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Abstract
Networks are ubiquitous tools that model many real world systems, ranging
from academic collaborations to online markets. A massive amount of data
is produced everyday from many systems that can be modeled through the
network paradigm. �e �eld of data mining aims at analyzing networked
systems to extract meaningful pa�erns, to characterize the behaviour, and
enhance our comprehension of the complicated systems being anayzed. Pat-
terns play fundamental roles in de�ning important primitives that are used
in exploratory analyses and speci�c applications to be�er understand net-
works. Modern systems, additionally to the network structure contain richer
information about the timing of the interactions over the network, these net-
works are called temporal networks. Given the richer structure of temporal
networks, novel pa�erns and primitives based on such pa�erns have been
introduced in the �eld of data mining. Unfortunately, computing pa�erns
on temporal networks is o�en a really hard and challenging task due to the
more complicated structure of such networks and their pa�erns. In this the-
sis we develop e�cient and rigorous algorithms for several primitives based
on the computation of di�erent pa�erns in large temporal networks.

�e �rst pa�erns we consider are temporal motifs. A temporal motif is
a small pa�ern de�ned by a small topology, capturing the function of the
pa�ern, e.g., on a message network if such topology is a triangle then it
captures the communication pa�ern between three users, and an ordering
of its edges, that captures the dynamics of the topology over the temporal
network. Analysing temporal motifs in temporal networks is a really chal-
lenging task, with the problem being NP-Hard in its general formulation. In
this thesis we consider two di�erent primitives based on such pa�erns.

We �rst develop exact and approximate algorithms for obtaining a count
of an arbitrary temporal motif in a temporal network. Our algorithms are
based on collecting small subnetworks of the input temporal network, and
carefully combining the counts of the occurrences of the motif in such sub-
networks. �e exact algorithm combines the counts over subnetworks de-
�ned by a cover of the timeline of the temporal network, leading to a really
scalable and e�cient algorithm for computing exact counts. �e approxi-
mation algorithm we develop uniformly samples small subnetworks of the
input network, and weights occurrences of the temporal motif in the sam-
ples to obtain unbiased estimates of the motif count. We then show bounds
on the number of samples for our sample algorithm to concentrate within
desired accuracy with �xed probability. We then perform an extensive ex-
perimental evaluation to show that our algorithms improve over existing
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state-of-the-art algorithms, providing therefore practical algorithms to ad-
dress the computation of the count of a temporal motif over large temporal
networks containing up to billions of temporal edges.

�enwe propose a novel problem of computing simultaneously the counts
of multiple temporal motifs, all sharing the same common static topology.
�is problem is motivated by the fact that the ordering of a temporal motif
cannot o�en be known a priori with high accuracy, especially in exploratory
analyses. We then propose a randomized approximation algorithm to obtain
high-quality approximation of all the temporal motifs addressing the novel
problem introduced. Our sampling algorithm is based on sampling tempo-
ral edges on the static graph associated to the temporal network, identify-
ing and weighting opportunely the occurrences of the motifs containing the
sampled edge, and obtaining unbiased estimates to the counts of all motifs.
We show bounds on the number of samples of the proposed algorithm to
obtain concentrated estimates. We then perform a large experimental eval-
uation to show how such algorithm can be used to address the problem of
obtaining the counts of all the motifs mapped on the same static topology,
improving signi�cantly existing state-of-the-art algorithms.

�e second type of pa�erns we consider in this thesis are temporal paths
and walks, such pa�erns account for the connectivity on temporal networks,
both structurally and temporally. �ese pa�erns are used to de�ne an im-
portant primitive on temporal networks, the temporal betweenness central-
ity. Such centrality measure assigns to each node a value that is based on
the fraction of optimal temporal paths (or walks) using a speci�c node, and
nodes with higher temporal betweenness values are more central in spread-
ing processes over the temporal network. We therefore address the problem
of the e�cient computation of the temporal betweenness centrality of the
nodes in temporal networks. To solve this problem we develop a sampling-
based approximation algorithm providing rigorous guarantees on its output.
Our algorithm is based on sampling pairs of nodes and computing all the op-
timal paths (or walks) connecting the sampled pairs. We then use advanced
tools from concentration theory, based on the empirical values of the esti-
mates obtained, to provide high-quality probabilistic guarantees on the esti-
mates computed by our algorithm. We empirically show how the proposed
algorithm achieves tight theoretical guarantees and signi�cantly improves
the scalability and the resources used compared to the state-of-the-art exact
algorithm, enabling novel analyses that were previously unpractical.
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Chapter 1

Introduction

An enormous amount of data is produced everyday, and the growth of such
volume of data is increasing at an exponential rate. Many systems widely
spread in our society and most of the actions we perform on a daily ba-
sis contribute to such huge data generation. Data Mining is a large area of
research with an important focus on analyzing and extracting meaningful
pa�erns from such large amount of data, a task o�en called pa�ern mining.
�rough the analyses of pa�erns we be�er understand the real-world sys-
tems generating them, and more in general the processes regulating such
complicated systems. Unfortunately, extracting meaningful pa�erns usu-
ally comes at a high-computational price. In fact, given the large amount of
data available, processing and collecting pa�erns may be unfeasible in many
scenarios. One of the major design goals in pa�ern mining is to develop al-
gorithms that can scale their computation to very massive amounts of data,
and are e�cient in computing a solution that can be used for analysis. Such
design goals lead researcher in the �eld of pa�ern mining to rely on approx-
imate solutions that enable most of the algorithms being both scalable and
e�cient. An approximate solution, to be of practical interest, should also
provide rigorous guarantees on the quality of its approximation, i.e., quan-
tify how far from the optimum such solution is. In this work we will develop
algorithms for data mining problems guided by the above design challenges.

In data mining there are many structured types of data, for which ob-
taining the respective pa�erns is really important and challenging, and net-
worked data can be identi�ed as one of the most important. Informally, net-
works are models where actors in the system are represented as nodes, e.g.,
users in a social network, and their actions are represented as edges between
pairwise nodes, e.g., a friendship over such social network. Such general
representation model captures most of the real-world systems we may want
to study, such as web markets, social networks, road networks, biological
networks, etc. �anks to the analysis of the interesting pa�erns of a net-
work we are able to identify objects that contribute and regulate functions
over the speci�c network (e.g., user behaviours or in�uential users). �ere
are many possible de�nitions of interesting pa�erns when analyzing net-
works, and small structures denoted asmotifs and paths are among the most
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important pa�erns used for analyses over networks. Motifs are small sub-
networks speci�ed by a set of nodes (usually smaller than ten) that capture
a speci�c function of the network to be studied. For example, in biological
networks motifs can capture molecular interactions, therefore, by counting
motifs we can identify if a given set of reaction among pairwise molecules
occurs frequently or not in the network, and this count can provide signi�-
cant insights on the biological system that the network is modelling. Since
each motif is associated to a speci�c function of the network, in many appli-
cations we can be given a set of motifs and the algorithm is required to count
the occurrences of each motif to capture multiple functions of the network.
Many algorithms have been devised to address such counting problems for
large networks, both exactly and approximately and under many di�erent
constraints, highlighting both the importance of the problem for the data
mining community and the technical challenges in addressing this problem
in light of the design goals previously discussed. Paths are used to capture
reachability in networks, and are among the most intuitive and fundamental
pa�erns to be analyzed over networks. A path between a user to another
user means that information propagated between the two users in a given
network. �e analysis of paths �nds many applications. In particular paths
can be used to identify important nodes in networks by opportunely de�n-
ing scores, known as centrality measures, taking into account the number
of paths in networks. As for motifs, there exists a huge literature in e�-
cient and rigorous algorithms for computing paths and centrality measures
for networks. Unfortunately, given the increase in complexity of the avail-
able data the network model is not su�ciently powerful to capture many
aspects of the real-world systems we want to analyze, and therefore most of
the algorithms wementioned cannot be employed when such more complex
information is available.

Temporal networks have been proposed in literature as a more powerful
model to complement the (static) network model we presented, when tem-
poral information is available. Informally, temporal networks account for
the timing of occurrence of the events, modeled by the edges, i.e., each edge
is assigned a timestamp, representing the instant at which such event oc-
curred. As for static networks, temporal networks can be characterized by
analyzing the temporal pa�erns they contain. Temporal pa�erns enable the
analysis of temporal networks by taking into account the timing of occur-
rence of events, hence capturing and characterizing the spreading process
regulating the network. Temporal dynamics in fact play a fundamental role
when using temporal pa�erns to study temporal networks, since they can
provide a wider view and novel insights about many systems. As already
discussed, both motifs and paths are of fundamental importance for pa�ern
mining on static networks, therefore their extension naturally emerged also
for temporal networks.

Temporal Motifs are temporal sub-networks that can be used to be�er
characterize the dynamics and high-order interactions spreading over a tem-
poral network. As for static networks they �nd application in many scenar-
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ios, from social network analysis to fraud detection, but in addition they
also �nd novel applications thanks to the additional information they are
able to capture, e.g., identifying short burst user behaviours. �e analysis of
temporal motifs in temporal networks is in fact able to highlight the impor-
tant dynamics occurring over the network and distinguish how such dynam-
ics di�er across many networks. For example, in communication networks
temporal motifs allow to distinguish between di�erent ways to exchange
messages in time, capturing user behaviour and the type of communication.
Such precious information comes at a higher price, since identifying such
pa�erns in temporal networks is really costly especially when compared
with static networks, posing a major challenge for analyses based on such
pa�erns. Additionally, large temporal networks are really common nowa-
days with more than tens or even thousands of billion edges networks, ren-
dering such task impractical in most scenarios. Another issue not enabling
the analysis of such pa�erns is that most of the existing algorithms devel-
oped for the static network scenario cannot be adapted to work on temporal
motifs given their more complicated structure. Given the importance of the
problem of studying temporal motifs and the challenges we discussed, in
this work we developed e�cient and rigorous scalable algorithms for ana-
lyzing temporal motifs in large temporal networks to bridge the gap in the
existing literature. Our contributions for this problem are as follows:

• In Chapter 3 we address the problem of computing the count of an
arbitrary temporal motif in a large temporal network. We devise al-
gorithms based on partitioning the timeline of events of the tempo-
ral network in small intervals, and opportunely combining the counts
obtained in each subnetwork de�ned by an interval to obtain the �-
nal output. In particular, we develop an exact framework, based on
a smart partition of the timeline of events of the temporal network.
Such framework is embarrassingly parallelizable and can signi�cantly
speed up any inherently sequential exact algorithm. We then develop
PRESTO, a sampling-based approximation algorithm. PRESTO collects
small subnetworks of the input temporal network according to two
di�erent sampling strategies on intervals over the timeline of events
of the temporal network. On these subnetworks PRESTO carefully
weights each instance of the temporal motif to an obtain unbiased
estimate of the desired count. We then use tools from concentration
theory and variance-aware tail bounds to show upper bounds on the
number of samples needed by PRESTO to achieve the desired accu-
racy, therefore providing high-quality probabilistic guarantees. We
then perform an extensive empirical evaluation to show the improve-
ment of our algorithms over the existing state-of-the-art techniques
for solving such problem. In particular, we evaluate both the exact
and approximate algorithms we developed on very large networks
and show they are able to substantially improve the scalability and
the e�ciency of the computation of temporal motif counts while pro-
viding rigorous guarantees on their output. A preliminary version of
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this work was published in [Sarpe and Vandin, 2021a].

• Complementary to counting one single motif, in Chapter 4 we pro-
pose a novel problem not previously addressed in the literature for
temporal networks. In such scenario, we propose to compute all the
counts of the temporal motifs sharing a common underlying (static)
topology. �is is inspired by the problem of counting multiple motifs
in static networks, but such problems takes advantage of the structure
of temporal motifs. In fact, temporal motifs, informally, are de�ned by
a topology and the dynamics that the temporal motif is capturing. In
many scenarios, knowing the topology is trivial (e.g., a triangle or a
square) but identifying the correct dynamics to be speci�ed o�en is
associated to some prior knowledge that may not be easily available.
�erefore we propose the novel problem of computing all the counts
of the temporal motifs mapping on the same topology, hence we only
require the user to specify a static topology of the temporal motifs of
interest. To address such problem we propose ���N, an approxima-
tion algorithm based on sampling edges on the static projection of the
temporal network according to di�erent sampling distributions. Using
tail bounds accounting for the variance of the variables used for the �-
nal estimation we are able to bound the number of samples needed by
our algorithm ���N to concentrate within given accuracy and desired
con�dence. We then show in practice with an extensive experimental
evaluation that our algorithm is able to improve over existing state-of-
the-art algorithms for estimating single temporal motif counts when
executed on all the motifs of interest in the novel problem de�ned.
�is work appeared in [Sarpe and Vandin, 2021b].

�e other pa�erns considered in this work are temporal paths and walks.
Temporal paths are extended from static paths by taking into account the
temporal information of the edges in a temporal network (and a temporal
walk is a temporal path where nodes can be visited multiple times), that is,
for the information to �ow on a path, all edges on the path should occur at
increasing time steps. A temporal path (or walk) can capture the information
spreading across each sequence of edges, and this �nds many applications
such as de�ning centrality measures over nodes of the network. A centrality
measure captures the centrality of a node with respect to some topologi-
cal (and temporal) aspect of the network. Intuitively, highly central nodes
have a role in the network that is more important than those with a small
centrality value. Temporal betweenness centrality is based on the fraction of
optimal temporal paths (or walks) �owing through a speci�c node. While
many practical algorithms exist for static networks, this problem was not
practically addressed on temporal networks due to the theoretical complex-
ity of such task, therefore preventing the analyses of betweenness central-
ities of many temporal networks. To this end our contribution to improve
the state-of-the-art is as follows:

• In Chapter 5 we propose ONBRA, an e�cient approximation algo-

4



rithm based on sampling. ONBRA can be used on many de�nitions of
temporal betweenness centrality according to how the optimal tempo-
ral paths (or temporal walks) are de�ned, since in temporal networks
many optimality criteria can be adopted. �e sampling strategy we
propose is based on a previously proposed strategy for static graphs,
but adapting such approach on temporal networks poses novel chal-
lenges to be addressed. In particular, we develop novel algorithms
working on temporal betweenness centrality for shortest temporal
paths, and shortest � -restless temporal walks, i.e., two optimality cri-
teria on which the temporal betweenness centrality can be de�ned.
Additionally, ONBRA can be used on many other optimality crite-
ria. ONBRA provides tight bound on the approximation guarantees
it achieves, to obtain this results, we use bounds based on the em-
pirical values of the estimates computed to bound the maximum er-
ror obtained by ONBRA when executed with a �xed sample size. We
then perform an extensive experimental evaluation and we show how
ONBRA enables the practical rigorous estimation of temporal between-
ness centrality values in temporal networks. In particular, we show
that our algorithm provides tight bounds of the estimates computed
and that it can be used to obtain high-quality outputs requiring a frac-
tion of time and memory compared to the existing state-of-the-art ex-
act algorithm. �is work appeared in [Santoro and Sarpe, 2022].

�e organization of the rest of this thesis is as follows. In Chapter 2 we
discuss basic de�nitions and theoretical tools that will be used throughout
the development of this thesis. In Chapter 3 we discuss exact and approxi-
mate algorithms for obtaining the count of a temporal motif in a temporal
network. In Chapter 4, we introduce a novel problem about counting mul-
tiple temporal motifs in a temporal network under speci�c constraints, and
we present ���N an approximation algorithm to address such problem. In
Chapter 5 we address the problem of obtaining high-quality estimates of
the temporal betweenness centrality values of all the nodes in a temporal
network, and we present ONBRA, our approximation algorithm to address
such problem. Finally in Chapter 6 we discuss the achievements obtained in
this work and conclude with some �nal remarks and future directions.
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Chapter 2

Preliminaries

In this chapter we will present the fundamental concepts and de�nitions
used throughout this thesis. We start in Section 2.1 by introducing networks,
we �rst discuss de�nitions for static networks in Section 2.1.1, and then
present how these are adapted to temporal networks in Section 2.1.2. In
Section 2.2 we discuss the general framework that will be used to derive
estimates in our sampling algorithms. Finally, in Section 2.3 we discuss the
main tools from concentration theory that will be employed for the analyses
of our algorithms. We conclude summarizing the notation in Section 2.4.

2.1 Preliminaries on Networks
In this thesis we will focus on the development of data mining algorithms
for problems on temporal networks, therefore graphs or networks1 play a key
role in the development of this work. We start by �rst presenting notation
and de�nitions related to static networks, in Section 2.1.1, and we discuss
de�nitions related to the task of counting motifs and �nding the between-
ness centrality values of the various nodes. �en in Section 2.1.2 we extend
such de�nitions to temporal networks, namely introducing temporal motifs
and temporal betweenness centrality. With this approach, the reader can ap-
preciate the main di�erences and the additional complexity that temporal
networks introduce over static networks.

2.1.1 Static Networks
De�nition 2.1. A directed (static) network is a pair G = (VG, EG) where
VG = {�1, . . . ,�n}, |VG | = n and EG = {(�i,�j) : �i , �j,�i,�j 2 VG}. Such
network is said to be undirected if EG = {{�i,�j} : �i , �j,�i,�j 2 VG}.

In the above, VG is o�en denoted as the set nodes of the network, and
EG as the set of (un)directed edges. Given that directed networks are a more

1While graphs are o�en used to denote undirected networks, in this thesis we will use
the terms graphs and networks interchangeably.
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general representation we will be considering such networks in the follow-
ing discussion. Note also that it is always possible to represent an undirected
network with a directed one by adding two edges, namely (u,�) and (�,u)
for each edge {u,�} 2 EG .

2.1.1.1 Subgraph Isomorphism and Motifs

Given a graph G = (VG, EG) we say that G0 = (V 0, E0) is a subgraph of G,
denoted with G0 ✓ G, if it holds that V 0 ✓ VG, E0 ✓ EG : 8e = (u,�) 2
E0,u,� 2 V 0.

De�nition 2.2. Given a set V 0 ✓ VG we say that G[V 0] = (V 0, E0) is the
induced subgraph by the set of nodesV 0 if E0 ✓ EG,8e = (u,�) 2 E0 , u 2
V 0,� 2 V 0.

Similarly, given a set E0 ✓ EG of edges we say that G[E0] = (V 0, E0)
is the induced subgraph by the set of edges E0 if V 0 ✓ VG,8e = (u,�) 2
E0 , u 2 V 0,� 2 V 0. A fundamental problem in graph-mining is to
identify graphs that are similar in their topological structure, as captured by
network isomorphism.

De�nition 2.3. Given G1 = (V1, E1) and G2 = (V2, E2) we say that the two
networks are isomorphic (denoted with G1 ⇠ G2) i� there exists a bijection f
on the nodes (i.e., f : V1 7! V2) such that:

e1 = (u,�) 2 E1 , e2 = (f (u), f (�)) 2 E2 8e1 2 E1, e2 2 E2

Given two graphs G1 and G2, without assuming any particular topol-
ogy of such graphs (e.g, planarity [Hopcro� and Wong, 1974]), determining
if G1 ⇠ G2 is a really challenging problem that cannot be easily solved on
large networks2. A di�erent problem, as important and closely related to the
graph isomorphism, is the subgraph isomorphism problem that asks, given a
target graphG1 and a query graphG2 if there exists a subgraphG01 ✓ G1 (of-
ten required to be induced by its set of nodes) such thatG01 ⇠ G2. �is prob-
lem is known to NP-hard in its general formulation [Cook, 1971], while is
polynomially solvable for speci�c classes of target (e.g., see thework by Epp-
stein [2002]) or query (e.g., see the work by Williams et al. [2014]) graphs.
�is problem is of practical interest since in many applications query sub-
graphs capture the function an analyst may want to identify in the given
target graph. For example, in networks representing molecular interactions
a query graph (ormotif) withk nodesmay represent a target reaction among
a �xed set of k molecules of the network. In addition to identifying if there
exists a subgraph that interacts as captured by the query graph, it is usu-
ally of practical importance to count how many interactions shaped by the
motif’s structure occur over the network, as captured by the following def-
inition.

2To state of the art, the problem is still not known to be NP-complete [Köbler et al.,
1993]
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De�nition 2.4. Given an input graph G = (VG, EG) and a query graph, or
motif, Q = (VQ, EQ ), we say that CQ = |{G[V 0] : 9V 0 ✓ VG,G[V 0] ⇠ Q}| is the
count of the motif Q in G.

Di�erently from existing literature, in this chapter we consider as mo-
tif any subgraph isomorphic to the query graph. In existing works such
as in [Milo, 2004] instead, a subgraph is �agged as a motif only if its count
is found to be statistically signi�cant with respect to a particular random
model. �e counts of motifs can be used to characterize networks in many
di�erent scenarios [Ribeiro et al., 2022] and de�ne important scores used to
compare networks across di�erent domains (e.g., clustering coe�cient and
its high-order extensions [Yin et al., 2018]). To address the counting problem
many algorithms have been proposed, exact algorithms usually require ex-
ponential time while approximate approaches can achieve be�er trade-o�s
between time and accuracy [Ribeiro et al., 2019].

2.1.1.2 Paths and Betweenness Centrality

Metrics that enable the comparison between di�erent networks or be�er
understanding of a network’s structure are key tools for data mining on net-
works. A family of important metrics are centrality measures for nodes, i.e.,
functions that assign to each node a score capturing its centrality in the net-
work. Betweenness centrality [Freeman, 1977] is one of the most important
centrality measures, based on the notion of paths,

De�nition 2.5. Given a graphG = (VG, EG), a pathP = he1 = (u1,�1), . . . , e` =
(u`,�`)i is a sequence of edges ei 2 EG, i 2 [1, `] s.t., ui = �i�1, i 2 [2, `].

In the above path P is also said to go from u1 to �` . If the length ` of the
path P is minimum, i.e., öP0 fromu1 to�` of length `0 < `, then P is said to be
a shortest path from u1 to �` . Given a path P = he1 = (s,�1), . . . , e` = (u`, z)i
we say that a node � 2 V is internal to P if it holds that 9ej, j 2 [1, `] : ej 2
P,� 2 ej,� , s,� , z. Given a pair of nodes s, z 2 V , s , z we will denote
with �s,z the number of shortest paths from s to z. Similarly, given a node
w 2 V we will denote with �s,z(w) the number of shortest paths from s to z
to whichw is internal to.

De�nition 2.6. Given a networkG = (VG, EG), the normalized betweenness
centrality of a nodew 2 VG is de�ned as,

b(w) =
1

n(n � 1)

’
s,z2V 2:s,z

�s,z(w)

�s,z
.

Such statistic can be computed exactly for every node in the network in
polynomial time in the size of the network using Brandes [2001] (inO(n |EG |)
time on unweighted networks).
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2.1.2 Temporal Networks
Temporal networks, have been proposed in literature as extension of static
networks. Since there are many ways of de�ning the temporal proper-
ties of a graph, many models have been proposed in literature [Holme and
Saramäki, 2012]. In this work we will focus on the model that arguably is
the most used in practice, providing a �ne-grain representation of temporal
properties, which can be derived from the general model of link streams in-
troduced by Latapy et al. [2018]. We therefore present de�nitions related to
the model we adopted.

De�nition 2.7. A temporal network T is a pair T = (VT , ET ) where VT =
{�1, . . . ,�n}, |VT | = n and ET = {(u,�, t) : u,� 2 V ,u , �, t 2 R+}, |ET | =m.

In this work we will always consider temporal networks as directed net-
works. Extending some de�nitions already presented: given a temporal net-
workT = (VT , ET )we say that a temporal networkT1 = (V1, E1) is a temporal
subnetwork of T (denoted with T1 ✓ T ) if V1 ✓ VT , E1, ✓ ET : 8e = (u,�, t) 2
E1 , u,� 2 V1. We de�ne the induced subnetwork T [V 0] of T by a set of
nodes V 0 ✓ VT as T [V 0] = (V 0, E0), E0 = {(u,�, t) : u 2 V 0,� 2 V 0} ✓ ET .
Given a temporal networkT , it is possible to obtain a static representation of
such network ignoring the temporal information of its edges,

De�nition 2.8. Given a temporal networkT = (VT , ET ) we denote withGT =

(VT , EGT ) its projected static network where EGT = {{u,�} : 9(u,�, t) 2 E _
(�,u, t) 2 E}.

Note that in the above de�nition in addition to the timing of the events
we also ignore the directions of the edges. It is worth mentioning that GT

is o�en a lossy representation of the network T , since it ignores the timing
of the events in the entire network. �erefore, pa�erns de�ned on temporal
networks need to account for the timing of the various events of the net-
work, as described in the next sections.

2.1.2.1 Temporal Motifs

As for static networks where small motifs can be used to characterize im-
portant network properties, in temporal networks temporal motifs can be
used to study and be�er understand the real world networks we analyze
through such pa�erns. Given that temporal networks are richer than static
networks in their model, there are many possible ways of de�ning tempo-
ral pa�ers [Liu et al., 2021]. In this work we considered temporal motifs as
de�ned by Paranjape et al. [2017] that is one of the most used de�nition of
temporal motif in many applications.

