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Abstract: The equations describing light propagation in a few-mode fiber for space-division
multiplexing are derived under the presence of linear mode coupling and both Kerr- and Raman-
induced nonlinearity. By considering physical models of stress birefringence and core ellipticity,
the effect of such fiber imperfections on the gain of a forward-pumped Raman-amplified link is
assessed through numerical simulations. The average gain and the variation of signal power at
the output of the amplified fiber span is numerically evaluated for different levels of coupling
strength in fibers supporting 2 and 4 groups of LP modes, identifying three main propagation
regimes and assessing the effect of coupling between different groups of degenerate modes.
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1. Introduction

Although Spatial Division Multiplexing (SDM) has emerged as the solution to overcome the
nonlinear Shannon limit of Single Mode Fibers (SMFs) through the lower power-density enabled
by physically separating multiple information streams, nonlinear effects remain the ultimate
factor determining the maximum achievable capacity of optical fiber communications [1]. The
modeling of such effects is then of paramount importance in the understanding of propagation
limits in both Few Mode Fibers (FMFs) and Multi-Core Fibers (MCFs), especially in the presence
of mode coupling.

In principle, the interaction between all possible combinations of modes/cores and wavelengths
must be studied to completely describe the nonlinear phenomena occurring in SDM transmissions.
The most general description of such interaction in Multi-Mode fibers (MMFs) is given by the
Multimode Nonlinear Schrödinger Equation (MM-NLSE), in which linear mode coupling is
neglected and the Kerr interaction is described by a set of (2N)4 coefficients between the mode
functions, where N is the total number of spatial modes, and the factor 2 accounts for polarization
degeneracy [2,3].

In the regime of strong mode coupling, it is argued that the linear mode mixing effects occur
on length scales much shorter than the nonlinear interaction length [4]. These considerations
justify the simplification of the equations obtained by averaging the overlap integrals appearing
in the MM-NLSE, resulting in the generalized Manakov equation, which extends the well-known
Manakov-PMD equation used in the study of polarization coupling in SMFs [4,5]. An equivalent
equation has also been derived in Ref. [6] and extended to the case of MCFs. A further version
of the generalized Manakov equation is obtained when considering strong coupling occurring
only between modes belonging to the same group of quasi-degenerate modes of a FMF, with no
interaction occurring between different groups. In this case, the propagation of the mode groups
is described by the coupled multi component Manakov equations, extending the results of Ref.
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[4] by separating the intra-group and inter-group nonlinear effects with two separate averaged
nonlinear coefficients [7].

The models previously introduced generally described the coupling process through a fully
stochastic approach for mathematical convenience, without considering the different physical
mechanisms which cause the coupling process, such as the ellipticity of the fiber core, bire-
fringence, twisting, or bending, as modeled in [8,9]. In Ref. [10] such physical models were
included in the study of Four-Wave Mixing (FWM) in FMFs, demonstrating a reduction in FWM
efficiency when linear mode coupling is considered.

For the case of Raman amplification, Ref. [11] extended the coupled multi component Manakov
equations with terms describing the Raman interaction, under the hypothesis of strong coupling
between degenerate modes of the same group, and total absence of linear coupling between
different groups; this model is at the base of most of the published numerical results in the context
of FMF Raman amplification [12–15].

However, numerical results showing the effects of mode coupling on Raman amplification are
lacking, regardless of the regime of coupling considered, with the only contribution considering
Raman scattering effects in the context of Raman induced crosstalk between different channels of
a Wavelength Division Multiplexing (WDM) transmission [16].

In this article, following Ref. [17], which presented a model for SMF Raman amplifiers
with Polarization Mode Dispersion (PMD) effects, a set continuous-wave equations is derived,
describing the evolution of the modes at two different wavelengths, a pump and a signal of
a Raman amplifier, modeling linear coupling based on the underlying physical phenomena.
Through numerical integration of the equations, the combined effect of stress birefringence and
core ellipticity on the gain statistics of a forward-pumped FMF Raman amplifier is studied over
an ensemble of thousands of fiber realizations for different coupling conditions on two step-index
fibers supporting 2 and 4 groups of degenerate Linearly Polarized (LP) modes, respectively.

2. Analytical model

The equations that have been derived in this article describe the evolution of the complex
amplitude of the modes at two different frequencies ωℓ and ωf , which correspond to the Raman
pump and the information signal, hereinafter the pump and the signal.

The model considers light propagation in the continuous wave (CW) regime undergoing both
linear and nonlinear mode coupling, with the former stemming from imperfections of the fiber
profile, and the latter caused by Kerr and Raman effects. The complex amplitude of the Mℓ (Mf )
spatial modes at frequency ωℓ (ωf ) are modeled with the following set of coupled nonlinear
differential equations
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where αℓ is the fiber loss coefficient, βℓν is the propagation constant of the νth mode at frequency
ωℓ , Ω = ωℓ − ωf , σ is a parameter describing the Kerr effect, while ãω and b̃ω are the parallel
and cross-polarized delayed Raman response functions evaluated at the detuning frequency ω
[17].

The expression of linear coupling coefficients Kνµ for frequency ωℓ is that obtained using
coupled-mode theory [18,19]

Kνµ(ωℓ) = ϵ0
ωℓ
4

+∞∬
−∞

F†

ℓν
∆ϵ̃ℓFℓµ dxdy, (2)

where Fℓµ is the electric field distribution function of the µth fiber mode at frequency ωℓ .
The nature of the underlying process causing linear mode coupling is described through the
dielectric tensor perturbation ∆ϵ̃ℓ . Several models for different kinds of physical effects causing
the coupling between modes are present in the literature; a summary of the most relevant
cases and their effect on the coupling of LP modes is given in Refs. [8,9], while the study
of birefringence and core ellipticity is carried out in Ref. [19] for the case of air-core fibers
supporting Orbital-Angular-Momentum (OAM) modes, and in [10] for FWM in WDM systems.

