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A universal curve of apatite 
crystallinity for the assessment of 
bone integrity and preservation
Gregorio Dal Sasso  1, Yotam Asscher1, Ivana Angelini  2, Luca Nodari3 & Gilberto Artioli  1

The reliable determination of bioapatite crystallinity is of great practical interest, as a proxy to the 
physico-chemical and microstructural properties, and ultimately, to the integrity of bone materials. 
Bioapatite crystallinity is used to diagnose pathologies in modern calcified tissues as well as to assess the 
preservation state of fossil bones. To date, infrared spectroscopy is one of the most applied techniques for 
bone characterisation and the derived infrared splitting factor (IRSF) has been widely used to practically 
assess bioapatite crystallinity. Here we thoroughly discuss and revise the use of the IRSF parameter 
and its meaning as a crystallinity indicator, based on extensive measurements of fresh and fossil bones, 
virtually covering the known range of crystallinity degree of bioapatite. A novel way to calculate and use 
the infrared peak width as a suitable measurement of true apatite crystallinity is proposed, and validated 
by combined measurement of the same samples through X-ray diffraction. The non-linear correlation 
between the infrared peak width and the derived ISRF is explained. As shown, the infrared peak width 
at 604 cm−1 can be effectively used to assess both the average crystallite size and structural carbonate 
content of bioapatite, thus establishing a universal calibration curve of practical use.

Bone is a composite material constituted by the intimate association of an organic matrix and a mineral phase 
arranged in a complex structure described in terms of hierarchical levels of organization1,2. Bioapatite, consti-
tuting the mineral fraction of bone, is a nano-crystalline phase, whose composition resembles that of hydrox-
ylapatite (Ca10(PO4)6(OH)2)3 but considerably departs from the ideal end-member in terms of stoichiometry, 
as a number of ionic substitutions and vacancies occur in the structure4–6. The in vivo chemical composition 
and crystal structure of bioapatite are controlled by metabolic processes in order to fulfil specific functions7,8 as 
well as to regulate physical properties, such as solubility, thermal stability and crystal size4,9. The chemical and 
crystallographic characterization of bioapatite is of great interest for several research fields as archaeological sci-
ence and palaeoclimatology10–13, as well as medicine and biomedical engineering6,14–18. Among the measurable 
properties of bioapatite, crystallinity is an extremely meaningful indicator of bone preservation11,13 in the case of 
fossil bones and of integrity15,19–21 in the case of fresh bones. In fact, nanocrystals are thermodynamically unstable 
and are prone to recrystallization both during the lifetime of the individual and after death. After the death of 
the individual bioapatite crystals tend to recrystallize by Ostwald ripening process into a phase characterized by 
a more stable and more ordered crystal structure and by larger crystal dimensions, implying a reduced specific 
surface area11,22,23. Variability in the recrystallization degree is determined by the combined effects of several fac-
tors, mainly related to environmental and local burial conditions, such as soil composition, pore water chemical 
composition, temperature and moisture11,24,25. Therefore, the physico-chemical characterisation of fossil bones 
is crucial for those studies aiming to assess their pristine composition and diagenetic history as well as to recon-
struct past climate conditions23,25–30. However, the term crystallinity is loosely used to describe the properties of 
the material related to crystal structure order, density of defects, or crystal size and shape. In order to describe or 
quantify the changes in bioapatite crystallinity, several empirical crystallinity parameters have been proposed, on 
the basis of results obtained from different analytical techniques such as X-ray powder diffraction – XRPD –31–34,  
Fourier transform infrared spectroscopy – FTIR –35,36, Raman spectroscopy15,37,38, transmission electron micros-
copy – TEM –28,39, atomic force microscopy40,41, nuclear magnetic resonance – NMR –40. Among these techniques, 
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FTIR spectroscopy is extensively applied to bone characterization studies6,13,42 as it provides valuable information 
on the chemical composition and structure of both the mineral and organic phases, it requires a low amount of 
sample (~1 mg) and the analytical procedure is fast and nearly inexpensive, so that a large set of samples can be 
feasibly investigated. Hence, the infrared splitting factor (IRSF) calculated from FTIR spectra of bone samples10,35 
is a widely used parameter to practically assess crystallinity. The IRSF is a function of infrared peak broadening 
and it quantifies the splitting extent of the two main peaks of the phosphate ν4 vibrational mode. Peak broadening 
is, in turn, inversely related to crystallinity as a more crystalline apatite is characterised by sharper infrared peaks, 
and thus by a higher IRSF value10,35,43.

