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Abstract

We study continuous dependence estimates for viscous Hamilton-
Jacobi equations defined on a network Γ. Given two Hamilton-Jacobi
equations, we prove an estimate of the C2-norm of the difference be-
tween the corresponding solutions in terms of the distance among the
coefficients. We also provide two applications of the previous estimate:
the first one is an existence and uniqueness result for a quasi-stationary
Mean Field Games defined on the network Γ; the second one is an esti-
mate of the rate of convergence for homogenization of Hamilton-Jacobi
equations defined on a periodic network, when the size of the cells van-
ishes and the limit problem is defined in the whole Euclidean space.

AMS-Subject Classification: 35R02, 49N70, 91A16, 35B27.
Keywords: Network; viscous Hamilton-Jacobi equation; Kirchhoff condition; Mean Field

Games; Homogenization.

1 Introduction

In the recent years, there is an increasing interest in the study of dynamical
system on networks, in connection with problem such as vehicular traffic,
data transmission, crowd motion, supply chains, etc. As consequence, many
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results for linear and nonlinear PDEs in the Euclidean case have been pro-
gressively extended to the network setting and also to more general geomet-
ric structures. Here, we are interested in continuous dependence estimates
for viscous Hamilton-Jacobi (HJ for short) equations. Let us recall that
such estimates play a crucial role in many contexts, for example for regular-
ity results, error estimate for numerical schemes, rate of of convergence in
vanishing viscosity and homogenization [10, 16].
Our analysis is inspired by the results in [19], where it is proved a continuous
dependence estimate in the C2-norm for solutions of a viscous HJ equations
in the periodic setting with an explicit dependence on the distance of the
coefficients and an explicit characterization of the constants. We prove an
analogous result for viscous HJ equations defined on networks with Kirch-
hoff conditions at the vertices. To this end, we use some results concerning
the study of these equations on networks [1, 2, 9] and suitably adapt the
arguments in [19] to this specific setting.
Then, the previous continuous dependence estimate is applied to two prob-
lems:

(i) the well-posedness of a quasi-stationary Mean Field Games system de-
fined on a network;

(ii) an estimate of the rate of convergence for homogenization of HJ equa-
tions defined on a periodic networks.

Mean Field Games (MFG for short), introduced in [17], modelize the interac-
tion among a large number of agents. In this theory, the agents are assumed
indistinguishable, infinitesimal and completely rational and their behaviour
is influenced by the statistical distribution of the states of the other agents.
In the classical formulation, MFG lead to the study of a coupled system of
two evolutive PDEs, a backward HJ equation for the value function of the
representative agent, a forward Fokker-Planck (FP for short) equation for
the distribution of the agents. Recently, a different strategy mechanisms
from classical MFG theory has been proposed in [21] (see also [11]): the
agents are myopic and choose their strategy only according to the informa-
tion available at present time, without forecasting the future evolution. In
this case, the Nash equilibria for the distribution of the agents are character-
ized by a quasi-stationary MFG system, which is composed of a stationary
HJ equation and a evolutive Fokker-Planck equation.
While classical MFG on networks have been studied in [1, 2, 8], here we
consider a quasi-stationary MFG defined on a network and we prove exis-
tence and uniqueness of the corresponding solution. Existence is proved via
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a fixed point argument and the continuous dependence estimate is crucial
since in this case it is not possible to exploit the regularizing effect of the
parabolic HJ equation to show the continuity of the fixed point map. The
continuous dependence estimate is also exploited to prove uniqueness of the
solution, which, with respect to the classical case, requires no monotonicity
assumption.
The second application of the continuous dependence estimate is to a ho-
mogenization problem. By means of the classical perturbed test function
method (see [12]), we show that the solution of a viscous HJ equation, de-
fined on a periodic lattice of size ǫ, converges, as ǫ → 0, to the solution of
an effective problem defined in all the Euclidean space and we also give an
estimate of the rate of convergence. Moreover, we obtain a characterization
of the corresponding effective operator in terms of the Hamiltonians defined
on the edges of the lattice. We note that a similar problem was studied for
first order HJ equations in [15] and for linear second order equations in [7].

The paper is organized as follows: in Sect. 2 we fix our setting and our
notations for the network. Sect. 3 is devoted to our main result, the continu-
ous dependence estimate for the solution to an HJ equation on the network.
In Sect. 4 we tackle quasi-stationary MFGs on the network: in particular, we
obtain existence and uniqueness of a solution without requiring any mono-
tonicity assumption. Sect. 5 concerns the homogenization of HJ equations
on a lattice: the main result is a rate of convergence estimate.

2 The network Γ: notations and definitions

We consider a bounded network Γ ⊂ R
N composed by a finite collection of

bounded straight edges E := {Γα, α ∈ A}, which connect a finite collection
of vertices V := {νi, i ∈ I}. We assume that, for α, β ∈ A with α 6= β,
Γα ∩ Γβ is either empty or made of a single vertex. For an edge Γα ∈ E
connecting two vertices νi and νj with i < j, we consider the parametrization
πα : [0, ℓα] → Γα given by

πα(y) = [yνj + (ℓα − y)νi]ℓ
−1
a for y ∈ [0, ℓα],

where ℓα is the length of the edge. We also denote withAi = {α ∈ A : νi ∈ Γα}
the set of indices of edges that are adjacent to the vertex νi.
For a function v : Γ → R, we denote with vα : (0, ℓα) → R the restriction of
v to Γα, i.e.

vα(y) := v|Γα ◦ πα(y), for all y ∈ (0, ℓα).
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Moreover we define for x ∈ Γα\V the derivative along the arc

∂αv(x) =
dvα
dy

(y) for y = π−1
α (x).

Remark 2.1. The function vα is defined only on (0, ℓα); nevertheless, when
it is possible, we denote vα also its extension by continuity on 0 and on ℓα.
Note that, in this way, vα may not coincide with the original function v at
the vertices when v is not continuous.

For x = νi ∈ Γα, we define the outward derivative at the vertex

∂αv
(

π−1
α (νi)

)

:=











lim
h→0+

vα(0) − vα(h)

h
, if νi = πα (0) ,

lim
h→0+

vα(ℓα)− vα(ℓα − h)

h
, if νi = πα (ℓα) .

Setting

niα =

{

1 if νi = πα(ℓα),
−1 if νi = πα(0),

we have
∂αv(νi) = niα ∂vα(π

−1
α (νi)).

We introduce some functional spaces defined on the network Γ. The
space C(Γ) is composed of the continuous functions on Γ; the space

PC (Γ) := {v : Γ → R : vα ∈ C([0, ℓα]), for all α ∈ A}

is composed of the piece-wise continuous functions on Γ, i.e. functions which
are continuous inside the edges but not necessarily at the vertices. Form ∈ N

Cm (Γ) := {v ∈ C (Γ) : vα ∈ Cm ([0, ℓα]) for all α ∈ A} ,

is the space of m-times continuously differentiable functions on Γ endowed
with the norm

‖v‖Cm(Γ) :=
∑

α∈A

∑

k≤m

∥

∥

∥
∂kvα

∥

∥

∥

L∞(0,ℓα)
.

