The REMIX Project: Research on the Emerging Medical radIonuclides from the X-sections

G. Pupillo¹, L. Mou¹, J. Esposito¹, L. De Dominicis^{1,2}, G. Sciacca^{1,3}, S. Cisternino^{1,3}, M. Campostrini¹, V. Rigato¹, P.

Martini⁴, A. Boschi⁴, A. Duatti⁴, L. Canton⁵, F. Barbaro^{5,6}, L. De Nardo^{5,7}, L. Meléndez-Alafort^{1,8}, M. Bello^{1,7}, A.

Fontana⁹, A. Colombi^{6,9}, M.P. Carante^{6,9}, F. Groppi^{10,11}, S. Manenti^{10,11}, M. Colucci^{10,11}, S. Bortolussi⁹, U. Anselmi-

Tamburini^{6,9}, E. Cazzola¹², G. Gorgoni¹², E. Nigron¹³, F. Haddad¹³

¹INFN, Laboratori Nazionali di Legnaro, Legnaro (PD), Italy; ² Dipartimento di Fisica dell'Università di Padova, Padova, Italy; ³Dipartimento di Ingegneria Industriale dell'Università di Padova, Padova, Italy;

⁴ Dipartimento di xxxx dell'Università di Ferrara, Ferrara, Italy, ⁵ INFN Sezione di Padova, Padova, Italy;

⁶ Dipartimento di Fisica dell'Università di Pavia, Pavia, Italy; ⁷ Dipartimento di Fisica e Astronomia

dell'Università di Padova, Padova, Italy; ⁸ Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy; ⁹ INFN Sezione di Pavia, Pavia,

r 1 1

Italy; ¹⁰ Dipartimento di XXX dell'Università di Milano, Milano, Italy; ¹¹ INFN Sezione di Milano, Milano, Italy; ¹² Ospedale Sacro Cuore Don Calabria, Negrar (VR), Italy; ¹³ GIP ARRONAX, Saint-Herblain, Nantes, France.

INTRODUCTION

REMIX is a three-years project funded by INFN-CSN5 in 2021, with the goal of finding possible ⁴⁷Sc and medical Terbium isotopes (¹⁴⁹Tb, ¹⁵²Tb, ¹⁵⁵Tb and ¹⁶¹Tb) production routes by using accelerators. All the radionuclides of interest in the REMIX project, except for the therapeutic ¹⁶¹Tb, can be used to obtain theranostic radiopharmaceuticals, since they emit radiation suitable for both therapeutic and diagnostic purposes, as shown in Table 1 [1].

The study of the possible production routes is important since until now the limiting factor for clinical and preclinical studies with ⁴⁷Sc-labeled radiopharmaceuticals is the lack of ⁴⁷Sc availability. Studies to find the best proton-induced nuclear reaction that allows enough ⁴⁷Sc production must also consider the simultaneous minimization of the coproduction of all possible contaminants. Particular attention must be paid to the other Sc-isotopes since they cannot be chemically separated from the produced ⁴⁷Sc. Among the Sc-isotopes, the most critical is the ⁴⁶Sc (83.79 d) as it has a longer half-life than the ⁴⁷Sc (3.3492 d). As already reported, ⁴⁷Sc was first studied in the PASTA project [2, 3, 4, 5] and the goal of REMIX is to measure the protoninduced nuclear reactions by using isotopically enriched ⁴⁹Ti [6,7] and ⁵⁰Ti targets. The enriched powders, purchased during 2018, were not suitable for target manufacturing with the HIVIPP technique, as previously described. For this reason, during 2019 and 2021 a cryomilling procedure was studied and optimized using the cheaper ^{nat}Ti metallic sponges to mimic the process and obtain metallic powders suitable for the HIVIPP deposition. During 2021, the first enriched ⁴⁹Ti targets were realized [8,9] and characterized with IBA (Ion Beam Analysis) methods, exploiting the AN2000 accelerator at the LNL (HIX project, PI: S. Cisternino).

On the other hand, the medical relevant Tb-isotopes have not been studied at the LNL during 2021 but are under investigation within the REMIX project [10].

[1].			
	Half-life	Imaging radiation	Therapeutic radiation
⁴⁷ Sc	3.3492 d	γ: 159.381 keV intensity 68.3%	Mean β ⁻ energy 162.0 keV intensity 100%
¹⁴⁹ Tb	4.1 h	Mean β ⁺ energy: 730 keV Intensity 7%	Auger and IC electrons: E _{mean} = 32 keV Intensity 85%
		γ energy: 164.98 keV Intensity 26.4%	α particle: Energy 3967 keV Intensity 16.7%
¹⁵² Tb	17.5 h	Mean β ⁺ energy: 1140 keV Intensity 20.3% γ energy: 344.28 keV Intensity 63.5%	Auger and IC electrons: E _{mean} = 36 keV Intensity 69%
¹⁵⁵ Tb	5.32 d	Main γ energy: 105 keV Intensity 25%	Auger and IC electrons: E _{mean} = 19 keV Intensity 204%
¹⁶¹ Tb	6.89 d	γ energy: 74.57 keV Intensity 10.2%	Mean β energy 154 keV intensity 100% Auger and IC electrons: E _{mean} = 19 keV Intensity 227%

