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Abstract—Nowadays, the Internet of Things is spreading in
several different research fields, such as factory automation,
instrumentation and measurement, and process control, where it
is referred to as Industrial Internet of Things. In these scenarios,
wireless communication represents a key aspect to guarantee the
required pervasive connectivity required. In particular, Wi-Fi
networks are revealing ever more attractive also in time- and
mission-critical applications, such as distributed measurement
systems. Also, the multi–rate support feature of Wi–Fi, which is
implemented by rate adaptation (RA) algorithms, demonstrated
its effectiveness to improve reliability and timeliness. In this
paper, we propose an enhancement of RSIN, which is a RA algo-
rithm specifically conceived for industrial real–time applications.

The new algorithm starts from the assumption that an SNR
measure has been demonstrated to be effective to perform RA,
and bases on Reinforcement Learning techniques. In detail, we
start from the design of the algorithm and its implementation on
the OmNet++ simulator. Then, the simulation model is adequately
calibrated exploiting the results of a measurement campaign, to
reflect the channel behavior typical of industrial environments.
Finally, we present the results of an extensive performance
assessment that demonstrate the effectiveness of the proposed
technique.

Index Terms—Factory Automation, Wi–Fi, Rate Adaptation,
Reinforcement Learning

I. Introduction

The Internet of Things (IoT) is spreading not only in
the consumer field, but also in factory automation, process
control and distributed measurement systems. As a matter
of fact, several research activities are currently in progress
to extend the IoT paradigm also in the aforementioned new
fields of applications to implement the so called Industrial
Internet of Things (IIoT) [1]. In this scenario, IoT-based
Distributed Measurement Systems are now revealing attractive
to provide real–time and continuous measurements possibly
collected over wide areas. [2]. Within IIoT systems, where

great flexibility needs to be guaranteed to smartly connected
things, wireless connectivity plays surely a key role. Since Wi–
Fi is one of the most popular and effective wireless systems
pervasively available today, considerable research activity has
been directed toward the adoption of Wi–Fi systems also in
real-time and high-reliability contexts, such as those typical of
modern Instrumentation and Measurement (I&M) applications
[3], [4].
Nevertheless, the adaptability of the IEEE 802.11 stan-

dards to real–time and deterministic communications is still
a challenge. A feature of Wi–Fi that demonstrated to be
effective in this context is the multi–rate support. This is the
possibility of dynamically selecting the transmission rate from
a rather wide set of different rates, to cope with the variations
of the communication channel status. Intuitively, high data
rates can be used when the channel status is good, whereas
lower rates (that use more robust modulation schemes) can
be selected when the status is bad. Therefore, introducing
effective Rate Adaptation (RA) algorithms may help to reduce
the number of packet transmission failures and the consequent
retransmission attempts, so that to achieve more reliable and
timely communication, which represents a main requirement
of the industrial communication field [5].
Several RA algorithms have been presented during the years,

and even recently the topic attracted significant efforts [6]–[9].
In particular, in [10] the authors proposed a RA technique,
specifically conceived for industrial real–time applications,
based on either the measurement or the estimate of the SNR.
Such a technique, called RSIN, allows to select the set of rates
to be adopted for the transmission (and possible retransmission
attempts) of a packet able to minimize the residual packet
error rate, while ensuring to match a specific deadline. Also,
in [11] the possibility of exploiting Reinforcement Learning
(RL) techniques to enhance the performance of the RA activity



has been assessed, showing to provide encouraging results.
In this work, we move from the above outcomes and

investigate the design of an innovative RL–based RA policy
that is able to account for the channel status by measuring
the SNR, such as the aforementioned RSIN. The proposed
assessment is carried out via a simulation model implemented
on the popular OMNet++ simulator tool. However, in order
to make the analysis as much realistic as possible, we first
exploited the results of some experimental sessions to calibrate
the simulation model and, subsequently, use it to evaluate the
performance of the proposed RL–based RA technique.