De�nition 2.9. A k-node `-edge temporal motif M is a pair M = (K,� )
where K = (VK, EK) is a directed and weakly connected multigraph where
VK = {�1, . . . ,�k}, EK = {(x,�) : x,� 2 VK, x , �} s.t. |VK | = k and |EK | = `
and � is an ordering of EK .
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We brie�y comment the above. Temporal motifs are small pa�erns of
interest to the analyst (i.e, k, `  10 usually). K captures the structure of
the motif through a multigraph, hence it can contain multiple edges be-
tween the same pair of nodes. In addition, since it is a directed graph, it
needs to be weakly connected3. �e ordering � instead captures the tem-
poral dynamics that the motif represents, e.g., if K is a directed path {e1 =
(u,�), e2 = (�,w)}, � can denote a time respecting path i� � = he1, e2i. Note
that a k-node `-edge temporal motif M = (K,� ) is also identi�ed by the
sequence h(x1,�1), . . . (x`,�`)i of ` edges ordered according to � . Temporal
motifs therefore play a fundamental role in characterizing both the struc-
ture and the dynamics of pa�erns to be observed in temporal networks, as
captured by the following de�nition.

De�nition 2.10. Given a temporal network T = (V , E) and � 2 R+, a time
ordered sequence S = h(x01,�

0

1, t
0

1), . . . , (x
0

`,�
0

`, t
0

`)i of ` unique temporal edges
from T is a � -instance of the temporal motifM = h(x1,�1), . . . , (x`,�`)i if:

1. there exists a bijection f : VT [S] 7! VK on the vertices such that f (x0i ) =
xi and f (�0i ) = �i, i = 1, . . . , `; and

2. the edges of S occur within � time, i.e., t 0` � t
0

1  � .

In the above we slightly abused the notation by denoting with S both the
sequence of edges and the set of edges obtained from such sequence, and
T [S] denotes the nodeset of the temporal subnetwork induced by S . Note
that a � -instance captures both the topology of the motif (imposing the con-
straint that the subgraph induced by S must be isomorphic toK) but also the
dynamics of the motif according to � (edges are mapped to the multigraph
only if they respect � ). �e second constraint in De�nition 2.10 requires all
edges of the instance to occur within � -time: this a common constraint to
explore temporal correlation and is a parameter set by the analyst related to
how fast information spreads in the network being analyzed.

De�nition 2.11. Let T be a temporal network, and M a temporal motif, � 2
R+. �e countCM (� ) of a temporalmotifM isCM (� ) = |{S : S is a � -instance ofM
in T }| .

In this thesis we are interested in �nding e�cient algorithms for count-
ing temporal motifs, i.e., �nding the value (or an accurate estimate) ofCM (� ).
As for static networks, obtaining such value is generally hard. One impor-
tant and interesting result about the complexity of such task is that there
are motifs that can be counted in polynomial time on static networks, while
identifying their respective temporal motif in temporal networks becomes
NP-Hard [Liu et al., 2019]. Related to the task of counting motifs, in Chap-
ter 3 we will discuss algorithms for both exact enumeration and rigorous

3Recall that a directed (multi)graphK is said to be weakly connected if8(u,�) 2 V 2
K
,u ,

� if we consider the undirected multigraph ofK obtained by ignoring edge directions, there
should exists a path between u and � in such graph.
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estimation of a count of a motif in temporal networks. In addition, in Chap-
ter 4 we will discuss a randomized approximation algorithm for estimating
multiple temporal motif counts in temporal networks, under constrained
topologies of such motifs.

2.1.2.2 Temporal Betweenness Centrality

As for static networks, the importance of nodes in a network can be identi-
�ed through the analysis of centrality measures. In this thesis we are par-
ticularly interested in the temporal betweenness centrality. As we will see,
de�ning such score is much more challenging in temporal networks than
in static networks. We start by introducing the de�nitions of temporal path
and temporal walk.

De�nition 2.12. Given a temporal networkT , a temporal path P is a sequence
P = he1 = (u1,�1, t1), e2 = (u2,�2, t2), . . . , ek = (uk,�k, tk)i of k edges of T
ordered by increasing timestamps, i.e., ti < ti+1, i 2 {1, . . . ,k � 1}, such that
the node �i of edge ei is equal to the node ui+1 of the consecutive edge ei+1, i.e.,
�i = ui+1, i 2 {1, . . . ,k � 1}, and each node � 2 V is visited by P at most once.
A temporal walk is a temporal path where we drop the constraint of a node
being visited at most once.

Note that in a temporal path we are accounting for the timing of the
various edges of the sequence de�ning the path. While we are requiring the
edges on the above paths (or walks) to be strictly increasing with respect
to their timestamps (i.e., ti+1 > ti, i = 1, . . . ,k � 1), the techniques we will
present can be adapted towork under non-strictly increasing case (i.e., ti+1 �
ti, i = 1, . . . ,k�1) depending on the paths (or walks) considered. As for static
networks, let the �rst node of the path be s 2 V and let the last one be z 2 V ,
we then say that the path goes from s to z. A node is said to be internal to
path if it appears on a edge in P and is di�erent from s or z. In a temporal
network a path or a walk from s to z can be optimal according to di�erent
criteria, as described next,

De�nition 2.13. A temporal path (or walk) P = he1 = (s,�1, t1), e2 =
(u2,�2, t2), . . . , ek = (uk, z, tk)i is said to be:

• Shortest: if k is minimum among all paths (or walks) connecting s to z.

• Foremost: if tk is minimum among all paths (or walks) connecting s to
z.

• Fastest: if tk � t1 is minimum among all paths (or walks) connecting s
to z.

• Shortest � -restless: if given � > 0 it is shortest and tj � tj�1  � , j 2
[2,k].
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Figure 2.1: Optimality criteria for temporal paths from s to z. Starting from
the top, the �rst path is shortest, the second path is foremost, and the last
one is fastest. For � 2 [1, 4) the path on the bo�om is also shortest � -restless,
while for � � 4 the optimal path is the one on the top.

In Figure 2.1 we show an example of such optimality criteria. Given an
optimality criterion OPT and two nodes s, z we will denote with �OPT

s,z the
number of optimal temporal paths (or walks) connecting s to z, and given
a node w 2 VT we will denote with �OPT

s,z (w) the number of optimal paths
(or walks) connecting s to z to which w is internal to. �en we de�ne the
temporal betweenness centrality of a nodew as follows.

De�nition 2.14. Given a temporal network T = (VT , ET ), an optimality cri-
terion OPT over paths or walks, the normalized temporal betweenness cen-
trality of a nodew 2 VT is

b(w) =
1

n(n � 1)

’
s,z2V 2

T :s,z

�OPT
s,z (w)

�OPT
s,z

.

Computing such scores for each node in the temporal network, di�er-
ently from the static case, is challenging [Buß et al., 2020]. Importantly, some
optimality criteria lead to the problem of computing statistics that are #P-
Hard, therefore we will only focus on those criteria leading to polynomial-
time formulations. Interestingly, for some formulations where counting
paths is #P-Hard, counting the corresponding optimal walks leads to poly-
nomial time-solvable formulations [�ejaswi et al., 2020, Rymar et al., 2021],
therefore in such cases we focus on optimal walks. In Chapter 5 we discuss
an approximation algorithm we developed for estimating the betweenness
centrality of the nodes in a temporal network. Such algorithm can be used
for shortest paths and shortest � -restless walks, and it can be adapted to
work under other optimality criteria (e.g., some of the ones here presented),
when they are not #P-Hard computable.

2.2 Sampling Algorithms
In this thesis we will be developing e�cient and rigorous algorithms for sev-
eral counting problems on temporal networks. �e technique we will o�en
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leverage to obtain high-quality approximation algorithms is sampling. Here
we state the general framework that is adapted to the di�erent problems in
the di�erent chapters of this thesis.

In most of the data-mining problems on temporal networks we address,
we are concernedwith identifying a suitable sample spaceX = {x1, . . . , x |X|},
|X| < 1, of objects to be sampled according to a speci�c discrete probability
distribution �. We will be able to frame our estimates as follows. Let f 2 F ,
and 8f 2 F let f : X 7! [a,b] ⇢ R. Let x ⇠� X4, we derive estimates X̂ f (x)
that depend on f (x) and �, denoted by:

X̂ f (x) / (f (x); �) (2.1)

�e way we will sample objects from X (e.g., leveraging on di�erent sam-
pling techniques such as importance sampling [Tokdar and Kass, 2009]), can
change the set F , and how the estimate X̂ f (x) depends on x and �. For ex-
ample, on the problem of counting a single temporal motif we will de�ne the
setX with a suitable set of subnetworks ofT , f will sum over the � -instances
of a sampled subnetwork x 2 X weighting each instance depending on �,
and |F | = 1 since we will be concerned on estimating a single motif count.
On other problems F will be more complicated but still each f 2 F will
be e�ciently computable given an element x 2 X sampled according to the
known � (since samples will be small compared with the entire input space).
According to the sampling strategy we will adopt to collect elements in X,
the distribution � can be di�erent in the problems addressed, but we will
show that the estimator in Equation (2.1) is unbiased with respect to the
desired quantity to be estimated (e.g., counts of temporal motifs or node
centralities).

Assuming that X̂ f is an unbiased estimate of some quantity µ f , i.e.,
Ex⇠�X[X̂ f (x)] = µ f , (e.g., µ f can be a count of a temporal motif M) then
it is straightforward to note that given a sequence of s independent and
identically distributed variables (X̂ j

f )
s
j=1 the sample average X̄ f = 1/s

Õ
j X̂

j
f

maintains the property of being an unbiased estimator of the desired quan-
tity µ f , f 2 F . One important question that we will be interested in an-
swering is how many samples we need to guarantee that our estimates are
well-concentrated. In particular,

• When |F | = 1 we will be interested in ensuring that the quantity
|X̄ � µ | is bounded by some � with high probability.

• When |F | > 1 we will be interesting in bounding:

sup
f 2F

|X̄ f � µ f |

that is a fundamental quantity in concentration and statistical learning
theory, known as supremum deviation.

4�is means that x is sampled from X according to �.
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Depending on the problems we will address we will discuss both algorithms
that compute relative �-approximations, i.e., 8f 2 F |X̄ f � µ f |  �µ f or
absolute �-approximations, i.e. 8f 2 F |X̄ f � µ f |  � , both with probability
greater than 1��,� 2 (0, 1). In some chapters we will be more interested in
characterizing the number of samples s to be collected such that the above
quantities are bounded within the desired � provided by the user. In other
chapters we may be interested in �nding the best � given a �xed sample size.
To deal with all the scenarios mentioned we borrow tools from concentra-
tion theory.

2.3 Concentration Tools
In this section we describe the main tools from concentration theory used
in this thesis. In Section 2.3.1 we discuss the concentration of the estimates
based on the variables X̂ f , f 2 F when |F | = 1, in particular we present
the main concentration inequalities used in the following chapters of this
thesis. In Section 2.3.2 we present how to address the problem of evaluating
the concentration of the estimates when |F | > 1.

2.3.1 Concentration of a Single Function
We now discuss the case |F | = 1, next we will discuss how to extend such
techniques to the case |F | > 1. Given a function� : Ys

7! R+ andX1, . . . ,Xs

i.i.d random variables taking values in Y (in our case Y = [a,b] ⇢ R), in
concentration theory we are interested in bounding the probability of an
arbitrary function� computed over theXi ’s, i.e.,�(X1, . . . ,Xs), of being to far
from its mean µ = EX s⇠Ys [�(X1, . . . ,Xs)]. In this thesis we are interested in�
when such function is simply the sample average., using the notation already
introduced each Xi = X̂ i

f and X = X̄ = �(X1, . . . ,Xs) = 1/s
Õ

i Xi . �erefore
we will be interested in characterizing P[|X � µ | � � ] where usually � = �
or � = �µ. It is not hard to show that such probability will approach 0
as s ! 1, given the central limit theorem and the fact that all quantities
involved are �nite. However, this observation is not useful when we deal
with �nite values of s , i.e., we are interested in the non-asymptotic behaviour
of such estimator. Two important scenarios questions are of interest to this
thesis:

1. Given a con�dence parameter � 2 (0, 1) and an accuracy parameter
� > 0 is there a bound on s such that P[|1/s

Õ
i Xi � µ | � �µ]  �?

2. Given a sample size s and con�dence parameter � 2 (0, 1), is there a
bound � such that P[|1/s

Õ
i Xi � µ | < �] > 1 � �?

�e tools we employ to deal with the above cases, are known as concen-
tration inequalities. We discuss the main tools used in this work and how to
adapt them to the two cases above. We start by stating one of the most used
concentration inequalities, known as Hoe�ding’s inequality:
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Lemma 2.1 ([Hoe�ding, 1963]). Let X1, . . . ,Xs be independent random vari-
ables such that for all 1  i  s , E[Xi] = µ and P(a  Xi  b) = 1.�en

P

 �����
1
s

s’
i=1

Xi � µ

����� � �

!
 2 exp

✓
�

2s� 2

(b � a)2

◆

With such tool we can already provide an answer to the two scenarios
above, in particular:

1. If we �x � = �µ and given � > 0,� 2 (0, 1) we get that if:

s �
(b � a)2

2�2µ2
ln

✓
2
�

◆

then the mean estimator is within �µ from its expectation with prob-
ability > 1 � �,

2. If we �x s,� 2 (0, 1) then we get that with probability > 1 � �:
�����
1
s

s’
i=1

Xi � µ

����� 
r

(b � a)2 ln(2/�)
2s

.

So if we set � to the right-hand side of the above equation we get the
desired bound.

Note that such bounds have a practical impact on the algorithms we will
develop since s in our framework denotes the number of samples we need
to collect in our algorithms. Collecting more samples is usually expensive
and comes at a high price of slowing down the algorithms. �erefore, we are
also concerned in �nding su�ciently good bounds in the above two scenar-
ios, that o�en are far from those provided by Hoe�ding’s inequality. Such
inequality in fact is based on the (rather pessimistic) assumption that the
variance of the variables X1, . . . ,Xs is maximal. It can be proven in fact
that for a random variable taking values in [a,b] its variance is bounded by
(b � a)2/4 (known as Popoviciou’s inequality). Hence if we the variance of
a random variable is signi�cantly smaller than such bound, we can improve
signi�cantly the results based on Hoe�ding’s inequality, as we also discuss
in Chapter 3. �e main tool we will leverage in such scenario is the so called
Benne�’s inequality:

Lemma 2.2 ([Benne�, 1962]). For a collectionX1, . . . ,Xs of independent ran-
dom variables satisfying Xi  M , E[Xi] = µ and E[(Xi � µ)2] = � 2 for
i = 1, . . . , s and for any � � 0, the following holds

P

 �����
1
s

s’
i=1

Xi � µ

����� � �

!
 2 exp

✓
�s

�

B2h

✓
�B

�

◆◆

where h(x) = (1 + x) ln(1 + x) � x,B = M � µ and � = � 2.
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We will also show that such result holds when a good bound on � 2 is
known (in Chapter 3). �e application of the above result to the two sce-
narios we discussed is slightly more involved, therefore we will discuss it in
the chapters where we need to derive the desired guarantees. While some-
times such result may be su�cient to derive sharp guarantees, leveraging on
theoretical upper-bounds on the variance may still result in the bounds ob-
tained through such computation not being tight enough for the estimation
task considered. �erefore, in such cases we may resort on more involved
bounds, taking into account the empirical variance of the variables consid-
ered, known as empirical bounds. Here we state the bound that we will use
in Chapter 5.

�eorem 2.1 ([Maurer and Pontil, 2009]). Let X1, . . . ,Xs be i.i.d. random
variables with values in [a,b] and let � > 0. �e with probability at least 1��
in the vector X = (X1, . . . ,Xs) we have:�����E

"
1
s

s’
j=1

Xj

#
�
1
s

s’
j=1

Xj

����� 
r

2Vs(X) ln 4/�
s

+
7(b � a) ln(4/�)

3(s � 1)
.

where
Vs(X) =

1
s(s � 1)

’
1k<`s

(Xk � X`)
2

2.3.2 Concentration of a Family of Functions
In this se�ing we are given a family of functions F , |F | > 1, and we will
be interested in characterizing how X̄ f , f 2 F concentrates, in particular in
this se�ing we will be concerned in bounding:

P[sup
f 2F

|X̄ f � µ f |  � ].

To achieve the above we can use concentration inequalities for a single func-
tion and combine them with a union bound. Taking for example the bound
of�eorem 2.1, we can extend it to the se�ing above through a union bound
as follows:

Corollary 2.1 ([Maurer and Pontil, 2009]). Let x1, . . . , xs be i.i.d. random
variables with values in X and let � > 0, let F be a family of functions such
that X̄ f 2 [a,b]8f 2 F . �en with probability at least 1 � � in the vector
X = (x1, . . . , xs) for all functions f 2 F we have:

��X̄ f � µ f
�� 

r
2Vs,f (X) ln 4|F |/�

s
+
7(b � a) ln(4|F |/�)

3(s � 1)
.

where
Vs,f (X) =

1
s(s � 1)

’
1k<`s

(Xk,f � X`,f )
2

andXj,f is the estimator in Equation (2.1) applied to the j-th sample xj , f 2 F .
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Table 2.1: Notation table.

Symbol Description

T = (V , E) Temporal network
n,m Number of nodes and temporal edges of T
GT Undirected projected static network of T

M = (K,� ) k-node `-edge temporal motif.
K Multigraph associated to the motifM
� Ordering of the edges of the multigraph K

� Duration limit of � -instances or bound on � -restless walks
Gu[M] Undirected graph associated to K

U(T ,M, � ) Set of � -instances ofM from T
CM Number of � -instances ofM in T
H Static undirected simple graph (i.e., target template)

VH , EH Set of nodes and edges of the target H
CM (e) Number of � -instances ofM containing e 2 GT

pe,p(e) Probability of sampling edge e 2 GT in ���N
C0M Estimate of CM

�,� �ality and con�dence parameters
b(�),� 2 V Temporal betweenness of node � in T

P�1,�2 Temporal path connecting �1 to �2

� †
�1,�2

Number of shortest temporal paths († = sh) or shortest
� -restless temporal walks († = srtw) connecting �1 to �2

� †
�1,�2(�)

Number of shortest temporal paths († = sh) or shortest
� -restless temporal walks († = srtw) connecting �1 to �2
using � on at least one edge.

Note that this may provide a weak guarantee in some applications,
since we are not fully exploiting the structure of the family of functions
F [Boucheron et al., 2013]. With these tools we are able to provide proba-
bilistic guarantees on the estimates provided by our algorithms for several
estimation problems where |F | > 1, such as we discuss in Chapter 4 and 5.

2.4 Notation
Finally, to conclude this chapter we summarize part of the notation we will
be using in this work in Table 2.1.
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Chapter 3

Algorithms for Exact and
Approximate Counting of a
Temporal Motif

In this chapter we extensively discuss the problem of obtaining a count of a
temporal motif in a large temporal network. We present both exact and ap-
proximate algorithms, and evaluate them in practice on real world networks
showing they signi�cantly improve over state-of-the-art algorithms.

3.1 Introduction
�e identi�cation of pa�erns is a ubiquitous problem in data mining [Han
et al., 2011] and is extremely important for networked data, where the iden-
ti�cation of small, connected subgraphs, usually called network motifs [Milo,
2002] or graphlets [Pržulj et al., 2004], have been used to study and character-
ize networks from various domains, including biology [Mangan and Alon,
2003], neuroscience [Ba�iston et al., 2017], social networks [Ugander et al.,
2013], and the study of complex systems in general [Milo, 2004]. Network
motifs have been used as building blocks for various tasks in the analyses
of networks across such domains, including anomaly detection [Sun et al.,
2007] and clustering [Benson et al., 2016].

A fundamental problem in the analysis of network motifs is the counting
problem [Bressan et al., 2017, Ahmed et al., 2014], which requires to output
the number of instances of the given topology de�ning the motif. �is chal-
lenging computational problem has been extensively studied, with several
techniques designed to count the number of occurrences of simple motifs,
such as triangles [Tsourakakis et al., 2009, Park et al., 2014, Stefani et al.,
2017] or sparse motifs [De Stefani et al., 2017].

Most recent work has focused on providing techniques for the analysis
of large networks, which have become the standard in most applications.
However, in addition to a signi�cant increase in size, modern networks also
feature a richer structure, in terms of the type of information that is available
for their vertices and edges [Ceccarello et al., 2017]. A type of information
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that has drawn signi�cant a�ention in recent years is provided by the tem-
poral dimension [Holme and Saramäki, 2012, 2019]. In several applications
edges are supplemented with timestamps describing the time at which an
event, modeled by an edge, occurred: for example, in the analysis of spread-
ing processes in epidemics, nodes are individuals, an edge represents a phys-
ical interaction between two individuals, and the timestamp represents the
time at which the interaction was recorded [Peixoto and Gauvin, 2018].

When studying motifs in temporal networks, one is usually interested in
occurrences of a given topologywhose edge timestamps all appear in a small
time span [Holme and Saramäki, 2012, Paranjape et al., 2017]. Discarding the
temporal information of the network, i.e. ignoring the timestamps, may lead
to incorrect characterization of the network of interest, while the analysis
of temporal networks can provide insights that are not revealed when the
temporal information is not accounted for [Holme and Saramäki, 2012]. For
example, in a temporal network, a triangle x ! � ! z ! x represents some
feedback process on the information originated from x only if the edges
occur at increasing timestamps (and the triangle occurs in a small amount
of time). �is information is revealed only by considering the timestamps,
while by restricting to the static network (i.e., discarding edge timestamps)
we may, o�en incorrectly, conclude that initial information starting from x
always a�ects such sequence of events. Motifs that capture temporal inter-
actions, such as the ones we consider, can provide more useful information
than static motifs, as shown in several applications, including network clas-
si�cation [Tu et al., 2018] in the identi�cation ofmixing services from bitcoin
networks [Wu et al., 2020], and in the analysis of travel pa�erns in road net-
works [Lei et al., 2020]. Furthermore, while on static networks motifs with
high counts are associated with important properties of the dataset (e.g., its
domain), temporal motifs provide additional insights of the networks they
belong to, for example, they capture the presence of bursty or periodic activ-
ities [Belth et al., 2020]. Unfortunately, current algorithms do not enable the
analysis of arbitrary temporal networks since they are tailored to speci�c
classes of such motifs such as triangles or 2-node motifs with at most three
edges [Paranjape et al., 2017, Pashanasangi and Seshadhri, 2021, Gao et al.,
2022] or become impractical for even moderately-sized networks [Mackey
et al., 2018], preventing therefore the analysis of many complex systems that
can be modelled as a temporal network.

�e problem of counting arbitrary motifs in temporal networks is, in
fact, even more challenging than its counterpart for static networks, since
there are motifs for which the problem is NP-hard for temporal networks
while it is e�ciently solvable for static networks [Liu et al., 2019]. Current
approaches to countmotifs in temporal networks are either exact [Paranjape
et al., 2017, Mackey et al., 2018], and cannot be employed for very large
networks, or approximate [Liu et al., 2019, Wang et al., 2020], but provide
only rather weak guarantees on the quality of the estimates they return. In
addition, even approximate approaches do not scale on large networks on
arbitrary motifs, since some of them are limited to motifs of really small (up
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to 4) temporal edges or they require impractical computational resources to
compute a solution [Liu et al., 2019, Wang et al., 2020].

In this work we focus on the problem of counting arbitrary temporal
motifs in temporal networks. Our goal is to obtain practical and rigorous
algorithms to count arbitrary temporal motifs in large temporal networks.
Our �rst focus will be the development of an exact algorithm that can be
instantiated with any state-of-the-art algorithm for exact enumeration (e.g.,
[Mackey et al., 2018, Talati et al., 2022]). Our second focus will be to obtain
an e�ciently computable estimate of the count of a temporal motif having
an arbitrary topology, while providing rigorous guarantees on the quality of
the result. �is work is an extension of our previous conference work [Sarpe
and Vandin, 2021a], we next present our contributions and highlight the
novel results that we added to the present work.

Our Contributions

�is work provides the following contributions.

1. We develop a new exact algorithm (2� -patch), embarrassingly par-
allelizable, that is used to count arbitrary temporal motifs on billion
edges networks. �is algorithm is based on a coverage of the time-
line of events of the temporal network, such coverage is then used
to carefully combine counts on the temporal subnetworks de�ned by
each element in the coverage to obtain the exact count of the temporal
motif in the input temporal network. In addition, it can be combined
with any state-of-the-art algorithm for exact enumeration of temporal
motif counts, becoming an extremely versatile algorithm.

2. We propose a novel algorithm to improve the exact backtracking algo-
rithm by Mackey et al. [2018] (denoted with BT), for the enumeration
of arbitrary temporal motifs in a temporal network. Our proposed al-
gorithm builds over the existing algorithm by Mackey et al. [2018],
devising a new procedure to match temporal edges when exploring
the space of all possible matches of a temporal motif in a temporal
network. Our algorithm is able to speed-up signi�cantly the execu-
tion in [Mackey et al., 2018] thanks to the fact the it maintains a con-
nected candidatematchwhenmatching a temporal motif, and pruning
the search space combing ideas from existing literature [Wang et al.,
2020].