For σ ∈ (0, 1], the space Cm,σ (Γ) contains the functions v ∈ Cm (Γ) such
that ∂mvα ∈ C0,σ ([0, ℓα]) for all α ∈ A with the norm

‖v‖Cm,σ(Γ) := ‖v‖Cm(Γ) + sup
α∈A

[∂mvα]σ,[0,ℓα]
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where, for σ ∈ (0, 1] and w : A → R,

[w]σ,A = sup
y 6=z

y,z∈A

|w (y)− w (z)|

|y − z|σ
.

The integral of a function v on Γ is defined by

∫

Γ
v(x)dx =

∑

α∈A

∫ ℓα

0
vα (y) dy

and we set 〈v〉 =
∫

Γ v(x)dx. For p ∈ [1,∞], we define the Lebesgue space

Lp (Γ) = {v : vα ∈ Lp ((0, ℓα)) for all α ∈ A} ,

endowed with the standard norm. For any integer m ∈ N, m ≥ 1, and
p ∈ [1,∞] we define the Sobolev space

Wm,p(Γ) := {v ∈ C (Γ) : vα ∈ Wm,p ((0, ℓα)) for all α ∈ A} ,

endowed with the norm

‖v‖Wm,p(Γ) =

(

m
∑

k=1

∑

α∈A

∥

∥

∥
∂kvα

∥

∥

∥

p

Lp(0,ℓα)
+ ‖v‖pLp(Γ)

)
1

p

.

We also set Hm(Γ) = Wm,2(Γ).
The couple (Γ, dΓ), where dΓ is the geodesic distance on the network, is a
metric space. Denote with M the space of Borel probability measures on Γ.
For 1 ≤ p < ∞, the Lp-Wasserstein distance dp between σ, τ ∈ M is defined
by the Monge-Kantorovich transport problem

dp(σ, τ) = min
Σ∈Π(σ,τ)

{
∫

Γ×Γ
dpΓ(x, y)dΣ(x, y)

}

where Π(σ, τ) denotes the set of transport plans, i.e. Borel probability mea-
sures on Γ × Γ with marginals σ and τ (see [6]). Since Γ is compact, the
Wasserstein distance dp metrises the topology of weak convergence of prob-
ability measures on Γ. In particular, for p = 1, we have

d1(σ, τ) = sup

{
∫

Γ
f(x)d(σ − τ) : f : Γ → R, |f(x)− f(y)| ≤ dΓ(x, y)

}

.

(2.1)
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We shortly recall the definition of diffusion process on the network Γ (see
[13, 14] for details). Consider the linear differential operator L defined on
the edges by

Lαu(x) = µα∂
2u(x) +Bα(x)∂u(x), x ∈ Γα, α ∈ A

with domain

D (L) =







u ∈ C2 (Γ) :
∑

α∈Ai

pi,α∂αu (νi) = 0, i ∈ I







where pi,α ∈ (0, 1),
∑

α∈Ai
pi,α = 1. Then, the operator L is the infinitesimal

generator of a Feller-Markov process (Xt, αt), with Xt ∈ Γαt , such that, for
xt = π−1

αt
(Xt), we have

dxt = Bαt(xt)dt+ µαtdWt + dℓi,t + dhi,t. (2.2)

In (2.2), Wt is a one dimensional Wiener process; ℓi,t and hi,t, i ∈ I, are
continuous non-decreasing and, respectively, non-increasing processes, mea-
surable with respect to the σ-field generated by (Xt, αt) and satisfying

ℓi,t increases only when Xt = νi and xt = 0,

hi,t decreases only when Xt = νi and xt = 1.

3 The continuous dependence estimate

We consider the following HJ equation on Γ


























−µα∂
2v +H (x, ∂v) + ρ = 0, x ∈ (Γα\V) , α ∈ A,

∑

α∈Ai

γiαµα∂αv(νi) = 0, νi ∈ V,

v|Γα(νi) = v|Γβ
(νi), α, β ∈ Ai, νi ∈ V,

〈v〉 = 0.

(3.1)

where H : Γ× R → R is given for x ∈ Γα by

Hα(x, p) = sup
a∈A

{−bα(x, a)p − fα(x, a)} . (3.2)

Problem (3.1) represents the dynamic programming equation for the optimal
control problem with long-run average cost functional

ρ = inf
a

lim inf
T→∞

1

T
Ex

[
∫ T

0
f(Xt, at)dt

]
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where at is a feedback control law of form at = a(Xt) and Xt is a diffusion
process on Γ such that xt = παt(Xt) satisfies (2.2) with Bα(x) = Bα(x, a(x))
(see [1, Section 1.3] for more details). Connected with the optimal con-
trol interpretation of (3.1), the second equation is a Kirchhoff transmission
condition, where the quantity piα = γiαµα(

∑

α∈Ai
γiαµα)

−1 represents the
probability that the trajectories of the diffusion process enter in edge Γα,
α ∈ Ai, from the vertex νi; it can be also interpreted as a Neumann bound-
ary condition if ♯(Ai) = 1. The third equation implies continuity of the
solution at the vertices and the last one is a normalization condition.
We assume that A is a compact separable metric space (for simplicity, A is
a subset of some Euclidean space) and we make the following assumptions

(H1) µα and γi,α are positive constants and

∑

α∈Ai

γiαµα = 1, α ∈ A, i ∈ Ai.

(H2) bα, fα : Γα × A → R are continuous and there exist two constants K
and L such that

|bα(x, a)| ≤ K, |bα(x1, a)− bα(x2, a)| ≤ L|x1 − x2|

|fα(x, a)| ≤ K, |fα(x1, a)− fα(x2, a)| ≤ L|x1 − x2|
(3.3)

for all x, x1, x2 ∈ Γα, a ∈ A and α ∈ A.

For the study of the ergodic problem (3.1), it is expedient to introduce for
λ ∈ (0, 1) the discount approximation



















−µα∂
2vλ +H

(

x, ∂vλ
)

+ λvλ = 0, x ∈ (Γα\V) , α ∈ A,
∑

α∈Ai

γiαµα∂αv
λ(νi) = 0, νi ∈ V,

vλ|Γα(νi) = vλ|Γβ
(νi), α, β ∈ Ai, νi ∈ V.

(3.4)

The following statement concerns existence, uniqueness and regularity of
classical solutions to the HJ equations (3.1) and (3.4) (see [4, Theorem II.2],
[9] and [1, Proposition 3.2 and Theorem 3.7]).

Proposition 3.1. There exists a unique classical solution vλ to the equation
(3.4). Moreover,
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(i) there exist a positive constant C1 and θ ∈ (0, 1), both independent of
λ, such that

‖λvλ‖L∞(Γ) ≤ K, (3.5)

‖vλ − 〈vλ〉‖C2,θ(Γ) ≤ C1(1 +K + L) =: K̄, (3.6)

where K, L as in (3.3);

(ii) for λ → 0+, λvλ → ρ, vλ−〈vλ〉 → v and the couple (v, ρ) is the unique
classical solution to (3.1). Moreover

‖v‖C2,θ(Γ) ≤ K̄. (3.7)

We give some preliminary results for equations (3.1) and (3.4). The first
result is a strong maximum principle for the linear HJ equation (see [1,
Lemma 2.8] or [9, Theorem 3.1]).

Lemma 3.2. For g ∈ PC (Γ), the solutions of



















−µα∂
2v + g∂v = 0, in Γα\V, α ∈ A,

∑

α∈Ai

γiαµα∂αv(νi) = 0, i ∈ I,

v|Γα(νi) = v|Γβ
(νi), α, β ∈ Ai, i ∈ I

are the constant functions on Γ.