The terms accounting for the nonlinear interaction between modes are determined by a set
of overlap integrals Qνρµη involving the combination of 4 different modes. Their expression is
reported in Table 1. Further details about the derivation of the presented equations are given in
the Appendix.
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Table 1. Expression of the overlap integrals that define the strength of the nonlinear interaction
between modes.
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3. Numerical methods

As introduced in the previous section, the linear effects occurring during propagation in a FMF
are accounted for by the linear terms of Eq. (1), which can be written in matrix form describing
the evolution of the vector of complex amplitudes of the propagating modes a as

∂a
∂z
= −
α

2
a + j(B +K)a, (3)

which is the same used in Refs. [8,19] with the addition of fiber losses.
For simplicity, we momentarily drop the subscript notation to indicate the frequency dependence

of each quantity, as the linear effects can be treated separately for each frequency component.
The local coupling effects, caused by perturbations, are described by the coupling matrix K

whose coefficients are determined by the overlap integrals in Eq. (2), while B is the diagonal
matrix of propagation constants. The coupling strength of a specific perturbation can be calculated
from the eigenvalues κi of the coupling matrix and related to the coupling beat length Lκ by

Lκ =
2π
∆κ

, (4)

where ∆κ = maxi κi − mini κi is the coupling strength.
In the most general case, both the strength and the orientation of the various perturbations can

vary randomly along the fiber. It is then necessary to account for the dependence of the coupling
matrix on the position along the fiber. If we call K̄ the normalized coupling matrices (i.e. with
unit coupling strength and computed with the reference perturbation aligned to the reference
frame of the fiber) then the coupling matrix at position z due to various perturbations (indexed by
ζ) reads [19]

K(z) =
∑︂
ζ

Γζ (z)R(θζ (z))K̄(ζ )R⊤(θζ (z)), (5)

where Γζ (z) and θζ (z) are the strength and angle of perturbation ζ , respectively, and R is a
unitary rotation matrix. The form of matrix R is that of a block diagonal matrix, where each
block corresponds to a different group of degenerate modes [9]. Hereinafter, in each group of
degenerate modes, we order the modes by alternating x and y polarizations of the even degeneracy,
and then the x and y polarizations of odd degeneracy.

Here, as in Ref. [19], we focus only on the effect of stress birefringence and core ellipticity,
which are perturbations that are closely related, as they are mainly due to the fiber manufacturing
process. In particular, we assume that they act on the fiber with the same perturbation angle, and
contribute equally to the overall strength [20,21]. The total coupling matrix for this case can be
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written as
K(z) = Γ(z)R(θ(z))K̄(t)R⊤(θ(z)), (6)

where K(t) = K̄(e) + K̄(b), is the total, unnormalized coupling matrix, while K̄(e) and K̄(b) are the
normalized coupling matrices for core ellipticity and stress birefringence, respectively.

In order to model the evolution of these perturbations along the fiber, we use the Fixed-Modulus
Model (FMM), also used in the study PMD in SMFs [22]. According to FMM, the strength of
the perturbation remains constant along the fiber, while its orientation angle θ varies according
to a Wiener process [22]

dθ
dz
= −σθw(z), (7)

where w is a Gaussian process with zero mean and unit variance, and σθ is related to the
correlation length Lc of the process [22]

σθ =
1

√
2Lc

. (8)

We can set the strength of the total perturbation, or equivalently, the coupling beat length, by
simply multiplying the total normalized matrix K̄(t) by a scalar factor. Under the FMM hypothesis,
this translates to setting

Γ(z) = Γ0 =
2π
Lκ

. (9)

To numerically model the evolution of the perturbations along the fiber, the Wiener process is
discretized by dividing the optical fiber in a cascade of Ns plates, each of size δz = L/Ns, where
L is the total length of the fiber [19,23,24]. The number of plates must be sufficiently high so that
the angle θ(z) can be considered almost constant over the plate length, meaning that δz ≪ Lc.

Over the length of the kth plate, the propagation equation then assumes the following form

∂a
∂z
= L(θk)a z ∈ [kδz, (k + 1)δz], (10)
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Eq. (10) has a closed form solution written as

a(k + 1) = exp[L(θk)δz]a(k). (12)

This fact brings a significant advantage when dealing with the numerical solution of the linear
part of Eq. (1): if this were not the case, we would need to apply conventional integration schemes
with a step size that is substantially smaller than the modal beat length of the fiber, which depends
on the difference between the propagation constants of the fiber modes, resulting in integration
steps of fractions of millimeters. Instead, the step size required to accurately follow the evolution
of the vector of complex amplitudes could only be a fraction of the correlation length of the
Wiener process describing the orientation of the perturbation, which is usually in the order of
tens of meters.

An exact solution cannot be determined when both linear and nonlinear effects act together.
The typical approach in such cases is to employ the split-step integration schemes [25]. In the
first step, linear propagation is solved using the previously presented approach; in the second
step, the nonlinear operator is applied on the linearly propagated field computed in the first step
using a fourth-order Runge-Kutta scheme.

The length scale of nonlinear effects is typically much longer than that of linear effects
[6,23,26], so we can safely use the same step size employed for the linear propagation.
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4. Results

We consider a few-mode fiber Raman amplified link in which only CW pump and signal are
propagating. The signal frequency corresponds to the wavelength λs = 1550 nm, while the pump
is frequency up shifted by 12 THz.

We simulate two different FMFs, supporting 2 (LP01 and LP11) and 4 (LP01, LP11, LP21, and
LP02) groups of LP modes, respectively. Both fibers have a cladding diameter dcl = 120 µm and
a core diameter dco = 12 µm, and are characterized by a step-index profile. The core refractive
index nco and cladding refractive index ncl are calculated by a commercial Finite Element Method
(FEM) solver to guarantee that the number of supported modes at the signal and pump frequencies
is the same, while also ensuring that we are operating far from the cutoff-frequency of the
higher-order modes. With these considerations, nco = 1.4674 for both fibers, while ncl = 1.46 for
2-mode fiber and ncl = 1.4545 for the 4-mode fiber.

The two fiber geometries have been simulated using the FEM solver to compute the propagation
constant and the field distribution of each guided mode. As the calculated modes are actually
hybrid modes, a standard combination procedure is applied to convert them to LP modes [27].
Moreover, an orthogonalization step is also applied to align the modes to the Cartesian reference
frame. After normalizing the amplitude of the mode distribution functions (see Eq. (29) in the
Appendix), the integrals in Eq. (2) and Table 1 are numerically evaluated at both signal and pump
frequencies to obtain the linear and nonlinear coupling coefficients, respectively.

4.1. Linear coupling matrices

In this article the effects of stress birefringence and core ellipticity are included by properly
modeling the tensor of dielectric perturbation ∆ϵ̃ of Eq. (2) [8]. Depending on the form of the
tensor, coupling between different modes can occur either among transverse components of the
field, resulting in a strong interaction, or between longitudinal components, causing weaker
effects.

Stress birefringence, which is quantified by the difference in refractive index δn between fast
and slow axis of the fiber, is responsible for the detuning of the x- and y- polarization of each
spatial mode [8,9]. Due to orthogonality conditions, coupling only occurs between transverse
components of the modes belonging to the same group [9].

The case of an elliptical core is instead described by a parameter (γ), which represents the
overall ellipticity of the fiber core in terms of maximum radius variation [8,9].