3. We present PRESTO, an algorithm to approximate the count of motifs
in temporal networks, which provides rigorous (probabilistic) guaran-
tees on the quality of the output. We present two variants of PRESTO,
both based on a common approach that counts motifs within ran-
domly sampled small temporal windows. Both variants allow to ana-
lyze billion edges datasets providing sharp estimates. PRESTO features
several useful properties, including: i) it has only one easy to inter-
pret parameter, c , de�ning the length of the temporal windows for
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the samples; ii) it can approximate the count of any motif topology;
iii) it is easily parallelizable, with an almost linear speed-up with the
available processors in most cases.

4. We provide tight and e�ciently computable bounds to the number
of samples required by our algorithms to achieve (multiplicative) ap-
proximation error  � with probability � 1 � �, for given � > 0 and
� 2 (0, 1). Our bounds are obtained through the application of ad-
vanced concentration results (i.e., Benne�’s inequality) for the sum of
independent random variables.

5. We show empirically, on large scale networks, the superiority of
the 2� -patch when combined with the backtracking algorithm (BT)
by Mackey et al. [2018], and our new algorithm as a matching criteria
with respect to using BT directly. In particular our proposed algorithm
can save orders of magnitude of memory, and compute the count of
arbitrary temporal motifs (even those for which BT fails). We then
show how our 2� -patch performs in parallel environments, rendering
practical the exact computation of temporal motif counts.

6. We perform an extensive experimental evaluation on real datasets
comparing approximate algorithms, including a dataset with more
than 2.3 billion edges, never examined before. �e results show that
on large datasets our algorithm PRESTO signi�cantly improves over
the state-of-the-art sampling algorithms in terms of quality of the es-
timates while requiring a small amount of memory. In addition, we
also discuss a simple parallel implementation of PRESTO that achieves
almost linear speed-ups in most of the con�gurations.

In addition to our previous contribution [Sarpe and Vandin, 2021a], we
made the following additional contributions: i) we developed the 2� -patch
algorithm (in Section 3.4.1) and ii) we developed an algorithm to improve
the matching order of BT [Mackey et al., 2018] (in Section 3.4.2), iii) we add
to the work the missing proofs from [Sarpe and Vandin, 2021a], iv) we per-
form a new experimental evaluation for the 2� -patch algorithm (see Section
3.6.2) and v) we perform a new extensive experimental evaluation on real
networks for all the sampling algorithms we compare, showing PRESTO’s
superiority, on large motifs never tested before (see Section 3.6.3).

3.2 Preliminaries
In this section we introduce the basic de�nitions used throughout this chap-
ter. We start by recalling the de�nition of temporal networks.

De�nition 3.1. A temporal network is a pair T = (V , E) where, V =

{�1, . . . ,�n} and E = {(x,�, t) : x,� 2 V , x , �, t 2 R+} with |V | = n
and |E | =m.
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Given (x,�, t) 2 E, we say that t is the timestamp of the edge (x,�).
For simplicity in our presentation we assume the timestamps to be unique,
which is without loss of generality since in practice our algorithms also han-
dle non-unique timestamps. We also assume the edges to be sorted by in-
creasing timestamps, that is t1 < · · · < tm. Given an interval or window
[tB, tE] ✓ R we will denote |tE � tB | as its length. Finally, given a temporal
network T = (V , E) and an interval [ta, tb] ✓ R+ we denote with T ([ta, tb])
the temporal subnetwork induced by the set of edges E([ta, tb]) = {e =
(x,�, t) 2 E : t 2 [ta, tb]}, i.e., T ([ta, tb]) = ({x : 9(x,�, t) _ (�, x, t) 2
E([ta, tb])}, E([ta, tb])).

We are interested in temporal motifs1, which are small, connected sub-
graphs whose edge timestamps satisfy some speci�c constraints on their
order of appearance. In particular, we consider the following de�nition in-
troduced by Paranjape et al. [2017].

De�nition 3.2. A k-node `-edge temporal motif M is a pair M = (K,� )
where K = (VK, EK) is a directed and weakly connected multigraph where
VK = {�1, . . . ,�k}, EK = {(x,�) : x,� 2 VK, x , �} s.t. |VK | = k and |EK | = `
and � is an ordering of EK .

Note that ak-node `-edge temporal motifM = (K,� ) is also identi�ed by
the sequence h(x1,�1), . . . (x`,�`)i of ` edges ordered according to � . Given
a k-node `-edge temporal motif M , k and ` are determined by VK and EK .
We will therefore use the term temporal motif, or simply motif, when k and
` are clear from context.

Given a temporalmotifM , we are interested in counting howmany times
it appears within a time duration of � , as captured by the following de�ni-
tion.

De�nition 3.3. Given a temporal network T = (V , E) and � 2 R+, a time
ordered sequence S = h(x01,�

0

1, t
0

1), . . . , (x
0

`,�
0

`, t
0

`)i of ` unique temporal edges
from T is a � -instance of the temporal motifM = h(x1,�1), . . . , (x`,�`)i if:

1. there exists a bijection f on the vertices such that f (x0i ) = xi and f (�0i ) =
�i, i = 1, . . . , `; and

2. the edges of S occur within � time, i.e., t 0` � t
0

1  � .

Note that in a � -instance of the temporal motif M = (K,� ) the edge
timestamps must be sorted according to the ordering � . See Figure 3.1 for an
example. Note also that De�nition 3.3 requires a strict ordering of the timing
of the events in the instance, such de�nition can be relaxed by requiring �
to provide a non-strict or even a partial ordering of the various events in the
sequences, allowing therefore to account for instances where edges have the
same timestamps. �e techniques we will present can be adapted to work
also under such de�nitions.

1In static networks, the term graphlet [Yaveroğlu et al., 2014] is sometimes used, with
motifs denoting statistically signi�cant graphlets. We use the termmotif in accordance with
previous works on temporal networks, e.g., [Paranjape et al., 2017, Liu et al., 2019, Wang
et al., 2020].
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Figure 3.1: (3.1a): representation of a temporal network T with n = 6 nodes
and m = 13 edges. (3.1b): a temporal motif, known as Bi-Fan [Liu et al.,
2019]. (3.1c): sequences of edges of T that map topologically on the Bi-Fan
motif, i.e., in terms of static (sub)graph isomorphism. For � = 10 only the
green sequence is a � -instance of the Bi-Fan motif, since the timestamps
respect � and t 0` � t

0

1 = 20 � 10  � . �e red sequences are not � -instances,
since they do not respect such constraint or do not respect the order of � .

Let U(T ,M, � ) = {u : u is a � -instance of M in T } be the set of (all)
� -instances of the motif M in T , denoted only with U when T ,M and � are
clear from the context. Given a � -instance u 2 U(T ,M, � ), we denote the
timestamps of its �rst and last edge with tu1 and tu` , respectively. �e count
of M is CM (� ) = |U(T ,M, � )|, denoted with CM when � is clear from the
context. We are interested in solving the following problem.

Problem 3.1 (Motif Counting Problem). Given a temporal networkT , a tem-
poral motif M = (K,� ), and � 2 R+, compute the count CM (� ) of the � -
instances of the motifM in the temporal network T .

Solving the motif counting problem exactly may be infeasible for large
networks, since even determining whether a temporal network contains a
simple star motif is NP-hard [Liu et al., 2019]. State-of-the-art exact tech-
niques [Mackey et al., 2018, Paranjape et al., 2017] require exponential time
andmemory in the number of edges of the temporal network, which renders
them impractical for large temporal networks. �erefore, we are also inter-
ested in obtaining e�ciently computable approximations of motif counts, as
follows.

Problem 3.2 (Motif Approximation Problem). Given a temporal network T ,
a temporal motif M = (K,� ), � 2 R+, � 2 R+0 ,� 2 (0, 1) compute C0M such
that P[|C0M �CM (� )| � �CM (� )]  �, i.e., C0M is a relative �-approximation to
CM (� ) with probability at least 1 � �.
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We call an algorithm that provides such guarantees an (�,�)-
approximation algorithm.

3.3 Related Work
Various de�nitions of temporal networks and motifs have been proposed in
the literature; we refer the interested reader to [Holme and Saramäki, 2012,
2019, Liu et al., 2021, Hanauer et al., 2021, Longa et al., 2021]. Here we focus
on those works that adopted the same de�nitions used in this work. We
organized this section distinguishing between works addressing Problem
3.1 and Problem 3.2.

Algorithms for Exact Counting

�e de�nition of temporal motif we adopt was �rst proposed by Paranjape
et al. [2017], which provided e�cient exact algorithms to solve the motif
counting problem for speci�c motifs. Boekhout et al. [2019] proposed an ex-
tension of such algorithms to some other motifs, in the context of multilayer
temporal motifs, where the edges of the network are in the form (x,�, t,h)
with h denoting the layer of the edge. Such algorithms are e�cient only for
speci�c motif topologies and do not scale to very large datasets. Gao et al.
[2022] developed exact counting algorithms tailored to 2, 3-node and 3-edge
temporal motifs by devising more e�cient algorithms improving [Paran-
jape et al., 2017]. An algorithm for the motif counting problem on general
motifs has been introduced by Mackey et al. [2018] which we denote as BT.
�eir algorithm is the �rst exact technique allowing the user to enumerate
all � -instances u 2 U without any constraint on the motif’s topology. �e
major back-draws of such algorithm are: i) that it may be impractical even
for moderately-sized networks, due to its exponential time complexity and
memory requirements ii) as discussed in [Wang et al., 2020] its matching
order is not suited for arbitrary motifs since it is �xed and not dynamic ac-
cording to the motif being matched. Recently Talati et al. [2022] devised
speci�c hardware and programming framework to improve the BT algo-
rithm [Mackey et al., 2018] showing signi�cant speed-ups. Pashanasangi
and Seshadhri [2021] proposed specialized algorithms for computing ex-
actly the counts of temporal triangles with 3 edges, leveraging the concept
of graph degeneracy. While such algorithms are proved to be very e�cient
in practice their approach is, to the best of our knowledge, only limited to
triangles with 3 temporal edges therefore not applicable for general motifs,
that is the problem addressed in this work.

Algorithms for Approximate Counting

Liu et al. [2019] proposed the �rst sampling algorithm for the motif approx-
imation problem. �e main strategy of Liu et al. [2019] is to partition the
time interval containing all the edges of the network into non overlapping
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and contiguous windows of length c� (i.e., a grid-like partition), for some
c > 1. �e partition is then randomly shi�ed (i.e., the starting point of
the �rst window may not coincide with the smallest timestamp of the net-
work). �e edges in each partition constitute the candidate samples to be
analyzed using an exact algorithm. An importance sampling scheme is used
to sample (approximately) r windows among the candidates, with a window
being selected with probability proportional to the fraction of edges it con-
tains. �e estimate for each sampled window is obtained by weighting each
� -instance in the window, and the estimates are averaged across windows.
�is procedure is repeated b times to reduce the variance of the estimate.
While interesting, this partition-based approach prevents such algorithm to
provide (�,�)-guarantees (see Section 3.5.1). Additionally, in practice this ap-
proach tends to sample subnetworks ofT with a higher number of edges, and
this works well only there is a strong positive correlation between “dense”
temporal subnetworks and motif instances, this is not always the case for
arbitrary motifsM on most of the temporal networks.

Recently Wang et al. [2020] proposed an (�,�)-approximation algorithm
for the motif counting problem. �eir approach selects each edge in T with
a user-provided probability p. �en for each selected edge e = (x,�, t), the
algorithm collects the edges with timestamps in the edge-centered window
[t �� , t +� ], of length 2� , computes on these edges all the � -instancesu 2 U
containing e , weights the instances, and combines the weights to obtain the
�nal estimate. From the theoretical point of view, the main drawback of this
approach is that in order to achieve the desired guarantees one has to set
p � 1/(1 + ��2), resulting in high values of p (i.e., almost all edges are se-
lected) for reasonable values of� and � (e.g.,p > 0.97 for� = 0.1 and � = 0.5).
In addition, such approach is impractical on very large datasets, mainly due
its huge memory requirements, and does provide accurate estimates only
for speci�c motifs with a small number of edges and limited diameter of the
multigraphK associated to M (see Section 3.6.3 and Section 3.6.4). Recently
Sarpe and Vandin [2021b] developed ���N, an e�cient approximation algo-
rithm to compute the estimates of all the temporal motifs that share a �xed
common topology, e.g., a triangle, with a �xed number of temporal edges.
We highlight that such problem is very di�erent from the one we address in
this work, since we aim at computing the estimates of only one �xed tem-
poral motif. Finally, Porter et al. [2022] devised an algorithm based on a
stochastic block model named TASBM (Temporal Activity Stochastic Block
Model) to model occurrences of temporal motifs in temporal networks, the
authors are able to analytically compute the expectation of temporal motif
instances in their proposed model. While this approach is very promising
for synthetic network generation, we enforce that it has no guarantees in
terms of approximation if applied on real-world networks, therefore being
far from applicable in our scenario where the algorithms are required to
provide tight (probabilistic) guarantees on the approximation error.
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3.4 Exact Computation of Motif Counts
In this section we develop algorithms for computing the exact count of a
temporal motif. We �rst introduce a new algorithm based on a coverage of
the timeline of events of the temporal network that can be used in combina-
tion with existing state-of-the-art approaches resulting in an e�cient, scal-
able and parallelizable algorithm (in Section 3.4.1). �en in Section 3.4.2 we
devise a novel algorithm to identify thematching order to be used within the
state-of-the-art algorithm (BT) for enumerating temporal motif instances,
such matching order will be in fact embedded with BT in our new exact al-
gorithm (we will show its advantages over BT in practice in Section 3.6.2).

3.4.1 A New Algorithm for Exact Counting
In this section we present “2� -patch”, an exact algorithm that can be used
in combination with many exact sequential algorithms, to parallelize their
execution when computing motif counts. �is algorithm, coupled with the
BT algorithm by Mackey et al. [2018] o�en leads to an improvement in the
scalability and running time of BT, given that it enables the BT algorithm
to work with data-structures built on small subnetworks, and in addition it
enables the possibility to easily parallelize the work, as we also show em-
pirically in Section 3.6.2.

Before describing the framework, we start by presenting the idea on
which it is based. First, such framework partitions the time interval with
an approach similar to the one adopted by Liu et al. [2019], while enrich-
ing such partition with additional windows, to avoid missing the count of
(possibly many) � -instances. �e idea is to �rst partition the time inter-
val [t1, tm] by contiguous and non overlapping windows of length c� , c > 1
starting from t1 to tm. Note, by counting the � -instances occurring within
the temporal subnetworks de�ned by such partition one may miss an ar-
bitrary number of � -instances (as we will discuss more in details for the
approach in [Liu et al., 2019] in Section 3.5.1). Interestingly, the missing
instances are the ones and only that have a starting timestamp in a win-
dow and an ending timestamp in the neighbouring window of the parti-
tion already de�ned. �erefore, to account for such instances we also con-
sider a patch of length 2� centred at each time-point adjacent to two dif-
ferent windows. A schema of such coverage strategy is reported in Fig-
ure 3.2. Hence, we can obtained an alternative formulation for CM as fol-
lows, let P = {[t1 + jc� , t1 + (j + 1)c� ] : j = 0, . . . ,

⌃ tm�t1
c�

⌥
� 1} and

P̄ = {[te � � , te + � ] : 9[tb, te], [te, tb 0] 2 P}, be the sets of windows ob-
tained as shown from Figure 3.2, and let CM (T ([ta, tb])) be the count of the
� -instances in the temporal subnetwork ofT existing the interval [ta, tb] (i.e.,
T ([ta, tb])) then CM can be computed as captured by the following lemma.

Lemma 3.1. Given a temporal networkT , a k-node `-edge temporal motifM ,
a duration parameter � 2 R+ and c > 1. Let P, P̄ be the sets of real-valued

27



C1 C1 � 2X2X C1 � 22X2X

2X

X X
. . .

C<
. . .

Timeline

Figure 3.2: Coverage schema of the timeline of events of the temporal net-
work T adopted in our Algorithm 1. �e whole interval ([t1, tm]) is cov-
ered with contiguous non-overlapping windows of length c� (the windows
marked in blue). Additionally, over each time-point adjacent to two such
windows, we place a patch of length 2� (markedwith red) covering the right-
most and le�most portions of each of the two adjacent windows above. �e
�nal coverage is the union of both the red and blue windows.

intervals as de�ned above then:

CM =
’

[tb ,te ]2P

CM (T ([tb, te]))

+
’

[tb ,te ]2P̄

’
u2U(M,� ,T [tb ,te ])


tu1 <

(te � tb)

2
^ tu` >

(te � tb)

2

�
.

(3.1)

Proof. Let us �rst assume c � 2. Let us consider U(M,T , � ), i.e., the set of
� -instances ofM inT . Let P, P̄ be as in statement, note that each � -instance
u 2 U(M,T , � ) spans over the interval Iu = [tu1 , t

u
` ], then only the following

three cases can occur:

1. 9I1 2 P, öI2 2 P̄ such that Iu ⇢ I1, Iu ⇢ I2;

2. 9I1 2 P, I2 2 P̄ such that Iu ✓ (I1 \ I2);

3. öI1 2 P, 9I2 2 P̄ such that Iu ⇢ I1, Iu ⇢ I2.

�erefore, instances of type (1) and (2) can be counted throughÕ
[tb ,te ]2P CM (T ([tb, te])), that is the �rst term of Equation (3.1). �en, to ac-

count for the missing instances (of type (3)) we should count over P̄ but
we need to avoid overcounting instances of type (2). Assuming that for a
� -instance u 2 U(M,T , � ) case (2) holds, then only the following two sub-
cases can occur:

• 9I2 = [tb, te] 2 P̄ ^ I1 = [t 0b, (tb � te)/2] 2 P s.t. tu`  (tb � te)/2, Iu ✓
(I1 \ I2);

• 9I2 = [tb, te] 2 P̄ ^ I1 = [(tb � te)/2, t 0e] 2 P s.t. tu1 � (tb � te)/2, Iu ✓
(I1 \ I2).

�erefore when counting over P̄ we only need to ensure that such � -
instances are �ltered, that can be done by computing the missing term
by

Õ
[tb ,te ]2P̄

Õ
u2U(M,� ,T [tb ,te ])

h
tu1 <

(te�tb )
2 ^ tu` >

(te�tb )
2

i
, that is the second

term in Equation (3.1). Now let us consider the case where c 2 (1, 2), all the
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cases above still hold but additionally in case (2), �xed a � -instance u there
may exist up to two windows I1, I 01 2 P̄ ^ I2 2 P s.t. Iu ✓ (I1 \ I 01 \ I2) but
this is still �ltered in the second term in Equation (3.1) as it can be easily
veri�ed, concluding therefore the proof. ⇤

�at is, in Lemma 3.1 the �rst term is simply the sum over the subnet-
works with timestamps in the windows of the initial cover of the time in-
terval spanning [t1, tm], while the second term accounts for the missing in-
stances in the �rst sum (i.e., it sums over the patches of length 2� avoiding
any over-counting).

Algorithm Description

Such simple way of writing CM , from Lemma 3.1, inspires our Algorithm
1, which performs the computation of CM through the formula above. In
particular we �rst obtain the cover of the timeline of events [t1, tm] of the
network T (i.e., � = P [ P̄) by calling the function GetTimelineCover (line
12), which computes the cover as described above and in Figure 3.2, observe
that each interval has an additional value denoting if it is a patch or not, rep-
resented by the boolean value “patch”. �e algorithm then iterates through
each window in �, i.e., the coverage of the timeline already computed (Line
2). Collects the temporal subnetwork corresponding to the current window
of � and checks if such window corresponds to a patch or not (lines 3-5). If
the interval is not from a patch then it applies the exact algorithm to count
all � -instances in the current subnetwork (line 6). Instead if the interval cor-
responds to a patch the algorithm only counts those instances with starting
time point (tu1 ) in the previous window and ending point (tul ) in the subse-
quent window (line 10) of the partition �, as from Equation 3.1.

2-� Patch: Time Complexity

�e worst-case time complexity of such algorithm depends strictly on the
algorithm used for enumerating � -instances in the patches of length 2� . In
our implementation we used the BT algorithm by Mackey et al. [2018] that
has a worst case complexity of O(m�̂(`�1)) when executed on a temporal
network withm edges, �̂ maximum number edges in a window of length �
and a motif with ` � 2 temporal edges. �erefore the worst case complexity
of Algorithm 1 is bounded byO(

Õ
�2�m� �̂

(`�1)
� ) (here we use � to denote the

temporal network �ned by the interval � 2 �) that is still O(m�̂(`�1)) sinceÕ
�2�m� = O(m). �erefore, the worst case complexity is the same as the

worst case required by the execution of its subroutine on thewhole temporal
network, but as we will show 2� -patch empirically almost always performs
be�er, given the smaller data-structures it needs to create on small windows
and given the parallelization that it enables.

We conclude highlighting that there are several useful advantages in the
2-� patch algorithm. 1) It parallelizes any inherently sequential algorithm
for exact enumeration. 2) Works on very small sized windows of length 2�
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Algorithm 1: 2-� Patch
Input: Temporal Network T = (V , E), MotifM , Motif Duration

� > 0, c > 1.
Output: Count CM .

1 �  GetTimelineCover(T , c, � ); CM  0;
2 for j  1 to |� | (in parallel) do
3 ([tb, te], patch) �j ;
4 T̄  T ([tb, te]) ;
5 if !patch then
6 CM  CM + |U(T̄ ,M, � )|

7 else
8 j0  j � 1; j00  max(j + 1, |� |) ;
9 ([t j

0

b , t
j 0
e ], ·) �j 0; ([t j

00

b , t
j 00
e ], ·) �j 00 ;

10 CM  CM + |{u : u is � -instance ofM in T̄ ^ (tu1 < t j
0

e ^ t
u
` >

t j
00

b )}| ;

11 return CM ;
12 Function GetTimelineCover(T , c, �) :
13 t  t1; i  1;
14 while t < tm do
15 �i  ([t, t + c� ], False);
16 if t + c� < tm then
17 �i+1  ([t + (c � 1)� , t + (c + 1)� ], True);
18 t  t + c� ; i  i + 2;
19 return TC

and c� , c > 1 (note that bigger windows require much more resources to be
processed, given that they o�en correspond to bigger subnetworks). 3) En-
ables scalability, since o�en exact algorithms work on global data structure
that are very costly to be built on large scale (e.g., adjacency matrices), while
such structures become practical on small sized subnetworks. 4) It enables
the usage of di�erent algorithms to process the various subnetworks, in fact,
only the patches require an algorithm for the enumeration of the � -instances,
the other windows can be processed with an algorithm for exact counting,
which in general can be less time consuming [Paranjape et al., 2017].

3.4.2 A New Matching Ordering for BT
In this section we discuss an improvement that can be adopted within the BT
algorithm by Mackey et al. [2018] to improve its running time on arbitrary
temporal motifs.

In particular, as observed by Wang et al. [2020] there may be several in-
e�cient steps in the original algorithm [Mackey et al., 2018]. �e ine�cien-
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Figure 3.3: (3.3a): Temporal network T and temporal motif M . (3.3b): Steps
of the matching algorithm BT applied on the motif M and network T from
Figure (3.3a), and � > 1: the algorithm at each step maps one of the edges
of T on the motif M following the ordering of the motif, colours are used
to show how such mappings are made. When a match cannot be extended
further, the algorithm proceeds to consider the next edge in the networkT as
candidate for the last matched edge ofM , following therefore a backtracking
procedure. (3.3c): Le�: a motif M and its ordering � . Centre: following
the (time-�rst) matching order of BT, when matching the second edge of
M̄ (�BT(1, 2) denotes the �rst two edges in the matching order adopted by
the BT algorithm) the algorithm searches for disconnected pairs of edges.
Right: Matching order (�ord) of the motif M̄ computed by our Algorithm 2,
the motif is now matched avoiding the generation of partial matches that
are not connected.

cies arise form the matching order adopted in the BT algorithm, in fact such
algorithm adopts a time-�rst approach to match the temporal edges of the
temporal motif (see Figure (3.3a-3.3b)). Such matching order maps the edges
of the motif to the ones of the temporal network following the ordering �
of the motif. While being �ne for some motifs this approach is not suitable
in general for all temporal motifs. In fact, the algorithm is very ine�cient
when such matches are, for example, not connected at a certain step of the
algorithm (see Figure (3.3c) le� and centre). �e algorithm becomes ine�-
cient under such conditions since it generates a lot of partial matches. Wang
et al. [2020] proposed two di�erent matching orders, respectively a) enforc-
ing connectivity and b) enforcing the matching of the edges more advanced
in time �rst (to prune the search space), as heuristics for the matching order
that the BT algorithm should adopt during its matching phase. Despite such
interesting contribution, the authors then adopted a schema limited to ` = 4
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Algorithm 2: Fixing the matching order for the BT algorithm
Input: MotifM = he1 = (x1,�1), . . . , e` = (x`,�`)i.
Output: Matching order �ord.

