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Abstract—We propose a deep learning-based phase retrieval
method to accurately reconstruct the optical field of a single-
sideband minimum-phase signal from the directly detected inten-
sity waveform. Our method relies on a fully convolutional Neural
Network (NN) model to realize non-iterative and robust phase
retrieval. The NN is trained so that it performs full-field reconstruc-
tion and jointly compensates for transmission impairments. Com-
pared to the recently proposed Kramers-Kronig (KK) receiver,
our method avoids the distortions introduced by the nonlinear
operations involved in the KK phase-retrieval algorithm and hence
does not require digital upsampling. We validate the proposed
phase-retrieval method by means of extensive numerical simula-
tions in relevant system settings, and we compare the performance
of the proposed scheme with the conventional KK receiver operated
with a 4-fold digital upsampling. The results show that the 7%
hard-decision forward error correction (HD-FEC) threshold at
BER 3.8e-3 can be achieved with up to 2.8 dB lower carrier-to-signal
power ratio (CSPR) value and 1.8 dB better receiver sensitiv-
ity compared to the conventional 4-fold upsampled KK receiver.
We also present a comparative analysis of the complexity of the
proposed scheme with that of the KK receiver, showing that the
proposed scheme can achieve the 7% HD-FEC threshold with
1.6 dB lower CSPR, 0.4 dB better receiver sensitivity, and 36%
lower complexity.

Index Terms—Deep learning, direct-detection, Kramers Kronig
receiver, phase retrieval.
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I. INTRODUCTION

THE ever-increasing traffic growth affecting short-range
systems, such as intra- and inter-data center interconnects,

requires that the deployed transceivers offer high spectral effi-
ciency while keeping low complexity and low costs [1]. In such
systems, Intensity-modulation and direct-detection (IM-DD) is
the conventional scheme employed for its simple structure and
cost-effectiveness. However, the phase information of light is
lost upon DD, removing the ability of digitally compensating
for propagation effects. To address these issues, single-side-band
(SSB) transmission has gained significant interest. It retains the
simplicity of DD while allowing advanced modulation formats
and electronic dispersion compensation (EDC). This is enabled
by an additional continuous-wave (CW) carrier, typically added
at the transmitter to the edge of the optical signal spectrum. At the
receiver, by measuring the beating product between the signal
and the carrier, phase and amplitude information can be extracted
employing a standard single-photodiode receiver. The process of
DD is known to introduce an unwanted signal-to-signal beating
interference (SSBI) term that represents the main limitation of
this scheme. An effective and bandwidth-efficient method to deal
with SSBI is the Kramers-Kronig (KK) receiver [2], which has
shown superior performance compared to the other SSBI cancel-
lation techniques [3]. It relies on the use of minimum-phase (MP)
signals for which the phase information can be retrieved from
the detected intensity through digital signal processing (DSP).
This holds theoretically, for continuous signals. However, in an
analog-to-digital converter (ADC) bandwidth-limited system,
exact phase reconstruction may not be achieved even when the
MP condition is met. Indeed, spectral broadening generated by
the non-linear operations (such as square root and logarithm)
entailed by the KK phase-retrieval algorithm needs to be ac-
commodated to avoid aliasing. Consequently, the conventional
KK scheme requires upsampling, by a relatively high factor, at
the beginning of the DSP chain [4].

Other distortions arise for low CSPRs when the photocurrent
samples may often approach zero and the corresponding loga-
rithm produces large negative excursions [5]. These excursions
occur over a short time, so have a spectrum that spans the entire
sampled bandwidth, worsening the quality of the retrieved phase.
Although a higher CSPR leads to effective SSBI cancellation, the
carrier component introduces an additional sensitivity penalty as
it increases the impact of both carrier-to-amplified-spontaneous-
emission (ASE) noise beating [4] and nonlinear fiber
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propagation effects [6]. This leads to significant performance
degradation in multi-channel transmission settings [6], limiting
the number of channels that can be multiplexed. Furthermore,
a higher CSPR increases the transmitter requirements. For ex-
ample, the required resolution of the digital-to-analog converter
(DAC) increases with the CSPR in those systems where the
carrier is digitally generated (virtual tone) together with the
information-bearing signal [7], [8]. Therefore, the CSPR is a
key parameter to be optimized for system performance, and
the lowest possible CSPR is preferred. Several enhanced KK
schemes have been proposed both to reduce the required upsam-
pling factor and to enhance the performance at low CSPR values.
Authors in [9], proposed a KK scheme that adopts mathematical
approximations to avoid the use of nonlinear operations such as
logarithm and exponential functions. However, some nonlinear
operations remain in their scheme, meaning that upsampling
(albeit of a reduced factor) is still required to avoid aliasing.
Authors in [10], instead, proposed two methods for reducing
error rates for weak carrier powers. The first is to insert strong
clipping to limit the large negative excursions generated by the
logarithm. The second is to replace the square-root function
with a logarithmic function, to allow analog processing using
semiconductor diodes [11]. Alternatively, in [12], the sampling
rate and CSPR requirements are relaxed by combining digital
upsampling with harmonic filtering. Two low-pass filters are
inserted after each nonlinear operation in the KK algorithm
to eliminate out-of-band harmonics before downsampling. The
above-mentioned works suggest that moving away from a the-
oretically perfect implementation of the KK receiver may lead
to improvements that are not evident from the mathematical
analysis of the ideal case.

In this paper, we propose a novel approach, based on deep
learning (DL), to reconstruct the phase of a MP optical SSB
signal from the detected intensity. The proposed method re-
lies on a fully convolutional neural network (CNN) model, is
non-iterative, and does not require digital upsampling (since
the KK algorithm nonlinear operations are avoided). We extend
the preliminary investigations conducted in [13] by thoroughly
analyzing the performance of the proposed method over differ-
ent transmission scenarios. We first assess the performance in
Back-to-Back (B2B) settings, and then we consider linear trans-
mission, single-channel nonlinear transmission, and DWDM
transmission over 100 km of standard single-mode fiber. We
present a comparative analysis of the conventional KK receiver
with two proposed receiver schemes that differ in the NN training
procedure. The first receiver scheme is trained in ideal B2B
settings so that it emulates the KK processing for full-field
reconstruction; the second receiver scheme is trained in a 5-
channel DWDM transmission scenario, and the NN retrieves the
transmitted IQ components while jointly compensating for linear
and nonlinear impairments. In 5-channel DWDM transmission,
the proposed schemes comply with the 7% HD-FEC threshold,
with a CSPR reduced by 1.6 dB, 0.4 dB better sensitivity,
and 36% lower computational complexity than the conven-
tional 4-fold up-sampled KK receiver aided with digital back-
propagation (DBP). Alternatively, at the expense of 7.2 times
higher complexity, the highest performance improvement is
obtained: the 7% HD-FEC threshold is achieved with 2.8 dB

lower CSPR and 1.8 dB better receiver sensitivity. The results
show that, after training, the CNN learned to extract and sep-
arate the features of the useful information signal from the
features of SSBI and other undesired interference terms, pro-
viding new avenues to design MP retrieval schemes for DD
systems.

II. PROPOSED METHOD

In this section, we first review the KK phase retrieval algo-
rithm. Then, we detail the working principle of the proposed
NN-based phase retrieval method.