In detail, the paper is organised as follows. Section II
provides some theoretical background, about Reinforcement
Learning and the possibility of using it for rate adaptation
algorithms. Also, this section introduces some basic concepts
about RSIN. Section III describes the calibration of the simu-
lation model. Section IV presents the new RA policy. Section
V reports and analyses the obtained simulation results. Finally,
VI concludes the paper.

II. Theoretical Foundations and Related Work
A. Reinforcement Learning

The concept of Artificial Intelligence (AI) is nowadays
spreading in several and diverse areas, and allows for a system
to learn from data how to perform an activity. Within the
AI framework, the well-known and widespread concept of
Machine Learning (ML) represents a set of techniques adopted
to solve a large amount of problems. Specifically, Reinforce-
ment Learning (RL) represents an interesting technique whose
uniqueness is the trial and error methodology, where an agent
learn how to act on an environment from experience. Figure 1
well describes the RL behavior. More details about RL and its
applications in communications and networking are discussed
in [12].

Figure 1. Reinforcement Learning (RL) components

The Agent at the step C in Fig. 1, starting from the state (C
and the reward 'C performs an action �C on the Environment.
In turn, the system moves to the new state (C+1 and a Reward
'C+1 is provided to the agent, based on the goodness of
the performed action �C . These components form a Markov
Decision Process (MDP), which is usually defined by the tuple
{(, �, %, '}, respectively, state, action, probability and reward.
In this context, it is fundamental to define the relationship

between the state of the system and the best action to perform
towards the desired goal, that is, the best policy c consisting in
the ordered sequence of pairs (BC0C48 , 14BC�2C8>=�>A(C0C48).
Several algorithms have been defined to this purpose based

on the evaluation the expected cumulative reward associated
with policy c, which can be performed either with a value
function + c (B) = �c{'C |(C = B}, or an action-value function
& c (B, 0) = �c{'C |(C = B, �C = 0}.

B. Reinforcement Learning applied to Rate Adaptation
The aforementioned approach has been adopted in a pre-

vious work [11], where we have investigated the design of
a Reinforcement Learning-based Rate Selection algorithm
(RLRA). In particular, the policy c was designed with the
aim of achieving a good trade–off between the reduction of
the packet loss (';>BB) and the maximization of the current
rate. To this purpose, the rewards was defined as

'C+1 = V · (−';>BBC+1 + ';>BBC )

+ (1 − V) · '0C4C+1 − '0C4C
'0C4C+1 + '0C4C

− 1;
(1)

Specifically, Eq. 1 aims at assigning higher Rewards to
Actions that makes the rate higher and the loss lower. The
performances of this algorithm in terms of the end–to–end
delay revealed promising compared to other well-known RA
policies (e.g. Robust Rate Adaptation Algorithm). For this
reason, we take the RLRA algorithm in [11] as a basis for
the design of a more complex RL–based RA scheme that
exploits the knowledge of the SNR targeted at time critical Wi-
Fi Networks for distributed real-time measurement systems.

C. Rate Selection for Industrial Networks
Rate Selection for Industrial Networks (RSIN) is a Rate

Adaptation algorithm for IEEE 802.11 networks, proposed in
[10] and specifically targeted to real-time and generally time-
critical applications. RSIN builds upon the direct measurement
of the SNR, and a complex optimization problem to find, for
each frame to transmit, the sequence of transmission rates (one
for each possible transmission attempt) ensuring the highest
transmission reliability combined with the highest possible
speeds, in order to deliver the frame within a specified dead-
line. Specifically, considering a wireless frame whose payload
is l Bytes long, the measured SNR s as perceived by the
intended receiver, and the associated deadline D, the objective
of the RSIN optimization problem is to find i) the optimum
number of retransmissions #>?C , and ii) the Retransmission
Chain (RC), i.e. A (8) ∀ 8 ∈ {1, . . . , #>?C }, that minimize the
residual Packet Error Probability %A , respecting the deadline
constraint:

min
# ≤#<0G ,A

(8) ∈'
%A (;, B ∈ (, #, A (1) ....A (# ) )

max
# ≤#<0G ,A

(8) ∈'
CCA0=B (;, B ∈ (, #, A (1) ....A (# ) ) ≤ �

(2)