REMIX ORGANIZATION

The project is organized in working packages (WP):

WP1. Target manufacturing and characterization (resp. S. Cisternino). During 2021 and up to June 2022 the WP1 will realize with the HIVIPP method and characterize with IBA techniques the isotopically enriched ⁴⁹Ti and ⁵⁰Ti thin targets to be irradiated at the ARRONAX facility for nuclear cross section measurements [8,9]. From July 2022 to December 2023, the WP1 will study the manufacturing of Gd₂O₃ targets by Spark Plasma Sintering (SPS) to be irradiated at the Sacro Cuore Don Calabria Hospital (SCDCH, Negrar, VR, Italy), first by using ^{nat}Gd and then by using the isotopically enriched ¹⁵⁵Gd to produce ¹⁵⁵Tb.

WP2. Nuclear cross section (XS) measurements with ⁴⁹Ti and ⁵⁰Ti targets (resp. L. Mou). The thin targets realized by WP1 will be irradiated with the proton-beam available at ARRONAX (Nantes, France) that has a tunable energy 35-70 MeV (Figure 1). Due to the pandemic, during 2021 only two irradiation runs have been performed on ⁴⁹Ti targets [6,7]. WP2 experiments with ⁵⁰Ti targets are scheduled for 2022.

Fig. 2 The ARRONAX beam line during a REMIX run with ⁴⁹Ti.

WP3. Nuclear XS measurements with ^{nat}Dy, ¹⁵⁹Tb and ^{nat}Eu targets (resp. S. Manenti). These thin targets are available on the market and will be irradiated at the ARRONAX facility to find out the best production parameters for Tb-radionuclides, in collaboration with WP4. The γ -spectrometry measurements will be carried out at the LASA lab. Due to the pandemic, during 2021 only two irradiation runs have been performed on ^{nat}Dy targets [10].

WP4. Nuclear XS modeling (resp. L. Canton and A. Fontana). The nuclear codes TALYS, EMPIRE and FLUKA will be used to estimate the production of ⁴⁷Sc [3, 11], ¹⁵⁵Tb and ¹⁶¹Tb. Experimental data from WP2 and WP3 will be compared with theoretical results, to find out the most promising production routes for these radionuclides. It is important to remind the need to estimate the co-production of contaminants, in collaboration with WP2 and WP3, to find out the best irradiation parameters for the medical radionuclides of interest.

WP5. Dosimetric calculations (resp. L. Meléndez-Alafort and L. De Nardo). As already done for ⁴⁷Sc production using ^{nat}V targets [4], the OLINDA code will be used to estimate the dose increase due to the presence of contaminants in the labelling of specific radiopharmaceuticals. These results, carried out with both ⁴⁷Sc and Tb-isotopes, will indicate whether radionuclides obtained with the production route under investigation could be used in clinical practice.

WP6. ¹⁵⁵**Tb** Thick Target Yield (TTY) measurements (resp. P. Martini). During 2023, the enriched ¹⁵⁵Gd₂O₃ target realized by WP1 will be irradiated at the 19 MeV cyclotron of the SCDCH. Dissolution of the target will be performed to take an aliquot of the solution and measure ¹⁵⁵Tb RadioNuclidic Purity (RNP) by γ-spectrometry, in collaboration with WP2.

WP7. Apparatus design and realization for irradiation tests with the L3c beam-line (resp. G. Sciacca). The targetstation and the beam-dump to be installed in the LARAMED beam-line devoted to XS measurements will be designed and realized at the LNL. Additional mechanical devices, useful for the REMIX project (e.g. collimator, capsule, etc.), will be designed and realized within WP7.

RESULTS AND DISCUSSION

REMIX project started in 2021, a year still affected by the pandemic. However, results have been achieved without delay, also thanks to the solid network of collaborations and the mutual support in the team. A more detailed description of REMIX major outcomes can be found in specific LNL Annual Reports.

REFERENCES AND FINAL NOTES

Authors would like to thank the LARAMED project and the staff at the ARRONAX and SCDCH for their constant support to these research activities.

- [1] NuDat3.0 database, https://www.nndc.bnl.gov/nudat3/
- [2] G. Pupillo et al., J Radioanal Nucl Ch (2019) 3:297
- [3] F. Barbaro et al., Phys Rev C (2021)
- DOI:10.1103/PhysRevC.104.044619
- [4] L. De Nardo et al., Physics in Medicine and Biology (2021) DOI:10.1088/1361-6560/abc811
- [5] L. Mou et al., This Annual Report
- [6] L. De Dominicis et al., This Annual Report
- [7] L. De Dominicis et al., This Annual Report
- [8] S. Cisternino et al., This Annual Report
- [9] S. Cisternino et al., This Annual Report
- [10] M. Colucci et al., This Annual Report
- [11] F. Barbaro et al., Proceedings of the Applied Nuclear Physics Conference, 12-17 Sept. 2021, Prague, in press.