As detailed in Ref. [9], core ellipticity causes coupling between the transverse components
of modes with azimuthal order 1 and of modes whose azimuthal order differs by 2. Coupling
between longitudinal components instead occurs among modes with the same azimuthal order or
with orders differing by 4. This means that in a fiber supporting only the LP01 and LP11 groups,
no inter-group coupling occurs. Differently, if the fiber also supports the propagation of the LP21
and LP02 groups, strong inter-group coupling is expected for the LP01-LP21 and LP02-LP21 pairs,
while weak inter-group coupling is predicted between the LP01 and LP02 groups.

From the theoretical formulation of the perturbation tensor, the linear coupling integrals of
Eq. (2) are numerically evaluated at both the pump and the signal frequency, using reference
values of birefringence δ̄n and ellipticity γ̄.

Some post-processing steps have also been performed in order to remove spurious interaction
between uncoupled modes:

1. the coupling coefficients must be real for both birefringence and core ellipticity, so the
residual imaginary part of the corresponding matrices is set to 0;

2. due to Eq. (34), Hermitian symmetry is imposed;
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3. Finally, to normalize the matrices, they are scaled by the difference between their biggest
and smallest eigenvalues, i.e. their coupling strength. As the perturbation strength depends
linearly on δn and γ, the reference birefringence and ellipticity values can be scaled by the
same amount.

The absolute value of the resulting coefficients of the linear coupling matrices for the 2-modes
(4-modes) fiber are reported in logarithmic scale in Fig. 1 (Fig. 2).

LP01 LP11

LP01

LP11

(a)

LP01 LP11

(b)

−5

0

Fig. 1. (a) Stress birefringence and (b) core ellipticity coupling matrices for the 2-modes
fiber. Values are normalized and reported in logarithmic scale.
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Fig. 2. (a) Stress birefringence and (b) core ellipticity coupling matrices for the 4-modes
fiber. Values are normalized and reported in logarithmic scale.

Once the normalized matrices K̄(e) and K̄(b) are obtained, along with their reference birefrin-
gence δ̄n and ellipticity γ̄, the total normalized linear coupling matrix K̄(t) is obtained by adding
the two matrices and normalizing it by its coupling strength.

This matrix is computed only once for each frequency, and scaled accordingly during
simulation to obtain the desired total coupling strength ∆κ (or equivalently the beat length Lκ).
The corresponding birefringence and ellipticity parameters are retrieved using the approximation

∆κ ≈ ∆κe + ∆κb =⇒ ∆κe = ∆κb ≈
1
2
∆κ, (13)

obtaining
δn ≈

π

Lκ
δ̄n, γ ≈

π

Lκ
γ̄, (14)

Through which the coupling beat length is related to the corresponding physical parameters.
Such relation is illustrated in Fig. 3 for a wide range of possible beat lengths. The approximation
is validated numerically, determining that it introduces a relative error of ≈ 1% on the total beat
length.
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Fig. 3. Birefringence (orange and blue lines, indicated by δn) and core ellipticity (red and
green lines, indicated by γ) for the two considered fibers and for a given coupling beat length
Lκ . Circle (square) markers refer to the 2 (4) mode fiber.

4.2. Optimization of the nonlinear step

As shown in Ref. [2], due to symmetry properties, many of the overlap integrals Q(i)
νρµη are null.

However, the mode distributions are computed with a FEM solver that introduces numerical
errors. We tackle the issue of identifying which coefficients should be discarded by following the
approach detailed in [2], setting a threshold coefficient ϵ , and only considering the nonlinear
contributions whose overlap integrals satisfy

|Q
(i)
νρµη |>ϵ max

νρµη
|Q

(i)
νρµη |, i ∈ 1, . . . , 5. (15)

Using ϵ = 0.01, about 90 percent of the coefficients can be discarded, resulting in a significant
acceleration of the integration algorithm. We ran a series of simulations to evaluate the effect of
using this technique noting no significant changes between the results, confirming the viability of
the approach.

4.3. Simulation results

Equations (1) were integrated for the two different fibers that have been previously introduced,
aiming to understand how different levels of linear coupling can influence the statistics of the
distributed amplifier’s gain.

For the specified levels of perturbation length Lκ and correlation length Lc, we solve Eq. (1) for
an ensemble of Ne different realizations of the process describing the orientation angle θk(z) of
the perturbations acting on the fiber, obtaining the evolution of the vector of complex amplitudes
a(z;ωs) for each realization.

Remembering the way in which the entries of a are organized, i.e. with alternating x- and y-
polarizations of a mode, the total power in each spatial mode at the signal frequency ωs is given
by

Pν(z) = |a2ν(z)|2 + |a2ν+1(z)|2, ν ∈ [0, . . . , Ns − 1], (16)

where Ns is the number of spatial modes, which is equal to 3 for the 2-mode fiber and to 6 for
the 4-mode fiber. The amplifier gain for mode ν is then computed for the kth realization of the
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process θk(z) as

Gν(k) =
Pν(L; θk)

Pν(0)
, (17)

computing its ensemble mean as

⟨Gν⟩ =
1
Ne

Ne∑︂
k=1

Gν(k). (18)

From the same quantities, the signal power variance at the end of the amplifier can also be
evaluated. With the Manakov approach used so far in the liturature, only the mode-averaged
nonlinear effects are evaluated, while their statistics, which can be important to predict the
variability among different fiber realizations or due to time-variant effects, are not considered.
This aspect is particularly important for Raman amplifiers, which have been demonstrated to
exhibit considerable gain fluctuations when PMD is present in SMFs [17,24].

To this end, we compute the variance of the signal power at the amplifier output as [17]

σ2
ν =

⟨P2
ν(L; θk))⟩

⟨Pν(L; θk)⟩2 − 1, (19)

where ⟨·⟩ indicates the mean over the ensemble of perturbation realizations, as in Eq. (18).
Regarding the simulation parameters, we set to 0 the coefficient σ related to Kerr effects,

in order to focus only on Raman-related phenomena. The peak Raman gain coefficient was
gR = 1×10−13 mW−1, and the corresponding values of the Raman response functions ã and b̃
were found following Ref. [28]. We consider no mode-dependent losses, and set the fiber loss
coefficient to αs = αp = 0.2 dB km−1; the integration step size is set to δz = Lc/10. The signals
have an initial power of −40 dBm per spatial mode, while a total of 1 W is launched on the pump
wavelength, equally distributed among the modes. The length of the simulated fibers is set to 50
km, which has been verified to be sufficient for the amplification dynamics to be fully exhausted
for our simulation conditions.

The metrics in Eq. (18) and (19) are evaluated for two different initial conditions on the
polarization of both pump and signal modes. In the first case, the polarization of each spatial
mode at the fiber input for the signal frequency is set to be linear and parallel to that of the modes
of the pump, while the second case considers orthogonal input polarizations between signal and
pump modes.