A. KK Phase Retrieval Algorithm

We denote byEs(t) the complex envelope of the data-carrying
signal whose spectrum is contained within an optical bandwidth
B. The optical carrier is assumed to have an amplitudeE0 and to
be located at the low-frequency edge of the data-carrying signal
spectrum. The complex envelope of the field at the input of the
photodiode can thus be written as

E(t) = E0 + Es(t) exp (−jπBt) . (1)

The photocurrent i(t) produced by the photodiode is propor-
tional to the optical intensity |E(t)|2. When E0 is large enough,
so that the MP phase condition is satisfied, the following oper-
ations can be performed to retrieve the optical field [2]

Es(t) =
[√

i(t) · exp{jϕ(t)} − E0

]
exp (jπBt) , (2)

ϕ(t) = H
[
ln
√
i(t)

]
. (3)

In (3), H[·] indicates the Hilbert transform and ln(·) the natural
logarithm function. Since the entire phase retrieval process is
performed in the digital domain, i(t) needs to be sampled at
least at the Nyquist frequency (i.e., 2B). Then, to accommodate
the spectral broadening caused by the square root and logarithm
functions, digital upsampling is required. An upsampling fac-
tor of 4 has been shown to be sufficient to accommodate the
bandwidth expansion [14].

B. NN-Based Phase Retrieval

In this paper, we propose a DL based model, to which here-
inafter we refer simply asG, to recover the phase of SSB and MP
signals. The modelG is trained to perform a mapping from i toy,
i.e., y = G(i), where the input i ∈ Rn is the digitized photocur-
rent signal at the output of the ADC, and y = [̂I, Q̂] ∈ Rn×2

contains the approximate reconstruction of I and Q that are the
ground truth in-phase and quadrature components generated at
the transmitter side. The in-phase and quadrature components
are used as targets rather than the amplitude and phase, so to cir-
cumvent phase wrapping problems and discontinuities present
in the phase signal. We denote by {ii,yi}Ni=1 the training set
used to learn the parameters θ of the model G. The cost function
L(θ) we minimize during training reads

L(θ) = 1

N

N∑
i=1

li(θ) , (4)
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Fig. 1. Diagram of the proposed encoder-decoder temporal fully convolutional
architecture. i: input photocurrent signal, ÎQ̂ predicted output, l: D/U block in-
dex, Conv 1D: 1D convolutional layer, TConv 1D: 1D transposed convolutional
layer (also known as fractionally-strided convolutional layer). The figure labels
the convolutional layers with stride different from 1. D: downsampling block; U:
upsampling block. no: number of kernels for the convolutional layers in a D/U
block. In the figure [·, ·] denotes the pair of values [ηi, τi] for the convolutional
layers in the main path, whereas (·, ·) denotes (number of kernels, kernel size).

where, li(θ) denotes the normalized root mean square error
(NRMSE):

li(θ) =

√
〈|Ii − Îi|2〉+ 〈|Qi − Q̂i|2〉

〈|Ii + jQi|2〉 . (5)

In (5), [̂Ii, Q̂i] = G(ii). Once the training process is completed
and the parameters θ are optimized, the NN can be used to
perform full-field recovery directly from photocurrent signals
(distinct from the training set).

C. Temporal Convolutional Neural Network Model

For the NN architecture we rely on temporal 1D-CNNs, a
variant of CNNs that have shown superior performance across
several sequence modeling tasks compared to baseline recurrent
architectures [15]. Temporal 1D-CNNs are typically imple-
mented using a hierarchy of 1D convolutional layers either in
an encoder-decoder structure (using downsampling and upsam-
pling layers) or employing dilated convolutions to effectively
capture long-range temporal patterns [15], [16]. In these con-
figurations, the output has the same length as the input, and the
model is fully convolutional (without dense layers), hence the
number of parameters is reduced, and variable input signal sizes
are allowed. The proposed encoder-decoder temporal CNN is
shown in Fig. 1. The photocurrent signal at the input of the
network undergoes a contraction (upper side of the network)

and an expansion process, where the downsampling blocks
(D) and upsampling blocks (U) are detailed on the left side
of the figure. Downsampling (upsampling) is performed by
repeated application of non-causal convolutional (transposed
convolutional) layers with stride 2. Features from both future
and past samples are incorporated to predict output samples by
relaxing the causality constrain in the convolution operation,
which is not sufficient to predict the IQ components from
the photocurrent signal. In the architecture, residual learning
is enabled by the introduction of skip connections. The latter
allows feature maps extracted through the expansion path to
be concatenated with features from the contraction path. This
information flow between layers has been shown to accelerate
the convergence of the training phase and to provide better IQ
reconstruction performance [17]. While typical residual blocks
(i.e., D and U blocks) contain batch normalization layers [18],
we observed performance degradation when such layers were
included in our model, and, therefore, batch normalization is
applied only after the input layer. Each convolutional layer in
the NN model is followed by a ReLU activation function, except
for the convolutional layers in the skip connections inside the D
and U blocks. In Fig. 1 some ReLU layers are omitted for ease
of readability.

We now define some quantities that describe the hyperparam-
eters of the D and U blocks shown on the left side of Fig. 1. The
quantities of interest for the D and U blocks are the following.
� k: kernel size of the 1D convolutional layers inside a

D/U block.
� s: stride of the 1D convolutional layers inside a D/U block.
� d: model depth, i.e., the number of D and U blocks.
� l: D/U block index (l = 1, 2, . . . , d). Fig. 1 shows the values

that l assumes across the D and U blocks.
� no: number of kernels of the 1D convolutional layers

inside a D/U block. no can be equivalently defined as
the number of channels produced by the 1D convolutional
layers inside a D/U block. no is set constant throughout the
D and U blocks of the NN model, as shown in Fig 1.

In this work, we set k = 3; when stride is applied, it is
set to s = 2 (see Fig. 1); and we investigate the NN model
performance over different no and d values. For the long skip
connections outside the D and U blocks, the convolutional layers
have kernel size 1 andno kernels. For the output layer, the kernel
size is k and the number of kernels is 2 (i.e., y = [̂I, Q̂]).

A crucial parameter of the considered NN model is the mem-
ory size. The memory size controls the number of neighboring
samples of the input photocurrent signal that is used to predict a
single output sample of the IQ components. Properly selecting
the memory size allows, first, to recover the IQ components
from the photocurrent signal and, second, to deal with the
memory effects of the transmission channel. Conventional NN
models adapt the number of neurons of the input layer (for
fully-connected NNs [19]) or the filter width of the convo-
lutional layers (for CNNs [20]) to account for a sufficient
number of neighboring input samples. Differently, temporal
encoder-decoder CNNs control the memory size by adapting
both the filter width of the convolutional layers and the number
of strided convolutional layers stacked in the NN model [15].



ORSUTI et al.: DEEP LEARNING-BASED PHASE RETRIEVAL SCHEME FOR MINIMUM-PHASE SIGNAL RECOVERY 581

Fig. 2. (a) General simulation setup. The optical filter with bandwidth Bo, selects the central channel. (b) Considered receiver schemes. Insets: Rx 1 (I), Rx 2
(II), Rx 3 (III).

Indeed, both downsampling and upsampling layers modify the
way in which the cumulative memory size grows for each new
added layer. Specifically, the memory size (in samples) at any
convolutional layer i of the model shown in Fig. 1 can be
computed with the recursive equation [21]

Mi = Mi−1 + 2(ηi−1−τi−1) (k − 1) , (6)

where, M0 = 1, η0 = τ0 = 0, and ηi and τi are the number of
strided convolutions and transposed convolutions used in the NN
up to the convolutional layer i1, respectively. The factor 2(·) in
(6) arises because the applied stride is constant and equal to 2
for each strided convolution. A more general expression for the
NN model memory is derived in some detail in [22] under the
equivalent name of receptive field of the CNN model. Solving
(6) up to the output layer of the NN model shown in Fig. 1, which
has a model depth d = 3, it gives a memory size of 36 symbols.
If the model depth is reduced to d = 2 or increased to d = 4,
(6) gives a memory size of 16 and 76 symbols, respectively.
Therefore, by varying the model depth, the memory size can be
easily tuned to adapt the NN model to the specific transmission
system parameters, such as baud rate, transmission distance,
and fiber link parameters. Section IV-E, discusses the impact of
the model depth and of the number of kernels on performance.
Section V, compares the complexity of the proposed scheme
with that of the conventional KK receiver.