The second result is a comparison principle for (3.4) (see [1, Lemma 3.6]
and [9, Corollary 3.1]).

Lemma 3.3. If u, v ∈ C2 (Γ) satisfy











−µα∂
2v +H (x, ∂v) + λv ≥ −µα∂

2u+H (x, ∂u) + λu, if x ∈ Γα\V, α ∈ A,
∑

α∈Ai

γiαµα∂αv(νi) ≥
∑

α∈Ai

γiαµα∂αu(νi), if νi ∈ V,

then v ≥ u.

We now give a continuous dependence estimate for the solution of (3.1)
and (3.4) with respect to the data of the problem.

Theorem 3.4. For i = 1, 2, consider H i : Γ×R → R and F i : Γ → R such
that H i

α(x, p) = supa∈A
{

−biα(x, a)p − f i
α(x, a)

}

for x ∈ Γα, α ∈ A. Assume
that

8



(i) biα, f
i
α, i = 1, 2, satisfy (H2) with the same constants K, L;

(ii) ‖H i
α‖C1,τ (Γα×(−K̄,K̄)) ≤ KH for α ∈ A, i = 1, 2, where K̄ as in (3.6)

and τ ∈ (0, 1];

(iii) for some θ ∈ (0, 1], the functions F i : Γ → R, i = 1, 2, fulfill

‖F i
α‖L∞(Γα) ≤ KF and [F i

α]θ,Γα
≤ LF ∀α ∈ A.

For i = 1, 2, let vλi be the solution of (3.4) with Hamiltonian H(x, p) =
H i(x, p) + F i(x) and set wλ

i := vλi − 〈vλi 〉. Then, there exists a positive
constant C0, independent of λ, such that

‖wλ
1 − wλ

2‖C2(Γ) ≤ C0max
α∈A

(

max
x,a

|b1α(x, a)− b2α(x, a)|

+max
x,a

|f1
α(x, a)− f2

α(x, a)| +max
x

|F 1
α(x)− F 2

α(x)|
)

+

max
α∈A

[H1
α −H2

α]1,Γα×(−K̄,K̄) +max
α∈A

[F 1
α − F 2

α]θ,Γα
.

(3.8)

Estimate (3.8) also holds for vi, i = 1, 2, solution to (3.1) corresponding to
H(x, p) = H i(x, p) + F i(x).

Proof. We shall proceed by contradiction. We assume that, for k → +∞,
there exist sequences λk → 0 , bi,kα , f i,k

α , F i,k
α , i = 1, 2, satisfying (H2) and

(iii) with the same constants K, L, θ, KF and LF and vλk

i , i = 1, 2, solution

to (3.4) with discount λk and coefficients bi,kα , f i,k
α and F i,k

α such that

ck :=‖wλk
1 − wλk

2 ‖C2(Γ)

≥kmax
α∈A

(

max
x,a

|b1,kα (x, a)− b2,kα (x, a)|

+max
x,a

|f1,k
α (x, a) − f2,k

α (x, a)| +max
x

|F 1,k
α (x)− F 2,k

α (x)|
)

+max
α∈A

[H1,k
α −H2,k]1,Γα×(−K̄,K̄) +max

α∈A
[F 1,k

α − F 2,k
α ]θ,Γα

where wλk

i = vλk

i − 〈vλk

i 〉 and

H i,k
α (x, p) = sup

a∈A

{

−bi,kα (x, a)p − f i,k
α (x, a)

}

, x ∈ Γα, i = 1, 2.

The function wλk

i = vλk

i − 〈vλk

i 〉, i = 1, 2, solves the equation














−µα∂
2wλk

i +H i,k
(

x, ∂wλk

i

)

+ F i,k
α (x) + λkw

λk

i + λk〈v
λk

i 〉 = 0, x ∈ (Γα\V) , α ∈ A,
∑

α∈Ai
γiαµα∂αw

λk

i (νi) = 0, νi ∈ V,

wλk

i |Γα(νi) = wλk

i |Γβ
(νi), α, β ∈ Ai, νi ∈ V.
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Hence the function W k = c−1
k (wλk

1 − wλk
2 ) solves the equation



















−µα∂
2W k + c−1

k

(

H1,k(x, ∂wλk
1 )

−H1,k(x, ∂wλk
2 )
)

+Rk = 0, x ∈ (Γα\V) , α ∈ A,
∑

α∈Ai
γiαµα∂αW

k(νi) = 0, νi ∈ V,

WK |Γα(νi) = W k|Γβ
(νi), α, β ∈ Ai, νi ∈ V,

(3.9)

where

Rk = λkc
−1
k (〈vλk

1 〉 − 〈vλk
2 〉) + c−1

k

(

H1,k(x, ∂wλk
2 )−H2,k(x, ∂wλk

2 ))

λkW
k + c−1

k

(

F 1,k(x)− F 2,k(x)
)

.

Since H i,k
α belongs to C1(Γα × R) for all α ∈ A, we rewrite (3.9) as











−µα∂
2W k + gk∂W k +Rk = 0, x ∈ (Γα\V) , α ∈ A,

∑

α∈Ai
γiαµα∂αW

k(νi) = 0, νi ∈ V,

W k|Γα(νi) = W k|Γβ
(νi), α, β ∈ Ai, νi ∈ V,

(3.10)

where

gkα(x) =

∫ 1

0
∂pH

1,k
α

(

x, t∂wλk
1,α + (1− t)∂wλk

2,α

)

dt

and we aim to pass to the limit in (3.10) for k → ∞.

We first observe that, since wλk

i ∈ C2,θ(Γ) with ‖wλk

i ‖C2,θ ≤ K̄ and H i,k
α ∈

C1,τ (Γα × [−K̄, K̄]), then the functions gkα, α ∈ A, are uniformly bounded
and Hölder continuous of exponent τ . Hence, there exists g : Γ → R such
that for any α ∈ A

gkα → gα for k → ∞, uniformly in Γα. (3.11)

Moreover, we claim that the function Rk is uniformly θ-Hölder continuous.
Indeed, by (3.6) and the definition of ck, we have

c−1
k

[

H1,k
α (x, ∂wλk

2 )−H2,k
α (x, ∂wλk

2 )
]

1,Γα

≤
(

1 + ‖wλk
2 ‖C2,θ(Γ)

)

c−1
k [H1 −H2]1,Γα×(−K̄,K̄) ≤ 1 + ‖wλk

2 ‖C2,θ(Γ) ≤ 1 + K̄.