Given the relevance gained by this diagenetic parameter to assess the preservation state of fossil bones, in this 
research a detailed study on the relationship between IR peak width, IRSF and crystallinity has been carried out 
by investigating fresh and archaeological bones. This set of samples covers a wide range of crystallinity as fresh 
bones are inherently characterized by poorly crystalline bioapatite, whereas archaeological bones from different 
sites show a large variability in terms of recrystallization degree, depending on the types and extent of alteration 
processes encountered during burial. The effectiveness of IRSF as a parameter for describing crystallinity vari-
ations is here discussed by comparing results obtained from FTIR spectroscopy with an independent measure-
ment of bioapatite crystallinity carried out by X-ray powder diffraction coupled with the Rietveld refinement of 
diffraction data, being this technique the most suitable and statistically robust to assess the average size of bioap-
atite crystallites. On these bases, the ultimate aim of this research is to provide a tool to reliably assess bioapatite 
crystallinity variations among a set of samples, encouraging the use of analytical techniques of easy accessibility, 
such as FTIR spectroscopy.

Remarks on Bioapatite Crystallinity
Due to the complex nature of biogenic apatite, a unique appropriate method for crystallinity determination is 
not established; conversely, several indicators, providing some relative measurement of crystallinity, are com-
monly used and derived from a number of analytical techniques and from different approaches to data analy-
sis6,10,15,28,33,34,36,37,39,40. Different analytical techniques probe different physical-chemical properties of the analysed 
material, thus these indicators can be directly or indirectly related to crystallinity. This results in an unclear phys-
ical meaning of some of these indicators, often related to a loose definition of crystallinity. In this research bio-
apatite crystallinity is investigated by FTIR spectroscopy, and, for a subset of samples, by XRPD. Since these two 
techniques rely on different interaction processes between radiation and the analysed material, crystallinity is 
assessed trough a substantially different approach. For this reason, defining the term crystallinity when referring 
to biogenic apatite and the physical meaning of crystallinity indicators is fundamental44.

The most basic definition of crystal refers to a solid material “having an essentially discrete diffraction dia-
gram”45 (see also the Online Dictionary of Crystallography at http://reference.iucr.org/dictionary/Crystal); it 
includes a vast class of solid materials characterized by a long-range regular and periodic arrangement of atoms. 
Generally speaking, the term crystallinity refers to the degree of structural order in a solid material; such order 
can be moderated by the occurrence of crystal defects and grain boundaries. Depending on the analysed material 
and the specific application required, the term crystallinity may assume different meanings, i.e. the amount of 
crystal defects in a single crystal, the crystallites dimension in a polycrystalline material, or the volume percentage 
of crystalline and amorphous materials in a mixture. In the case of bone material the term crystallinity refers to 
the mean dimension of bioapatite nanocrystals. In fact, bioapatite can be considered a polycrystalline material, 
although it is often described as a poorly crystalline apatite because of the high specific surface area of crystals 
and the large amount of ionic substitutions occurring in its structure. Bioapatite crystallinity can be indicative 
for bone quality or preservation, since nanocrystals tend to recrystallize into larger crystals with a more ordered 
structure11,13 as soon as specific dysfunctions or the death of the individual hinder the metabolic processes nor-
mally controlling bioapatite chemical composition and crystal size7,8,11.

On these bases, bioapatite crystallinity is differently probed by FTIR spectroscopy and X-ray powder diffrac-
tion. Vibrational spectroscopies (i.e. FTIR and Raman spectroscopy) are sensitive to functional groups and their 
chemical environment, probing the vibrational frequencies associated to chemical bonds through the absorp-
tion and/or scattering of photons. The commonly employed IRSF is directly related to the broadening of the IR 
phosphate peaks referring to the ν4 vibrational mode. Broadening of these peaks is caused by length changes 
and distortions of the P-O bonds within the bioapatite structure due to the increase of crystal defects as substi-
tutions, vacancies and strained lattice sites9. Two major effects are present in the case of bioapatite: (i) the high 
specific surface area due to the nanometre size of crystals, that contributes to change the average P-O bond length 
because of surface relaxation, and (ii) a significant contribution to peaks broadening resulting from the amount 
of carbonate substituting for phosphate, which is the most significant (4–7 wt.%) among the ionic substitutions 
occurring in the bioapatite crystal structure4,9,46. Furthermore, the significant occurrence of carbonate ions in the 
bioapatite structure implies a higher degree of structural disorder as several ions substitutions and vacancies are 
favoured to maintain the charge balance6,47. As proved by De Mul and co-authors46 in a detailed study, the peak 
width of the phosphate symmetric stretching vibration at 962 cm−1 in Raman spectra depends on the amount of 
carbonate substitution in the hydroxylapatite structure. Evidence of the dependence of phosphate peak width on 
the carbonate content is also provided by several studies showing the strong correlation between IRSF values and 
carbonate content retrieved by IR spectra of bones25,36,37,48,49. Even though peak broadening, and therefore the 
IRSF, is directly related to the carbonate content of bioapatite, the amount of ionic substitution and crystallite size 
are not independent of each other. In fact, the occurrence of carbonate ions at high concentration in the bioapatite 
structure influences the long-range atomic order of crystals through accumulated strain, thus inhibiting the crys-
tal growth and constraining the bioapatite crystallites at a nanometre scale4,9. The correlation observed between 
the IRSF and the average crystallite size, measured on bone material by XRPD50,51 indicates that the IRSF provides 
a relative measurement of bioapatite crystallinity defined as mean crystallite size. Therefore, FTIR spectroscopy 
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can be reliably applied to monitor bioapatite crystallinity, even if indirectly, with the advantages provided by 
this technique with respect to others, such as the small sample size required and the fast and nearly inexpensive 
analytical procedure. Within this framework, it is worth mentioning one of the first applications of the splitting 
quantification of the two phosphate peaks to monitor apatite crystallinity and frequently cited when analysing 
bone material through FTIR spectroscopy: Termine and Posner43 successfully developed a method to quantify 
crystallinity in apatitic calcium phosphates; however the term crystallinity here used refers to the ratio of crys-
talline apatite and amorphous calcium phosphate in a mixture, which is substantially different by the meaning of 
crystallinity referred to bioapatite previously discussed. In the cited case, the increase of peak width observed for 
amorphous phosphate with respect to that observed for crystalline apatite can be related to the larger distribution 
of the P-O bond lengths in the amorphous material with respect to that of well-ordered crystalline material.