1 �ord  he1i;
2 Vmatched  {x1,�1}; �matched  {e1};
3 for j  1 to ` � 1 do
4 r  max{i 2 [2, `] : ei < �matched, ei 2 N(Vmatched)};
5 �ord  �ord.append(er );
6 Vmatched  Vmatched [ {xr ,�r }; �matched  �matched [ {e1};
7 return �ord;

edges, for matching the motifs in their algorithms, given the complexity of
adapting the BT algorithm to work for general matching orders.

Building on such contribution we devised an algorithm that dynamically
�nds the matching order for a general motif combining the two ideas from
[Wang et al., 2020], and adapted the BT algorithm to work for a general
matching order, as provided by our algorithm. In Algorithm 2, we show
how, given a motif M , we �nd the matching order to be used inside the BT
algorithm. We start by �rst ordering the �rst edge of the motif M as �rst
in the order (�ord) to be reported in output (line 1), this is arbitrary and is
done to reduce the complexity of implementation inside the BT algorithm.
�en in line 2 we update the data structuresVmatched keeping the set of nodes
of the motif M adjacent to an edge already accounted in �ord, and �matched
a set keeping the edges from the motif M already �xed (in �ord). We then
start a loop �xing an edge of the motif at each iteration, in particular we
select such edge in line 4. To �x an edge we select the edge that is the one
with highest order in M that respects two constraints, i) it is not already
matched and ii) it is connected to the already matched subgraph, i.e., such
edge is in the set N(Vmatched) where N(Vmatched) = {e = (x,�) 2 M : x 2
Vmatched_� 2 Vmatched}. Once found the edge to be matched, we updated the
matching order (line 5) and update the data structures keeping track of the
�xed edges (line 6). At the end of the loop we return the matching order �ord
(line 7). In Figure (3.3c Right) we report the output of our Algorithm 2 on the
motif M̄ , the reader may appreciate how such motif is nowmatched without
the generation of disconnected matches. Finally note that the running time
of such algorithm is bounded by O(`), therefore negligible in all practical
applications.

3.5 PRESTO: Approximating Temporal Motif
Counts with Uniform Sampling

We now describe and analyze our algorithm PRESTO (apPRoximating
tEmporal motifS counTs with unifOrm sampling) for the motif counting
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problem. We start by describing, in Section 3.5.1, the common strategy un-
derlying our algorithms. We then brie�y highlight the di�erences between
PRESTO and the existing sampling algorithms for the counting problem. In
Section 3.5.2 and Section 3.5.3 we present and analyze two variants of the
common strategy introduced in Section 3.5.1. We conclude with the analysis
of PRESTO’s complexity in Section 3.5.4.

3.5.1 PRESTO: General Approach
�e general strategy of PRESTO is presented in Algorithm 3. Given a network
T , PRESTO collects s samples, where each sample is obtained by gathering
all edges e 2 E with timestamp in a small random window [tr , tr + c� ] of
length c� , using SampleWindowStart(E) (Lines 2-3) to select tr (i.e., the
starting time point of the window) through a uniform random sampling
approach. For each sample, an exact algorithm is then used to extract all
the � -instances of motif M in such sample (Line 4). �e weight of each � -
instance extracted is computed with the call ComputeWeight(u) (Line 6),
and the sum of all such weights constitutes the estimate provided by the
sample (Line 7). �e weights account for the probability of sampling the � -
instances in the sample, making the �nal estimate unbiased. �e �nal esti-
mate produced in output is the average of the samples’ estimates (Lines 8-9).
Note that the for cycle of Line 1 is trivially parallelizable. �e two variants
of PRESTO we will present di�er in the way i) SampleWindowStart(E) and
ii) ComputeWeight(u) are de�ned. Finally note that we can frame the es-
timates obtained by PRESTO in the framework introduced in Section 2.2. In
particular X is identi�ed with the set of temporal subnetworks of T span-
ning intervals of length c� , |F | = 1 since we are interested in obtaining
only the count of a motif M given a sampled temporal network. �e distri-
bution � is de�ned by the probability of sampling a random timestamp tr in
line 2, and �nally f (x) is the aggregation of the weights of each � -instance
identi�ed in a sampled temporal network that will account for �. Hence
X̂ f (x) = Xi, i = 1, . . . , s .

Di�erently from Liu et al. [2019], our algorithm PRESTO does not par-
tition the edges of T in non overlapping windows, and relies instead on
uniform sampling. We recall (see Section 3.3, and the partition P in Sec-
tion 3.4.1) that in Liu et al. [2019], a�er computing all the non overlapping
intervals de�ning the candidate samples, there may be several � -instances
u 2 U that cannot be sampled (i.e., all � -instances having tu1 in window
j and tu` in window j + 1). �is signi�cantly di�ers from PRESTO, which
instead samples at each iteration a small random window from [t1, tm]with-
out restricting the candidate windows, allowing to sample any � -instance
u 2 U(T ,M, � ) at each iteration. �is enables us to provide stronger guaran-
tees on the quality of the output, since each � -instance has a non-zero prob-
ability of being sampled at each step, leading to (�,�)-approximation guar-
antees. Additionally, as discussed previously the work of Liu et al. [2019]
is based on importance sampling and it achieves satisfactory performances
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Algorithm 3: PRESTO
Input: Temporal Network T = (V , E), MotifM , Motif Duration

� > 0, s > 0, c > 1
Output: Estimate C0M of CM

1 for i  1 to s do
2 tr  SampleWindowStart(E);
3 Ti  T ([tr , tr + c� ]); Xi  0;
4 Si  {u : u is � -instance ofM in Ti};
5 foreach u 2 Si do
6 w(u) ComputeWeight(u);
7 Xi  Xi +w(u);

8 C0M  
1
s

Õs
i=1Xi ;

9 return C0M ;

only when there is a strong positive correlation betweenmotif instances and
number of edges in a sample, that is not o�en the case in general.

Di�erently from the work of Wang et al. [2020] PRESTO samples tem-
poral windows of length c� and does not follow the edge-centric approach
(i.e., sampling temporal edges with a user-provided probability p) of Wang
et al. [2020]. In addition, the approach of [Wang et al., 2020] collects edges
in temporal-windows of length 2� (see Section 3.3), while in PRESTO the
window size is controlled by the parameter c , which, when �xed to be < 2,
leads to much more scalability than [Wang et al., 2020] while requiring less
memory (see Section 3.6). We also enforce that the approach in Wang et al.
[2020] is suitable for very small temporal motifs (in terms of `  4 edges,
and small diameter of the multigraphK), given that it needs to identify all � -
instances containing the sampled edges for all the possible orderings of such
edges inside the each instance, i.e., 1, . . . , `, and each such step requires up to
exponential complexity in general for a �xed edge, therefore practical only
for very small values of `.

3.5.2 PRESTO-A: A First Sampling Approach
In this section we present and analyze PRESTO-A, our �rst (�,�)-
approximation algorithm obtained by specifying i) how the starting point
tr of the temporal window de�ning a sample Ti is chosen (function
SampleWindowStart(E) in Line 2) and ii) how the weight w(u) of a � -
instance u in a sample is computed (ComputeWeight(u), Line 6).

�e starting point tr of sample Ti is sampled uniformly at random in
the interval [t` � c� , tm�`] ✓ R, where we recall ` = |EK | and m = |E |.
Regarding the choice of the weightw(u) for each instancesu 2 Si , PRESTO-A
considersw(u) = 1/pu , with pu being the probability of u to be in Si , that is
pu = ru/�T ,1, where �T ,1 = tm�` � t` + c� is the total length of the interval
from which tr is sampled (recall that we choose tr from [t` � c� , tm�`]), and
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ru = c� � (tu` � t
u
1 ) is the length of the interval in which tr must be chosen

for u to be in Si, i = 1, . . . , s .
We now present the theoretical guarantees of PRESTO-A and give ef-

�ciently computable bounds for the sample size s needed for the (�,�)-
approximation to hold. Recall the de�nition of U(T ,M, � ), which is the
set of � -instances of M in T . Let u be an arbitrary � -instance of motif
M , and let Ti be an arbitrary sample obtained by PRESTO-A at its i-th it-
eration. We de�ne the following set of indicator random variables, for
u 2 U and for i = 1, . . . , s: Xi

u = 1 if u 2 Si , 0 otherwise. Each variable
Xi
u, i = 1, . . . , s ,u 2 U is a Bernoulli random variable with P(Xi

u = 1) =
P(u 2 Si) =

ru
�T ,1
= pu .�erefore, for each variable Xi

u , it holds E[Xi
u] = pu .

�us, for each i = 1, . . . , s , iteration i provides an estimate Xi of CM , which
is the random variable: Xi =

Õ
u2U

1
pu
Xi
u . We therefore have the following

result.

Lemma 3.2. For each i = 1, . . . , s , Xi and C0M =
1
s

Õs
i=1Xi are unbiased esti-

mators for CM , that is E[Xi] = E[C0M ] = CM .

Proof. Considering the linearity of expectation and the de�nition of the vari-
ables Xi and Xi

u, i = 1, . . . , s,u 2 U, we have:

E[Xi] =
’
u2U

1
pu
E

⇥
Xi
u

⇤
=

’
u2U

1
pu
pu = CM .

Combining with the linearity of expectation to C0M the statement follows.
⇤

�e following result provides a bound on the variance of the estimate of
CM provided by C0M .

Lemma 3.3. For PRESTO-A it holds

Var
�
C0M

�
= Var

 
1
s

s’
i=1

Xi

!

C2
M

s

✓
�T ,1

(c � 1)�
� 1

◆
.

Proof. We start by observing that, Var
� 1
s

Õs
i=1Xi

�
= 1

s2
Õs

i=1 Var(Xi) by the
mutual independence of the variablesX1, . . . ,Xs . We observe that Var(Xi) =

E[X 2
i ] � E[Xi]

2, i = 1, . . . , s and we recall that E[Xi] = CM by Lemma 3.2,
thus we need to bound E[X 2

i ],

E[X 2
i ] =

’
u12U

’
u22U

1
pu1pu2

E[Xi
u1X

i
u2]

(1.)


’
u12U

’
u22U

1
pu2

(2.)


’
u12U

’
u22U

�T ,1

(c � 1)�
=

C2
M�T ,1

(c � 1)�

(3.2)

where (1.) follows from E[XY ]  E[X ] and (2.) from the de�nition
of pu2 . Based on the above, we can bound the variance of the variables
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Xi, i = 1, . . . , s , as follows, Var(Xi) = E[X 2
i ]�E[Xi]

2
 C2

M

⇣
�T ,1
(c�1)� � 1

⌘
. Note

that such bound does not depend on the index i = 1, . . . , s , thus substituting
in the original summation we obtain, Var

� 1
s

Õs
i=1Xi

�


C2
M
s

⇣
�T ,1
(c�1)� � 1

⌘
. ⇤

We now present a �rst e�ciently computable bound on the number of
samples s required to have thatC0M is a relative �-approximation ofCM with
probability � 1 � �. Such bound is based on the application of Hoe�d-
ing’s inequality (see [Mitzenmacher and Upfal, 2017] and �eorem 3.5 for
the statement) an advanced but commonly used technique in the analysis of
probabilistic algorithms, the proof is found in Section 3.7.1.

�eorem 3.1. Given � 2 R+,� 2 (0, 1) let X1, . . . ,Xs be the random vari-
ables associated with the counts computed at iterations 1, . . . , s , respectively,
of PRESTO-A. If s �

�2
T ,1

2(c�1)2� 2�2 ln
⇣
2
�

⌘
, then it holds

P

 �����
1
s

s’
i=1

Xi �CM

����� � �CM

!
 �

that is, PRESTO-A is an (�,�)-approximation algorithm.

We now show that by using Benne�’s inequality (see [Boucheron et al.,
2013] and�eorem 3.2), a more advanced result on the concentration of the
sum of independent random variables, we can derive a bound that is much
tighter than the above, while still being e�ciently computable.

�eorem 3.2 ([Benne�, 1962]). For a collection X1, . . . ,Xs of independent
random variables satisfying Xi  Mi , E[Xi] = µi and E[(Xi � µi)2] = � 2

i for
i = 1, . . . , s and for any t � 0, the following holds

P

 �����
1
s

s’
i=1

Xi �
1
s

s’
i=1

µi

����� � t

!
 2 exp

✓
�s

�

B2h

✓
tB

�

◆◆

where h(x) = (1 + x) ln(1 + x) � x,B = maxi Mi � µi and � = 1
s

Õs
i=1 �

2
i .

One of the di�culties in applying such result to our scenario is that we
know only an upper bound to the variance of the random variables Xi, i =
1, . . . , s . A discussion and proof of why Benne�’s inequality can be applied
to our context is in 3.7.1.1. We now state our main result.

�eorem 3.3. Given � 2 R+,� 2 (0, 1) let X1, . . . ,Xs be the random vari-
ables associated with the counts computed at iterations 1, . . . , s , respectively,
of PRESTO-A. If s �

⇣
�T ,1
(c�1)� � 1

⌘
1

(1+�) ln(1+�)�� ln
⇣
2
�

⌘
, then it holds

P

 �����
1
s

s’
i=1

Xi �CM

����� � �CM

!
 �

that is, PRESTO-A is an (�,�)-approximation algorithm.

36



Proof. Let Pr = P
�
|
1
s

Õs
i=1Xi �CM | � �CM

�
, we want to show that for s as

in the statement it holds Pr  �.
In order to apply Benne�’s bound, note that 1

s

Õs
i=1 E[Xi] =

1
s

Õs
i=1 µi =

CM by Lemma 3.2. Moreover B = maxi Mi � µi =
�T ,1
(c�1)�CM � CM =

CM

⇣
�T ,1
(c�1)� � 1

⌘
and in addition E[(Xi � µi)2] = � 2

i  C2
M

⇣
�T ,1
(c�1)� � 1

⌘
=

�̂ 2
i , i = 1, . . . , s (see Equation (3.2) and Equation (3.3)), thus � = 1

s

Õs
i=1 �

2
i 

1
s

Õs
i=1 �̂

2
i =

1
s

Õs
i=1C

2
M

⇣
�T ,1
(c�1)� � 1

⌘
= C2

M

⇣
�T ,1
(c�1)� � 1

⌘
= �̂ . Let t = �CM , then

it holds

tB

�̂
= � and

�̂

B2 =
1⇣

�T ,1
(c�1)� � 1

⌘

applying�eorem 3.2, with the upper bound �̂ to � we obtain,

Pr  2 exp
✓
�s

�̂

B2h

✓
tB

�̂

◆◆
 �

by substituting the quantities above and by the choice of s as in statement,
which concludes the proof. ⇤

Note that the bound in�eorem 3.3 is signi�cantly be�er than the one in
�eorem 3.1, since the former has a quadratic dependence from �T ,1 while
the la�er enjoys a linear dependence from �T ,1. Furthermore, di�erently
from the bounds byWang et al. [2020], our bounds depend on characteristic
quantities of the datasets (�T ,1) and of the algorithm’s input (c, � ). �ere-
fore we expect our bounds to be more informative, and also possibly tighter
than the bounds of [Wang et al., 2020] (with the improvement due, at least
in part, to the use of Benne�’s inequality, while [Wang et al., 2020] leverages
on Chebyshev’s inequality, which usually provides looser bounds [Mitzen-
macher and Upfal, 2017]).

A natural question is to understand how tight are the guarantees that we
proved. Unfortunately, the main backdraw behind the application of Ben-
ne�’s inequality is our, sometimes, loose bound on the range of the variables
Xi and on their variance. We discuss in Section 3.7.1.2 how novel results in
concentration theory (e.g., based on the empirical values of the variables,
or considering higher moments of such variables), cannot easily be adapted
to our scenario while maintaining the e�cient computability of the bounds
considered.

3.5.3 PRESTO-E: An Alternative Sampling Approach
In this section we present and analyse our second (�,�) approximation al-
gorithm, PRESTO-E, obtained with a di�erent variant of the general strategy
of Algorithm 3.
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PRESTO-E selects the starting point tr (Line 2 in Algorithm 3) of sam-
ple Ti only from the timestamps of edges of T . In particular, tr is chosen
uniformly at random in {t1, . . . , tlast } ✓ {t1, . . . , tm}, where tlast = min{t :
(x,�, t) 2 E ^ t � tm � c� }. When the edges of T are far from each other
or have a skewed distribution in time, or occur mostly in some well-spaced
subsets {[ta, tb] ✓ [t1, tm] : ta  tb}, we expect PRESTO-E to collect sam-
ples with more � -instances than PRESTO-A (which samples tr uniformly at
random almost from the entire time interval [t1, tm] but without restricting
to existing edges). Similarly to PRESTO-A, the weight w(u) (Line 6 of Al-
gorithm 3) is computed by w(u) = 1/p̃u , where p̃u is the probability that
u 2 U is in the set Si . Due to the (random) choice of tr , p̃u = r̃u/�T ,2,
where �T ,2 = |{t : (x,�, t) 2 E ^ t 2 [t1, tlast ]}| is the number of possible
choices for tr (if tlast = tm then �T ,2 = m) and r̃u = |{t : (x,�, t) 2 E ^ t 2
[max{t1, tu` � c� },min{tlast , tu1 }]}| is the number of choices for tr such that
u 2 U is in Si, i = 1, . . . , s .

We then de�ne the indicator random variables, for each u 2 U(T ,M, � )
and for i = 1, . . . , s: X̃ i

u = 1 if u 2 Si , 0 otherwise.�en each variable X̃ i
u, i =

1, . . . , s ,u 2 U is a Bernoulli random variable for which it holds P(X̃ i
u =

1) = P(u 2 Si) =
r̃u
�T ,2
= p̃u . �erefore the variable denoting the count of

PRESTO-E at its iteration i 2 [1, s] can be wri�en as Xi =
Õ

u2U 1/p̃uX̃ i
u .

Similarly to what done for PRESTO-A we show that PRESTO-E provides
an unbiased estimate ofCM , with bounded variance (proofs are omi�ed since
they can be trivially recovered from the ones for PRESTO-A).

Lemma 3.4. C0M =
1
s

Õs
i=1Xi is an unbiased estimator forCM , that is E[C0M ] =

CM .

Lemma 3.5.

Var
�
C0M

�
= Var

 
1
s

s’
i=1

Xi

!

C2
M

s

�
�T ,2 � 1

�

So we can now derive the result on PRESTO-E’s guarantees by the appli-
cation of Benne�’s inequality.

�eorem 3.4. Given � 2 R+,� 2 (0, 1) let X1, . . . ,Xs be the random vari-
ables associated with the counts computed at iterations 1, . . . , s , respectively,
of PRESTO-E. If s � (�T ,2�1)

(1+�) ln(1+�)�� ln
⇣
2
�

⌘
, then it holds

P

 �����
1
s

s’
i=1

Xi �CM

����� � �CM

!
 �

that is, PRESTO-E is an (�,�)-approximation algorithm.

As for PRESTO-A, by using Benne�’s inequality we obtain a linear depen-
dence between the sample size s and �T ,2, while commonly used techniques
(e.g., Hoe�ding’s inequality) lead to a quadratic dependence on such term.

38



3.5.4 PRESTO: Complexity Analysis
In this section we analyse the time complexity of PRESTO’s versions intro-
duced in the previous sections.

Note that our algorithms employ an exact enumerator as subroutine. For
the sake of the analysis we consider the complexity when the subroutine is
the algorithm byMackey et al. [2018], whichwe used in our implementation.
Let us �rst start with a de�nition, given a temporal network T = (V , E), we
denote with dim(T ) the set {ti |(x,�, ti) 2 E, i = 1, . . . ,m}. �e algorithm in
[Mackey et al., 2018] has a worst-case complexityO(m�̂(`�1))when executed
on a motif with ` edges and a temporal network with m temporal edges,
where �̂ is the maximum number of edges within a window of length � ,
i.e., �̂ = max{|S(t)| : S(t) = {(x,�, t̄) 2 E : t̄ 2 [t, t + � ]}, t 2 dim(T )}.
Note that such complexity is exponential in the number of edges ` of the
temporal motif. Obviously our algorithms bene�t from any improvement to
the state-of-the-art exact algorithms.

Complexity of PRESTO-A. �e worst-case complexity is O(sm̂�̂(`�1) +
sC⇤M )when executed sequentially, wherem̂ is themaximumnumber of edges
in a window of length c� , i.e., m̂ = max{|S(t)| : S(t) = {(x,�, t̄) 2 E : t̄ 2
[t, t + c� ]}, t 2 dim(T )}, and C⇤M is the maximum number of � -instances
contained in any window of length c� . �is corresponds to the case where
PRESTO-A collects samples with many edges for which many � -instances
occur. �e complexity becomes O( s� m̂�̂(`�1) + s

�C
⇤

M ) when PRESTO-A is exe-
cuted in a parallel environment with � threads (parallelizing the for cycle
in Algorithm 3).

Complexity of PRESTO-E. Using the notation de�ned above, the worst-
case complexity of a naive implementation of PRESTO-E is O(sm̂�̂(`�1) +
sm̂C⇤M ). As for PRESTO-A, the �rst term comes from the complexity of the
exact algorithm for computing Si, i = 1, . . . , s , whereas the second term is
the worst-case complexity of computing the weights for each sample. �e
additionalO(m̂) complexity of the second term arises from the computation
of r̃u for eachu 2 Si, i = 1, . . . , s . �e complexity of this computation can be
reduced toO(log(m)) by applying binary search to the edges ofT . With such
an approach, we obtained the �nal complexityO(sm̂�̂(`�1)+s log(m)C⇤M ). �e
complexity reduces to O( s� m̂�̂(`�1) + s

� log(m)C⇤M ) when � threads are avail-
able for a parallel execution.

3.6 Experimental Evaluation
In this section we present the results of our extensive experimental evalua-
tion on large scale datasets. To the best of our knowledge we consider one of
the largest dataset, in terms of number of temporal edges, ever used for the
motif counting problem with more than 2.3 billion temporal edges. A�er
describing the experimental setup and implementation (Section 3.6.1), we
�rst compare the exact algorithm by Mackey et al. [2018] and our proposed
2� -patch algorithm with respect to their running time and memory require-
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Table 3.1: Datasets used in our experimental evaluation. We report: number
of nodes n; number of edgesm; precision of the timestamps; timespan of the
network.

Name n m Precision Timespan

Stackover�ow (SO) 2.58M 47.9M sec 2774 (days)
Bitcoin (BI) 48.1M 113M sec 2585 (days)
Reddit (RE) 8.40M 636M sec 3687 (days)

EquinixChicago (EC) 11.16M 2.32B µ-sec 62.0 (mins)

ments (Section 3.6.2), and we also evaluate a parallel implementation of our
2� -patch algorithm. We then proceed by comparing the quality of the esti-
mated counts provided by PRESTO with the estimates from state-of-the-art
sampling algorithms from Liu et al. [2019], and Wang et al. [2020] (Section
3.6.3). �en we compare the memory requirements of the approximate al-
gorithms (Section 3.6.4), which may be a limiting factor for the analysis of
very large datasets. Additional experiments on PRESTO’s running time com-
parison with the exact algorithm, with the current state of-the art sampling
algorithms, and on PRESTO’s parallel implementation are in supplementary
material (Section 3.7).

3.6.1 Experimental Setup and Implementation

�e characteristics of the datasets we considered are in Table 3.1. Equinix-
Chicago [noa] is a bipartite temporal network that we built. A detailed de-
scription is in Section 3.7.2. Descriptions of the other datasets are in [Paran-
jape et al., 2017, Liu et al., 2019].

We implemented our algorithms in C++20, using the parallel version
(with 20 threads) of Algorithm 1 using [Mackey et al., 2018] as exact sub-
routine for extracting exact counts when comparing sampling algorithms.
�e experiments were performed on a 72 core Intel Xeon Gold 5520 @
2.2GHz machine with 1008GB of RAM available, running Ubuntu 20.04.
�e code we developed, and the dataset we build are entirely available at
https://github.com/VandinLab/PRESTO/, links to additional resources
(datasets and other implementations) are in Section 3.7.3.1. We tested all
the sampling algorithms on the motifs from Figure 3.4b. We considered
motifs with at most ` = 4 when evaluating Wang et al. [2020] since their
algorithm does not allow for motifs with a higher ` in input (as we also dis-
cussed in Section 3.5.1). Since the EC dataset is a bipartite network, it can
contain all but the motifs colored in blue with in Figure 3.4b. �erefore,
for the EC dataset only considered the motifs colored with orange nodes
in Figure 3.4b. For approximate algorithms, we compared our algorithms
PRESTO-A and PRESTO-E, collectively denoted as PRESTO, with 2 baselines:
the sampling algorithm by Liu et al. [2019], denoted by LS and the sampling
algorithm by Wang et al. [2020], denoted by ES.
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Figure 3.4: Motifs used in the experimental evaluation. �e edge labels de-
note the edge order in � according to De�nition 3.2. (3.4a): Motifs used for
the comparison of exact algorithms. When we denote M1 and M3 we refer
to the motifs on the le� on all datasets but the EC dataset, given that such
dataset is bipartite and it cannot contain the motifs on the le�. �erefore on
the EC dataset we will use the motifs on the right denoted with the same
labelsM1 andM3. (3.4b): Motifs used for the comparison of approximate al-
gorithms: from M1 to M12, motifs coloured in blue (i.e., M4,M8) will not be
used on the EC dataset, since such network is bipartite and it cannot contain
such motifs.