III. SIMULATION SETUP

In this section, we describe the deployed simulation model.
We first provide a general description of the simulated blocks,
then we detail the receiver schemes considered in this work.

A. General Simulation Setup

Fig. 2(a) shows the simulation setup and Table I summarizes
the simulations parameters. We assume 5 DWDM channels
spaced by 40 GHz and evaluate the performance on the central
channel. For each transmitter section, random bit sequences
are mapped into 16-quadrature-amplitude-modulation (QAM)
symbols at a symbol rate of 24 GBaud, which are then upsampled
and shaped with a raised-cosine (RC) filter with a roll-off factor
of 0.05. Next, a virtual carrier is added, placed exactly at the

1For transposed convolutional layers τi includes the layer i itself (see Fig. 1).

TABLE I
GENERAL SIMULATION PARAMETERS

left edge of the information-bearing signal spectrum, and the
resulting signal is sent to an ideal DAC (i.e., without quantization
or bandwidth limitation), where electrical to optical (E/O) con-
version is performed by an IQ modulator biased at the null-point.
The laser source of the central channel is centered at 1550 nm.
The employed light sources have 1 MHz linewidth. Relative
intensity noise (RIN) of the laser sources is included in the
simulations and modelled as white Gaussian noise; its level is set
to−139 dBc/Hz, which is a typical value for low-cost distributed
feedback laser diodes [23]. After E/O conversion, the output of
each transmitter section is multiplexed using a WDM MUX.
The channel spectral response of the WDM MUX is assumed to
be the same as that of the optical filter used at the receiver. The
DWDM signal is launched into a 100 km long G.652 single-
mode fiber having an attenuation coefficient of 0.2 dB/km, a
chromatic dispersion (CD) coefficient of 17 ps/nm/km, and
nonlinear parameter 1.3 W−1km−1. The waveform evolution
inside the fiber is computed using the symmetric split-step
Fourier method [24].

At the receiver, the optical signal is amplified by an erbium-
doped fiber amplifier (EDFA) with a 5 dB noise figure operating
in the transparency condition. A 12 th-order super-Gaussian
optical filter with a 3 dB bandwidth of 36 GHz is applied to
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select the central channel [2]. Then, a PIN photodiode with
responsivity 1 A/W and 29 GHz bandwidth detects the filtered
signal; shot noise and thermal noise due to the photodetection
are included in the model. The ADC sampling frequency and
vertical resolution are fixed at 2B and 8 bits, respectively. The
ADC output is then fed to the different receiver schemes shown
in Fig. 2(b). For each receiver scheme, after full-field recovery
and transmission impairments compensation, downsampling to
one sample per symbol is applied and the BER evaluated under
the assumption of Gray coding.

B. Receiver Schemes

We describe now the DSP of the receiver schemes depicted in
Fig. 2(b) (insets (I)–(III)). Hereinafter, we refer to these schemes
as Rx 1, Rx 2 and Rx 3. For Rx 2 and Rx 3, the training data
parameters are sampled from a 2D grid formed by launch power
values and CSPR values. For both receiver schemes, the CSPR
values are sampled from the range 0-11 dB in steps of 0.2 dB.
As detailed below, for Rx 2 the training set span length is 0 km
(i.e., B2B settings) and the training set launch power is fixed to
0 dBm. For Rx 3 the training set span length is 100 km and the
training set launch power values are 1, 2, 3, and 4 dBm.

1) Rx 1: The first receiver configuration is shown in Fig. 2(b)
inset (I). It consists in the conventional KK receiver, presented
in [2], and it is used as a baseline for our simulations. The
digital upsampling factor used at the beginning of the DSP chain
is set to R = 4. After full-field reconstruction, downsampling
is applied to return to the ADC’s sampling rate. Both upsam-
pling and downsampling are performed by zero-padding in the
frequency domain, and the Hilbert transform in the KK algo-
rithm uses frequency-domain processing. Linear and nonlinear
impairments are jointly compensated for using DBP of only
the channel of interest. DBP is based on the split-step Fourier
method and is carried out with a total of 10 steps (using a
logarithmic distribution of step sizes [25]).

2) Rx 2: The building blocks of the second receiver scheme
are shown in Fig. 2(b) inset (II). The training data for the
NN are generated in ideal Back-to-Back (B2B) settings so that
the NN processing emulates the KK receiver processing for
full-field reconstruction. Once the model has been trained, the
DSP chain consists in (1) using the trained model to retrieve the
IQ components from the ADC output; (2) adding a CW tone,
whose amplitude is estimated from the photocurrent, to the IQ
components at the output of the NN; (3) compensating for trans-
mission impairments using the same DBP algorithm as in Rx 1.
The training set generation procedure for Rx 2 is now presented.
In the simulation set-up of Fig. 2(a) the fiber and the EDFA are
removed, all noise sources and the DBP compensation algorithm
are switched-off, and only the central channel is considered.
Next,N pairs of (digitized photocurrent, IQ components) signals
with length 512 symbols are generated from random bits by scan-
ning the CSPR value in the range 0-11 dB in steps of 0.2 dB. The
ground truth IQ components are collected after the RC filtering
block and are resampled at the same sampling rate as the ADC’s
output. Both the digitized photocurrent and the IQ components
signals are normalized to fit the amplitude range [0,1]. The block

length for the training set is fixed to 512 symbols, whereas the
test set block length can be arbitrary since the considered NN
operates in a sliding window manner. We setN = 33, 600, hence
the CSPR range is scanned 600 times to generate the training
set: N = 600 · |CSPRrange|, where |CSPRrange| denotes the
cardinality of the set formed by the CSPR values in training set.
The training set launch power for Rx 2 is fixed to 0 dBm since
the training results are independent of the launch power (non-
linearity is neglected in B2B settings). For higher values of N ,
no significant improvement in performance was observed. Other
CSPR ranges for the training set have been tested, for example
3-11 dB, 3-13 dB, but similar performance were obtained.

3) Rx 3: The third considered receiver configuration is shown
in Fig. 2(b) inset (III). Differently from Rx 2, the training data
are generated in such a way that the NN jointly reconstructs
the IQ components and compensates for linear and nonlinear
transmission impairments. The training data are generated us-
ing the overall simulation setup of Fig. 2(a) with the general
simulation parameters shown in Table I. For the central channel,
we collect N pairs of (digitized photocurrent, IQ components)
signals with a block length of 512 symbols. For each of the
collected signals pair of the central channel, the bit sequences
of the adjacent WDM channels are randomly selected to vary
the inter-channel interference noise. As for Rx 2, we set N =
33, 600, hence the CSPR range is scanned 150 times for each of
the training set launch powers (that are 1, 2, 3, and 4 dBm).