On the other hand, X-ray powder diffraction (XRPD) directly probes bioapatite crystallinity as the crystallites 
act as coherently scattering domains producing a diffraction pattern. The nanometre size of crystallites causes the 
broadening of line profiles52–54, thus by line-broadening analysis the average crystallite dimensions along differ-
ent crystallographic directions can be calculated. Depending on the approach used to analyse diffraction data, 
crystallinity can be monitored by taking into account the whole diffractogram34,50,51 or through other crystallinity 
indicators based on single peak width measurement31 or averaged among several crystallographic directions, the 
meaning of which, however, may result unclear33. The more rigorous whole profile fitting method has the advan-
tage to provide a more accurate determination of apparent crystallites dimensions along several crystallographic 
directions, thus taking into account the intrinsic anisotropy of bioapatite crystallites. In this research, the Rietveld 
refinement method55 was applied to diffraction data in order to retrieve the average apparent crystallites dimen-
sions, considering the anisotropic contribution to the line broadening due to crystallite size. Since the direction of 
maximum elongation is along the c axis, the crystallite size along this direction is here considered as a proxy for 
crystallinity and used as a parameter to monitor crystallinity variations among samples.

FTIR Spectral Analysis
Bioapatite samples were selected in order to cover a wide range of crystallinity, in particular they consist of fresh 
bone and dentine samples, providing a reference for bioapatite produced by metabolic processes in mammals13, 
and archaeological bones characterised by variable recrystallization degrees selected from different sites located 
in Israel and in Sudan.

FTIR spectroscopy was carried out on the entire set of samples. The raw FTIR spectra (Supplementary 
Fig. S1) and the detailed interpretation of vibrational modes detected in bone FTIR spectra are reported in the 
Supplementary Information online. Several parameters, i.e. peaks intensity ratio and width, were calculated from 
each FTIR spectrum to monitor the peak shape and relative intensity variations among samples. Spectra manip-
ulations, as smoothing, background subtraction or peak deconvolution, were avoided; nevertheless, all calculated 
parameters (peaks intensity and width) refer to a baseline (as shown in Fig. 1) in order to make them compara-
ble25,36. The baseline (Fig. 1) was defined for each spectrum by a number of points placed at the local minimum 
within selected regions of the spectrum, as reported in Table 1.

Even though spectra deconvolution is a preferable technique to isolate each single contribution of overlap-
ping bands56, in this study a different approach is suggested and based on the selection of specific features less 
affected by overlapping effects. This choice is driven by two reasons: (i) the large success of IRSF as a practical 
parameter for bioapatite crystallinity lies on the easy way to calculate it, avoiding spectra deconvolution that is a 
complex and time-consuming (even though reliable) method; (ii) the selection of suitable parameters, measured 
directly from FTIR spectra, can provide results that are as reliable as those obtained from spectra deconvolution 
(The close comparison between spectral deconvolution and measurable spectral parameters is reported in the 
Supplementary Information, Supplementary Fig. S2). Since this research aims to provide a reliable but easily 
applicable method to monitor crystallinity variations among samples, a set of parameters was calculated from 
FTIR spectra as described in the following paragraph.

