS2R14
TAS2R10
TAS2R13
SELENOW
NUPR1
NUPR2
ANKRD62
SPACA7
RETN
RETNLB
MIR340
SCARNA16
MIR542
ABCG2
MIR424
MIR371A
MIR372
SPINK14
DPPA3
SEC61G
IGKV1OR2-108
HUS1
HUS1B
SEMG1
SEMG2
SH2D1B
SCARNA14
CLEC2D
TRAV18
MIR30C2
MIR30C1
MIR221
MIR222
MIR107
MIR103A1
MIR103A2
MIR219A2
MIR219B
MIR30E
MIR30D
MIR30A
MIR30B
MIR27B
MIR27A
MIR23A
MIR23B
ZFP57
UTS2B
MIRLET7F2
MIRLET7A3
MIRLET7A1
MIR99B
MIR99A
MIR873
MIR671
MIR652
MIR490
MIR489
MIR433
MIR339
MIR31
MIR223
MIR21
MIR199B
MIR199A2
MIR199A1
MIR193B
MIR193A
MIR187
MIR185
MIR15B
MIR15A
MIR140
MIR129-2
MIR129-1
MIR1282
MIR10B
MIR10A
MIR100
MAGEE2
LSMEM2
CNBD1
FMR1NB
C4orf3
MIR206
MIR1-1
MIR1-2
S100A16
RPTN
HRNR
FLG
FLG2
NOS3
NANOS3
NANOS1
NANOS2
SPAG11A
SPAG11B
SCARNA2
MIR29B1
MIR29B2
CMTM2
MIRLET7I
MIR98
MIRLET7G
MIR378D2
MIR378A
MIR378B
MIR124-3
MIR124-1
MIR124-2
TGIF2LX
TGIF2LY
ZBED9
UFSP1
SRRM5
OPTC
LRWD1
LMLN2
KPRP
IGKC
GAS1
FAM227B
CCDC185
C3orf22
AKAP14
C2CD4C
PCDHB6
MIR203B
LRIT2
HSBP1L1
ACOXL
ADRA2C
C15orf65
C9orf116
CXCR5
CXCR2
ACKR4
CXCR1
MIR514B
MIR514A3
MIR514A1
MIR511
MIR506
MIR509-1
FDCSP
MIR653
LTB4R2
LTB4R
HIGD2A
HIGD2B
CRYGA
ZNF383
WFDC13
UNCX
SP8
RNF225
PMAIP1
PBX4
NPW
NPB
KRT9
KLF16
JUND
IGIP
GPR88
GFRA4
GALP
CCDC179
FOXL1
NHLRC4
PRR35
TEX11
PRR9
PPM1N
PCDHB16
NLRP10
IGSF23
GPR160
GIMAP8
C6orf201
COL27A1
RNF113A
RNF113B
PPP1R14D
PPP1R14C
PPP1R14A
PPP1R14B
GALR1
GALR3
GAR1
CNGB1
CNGB3
GJE1
GJD4
GJD3
GJA9
GJD2
TMEM249
SMIM36
MIR504
MFSD10
LRPPRC
DPEP2NB
CTXND2
CCDC192
C10orf95
C2orf92
IER5L
IER2
IER5
C20orf141
SMIM40
MIR374A
MIR374B
RHOXF1
FAM237A
FAM237B
DEFB105A
DEFB105B
SCARNA21
ZNF169
SMIM31
RNF224
PCDHB7
PCDHB14
IQCM
GP2
EEF1AKMT4
CD52
CSN1S1
SAT1
SATL1
FAM110D
FAM110C
FAM110A
FAM110B
SCARNA20
HIST4H4
HIST2H4A
HIST1H4D
HIST1H4J
KRTAP3-3
KRTAP3-2
KRTAP24-1
KRTAP3-1
KRTAP15-1
ZNF195
ZNF429

-2

-1

0

1

2



 148 

Figure S3: Heatmap of all the significant genes, clustered with Euclidean distance 
and complete linkage. 
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Figure S4: Heatmap of the significant MicroRNAs, clustered with Euclidean distance 
and ward linkage. 
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“Per aspera, sic itur ad astra.” 