With the formulation of Eq. (2), it appears evident that RSIN
can be hence taken as an ideal benchmark for the assessment
of the RL–based algorithm we propose in this work.
Nevertheless, RSIN may require a rather high computation

load, as described in [13]. Indeed, a general implementation
of the RSIN algorithm requires either to solve the problem
in Eq. (2) for each transmitted frame, or to create and keep



periodically updates a Look Up Table (LUT), in either cases to
allow dealing with different packet payloads, deadlines and a
dynamic channel behaviour. A simpler RSIN implementation
may be realized by solving the problem in Eq. (2) a priori
during the initialization stage and storing the obtained LUT,
in this case limiting the algorithm dynamic.

III. Calibration of the Simulation Model
A. OMNeT++ Simulation Model

OMNeT++ is a C++ discrete event simulator, widely
adopted to simulate communication networks and model the
surrounding electromagnetic environment. Exploiting this tool
we modeled a simple Wi-Fi network where two stations move
at different speeds around an obstacle, as represented in Fig. 2.

Figure 2. The simulated network

This setup allows the analyze of the behavior of the im-
plemented RA algorithms introducing dynamic channel loss
conditions, for instance simulating an harsh industrial envi-
ronment with the presence of moving personnel or obstacles.

Without loss of generality, the source and the sink are set
up to communicate through a basic IEEE 802.11g network,
that hence allows transmission rate from 6 to 54 Mbit/s over
a single OFDM stream. The choice of this (widespread but
somehow old) version of the standard allows to maintain the
assessment simple and effective, at the same time retaining
the goodness of the obtained results, that do not depend on
the specific Wi-Fi version. Indeed, the extension of the RA
policies considered in this work to more recent IEEE 802.11
amendments is actually straightforward.

B. Calibration of the OMNeT++ simulation model
The behavior of the communication channel is a key aspects

for a simulation model of wireless systems. This is particularly
evident for industrial environments that are often characterized
by the presence of (possibly moving) people and machinery.
This requires the proper modeling of the electromagnetic
environment, that reflect on the dynamic of the path loss and,
consequently, on the bit error and frame loss ';>BB. These
models considers the SNR perceived at the receiver as the
main input together with the type of modulation and coding
scheme used by the devices.

The aim of this study is to provide an accurate assessment
of different RA algorithms through simulations, that may
be subsequently considered meaningful and representative of
real environments. Hence, it becomes imperative to set up a

precise calibration of the models implemented in the simulator
with respect to experimental data about the channel behavior
collected from the field.
To this aim, an important observation is that some specific

models have already been defined for the industrial environ-
ment we are considering, as for instance the channel model “F”
proposed by the Task Group n (TGn) during the development
of the IEEE 802.11n standard, or even the one introduced in
[14]: unfortunately they are rather complex and not currently
implemented in OMNeT++. Thus, we resorted to analyze the
already available models. The most suitable one, that already
showed to be suitable in describing loss performance of Wi-Fi
OFDM link is the NIST Error Model [15]. It is characterized
by a complex yet thorough set of parameters allowing to fine
tune the system to model the intended industrial environment.
For the latter crucial calibration phase, we focused on the

relationship between packet error rate (PER) perceived at
the Data-Link Layer, that hence depends on the outcomes
of the NIST error model, with respect to the SNR at the
receiver. To this aim, we referred to the experimental setup
proposed in [16], where this PER-SNR relationship has been
determined experimentally. Reproducing these measurements
data as a reference, we hence fine tuned the main parameters
of the OMNet++ NIST error model, in a typical calibration
procedure. The results are reported in Fig. 3, where the PER–
SNR curves obtained with OMNeT++ are compared with the
experimental data.