4.3.1. 2-mode fiber

The ensemble average ⟨Gν⟩ for the 2-mode fiber is represented as a function of the perturbation
beat length Lκ in Fig. 4. Correlation lengths of 10 m (left) and 100 m (right) are considered. The
number of simulated fibers for each combination of parameters is Ne = 5000.

Let us remark that, as shown in Fig. 1, there is no linear mode coupling among LP01 and
LP11 in this case and birefringence dominates. Focusing on the case Lc = 10m, we can
clearly discern three regimes of propagation for the given fiber length, similarly to the case of
randomly-birefringent SMFs [24]. For low degrees of birefringence, i.e. Lκ ≫ 1 m, the mean
gain is maximized on each mode for parallel input polarizations, reaching ≈ 41 dB for the LP11
modes, and ≈ 37 dB for the LP01 mode. With orthogonal input polarizations, the gain is instead
minimized, almost totaling the link-losses of about −10 dB (it is not exactly equal because a
small gain exists for orthogonally-polarized pumps too). In this regime, the only interaction
between the three modes is determined by the nonlinear coupling. Pump and signal polarizations
remain almost constant along the fiber due to the low values of coupling, explaining the observed
behavior.
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Fig. 4. Mean gain of the spatial modes of the 2-mode fiber as a function of the coupling
beat length, for two values of the correlation length. The case when input signal and pump
polarization are parallel (orthogonal) is indicated with ∥ (⊥).

For increasing birefringence and parallel input polarizations, the resulting average gain tends
to decrease due to the polarization scrambling effect of linear coupling. It is interesting to note
the presence of a few inflection points that are present in this regime for all three modes, although
they are more accentuated for the case of the LP11 modes. For the case of orthogonal input
polarizations the effect of linear coupling is beneficial to increase the average amplifier gain.

In the high-birefringence regime instead, for Lκ ≪ 1 m, the alignment between pump and
signal polarization is quickly lost due to the rapid exchange of power inside the group of degenerate
modes, and the gain converges to the same average value both for the parallel and orthogonal
input polarizations. The gain of both LP11a and LP11b modes is reduced to about 10 dB, resulting
in the reduction of the equivalent gain by a factor of 4 (in dB), while the LP01 mode sees its
average gain reduced to approximately 14 dB. Increasing the correlation length to 100 m, the
dynamics remain are only slightly altered, but shifted toward longer beat length values.

At first sight it may seem that the Mode-Dependent-Gain (MDG) on modes of the LP11 group
is zero for any value of birefringence.

Further insights can be gained by analyzing the signal power fluctuations through the evaluation
of its standard deviation, given in Eq. (19). In Fig. 5, its value is represented as a percentage, and
depicted for each mode as a function of the coupling beat length for the parallel (top left) and
orthogonal (top right) polarization case, and for a correlation length of Lc = 100 m.

We can observe two different behaviors, depending on the modes we consider. For the LP01
mode, the three birefringence regimes previously highlighted are clearly observed. For large
values of beat lengths, the signal fluctuations go to 0. On the other hand, for intermediate values
of Lκ , two clearly defined peaks reaching a value of approximately 45% appear. This is consistent
with the case of SMFs, albeit in the counterpumping configuration [17,24].

Regarding the LP11 group, a similar behavior is found for large beat lengths, where the signal
fluctuations are negligible. For intermediate values of birefringence, the standard variation is
fairly higher than the LP01 mode, reaching 70%, and showing a local maximum for much longer
beat lengths. Additionally, in the high birefringence regime, the fluctuations do not decrease to
0 as for the LP01 mode, but instead remain constant at approximately 50%. This behavior can
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Fig. 5. Signal power variation of the gain of the 2-mode amplifier as a function of the
coupling beat length, for Lc = 100m, for parallel (left column, ∥) and orthogonal (right
column, ⊥) input polarizations. Bottom row: power variation on the mode groups.

be intuitively explained by the fact that the LP11 group is 4-fold degenerate, meaning that the
power exchange occurs both between polarizations and spatial modes. In order to verify this, we
compute Eq. (19) on the total power contained in the LP11 group, and illustrate the results in the
bottom graphs of Fig. 5. A similar behavior to that of the LP01 mode is now obtained, with the
exception of a peak at approximately Lκ = 103 m. Interestingly, for this values of Lκ , a small
increase in the signal variance is observed for the LP01 mode, which, in absence of inter-group
coupling, can be explained by the Raman interaction between the two groups through the overlap
integrals Q. The location of these peaks correspond to that of the inflection points observed in
the behavior of the average gain, in Fig. 4. The same considerations can be made for the case of
orthogonal input polarizations from the top right and bottom right graphs of Fig. 5, showing the
same dynamics, although much more accentuated.

These results show that the gain equalization inside each mode group is only obtained on
average, since random coupling caused by residual stress birefringence and core ellipticity of the
fiber can make the power on each spatial mode fluctuate significantly for most of the realistic
values of Lκ . In fact, with reference to Fig. 3 and Ref. [29], typical values of birefringence
encountered for step-index SMFs, i.e. 10−8<δn<10−6, correspond to a range of Lκ for which the
signal power variation is as high as 40% (70%) for the parallel (orthogonal) input polarizations.

Moreover, the total power of the entire group only shows negligible fluctuations for really short
beat lengths, which correspond to birefringence values that are typical of polarization-maintaining
FMFs and therefore unrealistic for transmission fibers [30].

On the other side, observing Fig. 4 and 5 we can say that, for Lκ>104 m, the power fluctuations
induced by linear mode coupling are zero (even considering LP11a and LP11b separately). The
same average gain of the modes belonging to the LP11 group is obtained in this regime because
there are identical pumping conditions on the two modes and because the corresponding nonlinear
coefficients Q are equal.
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4.3.2. 4-mode fiber

When considering a fiber that supports 4 groups of LP modes, inter-group coupling is expected
between the LP01, LP02, and LP21 groups, as a result of the perturbation tensor. Modes of the
LP11 group instead only experiences intra-group coupling, meaning that similar behaviors to
the 2-mode fiber are expected for this group. We employ the same simulation parameters of the
previous section, but the analysis is shown only for the case Lc = 100m since similar results are
obtained, provided that the perturbation beat length is properly scaled, as seen from the results
for the 2-mode fiber.

The mean gain ⟨Gν⟩ is presented in Fig. 6 as a function of the beat length Lκ , considering
linear parallel and orthogonal input polarizations between pump and signals.
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Fig. 6. Mean gain of the spatial modes of the 4-mode fiber as a function of the coupling
beat length, for Lc = 100m. The case when input signal and pump polarization are parallel
(orthogonal) is indicated with ∥ (⊥).

