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A quasistatic evolution problem for a phase transition model with nonconvex energy density
is considered in terms of Young measures. We focus on the particular case of a finite number
of phases. The new feature consists in the use of suitable regularity arguments in order to
prove an existence result for a generalized notion of evolution.

1 Introduction

In the last years the energetic formulation of rate-independent processes has been widely used
to describe mesoscopic models for the isothermal stress-induced transformation in crystalline
materials (see [8] and references therein).

We consider a material which can assume only a finite number of different phases (or
phase-variants). The stored-energy density is assumed to depend on the phase state and on the
elastic deformation of the material, and has a multiple-well potential form (see [9], [7], [5]).
More in general we deal with a density which does not satisfy any convexity assumption with
respect to the parameter describing the phase state of the material. We assume that changes of
the phase distribution of the material lead to an energy dissipation. Moreover, we require that
the admissible deformations satisfy a prescribed time-dependent boundary condition, which
we impose on the whole boundary of the reference configuration to avoid some technical
difficulties. For the same reason, we neglect any contribution due to external forces.

As in [3] (where the case of a material with infinitely many phases is studied), the lack
of convexity of the stored energy gives rise to many technical difficulties, making unsolvable
in usual functional spaces the incremental minimum problems used in the construction of
approximate solutions (see [8] and references therein).

To avoid any artificial regularization, in this paper we follow the same approach as in [3],
and set the problem in a suitable space of Young measures, where the incremental minimum
problems can be solved. To find a correct extension to the Young measure setting of the
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dissipation functional and of the corresponding notion of total dissipation on a time interval,
we need to use the tool of compatible systems of Young measures (see [1] and [3]).

The aim of the paper is to prove an existence result for a notion of quasistatic evolution
of Young measures, characterized by an admissibility condition and by suitably reformulated
stability condition and energy equality. The stability condition is a global minimality condi-
tion, but the set of competitors is a proper subset of the admissible measures, represented by
rearrangements of the phase distribution and translations of the Young measure corresponding
to the deformation.

Thanks to the fact that the material can assume just a finite number of different phases,
the notion of evolution introduced in this paper presents some improvements with respect to
the one considered in [3]. Indeed, under weaker assumption on W , the stability condition
considered here allows us to compare the evolution with a quite large set of competitors,
including all possible rearrangements of the phase distribution. Moreover, it is possible to
obtain not only an upper energy estimate as in [3], but a complete energy balance.

The proof of the existence theorem (Theorem 4.2) follows the classical scheme of time-
discretization, resolution of incremental minimum problems, and passage to the limit of the
approximate solutions.

The main new feature with respect to [3] concerns the use of regularity results for quasi-
minima of integral functionals (see [6]) to select special solutions to the discretized minimum
problems. The proof of the lower energy estimate for the limit of the approximate solutions
presents some new aspects too.

For a more detailed discussion on these results we refer to [4].

2 The mechanical model

Assuming that the reference configuration of the crystalline material is a bounded regionD ⊂
R

d, the state of the system is determined by two functions: the deformation v : D → R
N and

the internal variable z : D → Z ⊂ R, which takes into account the phase transformations of
the material.

In our framework, Z is the finite set {1, . . . , q}, representing the different phases (or phase
variants) of the crystal, and z : D → Z represents the phase distribution of the material. Then
the stored energy of the system is

W(z, v) :=

∫
D

W (z(x),∇v(x)) dx,

where W : Z × R
N×d → [0,+∞) is a C1-function satisfying

c|F |2 − C ≤W (α, F ) ≤ C(1 + |F |2), (1)

for suitable positive constants c and C, and for every α ∈ Z and F ∈ R
N×d. The energy

dissipated when the phase distribution of the material changes is represented by∫
D

H(znew(x), zold(x)) dx,

where H is a metric distance on Z , zold is the old phase distribution and znew the new one.
The prescribed boundary datum on ∂D at time t is denoted by ϕ(t); ϕ is assumed to be an

absolutely continuous function on [0, T ] with values in W 1,p(D;RN ), with 2 < p < +∞.