IV. RESULTS AND DISCUSSION

In this section, we discuss and compare the performance of
the receiver schemes presented so far. In Section IV-A, a numer-
ical proof-of-concept of the proposed DL-based phase retrieval
scheme is given, and its sensitivity to CD investigated. Then, for
each transmission scenario, namely linear transmission, single-
channel nonlinear transmission, and DWDM transmission, the
performance evaluation outline is detailed (Section IV-B). Next,
the simulation results for Rx 1, Rx 2, and Rx 3 are presented
and discussed (Section IV-C), and a performance comparison
between the receiver sensitivities is given (Section IV-D). Fi-
nally, the influence of the NN model hyperparameters on Rx 2
and Rx 3 performance is investigated (Section IV-E). Except for
Section IV-E, the NN model hyperparameters considered for the
investigations carried out in this section are d = 3 for the model
depth (that corresponds to a memory size of 36 symbols) and
no = 32 for the number of kernels.

For Rx 2 and Rx 3, Adam based optimization with a learning
rate of 10−3 is used to tune the NNs parameters. Each network
is trained for 200 epochs using 256 as batch size. Out of the
N 512-symbol-long signals in the training set, 80% were used
for training and 20% for validation test. The trainings take ∼ 1
hour using Tensorflow on an Nvidia Quadro P2000 GPU. In
the performance assessment, several sequences of 215 symbols
are transmitted for the extraction of a single BER value (as
explained in Section IV-B). We use two independent random
number generators for the training and testing phase to verify
that the NN has not learned underlying features of the random
number generator [26].
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Fig. 3. (a) NRMSE versus CSPR for Rx 1 and Rx 2 in B2B settings.
(b) Reconstructed constellation diagrams at CSPR 2 dB (I), 4 dB (II), and
10 dB (III). The NN model hyperparameters are d = 3 and no = 32.

A. Proof-of-Concept of NN-Based Phase Retrieval

We start by providing a numerical validation of the pro-
posed NN-based full-field reconstruction scheme. To this end,
we evaluate the performance in simplified simulation settings.
We first investigate the performance in B2B settings, then we
investigate the CD sensitivity of the proposed scheme. In both
investigations, we evaluate the full-field reconstruction quality
in terms of NRMSE because it has been selected as the loss
function for the training phase of the NN model (see (5)). In this
section, only Rx 1 and Rx 2 (that emulates KK processing) are
considered.

1) Performance in Ideal Back-to-Back Settings: Initially, the
reconstruction performance of Rx 1 and Rx 2 are evaluated in
ideal B2B settings, with all noise sources switched-off. Fig. 3(a)
shows the reconstruction capabilities of the two schemes in
terms of NRMSE. The results show that, for CSPR values up
to 5 dB, Rx 2 achieves lower NRMSE values than Rx 1. For
CSPR values between 6–11 dB, Rx 2 reaches an NRMSE floor
of 4%, whereas Rx 1 is able to drop the NRMSE to ∼ 1%. As
the CSPR is further increased above 11 dB, Rx 2 performance
starts to degrade and the NRMSE increases from 4% to 11%.
For CSPR values higher than 11 dB the observed performance
degradation can be explained by the selected training set CSPR
range for Rx 2 (i.e., 0–11 dB). The insets of Fig. 3(b) provide
additional details on the constellations reconstructed by the two
receivers at CSPR values of 2 dB (Inset (I)), 4 dB (Inset (II)), and
10 dB (Inset (III)). Interestingly, for Rx 2, at CSPRs 2 and 4 dB,
the outer constellation corners, that are more likely to violate
the MP condition when the carrier is added, experience less
amplitude/phase errors than for Rx 1. For a CSPR value of 10 dB,
it can be observed that the constellation points reconstructed by
Rx 2 scatter around the true points, whereas for Rx 1 the recon-
structed constellation is almost perfect. Although Rx 2 saturates

Fig. 4. (a) CD sensitivity as a function of span length for Rx 1 and Rx 2. (b)
Scaling factor that minimizes the NRMSE for Rx 2 as a function of span length.
The NN model hyperparameters are d = 3 and no = 32.

at a higher NRMSE than Rx 1, the improved performance that
Rx 2 offers at low CSPR will show significant advantages under
relevant transmission system settings (see Section IV-C) rather
than in the ideal B2B settings considered in this section.

2) Chromatic Dispersion Sensitivity: We now investigate the
effect of CD on Rx 1 and Rx 2. To this end, we consider a
linear transmission scenario with different span lengths (from
0 to 150 km). All noise sources are switched-off, the fiber CD
coefficient is set to 17 ps/nm/km, and the nonlinear coefficient
is set to 0. In both receiver schemes, the DBP block reduces
to a dispersion compensation block based on frequency-domain
equalization. The simulation results are presented in Fig. 4(a),
where the NRMSE as a function of the span length is plotted for
CSPR values 4, 6 and, 10 dB. The results for Rx 1 (red curves)
show that, for CSPR 4 and 6 dB, the NRMSE increases with
the transmission distance prior to saturating, while for CSPR
10 dB it is constant. This is because CD leads to a higher
peak-to-average power ratio (computed without carrier) as the
transmission distance increases, and consequently the CSPR
required for the MP condition to be satisfied increases [27].
Considering now the results for Rx 2 (black curves), we recall
that the NN has been trained to emulate the KK processing, i.e.,
on ideal B2B settings. Therefore, in presence of CD, the NN
deals with photocurrent signals that were not considered during
the training phase. This leads to rapid performance degradation
for increasing span length. In order to allow the NN to extrapolate
for different span lengths, it is required either to re-train the
NN for each span length, or to cleverly include different span
lengths in the training set [28], [29]. For the following CD
sensitivity analysis of Rx 2, instead of re-training the NN model
for each span length, we consider the NN model trained in
B2B and analyze the impact of an increasing span length on
the reconstructed constellation diagram. Our simulations show
that two phenomena occur when testing the NN model in the
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presence of CD. First, the NN retrieves the phase waveform up
to a constant phase offset, which is also a known feature of the
KK receiver [30]. Second, the NN responds to the new class
of waveforms by introducing an additional distortion: a con-
stant amplitude scaling on the reconstructed constellation. This
amplitude scaling is independent of the CSPR but dependent on
the transmission distance (i.e., on the amount of introduced total
CD). Since the introduced distortions are systematic, once the
span length has been fixed, the phase offset can be compensated
for and the scaling factor to correct the constellation amplitude
can be obtained by searching for the scaling factor that mini-
mizes the NRMSE. This procedure has been implemented for
each of the span lengths considered in our simulation, and the
resulting scaling factors are shown in Fig. 4(b). Up to 10 km
the NN reconstruction is slightly affected by CD, from 10 km
up to 40 km the scaling factor rises rapidly, then the increment
slows down from 40 km to 150 km. The NRMSE curves for
Rx 2 in Fig. 4(a) have been obtained correcting the constellations
with the scaling factors in Fig. 4(b). As for Rx 1, the NRMSE
increases with transmission distance for the curves at CSPR 4
and 6 dB, while it is constant and saturates at 4%, as in the B2B
case, for CSPR 10 dB. Compared to Rx 1, the NRMSE at CSPR
4 and 6 dB is reduced by 7% and 3%, respectively.

The systematic correction procedure described above for Rx 2
cannot be applied to adapt Rx 3 to different span lengths. Indeed,
Rx 3 is trained to include the transmission impairment compen-
sation task for a span length of 100 km. Therefore, the distortions
introduced into the constellation diagram when testing Rx 3 for
a span length that deviates from that of the training data turn out
to be unpredictable.