The IRSF35 is calculated as the sum of peak intensities at 604 and 565 cm−1 (ν4(PO4) vibrational mode) divided 
by the intensity of the valley between them (i.e. (a + b)/c as reported in Fig. 1); phosphate peaks were also char-
acterised by measuring the full width at half maximum (FWHM) of the main peak at 1035 cm−1 referring to the 
ν3(PO4) vibrational mode, the width at 85% of the height of the 604 cm−1 peak (FW85%) and at 80% of the height 
of the 565 cm−1 peak (FW80%). The peaks height here considered is calculated from the baseline previously 
defined (Fig. 1). The height percentage used to calculate FW85% and FW80% was selected considering the bands 
overlapping among all the samples, thus 85% and 80% was the minimum percentage allowing the measurement 
of the width of the sole 604 cm−1 and 565 cm−1 peak, respectively.

The carbonate content of bioapatite is monitored through the CO3/PO4 parameter, calculated by dividing 
the intensity of the band at 1415 cm−1 (ν3(CO3) vibrational mode) by the intensity of the phosphate peak at 
604 cm−1 (i.e. CO3/a, as shown in Fig. 1). Even though carbonate ions in nano-apatite occur in three different 
structural environments (named A-type, when substituting for OH− ions, B-type, when substituting for PO4

3− 
ions, and labile carbonate – see Supplementary Information for a detailed description), the B-type carbonate 
is the predominant one in bone mineral, whereas the A-type is much less abundant and the labile one is occa-
sionally detected4,9,57; moreover the ratio between A- and B-type carbonate is nearly constant57. Therefore, the 
semi-quantitative estimation of carbonate content based on FTIR parameters that consider only the vibrational 
bands referring to the B-type carbonate (as the CO3/PO4 parameter based on the band at 1415 cm−1) can be con-
sidered to be proportional to the total structural carbonate content of bioapatite. This is furthermore proved by 
other studies58–60 showing that the total amount of carbonate, quantified analytically, is linearly well-correlated 
to the CO3/PO4 parameter previously described. Therefore, the CO3/PO4 parameter can be effectively applied to 
estimate the relative amount of carbonate content in bioapatite samples.
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Figure 1. FTIR spectra of (a) fresh bone and (b) diagenetically altered archaeological bone. Baselines, the full 
width at half maximum (FWHM) of the phosphate peak at 1035 cm−1, the width at 85% of height of the peak at 
604 cm−1 (FW85%), the width at 80% of height of the peak at 565 cm−1 (FW80%) and the splitting factor (IRSF) 
are highlighted. Major vibrational bands attribution is also reported (see the Supplementary Information for a 
detailed description).

Vibrational mode Maximum peak position (cm−1) Baseline (cm−1)

ν3(CO3) 1415 2000–1800/1400–1200

ν3(PO4) 1035 1400-1200/900-750

ν4(PO4) 604 850-620/510-470

ν4(PO4) 565 850-620/510-470

Table 1. Peak positions and baselines of vibrational bands used to calculate peaks intensity and width. For 
each peak the baseline is defined by two points selected at the local minimum in the spectral region within the 
intervals here indicated (Fig. 1).
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Results
Results (Supplementary Table S1) show a high variation of FW85% values for the less crystalline bioapatite (fresh 
bone and dentine), ranging from 10.4 to 17.6 cm−1; conversely, the variation of IRSF values, ranging from 2.8 
to 3.3, is minimal. Archaeological bones from Israel and Sudan show higher variations of IRSF with respect to 
FW85%: IRSF ranges from 2.9 to 4.4 and from 3.3 to 6.3, respectively, whereas the FW85% ranges from 8.3 to 
12.6 cm−1 and from 6.7 to 8.9 cm−1, respectively. Archaeological bones from Sudan show significantly higher 
IRSF and lower FW85% than those of fresh bones; within this range, data referring to archaeological bones from 
Israel partially overlap to those of fresh bones and of archaeological bones from Sudan (Fig. 2). FW80% ranges 
from 19.2 to 32.0 cm−1, from 14.5 to 22.3 cm−1 and from 8.2 to 19.1 cm−1, whereas FWHM ranges from 110.4 to 
171.4 cm−1, from 89.8 to 120.9 cm−1 and from 43.5 to 94.7 cm−1 for fresh bones, archaeological bones from Israel 
and Sudan, respectively. The CO3/PO4 parameter was calculated for all samples with the exception of archaeo-
logical ones for which the occurrence of secondary calcite hampers a reliable determination of the structural 
carbonate content of bioapatite. In fact, the carbonate vibrational modes of the bioapatite structural carbonate are 
superimposed on those of calcium carbonate25. The CO3/PO4 ranges from 0.5 to 0.9 and from 0.3 to 0.5 for fresh 
and archaeological bones, respectively.

Repeated measurements on the same sample provided a relative standard deviation below 5% for these 
parameters.