3.6.2 2�-patch: Comparison with BT

In this section we compare the state-of-the art exact algorithm by Mackey
et al. [2018] (denoted with BT) and our Algorithm 1 (denoted with 2-� ) to
compute the exact count of temporal motifs. Our 2-� uses the BT algorithm
by modifying the ordering used to match the temporal motif instances as
discussed in section 3.4.2.

3.6.2.1 Setup

We �rst will show that by running both the algorithms (BT and 2-� ) se-
quentially, our algorithm 2-� enables an e�cient and scalable counting of
temporal motifs over large temporal networks, di�erently from BT that re-
quires signi�cantly more resources (time and memory), hence becoming
impractical on many inputs. To show such aspect we executed both the
algorithms on the datasets from Table 3.1 and with the four motifs (with
di�erent structure and number of temporal edges, i.e., ` 2 [3, 6]) from Fig-
ure 3.4a. Note that on the EC dataset M1 and M3 are di�erent with respect
to the other datasets since such dataset is bipartite, and therefore it cannot
contain triangle-shaped interactions. Additionally,M2 is chosen such that it
creates disconnected components when matching it inside the BT algorithm
(see Section 3.4.2), so we expect our 2-� patch algorithm to improve signif-
icantly the running time and memory when counting � -instances of such
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a

b

Figure 3.5: (3.5a): Average running time (blue bars) and peak RAM usage
(orange bars) comparison of the BT and 2-� patch algorithms on the motifs
of Figure (3.4a) on the di�erent datasets of Table 3.1. (3.5b): Parallel speed-
up achieved over the sequential implementation of the 2-� patch algorithm
with di�erent threads on each dataset and motif, we also report on each
plot the function � = x that represents the best speedup achievable by our
algorithm.

motif over BT. We executed each algorithm on the given dataset and con�g-
uration of parameters (motif, � , and c = 2 for 2-� ) �ve times and measured
the resulting average running time for each of the two algorithms, addition-
ally over an independent run we measured the peak RAM usage of each of
the two algorithms. For each dataset we used di�erent values of � given that
smaller datasets (in terms of temporal edgesm) allow for a higher value of
such parameter (given that they contain fewer edges in each temporal win-
dow of at most � ), we only highlight that such choices of parameters were
made to facilitate the BT algorithm to terminate, since with higher values of
� on larger datasets, for some motifs, such algorithm may end up using too
much memory or running time, di�erently from our 2-� patch. �e values
of � will be reported along the various experiments.

3.6.2.2 Resources Comparison

�e results are reported in Figure (3.5a). By considering the running time
we see that on the datasets SO and BI on motifsM1 andM3 both BT and 2-�
achieve similar performances (BT is slightly faster on SO and slightly slower
on M3 on the BI dataset). Interestingly on the larger dataset (RE) such mo-
tif counts are computed in a similar time (on M3) or in a much faster way
by the 2-� algorithm (M1’s count is computed saving more than 33% of the
running time w.r.t. to BT). �en we note that M4 is computed much more
faster by 2-� w.r.t. BT on all datasets, for example on the BI dataset 2-� saves
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50% of the running time of BT (that corresponds to more than 2 hours), this
is probably achieved by our ordering adopted in 2-� (resulting from the al-
gorithm in Section 3.4.2), this is really surprising sinceM4 is not temporally
disconnected so our proposedmatching algorithmmay achieve good perfor-
mances on arbitrary motifs, not only on disconnected ones. Interestingly, on
EC andM4, BTwas not able to conclude due to large memory usage, while 2-
� -patch used a limited amount of memory, but required more than 2-weeks
to compute such motif count. Still on the EC dataset we note that both M1
and M3 (recall, such motifs di�er from the ones on previous datasets) are
computed in a similar or smaller time than BT, supporting the general trend
of 2-� patch being more e�cient that BT. Finally we conclude by noting that
BT cannot compute the count ofM2 on any of the datasets, even the smallest
one, given that it generates disconnected matches, this is supported by the
fact that the RAM peak of BT corresponds to the maximum available on the
machine (therefore the execution was terminated for exceeding the avail-
able memory). Considering the memory usage we observe consistently 2-�
patch uses at least one order of magnitude less RAM memory than BT and
less than two orders of magnitude on motifM2 on each dataset.

3.6.2.3 2-� Patch Parallel

On each of the con�gurations between motif, dataset, and � used in the
previous section we executed the 2-� algorithm’s parallel version. We ex-
ecuted each parameter combination �ve times and computed the resulting
average running time, let RT1 be the (average) running time obtained from
executing 2-� sequentially and RT� , � 2 {2, 4, 8, 16} the (average) running
time obtained by executing 2-� with � threads. We computed RT1/RT� , � 2
{2, 4, 8, 16} that is the speedup achieved by the parallel implementation us-
ing � threads. We report the results of all the con�gurations in Figure (3.5b).
We observe that on all the con�gurations the speedup is almost linear up to
8 threads, and becomes slightly less than linear for 16 threads, except for the
BI dataset that maintains an almost linear speedup on most of the motifs.

Combining the results of the running time, memory and parallel im-
plementation we have that 2-� achieves signi�cant results towards making
practical the computation of arbitrary temporal motif counts, for example
while on BI dataset counting M4 with BT takes more that 4 hours, by using
more than 100GB of RAM memory of peak, with 2-� in its parallel version
we can obtain such count in less that 10 minutes by using less than 20 GB
of peak RAM memory. We enforce that while BT is not parallelizable, our
2-� is embarrassingly parallel, and can be used to parallelize any sequential
algorithm for exact enumeration. Additionally our 2-� enables the counting
of arbitrary motifs di�erently from BT that has a large memory usage, as we
discussed for M2 (or M4 on EC) that cannot with BT since such algorithm
exceeds the memory of our machine.
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3.6.3 �ality of Approximation

We start by comparing the approximation provided by PRESTO with the
current state-of-the-art sampling algorithms. To allow for a fair compari-
son, since the algorithms we consider depend on parameters that are not
directly comparable and that in�uence both the algorithm’s running time
and approximation, we run all the algorithms sequentially and measure the
approximation they achieve by �xing their running time (i.e., we �x the pa-
rameters to obtain the same running time).

While PRESTO can be trivially modi�ed in order to work within a user-
speci�ed time limit, the same does not apply to LS or ES. �us, to �x the
same running time for all algorithms we devised the following procedure: i)
for a �xed dataset and � , we found the parameters of LS such its runtime is
signi�cantly faster2 than that of the 2-� patch algorithm, that we executed
in parallel to extract the exact counts on each motif3 ii) we run LS on all the
motifs on the �xed dataset with the parameters set as from i) and measure
the time required for each motif; iii) we run ES such that it requires the same
time as LS; iv) we ran PRESTO-A and PRESTO-Ewith c = 1.25 and a time limit
that is theminimum between the running time of LS and the one of ES.�e
parameters for all algorithms are in Section 3.7.3.2. Further discussion on
how to set c when running PRESTO is in Section 3.7.4.

For each con�guration, we run each algorithm ten times, with a limit
of 600 GB of (RAM) memory. We computed the so called Mean Average
Percentage Error (MAPE) on the ten runs. MAPE is de�ned as follows: let
C0M be the estimate of the count CM produced by one run of an algorithm,
then the relative error of such estimate is |C0M � CM |/CM ; the MAPE of the
estimates is the average of the relative errors in percentage.

Table 3.2 shows the MAPE of the sampling algorithms on SO and BI,
with their variances across the ten runs. On the SO dataset we observe that
both versions of PRESTO provide more accurate estimates over current state-
of-the-art sampling algorithms. PRESTO-A provides the best approximation
on 5 out of 12 motifs, with PRESTO-E providing the best results for all the
other motifs. Furthermore, both variants of PRESTO improve on all motifs
w.r.t. LS and ES, with the error from ES being more than twice the error
of PRESTO on all motifs. We note PRESTO-A and PRESTO-E achieve similar
results, supporting the idea that similar performances are obtainedwhen the
network’s timestamps are distributed evenly, that is the case for such dataset
(see Section 3.7.7). Interestingly on this dataset PRESTO is able to estimate
even small counts with su�cient accuracy, note in fact that motif M4 has
only ⇠320 � -instances, and PRESTO is able to estimate its count within 16%
of relative error. We also note that the variance of our algorithm is almost
always smaller than the one of other algorithms, highlighting that we can

2We use such criterion since sampling algorithms are o�en required to run within a
small fraction of time w.r.t. exact algorithms.

3We bound the running time of the exact algorithm using half the number of threads
used times the running time by such parallel version, i.e., assuming a pessimistic speedup.
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Table 3.2: Comparison of the relative approximation error (see Section 3.6.1).
For each combination of dataset and motif we highlight the algorithm with
minimumMAPE value. “7” that the motif cannot be counted by the method
due to ` being too large.

SO BI

Approximation Error Approximation Error

PRESTO PRESTO

Motif CM A E LS ES CM A E LS ES

M1 2.0·107 1.1±0.9% 1.2±0.5% 22.2±18.9% 4.4±2.9% 4.2·108 3.0±2.3% 9.3±7.7% 31.4±27.1% 10.2±6.3%
M2 5.7·109 13.6±14.3% 8.9±8.8% 16.0±11.4% 7 6.3·1012 11.5±9.7% 12.7±11.5% 31.8±12.0% 7
M3 7.8·108 6.1±4.8% 3.6±3.5% 6.3±4.2% 14.9±11.5% 1.9·1011 10.4±9.5% 13.5±8.7% 23.1±21.3% 27.1±40.2%
M4 3.2·103 16.2±9.3% 10.8±7.5% 75.3±29.1% 7 1.5·107 53.1±38.5% 40.1±32.6% 128.4±109.3% 7
M5 1.1·108 4.6±3.9% 2.7±1.7% 6.1±4.9% 13.3±8.8% 1.0·109 6.9±4.4% 7.8±4.6% 153.9±26.3% 137.1±70.0%
M6 2.3·108 4.9±4.8% 3.5±1.9% 6.5±3.5% 6.0±4.3% 3.8·109 7.1±3.0% 3.8±3.2% 9.1±4.3% 9.4±6.5%
M7 8.0·105 3.8±2.3% 4.3±2.2% 8.6±5.5% 17.4±23.7% 7.2·107 13.8±8.7% 13.1±9.2% 16.9±11.9% 15.3±8.6%
M8 6.8·106 5.0±2.3% 4.5±2.9% 5.6±4.4% 25.9±18.4% 1.4·108 11.4±8.6% 11.2±9.7% 42.3±50.6% 21.0±19.9%
M9 1.5·108 0.9±0.7% 1.6±1.3% 38.5±33.2% 3.4±2.7% 2.5·109 4.6±3.7% 4.9±3.1% 118.4±97.8% 79.4±62.8%
M10 1.2·109 1.4±1.1% 2.0±1.1% 51.1±32.3% 7 1.4·1011 2.9±1.6% 5.4±10.1% 34.2±21.2% 7
M11 2.3·108 5.2±5.9% 3.6±2.4% 6.4±3.8% 17.8±15.0% 2.6·109 6.1±3.0% 4.8±2.9% 81.7±15.5% 71.2±53.8%
M12 2.3·104 9.5±6.9% 12.4±8.3% 21.0±14.3% 7 2.4·108 12.9±12.8% 15.9±7.8% 51.0±29.8% 7

achieve tighter andmore concentrated estimates in the same amount of time
of the baselines.

For the BI dataset the results are similar to the ones for the SO dataset.
PRESTO-A achieves the lowest approximation error on 7 out of 12motifs with
PRESTO-E achieving the lowest approximation error on all the other motifs.
PRESTO achieves be�er estimates than LS and ES on all the motifs as for
the SO dataset. Interestingly, on this dataset where some motifs are easily
counted approximately, while others such as M4 have a worse approxima-
tion factor, this may be related to their distribution in the temporal network.
Despite this, PRESTO signi�cantly improves the results of the state of the art
algorithms on most of the motifs.

On the RE dataset shown in Table 3.3, PRESTO outperforms over all the
motifs on ES and over 6 motifs on LS, with PRESTO-A achieving the lowest
approximation error on 4 out of 12 motifs and PRESTO-E on 3 out of 12 mo-
tifs. Even when not improving LS (on 6 out of 12 motifs) we note that the
average error is quite close to such algorithm, while the average error of
LS is o�en larger on the motifs where PRESTO performs be�er. �is may be
related to the edge distribution of the dataset RE, since Wang et al. [2020]
showed that RE has a more skewed edge distribution, a scenario for which
LS may be competitive when there is a positive correlation between edges
and motif instances inside sampled windows [Liu et al., 2019].

Finally we discuss the results on the EC dataset, again in Table 3.3, which
is a 2.3 billion edges bipartite temporal network. Note that the results for ES
are missing, since ES did not complete any run with 600GB of memory on
the motifs tested. (We discuss the high memory usage of ES in Section 3.6.4).
On such dataset both variants of PRESTO perform be�er than LS on almost
all themotifs considered, PRESTO-A achieves the lowest approximation error
on 6 out 10 motifs, while PRESTO-E improves over LS on all motifs but M4,
achieving the best approximation error on 4 out of 10 motifs. Interestingly,
the variance of PRESTO is o�en similar or signi�cantly lower than the one
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Table 3.3: Comparison of the relative approximation error (see Section 3.6.1).
For each combination of dataset and motif we highlight the algorithm with
minimumMAPE value. “7” that the motif cannot be counted by the method
due to ` being too large. For the EC dataset we do not report values for ES
since such algorithmwas not able to complete any run due to out of memory
error.

RE EC

Approximation Error Approximation Error

PRESTO PRESTO

Motif CM A E LS ES CM A E LS

M1 1.6·108 4.2±2.1% 4.4±3.0% 27.5±20.2% 12.7±7.0% 1.2·1011 2.7±2.2% 43.2±17.1% 70.5±41.1%
M2 2.0·1010 18.6±3.1% 18.5±6.1% 17.1±7.9% 7 2.6·1012 6.6±4.6% 15.5±7.7% 28.6±18.8%
M3 7.8·109 10.1±9.0% 15.1±12.0% 10.3±9.0% 24.0±17.5% 6.3·1010 4.5±3.6% 4.5±2.8% 7.9±5.1%
M4 1.6·107 11.7±15.5% 22.5±14.4% 88.5±8.5% 7 - - - -
M5 6.7·108 23.1±16.1% 23.8±26.5% 29.0±12.4% 31.1±10.2% 2.7·1011 9.4±4.9% 6.9±3.2% 13.8±11.6%
M6 5.0·108 4.7±4.2% 3.2±1.4% 2.0±1.0% 10.7±7.0% 1.6·1010 5.3±2.4% 3.3±2.4% 12.4±7.9%
M7 1.1·108 10.3±6.4% 8.1±4.0% 9.6±4.5% 21.7±17.2% 3.4·1011 11.8±7.4% 13.7±9.1% 19.1±8.8%
M8 8.4·107 12.6±6.9% 17.5±8.9% 9.4±7.6% 26.6±20.6% - - - -
M9 5.9·108 2.2±1.5% 2.1±1.4% 34.3±33.7% 5.1±4.0% 8.7·1010 1.1±1.2% 50.6±17.2% 67.7±52.2%
M10 3.8·109 9.3±4.6% 8.4±12.6% 92.0±60.9% 7 2.3·1011 5.5±2.6% 52.3±25.5% 61.7±25.4%
M11 7.0·108 6.8±5.0% 4.8±2.7% 3.4±3.5% 31.9±27.5% 9.5·1010 7.1±7.8% 3.8±2.1% 7.6±6.1%
M12 1.0·108 62.0±23.4% 57.0±18.7% 53.3±58.8% 7 4.0·1013 48.8±30.1% 93.1±7.8% 62.0±29.4%

Table 3.4: Minimum andmaximumpeakmemory usage in GB over all motifs
in Figure 3.4b, “7” denotes out of memory.

Dataset PRESTO-A PRESTO-E LS ES

SO 1.5 - 1.5 1.5 - 1.5 1.5 - 13.6 9.7 - 39.3
BI 3.5 - 3.5 3.5 - 3.5 3.5 - 16.4 31.3 - 42.0
RE 19.5 - 19.5 19.5 - 19.5 19.5 - 79.8 124.9 - 498.0
EC 71.0 - 71.0 71.0 - 71.0 71.0 - 85.0 7

of LS, which is another of the advantages of our algorithms, as con�rmed
by the experiments we already discussed.

�ese results, coupled with the theoretical guarantees of Section 3.5,
show that PRESTO outperforms the state-of-the-art sampling algorithms LS
and ES for the estimation of most of the motif counts on temporal networks.
Based on the results we discussed, PRESTO-E seems also to usually provide
similar estimates to PRESTO-A, while sometimes improving over PRESTO-A
depending on the distribution of the network edges or motif instances.

3.6.4 Memory Usage
In this sectionwe discuss the RAMusage of the various sampling algorithms.
For each motif in Figure 3.4b with the parameters set as in Section 3.6.3, we
computed for each motif the peak RAM required for the approximation of
its count by the various approximation algorithms. �e results are in Table
3.4, which shows for each algorithm the minimum and maximum amount of
peak (RAM) memory used over all motifs in Figure 3.4. Both PRESTO’s ver-
sions have lower memory requirements than ES, and equal or lower mem-
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ory requirements than LS, on all datasets. ES ranges from requiring 6.5⇥
up to 25.5⇥ the memory used by PRESTO, making ES not practical for very
large datasets such as EC (where ES did not completed any of the runs since
it exceeded the 600GB of memory allowed for its execution). While LS and
PRESTO have similar memory requirements when compared to theminimum
peak RAM required, but LS requires more maximum peak RAM, such as up
to 9⇥ on dataset SO, which may be due to the fact that choosing windows
with more edges, as done by LS, may require more memory to run the exact
algorithm as subroutine. PRESTO is, thus, a memory e�cient algorithm and
hence a very practical tool to tackle the motif counting problem on temporal
networks up to billions edges.

3.7 Additional Material

3.7.1 Missing�eoretical Results
�eorem 3.5 ([Hoe�ding, 1963]). Let X1, . . . ,Xs be independent random
variables such that for all 1  i  s , E[Xi] = µ and P(a  Xi  b) = 1.
�en
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Proof of�eorem 3.1. Let Pr = P(| 1s
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i=1Xi �CM | � �CM ), we want to show
that for s as in statement it holds Pr  �. Observe that the variables
X1, . . . ,Xs , are mutually independent. And, by Lemma 3.2, E[Xi] = CM =
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where (1.) follows from the de�nition of pu , by considering each of the vari-
ables Xi
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by the choice of s as in statement. ⇤

3.7.1.1 Note on Bennett’s Inequality

In this section we will discuss how to apply Benne�’s inequality when the
exact variance term, i.e. � , from�eorem 3.2 is unknown and we only have
an upper bound �̂ to such term (which is our case in practice).
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Let us consider the function f (�) = �� h(�/�) with � = s/B2, � = tB
where h(·) is the same function h(·) appearing in Benne�’s inequality (�e-
orem 3.2). With a somehow tedious analysis (see Lemma 3.6) one can prove
that the function f (�) is continuous and monotonic non increasing for ev-
ery �,� > 0 thus by de�nition, given �1 � �2 > 0 it holds f (�1)  f (�2).
Observe that we can write the right-hand side of the Benne�’s bound as
2 exp(�f (�)), now is clear that given �1 � �2 > 0 it holds 2 exp(�f (�2)) 
2 exp(�f (�1)) by the property of negative exponential functions. �is ob-
servation allows us to apply Benne�’s inequality using an upper bound �̂ to
� .

By the above observation we also get the intuition that a smaller gap
between �̂ , the upper bound to the variance, and � the actual variance will
result in a tighter bound to the sample size s (i.e., Benne�’s inequality will
provide more strict bounds). In our work we focused on a trade-o� between
the sharpness of the bound �̂ and its e�cient computability in practice, since
sharper bounds on �̂ (than the one we provide) could be proved but they are
much harder to compute and thus may not be of practical interest. We still
leave to further research the space of improving the bounds in this work.

Lemma 3.6. �e function f (�) = ��h(�/�) with h(x) = (1 + x) ln(1 + x) � x
is monotonic non-increasing for every �,�,� > 0

Proof. Recall the de�nition of the function f (�) = f (�) =
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By se�ing � = �/� , then we �rst note that � + 1 > 0 for every value of
�,� > 0. We only need to study the sign of the function (� ln(1+ 1

� )� 1) i.e.,
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�nd the values of � > 0 s.t. �(�) = � ln(1 + 1
� ) > 1. Since for � > 0 it holds

�(�)  1 it cannot be that for any � > 0 �(�) � 1 > 0 therefore the function
is non-increasing over the domain of interest as claimed. ⇤

3.7.1.2 On the Derivation of Sharper Guarantees

In this section we discuss some limitations to provide sharper guarantees on
the concentration of the estimator adopted in PRESTO, we hope such section
to be of inspiration for future works.

In recent years, several concentration inequalities for the sum of in-
dependent random variables have been proposed to improve Benne�’s in-
equality. Leveraging for example, on higher moments (e.g., [Zheng, 2017,
Light, 2020]) of the random variables considered (i.e., bounding E[Xp

i ],p >
1, i 2 [1, s], see for example Lemma 3.7). While such inequalities do provide
sharper results than Benne�’s inequality, we argue that the main backdraw
of applying such results in our scenario is the gap between the bound on
the range of the variables Xi , and the values that are assumed in practice
by such variables, given that our bound assumes a rather pessimistic worst
case scenario. Observe in fact that the bound on the range ofXi is [0,

�T,1CM
(c�1)� ]

may be very loose, especially w.r.t. scenarios where the distribution of the
� -instances is not as assumed by such worst case scenario (this is almost
always the case in practical applications). �erefore such novel bounds lead
only to small improvements over the guarantees computed by using Ben-
ne�’s inequality. Observe in fact that the bound on the range of the vari-
ables plays a key role in determining the number of samples needed for the
concentration of our estimator.

Lemma 3.7. Given p > 1 for the r.v. Xi computed at the i-th iteration (i 2
[1, s]) by PRESTO-A, it holds that,

E[Xp
i ] 

✓
�T ,1

(c � 1)�

◆p�1
Cp
M

Another line of research in concentration theory aims at using the em-
pirical values of the variables, for example leveraging on their variance to
provide sharper concentration results [Maurer and Pontil, 2009]. Again to
apply such results to our scenario we need to obtain a bound on the range of
the variables Xi , and as argued before our bound may be too loose to obtain
signi�cant improvements. Additionally in this se�ing, due to some techni-
cal challenges the fact that the range depends on CM prevents us to employ
these results to obtain desired bounds. We leave for future research obtain-
ing reasonable bounds on the range ofXi being e�ciently computable, since
trivial techniques to improve such bound would make our algorithm very
ine�cient, therefore not practical.
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3.7.2 Description of the Equinix-Chicago Dataset
In this section, we brie�y describe the Equinix-Chicago used in our experi-
mental evaluation.

We built the Equinix-Chicago dataset4 starting from the internet packets
collected by two monitors situated at Equinix data center, which captured
the packets from Chicago to Sea�le and vice versa on the 17 February 2011
for an observation period of 62 minutes. Each edge (x,�, t) represents a
packet sent at time t , with microseconds precision, from the IPv4 address x
to the IPv4 destination�5. Such network is thus a bipartite temporal network
since edges, i.e., packet exchanges, occur only between nodes belonging to
di�erent cities, with no interactions captured among nodes of the same city.
�e �nal temporal network has more than 2.325 billion temporal edges and
11.157 million nodes.

We made available this dataset to the community at the
following link: https://drive.google.com/drive/folders/
1HXMEO4wwMOT1H9icwiP6siQTp2sm5pgA.

3.7.3 Reproducibility
3.7.3.1 Links to External Resources

For reproducibility purposes, in this section we report the links to the
datasets and implementations of LS and ES we used.

• Dataset SO is available at: http://snap.stanford.edu/
temporal-motifs/data.html;

• Datasets RE and BI are available at http://www.cs.cornell.edu/
⇠arb/data/;

• �e current implementation of the LS algorithm is available at: https:
//gitlab.com/paul.liu.ubc/sampling-temporal-motifs;

• �e implementation of the ES algorithm is available at: https://
github.com/jingjing-hnu/Temporal-Motif-Counting.

3.7.3.2 Reproducibility - Parameters of the Experimental Evalua-
tion

We now discuss discuss the choice of the parameters resulting from our
procedure for comparing the di�erent sampling algorithms in Sec. 3.6.3.

4We used data available at https://www.caida.org/data/passive/passive 2011
dataset.xml publicly available under request.

5We �ltered packets which used di�erent protocols, e.g., IPv6. Further, we did not as-
signed nodes at port level but at IP address level (e.g, let addr be an IPv4 address, then the
edges corresponding to two packets sent at di�erent ports: addr:80, addr:22 are mapped
on the same endpoint node corresponding to addr).
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Table 3.5: Parameters used in the comparison of LS, ES, PRESTO-A and
PRESTO-E. For the parameter s r ,p we report the range since their values
depends on the speci�c motifs (see Sec.3.6.3). We further discuss in Supple-
ment 3.7.4 the motivation for our choice of c .