B. Performance Evaluation Outline and Test Sets Structure

The methods and the test sets (one for each transmission
scenario) used to evaluate the performance of the considered
receiver schemes are now described. We consider three test sets:
Test set 1 (Linear transmission), Test set 2 (Single-channel non-
linear transmission), and Test set 3 (DWDM nonlinear transmis-
sion). Hereinafter we refer to each transmission scenario using
the corresponding test set. The test set data are generated using
the simulation setup shown in Fig. 2, with the proper adjustments
depending on the transmission regime (i.e., nonlinearity off,
adjacent channels off, etc...). The span length is fixed to 100 km.
For each test set, the parameters are sampled from a 2D grid
formed by the CSPR values in the range 3-13 dB and the launch
power values from −10 to 10 dBm. For each point of the 2D
grid, we transmit 40 sequences each of 215 symbols to evaluate
the BER performance of the central channel. For numerical
convenience, we consider multiple 215-symbol long sequences
rather than a single long sequence. The test sets contain some
CSPR values and launch power values that were not included in
the training set so to evaluate the extrapolation capabilities of
the NN model.

C. Transmission Performance

We present now the performance of the considered receiver
schemes over Test sets 1, 2, and 3. Fig. 5(a)–(i) shows the results

of the simulations in terms of BER versus equivalent OSNR for
the different CSPR values indicated in the legend. The equivalent
OSNR facilitates the comparison with the case of coherent
detection since it is defined as the OSNR that would be measured
if the CW tone were not transmitted [2]. In the simulation, the
equivalent OSNR was varied by varying the signal launch power.
Fig. 5 is organized such that columns 1 through 3 of the grid
correspond to Rx 1, 2, and 3, whereas rows 1, 2, and 3 correspond
to Test set 1, 2, and 3, respectively. For each sub-figure, the
dashed curve shows the plot of the analytic expression for the
BER of a 16-QAM modulated system impaired by additive white
Gaussian noise (AWGN) [2], whereas the horizontal solid black
curve shows the 7% HD-FEC threshold limit. The curves are
displayed up to a BER value of 10−5 for which the number of
transmitted sequences guarantees accurate average BER values.

1) Rx 1 Performance: We consider first the performance of
Rx 1 over Test set 1, 2, and 3.

Fig. 5(a) shows the performance over Test set 1. As expected,
the BER decreases for increasing OSNR up to a BER floor.
The achieved BER floor decreases at higher CSPR as the full-
filed reconstruction quality increases. In the figure, for CSPR
values in the range 10− 12 dB, the BER values achieved by
Rx 1 are very close to the ones obtained by an ideal coherent
receiver. Further increasing the CSPR above 12 dB would lead
to performance degradation due to the increased impact of the
carrier-RIN beating term. The above-described trend of the BER
curves agrees with that seen in [2], [23], yet for the different
simulation parameters.

The results for Test set 2 are shown in Fig. 5(b). We recall
that Rx 1 compensates for transmission impairments using DBP
(Section III-B1). Compared to linear transmission, we expect the
performance to degrade for both higher equivalent OSNR (since
it is proportional to the information bearing signal power for a
fixed noise power) and CSPR values. Indeed, when considering
KK transceivers in presence of fiber nonlinearity, increasing the
carrier strength has a twofold effect. On the one hand, increasing
the CSPR leads to effective SSBI cancellation, on the other
hand it increases the distortion due to fiber nonlinearity. For
this reasons, the curves of Fig. 5(b) show an optimum operation
point, i.e., at which minimum BER is achieved. The minimum
BER improves by increasing the CSPR from 5 dB to 10 dB, and
then deteriorates for higher CSPR values.

We finally assess the performance over Test set 3. The simu-
lation results are shown in Fig. 5(c). Since only the channel of
interest was back-propagated, we expect additional uncompen-
sated inter-channel nonlinear effects to have an adverse impact
on the BER, as also seen in [25], [31]. Indeed, Fig. 5(c) show
that a higher minimum BER value is achieved, compared to
single-channel operation. As for Test set 2, the minimum BER
is achieved at a CSPR of 10 dB.

2) Rx 2 Performance: We present now the performance of
Rx 2 over Test sets 1, 2, and 3. The results of the simulations
have been obtained correcting the output of the NN with the
constant amplitude scaling factor corresponding to a span length
of 100 km (see Fig. 4).

Fig. 5(d) shows the results for Test set 1. It can be observed
that, for CSPR values from 5 to 9 dB, Rx 2 outperforms Rx 1
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Fig. 5. BER versus equivalent OSNR (i.e., evaluated without carrier) at different CSPR values. The considered receiver scheme varies across columns, whereas
the considered transmission regime varies across rows. LC: linear channel transmission; SC: single-channel nonlinear transmission; MC: multi-channel DWDM
nonlinear transmission (central channel performance). For each sub-figure, the black dashed curve shows the plot of analytic expression for the BER of a 16-QAM
modulated system impaired by AWGN, whereas the horizontal solid black line shows the 7% HD-FEC threshold, i.e., BER at 3.8× 10−3. The NN model
hyperparameters are d = 3 and no = 32.

over the entire OSNR range considered. For these CSPR values,
the BER floor value due to reconstruction error is lower than for
Rx 1 and is achieved at lower OSNR values. When the CSPR
is increased above 10 dB, the performance of Rx 2 degrades
at a faster rate than for Rx 1, and Rx 1 performs better for all
OSNRs starting from a CSPR of 11 dB. For CSPRs higher than
10 dB, besides increased carrier-RIN contribution, additional
performance degradation stems from the fact that photocurrent
signals associated with CSPR values outside the training are
provided as input to the NN (as also seen in Section IV-A1).
At low CSPR values, the remarkable performance improvement
offered by Rx 2 when addressing the full-field reconstruction
through the NN can be explained as follows. First, nonlinear
operations in the KK algorithm, which are a source of distortions
at low CSPRs, are avoided. Second, if the problem is viewed
from the standpoint of SSBI cancellation, the NN learned to

extract and separate the features of the useful information signal
from the features of SSBI and other undesired interference terms,
making it robust to impairments.

The results for Test set 2 are shown in Fig. 5(e). We re-
call that Rx 2, after full-field reconstruction, compensates for
transmission impairments with the same DBP algorithm of Rx 1.
Simulation results show a reduced tolerance to nonlinear effects
compared to Rx 1. This is related to what has been discussed in
Section IV-A2, when the sensitivity to CD of the receiver was
investigated. Indeed, this reduced tolerance results from further
distortions introduced by the NN full-field reconstruction when
dealing with the new class of photocurrent signals (i.e., not seen
during training) affected by nonlinear effects. The BER versus
OSNR curves of Fig. 5(e) show that Rx 2 (as for Test set 1)
outperforms Rx 1 for CSPR values in the range 5 to 9 dB, almost
over the entire OSNR range considered (except for the curve
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Fig. 6. BER versus launch power (i.e., carrier plus signal powers) per channel at different CSPR values. The considered receiver scheme varies across columns,
whereas the considered transmission regime varies across rows. SC: single-channel nonlinear transmission; MC: multi-channel DWDM nonlinear transmission
(central channel performance). For each sub-figure, the horizontal solid black line indicates the 7% HD-FEC threshold, i.e., BER at 3.8× 10−3. The NN model
hyperparameters are d = 3 and no = 32.

at CSPR of 9 dB, where for OSNR higher than 27 dB, Rx 1
performs better). For CSPR above 9 dB, performance degrada-
tion due to nonlinear distortions prevails and the minimum BER
value achieved is higher than for Rx 1.

Simulation results for Test set 3 are shown in Fig. 5(f). The
results show that Rx 2 both improves the performance at low
CSPR values, and achieves a lower minimum BER value than
Rx 1. Compared to single-channel transmission, the minimum
BER value achieved by Rx 2 in DWDM transmission is not
limited by distortions introduced by the NN reconstruction, but
by the reduced SNR at the receiver due to inter-channel nonlinear
effects.