A subset of samples was also analysed by XRPD and diffractograms were analysed by Rietveld refinement 
(Fig. 3). The quality of Rietveld refinement was monitored by the residuals and by the agreement factor (Rwp), 
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Figure 3. Diffractogram of an archaeological bone sample from Sudan. The calculated pattern and the 
residual resulting from the Rietveld refinement (Rwp = 4.45%) is also displayed. The top-right panel shows the 
average shape of bioapatite crystallites, elongated along the c-axis, reconstructed from the spherical harmonics 
coefficients refined by Rietveld method.



www.nature.com/scientificreports/

6SCientifiC REPORTS |  (2018) 8:12025  | DOI:10.1038/s41598-018-30642-z

at 6% for fresh bones and lower than 5% for archaeological bones. The crystallite size along the c axis was deter-
mined, ranging from 21 to 25 nm and from 37 to 71 nm for fresh bones and archaeological bones from Sudan, 
respectively (Supplementary Table S1). The crystallite size along the a axis is also reported, ranging from 9 to 
14 nm and from 15 to 32 nm for fresh and archaeological bones, respectively. As a general trend, crystallites sizes 
increase both along the c and a axes. The relative standard deviation associated to crystallite sizes is within 3%. 
The anisotropic contribution to line broadening due to microstrain appears to be negligible along the c axis, 
whereas a more significant contribution was determined along the a axis (Supplementary Table S1).

Discussion
The set of bioapatite samples here analysed shows a high variability in terms of chemical and structural properties, 
that is due both to the expected variability occurring in fresh bones (different types of bone/different taxa) and 
to the different recrystallization pathways affecting archaeological bones during diagenesis. FTIR spectra reflect 
this variability, as several features such as peaks width, shape and position significantly change within this set of 
samples. A fresh bone and a heavily altered archaeological bone from Sudan are chosen here as an example to 
show the extent of such variability (Fig. 1). The previously described parameters FWHM, FW85% and IRSF are 
graphically reported in Fig. 1b.

The plot of the IRSF against the phosphate peak width (FW85%) is a useful tool to monitor the variation of 
these two parameters among the entire set of samples (Fig. 2). The IRSF is a widely used parameter to describe 
crystallinity variations, whereas the use of the width of the phosphate peak at 604 cm−1 is scarcely attested14,42. 
Considering a limited set of samples, as fresh bone samples or bones coming from a single archaeological site 
could be, a substantially good linear correlation can be observed between IRSF and FW85%. However, when 
considering a larger set of samples, that covers a wide range of variability in terms of crystallite size and chemical 
composition, a non-linear correlation between these two parameters is clearly observable (Fig. 2). The decrease of 
the phosphate peak width (FW85%) is followed by a non-linear increase of IRSF. This behaviour is artificial and 
it is due to the method used to calculate the IRSF rather than to a significant change in some bioapatite properties 
other than the sharpening of peaks. This is clearly proved by a numerical simulation of the ν4(PO4) vibrational 
mode (Fig. 4a) showing the variation of the IRSF with peak width (Fig. 4b).

Here a simplified model of the bioapatite spectrum is calculated as the sum of the main phosphate peaks at 604 
and 565 cm−1 (referring to the positions at 0 and 39 cm−1, respectively), the relative intensity of which is normal-
ised to 1, and described by a Gaussian function in the form:

=
− −

y a exp (1)
x b

c
( )
2

2

2

where a is the height of the Gaussian peak, b is the position of the peak centre and c is related to the width of the 
peak. The width of the two peaks is equal and the width at 85% of the height is calculated as:

= . −FW ln c85% 2 0 85 (2)2

The IRSF35 is calculated as the sum of the two peaks heights divided by the height of the valley between 
them. By decreasing the value of the variable c, the peaks progressively sharpen, thus FW85% decreases and IRSF 
increases. The relationship between the width of the two peaks and the related IRSF (Fig. 4b) can be reasonably 
described by a regression model (R2 = 0.99) with an exponential function of the type:

= +IRSF p exp r (3)q FW[ 85%]

where p, q and r are real constants. The first derivative of this equation is itself an exponential function and 
describes the changing slope of the FW85%-IRSF correlation with peak sharpening. This model clearly shows that 
the IRSF is non-linearly correlated with the peaks width used to calculate it.

Back to the experimental data, the relationship between the experimental FW85% and IRSF similarly behaves 
to that observed in the numerical model. The regression function (R2 = 0.95) of the experimental data, obtained 
by least squares method according to the Equation (3), shows that the numerical model, even if simplified, 
describes the correlation between the two parameters (Fig. 2). The different behaviour of fresh bone and dentin 
with respect to that of archaeological bone in terms of correlation between peak width and IRSF is completely 
artificial and depends on the IRSF calculation method. It is now clear that a constant sharpening rate of the phos-
phate peaks correspond to an exponential increase of the IRSF. This highlights that the IRSF shows a different 
sensitivity in describing the variations of phosphate peaks width: IRSF does not show any significant variation 
for most of the fresh bone and dentin samples with respect to the peak width sharpening, conversely for archae-
ological bones slight variations of peak width correspond to high IRSF variation. Since the source of physical 
information regarding the bioapatite structure is the width of the IR phosphate peaks, the choice of the IRSF to 
monitor bioapatite crystallinity, even if widely used, may hamper a straightforward and reliable comparison of 
different samples.