3 Young measures and discrete sets of values

For the mathematical preliminaries about measures and Young measures we refer to [3, Sec-
tion 2 and 4]. It is easy to see that any Young measure μ on D with values in Z can be
written as μ =

∑
α∈Z bαδα where bα are functions in L∞(D; [0, 1]) satisfying the condition∑

α∈Z bα(x) = 1, for a.e. x ∈ D. Therefore the set Y (D;Z) of Young measures on D
with values in Z can be identified with the set of all families b = (bα)α∈Z in L∞(D; [0, 1])
satisfying the condition above. Analogously, we can identify the space of compatible systems
of Young measures on D with values in Z and time set [0, T ] with the set of all families
b = (bt1...tnα1...αn

) of functions in L∞(D; [0, 1]), with t1 < · · · < tn varying in [0, T ] and
(α1, . . . , αn) ∈ Zn, satisfying the condition

∑
(α1,...,αn)∈Zn

bt1...tnα1...αn
(x) = 1,

for every t1 < · · · < tn in [0, T ] and a.e. x ∈ D, and a suitable projection property (for the
precise definition, see [4, Section 3]) .

The dissipation DissH(b; c, d) is defined by

DissH(b; c, d) := sup

k∑
i=1

∑
αβ

H(β, α)

∫
D

b
si−1si
αβ (x) dx, (2)

where the supremum is taken over all partitions c = s0 < · · · < sk = d of the interval [c, d].
The above definition justifies the use of compatible systems of Young measures: the ener-

getic effect of the phase transitions occurring from the instant si−1 to the instant si can only
be described by an object bsi−1si

αβ , representing the volume fraction at x undergoing the phase
transformation from α to β. The knowledge of bsi−1

α and bsiβ separately does not keep the
complete information about the energy spent in the transition. Indeed, if we consider the case
of a homogeneous phase distribution bsi−1

α = 1/q for every α, and we suppose that the mate-
rial undergoes a transition from si−1 to si just permuting the phases and leaving the volume
fractions unchanged, we have bsi = bsi−1 . Hence the dissipation computed using only bsi−1

and bsi is 0, while the dissipation energy computed using bsi−1si depends on the permutation
and it is different from zero. Therefore, the previous description seems to give a more real-
istic picture of the dissipation phenomenon, if compared, for instance, with the one proposed
in [7, Section 5], which only takes into account the contribution of single time instants.

4 Definition of quasistatic evolution and main result.

First of all we fix some notation and give the definition of quasistatic evolution.
We define the set of admissible pairs Ad([0, T ],ϕ) as the set of all pairs (b,λ) formed by a

compatible system b on D with values in Z and time set [0, T ] and a time-dependent family λ

of Young measures on D with values in R
N×d, which can be suitably approximated by means

of time-dependent functions satisfying the boundary condition (for the precise definition and
the properties of the admissible set, see [4, Section 5]).

Given a measurable map M defined on D with values in the set of q×q-stochastic matrices,
a function ũ ∈ H1

0 (D;RN×d), an admissible pair (b,λ), and a time instant t ∈ [0, T ], we



define a competitor (b̃M,ũ, λ̃M,ũ) for the stability condition at time t by setting

b̃M,ũ
β :=

∑
α

Mβαb
t
α a.e. in D

(λ̃M,ũ
β )x :=

∑
α Mβα(x)b

t
α(x)T∇ũ(x)(λ

t
α)

x

∑
α Mβα(x)b

t
α(x)

if
∑
α

Mβα(x)b
t
α(x) > 0,

for a.e. x ∈ D and every β = 1, . . . , q, where T∇ũ(x) represents a translation operator on the
set of probability measures on R

N×d.
We also set

〈W, (bt,λt)〉 :=
∑
α

∫
D×RN×d

btα(x)W (α, F ) dλt
α(x, F ),

H(b̃M,ũ, bt) :=
∑
α,β

H(β, α)

∫
D

Mβα(x)b
t
α(x) dx.

Definition 4.1 Given ϕ ∈ AC([0, T ];W 1,p(D;RN )), for 2 < p < +∞, T > 0, z0 ∈
L∞(D;Z), and v0 ∈ ϕ(0) + H1

0 (D;RN ), a quasistatic evolution of Young measures with
boundary datum ϕ and initial condition (z0, v0), in the time interval [0, T ], is an admissible
pair (b,λ) ∈ Ad(D,ϕ), satisfying the following conditions:

(ev0) initial condition: with D0
α := {x ∈ D : z0(x) = α}, we have b0α = 1D0

α
and

(λ0
α)

x = δ∇v0(x) if x ∈ D0
α, for every α;

(ev1) partial-global stability: for every t ∈ [0, T ], we have

〈W, (bt,λt)〉 ≤ 〈W, (b̃M,ũ, λ̃M,ũ)〉+H(b̃M,ũ, bt),

for every ũ ∈ H1
0 (D;RN ), and every measurable map M on D with values in the set of

q × q-stochastic matrices.