3) Rx 3 Performance: The performance of Rx 3 over the con-
sidered transmission scenarios are now presented. We recall that
the NN in Rx 3 is trained to jointly recover the IQ components
and to compensate for transmission impairments.

Fig. 5(g) shows the results over Test set 1. For CSPR values
from 5 to 9 dB, Rx 3 further reduces the BER values compared to
Rx 2. However, for CSPR higher than 9 dB, both Rx 1 and Rx 2
offer better performance. The rapid performance degradation
of Rx 3 at high CSPRs can be explained by the pronounced
inter-channel nonlinear distortions affecting the training set data.
These nonlinear distortions cause BER saturation when testing
Rx 3 in linear transmission settings.

Simulation results for Test set 2 in Fig. 5(h) show that the
minimum BER value achieved by Rx 3 is as low as for Rx 1,
meaning that Rx 3 effectively compensates for nonlinear trans-
mission impairments. This holds true as long as the highly

nonlinear region, i.e., at high CSPR and OSNR values, is not
considered. In this region the BER deteriorates at a faster rate
than both for Rx 1 and Rx 2, which use DBP to compensate for
transmission impairments. This can be explained by the launch
power values selected for the training phase, which control the
NN tolerance to nonlinear distortions. The choice for the selected
launch power values will be motivated later on when describing
Fig. 6, which plots the BER performance versus launch power.
As a rule-of-thumb, the higher the launch power included in the
dataset, the slower will be the BER degradation at high CSPR
and OSNR values.

Fig. 5(i) shows the simulation results for Test set 3. Rx 3
achieves the lowest minimum BER among the considered re-
ceiver schemes while offering improved performance at low
CSPR values.

We now investigate the transmission performance in terms
of BER versus launch power per channel. Fig. 6(a)–(f) show
the results of the simulations. For this investigation nonlinear
transmission regime is assumed, i.e., only Test set 2 and Test set 3
are considered. The performance improvement achieved by
Rx 2 and Rx 3 compared to Rx 1 agree with the results seen
in Fig. 5 and described above, however, the following additional
comments can be made. The curves of Fig. 6(a)–(f) show that,
as expected, the BER decreases with launch power until it
reaches a minimum value, and, then, it increases again due
to fiber nonlinearities. It is worth noticing that, the curves are
plotted as a function of the total launch power (i.e., signal and
carrier powers). Therefore, increasing the CSPR leads to reduced
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Fig. 7. Maps showing the BER as a function of CSPR and launch power per channel (i.e., carrier plus signal powers). The considered receiver scheme varies
across columns, whereas the considered transmission regime varies across rows. LC: linear channel transmission; SC: single-channel nonlinear transmission; MC:
multi-channel DWDM nonlinear transmission (central channel performance). For each sub-figure, the white curve with highest iso-BER value shows the 7%
HD-FEC threshold, whereas the curve with the lowest iso-BER value shows the region of parameters where the labeled BER value is achieved. The gray tilted
lines show the iso-OSNR curves. The extent of the colorbars is set to different values to improve the color contrast of the maps. The NN model hyperparameters
are d = 3 and no = 32.

signal launch power (lower equivalent OSNR) and increases
the impact of the carrier-ASE beating term. This explains the
non-monotonic trend of the curves for increasing CSPR [2].
Simulation results shown in Fig. 6(b) motivates the launch power
values selected for the training set data concerning Rx 3. Indeed,
by selecting 1, 2, 3, and 4 dBm as launch powers for the training
set, the NN is trained in a launch power region where Rx 1 (that
we use as a baseline) achieves optimum BER performance. The
NN nonlinear impairments compensation performance could be
further improved by finely sampling the launch power values in
the neighborhood of the optimum launch power when generating
the training data.

The maps of Fig. 7 summarize the above-described trans-
mission performance results by plotting the BER as a func-
tion of CSPR and launch power per channel. The sub-figures
arrangement is the same as in Fig. 5. The maps make clear
the less stringent CSPR and launch power requirements of
Rx 2 and 3, compared to Rx 1, to achieve the 7% HD-FEC
threshold (shown by the white iso-BER curve in the figure).

The larger areas enclosed by the white curves in the cases of
Rx 2 and Rx 3 is a qualitative indication of the superior perfor-
mance of the proposed schemes, compared to the reference KK
scheme.

D. Receiver Sensitivity Comparison

In order to highlight the performance improvement offered by
Rx 2 and Rx 3, we measured the receiver sensitivity at BER3.8×
10−3. Fig. 8(a) and (b) show the results of this investigation in
terms of receiver sensitivity versus CSPR (left vertical axis) and
in terms of required launch power versus CSPR (right vertical
axis).

Fig. 8(a) shows the performance of Rx 1, 2, and 3 over
Test set 2. It can be seen that an optimum CSPR value (i.e.,
achieving minimum receiver sensitivity/required launch power)
exists, which is the result of a changing trade off between the
MP condition being met and the increased impact of ASE-carrier
beating term for increasing CSPR values [4]. Remarkably, the
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Fig. 8. Receiver sensitivity at BER of 3.8× 10−3 (left vertical axis) and
corresponding total launch power per channel (right vertical axis) as a function
of CSPR. The receiver scheme associated to each curve is indicated in the legend.
(a) SC: single-channel nonlinear transmission; (b) MC: multi-channel DWDM
nonlinear transmission. The NN model hyperparameters ared = 3 andno = 32.

optimum CSPR operation point shifts from 9 dB for Rx 1, to
7.1 dB for Rx 2, and to 6.4 dB for Rx 3. At these optimum
operation points, the receiver sensitivities read, −25.6 dBm,
−26.8 dBm, and −27 dBm, respectively. Therefore, the relaxed
CSPR requirements for Rx 3, allow for the BER threshold at
3.8× 10−3 to be achieved with 1.4 dB better sensitivity/less
total transmit power than for Rx 1.

Fig. 8(b) shows the receivers performance over Test set 3. The
figure shows that compared to Test set 2, at the optimum CSPR
operation point, Rx 1 incurs a ∼ 0.6 dB sensitivity penalty. On
the other hand, for Rx 2 and Rx 3, the incurred sensitivity penalty
is less than 0.2 dB. Therefore, when Rx 3 is employed, the target
BER threshold can be achieved using 2.8 less CSPR value than
for Rx 1, while achieving/requiring ∼ 1.8 dB better sensitiv-
ity/less total transmit power. These results further confirm the
robustness of the proposed NN-based phase retrieval scheme to
inter-channel nonlinear effects.

E. Influence of the NN Hyperparameters on Performance

In this section, we investigate the influence of the NN architec-
ture hyperparameters on Rx 2 and Rx 3 performance. To this end,
we consider the NN configuration described in Section II-C, and
we vary either the model depth d or the number of kernelsno. For
each of the selected NN model hyperparamters we proceed as
follows: (1) we train the NN model in Rx 2 and Rx 3 as detailed

in Section III-B; (2) we evaluate the receiver sensitivity at BER
of 3.8× 10−3 versus CSPR. The sensitivity performance are
evaluated over Test set 3, i.e., in 5-channel DWDM transmission.
The results are shown in Fig. 9, where the solid curves show the
results of the investigations previously carried out in Section IV-
C. For each plotted curve the corresponding no value, d value,
and the number of NN model parameters are indicated in the
legends.