It is worth reminding that all phosphate peaks are actually a reliable source of information on bioapatite 
structure; this is consistent with the linear correlation observed between the width of the main phosphate peaks 
at 1035, 604 and 565 cm−1 (Fig. 5a,b), monitored through the FWHM, FW85% and the FW80%, respectively. 
The choice of using the width of the 604 cm−1 peak at 85% of the height (FW85%) was driven by the complexity 
of the phosphate vibrational modes and therefore by the number of vibrational bands contributing to the width 
measurement of the phosphate peaks. Within the ν4(PO4) vibrational mode, mainly characterized by three vibra-
tional bands at 604, 575 and 565 cm−1, the one at 604 cm−1 produces a well-defined peak; by measuring its width 
at 85% of the height the contribution from other overlapping bands is eliminated, thus the peak width (FW85%) 
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is due to a single vibrational band, a unique case for bioapatite IR spectra. Conversely, the width of the 565 cm−1 
peak measured at 80% of the height (FW80%) is influenced by the 575 cm−1 band, occurring as a shoulder, the 
relative intensity of which significantly varies among samples with respect to the 565 cm−1 band, from 0.7 to 0.97. 
Therefore, in some cases it contributes to the FW80% measurement, whereas it does not contribute to the width 
measurement when the intensity ratio is below 0.8. This partially affects the linearity of the correlation between 
FW85% and FW80%, as observed in Fig. 5a. Similarly, FWHM measures the width of the main phosphate peak at 
1035 cm−1, which results from the contribution of several vibrational bands constituting the ν3(PO4) vibrational 
mode; these vibrational bands, associated to different environments or configurations of phosphate ions that 
coexist in the bioapatite structure61, differently contribute to the peak shape depending on the stoichiometry 
and structure of the analysed bioapatite. This accounts for a poorer linear correlation with FW85% (Fig. 5b). In 
order to simplify the discussion of data only few vibrational bands are here considered, in particular the 1090 
and 1035 cm−1 bands associated to stoichiometric hydroxyapatite and the 1110 and 1020 cm−1 bands referring to 
phosphate ions in a non-stoichiometric apatite61. The gap observed in the range 65–80 cm−1 of FWHM (Fig. 5b,c) 
is mainly associated to the significant change of the peak shape due to the different contribution of the band at 
1090 cm−1 when analysing less ordered and more ordered bioapatite. For less ordered bioapatite, the peak at 
1090 cm−1 appears as a shoulder and it contributes to the width measurement at half maximum of the main peak 
at 1035 cm−1 (FWHM), whereas for more ordered bioapatite these two bands are clearly separated in two peaks 
and the 1090 cm−1 band does not contribute to the FWHM measurement (Fig. 1). In fact, the ratio between the 
1090 cm−1 and the 1035 cm−1 bands among samples varies from 0.38 to 0.80. Therefore, the gap between 65 and 
80 cm−1 occurs at the transition point in which the 1090 cm−1 band is included in the FWHM measurement 
(values higher than 80 cm−1) or excluded (values lower than 65 cm−1). The plot of the 1020, 1090 and 1110 cm−1 
bands normalised to the 1035 cm−1 band against the FWHM of the 1035 cm−1 peak (Fig. 5c) shows the different 
variation of vibrational bands contribution with respect to the width of the peak as well as with respect to different 
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types of bioapatite. This shows that the sole width of the main phosphate peak cannot be reliably used to monitor 
chemical/structural variations among samples because of the complexity of vibrational bands contributing to the 
ν3(PO4) vibrational mode.