Dataset c � r b p

SO 1.25 86400 10-40 5 10�[5,4]
BI 1.25 7200 5-80 5 10�[5,3]
RE 1.25 3600 80-1000 5 10�[5,4]
EC 1.25 100000 2-240 5 10�5

Note that our algorithms PRESTO-A and PRESTO-E have only 1 tuning
parameter in the experimental se�ing of Sec. 3.6.3, since � is provided in
input (i.e., c , for which we also discuss how to set it to obtain the maximum
e�ciency in Supplement 3.7.4). �e same holds for ESwhich has the param-
eter p, that controls the fraction of sampled edges (see Sec. 3.3). While LS
has instead non trivial dependencies among the parameters b and r which
are not entirely easy to set when it comes to di�erent values of c and � also
due to the lack of a qualitative theoretical analysis relating the parameters
to the approximation quality of the results.

Table 3.5 reports all the parameters used on the di�erent datasets. Given
the procedure for running PRESTO’s versions (described in Section 3.6.3),
their sample size s is not deterministic, since only the execution time is �xed.
Additionally for some of the hardest motifs for LS (i.e., motifs M1,M8,M9)
we used small values of r , while for all the other motifs we used higher
values of r , the results values are reported in Table 3.5. Under the column
r we report on the le� the value used for hard motifs, and on the right the
value for all the othermotifs. Recall that the values ofp for ESwhere adapted
to each motif on each con�guration following the approach described in
Section 3.6.3, we selected the best p in order to have a �nal running time
of ES to be close to the one of LS choosing p as follows, we started from
p = 10�6 and a�er executing LS, we iteratively increased p till the running
time of ESwas close or slightly greater (of at most 10% ) to the running time
of LS, the resulting values of all parameters are reported in Table 3.5. �us,
we report in Table 3.5 the range from which p was chosen in practice as
result of our procedure for �xing the parameters.

3.7.4 Selecting the Value of c
In this section we brie�y discuss how to choose the value of c when running
PRESTO.

�e major advantages of PRESTO, come from the e�ciency in time, small
memory usage and from the scalability it achieves, which coupled with the
theoretical guarantees provided and the precise estimates achieved in prac-
tice, make our algorithm a fundamental tool when analysing large temporal
networks, it is thus important to set PRESTO’s parameter (i.e., c) correctly to
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Table 3.6: Running times (geometric mean of �ve di�erent runs) of
PRESTO-A using 8 threads on motif M7 on EC dataset.

c s running time (sec)

10 125 242.09
5 250 128.94
2.5 500 76.43
1.25 1000 61.41

exploit such features at their best. Our versions of PRESTO have only the
parameter c to be selected, since � is part of the problem’s input. We now
discuss the importance of keeping c small (e.g., c < 2). To do this, we con-
sider a concrete example to show that a small c leads to more e�ciency and
scalability. Suppose we want to approximate the count of motif M7 from
Figure 3.4 on EC dataset6 and we want to cover with samples a �xed length
of the interval [t1, tm] over the s iterations, i.e.,

Õs
i=1 |t

i
r + c� � t

i
r | = sc� = V

where [tir , tir +c� ] is the temporal window sampled by PRESTO-A7 at iteration
i = 1, . . . , s and V is the �xed value, V can be interpreted as the summation
of the durations of each sample (c� ) over all the samples (i.e., how much
time of [t1, tm] over the s iterations PRESTO examines). Fixed V and � , one
can explore di�erent values of c which thus let only one possibility to set
s , by solving the equation s = V/c� . Table 3.6 presents the running times
for various values of c with �xed � = 105, V = 1.25 · 108. When c decreases
there is a substantial decrease in running time, in fact with c = 10 the run-
ning time is more than 3.9⇥ the running time with c = 1.25. �is should not
surprise the reader, since such results is in accordance with our complex-
ity analysis (see Section 3.5.4) which shows that larger samples in terms of
edges (as obtained by sampling windows with a higher c) result in a higher
running time.

�us the best choice in order to set c is to keep c < 2 based on all the
experiments we performed, to exploit e�ciency and scalability at the max-
imum of their level.

3.7.5 Running Time Comparison
In this section we discuss the running times under which we obtained the
results in Section 3.6.3.

We measured the running time of PRESTO-A, PRESTO-E, LS, and ES over
all experiments (i.e., datasets and motifs) described in Section 3.6.3, we also
measured the running time of 2� over one run on the same con�gurations
(i.e., dataset ad � ) executed with 20 cores. For all algorithms we then com-
puted the average of their running times for each pair (dataset, motif), for
2� we will assume a speedup of 10, that is supported by our experiments

6�is is an arbitrary example, similar results can be observed on almost all the motifs
and datasets.

7Similar observations hold for PRESTO-E.
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a: SO b: BI

c: RE d: EC

Figure 3.6: Running times on the di�erent datasets, according to the proce-
dure in Sec. 3.6.1.

(see Section 3.6.2), therefore let t2� be the running time of 2� obtained on
a speci�c con�guration, when we will report its running time we will re-
port 10 · t2� . �e results are shown in Figure 3.6. As expected, PRESTO runs
almost always signi�cantly faster than 2� . �e reader may appreciate how
the results in Sec. 3.6.3 were obtained with PRESTO’s running time bounded
by the minimum running time among ES and LS (�xed the motif and the
dataset). Furthermore we note that on several motifs on almost all datasets,
even if we set p small, i.e., 10�5, ES runs within a higher time than LS and
thus than PRESTO, we believe that this may be due to ES’s procedure to ex-
plore the search space which may not suite such motifs. To this end we �nd
that PRESTO is not a�ected by the motif topology. Note that PRESTO runs
orders of magnitude faster than 2� while still providing accurate estimates.
For example onM6 PRESTO achieves a 3% relative error (see Table 3.3) while
being 49⇥ faster than 2� .

Coupled with the results of Section 3.6.3 and 3.6.4, these aspects show
that PRESTO is an e�cient algorithm to obtain accurate estimates of motif
counts from large temporal networks, especially when the running time to
obtain an estimate is very limited, thismay be the case on very large datasets.
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3.7.6 Scalability of Parallel PRESTO

Figure 3.7: Speed-up factor achieved through the parallel implementation of
PRESTO by varying the number of threads, In these experiments � was �xed
to the following values �SO = 86400, �BI = 7200, �RE = 14400, �EC = 100000.
We show how the speedup varies across two values of s 2 {500, 1000}.

As discussed in Section 3.5.1, PRESTO can be easily parallelized by ex-
ecuting the s iterations of Algorithm 3 in parallel, in this section we dis-
cuss such implementation. We implemented such strategy through a thread
pooling design pa�ern. We present the results of the multithread version of
PRESTO-A. Results for PRESTO-E are similar to the ones we will discuss.

To study how the speedup of PRESTO-A varies across di�erent con�gu-
rations we proceed as follows. Given a con�guration of parameters (s, � , � ),
where � is the number of threads, we repeat PRESTO-A on �ve independent
runs on the given con�guration. We then computed the speed-up T1/T�
where T� , � 2 {1, 2, 4, 8, 16} is the average of the running time over the �ve
runs (with �xed parameters) executing PRESTO-A with � threads. In Figure
3.7 we �xed c = 1.25 and � accordingly for each dataset as reported and we
show how the speed-up changes by varying the sample size s 2 {500, 1000}.
We observe a nearly linear speed-up up to 8 threads, and a speed-up for 16
threads that is slightly less than linear for datasets SO, and BI, and for most
motifs in EC but M12, for dataset RE the speedup is worse than the other
datasets and strongly dependent on the motifs. We observe that increasing
the sample size o�en increases slightly the speedup, i.e., the speedups with
s = 500 are slightly worse than those with s = 1000, we believe this to
be related to the speci�c paradigm of parallelism we adopted. Overall the
speedup achieved by our parallel algorithm is satisfactory except for very
speci�c con�gurations.

All together, the results of our experimental evaluation show that
PRESTO obtains up to hundreds of order of magnitude of speed-up over ex-
act procedure on the tests we performed while providing accurate estimates
through its parallel implementation (the sequential implementation is al-
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ready faster more than ten times on some con�gurations, while its parallel
implementation with 16 threads executes with a speedup of more than 10⇥
over the sequential one), enabling the e�cient analysis of billion edges net-
works.

3.7.7 Edge Timestamps Distributions – Skewed vs Uni-
form

In this section we compare the edge distributions, with respect to the times-
tamps of the datasets SO and RE used in our experimental evaluation in
Section 3.6. To obtain such distribution we computed for each timestamp
ti, i = 1, . . . ,m s.t.9(u,�, ti) 2 E, the number of edges in the forwardwindow
of length c� starting from ti , i.e., we computed |{(x,�, t) 2 E |t 2 [ti, ti +c� ]}|
for each ti, i = 1, . . . ,m, where we kept the parameters c and � as in Table
3.5. �is corresponds, for example, to the number of edges in each sample
candidate of PRESTO-E.�e results are shown in Figure 3.8.

We �rst discuss the distribution of the timestamps of the edges in the
RE dataset (Figure 3.8 (le�)), we observe immediately that such distribu-
tion is very skewed. In particular, the number of edges in the windows of
length c� starting from edges with timestamps in the �rst quarter of [t1, tm],
i.e., t < 1.25 · 109, do not exceed 103 edges. While most of the tempo-
ral windows starting at timestamps in the middle interval of [t1, tm], i.e.,
1.25 · 109 < t < 1.4 · 109, have much more edges ranging from 103 to
105 (several orders of magnitude edges more than windows from the �rst
quarter of the network’s timespan). In the last quarter of [t1, tm] instead
(t > 1.4 · 109) the dataset presents very sparse edges with most of the win-
dows (which are sample candidates in PRESTO) not exceeding 102 edges, note
that the windows starting in the middle section of [t1, tm] have at least one
order of magnitude additional edges (i.e., [103, 105] edges). �is shows how
the timestamps of the edges in RE have a very skewed distribution.

Figure 3.8 (right) instead shows the distribution of the timestamps of
the edges on the dataset SO. As we can see, except for a very brief tran-
sient state, the timestamps are almost uniformly distributed on [t1, tm], with
the windows of length c� centred at each timestamp ti, i = 1, . . . ,m hav-
ing almost the same number of edges, or ranging in at most one order of
magnitude of di�erence. �erefore the edges of E present a very uniform
distribution of the timestamps in the dataset SO over the interval [t1, tm].

We believe that such distributions may a�ect the results of the approxi-
mation of the di�erent version of PRESTO as discussed in the main text.
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Figure 3.8: Le�: distribution of the edges on dataset RE. Right: distribution
of the edges on dataset SO. Both plot’s y-axis are in log scale.



Chapter 4

Counting Multiple Temporal
Motifs Simultaneously

In this chapter we discuss existing limitations of the temporal motif count-
ing problem introduced in Chapter 2, to solve these issues we propose a
novel counting problem based on obtaining the counts of multiple temporal
motifs, sharing a common topology. We then propose ���N, our algorithm
to solve with high accuracy the estimation task de�ned on such novel count-
ing problem. We then evaluate such algorithm to show how it outperforms
existing state-of-the-art algorithms adapted to work on the novel problem.

4.1 Introduction
Networks are ubiquitous representations that model a wide range of real-
world systems, such as social networks [Cho et al., 2011], citation networks
[Ding, 2011], biological systems [Girvan and Newman, 2002], andmany oth-
ers [Newman, 2010]. One of the most fundamental primitives in network
analysis is the mining of motifs [Shen-Orr et al., 2002, Milo, 2002, 2004]
(or graphlets [Przulj, 2007, Bressan et al., 2019]), which requires to count
the occurrences of small connected subgraphs of k nodes. Motifs represent
key building blocks of networks, and they provide useful insights in wide
range of applications such as network classi�cation [Shervashidze et al.,
2009, Milenković and Pržulj, 2008], network clustering [Baumes et al., 2005],
and community detection [Batagelj and Zaversnik, 2003].

Modern networks contain rich information about their edges or
nodes [Zong et al., 2015, Rossi et al., 2021, Kosyfaki et al., 2018, Ceccarello
et al., 2017] in addition to graph structure. One of the most important in-
formation is the time at which the interactions, represented by edges, oc-
cur. Networks for which such information is available are called temporal
[Holme and Saramäki, 2012, 2019]; novel insights about the underlying dy-
namics of the systems can be uncovered by the analysis of such networks
[Kumar et al., 2006, Kovanen et al., 2013, Kumar and Calders, 2018]. In recent
years, many primitives [Kovanen et al., 2011, Hulovatyy et al., 2015, Paran-
jape et al., 2017, Schwarze and Porter, 2020] have been proposed as counter-
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part, in temporal networks, to the study of subgraph pa�erns for nontem-
poral networks, with each primitive capturing di�erent temporal aspects of
a network. One of the most important such primitives is the study of tempo-
ral motifs [Paranjape et al., 2017]. Temporal motifs are small connected sub-
graphs with k nodes and ` edges occurring with a prescribed order within a
time interval of duration � (as presented in Section 2.1.2.1). Temporal motifs
describe the pa�erns shaping interactions over the network, e.g., networks
from similar domains tend to have similar temporal motif counts [Paranjape
et al., 2017], and their analysis is useful in many applications, e.g., anoma-
lies detection [Belth et al., 2020], network classi�cation [Tu et al., 2019], and
social networks [Boekhout et al., 2019].

Temporal information poses several challenges in the analyses of mo-
tifs. A major challenge is represented by the large number of temporal mo-
tifs that can be build even with a limited number of vertices and edges. For
example, even considering directed (and connected) temporal motifs with
only 3 vertices and 3 edges, there are 32 such motifs. In several domains
when motifs are studied in the exploratory analysis of a temporal network
it is almost impossible for the data analyst to known a priori which motif is
the most interesting and useful. In social networks, for example, a set of 3
vertices represents the smallest non trivial community, and di�erent tempo-
ral motifs with 3 vertices describe di�erent pa�erns of interactions in such
community. Hence, studying all such motifs can provide novel insights on
the interactions within such communities. In network classi�cation, con-
sidering the counts of all the 32 motifs with 3 vertices and 3 edges lead to
models with improved accuracy [Tu et al., 2019].

However, since state-of-the-art approaches for general temporal motifs
only allow the analysis of one motif at the time (see Chapter 3), the user
needs to iteratively select and analyze the various motifs, resulting in an
ine�cient and time consuming process, in particular for large networks.

In this paper, we de�ne and study the problem of simultaneously count-
ing the occurrences of various temporal motifs. In particular, we consider all
motifs corresponding to the same static target template (e.g., all triangles -
see Figure 4.1a). �is problem is extremely challenging, since computing the
count of even a single temporal motif is NP-Hard in general [Liu et al., 2019],
with existing state-of-the-art approaches having complexity exponential in
the number of edges of the motif to obtain even a single motif’s count [Liu
et al., 2019, Wang et al., 2020, Sarpe and Vandin, 2021a].

�e task of counting temporal motifs is hindered by the sheer size
of modern datasets and, therefore, scalable techniques are needed to deal
with such amount of data as discussed in Chapter 1. Since exact ap-
proaches [Paranjape et al., 2017, Mackey et al., 2018, Gurukar et al., 2015]
are impractical, rigorous and e�cient approximation algorithms providing
tight guarantees are needed. In this work we develop ���N, a sampling
algorithm that provides a high quality approximation for the problem of
counting multiple temporal motifs with the same static topology. Our main
contributions are as follows:
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• We propose the motif template counting problem, where, given a tem-
poral network, a k-node target template graph H , the number ` of
edges of each temporal motif, and a bound � on the duration of the
temporal motifs, the problem requires to output all the counts of the
temporal motifs whose static topology corresponds to H and having
exactly ` temporal edges, occurring within � -time.

• We propose ���N, a randomized sampling algorithm providing a
high quality approximation for the motif template counting problem.
���N’s approach is to sample a set of motif occurrences, ensuring that
they all share the same static topology H . �us, ���N takes advan-
tage of the constraint that all motifs must share a common target tem-
plate H , aggregating the computation of all motif counts in a sample.
���N’s approximation, as in other data mining applications, is con-
trolled by two parameters �,�, which control respectively the quality
and the con�dence of the approximations.

• We show a tight and e�ciently computable bound on the number of
samples required by ���N for the approximation to be within � error
with con�dence > 1 � � for all temporal motif counts.

• We perform large scale experiments using datasets with up to billions
of temporal edges, showing that ���N requires a fraction of the time
required by state-of-the-art approximation algorithms for single motif
counts, and that it reports sharper estimates. We then provide a paral-
lel implementation of ���N displaying almost linear speedup in many
con�gurations. We also show how ���N provides novel insights on
the dynamics of a real-world temporal network.

4.2 Preliminaries
In this section we introduce the basic notions that we will use throughout
the work, and we de�ne the computational problem of counting multiple
temporal motifs sharing a common target template graph. Recall the de�ni-
tion of temporal networks.

De�nition 4.1. A temporal network is a pair T = (V , E) where, V =

{�1, . . . ,�n} and E = {(x,�, t) : x,� 2 V , x , �, t 2 R+} with |V | = n
and |E | =m.

Given (x,�, t) 2 E, we say that t is the timestamp of the directed edge
(x,�). Given a temporal networkT , by ignoring the timestamps of its edges
we obtain the associated undirected projected static network, de�ned as fol-
lows.

De�nition 4.2. �e undirected projected static network of a temporal net-
work T = (V , E) is the pair GT = (V , EGT ) that is an undirected network, such
that EGT = {{x,�} : (x,�, t) 2 E}.
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Figure 4.1: (4.1a): Motif template counting problem overview: given a tem-
poral network and a (static) target template, compute the counts of all
temporal motifs that map on the template. (4.1b): Temporal motif, with
k = 3, ` = 3, and its ordering � . (4.1c): Sequences of edges of the network
in (4.1a) among nodes {2, 5, 6} that map topologically on the motif in (4.1b).
For � = 15 only the green sequence is a � -instance of the motif, since the
timestamps respect � and t 0` � t

0

1 = 20 � 6  � . �e red sequences are not
� -instances, since they do not respect such constraint or do not respect the
ordering � .

We will o�en use the term static network to denote a network whose
edges are without timestamps. Next we introduce the de�nition of temporal
motifs as de�ned by Paranjape et al. [2017] (as seen in Section 2.1.2.1), which
are small, connected subgraphs representing pa�erns of interest.

De�nition 4.3. A k-node `-edge temporal motif M is a pair M = (K,� )
where K = (VK, EK) is a directed and weakly connected multigraph where
VK = {�1, . . . ,�k}, EK = {(x,�) : x,� 2 VK, x , �} s.t. |VK | = k and
|EK | = `, and � is an ordering of EK .

Recall that a k-node `-edge temporal motifM = (K,� ) is also identi�ed
by the sequence h(x1,�1), . . . , (x`,�`)i of edges ordered according to � ; we
will o�en use such representation for a motif M (see Figure (4.1b) for an
example). Given a k-node `-edge temporal motif M , the values of k and `
are determined by VK and EK . We will therefore use the term temporal mo-
tif, or simply motif, when k and ` are clear from context. Given a temporal
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motif M = ((VK, EK),� ), we denote with Gu[M] the undirected graph cor-
responding to the underlying undirected graph structure of the multigraph
K ofM , that isGu[M] = (VK, EuM ) where E

u
M = {{x,�} : (x,�)_ (�, x) 2 EK}

(i.e., EuM is the set of undirected edges associated to the multiset EK ). Notice
that directed edges of the form (x,�), (�, x) as well as multiple directed edges
(x,�), (x,�), . . . from EK are represented by the same undirected edge {x,�}
in EuM .

For a �xed temporal motif M , we are interested in identifying its real-
izations in T appearing within at most � -time duration, as captured by the
de�nition of � -instance ofM (already introduced in Section 2.1.2.1).

De�nition 4.4. Given a temporal network T = (V , E) and � 2 R+, a time
ordered sequence S = h(x01,�

0

1, t
0

1), . . . , (x
0

`,�
0

`, t
0

`)i of ` unique temporal edges
from T is a � -instance of the temporal motifM = h(x1,�1), . . . , (x`,�`)i if:

1. there exists a bijection f on the vertices such that f (x0i ) = xi and f (�0i ) =
�i, i = 1, . . . , `; and

2. the edges of S occur within � time, i.e., t 0` � t
0

1  � .

As for Chapter 3, the techniques we will develop can be extended to
work under more general constraints for a � -instance, e.g., considering par-
tial orderings or edges with equal timestamps. Exploring di�erent values of
� 2 R+ in De�nition 4.4 o�en leads to di�erent insights on the temporal
network that may be discovered through the analysis of the motifs [Holme
and Saramäki, 2012, Panzarasa et al., 2009, Kovanen et al., 2011, Bajardi et al.,
2011]. Note that in a � -instance of the temporal motif M = (K,� ) the edge
timestamps must be sorted according to the ordering � (see Figure (4.1c) for
an example). In fact, � plays a key role in de�ning a temporal motif, with
di�erent orderings of the same multigraph K re�ecting diverse dynamic
properties captured by the motif.

For a given directed multigraph K with |EK | = ` edges, in general not
all the `! orderings of its edges de�ne distinct temporal motifs. We therefore
introduce the following equivalence relation.

De�nition 4.5. Let M1 and M2 be two temporal motifs. Let M1 =

h(x11,�
1
1), . . . , (x

1
` ,�

1
` )i, and M2 = h(x21,�

2
1), . . . , (x

2
` ,�

2
` )i be the sequences of

edges of M1 and M2, respectively. We say that M1 and M2 are not distinct
(denoted with M1 �� M2) if there exists a bijection � on the vertices such that
�(x1i ) = x2i and �(�

1
i ) = �

2
i , i = 1, . . . , `.

We provide an example of the de�nition above in Figure 4.2.
Given two networks (undirected or temporal) G,G0 we say that G0 =

(V 0, E0) is a subgraph of G = (V , E) (denoted with G0 ✓ G) if V 0 ✓ V and
E0 ✓ E. Note that we require a subgraph to be edge induced (as presented in
Section 2.1.2). To conclude the preliminary notions, we recall the de�nition
of static graph isomorphism (seen in Section 2.1.1).
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Figure 4.2: (Le�): �e twomotifs are not distinct: let�1 = h(�, x), (�, z), (x, z)i
and�2 = h(x0, z0), (x0,�0), (z0,�0)i corresponding toM1 andM2, then the func-
tion f : V 1

K
7! V 2

K
de�ned by f (x) = z0, f (�) = x0, f (z) = �0 preserves both

the topology and the ordering as from De�nition 4.5. (Right): �e two mo-
tifs are distinct since there is no map f : V 1

K
7! V 3

K
preserving both topology

and ordering.

De�nition 4.6. Given two graphs G = (VG, EG) and H = (VH , EH ) we say
that the two graphs are isomorphic, denoted with G ⇠ H if and only if there
exists a bijection f : VG 7! VH on the vertices such that e = (u,�) 2 EG ,
e0 = (f (u), f (�)) 2 EH .

Let U(M, � ) = {I : I is a � -instance of M} be the set of (all) � -instances
of the motifM in T . �e count ofM isCM (� ) = |U(M, � )|, denoted withCM

when � is clear from the context.
Given a static undirected graph H , which we call the target template,

we are interested in solving the problem of computing the number of � -
instances of all temporal motifs with ` edges and all corresponding to the
same static graph H . More formally, given the target template H = (VH , EH ),
which is a simple and connected graph, and ` � |EH | 2 Z+, let M(H , `) be
the set of distinct temporal motifs with ` edges whose underlying undirected
graph structure corresponds to H , that is M(H , `) contains motifs Mi =

((V i
K
, Ei

K
),�i), i = 1, 2, . . . , such that:

1. Gu[Mi] ⇠ H ;

2. |Ei
K
| = `;

3. Mi �� Mj,8j , i .

Let us explain intuitively the constrains above. First, H imposes a con-
straint on the undirected static topology the temporal motifs of interest (that
are directed subgraphs) should have. �at is, it requires all themotifs to have
the same underlying graph structure (Gu[M]), which must be isomorphic to
H . �is is a useful way to represent multiple related temporal motifs. For
example, in social network analysis by �xing H as an undirected triangle
we consider in M(H , `) all temporal motifs that characterize the commu-
nication between groups of three friends (i.e., each motif will represent a
di�erent form of communication among all such groups [Paranjape et al.,
2017]). �e second constraint requires each motif Mi 2 M(H , `) to have
exactly ` � |EH | edges, with ` provided in input by the user. Fixing the
parameter ` is motivated by the fact that motifs with di�erent values of `
(even with the same target template structureH ) re�ect di�erent pa�erns of
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interaction (e.g, a group of friends that exchanges ` = 3 or ` = 4 messages).
As we will show empirically in Section 4.5.4, such counts vary signi�cantly
with ` for �xed H and � . Finally, the third constraint ensures that we only
count distinct motifs, i.e., motifs representing di�erent pa�erns.

We now de�ne the motif template counting problem.