In the weak birefringence regime results are similar to the 2-mode fiber case. A mode-dependent
gain is observed (due to different nonlinear overlap integrals). For parallel polarizations, the
gain is maximized, with LP11 modes experiencing the highest amplification, approximately 42
dB, and the LP02 mode showing instead the smallest gain, 24 dB. LP01 and LP21 groups instead
exhibit a maximum gain of 35 dB and 37 dB, respectively. For orthogonal input polarizations the
gain is minimized, and equal to approximately −8 dB for each mode, showing a 2 dB reduction
of the total link losses due to the weak contribution of the cross-polarized Raman response on
the amplification process.

Decreasing the beat length, the effect of inter-group coupling can be readily observed for
parallel polarizations; it is most apparent on the behavior of the average gain of the LP02 mode,
which quickly merges with the curves for the LP21 modes for Lκ ≈ 102 m. The LP01 average gain
joins the aforementioned curves for Lκ ≈ 101.5 m forming a "supergroup". This is in accordance
with the computed coupling matrix for core-ellipticity in Fig. 2(b), where we can observe
the slightly larger coupling coefficients between the LP02-LP21 group pair with respect to the
LP01-LP21 combination. For values of birefringence δn ≈ 10−7 typical for SMFs, corresponding
to a beat length Lκ ≈ 10m in Fig. 3, the linear inter-group coupling is reached even when
modest span lengths of 50 km are considered. When extrinsic perturbations such as twisting and
bending, deriving mostly from cabling and installation, are considered, the effect of inter-group
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coupling on the Raman gain is expected to be enhanced, and occur for shorter spans. Regarding
the orthogonal polarizations case, the effect of inter-group coupling is similar, although the
convergence between the LP21 and LP02 group pairs is reached for slightly longer beat lengths.
The general behavior of reaching a local maximum gain for Lκ ≈ 103.5 m observed in the 2-mode
case is also present for all the modes except the LP02, for which the increase is monotonic.

Finally, for high birefringence values corresponding to beat lengths Lκ<1 m, the curves for
parallel and orthogonal polarizations converge to an average gain of 10 dB and 13 dB for the
LP01-LP21-LP02 supergroup and the LP11 group, respectively.

As a general remark, modes belonging to groups with 4-fold degeneracy, i.e. LP11 and LP21,
maintain the same average gain for the entire interval of considered beat lengths, regardless of the
relative orientation of pump and signal polarizations, similarly to the case of the 2-mode fiber.

The signal power fluctuations are evaluated for each mode with Eq. (19) and illustrated in Fig. 7
as a function of the beat length Lκ . The figure is organized similarly to the case of the 2-mode
fiber, with the left and right columns corresponding to the parallel and orthogonal polarizations
cases; the top row corresponds to the power fluctuation evaluated on each individual spatial
mode, while the same metric computed on the total power of the LP11 and the LP01-LP21-LP02
supergroup is depicted in the bottom row.
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Fig. 7. Signal power variation of the 4-mode amplifier as a function of the coupling beat
length, for Lc = 100 m, for parallel (left column, ∥) and orthogonal (right column, ⊥) input
polarizations. Top row: power variation of the individual modes. Bottom row: power
variation on the "supergroups".

For the parallel polarizations case, we can see that the signal power variation on each mode
behaves similarly, presenting negligible fluctuations when the birefringence is unrealistically low
(for Lκ>104 m). Decreasing the beat length, the variance quickly increases up to a maximum of
100% when Lκ ≈ 101.5 m, i.e. when the LP01-LP21-LP02 supergroup is formed. Interestingly,
even though no inter-group coupling affects the LP11 group, its variance is increased with respect
to the 2-mode fiber case, which can be explained by the nonlinear coupling transferring the strong
power fluctuations occurring between the modes forming the supergroup. For high birefringence,
the power fluctuation stabilizes to about 50% for the LP11 mode, and to 55% for the modes that
constitute the supergroup. In this case, the high power fluctuation so far exhibited only by the
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4-fold degenerate LP11 group of the 2-modes fiber is also present for the 2-fold degenerate LP0,
p groups of the 4-modes fiber, as a consequence of inter-group coupling.

If we consider the variance of the total power of the LP11 group and LP01-LP21-LP02 supergroup,
the fluctuations decay for beat lengths Lκ>1 m, as can be observed in the bottom-left graph
of Fig. 7. The highest signal variation is still obtained at Lκ ≈ 101.5 m for both supergroups,
each reaching fluctuations of approximately 55%. Comparing these results with those obtained
for the 2-mode fibers, we can notice the absence of multiple peaks; instead, a weak increase
can be noticed at Lκ ≈ 103 m for the LP11 group, where an inflection point is present in the
corresponding gain curve in Fig. 6.

These effects are enhanced when considering orthogonal input polarizations, as seen in top-
and bottom-right graphs of Fig. 7, where the peak we observed at Lκ ≈ 103 m for parallel
polarizations is much larger for modes belonging to both groups. Considering the variation on
the individual spatial modes, the fluctuation increases with the average gain of the respective
mode, as seen in Fig. 6.

5. Conclusions

In this article, a theoretical and numerical model that describes the propagation dynamics of
the modes of a distributed Raman-amplified FMF links has been derived. Using analytical
models published in the literature, the effect of stress birefringence and core ellipticity, intrinsic
perturbations originating from the fiber manufacturing process, have been used to derive the
linear coupling coefficients for FMFs supporting 2 and 4 groups of LP modes, respectively. The
statistics of the amplification gain has been obtained by simulating thousands of realizations of
the stochastic linear coupling process, described by the angle θ(z) along which the birefringence
and core ellipticity perturbations are aligned.

For the 2-mode fiber, the considered perturbations induce coupling only among the quasi-
degenerate modes belonging to the same LP group. Interaction between the two groups only
occur through the nonlinear coupling coefficients that determine the Raman amplification process.
Three coupling regimes are identified, similar to the results of SMF systems. When mode
coupling is weak or negligible, the average gain on each mode is maximized (minimized) when
signal and pump polarizations are parallel (orthogonal) at the fiber input, with the output signals
showing no power fluctuations. As coupling increases, the average gain starts to decrease for
parallel input polarizations (increase for orthogonal ones) and, more remarkably, the power
variation on each mode group is very large. Finally, for large values of the perturbation strength,
the average gain on each mode group for parallel and orthogonal input polarizations reach the
same value. In this condition, the total power of each group of modes also shows reduced
fluctuations.

When considering a FMF supporting the propagation of 4 groups of LP modes similar effects
can be observed, with the addition of core ellipticity causing inter-group coupling between the
LP01, LP21, and LP02 groups. For typical values of birefringence, the average gain of each mode
belonging to this "supergroup" converges to the same value for a 50 km-long fiber. However, in
this regime, high fluctuations of the signal power are observed.