On these bases, the width of the 604 cm−1 peak at 85% of the height (FW85%), being less affected by peaks 
overlapping effects, is the most suitable parameter to describe the variation of bioapatite structural properties 
within a set of samples. The comparison of results obtained from FTIR spectroscopy and XRPD enables one 
to verify the correlation between the FW85% parameter and the actual bioapatite crystallite size. It is worth to 
mention that IR phosphate peak width provides vibrational information that is averaged along the crystallo-
graphic directions and does not take into account the anisotropic nature of the bioapatite crystals. Conversely, 
the Rietveld refinement performed on diffraction data provides the crystallite dimensions along several crystal-
lographic directions taking into account the anisotropic contribution to the line broadening due to crystallite 
size, therefore describing crystallinity as an anisotropic property of bioapatite. Nevertheless, considering that 
the direction of maximum elongation of bioapatite crystallites is along the c axis and that the (00 l) reflections 
in the diffraction pattern are not overlapped by other peaks (thus being easily modelled and providing more 
reliable results), the crystallite size (expressed in nm) retrieved along the c axis was selected as a single and suit-
able parameter for crystallinity to be compared with FW85%. Therefore, a subset of samples covering the entire 
range of FW85%-IRSF (fresh bones and archaeological bones from Sudan) was analysed by XRPD and for each 
sample the crystallite dimension along the c axis was compared to the FW85% parameter (Fig. 6a). Results show 
a non-linear correlation between FW85% and crystallite size, as the less crystalline fresh bones show a faster 
increase of FW85% with the decrease of crystallite size with respect to archaeological bones (Fig. 6a). Conversely, 
the IRSF and the crystallite size are linearly correlated through the entire set of samples (Fig. 6b). This different 
behaviour is consistent with the non-linear correlation between FW85% and IRSF previously discussed. In fact, 
FW85% and crystallite size could be tentatively correlated through an exponential function (Fig. 6a). When con-
sidering a subset of samples with a reduced crystallinity variation, as the case of archaeological bones from Sudan 
characterized by a high recrystallization degree, the non-linear correlation between FW85% and crystallite size 
can be reliably approximated (R2 = 0.92) to a linear one (Fig. 6a). In this case, also the IRSF and the crystallite 
size are linearly correlated (Fig. 6b), but the quality of the linear fit is significantly lower (R2 = 0.84). The large 
dispersion of data with respect to the regression model shows that the IRSF cannot accurately monitor small var-
iations of crystallite size, as the FW85% parameter do, if a subset of samples with a reduced crystallinity variation 
is considered.

Noteworthy, the width of phosphate peak FW85% is linearly correlated to the amount of structural carbonate 
in the bioapatite lattice (Fig. 6c), the relative measurement of which is provided by the CO3/PO4 parameter. As 
previously discussed, this furthermore proves that the width of the phosphate peak significantly depends on the 
carbonate content of bioapatite. It is thus not surprising that a clear correlation is detected between the phosphate 
peak width and the crystallite size, since the occurrence of structural carbonate plays a major role in controlling 
the size of crystallites in bioapatite9. Moreover, it is largely attested in the literature the loss of structural carbonate 
for archaeological bones after recrystallization processes11.

These results show that both the FW85% and IRSF can be effectively used to monitor significant varia-
tions of bioapatite crystallinity among samples; however, the FW85% parameter is more accurate in describing 
smaller variations. The width of the 604 cm−1 peak is an effective parameter to differentiate bioapatite samples 
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characterised by different chemical and structural properties. The statistical analysis of FW85% values through 
the Kernel Density Estimation (KDE) may be an effective way to describe the distribution of this parameter 
measured for the three groups of samples here analysed (fresh bones and archaeological bones from Israel and 
Sudan). Using the software developed by the Analytical Methods Committee of the Royal Society of Chemistry 
(www.rsc.org/amc/), each value for FW85% is replaced by a normal function centred on the point and with a 
standard deviation depending on the smoothing parameter (h), that is statistically determined62. The the sum of 
the normal distributions scaled to have a unit area is the KDE. This function provides an estimate of the FW85% 
density function for each group of samples without any assumption on its distribution. The KDE of FW85% val-
ues (Fig. 6d) shows significant variations among the three sample groups in terms of frequency distribution of the 
phosphate peak width. This is extremely meaningful as fresh bones can be easily distinguished from the altered 
ones on the basis of the phosphate peak width, and, even within the archaeological bone samples, differences in 
terms of alteration/recrystallization degrees can be identified. Archaeological bones from Sudan and from Israel, 
that underwent significant different diagenetic processes, show different ranges of variation in terms of phosphate 
peak width; moreover, this parameter can further distinguish between different extents of the recrystallization 
processes within a set of samples from the same site. In the case of Sudanese bones for example, the bimodal 
frequency distribution of the phosphate peak width (Fig. 6d) is related to bones of different burial phases that 
experienced different diagenetic processes due to the change of climatic and burial conditions25.

These results suggest that the IRSF is not the most recommended parameter for monitoring bioapatite crystal-
linity, even if it has been a well-established and used parameter. The IRSF can still roughly provide a description 
of crystallinity variations when comparing different samples but it is far less accurate than the width of the phos-
phate peak at 604 cm−1. The width of the 604 cm−1 peak shows a linear correlation with the structural carbonate 
content of bioapatite and a non-linear correlation with the crystallite size. Therefore, the measurement of the 
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phosphate peak width, once established a proper calibration curve based on these correlations, can be associated 
to both the chemical composition and crystallite size of bioapatite, thus providing a reliable assessment of these 
important material properties.