On the other hand, by our choice of ck, we have

[

c−1
k

(

F 1,k
α − F 2,k

α

)]

θ,Γα

= c−1
k

[

F 1,k
α − F 2,k

α

]

θ,Γα

≤ 1;
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hence, our claim is proved.
We now claim that

‖Rk‖L∞(Γ) = ok(1) as k → ∞ (3.12)

where limk→∞ ok(1) = 0, uniformly in x and may change from line to line.
Indeed, we have

λkW
k = λk

wλk

1 −wλk

2

‖wλk
1 − wλk

2 ‖C2(Γ)

= ok(1). (3.13)

Moreover, we have

λk‖v
λk
1 − vλk

2 ‖L∞ ≤ max
α∈A

(

K̄max
x,a

|bk,1α (x, a)− bk,2α (x, a)|+

max
x,a

|fk,1
α (x, a)− fk,2

α (x, a)|+max
x

|F 1,k
α (x)− F 2,k

α (x)|
)

, (3.14)

where K̄ as in (3.6). Indeed, to prove (3.14), it is sufficient to observe that

v±(x) = vλk
2 (x)± λ−1

k max
α∈A

(

K̄max
x,a

|bk,1α (x, a)− bk,2α (x, a)|

+max
x,a

|fk,1
α (x, a)− fk,2

α (x, a)| +max
x

|F 1,k
α (x)− F 2,k

α (x)|
)

are a subsolution and a supersolution of the equation satisfied by vλk
1 and

to apply Lemma 3.3. By (3.14) and (H2), we have

|λkc
−1
k (〈vλk

1 〉 − 〈vλk
2 〉)| ≤ c−1

k max
α∈A

(

K̄max
x,a

|b1,kα (x, a)− b2,kα (x, a)|

+max
x,a

|f1,k
α (x, a)− f2,k

α (x, a)|+max
x

|F 1,k
α (x)− F 2,k

α (x)|
)

∫

Γ
dx = ok(1).

(3.15)

Furthermore, taking into account (3.6) and (H2), we have

c−1
k

(

H1,k(x, ∂wλk
2 )−H2,k(x, ∂wλk

2 ))

≤ c−1
k max

α∈A

(

‖∂wλk
2 ‖L∞(Γ)max

x,a
|b1,kα (x, a)− b2,kα (x, a)|

+max
x,a

|f1,k
α (x, a)− f2,k

α (x, a)|
)

≤ c−1
k max

α∈A

(

K̄max
x,a

|b1,kα (x, a)− b2,kα (x, a)|

+max
x,a

|f1,k
α (x, a)− f2,k

α (x, a)|
)

= ok(1);

by our choice of ck, we also have
∣

∣

∣
c−1
k

(

F 1,k
α (x)− F 2,k

α (x)
)∣

∣

∣
≤ c−1

k max
x

∣

∣

∣
F 1,k(x)− F 2,k(x)

∣

∣

∣
≤ 1/k.
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By these estimates, (3.13) and (3.15), we obtain the claim (3.12) and we
conclude that for any α ∈ A

Rk
α → 0 for k → ∞, uniformly in Γα. (3.16)

For k → ∞, W k uniformly converges to a function W ∈ C2(Γ) along with
all its derivatives up to order 2. Moreover, taking into account (3.11) and
(3.16), W is a solution to











−µα∂
2W + g∂W = 0, x ∈ (Γα\V) , α ∈ A,

∑

α∈Ai
γiαµα∂αWi(νi) = 0, νi ∈ V,

Wi|Γα(νi) = Wi|Γβ
(νi), α, β ∈ Ai, νi ∈ V,

By Lemma 3.2, it follows that W is constant and, since 〈W k〉 = 0 for all k,
then also 〈W 〉 = 0. It follows that W ≡ 0 which gives a contradiction to
‖W k‖C2(Γ) = 1 for all k ∈ N.
The estimate for the solutions of the ergodic problem (3.1) follows immedi-
ately from Prop. 3.1.(ii) and since (3.8) is independent of λ.

Remark 3.5. When assumption (ii) drops, it is possible to prove a L∞-
continuous dependence estimate. More precisely, assuming (i) and (iii) of
Theorem 3.4, there exists a constant C0 such that

‖wλ
1 − wλ

2‖L∞(Γ) ≤ C0 max
α∈A

(

max
x,a

|b1α(x, a) − b2α(x, a)|

+max
x,a

|f1
α(x, a)− f2

α(x, a)|+max
x

|F 1
α(x)− F 2

α(x)|
)

.

(3.17)

Estimate (3.17) also holds for vi, i = 1, 2, solution to (3.1) corresponding to
H(x, p) = H i(x, p) + F i(x).
The proof is similar (and simpler) as the one of Theorem 3.4 so we shall
omit it and we refer the reader to [19, Theorem 2.1].

4 Quasi-stationary Mean Field Games on networks

Quasi-stationary Mean Field Games, introduced in [21] (see also [11]), mod-
elize the case when the agent cannot predict the evolution of the population
in the future, as in the classical MFG theory, but, at each instant, it de-
cides its behaviour only on the basis of the information available at the
current time. This feature leads to systems given by an evolutive Fokker-
Planck equation and a stationary HJ equation (which in fact depends on

12



time through the cost). More precisely, at each time t ∈ [0, T ], given the
distribution of the population m(t), the representative agent assumes that
it will not change in the future and solves an optimal control problem with
long-run average cost functional

ρ(t) = inf
a

lim inf
T→∞

1

T
Ey,t

[
∫ T

t
(f(Ys, as) + F [m(t)](Ys)) ds

]

where Ys is a fictitious dynamics on the network such Yt = x and F is an
additional cost term which depends on the distribution of the agents. If
the corresponding HJ equation, see (3.1), admits a smooth solution v(t),
then the optimal feedback law a⋆t (x) = −∂pH(x, ∂v(t)) gives the vector field
governing the evolution of the distribution of the population at time t. This
leads to study a class of quasi-stationary MFG systems















































−µα∂
2v +H(x, ∂v) + ρ = F [m(t)](x), (x, t) ∈ (Γα\V)× (0, T ), α ∈ A,

∂tm− µα∂
2m− ∂ (m∂pH(x, ∂v)) = 0, (x, t) ∈ (Γα\V)× (0, T ), α ∈ A,

∑

α∈Ai
γiαµα∂αv(νi, t) = 0, (νi, t) ∈ V × (0, T ),

∑

α∈Ai
µα∂αm(νi, t) + niα∂pHα(νi, ∂vα(νi, t))m|Γα(νi, t) = 0, (νi, t) ∈ V × (0, T ),

v|Γα(νi, t) = v|Γβ
(νi, t),

m|Γα(νi, t)

γiα
=

m|Γβ
(νi, t)

γiβ
, α, β ∈ Ai, (νi, t) ∈ V × (0, T ),

〈v〉 = 0, m (x, 0) = m0(x), x ∈ Γ,

(4.1)
where H as in (3.2), m0 ∈ M describes the initial distribution of the players
and F is the nonlocal coupling cost (see below for the precise assumptions).
These systems loss the standard forward-backward structure of MFG. In
order to establish the existence of a solution, it is crucial to have some
regularity in time for the value function v. In the classical approach for
MFG, such a regularity follows from the parabolicity of HJ equation; here,
it will be retrieved using the continuous dependence estimate of Section 3.
We first recall some basic results concerning the Fokker-Planck equation



























∂tm− µα∂
2m− ∂ (bm) = 0, in (Γα\V)× (0, T ), α ∈ A,

∑

α∈Ai
µα∂αm(νi, t) + niαbα(νi, t)m|Γα(νi, t) = 0, t ∈ (0, T ), νi ∈ V,

m|Γα(νi, t)

γiα
=

m|Γβ
(νi, t)

γiβ
, t ∈ (0, T ), α, β ∈ Ai, νi ∈ V\∂Γ,

m (x, 0) = m0(x), x ∈ Γ.