Fig. 9(a) and (b) show the impact of the NN model memory
size on the performance of Rx 2 and Rx 3, respectively. The
memory of the NN model is set by the model depth d (see Sec-
tion II-C), and impacts both the full-field recovery performance
and the transmission impairments compensation performance.
In Figs. 9(a) and Figs. 9(b) the number of kernels no is fixed
to 32, whereas, the model depth d assumes the values 2, 3, and 4.
According to Section II-C, for a model depth of 2 the memory
size of the NN model results in 16 symbols, for a model depth of 3
it increases to 36 symbols, and for a model depth of 4 it results
in 76 symbols. The results show that a model depth of 3 (i.e., a
memory size of 36 symbols) is required for both Rx 2 and Rx 3
to avoid sensitivity penalties. For a model depth of 4 a negligible
sensitivity improvement is obtained at the expense of higher NN
model complexity (i.e., a higher number of parameters). Notice
that a NN model memory size of 36 symbols is sufficient to
account for the memory effects introduced by the transmission
channel, which can be calculated to affect about 10 symbols.
Indeed, for the considered transmission system parameters,
namely, 100 km fiber link, 17 ps/nm/km as dispersion coefficient,
and ∼ 25 GHz (0.2 nm at 1550 nm) as signal bandwidth, the
maximum delay experienced by the frequency components of
the information bearing signal can be computed to be about
340 ps [32], [33]. Therefore, the total number of symbols that
are mixed through CD is 9. The calculation for the number
of symbols that are mixed through nonlinear effects is not
straightforward and the reader is referred to the analysis in [34]
for further insights. The results in [34] show that employing a
10-symbol wide equalizer is sufficient to effectively compensate
for nonlinear effects. Therefore, according to the most stringent
requirement, the NN model memory needs to be selected higher
than or equal to 10 symbols to compensate for transmission
impairments.

Fig. 9(c) and (d) show the impact of the number of kernels no

on the sensitivity performance of Rx 2 and Rx 3, respectively.
In the figures, the model depth is fixed to 3, whereas the number
of kernels for each convolutional layer assumes the values
8, 12, 16, 32, and 64. It can be seen that increasing the number
of kernels has a significant impact on the model’s complexity.
Indeed, the number of parameters increases by a factor ∼ 70
whenno increases from 8 to 64. Therefore, the number of kernels
must be properly tuned to achieve the desired performance
improvement while maintaining low complexity. Comparing
Figs. 9(c) and (d), it can be seen that Rx 2 and Rx 3 have different
sensitivity improvement rates as a function ofno: up tono = 16,
Rx 2 outperforms Rx 3, vice versa forno = 32 andno = 64Rx 3
outperforms Rx 2. Therefore Rx 3 requires higherno values than
Rx 2 to achieve similar or higher sensitivity improvements. This
is explained by the fact that the NN model in Rx 3 integrates



ORSUTI et al.: DEEP LEARNING-BASED PHASE RETRIEVAL SCHEME FOR MINIMUM-PHASE SIGNAL RECOVERY 589

Fig. 9. Receiver sensitivity at BER of 3.8× 10−3 (left vertical axis) and corresponding total launch power per channel (right vertical axis). The red curve shows
the Rx 1 performance. The NN model hyperparameters associated to each curve are indicated in the legends. MC: multi-channel DWDM nonlinear transmission.
(a) and (b): The number of kernels no is fixed to 32, whereas the model depth d varies. (c) and (d) The model depth is fixed to d = 3, whereas no varies. The
curves with solid lines are the same as in Fig. 8(b).

the transmission impairments compensation task, thus higher
no values results in better transmission impairments compen-
sation performance. For no = 64, the sensitivity degradation
experienced by Rx 2 is due to NN model overfitting. Section V
extends the above trade-off analysis between complexity and
performance by evaluating the number of real multiplications
required for a NN model prediction.

V. COMPLEXITY ANALYSIS

In this section, we evaluate the computational complexity of
the considered receiver schemes in terms of the number of real
multiplications per recovered output sample. For the NN-based
receivers, an offline training phase is assumed, thus only the
computational complexity of the prediction phase is taken into
account. In what follows, we first recall the complexity of the
conventional KK receiver phase retrieval algorithm and the
complexity of the related DBP algorithm (Section V-A). Then,
we evaluate the computational complexity required by Rx 2 and
Rx 3 to predict the IQ components from the photocurrent signal
(Section V-B). Finally, a complexity comparison between the
considered schemes is given (Section V-C). The results of the
complexity analysis are summarized in Table II and in Fig. 10.

A. Complexity of Rx 1

The computational complexity of Rx 1 can be obtained as
CRx1 = CKK + CDBP, where CKK and CDBP denotes the KK

TABLE II
COMPUTATIONAL COMPLEXITIES OF THE CONSIDERED SCHEMES

phase retrieval algorithm complexity and DBP complexity, re-
spectively.

1) Complexity of the KK Phase Retrieval Algorithm: Ac-
cording to the complexity analysis of the KK receiver performed
in [9], [30], in what follows, we consider a low-complexity
time-domain implementation of the KK algorithm to determine
an expression for CKK. The time-domain implementation of
the KK algorithm can achieve similar performance to the FFT-
based implementation provided that the number of taps of the
employed FIR filters is sufficiently high [30]. Denoting NS as
the number of taps for the up/downsampling FIR filter, Nh as
the number of taps for the FIR filter for the Hilbert transform,
and R = 4 as the digital upsampling factor, the number of
multiplications per sample required by the KK phase retrieval
algorithm is [9]

CKK = (3NS + 2 +Nh/2)R . (7)
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Fig. 10. Receiver sensitivity gain at the optimum CSPR operation point versus no (left vertical axis) and versus CSPR reduction (right vertical axis). The
computational complexity increase corresponding to each no value is shown in the top horizontal axis. The model depth d is fixed to 3. The sensitivity gain (at BER
of 3.8× 10−3) and the CSPR reduction are relative to Rx 1. The shaded area show the no values for which Rx 2 and Rx 3 achieve a complexity lower than Rx 1
(green area), a complexity up to ∼ 2 times that of Rx 1 (orange area), and a complexity higher than 2 times that of Rx 1 (light gray area), respectively. Negative
percentages indicate a complexity decrease compared to Rx 1. The two sub-plots share the same bottom x-axis but have different top x-axis because Rx 3 avoids
the DBP algorithm. MC: multi-channel DWDM nonlinear transmission.

2) Complexity of the DBP Algorithm: For the linear step in
the DBP algorithm, we assume blockwise frequency domain
equalization using the overlap-save method [33]. In what fol-
lows, we denote as NSTEPS the number of steps of the DBP algo-
rithm, asNFFT the FFT size, and asNCD as the minimum number
taps for the CD equalizer [33] (computed in Section IV-E). NFFT

must be selected higher than NCD, and should be optimized to
minimize the computational complexity (as described later). The
total number of real multiplications per equalized output sample
required by the DBP algorithm can be estimated to be [20], [33]

CDBP = 4NSTEPS

(
NFFT (log2 NFFT + 1)

NFFT −NCD + 1
+ 1

)
. (8)

In (8), the term NFFT −NCD + 1 denotes the number of output
samples produced by each iteration of the overlap-save algo-
rithm. The optimum value for CDBP is obtained for the NFFT

value that minimizes (8).

B. Complexity of Rx 2 and Rx 3

The complexities of Rx 2 and Rx 3 are now evaluated. To
this end, we first evaluate the complexity of the NN model
(shown in Fig. 1) to predict the IQ components from the
photocurrent signal: CNN. Then, we compute the complexity
of Rx 2 and Rx 3 as CRx2 = CNN + CDBP and CRx3 = CNN,
respectively. The NN model complexity CNN can be approx-
imated by considering only the computational complexity of
the convolutional layers inside the D and U blocks. Namely, by
neglecting the contributions of the ReLU activation functions,
the long skip connections outside the D and U blocks, and
the output convolutional layer in the following calculations. To
obtain the expression for CNN, we proceed in two steps: (1) we

evaluate the contributions to the number of real multiplications
of each D/U block; (2) we sum the contributions obtained in
step (1) to obtain the NN model complexity CNN.