Figure 3. Experimental and simulated PER–SNR curves after calibration.

As a last observation, we point out that the NIST error
model is based on different functions depending on the specific
modulation adopted for the transmission, i.e. BPSK, QPSK,
16–QAM and 64–QAM. To ensure readability, in Fig. 3 only
two curves have been presented, representative of the first and
last modulation schemes, respectively. However, the calibration
phase has been conducted for all the modulation schemes, with
analogous results. For this reason, it is possible to conclude
that this particular calibration of the OMNeT++ NIST error
model is rather accurate, allowing to run meaningful simu-



lations providing packet loss performance representative of a
real environment.

IV. A new RL–based RA policy based on SNR knowledge
The RLRA algorithm addressed in Section II-B has been

hence properly modified to take into account the channel
behavior by means of the perceived SNR level. This value
is used to properly modify States, Actions, and the Rewards
given to the agent by the Markov Decision Process.

Specifically, States (8 are defined considering i) the SNR, ii)
the chosen Rate and iii) the frame loss rate ';>BB . The SNR is
divided into 6 different regions (#'_!8 , whose width is 5 dB,
while the range of ';>BB is divided in 10 regions ;>BB_!8 , as
described in Fig. 4. Rates A8 are indexed, for simplicity, using
the Modulation and Coding Scheme notation ("�(8) from 0
to 7, corresponding to 6 Mbps and 54 Mbps, respectively.

SNR (dB)

Rloss (%)

SNR_Li = 0 SNR_Li = 1 SNR_Li = 2 SNR_Li = 3 SNR_Li = 4 SNR_Li = 5

loss_Li = 0 loss_Li = 1 loss_Li = 2 loss_Li = 3 loss_Li = 4 loss_Li = 5 loss_Li = 6 loss_Li = 7 loss_Li = 8 loss_Li = 9

0

10

10 20 30 40 50 60 70 80 90 100

15 20 25 30 SNR>30SNR<10

Figure 4. SNR and ';>BB discretization.

Those three terms are then suitably combined, giving rise
to 480 different states (8 . Each state have been then univocally
indexed by means of Eq. (3).

(8 = ;>BB_!8 + "�(8 ∗ 10 + (#'_!8 ∗ 80 (3)

Rewards function has been adapted as in Eq. (4) to take into
account the SNR level in the RA scheme, in order to provide
a better reward to actions that increase the rate when the SNR
is high (channel in a good condition), and vice-versa.

'C+1 = V · (−';>BBC+1 + ';>BBC )

+ (1 − V) · '0C4C+1 − '0C4C
'0C4C+1 + '0C4C

· (#'C

40
− 1;

(4)

As far as Actions are concerned, two different algorithms
have been developed.

1) RLRA-SNR: This first and simpler algorithm defines 8
different actions �C corrensponding to the specific rate chosen
at the instant C for next step, that is �C = 0 (which corresponds
to AC+1 = 6 Mbps) to �C = 7 (AC+1 = 54 Mbps). RLRA-SNR,
hence, does not differentiate between the first transmission
attempt and the possible retransmissions. Indeed, each packet
retransmission is associated to a new chosen Action.

2) RLRA-SNR-RC: The second algorithm, conversely, aims
at providing a comprehensive prediction of the whole frame
transmission process including also eventual retransmissions
due to bad channel conditions. Specifically, RLRA-SNR-RC
determines two different rates to be used for the packet trans-
mission, namely AC and AC+1 with AC+1 ≤ AC , and performs =C
and =C+1 retransmission attempts with the first and the second
rate, respectively. The algorithm further defines a maximum
number of transmission attempts =<0G , performing the remain-
ing =<0G −=C −=C+1 retransmissions at the minimum available

rate. All the possible Retransmission Chains (RC) resulting
from the aforementioned parameters can be clearly computed
in advance to avoid any computation load at runtime.