In general, in the strong-coupling regime, the fluctuations of the total power of the group of
coupled modes tends to zero, but the power on each spatial mode keeps exhibiting high variance,
behaving similarly to the individual polarization components in a SMF system, in which PMD
causes the Stokes vector of the fundamental mode to rotate on the Poincaré sphere and causing a
rapid exchange of power between each orthogonal polarization states. Moreover, if the physical
mechanism of coupling changes in time (e.g. due to fiber twist or bending) different super-groups
can form and the gain behavior can be highly altered. Let us stress, though, that this regime is
unlikely to be reached in a single span, with practical values of birefringence corresponding to
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beat lengths in the order of tens of meters, becoming relevant only when considering long-haul
multi-span transmissions.

Appendix: derivation of the propagation equations

When modeling nonlinear propagation effects in optical fibers, the starting point is to consider
the third order nonlinear polarization of the material, which can be written as [17,25]

P(3)(r, t) =
ϵ0
2
σ[E(r, t) · E(r, t)]E(r, t) (20a)

+E(r, t)
∫ ∞

0
ϵ0a(τ)[E(r, t − τ) · E(r, t − τ)] dτ (20b)

+E(r, t) ·
∫ ∞

0
ϵ0b(τ)[E(r, t − τ)E(r, t − τ)] dτ, (20c)

where Eq. (20a) accounts for the instantaneous Kerr effect, while Eq. (20b) and Eq. (20c) describe
the contribution of the parallel and cross-polarized delayed Raman responses a(τ) and b(τ).

By writing the total electric field and third order nonlinear polarization as the sum of signal
and pump fields at frequencies ωp and ωs as

E = Re
[︁
Ep exp (−jωpt) + Es exp (−jωst)

]︁
, (21a)

P(3) = Re
[︁
Pp exp (−jωpt) + Ps exp (−jωst)

]︁
, (21b)

and inserting them in Eq. (20), the following expression is found [17]

P(3)
ℓ
= P(3)(ωℓ) =

ϵ0
8
[σ + 2b̃(0)](Eℓ · Eℓ)E∗

ℓ(p1N1) (22a)

+
ϵ0
4
[σ + 2ã(0) + b̃(0)](E∗

ℓ · Eℓ)Eℓ(p2N2) (22b)

+
ϵ0
4
[σ + 2ã(0) + b̃(ωℓ − ωf )](E∗

f · Ef )Eℓ(p3N3) (22c)

+
ϵ0
4
[σ + b̃(0) + b̃(ωℓ − ωf )](Ef · Eℓ)E∗

f (p4N4) (22d)

+
ϵ0
4
[σ + 2ã(ωℓ − ωf ) + b̃(0)](E∗

f · Eℓ)Ef (p5N5), (22e)

where the subscripts ℓ and f can can either be p or s to indicate pump or signal frequency,
respectively. When ℓ = p, then f = s, and vice versa. Inserting these expressions in the Maxwell
equations, Es and Ep are found to satisfy the nonlinear Helmholtz equation at their respective
frequencies [17]

∇2Eℓ +
ω2
ℓ

c2 ϵℓEℓ = −
ω2
ℓ

ϵ0c2 Pℓ . (23)

In order to derive the equations for the case of a FMF, we can express the electric field as the
sum of the individual modes supported by the fiber as follows

Eℓ =

2Mℓ∑︂
µ=1

Fℓµ(x, y)Aℓµ(z) exp(jβℓµz), (24)

where Mℓ is the number of spatial modes propagating at frequency ωℓ and the factor 2 accounts
for polarization degeneracies; Fℓµ(x, y) is the mode function of mode µ at the frequency ωℓ , Aℓµ

is its complex amplitude, βℓµ is its propagation constant. From now on, the spatial dependence of
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Fℓµ(x, y) and Aℓµ(z) will be omitted for the sake of brevity. After substituting Eq. (24) in Eq. (23),
using the slowly-varying envelope approximation [25], and collecting the Aℓµ exp(jβℓµz) terms,
Eq. (23) becomes

∇2Eℓ +
ω2
ℓ

c2 ϵℓEℓ =

2Mℓ∑︂
µ=1

Aℓµ

[︄
∇2
⊥Fℓµ +

(︄
ω2
ℓ

c2 ϵℓ − β
2
ℓµ

)︄
Fℓµ

]︄
exp (jβℓµz)

+

2Mℓ∑︂
µ=1

Fℓµ2jβℓµ
∂Aℓµ

∂z
exp (jβℓµz) = −

ω2
ℓ

ϵ0c2 Pℓ ,

(25)

where we expressed the Laplacian operator as its transversal and longitudinal (with respect to the
direction of propagation) components ∇2 = ∇2

⊥ + ∂
2
z .

To include the effect of linear coupling between the modes, a small perturbation to the
permittivity tensor, describing the physical effects of the considered source of coupling, is applied
[8,9]

ϵℓ = ϵℓ + ∆ϵℓ , (26)
and Eq. (25) becomes

2Mℓ∑︂
µ=1

Aℓµ

[︄
∇2
⊥Fℓµ +

(︄
ω2
ℓ

c2 ϵℓ − β
2
ℓµ

)︄
Fℓµ

]︄
exp (jβℓµz) +

2Mℓ∑︂
µ=1

ω2
ℓ

c2 ∆ϵℓFℓµAℓµ exp (jβℓµz)

+

2Mℓ∑︂
µ=1

Fℓµ2jβℓµ
∂Aℓµ

∂z
exp (jβℓµz) = −

ω2
ℓ

ϵ0c2 Pℓ .

(27)

The term in square brackets of the first term of Eq. (27) is the Helmholtz equation, which
vanishes under the hypothesis of the mode distributions not being affected by nonlinearity, giving

2Mℓ∑︂
µ=1

ω2
ℓ

c2 ∆ϵℓFℓµAℓµ exp (jβℓµz) +
2Mℓ∑︂
µ=1

Fℓµ2jβℓµ
∂Aℓµ

∂z
exp (jβℓµz) = −

ω2
ℓ

ϵ0c2 Pℓ . (28)

We then left-multiply by F†

ℓν
, integrate on the infinite transverse plane, and use the following

orthogonality conditions, valid in the weakly guiding approximation [8]

βℓν
2ωℓµ0

∬
F†

ℓν
Fℓµ dxdy = δν,µ, (29)

to obtain the following equations

2Mℓ∑︂
µ=1

ω2
ℓ

c2 Aℓµ exp (jβℓµz)
+∞∬

−∞

F†

ℓν
∆ϵℓFℓµ dxdy+4jωℓµ0

∂Aℓν

∂z
exp (jβℓµz) = −

+∞∬
−∞

F†

ℓν

ω2
ℓ

ϵ0c2 Pℓ dxdy.