(4.2)
The vertex conditions for the FP equation are obtained by duality with re-
spect to the corresponding vertex conditions for the HJ equation and express
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conservation of the flux and, respectively, a rule for the distribution of the
density.
We introduce suitable parabolic spaces for weak solution of the FP equation.
We set V = H1(Γ) and

H1
b (Γ) :=

{

v : Γ → R s.t. vα ∈ H1(0, ℓα) for all α ∈ A
}

,

(unlike V , continuity at the vertices is not required), endowed with the norm

‖v‖H1
b
(Γ) =

(

∑

α∈A

‖∂vα‖
2
L2(0,ℓα)

+ ‖v‖2L2(Γ)

)
1

2

.

By Remark 2.1, for v ∈ H1
b (Γ), we still denote vα the extension by continuity

of vα on the whole interval [0, ℓα].
We also define

W :=

{

w : Γ → R : w ∈ H1
b (Γ) and

w|Γα(νi)

γiα
=

w|Γβ
(νi)

γiβ
for all i ∈ I, α, β ∈ Ai

}

,

PC(Γ× [0, T ]) := {v : Γ× [0, T ] → R : v(·, t) ∈ PC(Γ) for all t ∈ [0, T ] and

v|Γα×[0,T ] ∈ C(Γα × [0, T ]) for all α ∈ A}.

Definition 4.1. For m0 ∈ L2(Γ), a weak solution of (4.2) is a function
m ∈ L2 (0, T ;W ) ∩ C([0, T ];L2(Γ)) such that ∂tm ∈ L2 (0, T ;V ′) and







〈∂tm, v〉V ′,V +

∫

Γ
µ∂m∂vdx+

∫

Γ
bm∂vdx = 0 for all v ∈ H1(Γ), a.e. t ∈ (0, T ),

m (·, 0) = m0.

The following result concerns existence, uniqueness and stability for the
solution of (4.2) (see [2, Theorem 3.1 and Lemma 3.1])

Proposition 4.2. We have

(i) For b ∈ L∞(Γ× (0, T )), m0 ∈ L2(Γ), there exists a unique weak solu-
tion to (4.2). Moreover, there exists C = C(‖b‖∞) such that

‖m‖L2(0,T ;W ) + ‖m‖L∞(0,T ;L2(Γ)) + ‖∂tm‖L2(0,T ;V ′) ≤ C ‖m0‖L2(Γ) .
(4.3)

Moreover, if m0 ∈ M, then m(t) ∈ M for all t ∈ [0, T ].
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(ii) Let bn be such that

bn −→ b in L2 (Γ× (0, T )) , ‖b‖L∞(Γ×(0,T )), ‖b
n‖L∞(Γ×(0,T )) ≤ K

with K independent of n. Let mn (respectively m) be the solution of
(4.2) corresponding to the coefficient bn (resp. b). Then, the sequence
(mn) converges to m in L2 (0, T ;W ) ∩ L∞

(

0, T ;L2(Γ)
)

, and the se-
quence (∂tm

n) converges to (∂tm) in L2 (0, T ;V ′).

Proposition 4.3. For m0 ∈ L2(Γ) ∩ M, let m be the solution of (4.2)
found in Proposition 4.2. Then there exists a constant CW , depending only
on ‖b‖L∞ and ‖m0‖L2 , such that

d1(m(t),m(s)) ≤ CW |t− s|
1

2 (4.4)

Proof. Let φ : Γ → R with |φ(x) − φ(y)| ≤ dΓ(x, y), hence φ ∈ H1(Γ). For
s, t ∈ [0, T ] with s < t, by Definition 4.1 and regularity of m, we have

∫

Γ
φ(x)(m(t) −m(s))dx ≤

∫ t

s

∫

Γ
(µ|∂m| |∂φ| +m|b| |∂φ|)dxdr

≤ ‖µ‖∞

∫ t

s

∫

Γ
|∂m|dxdr + ‖b‖L∞

∫ t

s

∫

Γ
mdxdr

≤ ‖µ‖∞

[
∫ t

s

∫

Γ
|∂m|2dxdr

]

1

2
[
∫ t

s

∫

Γ
1dxdr

]

1

2

+ ‖b‖L∞

∫ t

s

∫

Γ
mdxdr.

Exploiting
∫

Γm(r)dx = 1 for any r ∈ [0, T ], (4.3) and (2.1), by the previous
inequality we get (4.4).

We now prove the well posedness of system (4.1).

Theorem 4.4. Assume (H1), (H2), m0 ∈ L2(Γ) ∩ M, Hα ∈ C1,τ (Γα ×
(−K̄, K̄)) (where K̄ as in (3.6)) and F : M → L2(Γ) satisfies

(F) Fα : M → C0,θ(0, ℓα), α ∈ A, and there exist CF > 0 and θ ∈ (0, 1]
s.t.

maxα ‖Fα[m]‖C0,θ ≤ CF ,

maxα ‖Fα[m1]− Fα[m2]‖C0,θ ≤ CF d1(m1,m2)

for all m, m1, m2, α ∈ A.

Then, the system (4.1) admits a unique solution (u, ρ,m), where (u, ρ) ∈
C([0, T ], C2(Γ)) × C([0, T ]) is a classical solution to the HJ equation for
any t ∈ [0, T ] and m ∈ L2 (0, T ;W ) ∩ C([0, T ];L2(Γ) ∩ M) with ∂tm ∈
L2 (0, T ;V ′) is a weak solution to the FP equation.
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Proof.
Existence: We consider the convex, compact set

X =
{

m ∈ C([0, T ];M) : d1(m(t),m(s)) ≤ CW |t− s|
1

2 , s, t ∈ [0, T ]
}

,

where CW as in (4.4), and we define a map T : X → X in the following way:
given m ∈ X , let (u(t), ρ(t)), t ∈ [0, T ], be the solution of the HJ equation























−µα∂
2u+H(x, ∂u) + ρ = F [m(t)](x), x ∈ (Γα\V) , α ∈ A,

∑

α∈Ai
γiαµα∂αu(νi) = 0, νi ∈ V,

u|Γα(νi) = u|Γβ
(νi), α, β ∈ Ai, νi ∈ V,

〈u〉 = 0 x ∈ Γ.

(4.5)

Then, m̄ = T (m) solves the FP equation (4.2) with b = ∂pH(x, ∂u).
Note first that the map T is well defined. Indeed, thanks to Prop.3.1, The-
orem 3.4 and (F), there exists (u, ρ) ∈ C([0, T ], C2(Γ)) × C([0, T ]) which
solves (4.5) for any t ∈ [0, T ]. Moreover, by Prop. 4.2, there exists a unique
solution m̄, in the sense of Def. 4.1, to problem (4.2) with b = ∂pH(∂u).
Since m̄ ∈ C([0, T ];L2(Γ)) can be identified with the corresponding Borel
measure with density m̄(t) on Γ at time t, by Prop. 4.3, we also have that
T maps X into itself.
We prove that T is continuous. Given mn, m ∈ X , let (un(t), ρn(t)),
(u(t), ρ(t)) be the solutions, for any t ∈ [0, T ], of the HJ equations (4.5) with
right hand side F [mn(t)] and, respectively, F [m(t)] and let m̄n = T (mn),
m̄ = T (m). If mn → m in X , then d1(m

n(t),m(t)) → 0 uniformly for
t ∈ (0, T ). Invoking again Theorem 3.4, by (3.8) and (F), for any t ∈ [0, T ]
there holds

‖un(t)− u(t)‖C2(Γ) ≤ C0max
α∈A

‖Fα[m
n(t)]− Fα[m(t)]‖C0,θ

≤ Cmax
α∈A

d1(m
n
α(t),mα(t)),

with C independent of mn, m. The previous estimate and Prop. 4.2.(ii)
with bn = ∂pH(x, ∂un), b = ∂pH(x, ∂u) imply that m̄n converges to m̄ in X
and therefore the map T is continuous.
By Schauder fixed point theorem, we conclude that there exists a fixed point
of T and therefore a solution of (4.1).