V. Assessment of the proposed algorithm
A. Implementation details
The two proposed RA algorithms, namely RLRA-SNR and

RLRA-SNR-RC, have been implemented within the IEEE
802.11 Data-Link Layer model of OMNet++.
As described above, RLRA-SNR-RC depends on a set of

parameters, whose choice impacts on its behavior. Firstly, with
the 8 available trasmission speeds of IEEE 802.11g and the
constraint AC+1 ≤ AC we clearly obtain 28 different Actions.
A RC is then associated to each action. To this purpose, in

our simulation assessment we fixed =<0G = 8, and imposed
=C = 3 for AC at the higher rates ("�( = 6,7), and =C+1 =
2 for AC+1 at the lower "�( = 1,2,3,4,5. With the proposed
choice of parameters the algorithm tends to trade-off between
the throughput maximization and the reliability. Although the
analysis of different settings, for instance more conservative
choices to maximize reliability, is definitely an important topic,

Figure 5. SNR vs Chosen Rate for RLRA–SNR, V = 0.45.

Figure 6. SNR vs Chosen Rate for RLRA–SNR–RC, V = 0.45.



for reason of space we limit here to present the results obtained
with the aforementioned values.

To provide an immediate picture of the two algorithms
behavior with respect to different channel conditions, we can
observe Fig. 5 and Fig. 6, relevant to RLRA-SNR and RLRA-
SNR-RC, respectively. The figures shows the pattern of the
chosen transmission rates for both the initial training phase
(indicated with T) and after the best policy (BP) has been
defined. For representation purposes, given the high number
of samples, we applied a moving average filtering on data,
namely Mean Rate (MR). The former shows that, as expected,
higher rates are selected when the channel is in a good state
(high SNR values) and vice-versa. The latter Fig. 6 conversely
highlights how the appropriate structure of the RLRA-SNR-
RC algorithm yields to globally lower rates allowing to achieve
an increased reliability in the communication. As a final
observation, the curves relevant to the training phase are
characterized by a rather unsteady behavior, since all the
possible actions and states need to be tested.

B. Simulations Outcomes
We set up a simulation where a total of 100.000 packets

are exchanged between the two stations in Fig. 2, and each
packet carries a payload of 50 Bytes, a typical length for time-
critical real-time measurement systems. The two nodes moves
within the environment: in the first period of time they are
in plain line of sight, with a good channel status, whereas
in the second part, an obstacle starts hindering the line of
sight path, increasing the path loss and worsening the SNR.
The performance index considered in this study is the end-
to-end delay, a typical indicator for time-critical or real-time
networks. The assessment of the two proposed algorithms is
carried out as a comparison of their performance with those
obtained by other known RA startegies. In particular, in this
preliminar analysis we will consider:

1) RSIN (Section II-C);
2) RL–based RA algorithm (RLRA, Section II-B);
3) RL–based RA algorithm with SNR (RLRA-SNR, Sec-

tion IV-1);
4) RL–based RA algorithm with SNR and Retransmission

Chains (RLRA-SNR-RC, Section IV-2).
The outcomes obtained from a first set of simulations have

been reported in terms of experimental cumulative distribution
function (ECDF) of the end-to-end delay in Fig. 7. A more in-
depth analysis of the outcomes in terms of number of received
packets, ';>BB and end-to-end delay statistics can be found in
Table I.

The analysis of Fig. 7 allows to observe that, as already
expected from the previous Fig. 6, RLRA-SNR-RC has a
more conservative behavior and tends to chose lower rates
with respect to both RSIN and RLRA-SNR, hence providing
slightly higher end-to-end delays. Moreover, this algorithm
also presents a steeper curve, indicating that it is able to settle
at the suitable rate faster than the other algorithms.

Table I provides some more insights. Importantly, all the
algorithms adopting a measurement of the SNR are able,

Table I
Simulation results

Received Delay (ms)
Algorithm packets ';>BB (%) Mean Std. Dev.