1) Complexity for the D Blocks: Referring to the D block
structure shown on the left side of Fig. 1, the complexity of the
D blocks can be calculated as (l = 1, 2, . . . , d) [35]

Cl
D =

{
2 (nok/s) +

(
n2
o k/s

)
, if l = 1

3
(
n2
o k/s

l
)
, otherwise .

(9)

The expression for l = 1 in Cl
D is composed of two terms. The

first term accounts for the convolutional layers that have the pho-
tocurrent signal as input (ni = 1): the first convolutional layer in
the main path and the convolutional layer in the skip connection.
The second term accounts for the second convolutional layer in
the main path, where the factor n2

o arises because the number of
input channels isni = no. For the other D blocks (i.e., for l �= 1),
ni = no and the factor 3 in the expression Cl

D accounts for the
three convolutional layers inside a D block.

2) Complexity for the U Blocks: For every l, with l =
1, 2, . . . , d, the complexity of the U blocks reads

Cl
U = 2

(
n2
o k/s

l
)
+
(
n2
o k/s

l−1
)

= (2 + s)
(
n2
o k/s

l
)
. (10)

Cl
U is composed of two terms: the first term accounts for the two

transposed convolutions in the main and residual path, whereas
the second term accounts for the convolutional layer applied to
the output of the transposed convolution (after upsampling).

Equations (9) and (10) show that the input number of samples
(and the required multiplications) reduces/increases by a factor -
s - as the input signal undergoes the downsampling/upsampling
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process. This prevents the complexity from increasing linearly
with the model depth.

3) Complexity for a NN Model Prediction: The complexity
required for a NN model prediction can be easily obtained by
summing over - l - the terms given in (9) and (10). The total
number of real multiplications per sample required by the NN
model employed by Rx 2 and Rx 3 reads

CNN = Cl=1
D +

d∑
l=2

Cl
D +

d∑
l=1

Cl
U . (11)

We do not show the final expression of (11) for the sake of
shortness. As expected, since Cl

D and Cl
U contain the term

n2
o, the number of kernels no has the highest impact on the

computational complexity.

C. Complexity Comparison

We now investigate the trade-off between the computational
complexities of Rx 2 and Rx 3 and their performance. We use
Rx 1 as the reference receiver scheme: we relate the com-
putational complexities and the performance of the proposed
schemes to those of Rx 1.

For Rx 1, we set NS = Nh = 128 as the number of taps of
the up/downsampling filter and Hilbert transform filter [30], and
we consider R = 4 as the digital upsampling factor. For the
DBP algorithm we set NSTEPS = 10, NFFT = 128 as FFT size
(obtained as the value that minimizes (8)), and NCD = 18 as the
minimum number of taps required for the CD equalizer [33].

For the NN model, we consider the following parameters: d =
3 for the model depth and we vary the number of kernels
no from 8 to 32 (the actual values are 8-12 with step 1, then
12-20 with step 2, 24 and 32). For the following investigations
the performance are evaluated over Test set 3, i.e., in 5-channel
DWDM transmission.

The results are shown in Fig. 10(a) and (b) in terms of sen-
sitivity gain versus no (left vertical axis) and in terms of CSPR
reduction versus no (right vertical axis). The computational
complexity increase corresponding to each no value is shown
on the top horizontal axis. Hereinafter, the sensitivity gain,
the CSPR reduction, and the complexity increase are intended
relative to Rx 1. The sensitivity gain and the CSPR reduction
at the optimum CSPR operation point are calculated from the
results shown in Fig. 9(c) and (d), which show the sensitivity
curves for a subset of the no values considered in this section.
In Fig. 10(a) and (b), the complexity increase shown in the top
horizontal axis is computed as the ratio CRx2/CRx1 for Rx 2,
and as as the ratio CRx3/CRx1 for Rx 3. For a given no value,
CRx2/CRx1 is higher than CRx3/CRx1 because Rx 3 avoids the
DBP algorithm. Each shaded area in Fig. 10 corresponds to a
different complexity value as detailed in the figure description.
In the figure, complexity increase factors lower than 2 are shown
in percentages (negative percentages indicate a decrease in com-
plexity), whereas complexity increase factors higher than 2 are
shown using the corresponding increase factor.

The results in Fig. 10(a) and (b) can be summarized as follows.
Rx 2 and Rx 3 outperform Rx 1 both in terms of performance and

in terms of complexity for a low number of kernels (i.e., for no

in the range 8-10 for Rx 2, and no = 10 and 11 for Rx 3). Rx 2
offers the best trade-off between sensitivity improvement and
complexity increase since it requires a lower number of kernels
than Rx 3 to achieve a target sensitivity gain (the complexity
of the NN model increases quadratically with the number of
kernels). For a number of kernels higher than 20, Rx 3 effectively
compensates for transmission impairments and achieves higher
sensitivity gains than Rx 2. Finally, Rx 3 achieves higher CSPR
reduction than Rx 2 with lower computational complexity.

It is worth mentioning that the NN model complexity pro-
vided by (11) needs to be intended as the starting expression
for the computational complexity of the NN model before
further optimizing the NN architecture hyperparameters. As
a first approach to further reduce the NN model complexity,
the number of kernels no, which is now constant throughout
all the D and U blocks, can be properly tuned for each D/U
block. Alternatively, as a second approach, network compression
techniques can be applied to the trained model to reduce the
number of required real multiplications with low impact on
performance. For example, by pruning filters with the highest
redundancy in selected convolutional layers [36].

VI. CONCLUSION

In this paper, we have proposed a DL-based method for MP
signal recovery that accurately reconstruct the optical field at
low CSPRs from the intensity waveform. Based on numerical
simulations, we compared the performance of the conventional
4-fold upsampled KK receiver with two proposed schemes that
differed in the NN training data. The first scheme was trained
in ideal B2B settings to emulate the KK algorithm. For the
second scheme we used an all-embracing approach on which the
NN was trained over a 100 km DWDM transmission scenario
with 5 channels. As a results, the NN reconstructs the optical
signal while compensating for linear and nonlinear transmission
impairments. Simulation results in ideal B2B settings show
that the NN reconstruction improves the performance at weak
carrier powers since it avoids nonlinear operations in the KK
algorithm that are the main source of distortions. Simulation
results in DWDM transmission validate the feasibility of the
all-embracing approach showing sensitivity improvements as
high as 1.8 dB achieved with up to 2.8 dB lower CSPR value
compared to the conventional 4-fold upsampled KK receiver
aided with DBP. To investigate the trade-off between perfor-
mance and complexity, we performed a comparative analysis
of the complexities of the proposed schemes with that of the
KK receiver. The results showed that significant performance
improvements in terms of receiver sensitivity (up to 0.4 dB better
sensitivity) and CSPR reduction (up to 1.6 dB lower CSPR)
can be achieved with 36% lower complexity than the conven-
tional 4-fold upsampled KK receiver aided with DBP. The reason
for the observed improvements is that the NN benefits from
increased robustness to impairments that result from the training
being carried out on a specific class of signals, i.e., 16-QAM
symbols shaped with a RC waveform. The results also suggest
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that more improvements in sensitivity gain, CSPR reduction,
and complexity reduction may be possible by properly tuning
the training set data and the NN model hyperparameters thus
providing new avenues to design MP retrieval schemes for DD
systems.
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