Conclusions
The use of a large set of bioapatite samples characterised by a wide range of crystallinity, from fresh samples to 
extremely recrystallized fossil bones, allowed to clarify the nature and physical meaning of the empirical param-
eters frequently used to evaluate the preservation state of bone materials. The main aim of this study is to provide 
a reliable method to retrieve significant physical information on material properties, such as crystallinity, that 
are indirectly investigated with analytical techniques of easy accessibility, in this case FTIR spectroscopy. This 
research describes for the first time the exponential nature of the correlation of the IR phosphate peaks width with 
the splitting factor (IRSF) and the non-linear correlation with the mean crystallite size of bioapatite. The results 
show the limitations of the IRSF to describe the variation of peaks width and to reliably compare samples with 
different crystallinity. Conversely, this study highlights the relevance of phosphate peaks width for monitoring 
minimal changes in bioapatite chemical composition and structure. It is shown that coupling FTIR measure-
ments with other quantitative analyses, thus establishing appropriate calibration curves, the width of the peak at 
604 cm−1 can provide reliable values of mean crystallite size and structural carbonate content for biogenic apatite. 
On a wider perspective, this method can be practically applied to monitor bioapatite crystallinity changes in a 
number of different research fields, as archaeological, biomedical and material science.

Methods
Sixteen fresh bone and dentine samples were obtained from different taxa: Bos taurus (cow), Sus scrofa domestica 
(pig), Ovis aries (sheep), Equus caballus (horse), Canis familiaris (dog), and Homo sapiens (human)63.

Eight archaeological bone samples come from Ateret (area E3, 1000 years CE), Megiddo (area H9, 900 years 
BCE), Tell es-Safi/Gath (area A3, 1200 years BCE), Neve-Yarak (area A2401, 6000 years BCE), Qesem (unclear 
context, late Pleistocene) archaeological sites in Israel64.

In Sudan the excavation of the archaeological site 16D4 (Al Khiday, Khartoum) has been carried out since 
2005 within the “El Salha Archaeological Project”65–70. The site revealed a multi-stratified cemetery with distinct 
burial phases dating from the early Holocene to the beginning of the 1st millennium CE25,26,67,71–75. Within this 
wide span of time, profound climatic changes occurred at regional level, from a humid environment in the early 
Holocene towards more arid conditions after the end of the African Humid Period76,77; changes of environmental 
and local burial conditions influenced the type and extent of diagenetic alteration of bones that were buried in 
different periods25,26,75. Because of the wide time span and the extreme conditions of diagenesis, this was consid-
ered an ideal case producing very altered and recrystallized fossil bones. A set of fourteen femurs, sampled among 
all burial phases, was selected as representative of the different diagenetic histories experienced during burial.

All samples were analysed by FTIR spectroscopy in transmission mode, involving KBr pelleting method for 
sample preparation. Each sample was lightly ground by hand using an agate mortar, then 1 mg of powdered sam-
ple was mixed with 100 mg of KBr (Sigma-Aldrich® spectroscopic grade) and pressed under 8 tons/cm2 pressure 
for 2 min in order to form a transparent pellet (12 mm in diameter). FTIR spectra were collected with a Thermo 
Scientific Nicolet iS 10 spectrometer; 64 scans for each spectrum were acquired in the range 4000–400 cm−1, with 
a spectral resolution of 2 cm−1. Spectral analysis was performed using Omnic 9 software (Thermo Scientific).

A subset of samples was analysed by X-Ray Powder Diffraction (XRPD). Analysis was performed with a 
PANalytical X’Pert PRO diffractometer in Bragg-Brentano geometry, equipped with a Cu X-ray tube, operating at 
40 kV and 40 mA, and a X’Celerator detector. Diffractograms were acquired in the range 3–80°2θ, with a step size 
of 0.02°2θ and counting time of 1 s per step. Rietveld refinement55 analysis was performed on diffractograms using 
the MAUD program78. Instrumental contribution to line broadening was determined by measuring the NIST Si 
640c standard sample, with the same experimental conditions. The crystal structure of Holly Springs hydroxyapa-
tite79 was adopted as structural model for bioapatite of bone samples. A polynomial function with 6 parameters 
was used to describe the background, while a pseudo-Voigt function was adopted to model the diffraction pro-
file and residual was minimized by least square method. Scale factor, background parameters, isotropic atomic 
displacement parameter (maintained equal for all atoms) and unit cell parameters were refined. Other atomic 
thermal parameters, site occupancy and atomic position remained fixed during refinement. The crystallite-size 
and microstrain contributions to line broadening, taking into account their anisotropy, were determined by the 
spherical harmonics model80 implemented in MAUD, by refining the spherical harmonics coefficients.

All data generated and analysed during this study are included in this article.

Ethics statement. No animals used in this research were sacrificed for research purposes, nor are they 
threatened or endangered species. Fresh bones of different taxa were obtained from a slaughterhouse, dog and 
equine samples were obtained from a veterinary hospital and human samples were provided by Dr Sunita Ho, 
University of California, San Francisco, with the necessary approvals, as reported in Asscher et al.63. Fossil bones 
were provided by Centro Studi Sudanesi and Sub-Sahariani26 and by the Kimmel Centre for Archaeological 
Science (Weizmann Institute of Science)64.
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