(ev2) energy equality: for every t ∈ [0, T ], we have

〈W, (bt,λt)〉+DissH(b; 0, t) =W(z0, v0) +

∫ t

0

〈σ(s),∇ϕ̇(s)〉2 ds,

where σ represents the stress of the system and DissH(b; t1, t2) is defined by (2).

Theorem 4.2 Let ϕ ∈ AC([0, T ];H1(D;RN )) and T > 0. Assume that the partial-
global stability condition is satisfied by (z0, v0) ∈ L∞(D;Z)× (ϕ(0)+H1

0 (D;RN )) . Then
there exists a quasistatic evolution of Young measures with boundary datum ϕ and initial
condition (z0, v0) in the time interval [0, T ].

5 Proof of the main theorem

The proof is obtained via time-discretization, resolution of incremental minimum problems,
and passing to the limit.



5.1 The incremental minimum problem and the regularity argument

The first step of the proof consists in the resolution of a chain of discretized minimum prob-
lems.

Let us fix a partition of [0, T ], 0 = t0 < t1 < · · · < tk = T . We set b0αλ
0
α := 1D0

α
δ∇v0 ,

where D0
α := {x ∈ D : z0(x) = α}, and define inductively (bt

i

,λti) as a minimizer of the
functional

〈W, (bt
i

,λti)〉+ 〈H, bt
i−1ti〉 (3)

:=
∑
α

∫
D×RN×d

bt
i

α (x)W (α, F ) dλti

α (x, F ) +
∑
α,β

H(β, α)

∫
D

bt
i−1ti

αβ (x) dx,

among the admissible pairs (b,λ), satisfying suitable “memory properties” with respect to
(bt

i−1

,λti−1

) (see [4, Section 7.1]).
The inductive procedure produces a sequence of minimizers. Ekeland Variational Principle

allows us to manipulate it in order to obtain minimizers which can be approximated by quasi-
minima of the integral functionalF(v) =

∫
D
(1 + |∇v(x)|2) dx.

The regularity results proven by Giaquinta and Giusti for quasi-minima of this functional
(see [6], and [4, Appendix] for further details concerning our specific functional) ensures a
uniform bound on the r-moments of the selected minimizers, for some r > 2, more precisely
we have

∑
α

∫
D×RN×d

btiα (x)|F |
r dλti

α (x, F ) (4)

≤ γ
[
1 +

(∫
D×RN×d

btiα (x)|F |
2 dλti

α (x, F )
)r/2]

,

for a positive constant γ independent of i and of the partition t0, . . . , tk.

5.2 The passage to the limit and the continuity of the energy functional

A suitable interpolation of the sequence of minimizers constructed in the previous section
gives an approximate solution for the given time discretization.

We consider now a sequence of finer and finer subdivisions of the time interval and the
related sequence of approximate solutions. The minimality property of these approximations
provides an a priori estimate on their second moments and on the total variation of the com-
patible systems. These uniform bounds ensure the convergence of a suitably chosen subse-
quence. Thanks to (4), the a priori estimate on the second moments gives a uniform bound
on the r-moments, which improves the convergence of the approximate solutions. In partic-
ular, since the stored energy density has growth 2 < r (see assumption (1)), the functional
(bt,λt) 
→ 〈W, (bt,λt)〉 is continuous along the sequence of approximations (see [3, Remark
4.3]).

5.3 Stability condition and upper energy estimate

To prove that the limit of the approximate solutions satisfies the stability conditions, we fix
ũ and M as in (ev1), and we construct a “recovery sequence” converging to (b̃M,ũ, λ̃M,ũ)



and made by good tests for the minimality property satisfied by the approximations (see [4,
Section 5]).

The continuity of the energy functional along the sequence of approximate solutions im-
plies the continuity of the same functional along the recovery sequence, and this allows us to
obtain the required stability in the passage to the limit.

A careful choice of the converging subsequence of approximate solutions is necessary in
order to apply the argument in [2, Section 7]. This allows us to treat the term involving
the stress in the energy balance and to obtain the upper energy estimate for the limit of the
approximations.

5.4 Lower energy estimate

The proof of the lower energy estimate requires a more delicate argument than in the standard
case (see e.g. [5, Step 5, p. 7]). Usually the proof of this estimate is based on a suitable
minimality property guaranteed by the stability condition. In our case, due to the restriction
of the set of competitors in the partial-global stability, we can only prove a weaker version
of this minimality property, using the continuity provided by the regularity argument. This
fact makes more delicate the last step of the proof, where we need to approximate a Lebesgue
integral with Riemann sums.

The interested Reader will find more details in [4, Section 7.6].
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