Uniqueness: Suppose that there are two solutions (u1, ρ1,m1), (u2, ρ2,m2)
of (4.1).
As in [2], we introduce the function ϕ : Γ → R as

ϕα is affine on [0, ℓα], ϕα(νi) = γiα if α ∈ Ai.
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Note that ϕ ∈ H1
b (Γ) is strictly positive and bounded. Hence the reciprocal

ϕ−1 is well defined, positive and bounded; this property will play a crucial
role in our argument.
Set M = ϕ−1(m1 −m2). The transition condition of mi and the definition
of ϕ ensure that M(t) ∈ H1(Γ) for a.e. t ∈ (0, T ). Hence, we can use
Definition 4.1 for m1 and m2 with M(t) as a test function obtaining

1

2

d

dt
‖(m1 −m2)(t)(ϕ

−1)1/2‖2L2(Γ) + ‖∂(m1 −m2)(t)(µϕ
−1)1/2‖2L2(Γ)

= −

∫

Γ
µ∂(m1 −m2)(t)(m1 −m2)(t)∂(ϕ

−1)dx

−

∫

Γ
b1(m1 −m2)(t)∂M(t)dx −

∫

Γ
(b1 − b2)m2(t)∂M(t)dx (4.6)

where bi = ∂pH(·, ∂ui(·, t)) for i = 1, 2. We now estimate the three integrals
in the right hand side of equality (4.6). Since now on, C will denote a
constant that may change from line to line but is always independent of M .
By Cauchy-Schwarz inequality, we get

−

∫

Γ
µ∂(m1 −m2)(t)(m1 −m2)(t)∂(ϕ

−1)dx

≤

∫

Γ

∣

∣

∣
µ∂(m1 −m2)(t)(m1 −m2)(t)∂(ϕ

−1)ϕ1/2ϕ−1/2
∣

∣

∣
dx

≤
1

2
‖∂(m1 −m2)(t)(µϕ

−1)1/2‖2L2(Γ) +
1

2

∫

Γ
µ|m1 −m2|

2(t)|∂(ϕ−1)|2ϕdx

≤
1

2
‖∂(m1 −m2)(t)(µϕ

−1)1/2‖2L2(Γ) + C‖(m1 −m2)(t)(ϕ
−1)1/2‖2L2(Γ)

(4.7)

where the last inequality is due to the boundedness of µ and to the properties
of ϕ. Moreover, by the boundedness of b1 and of µ, again using Cauchy-
Schwarz inequality, we have

−

∫

Γ
b1(m1 −m2)(t)∂M(t)dx

= −

∫

Γ
b1(m1 −m2)(t)[∂(m1 −m2)(t)ϕ

−1 − (m1 −m2)(t)∂(ϕ
−1)]dx

≤

∫

Γ

∣

∣b1(m1 −m2)(t)∂(m1 −m2)(t)ϕ
−1
∣

∣ dx+

∫

Γ

∣

∣b1(m1 −m2)
2(t)∂(ϕ−1)

∣

∣ dx

≤
1

4
‖∂(m1 −m2)(t)(µϕ

−1)1/2‖2L2(Γ) + C‖(m1 −m2)(t)(ϕ
−1)1/2‖2L2(Γ).

(4.8)
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Let us also assume for the moment the following estimate

−

∫

Γ
(b1 − b2)m2(t)∂M(t)dx ≤

1

4
‖∂(m1 −m2)(t)(µϕ

−1)1/2‖2L2(Γ)

+ C‖(m1 −m2)(t)(ϕ
−1)1/2‖2L2(Γ) (4.9)

whose proof is postponed at the end.
Replacing relations (4.7), (4.8), (4.9) in (4.6), we get

d

dt
‖(m1 −m2)(t)(ϕ

−1)1/2‖2L2(Γ) ≤ C‖(m1 −m2)(t)(ϕ
−1)1/2‖2L2(Γ).

Since m1(0) = m2(0), by the previous inequality we get m1(t) = m2(t) for
all t ∈ [0, T ], hence u1 = u2 in Γ× [0, T ] and ρ1 = ρ2.

It remains only to prove inequality (4.9). To this end, we first estimate

‖b1 − b2‖L∞(Γ) = ‖∂pH(·, ∂u1(·, t)) − ∂pH(·, ∂u2(·, t))‖L∞(Γ)

≤ C‖∂u1(·, t)− ∂u2(·, t)‖L∞(Γ).

Moreover, applying Theorem 3.4 on Hi(x, p) = H(x, p)− F [mi(t)],we get

‖∂u1(·, t) − ∂u2(·, t)‖L∞(Γ) ≤ C d1(m1(t),m2(t)).

By the last two inequalities, for δ = d1(m1(t),m2(t)), we get ‖b1−b2‖L∞(Γ) ≤
Cδ and we deduce
∫

Γ
|(b1 − b2)m2(t)∂M(t)| dx ≤ C

∫

Γ
δ |m2(t)∂M(t)| dx

≤
1

8

∫

Γ
µ|∂M(t)|2ϕdx+ C

∫

Γ

δ2|m2(t)|
2

µϕ
dx. (4.10)

We denote I1 and I2 respectively the two integrals in the right hand side of
the last inequality. We have

I1 ≤ 2

∫

Γ

[

µ|∂(m1 −m2)|
2ϕ−1 + µ|m1 −m2|

2|∂(ϕ−1)|2ϕ
]

dx

≤ 2‖∂(m1 −m2)(µϕ
−1)1/2‖2L2(Γ) + C‖(m1 −m2)(ϕ

−1)1/2‖2L2(Γ).

Moreover, since m2 ∈ C([0, T ], L2(Γ)), we have

I2 = Cδ2
∫

Γ
|m2|

2dx ≤ Cδ2 ≤ C‖m1−m2‖
2
L2(Γ) ≤ C‖(m1−m2)(ϕ

−1)1/2‖2L2(Γ)

where we used the definition of δ and the properties of ϕ. Replacing these
estimates for I1 and I2 in (4.10), we accomplish the proof of inequality (4.9).
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5 Homogenization of HJ equations defined on a

lattice structure

In this section, we describe an application of the continuous dependence
estimate in Section 3 to the study of a homogenization problem for a HJ
equation defined on a periodic network.
For ε ∈ (0, 1], let Γε be the periodic network generated by the lattice εZN .
Hence Vε = εZN and Eε = {Γε

α, α ∈ Aε}, where

Γε
α = {ym+ (ε− y)n : y ∈ (0, ε)}

for some m,n ∈ Z
N with |m − n| = 1. Since Γ is a lattice, there are 2N

edges coming out of each vertex νi ∈ Vε, in the directions of the vectors ek
of the canonical basis of RN and in the opposite directions e−k.
For k ∈ Z

N , we define Γε
α + k = {y(m+ k) + (ε− y)(n+ k) : y ∈ (0, ε)} and

we say that a function φ : Γ1 → R is Γ1-periodic if

φβ = φα if Γ1
β = Γ1

α + k, k ∈ Z
N .