Problem 4.1. Motif template counting problem. Given a temporal net-
work T , a static undirected target graph H = (VH , EH ), ` 2 Z+, ` � |EH |,
and a parameter � 2 R+, �nd the counts CMi (� ) of motifs Mi 2 M(H , `), i =
1, . . . , |M(H , `)| in T .

We now provide an example of the di�erent motifs to be counted for
di�erent values of ` with a �xed target template H .

Example 4.1. Let H = ({�1,�2}, {{�1,�2}}), that is, the target template is
an edge. Let e1 = (�1,�2) and e2 = (�2,�1). By varying ` 2 {2, 3} the motifs
in M(H , `), for which we need to compute the counts, are: M1 = he1, e1i and
M2 = he1, e2i for ` = 2 (i.e., |M(H , 2)| = 2) while M1 = he1, e1, e1i,M2 =

he1, e2, e1i,M3 = he1, e2, e2i,M4 = he1, e1, e2i for ` = 3 (i.e., |M(H , 3)| = 4).

Since solving the counting problem exactly is NP-Hard in general1 even
for one single temporal motif, we aim at providing high-quality approxima-
tions to the motif counts as follows.

Problem 4.2. Motif template approximation problem. Given the input
parameters of Problem 4.1 and additional parameters � 2 R+,� 2 (0, 1), com-
pute approximations C0Mi

(� ) of counts CMi (� ) of motifs Mi 2 M(H , `), i =
1, . . . , |M(H , `)|, such that P[9i 2 {1, . . . , |M(H , `)|} : |C0Mi

(� ) � CMi (� )| �
�CMi (� )]  �, that is C0Mi

(� ) is a relative �-approximation to the count CMi (� )
with probability � 1 � � for all i = 1, . . . , |M(H , `)| simultaneously.

Note that the above guarantees are fully characterized by the supremum
deviation of the estimators C0Mi

(� ) if these estimates are unbiased as dis-
cussed in Section 2.3.2.

4.3 Related Works
Much work has been done on enumerating and approximating k-node mo-
tifs in (nontemporal) networks. We refer the interested reader to the sur-
veys by Ribeiro et al. [2019], Yu et al. [2020]. However, such works cannot
be easily adapted to temporal motifs since they do not properly account
for the temporal information [Paranjape et al., 2017, Holme and Saramäki,
2012]. Many di�erent de�nitions of temporal networks and temporal pat-
terns have been proposed: here we will focus only on those works that are

1�e hardness depends on the topology of the motif. For example for triangles and
single edges there exist polynomial time-algorithms, even if they are impracticable on very
large networks. Interestingly, counting temporal star-shaped motifs is NP-Hard [Liu et al.,
2019], while on static networks such motifs can be counted in polynomial time.
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relevant for our work, the interested reader may refer to Masuda and Lam-
bio�e [2016], Holme and Saramäki [2019, 2012], Jazayeri and Yang [2020]
for a more general overview.

Our work builds on the work of Paranjape et al. [2017] which �rst intro-
duced the de�nition of temporal motif used here, and the problem of count-
ing single temporal motifs. �e authors provided a general algorithm for
counting a single temporal motif by enumerating all the subsequences of
edges that map on a single static subgraph. �eir approach is not feasible
on large datasets since it requires exhaustive enumeration of all subgraphs
of the undirected projected static network GT that are isomorphic to the
target template H . �e authors also proposed e�cient algorithms and data-
structures for counting 3-node 3-edge motifs, which may be used for the ex-
act counting subroutines within ���N sampling framework. In addition to
the algorithmic contributions, the authors also showed that networks from
similar domains tend to exhibit similar temporal motif counts. �ey also
showed how motif counts can provide signi�cant insights on the communi-
cation pa�erns in many networks, highlighting the importance of studying
temporal motifs in temporal networks.

Other exact algorithms have been proposed for the problem of counting
a single motif, or for slightly di�erent problems. Mackey et al. [2018] pre-
sented a backtracking algorithm for counting a single temporal motif that
can be use for any motif. Boekhout et al. [2019] developed exact algorithms
for counting temporal motifs in multilayer temporal networks (i.e., each
edge is a tuple (x,�, t,a) with a denoting the layer of each edge), they also
discuss e�cient data-structures for counting 4-node 4-edge motifs, which
may also be adapted for the exact counting subroutines in our sampling
framework ���N. Being exact, both such algorithms do not scale on mas-
sive datasets due large time and memory requirements.

Several approximation algorithms have been proposed in recent years
for estimating the count of a single motif (as already discussed in Chap-
ter 3). Liu et al. [2019] proposed a temporal-partition based sampling ap-
proach. Wang et al. [2020] introduced a sampling-based algorithm that se-
lects temporal edges with a �xed probability speci�ed by the user. Lastly,
Sarpe and Vandin [2021a] proposed PRESTO, an algorithm based on sampling
small windows of the temporal networkT . All such algorithms can be used
to analyze a single temporal motif but become ine�cient as the number of
motifs to be counted grows, such as in Problem 4.2. In fact, they cannot
leverage the additional information that all motifs M1, . . . ,M |M(H ,`)| must
share a common static topology isomorphic to H . As stated in Section 4.1,
when analysing a temporal networks it is hard to know a-priori which motif
is representing important functions for the network, therefore it is common
to test all possible orderings � over one �xed target template H for �xed
`, � [Paranjape et al., 2017, Tu et al., 2019] (as in Problem 4.1) resulting in a
time consuming and ine�cient procedure. Our approach instead supports
the direct analysis of multiple temporal motifs, enabling the study of hun-
dreds of temporal motifs on massive networks in a very limited time.
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Figure 4.3: Overview of ���N’s approximation strategy. LetH be a triangle,
and ` = 3, � = 40. ���N �rst collects the static projected network GT , then
samples an edge eR 2 GT randomly (eR = {1, 2} in the �gure) and enumerates
all the subgraphs ofGT isomorphic to H containing eR . For each subgraph it
collects the corresponding temporal network, counts the � -instances of the
motifs, and combines the di�erent counts to obtain unbiased estimates of
motif counts. �is procedure is repeated to obtain concentrated estimates.

4.4 ���N
In this section we present ���N, our algorithm to address the motif tem-
plate approximation problem (Problem 4.2). We start in Section 4.4.1 with an
overview of ���N. We then describe the algorithm in Section 4.4.2, analyze
its time complexity in Section 4.4.3 and its theoretical guarantees, includ-
ing an e�ciently computable bound on the number of samples required to
obtain the desired probabilistic guarantees, in Section 4.4.4.

4.4.1 Overview of ���N
Our algorithm ���N estimates of the counts of motifs inM(H , `). �e main
idea is to avoid the explicit generation all the motifs Mi 2 M(H , `), i =
1, . . . , |M(H , `)| to count them one at the time as it is required by existing
algorithms that approximate a single motif count. ���N instead leverages
the fact that the topology of all motifs must to be isomorphic to the target
template H , by reusing the computation while estimating the motif counts.

An overview of the main strategy adopted by our algorithm is presented
in Figure 4.3. Given the input parameters of Problem 4.2, where H is the
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target template, the idea behind our procedure is to consider the undirected
static projected graph GT of the input temporal network T and proceed as
follows: i) �nd a set of subgraphs in the static graphGT that are isomorphic
toH by �rst sampling an edge eR ofGT with some probability peR , where peR
depends, potentially, on eR and the temporal networkT , and then enumerat-
ing all subgraphs ofGT isomorphic to H and containing eR ; ii) for each such
subgraph, consider the corresponding temporal subgraph and compute all
the counts of the subsequences of ` edges occurring within � -time in such
temporal subgraph; iii) for each such subsequence identi�ed, �nd the corre-
spondingmotif inM(H , `), for which the subsequence is a � -instance of, and
update a count for each motif identi�ed; iv) weight each motif count oppor-
tunely in order to maintain an unbiased estimate of global motif counts; v)
repeat steps i)-iv) a su�cient number of iterations to guarantee the desired
(�,�)-approximation (see Problem 4.2).

4.4.2 Algorithm Description
���N is described in Algorithm 4. It �rst computesGT = (V , EGT ), the undi-
rected projected static graph of T (line 1), and initializes Cestimates (line 2)
used to store the estimates of motif counts, which are used to compute the
estimators C0Mi

, i = 1, . . . , |M(H , `)|. �en it repeats s times (line 3) the
following procedure: i) pick a random edge eR from GT (line 4) according
to some probability distribution over the edges of EGT ; ii) enumerate all the
subgraphsh ofGT such thath ⇠ H and eR 2 h (line 5); note that this enumer-
ation step is local to eR ; iii) for each such h (line 6), collect the corresponding
temporal graph, i.e., all edges in T for which their static projected edge is
an edge of h (line 7), sort the sequence of edges of such graph by increasing
timestamps and apply some pruning criteria (lines 8-9); iv) if the sequence is
not pruned, then update the estimates of the number of � -instances of each
temporal motif by calling the routine FastUpdate (line 10). FastUpdate
features an e�cient implementation of the general algorithm by Paranjape
et al. [2017], for whichwe devised e�cient encodings of themotifs within in-
tegers through bitwise operations. Such function updates Cestimates in order
to maintain for each motif the count that will be used to output its unbiased
estimate (see Section 4.6.1). Let CMi (e) be the number of � -instances in T of
Mi, i = 1, . . . , |M(H , `)| whose undirected projected static network contains
edge e 2 GT . FastUpdate updates the estimate of the counts for each mo-
tif Mi by summing its unbiased estimate obtained at the j-th iteration (i.e.,
X j
Mi
= CMi (eR)/(|EH |peR )). Once the procedure is repeated s times, for each

motif Mi 2 M(H , `), i = 1, . . . , |M(H , `)|, ���N computes the �nal esti-
mate C0Mi

= 1
s

Õs
j=1X

j
Mi

where X j
Mi
= 1

|EH |

Õ
e2GT CMi (e)Xe/pe is the estimate

obtained at the j-th iteration (with Xe being a bernoulli random variable de-
noting if edge e 2 GT is sampled at the j-th iteration, s.t. P[Xe = 1] = pe )
and outputs it together with the motif (we output �i over the node-set VH )
(lines 12-13). We show in Lemma 4.1 that ���N outputs unbiased estimates
for all the motif counts.
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Algorithm 4: ���N
Input: T = (V , E),H = (VH , EH ), � , s, `
Output: (Mi,C0Mi

), i = 1, . . . , |M(H , `)| where C0Mi
is an estimate of

CMi for the motifs in M(H , `).
1 GT = (V , EGT ) UndirectedStaticProjection(T )
2 Cestimates  {}

3 for j  1 to s do
4 eR = {xR,�R} RandomEdge(p(e) : e 2 EGT )

5 H  {h ✓ GT : h ⇠ H , {xR,�R} 2 h}
6 foreach h 2 H do
7 S  {(x,�, t), (�, x, t) 2 E : {x,�} 2 h}
8 SortInPlace(S) . By increasing timestamps
9 if *Pruning criteria are not met* then
10 FastUpdate(� , S,Cestimates,p(eR),H )

11 foreach (M,XM ) 2 Cestimates do
12 C0M  

XM
s

13 output (M,C0M )

We brie�y discuss the pruning criteria used in line 9. Given a candidate
temporal graph S for which GS ⇠ H holds, we check in linear time if S can
contain a � -instance of a motif or not: since S is already sorted by increasing
timestamps (see line 8), we e�ciently check if there are at least ` edges
within � -time. If not, then we prune the sequence (since by de�nition a � -
instance of a motif with k-nodes, and `-edges must have ` edges occurring
within � -time). We thus avoid calling the subroutine FastUpdate, which
has an exponential complexity in general (see Section 4.4.3), on S .

We now discuss the probability distribution used to sample a random
edge eR fromGT (line 4), while we describe the subroutine FastUpdate that
updates the motif estimates at each iteration (line 10) and the algorithms
employed for the static enumeration in Section 4.6.1.

Since our �nal estimate is an average over s samples of the variables
X j
Mi
, i = 1, . . . , |M(H , `)|, j = 1, . . . , s , and given that X j

Mi
is an unbiased

estimate (see Lemma 4.1) the �nal estimate is also a consistent estimator
(i.e., it converges toCMi as s !1) if each edge has a positive probability of
being sampled2. �us any probability mass assigning positive probabilities
on edges can be adopted. We considered di�erent distributions over the
edges of EGT :

1. Uniform: pe = 1/|EGT |, e 2 EGT ;

2. Static degree based: pe = d(e)/(
Õ

e 02EGT
d(e0)), e 2 EGT where d(e =

{x,�}) = d(x) + d(�) is the degree of the edge as sum of the degree of
2More formally it is only necessary to assign to each � -instance a known positive sam-

pling probability.
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its nodes x,� 2 V in GT ;

3. Temporal degree based: pe = �(e)/(
Õ

e 02EGT
�(e0)) with �(e = {x,�}) =

|{t : 9(x, z, t)_ (z, x, t) 2 E}| + |{t : 9(z,�, t)_ (�, z, t) 2 E, z , x}|, e 2
EGT ;

4. Temporal edge weight based: pe={x,�} = |{(x,�, t), (�, x, t) 2 E}|/m, e 2
EGT ;

We empirically found the distribution (4) to be the fastest to converge for
small number s of iterations, thus we use it in our analysis. We observe that
many other candidate distributions can be designed (e.g., combining two of
those already listed with weights � , 1 � � , � 2 (0, 1)) making our framework
extremely versatile.

We conclude by summarizing some nice properties of our algorithm: 1)
it computes the estimates only for the temporal motifs occurring in the input
temporal network T (except for the very unpractical case where the motifs
in M(H , `) have all zero counts) without generating all the possible candi-
dates, while existing sampling techniques require to �rst generate all the
candidates and then to execute the algorithms on such candidates, even for
motifs with zero counts; 2) it takes advantage of the constraint that all motifs
share the same underlying topology (H ), saving computation when estimat-
ing the di�erent counts; 3) it is trivially parallelizable: all the s iterations
can be executed in parallel; 4) it can easily use most of the fast state-of-
the-art subgraph enumeration algorithms developed for the exact subgraph
isomorphism problem (see Section 4.6.1).

4.4.3 Time Complexity
In this section we brie�y describe the time complexity of ���N. ���N needs
to compute the probabilities p(e) of edges in advance, which requires a
O(|EGT |) preprocessing step. Interestingly, this step does not depend on
the target template H , so it can be reused for di�erent target templates H .
One of the most expensive steps in Algorithm 4 is the local enumeration
to identify the set H which in general requires exponential time (line 5).
For speci�c topologies this step can be implemented very e�ciently with
symmetry breaking conditions and min-degree expansion. For example, if
H is a triangle this “local” enumeration to eR = {xR,�R} can be done in
O(min(dxR ,d�R )) time. Let |H ⇤ | be the maximum cardinality of a set of sub-
graphs isomorphic to H and adjacent to an edge in GT . Let |S⇤ | denote the
maximum cardinality of a set S collected (in line 7) by our algorithm ���N.
Sorting S⇤ requires O(|S⇤ | log |S⇤ |) time. �e subroutine FastCount has a
complexity dominated byO((|S⇤ | + `)|EH |`) (see [Paranjape et al., 2017] and
Section 4.6.1.1 for more details). So overall the complexity of our proce-
dure isO(|EGT |+s(�enum + |H

⇤
|(|S⇤ | log(|S⇤ |)+ |EH |`(|S⇤ |+ `)))), where �enum

is the time required by the static enumerator used as subroutine to com-
pute the setH ⇤. Such step in general is exponential in the number of edges
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of |EGT | and depends on the exact technique used as subroutine. �e �-
nal complexity accounts for the cycle (in line 3) that is repeated s times.
�e parallel version of our algorithm, which executes the cycle of line 3
in parallel on � processing units available, leads to a time complexity of
O(|EGT | + s/�(�enum + |H

⇤
|(|S⇤ | log(|S⇤ |) + |EH |`(|S⇤ | + `)))).

4.4.4 �eoretical Guarantees
In this section we present the theoretical guarantees provided by ���N.

Recall that our algorithm outputs, for each motif Mi 2 M(H , `), i =
1, . . . , |M(H , `)|, the following estimate: C0Mi

= 1
s

Õs
j=1X

j
Mi
= 1

s |EH |Õs
j=1

Õ
e2GT CM (e)Xe/pe . Note that the estimates provided by ���N can be

framed in the general framework we introduced in Section 2.2, in particular
X is identi�ed with the set of edges EGT , and each estimate XMi = X̂ f (x)
hence each function in F is associated to a temporal motif inM(H , `), note
also that XMi depends on the sampling distribution �, i.e., �e = pe, e 2 EGT

as already described.
�e following shows that such estimates are unbiased estimates of

CMi , i = 1, . . . , |M(H , `)|. First we recall that CMi (e) the number
of � -instances of motif Mi, i = 1, . . . , |M(H , `)| from T whose undi-
rected projected static network contains edge e 2 GT , i.e., CMi (e) =Õ

h✓GT ,h⇠H :e2h |U(h,Mi)|, e 2 GT where U(h,Mi) is the set of � -instances
of motif Mi whose static projected graph is h ✓ GT . �en based on the
above it is simple to notice that the following formula holds for each motif
Mi, i = 1, . . . , |M(H , `)|:

Õ
e2GT CMi (e) = |EH |CM . �is relation will be the

key for proving the unbiasedness of the estimates provided by ���N, as we
show next.

Lemma 4.1. For each motif-count pair (Mi,C0Mi
) reported in output by ���N,

C0Mi
is an unbiased estimate to CMi , that is E[C0Mi

] = CMi

Proof. First let us consider the expectation of X j
Mi
, i = 1, . . . , |M(H , `)|, j =

1, . . . , s:

E

"
1

|EH |

’
e2GT

CMi (e)Xe

pe

#
=

1
|EH |

’
e2GT

CMi (e)E[Xe]

pe
= CMi

where we used the linearity of expectation and the facts that E[Xe] = pe, e 2
GT , and

Õ
e2GT CMi (e) = |EH |CMi ; thus X

j
Mi
, i = 1, . . . , |M(H , `)|, j = 1, . . . , s

are unbiased estimates of CMi , combining such result to C0Mi
we obtain,

E[C0Mi
] = E

"
1
s

s’
j=1

X j
Mi

#
=

1
s

s’
j=1
E[X j

Mi
] =

sCMi

s
= CMi

by the linearity of expectation. ⇤
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Let � = min{x,�}2EGT {|{(x,�, t), (�, x, t) 2 E}|}, i.e., the minimum num-
ber of temporal edges of T that map on an edge in GT . We now give an
upper bound to the variance of the estimates provided by Algorithm 4 for
each motif reported in output.

Lemma 4.2. For each motif-count pair (Mi,C0Mi
) reported in output by ���N,

it holds Var[C0Mi
] 

C2
Mi
s

⇣
m

� |EH |
� 1

⌘
.

Proof. We need to bound the variance of the estimate C0Mi
, �rst we rewrite

the estimator

C0Mi
=

1
s

s’
j=1

1
|EH |

’
e2GT

CMi (e)
Xe

pe
=

1
s

s’
j=1

X j
Mi

Since the s variables X j
Mi
, j 2 [1, s] are independent (edges are drawn inde-

pendently at each iteration of the outer for loop in Algorithm 4), it holds
var(C0Mi

) = var(1s
Õs

j=1XMi ) =
1
s var(XMi ) we thus only need to compute the

variance of the variable XMi . Let us recall var(XMi ) = E[X
2
Mi
] � E[XMi ]

2 =

E[X 2
Mi
] �C2

Mi
by the previous lemma. We will now bound E[X 2

Mi
].

E[X 2
Mi
] = E

"
1

|EH |2

’
e12GT

’
e22GT

CMi (e1)CMi (e2)
Xe1Xe2

pe1pe2

#

=
1

|EH |2

’
e22GT

C2
Mi
(e2)

1
pe2


1
|EH |2

’
e22GT

C2
Mi
(e2)

m

�
=

=
m

� |EH |2

’
e22GT

C2
Mi
(e2)

(1.)


m

� |EH |2
|EH |C

2
Mi
=
mC2

Mi

� |EH |

where we used the linearity of expectations, the fact that E[Xe1Xe2] = pe1
only for e1 = e2 otherwise is 0, a bound on the minimum probability pe
where pe  �/m,8e 2 GT for � de�ned as in Section 4.4.4. In (1.) we used
the fact that CMi (e) = �eCMi , e 2 GT , �e 2 [0, 1], then

Õ
e22GT C

2
Mi
(e2) =Õ

e22GT �
2
e2C

2
Mi
 C2

Mi

Õ
e22GT �e2 = |EH |C2

Mi
since �e2 2 [0, 1] and furtherÕ

e2GT �e = |EH | by
Õ

e2GT �eCMi = |EH |CMi .
�us the variance of XMi is bounded by:

Var(XMi ) 

mC2
Mi

� |EH |
�C2

Mi
= C2

Mi

✓
m

� |EH |
� 1

◆

combining everything together we obtain that var(C0Mi
) 

C2
Mi
s

⇣
m

� |EH |
� 1

⌘
,

concluding the proof. ⇤

To give a bound on the number s of samples required by ���N to output
a �-approximation that holds on all motifs in output with probability > 1 �
�, we combine Benne�’s inequality [Benne�, 1962], an advanced result on
the concentration of sums for independent random variables as reported in
Chapter 3, with a union bound, obtaining the following main result.
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�eorem 4.1. Let s be the number of iterations of ���N, let � 2 R+, and
� 2 (0, 1). If s �

⇣
m

� |EH |
� 1

⌘
1

(1+�) ln(1+�)�� ln
⇣
2|M(H ,`)|

�

⌘
then

P[9i 2 {1, . . . , |M(H , `)|} : |C0Mi
�CMi | � �CMi ]  �.

Proof of�eorem 4.1. Let us �x Mi, i 2 [1, |M(H , `)|] we �rst show a bound
to the following probability P[|C0Mi

� CMi | � �CMi ]. We want to derive
such bound through the application of Benne�’s inequality to the follow-
ing summation: 1

s

Õs
j=1X

j
Mi
, we already know that E[X j

Mi
] = CMi and

E[(X j
Mi
�CMi )

2
]  C2

Mi

⇣
m

� |EH |
� 1

⌘
= �̂2

j for j = 1, . . . , s it holds:

X j
Mi
=

1
|EH |

’
e2GT

CMi (e)
Xe

pe


1
|EH |

’
e2GT

CMi (e)
m

�
=
mCMi

� |EH |

As proved in Section 3.7.1.2 Benne�’s inequality holds even if we only have
an upper bound on the variance of the estimates. �erefore let us compute
the quantities to apply Benne�’s bound (see Chapters 2, 3 for the statement),
clearly B = CMi (

m
� |EH |

� 1) combining what we already showed with the
unbiasedness of X j

Mi
, moreover �  �̂2

j since the bound �̂
2
j is equal for each

j 2 [1, s]. �en,

�̂2
j

B2 =
C2
Mi

⇣
m

� |EH |
� 1

⌘
C2
Mi
(

m
� |EH |

� 1)2
=

1
(

m
� |EH |

� 1)

also
tB

�̂2
j

=
�CMiCMi (

m
� |EH |

� 1)

C2
Mi

⇣
m

� |EH |
� 1

⌘ = �

Combining everything together by Benne�’s inequality we obtain,

P

 �����
1
s

s’
j=1

X j
Mi
�CMi

����� � �CMi

!
 2 exp

 
�

s

(
m

� |EH |
� 1)

h(�)

!
(4.1)

Now, letAi = “|C0Mi
�CMi | � �CMi ”, i = 1, . . . , |M(H , `)|, namelyAi is the

event that the estimate of motifMi, i = 1, . . . , |M(H , `)| is distant more than
�CMi from CMi . We already showed that that for an arbitrary Ai inequality
(4.1) holds for P[Ai], so

P

 
|M(H ,`)|ÿ

i=1
Ai

!


|M(H ,`)|’
i=1

P[Ai]  |M(H , `)|2 exp

 
�

s

(
m

� |EH |
� 1)

h(�)

!
 �

combining the union bound and the choice of s as in statement. ⇤
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4.5 Experimental Evaluation
We implemented ���N and tested it on several large datasets (see Sec-
tion 4.5.1 for details on setup, and data). Our experimental evaluation has
the following goals: compare ���N with state-of-the-art algorithms for ap-
proximating motif counts (Section 4.5.2); evaluate the scalability of a simple
parallel implementation of ���N (Section 4.5.3); provide a case study high-
lighting the usefulness of using ���N (Section 4.5.4) to analyze real-world
temporal networks.

4.5.1 Setup, and Datasets
We brie�y describe the setup and the large-scale datasets used in our exper-
imental evaluation.

We implemented our algorithm ���N in C++20 and compiled it un-
der gcc 9.3 with optimization �ag enabled (implementation available at
https://github.com/VandinLab/odeN), additional details on the imple-
mentation are in Section 4.6.2. We compared ���Nwith four di�erent base-
lines, denoted as PRESTO-A (PR-A), PRESTO-E (PR-E) [Sarpe and Vandin,
2021a], LS [Liu et al., 2019], and ES [Wang et al., 2020]. We used the original
implementations available from the authors. We performed all experiments
under Ubuntu 20.04 on a machine with 64 cores, Intel Xeon E5-2698 2.3GHz,
running each algorithm single threaded and with 300GB of maximum RAM
allowed.