(30)
Dividing by 4jωℓµ0, introducing the following change of variables,

aℓµ = Aℓµ exp (jβℓµz), (31a)

∂Aℓµ

∂z
= exp (−jβℓµz)

(︃
∂aℓµ
∂z

− jβℓµaℓµ
)︃

, (31b)

and rearranging the terms, we can highlight the z-derivative of the mode amplitude obtaining

∂aℓν
∂z

− jβℓνaℓν − j
2Mℓ∑︂
µ=1

aℓµ
ωℓ
4

+∞∬
−∞

F†

ℓν
ϵ0∆ϵℓFℓµ dxdy =

jωℓ
4

+∞∬
−∞

F†

ℓν
Pℓ dxdy. (32)
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We now split the permittivity perturbation in its real and imaginary parts:

∆ϵℓ = ∆ϵ̃ℓ − jϵ ′′ℓ . (33)

The real part of the permittivity perturbation inside the summation in Eq. (32) defines the
linear coupling coefficients as the overlap integral [8,9,19]

Kνµ(ωℓ) = ϵ0
ωℓ
4

+∞∬
−∞

F†

ℓν
∆ϵ̃ℓFℓµ dxdy. (34)

The imaginary part instead defines the fiber losses. Assuming the absence of mode-dependent
losses, and making use of Eq. (29), the corresponding summation in Eq. (32) is reduced to a
single term reading

ωℓ
4

2ωℓµ0
βℓν

ϵ0ϵ
′′
ℓ aℓν ≜

αℓ
2

aℓν , (35)

where αℓ is the power attenuation coefficient at frequency ℓ.
If we temporarily neglect the nonlinear polarization term, the linear propagation effects are

finally completely described by the following equation,

∂aℓν
∂z
= −
αℓ
2

aℓ + jβℓνaℓν + j
2Mℓ∑︂
µ=1

Kνµ(ωℓ)aℓµ. (36)

Equation (36) can also be written in matrix form, describing the evolution of the vector aℓ of
complex mode amplitudes as

∂aℓ
∂z
= −
αℓ
2

aℓ + j(Bℓ +Kℓ)aℓ , (37)

where Bℓ is the diagonal matrix of propagation constants, and the elements of Kℓ are determined
by Eq. (34), finding the results of [18] with the addition of fiber losses.

5.1. Nonlinear terms

Recalling the structure of the nonlinear polarization term in Eq. (22), the nonlinear terms on the
right hand side of Eq. (32) can be written in a more compact form as

jωℓ
4

5∑︂
i=1

pi

+∞∬
−∞

F†

ℓν
Ni,ℓ dxdy. (38)

Since all terms are similar in their structure, for the sake of brevity here we only show the
derivation of the integral of the first term.

The computation of N1,ℓ starts by expanding the dot product of Eq. (22a), obtaining

Eℓ · Eℓ =
⎛⎜⎝

2Mℓ∑︂
µ=1

FℓµAℓµ exp (jβℓµz)⎞⎟⎠ · ⎛⎜⎝
2Mℓ∑︂
η=1

FℓηAℓη exp (jβℓηz)⎞⎟⎠ (39)

=

2Mℓ∑︂
µ=1

2Mℓ∑︂
η=1

(Fℓµ · Fℓη)AℓµAℓη exp
[︁
j(βℓµ + βℓη)z

]︁
. (40)
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Multiplying by E∗
ℓ we can then write

N1,ℓ = (Eℓ ·Eℓ)E∗
ℓ =

⎛⎜⎝
2Mℓ∑︂
µ=1

2Mℓ∑︂
η=1

(Fℓµ · Fℓη)AℓµAℓη exp
[︁
j(βℓµ + βℓη)z

]︁⎞⎟⎠ ·
2Mℓ∑︂
ρ=1

F∗
ℓρA∗

ℓρ exp (−jβℓρz)

(41)

=

2Mℓ∑︂
µ=1

2Mℓ∑︂
η=1

2Mℓ∑︂
ρ=1

(Fℓµ · Fℓη)F∗
ℓρAℓµAℓηA∗

ℓρ exp
[︁
j(βℓµ + βℓη − βℓρ)z

]︁
(42)

=

2Mℓ∑︂
µ=1

2Mℓ∑︂
η=1

2Mℓ∑︂
ρ=1

(Fℓµ · Fℓη)F∗
ℓρaℓµaℓηa∗ℓρ, (43)

where in the last line we applied the change of variable defined by Eq. (31b).
Multiplying by F∗

ℓν and integrating on the transverse plane, we obtain the following

+∞∬
−∞

F†

ℓν
N1,ℓ dxdy =

2Mℓ∑︂
µ=1

2Mℓ∑︂
η=1

2Mℓ∑︂
ρ=1

aℓµaℓηa∗ℓρ

+∞∬
−∞

(Fℓµ · Fℓη)(F∗
ℓρ · F∗

ℓν) dxdy. (44)

Rewriting the overlap integral as

Q
(1)
νρµη(ωℓ) =

+∞∬
−∞

(F∗
ℓν · F∗

ℓρ)(Fℓµ · Fℓη) dxdy, (45)

we then obtain the expression of the first nonlinear term for mode ν, which can be written as

+∞∬
−∞

F†

ℓν
N1,ℓ dxdy =

2Mℓ∑︂
µ=1

2Mℓ∑︂
η=1

2Mℓ∑︂
ρ=1

Q
(1)
νρµηaℓµaℓηa∗ℓρ. (46)

The other nonlinear terms are similar and the expression for their overlap integrals are
summarized in Table 1. If the mode function of the modes with indices ρ, µ, or η is complex-
conjugated inside the integral, then it must also be complex-conjugated in the triple summation
when computing the total nonlinear contribution.

Regrouping the linear part of the equation with the nonlinear terms just described, the complete
system of coupled nonlinear equations of Eq. (1) is finally obtained.
Funding. Università degli Studi di Padova (SEED - BIRD2020); Ministero dell’Istruzione, dell’Università e della
Ricerca (Departments of Excellence”–law 498 232/2016, PRIN 2017HP5KH7_003 - FIRST).

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5),

354–362 (2013).
2. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B

25(10), 1645 (2008).
3. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional

equations,” Phys. Rev. E 70(3), 036604 (2004).
4. A. Mecozzi, C. Antonelli, and M. Shtaif, “Nonlinear propagation in multi-mode fibers in the strong coupling regime,”

Opt. Express 20(11), 11673 (2012).
5. D. Marcuse, C. Manyuk, and P. Wai, “Application of the Manakov-PMD equation to studies of signal propagation in

optical fibers with randomly varying birefringence,” J. Lightwave Technol. 15(9), 1735–1746 (1997).

https://doi.org/10.1038/nphoton.2013.94
https://doi.org/10.1364/JOSAB.25.001645
https://doi.org/10.1103/PhysRevE.70.036604
https://doi.org/10.1364/OE.20.011673
https://doi.org/10.1109/50.622902


Research Article Vol. 30, No. 22 / 24 Oct 2022 / Optics Express 40119

6. S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal, “Nonlinear Propagation in Multimode and Multicore Fibers:
Generalization of the Manakov Equations,” J. Lightwave Technol. 31(3), 398–406 (2013).