On the network Γε, we consider the problem



















−µα∂
2uε +H

(

x, xε , ∂u
ε
)

+ uε = 0, x ∈ (Γε
α\V

ε) , α ∈ Aε,
∑

α∈Ai

γiαµα∂αu
ε(νi) = 0, νi ∈ Vε,

uε|Γα(νi) = uε|Γβ
(νi), α, β ∈ Aε

i , νi ∈ Vε.

(5.1)

with
Hα(x, y, p) = sup

a∈A
{−bα(x, y, a)p − fα(x, y, a)} .

We assume that A is a compact metric space and b, f : RN × Γ1 × R → R

satisfy

(i) bα, fα : RN × Γ1
α × R → R, α ∈ A, are continuous and there exist

K,L > 0 such that for a ∈ A, x1, x2 ∈ R
N and y1, y2 ∈ Γ1

α, α ∈ A,
there holds for φα = bα, fα

|φα(x1, y1, a)| ≤ K,

|φα(x1, y1, a)− φα(x2, y2, a)| ≤ L(|x1 − x2|+ |y1 − y2|);

(ii) b(x, ·, p), f(x, ·, p) are Γ1-periodic;
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(iii) µα and γi,α only depend on the direction ek parallel to Γα and γi,α =
γα, for α ∈ A and i ∈ I.

We denote with S
N the space of the symmetric N ×N matrices.

We consider the effective problem

u+ H̄(x,Du,D2u) = 0 x ∈ R
N , (5.2)

where the effective Hamiltonian H̄ is defined as follows: for every (x, P,X) ∈
R
N × R

N × S
N fixed, the value H̄(x, P,X) is equal to −ρ, where ρ is the

unique constant for which there exists a couple (v, ρ), with v Γ1-periodic
and ρ ∈ R, solution to



















−µα∂
2(v +Xy · y/2) +H(x, y, ∂(P · y)) + ρ = 0, y ∈

(

Γ1
α\V

1
)

, α ∈ A1,
∑

α∈Ai

γiαµα∂αv(νi) = 0, νi ∈ V1,

v|Γα(νi) = v|Γβ
(νi), α, β ∈ A1

i , νi ∈ V1.

(5.3)
To display the dependence of v with respect to (x, P,X), we will denote
with v(·;x, P,X) the solution to (5.3).

We need some preliminary results whose proof are postponed to the
Appendix; note that the bound (5.6) relies on the continuous dependence
estimates of Sect. 3.

Lemma 5.1. For any (x, P,X) ∈ R
N × R

N × S
N , there is a unique ρ ∈ R

for which there exists a Γ1-periodic solution to (5.3). Moreover

ρ = −

∑N
k=1 γk

[

−Xek · ek +
∫

ek
H(x, y, P · ek)dy

]

∑N
k=1 γk

(5.4)

and there exists a constant C̄1 such that

‖v(·;x1, P1,X1)‖C2,θ(Γ) ≤ C̄1(1 + |P1|+ |X1|) (5.5)

‖v(·;x1, P1,X1)− v(·;x2, P2,X2)‖L∞(Γ) ≤ C̄2(|P1 − P2|+ |X1 −X2|)

+C̄1|x1 − x2|(1 + |P1| ∧ |P2|+ |X1| ∧ |X2|) (5.6)

for every (x1, P1,X1), (x2, P2,X2) ∈ R
N × R

N × S
N , where θ ∈ (0, 1] as in

(3.7).
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Remark 5.2. The formula (5.4) entails that the effective operator H̄ is
convex and uniformly elliptic in X and there exists a constant C̄1 such that

∣

∣H̄(x1, P1,X1)− H̄(x2, P2,X2)
∣

∣ ≤ C̄1(|P1 − P2|+ |X1 −X2|)

+C|x1 − x2|(1 + |P1| ∧ |P2|+ |X1| ∧ |X2|)

for every (x1, P1,X1), (x2, P2,X2) ∈ R
N ×R

N × S
N .

Lemma 5.3. The problems (5.1) and (5.2) admit a unique bounded solution
uε and, respectively, u. Moreover, there exists a constant C0 such that

‖uε‖C2,θ(Γε) ≤ C0, ‖u‖C2,δ(RN ) ≤ C0 (5.7)

for some θ, δ ∈ (0, 1].

Lemma 5.4. If g : R
N → R is a smooth function, then it satisfies the

Kirchhoff condition at νi ∈ Vε in (5.1), i.e.

∑

α∈Ai

γiαµα∂αg(νi) = 0.

Theorem 5.5. Let uε and u be respectively the solution of (5.1) and (5.2).
Then, there exists a constant M such that for ε sufficiently small

‖uε − u‖L∞(Γε) ≤ Mεδ,

where δ as in (5.7).

Proof. Given ε ∈ (0, 1), for η ∈ (0,∞) define the function

φ(x) := uε(x)− u(x)− ε2v
(x

ε
; [u](x)

)

−
η

2
|x|2 ∀x ∈ Γε,

where v (y; [u](x)) := v(y;x,Du(x),D2u(x)) is the solution of (5.3) with
(x, P,X) = (x,Du(x),D2u(x)). Since u, uε and v are bounded, there exists
x̂ ∈ Γε where the function φ attains its maximum.
Set c := 4C̄1(1 + 2C0)ε

δ and introduce the function

φ̃(x) := uε(x)− u(x)− ε2v
(x

ε
; [u](x̂)

)

−
η

2
|x|2 − c|x− x̂|2

where |x− x̂| is the standard Euclidean distance between x and x̂. We have
φ̃(x̂) = φ(x̂) and also, by the definition of x̂,

φ̃(x̂)− φ̃(x) = [φ̃(x̂)− φ(x)] + [φ(x)− φ̃(x)] ≥ φ(x)− φ̃(x)

≥ −ε2
[

v(
x

ε
; [u](x)) − v(

x

ε
; [u](x̂))

]

+ cε2
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for every x ∈ ∂B(x̂, ε) ∩ Γε, where B(x̂, ε) = {x ∈ R
N : |x− x̂| < ε}. Using

the estimates in (5.6), Lemma 5.3 and recalling the definition of c, we get

φ̃(x̂)− φ̃(x) ≥− C̄1[2C0ε
δ + (1 + ‖Du‖∞ + ‖D2u‖∞)ε]ε2

+ 4C̄1(1 + 2C0)ε
2+δ > 0

for every x ∈ ∂B(x̂, ε) ∩ Γε. Therefore, φ̃ attains a maximum at some point
x̃ ∈ B(x̂, ε) ∩ Γε.
Let us prove that there exists a constant M1 > 0 (independent of ε and η)
such that

η
1

2 |x̃| ≤ M1. (5.8)

By Lemma 5.1, Lemma 5.3 and the inequality φ(x̂) ≥ φ(0), we obtain

η

2
|x̂|2 ≤ 4C0 + 2C̄1(1 + 2C0)ε

2.