RSIN 82858 17,142 8,407 93,511
RLRA 78835 21,165 15,327 98,162
RLRA–SNR 83494 16,506 4,106 87,272
RLRA–SNR–RC 83426 16,574 4,338 90,944
RLRA–SNR (T) 80868 19,132 7,536 90,528
RLRA–SNR–RC (T) 82472 17,528 8,887 93,340

as expected, to perform better than RLRA, which instead
learns from the past transmission history. This applies both in
terms of average end–to–end delay and standard deviation, and
allows to conclude that the accurate knowledge of the channel
status enables more appropriate decisions on the transmission
rate yielding to an improved determinism. Another significant
result is that both RLRA–SNR and RLRA–SNR–RC performs
better than RSIN, indicating their ability to find a better trade
off between the reliability (i.e.minimization of the loss) and
the use of high transmission rates. Moreover, RLRA–SNR and
RLRA–SNR–RC provides rather similar performance, with
RLRA–SNR showing a slightly lower average and standard
deviation than RLRA–SNR–RC, mostly thanks to the higher
adopted rates.
Finally, the last two rows of Table I reports the network

performance during the training phase of both the proposed
algorithms. As expected, the performance during this phase
are generally worse than those obtained using the Best Policy
c. Clearly, this turns out to indicate that the training activity
of our RL algorithms, necessary to the define the final best
policy, has been effective.
Another interesting outcome from this simulation study is

relevant to the average throughput that the different algorithms
allow, which is represented in Fig. 8. While both RSIN
and the proposed RL-based algorithms are all able to face
effectively the channel impairments due to the obstacle, it can
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Simulated End to End Delay [ms]
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Figure 7. Experimental Cumulative Distribution Function for the E2E Delay.



Figure 8. Comparison of the Mean Throughput of different RA techniques.

be observed that RLRA–SNR and RLRA–SNR–RC perform
slightly better in terms of throughput. This means that, given
the small payloads used in the considered scenario, the RL-
based algorithms experience a lower number of packet losses.

Finally, this preliminary study allowed to draw some further
conclusions. On the one hand, the computational effort, at run
time, required by the proposed algorithms is low compared
to that of RSIN, since the latter need to periodically run an
optimization problem and update the LUT while the RL–based
algorithms directly use the Best Policy. On the other hand, the
proposed algorithms are intrinsically able to handle payload
variations, whereas RSIN, in those cases, need both an updated
PER–SNR map for the new payload length and to run the
optimization problem anew.

VI. Conclusions and Future Directions of Research

In this article, we presented a novel rate adaptation strategy
for Wi–Fi based on a reinforcement learning approach, and
targeted to the need of real-time measurements in industrial
environments. This RA algorithm is based on a reinforcement
learning approach, where the agent learns how to perform
an effective RA through channel sensing, by means of SNR
measures. Two different versions of the algorithm have been
proposed, that differ for the type of actions taken at each
specific state, namely RLRA–SNR and RLRA–SNR–RC. The
latter, in particular, is based on the definition of a Retransmis-
sion Chain, hence specifically managing the retransmissions.

The performance assessment has been carried out by means
of simulations, exploiting the widespread OMNeT++ simula-
tor. Nevertheless, to provide meaningful outcomes, represen-
tative of realistic situations, we have proposed a calibration
phase for the simulation models, exploiting experimental data
where the channel behavior has been measured.

Simulation results are encouraging, since on the one hand
the RL-based approach revealed effective for RA purposes
and, on the other hand, the exploitation of SNR measurements

ensures to better adapt to channel conditions, resulting in lower
end-to-end delay average and standard deviation.
Given the very encouraging results, the current preliminary

work opens up to several future analysis. In particular, the
RL–based algorithms should be implemented and assessed in
a wider and more complex network setup to tests the algo-
rithms capabilities in critical working conditions. Moreover,
an extensive experimental campaign needs to be deployed, to
validate the proposed solutions on a real experimental setup,
and to better estimate their computational overhead.
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