7. A. Mecozzi, C. Antonelli, and M. Shtaif, “Coupled Manakov equations in multimode fibers with strongly coupled
groups of modes,” Opt. Express 20(21), 23436–23441 (2012).

8. L. Palmieri and A. Galtarossa, “Coupling Effects Among Degenerate Modes in Multimode Optical Fibers,” IEEE
Photonics J. 6(6), 1–8 (2014).

9. L. Palmieri, “Coupling mechanism in multimode fibers,” Proc. SPIE 9009, 90090G (2014).
10. A. Trichili, M. Zghal, L. Palmieri, A. Galtarossa, and M. Santagiustina, “Statistical analysis of nonlinear coupling in

a WDM system over a two mode fiber,” Opt. Express 26(6), 6602 (2018).
11. C. Antonelli, A. Mecozzi, and M. Shtaif, “Raman amplification in multimode fibers with random mode coupling,”

Opt. Lett. 38(8), 1188 (2013).
12. G. Marcon, A. Galtarossa, L. Palmieri, and M. Santagiustina, “Model-Aware Deep Learning Method for Raman

Amplification in Few-Mode Fibers,” J. Lightwave Technol. 39(5), 1371–1380 (2021).
13. Y. Chen, J. Du, Y. Huang, K. Xu, and Z. He, “Intelligent gain flattening in wavelength and space domain for FMF

Raman amplification by machine learning based inverse design,” Opt. Express 28(8), 11911–11920 (2020).
14. J. Zhou, “An analytical approach for gain optimization in multimode fiber Raman amplifiers,” Opt. Express 22(18),

21393 (2014).
15. J. Li, J. Du, L. Ma, M.-J. Li, K. Xu, and Z. He, “Second-order few-mode Raman amplifier for mode-division

multiplexed optical communication systems,” Opt. Express 25(2), 810 (2017).
16. D. E. Ceballos-Herrera, R. Gutierrez-Castrejon, and J. A. Alvarez-Chavez, “Stimulated Raman Scattering and

Four-Wave Mixing Effects on Crosstalk of Multicore Fibers,” IEEE Photonics Technol. Lett. 30(1), 63–66 (2018).
17. Q. Lin and G. P. Agrawal, “Vector theory of stimulated Raman scattering and its application to fiber-based Raman

amplifiers,” J. Opt. Soc. Am. B 20(8), 1616 (2003).
18. D. Marcuse, “Coupled-Mode Theory for Anisotropic Optical Waveguides,” Bell Syst. Tech. J. 54(6), 985–995 (1975).
19. G. Guerra, M. Lonardi, A. Galtarossa, L. A. Rusch, A. Bononi, and L. Palmieri, “Analysis of modal coupling due to

birefringence and ellipticity in strongly guiding ring-core OAM fibers,” Opt. Express 27(6), 8308 (2019).
20. N. Imoto, N. Yoshizawa, J. Sakai, and H. Tsuchiya, “Birefringence in single-mode optical fiber due to elliptical core

deformation and stress anisotropy,” IEEE J. Quantum Electron. 16(11), 1267–1271 (1980).
21. D. Chowdhury and D. Wilcox, “Comparison between optical fiber birefringence induced by stress anisotropy and

geometric deformation,” IEEE J. Sel. Top. Quantum Electron. 6(2), 227–232 (2000).
22. P. K. A. Wai and C. R. Menyuk, “Polarization decorrelation in optical fibers with randomly varying birefringence,”

Opt. Lett. 19(19), 1517 (1994).
23. S. Buch, S. Mumtaz, R.-J. Essiambre, A. M. Tulino, and G. P. Agrawal, “Averaged nonlinear equations for multimode

fibers valid in all regimes of random linear coupling,” Opt. Fiber Technol. 48, 123–127 (2019).
24. A. Galtarossa, L. Palmieri, M. Santagiustina, and L. Ursini, “Polarized Backward Raman Amplification in Randomly

Birefringent Fibers,” J. Lightwave Technol. 24(11), 4055–4063 (2006).
25. G. P. Agrawal, Nonlinear Fiber Optics, Optics and Photonics (Academic Press, San Diego, 2001), 3rd ed.
26. C. R. Menyuk and B. S. Marks, “Interaction of polarization mode dispersion and nonlinearity in optical fiber

transmission systems,” J. Lightwave Technol. 24(7), 2806–2826 (2006).
27. B. Mukherjee, I. Tomkos, M. Tornatore, P. Winzer, and Y. Zhao, eds., Springer Handbook of Optical Networks,

Springer Handbooks (Springer International Publishing, Cham, 2020).
28. S. Trillo and S. Wabnitz, “Parametric and Raman amplification in birefringent fibers,” J. Opt. Soc. Am. B 9(7), 1061

(1992).
29. A. Galtarossa, L. Palmieri, A. Pizzinat, M. Schiano, and T. Tambosso, “Measurement of Local Beat Length and

Differential Group Delay in Installed Single-Mode Fibers,” J. Lightwave Technol. 18(10), 1389–1394 (2000).
30. L. Yu, J. Zhao, Q. Mo, and G. Li, “The beat-length of polarization-maintaining few-mode-fiber measurement based on

polarized interference,” in 2016 15th International Conference on Optical Communications and Networks (ICOCN),
(2016), pp. 1–3.

https://doi.org/10.1109/JLT.2012.2231401
https://doi.org/10.1364/OE.20.023436
https://doi.org/10.1109/JPHOT.2014.2343998
https://doi.org/10.1109/JPHOT.2014.2343998
https://doi.org/10.1117/12.2042763
https://doi.org/10.1364/OE.26.006602
https://doi.org/10.1364/OL.38.001188
https://doi.org/10.1109/JLT.2020.3034692
https://doi.org/10.1364/OE.387820
https://doi.org/10.1364/OE.22.021393
https://doi.org/10.1364/OE.25.000810
https://doi.org/10.1109/LPT.2017.2774501
https://doi.org/10.1364/JOSAB.20.001616
https://doi.org/10.1002/j.1538-7305.1975.tb02878.x
https://doi.org/10.1364/OE.27.008308
https://doi.org/10.1109/JQE.1980.1070382
https://doi.org/10.1109/2944.847757
https://doi.org/10.1364/OL.19.001517
https://doi.org/10.1016/j.yofte.2018.12.020
https://doi.org/10.1109/JLT.2006.883640
https://doi.org/10.1109/JLT.2006.875953
https://doi.org/10.1364/JOSAB.9.001061
https://doi.org/10.1109/50.887190