We deduce that, for M1 sufficiently large, we have η1/2|x̂| ≤ M1/2 and
therefore

η
1

2 |x̃| ≤ η
1

2 |x̂|+ η
1

2 |x̃− x̂| ≤ η
1

2
M1

2
+ η

1

2 ε ≤ η
1

2M1,

hence (5.8).
We claim that there exists a constant M (independent of ε and η) such that

uε(x̃)− u(x̂) ≤ M
[

εδ + η1/2
]

. (5.9)

We first show that x̃ 6∈ Vε. Indeed, assume by contradiction that x̃ = νi ∈
Vε. By adding the term −dΓ(x, x̃)

2, where dΓ is the geodesic distance on
the network, it is not restrictive to assume that x̃ is a strict maximum point
for φ̃ and therefore ∂αφ̃(νi) > 0 for all α ∈ Aε

i (recall the definition of ∂α
as the outward derivative at the vertex). Since uε and v solve respectively
(5.1) and (5.2), by Lemma 5.4 we have

0 <
∑

α∈Ai

γiαµα∂αφ(νi) =
∑

α∈Ai

γiαµα∂α

(

u+
η

2
|x|2 + c|x− x̂|2

)

x=νi
= 0,

a contradiction and therefore x̃ ∈ (B(x̂, ε)∩Γε)\Vε. Let α ∈ A be such that
x̃ ∈ Γε

α and eα a unit vector parallel to Γε
α. Since uε satisfies (5.1) and x̃ is

a maximum point for uε(x)− [u(x) + ε2v(x/ε; [u](x̂)) + η|x|2/2 + c|x− x̂|2],
we have

0 ≥uε(x̃)− µα∂
2
[

u(x) + ε2v(
x

ε
; [u](x̂)) +

η

2
|x|2 + c|x− x̂|2

]

x=x̃
+

H
(

x̃,
x̃

ε
, ∂
[

u(x) + ε2v(
x

ε
; [u](x̂)) +

η

2
|x|2 + c|x− x̂|2

]

x=x̃

)

.
(5.10)

22



We compute

∂
[

u(x) + ε2v(
x

ε
; [u](x̂)) +

η

2
|x|2 + c|x− x̂|2

]

x=x̃

=Du(x̃) · eα + ε∂yv(
x̃

ε
; [u](x̂)) + ηx̃ · eα + 2c(x̃− x̂) · eα,

and

∂2
[

u(x) + ε2v(
x

ε
; [u](x̂)) +

η

2
|x|2 + c|x− x̂|2

]

x=x̃
=

=D2u(x̃)eα · eα + ∂2
yv(

x̃

ε
; [u](x̂))] + η + 2c.

Replacing the previous identities in (5.10) and using Lemma 5.1, Lemma
5.3, (5.8) and x̃ ∈ B(x̂, ε) ∩ Γε, we get

0 ≥uε(x̃)− µα

(

D2u(x̃)eα · eα + ∂2
yv(x̃/ε; [u](x̂))

)

+H
(

x̃,
x̃

ε
,Du(x̃) · eα

)

−M2

(

εC̄2(1 + 2C0) + η1/2M1 + 2cε+ η + 2c
)

≥ uε(x̃)

−µα

(

D2u(x̂)eα · eα + ∂2
yv(x̃/ε; [u](x̂))

)

+H
(

x̂,
x̃

ε
,Du(x̂) · eα

)

−M2(ε
δ + η1/2) = uε(x̃) + H̄(x̂,Du(x̂),D2u(x̂))−M2(ε

δ + η1/2)

=uε(x̃)− u(x̂)−M2(ε
δ + η1/2)

for some M2, which may change from line to line but is always independent
of ε and γ; hence (5.9). For every x ∈ Γε, by φ̃(x̃) ≥ φ̃(x̂) = φ(x̂) ≥ φ(x),
we get by (5.9), Lemma 5.3 and Lemma 5.1

uε(x)− u(x) ≤ [uε(x̃)− u(x̂)] + [u(x̂)− u(x̃)]+

ε2 [v(x/ε; [u](x)) − v(x̃/ε; [u](x̂))] +
η

2
|x|2

≤ M2

[

εδ + η1/2
]

+ C0ε+ 2C̄2(1 + 2C0)ε
2 +

η

2
|x|2.

Letting η → 0+, we deduce

uε(x)− u(x) ≤ M2ε
δ ∀x ∈ Γε.

Reversing the role of u and uε, we get the statement.
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A Appendix

Proof of Lemma 5.1. The proofs of existence and uniqueness of such a ρ and
of relation (5.5) rely on an easy adaptation of standard techniques; we refer
the reader to [3, 4, 12]. Relation (5.6) is due to (3.17) and (5.5).

We prove an explicit formula for ρ. Recall that, by the assumptions,
there are N different Hamiltonians Hk and N viscosity coefficients µk, k =
1, . . . , N , corresponding to the vectors ek. Integrating the HJ equation in
(5.3) along the N arcs Γk parallel to ek exiting from νi and denoting with
µk, γk the corresponding coefficients in the Kirchhoff condition, we have

0 =

N
∑

k=1

γk

∫

ek

[−µk∂
2
ek
(v +Xy · y/2) +H(x, y, ∂ek(P · x)) + ρ]dy. (A.1)

By periodicity of v, we have
∫

ek

∂2
ek
v(y)dy = ∂ekv(1) − ∂ekv(0) = −∂−ekv(0) − ∂ekv(0).

Replacing the previous identity in (A.1), we have

0 =

N
∑

k=1

γkµk[∂−ekv(0) + ∂ekv(0)] +

N
∑

k=1

γk[Xek · ek

+

∫

ek

H(x, y, P · ek)dy] + ρ
N
∑

k=1

γk.

Therefore, taking into account the Kirchhoff condition in (5.3) at νi = 0 and
observing that γk = γ−k, where γ−k is the coefficient γα for the arc −ek, we
get (5.4).

Proof of Lemma 5.3. The statement is obtained by standard arguments; for
problem (5.1), we refer the reader to [5, Theorem 15.5.1], [18] and [20] while
for problem (5.2) we refer to [3, 4].

Proof of Lemma 5.4. Let g : RN → R be a smooth function. Since γiα = γα
and γα, µα only depend on the direction ek, parallel to Γα, we have

∑

α∈Ai

γiαµα∂αg(νi) = Dg(νi) ·

N
∑

k=1

(γkµkek + γkµke−k)

= Dg(νi) ·

N
∑

k=1

(γkµkek − γkµkek) = 0.
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(4) 50 (2017), no. 2, 357-448.

[16] Jakobsen, E.R.; Karlsen, K.H.. Continuous dependence estimates for
viscosity solutions of fully nonlinear degenerate parabolic equations. J.
Differential Equations 183 (2002), 497-525.

[17] Lasry, J.-M.; Lions, P.-L. Mean field games. Jpn. J. Math. 2 (2007), no.
1, 229–260.

[18] Lions, P.-L.; Souganidis, P. Viscosity solutions for junctions: well
posedness and stability. Atti Accad. Naz. Lincei Rend. Lincei Mat.
Appl. 27 (2016), no. 4, 535–545.

[19] Marchi, C. Continuous dependence estimates for the ergodic problem
of Bellman equation with an application to the rate of convergence for
the homogenization problem. Calc. Var. Partial Differential Equations
51 (2014), no. 3-4, 539-553.

[20] Morfe, P. S. Convergence & rates for Hamilton-Jacobi equations with
Kirchoff junction conditions. NoDEA Nonlinear Differential Equations
Appl. 27 (2020), no. 1, Paper No. 10, 69 pp.

[21] Mouzouni, C. On quasi-stationary mean field games models. Appl.
Math. Optim. 81 (2020), no. 3, 655-684.

26