�e datasets used in our experimental evaluation are reported in Ta-
ble 4.1, which shows the number of nodes and edges of T , the precision
of the timestamps, the timespan of the network, the number |EGT | of undi-
rected edges in the corresponding undirected projected static network GT ,
themaximum degreedmax of a node inGT and themaximumnumberwmax of
temporal edges that are mapped on the same static edge inGT . �e datasets
are from di�erent domains: SO is a network that models interactions from
the Stack-Over�ow platform [Paranjape et al., 2017], BI is a network of Bit-
coin transactions [Liu et al., 2019], RE a network built from comments on
the platform Reddit [Liu et al., 2019], and EC is a bipartite temporal network
build from IPv4 packets exchanged between Chicago and Sea�le [Sarpe and
Vandin, 2021a]. See the original papers for more details on the networks and
the processes they model.

When measuring the running times for the various algorithms we ex-
clude the time to read the dataset. Since ES’s implementation supports only
values of ` up to 4, we do not report results for ES and ` > 4. Unless other-
wise statedwe used � = 86400 for SO and RE, � = 43200 on BI, and � = 50000
on EC, as done in previous works [Paranjape et al., 2017, Liu et al., 2019,
Wang et al., 2020]. Since all algorithms used in our comparison have di�er-
ent parameters and only ���N counts multiple motifs simultaneously, we
used the following procedure to choose the parameters. For a given target
template H and `, we run PRESTO-A, PRESTO-E, LS, and ES for each motif

72

https://github.com/VandinLab/odeN


Table 4.1: Datasets used and their statistics. See Section 4.5.1 for details on
the statistics reported.

Name n m |EGT | dmax wmax Precision Timespan

SO 2.58M 47.9M 28.1M 44K 594 sec 2774 (days)
BI 48.1M 113M 84.3M 2.4M 24.2K sec 2585 (days)
RE 8.40M 636M 435.3M 0.3M 165K sec 3687 (days)
EC 11.16M 2.32B 66.8M 0.3M 3.8M µ-sec 62.0 (mins)

in M(H , `) with �xed parameters, and computed their running time as the
sum of the running times required by the single motifs inM(H , `). We then
�xed the parameters of ���N so that its running time would be at most the
same as the other methods, or be close to it. All the parameters used in the
experiments (including sample sizes) are reported with the source code. To
extract the exact counts of motifs we used a modi�ed version of the algo-
rithm by Mackey et al. [2018]. We do not report the running times of such
algorithm since, even though it employs parallelism, it still runs slower than
approximate approaches.

4.5.2 Approximation�ality and Running Time
In this section we compared the quality of the estimates and the running
times of ���N and the baseline sampling approaches.

To evaluate the approximations qualities we used the MAPE (Mean Av-
erage Percentage Error) metric over ten executions of each algorithm and
parameter con�guration. �e MAPE is computed as follows: let C0Mi

be the
estimate of CMi , i = 1, . . . , |M(H , `)|, returned by an algorithm, then the
relative error of such estimate is |C0Mi

�CMi |/CMi . �e MAPE is the average
over the ten runs of the relative errors, in percentage. On each of the ten
runs we also measured the running time of each algorithm, for which we
will report the arithmetic mean.

We �rst discuss the quality of the estimates for di�erent datasets when
H is a triangle and ` 2 {4, 5}. For ` = 4 there are |M(H , `)| = 96 triangles,
while for ` = 5, |M(H , `)| is 800. So as long as ` increases the approxima-
tion task becomes more challenging, due to the exponential growth of the
number of motifs. We also observe that, to the best of our knowledge, such
a huge number of temporal motifs was never tested before on large datasets
due to the limitations of existing algorithms, while, as we will show, ���N
renders the approximation task practical even on hundreds of motifs.

�e results on the SO dataset are shown in Figure 4.4a. ���N pro-
vides much sharper estimates than state-of-the-art sampling techniques for
single motif estimations on motifs M1, . . . ,M |M(H ,`)| : the relative error on
` = 4-edge triangles is bounded by 5%, and for ` = 5-edge triangles (where
|M(H , `)| = 800) the relative error is bounded by 12% while state-of-the-art
algorithms report much less accurate estimates, with twice the relative er-
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a

b

c

Figure 4.4: Approximation error on di�erent datasets. (4.4a): SO dataset, H
is a triangle, for ` = 4 (le�) and ` = 5 (right). (4.4b): H is a triangle, ` = 4, BI
dataset (le�) and RE dataset (right). (4.4c): EC dataset, H is an edge, ` = 4
(le�); SO dataset, H is a square, ` = 4.

ror of ���N, on each con�guration. We report the running times to obtain
such estimates in Table 4.2. Interestingly, ���N is more than 3⇥ faster with
` = 4 than any sampling algorithm and 1.7⇥ faster with ` = 5. For the other
datasets, since extracting all the exact counts for ` > 4 is extremely time
consuming, requiring up to months of computation, we will not discuss the
approximation qualities for ` = 5 (since we do not have the exact counts to
evaluate them).

On dataset BI (Figure 4.4b le�) ���N provides more concentrated esti-
mates for the |M(H , `)| = 96 triangles than other algorithms but ES, which
also has a smaller running time than ���N.�is may be related to the static
graph structure of BI, which has some very high-degree nodes (see Table
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Table 4.2: Running times (in seconds) to obtain the results in Figure 4.4 (re-
sults are showed following the order in Figure 4.4). Under H we report the
topolology of H used: T for triangles, E for edges, and S for squares. “-”
denotes not applicable, while “7” denotes out of RAM.

Dataset ` H PR-A PR-E LS ES ���N

SO 4 T 533.4 537.7 555.5 567.2 174.4
SO 5 T 4405 4408 4390 - 2515
BI 4 T 2048.6 2065.2 2754.6 1602.9 1948.9
RE 4 T 9787.1 10165.8 14289.7 13172.3 6814.9
EC 4 E 2581.5 3014.9 2981.9 7 1234.3
SO 4 S 15613.7 16718.7 14344.6 26118.3 4517.9

4.1). �erefore ���Nmay sample edges with very high degree nodes, intro-
ducing an over counting in its estimates. Nonetheless, for higher values of
` this issue is amortized over the growing number of motifs |M(H , `)|.

On dataset RE (Figure 4.4b right) the estimates by ���N are all within
13% of relative error and improve signi�cantly over state-of-the-art sam-
pling algorithms, up to one order of magnitude of precision. Such estimates
were notably obtained with signi�cantly smaller running time than state-
of-the-art sampling algorithms, improving up to 2⇥ the running time of ES
and 1.4⇥ over PRESTO (as reported in Table 4.2).

Finally, on the EC datasets, which is a bipartite temporal network with
more than 2 billion edges we evaluated the approximation qualities with
H being an edge and ` = 4 (for which |M(H , `)| = 8), such motifs have
fundamental importance in the analysis of temporal networks since they can
be seen as building blocks Holme and Saramäki [2019], Zhao et al. [2010].
We report the results on such motifs in Figure 4.4c (le�) (ES is not shown
since it did not terminate with the allowed memory budget). �e estimates
of ���N are well concentrated and within 20% of relative error, while other
sampling approaches provide approximations with a relative error up to 90%
or more. Moreover, ���N’s results were obtained with a speedup of at least
2⇥ over all the other sampling algorithms, rendering the approximations
task feasible in a small amount of time on very large temporal networks.

To illustrate the enormous advantage of ���N over existing state of
the art exact and approximation algorithms, we compared the various al-
gorithms on dataset SO when H is set to be a square and ` = 4, for which
|M(H , `)| = 48. As Wang et al. [2020] observed, among the 4-edge square
motifs there are 16 motifs that do not grow as a single component (i.e., their
orderings start with h(1, 2)(3, 4) · · · i). Estimating the counts of such motifs
is particularly hard for most of the current state-of-the-art sampling algo-
rithms since they generate a large number of partial matchings, while such
aspect does not impact ���N. �e results are shown in Figure 4.4c (right).
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Figure 4.5: Speed-up of ���N’s parallel implementation. (Le�): Varying s
and �xed � ; (Right) Varying � and �xed s .

���N provides tight approximations under 9% of relative error for all four-
edge square motifs, while other sampling algorithms fail to provide sharp
estimates for some of the motifs. Surprisingly, as shown in Table 4.2, to ob-
tain such estimates ���N required less than 1.3 hours of computation while
the exact computation of the counts required more than two weeks, and
���N it is at least 3⇥ times faster than all algorithms, and it is 5.4⇥ times
faster than ES.

Overall, these results show that our algorithm ���N achievesmuchmore
precise estimates within a signi�cant smaller running time than state of the
art sampling algorithms when estimating the counts CM1, . . . ,CM |M(H ,`) | for
di�erent values of ` and di�erent topologies of the target template H (see
Problem 4.1 in Section 4.2).

4.5.3 Parallel Implementation
In this section we brie�y describe the advantages of a simple parallel imple-
mentation of Algorithm 4. As discussed in Section 4.4.2 the for cycle (from
line 3) can be trivially parallelized, therefore we implemented such strategy
through a thread pooling design pa�ern.

We describe the results obtained with H set to be a triangle, ` = 4,
and on the dataset SO; similar results are observed for other datasets. We
tested the speedup achieved with � 2 {2, 4, 8, 16} threads over the se-
quential implementation. Let T� the average running time with � threads
over ten execution of ���N with �xed parameters, with T1 being the av-
erage time for running the algorithm sequentially. We report the value of
T1/T�,� 2 {2, 4, 8, 16}, i.e., the speedup over the sequential implementation.
Fig. 4.5 (Le�) shows the speedup across di�erent values of the sample size
s , with � = 86400. We observe an almost linear speedup up to 4 threads and
then a slightly worse performance, especially for small sample sizes, that
may be related to the time needed to process each sample. Fig. 4.5 (Right)
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shows how the speedup changes for s = 2 · 106 and di�erent values of � . We
note that our algorithm ���N seems not to be impacted by the value of � ,
and always a�aining similar performances. Interestingly, as captured by our
analysis in Section 4.4.3, the algorithm does not reach a fully linear speedup
since we did not parallelized the computation of the sampling probabilities
p(e), e 2 EGT . As a remark, our parallel implementation is not optimized, and
more advanced parallel strategies may substantially increase its speedup.

4.5.4 A Case Study
In this section we illustrate how counting multiple motifs, corresponding to
the same target templateH , with ���N can be used to extract useful insights
from a temporal network. We consider a real-world activity network from
Facebook [Viswanath et al., 2009]. In such network, each node represents a
user and a temporal edge (u,�, t) indicates that user u posted on �’s wall at
time t (see the original publication [Viswanath et al., 2009] for more details).
�e network contains information collected from September 2006 to January
2009. A�er removing self-loops, the network has n=45.7K nodes, m=826K
temporal edges, and |EGT |=179K static (undirected) edges. We will �st show
how analyzing the motif counts obtained with ���N provides complemen-
tary insights to those in Viswanath et al. [2009], that relied on mostly static
analyses. We then conclude by discussing how the counts of the network
evolve by varying only the parameter ` (i.e., �xing H , � ), showing that such
counts surprisingly di�er with di�erent values of such parameter.

In the original paper Viswanath et al. [2009], partitioned the Facebook
network in nine di�erent snapshots (obtaining nine projected static net-
works), with each snapshot spanning 90 days of interactions in the net-
work. �e authors observed that consecutive snapshots have small resem-
blance, i.e., on average only 45% of the edges are preserved through consec-
utive snapshots. �e authors also observed that despite this di�erence all
the snapshots have similar, almost invariant, structural properties in terms
of their clustering coe�cient, average degree distribution, and others. We
used ���N (with � = 1,� = 0.1) to compare the temporal networks associ-
ated to the snapshots by computing the counts of the 8 temporal motifs in
M(H , ` = 3) with H being a triangle and � = 86400 = 1 day. On each snap-
shot, a�er extracting the motif counts, we computed for each motif M its
normalized count on the snapshot asCM/

Õ8
i=1CMi . �e results are reported

in Fig. (4.6a) (see Appendix 4.6.3 for a visual representation of the motifs).
Interestingly, even if in Viswanath et al. [2009] the authors highlight small
resemblance through di�erent snapshots, the counts of the motifs are sta-
ble across the di�erent snapshots, especially by looking at the �rst three
and the last two snapshots. Surprisingly on snapshots 6 and 7, which corre-
spond to the period of observation of mid-2008, we observe that there is a
signi�cant variation in the motif counts w.r.t. the previous months. �is is
the period where the authors of [Viswanath et al., 2009] observed a change
in Facebook’s interface (that led to a drop in the growth of the network)
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Figure 4.6: (4.6a): Counts of the motifs inM(H , 3)withH a triangle on each
temporal network corresponding to one snapshot in Viswanath et al. [2009].
(4.6b): Counts on the full Facebook network with varying `. (4.6c): Z -scores
of the motif counts with varying `.

that seems to be correlated to the variation on the motif counts. Even more
surprisingly, this aspect is not captured by a static analysis of the snapshots
as performed in Viswanath et al. [2009]. �us, our temporal motifs analysis
through ���N is able to capture a variation in the growth of the network that
the static analysis cannot highlight. (We discuss how the motifs and their
counts can be used to characterize the activity on the network in Appendix
4.6.3).

We then analyzed how the di�erent motif counts of the whole network
change by varying the parameter `. We �xed H a triangle and run ���N
with � = 1,� = 0.1, � = 86400. �e results are shown in Figure (4.6b). We
observe that the counts ofM1, . . . ,M |M(H ,`)| vary signi�cantly by increasing
`. For ` = 3 almost all the motifs have the same counts, while for larger
` there are some motifs with very high counts (i.e., overrepresented) and
some other motifs that are underrepresented. Overall the highest counts
range from 104 to 106 from ` = 3 up to ` = 6. To understand if these
counts increase only by chance, we performed a widely used statistical test
(e..g, [Gauvin et al., 2018, Kovanen et al., 2013]) by computing theZ -scores of
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the di�erent motif counts under the following null model [Milo, 2004]. We
generated 500 random networks by the timeline shu�ing random model
[Gauvin et al., 2018], which redistributes all the timestamps by �xing the
directed projected static network. For each motif Mi, i = 1, . . . , |M(H , `)|
we computed a Z -score that is de�ned as follows: let CMi be the count of
the motif in the original network and let C1

Mi
, . . . ,C500

Mi
be its counts on the

j-th random network j 2 {1, . . . , 500}. �e Z -score is computed as, ZMi =

(CMi �
Õ500

j=1C
j
Mi
/500)/std(C1

Mi
, . . . ,C500

Mi
) where std(·) denotes the standard

deviation. �e results are in Figure (4.6c), and they show that the counts in
Figure (4.6b) are very signi�cant and not due to random �uctuations (higher
Z -scores indicate that such motif counts are signi�cantly more frequent in
T than in the networks permutated randomly). Interestingly, the Z -scores
in Figure (4.6c) follow a similar law to the counts in Figure (4.6b), with the
highestZ -scores increasing signi�cantly every time ` increases. Notably the
highest Z -scores of motifs with ` = 6 are more than 3 orders of magnitude
larger than the Z -scores of motifs with ` = 3. (We discuss some of the
signi�cant motifs in Section 4.6.3).

4.6 Additional Material

4.6.1 ���N’s Subroutines
4.6.1.1 FastUpdate and its Subroutines

Wenow discuss the FastUpdate routine that is called in line 10 of Algorithm
4 to keep Cestimates updated. �e FastUpdate subroutine is shown in Algo-
rithm 5. Cestimates maintains the weighted counts of the motif sequences
identi�ed, therefore to keep it updated we �rst count the � -instances of
Mi, i = 1, . . . |M(H , `)| within the sampled temporal network i.e. S , and then
rescale each count opportunely. Such routine will feature two main aspects,
i) an e�cient adaptation of the algorithm by Paranjape et al. Paranjape et al.
[2017] and ii) an e�cient encoding of the various sequences representing the
motifs occurrences within integers that will allow for fast operations (com-
parisons to distinguish between di�erent motifs and fast updates to the data
structures).

We now discuss how FastUpdate counts all the � -instances in S . First
observe that we already know that GS ⇠ H , and that S can be rewri�en as
S = (((x1,�1), t1), . . . , ((x`,�`), t`). We �rst compute the set Eunique = {(x,�) :
((x,�), t) 2 S} and we assign to each edge in Eunique a unique identi�er (lines
4-5). �en we run an e�cient implementation of the algorithm by Paran-
jape et al. [2017] that computes through dynamic programming the counts
of all the subsequences of edges (x,�) s.t. (x,�, t) 2 S having length ` and
occurring within � -time (lines 6-10). In Algorithm 6 we show our imple-
mentation of the subroutines needed to execute lines 6-10 (see the original
paper by Paranjape et al. [2017] for full details and correctness). Intuitively,
lines 6-10 of Algorithm 5 scan the input sequence S linearly, maintaining in
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Algorithm 5: FastUpdate
Input: � , S,Cestimates,p(eR),H

1 Eunique  {(x,�) : (x,�, t) 2 S}
2 Mapid  {}, Ere�  [],Mapcounts  {}, start  1
3 id 0
4 foreach e 2 Eunique do
5 Ere�[id] e ,Mapid{e} id++

6 foreach (x,�, t) 2 S do
7 while t � tstart > � do
8 Decrement(Mapid[(xstart ,�start )],Mapcounts)
9 start  start + 1

10 Increment(Mapid[(x,�)],Mapcounts)

11 foreach key k̄ of length ` 2 Mapcounts .ke�s do
12 M0  ReconstructMotif(k̄, Ere� )
13 if Gu[M0] ⇠ H then
14 Mi  EncodeAndClassifyMotif(M0)
15 XMi  Mapcounts{k̄}/(|EH |p(eR))
16 X 0Mi

 Cestimates{Mi}

17 Cestimates{Mi} X 0Mi
+ XMi

memory information about the edges within � time from the processed one.
�rough such scan the algorithm updates Mapcounts to keep the counts of
the sequences having at most ` edges over the set Eunique . Starting the cycle
in line 11, Mapcounts contains the counts of all the ` subsequences of edges
from S over the set Eunique . We highlight that we assign to each static edge
of S an ID of b bits. �is allows us to encode each sequence up to j = 1, . . . , `
edges, occurring within � time, in an integer using j ·b bits through bitwise
operations (“<<” denotes right shi� and “|” denotes bitwise or) to allow for
fast updates toMapcounts .

To obtain the estimates of motifs M1, . . . ,M |M(H ,`)| , for each ` sequence
of edges identi�ed we reconstruct the corresponding graph and thus themo-
tifM0 that the sequences is an instance of in line 12 (the multigraph is given
by the edges ID’s while the ordering of the edges is given by the sequence
itself). We then check ifGu[M0] is isomorphic toH (constraint (1) from Prob-
lem 4.1). If so we encode the motif in a sequence of 2b` bits that allows us
to classify such motif (line 14) in order to distinguish between distinct mo-
tifs (recall we want Mi �� Mj, i , j). �e encoding is computed as follows:
givenM0 = h(x1,�1), . . . , (x`,�`)i we assign to each node an incremental ID
according to its �rst appearance in M0 and we obtain the �nal encoding as
hID(x1)ID(�1) . . . ID(x`)ID(�`)i. It is easily seen that twomotifsM1,M2 share
the same encoding i� it holds M1 �� M2 as desired, given that the motifs
are directed and the de�nition of distinct motifs accounts for the ordering in
which edges appear. We provide an example below.
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Algorithm 6: Subroutines of FastUpdate
Function Increment(id,Mapcounts)

1 foreach k̄ 2 SortByDecLength(Mapcounts .ke�s) do
2 if k̄ .len�th < ` then
3 �  (k̄ << b)|id
4 Mapcounts[�] Mapcounts[�] +Mapcounts[k̄]

5 Mapcounts[id] Mapcounts[id] + 1
Function Decrement(id,Mapcounts)

6 Mapcounts[id] Mapcounts[id] � 1
7 foreach k̄ 2 SortByIncLength(Mapcounts .ke�s) do
8 if k̄ .len�th < ` � 1 then
9 �  (id << (k̄ .len�th · b))|k̄

10 Mapcounts[�] Mapcounts[�] �Mapcounts[k̄]

Example 4.2. Let us consider M1,M2, and M3 from Figure 4.2. Consider
�1 = h(�, x), (�, z), (x, z)i, then by assigning an incremental ID to each node
according to its �rst appearance in �1 we get ID(�) = 1, ID(x) = 2, ID(z) = 3
so the �nal encoding of M1 is h121323i. Following a similar procedure the en-
coding ofM2 is h121323i, while the encodingM3 is h121332i. �e encodings of
M1 andM2 coincide while di�ering from the one ofM3 as desired.

A�er this step we update the global data structureCestimates by summing
to each motif’s estimate, its count in S divided by |EH |p(eR) where p(eR) is
the probability of edge eR of being sampled (lines 15-17), which we prove
in Section 4.4.4 to be the correct weighting schema to output an unbiased
estimate.

4.6.1.2 Exact Subgraph Enumeration

In this section we brie�y discuss the algorithms for subgraph enumeration
that can be adapted to our Algorithm 4 (in line 5). Unfortunately we cannot
easily use the algorithms for extracting k-node motifs mentioned in Section
4.3 as is, since they do not provide the local enumeration step required by
���N.

In fact, the problem most related to the exact enumeration we require is
the labelled query graph matching problem. In such se�ing one is provided
a labelled query graph H = (VH , EH , LH ), and a labelled graph G = (V , E, L)
(where labels can be colors for example, see Lee et al. [2012]), L may be
de�ned both on edges or vertices. �e problem requires to �nd all the
subgraphs h0 ✓ G isomorphic to H , which could be either induced or not
but must preserve the labelling properties (i.e., if (x,�) 2 E is mapped to
(x0,�0) 2 H then (L(x), L(�)) = (LH (x0), LH (�0))). To explain how we take
advantage of the algorithms developed for the problem above we need to in-
troduce the following de�nitions (adapted from Pashanasangi and Seshadhri
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[2019]).

De�nition 4.7. Let H = (VH , EH ) be an undirected graph, an automorphism
is a bijection � : VH 7! VH such that (x,�) 2 EH i� (� (x), � (�)) 2 EH .

De�nition 4.8. Let H = (VH , EH ) be an undirected graph, we say that two
edges e = (x,�), e0 = (x0,�0) 2 EH belong to the same edge-orbit i� there exists
an automorphism that maps e on e0.

In order to adapt the algorithms for the labelled query graph matching
problem we proceed in the following way: 1) colour the nodes ofGT with a
�xed colour (say red) 2) Once sampled eR 2 GT , colour its endpoint nodes
with a di�erent colour (say blue), call the map from the last two points LGT ;
3) compute the di�erent edge-orbits of the pa�ern H (by enumerating the
automorphisms of H ) and for each edge-orbit choose an edge, colour its
endpoint nodes with the same colour assigned to eR , and keep the colour on
the other edges the same asGT , call this map LH ; 4) run an algorithm for the
labelled query graph matching problem with graphGT = (VT , EGT , LGT ) and
pa�ern H = (VH , EH , LH ) 5) the desired subgraphs (H ) are the union over
the di�erent edge-orbits enumeration steps.

4.6.2 Implementation Details

In this section we provide additional implementation details, complement-
ing the description of Section 4.5.1.

In our implementation, we used two main structures: �rst, an ad-
jacency list3, that allows to query for an edge between u,� 2 V in
O(log(min(du,d�))). Second, we used a hashmap to store for each static di-
rected edge the timestamps of the temporal edges that map on that edge,
leading to O(1) complexity of querying for the timestamps of a static edge
in GT . �e initialization of such structures is done in O(1) per each pro-
cessed temporal edge while loading the dataset, by knowing the number of
nodes n. Many state of the art algorithms exist for the local enumeration of
motifs (e.g., [Sun et al., 2020, Ren andWang, 2015, Han et al., 2013]), we pro-
vide in our code a general algorithm based on the algorithm VF2++ [Jü�ner
and Madarasi, 2018]. However, instead of using the general procedure de-
scribed in Section 4.6.1, in our test we relied on a simple algorithm that
locally enumerates the subgraphs containing an edge e = {x,�} isomorphic
to H : for triangles the algorithm runs in O(min(dx ,d�) log(n)), while when
H is a square the algorithm runs inO(min(dx ,d�)dmax log(n)), with dmax the
maximum degree of a node in GT .
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Figure 4.7: Graphical representation of the motifs in Figure (4.6a).

4.6.3 Case Study - Motif analysis
Motifs on the Snapshots of the Facebook Network.

�anks to our analysis of Section 4.5.4 we are able to characterize the user
behaviour on the Facebook network of wall posts by looking at di�erent
motifs (topology and their orderings) and their counts. We �rst show in Fig.
4.7 the motifs corresponding to the labels of Figure (4.6a) in Section 4.5.4.
�en, let H = {�1,�2,�3} be a triangle, the most frequent motifs (i.e., those
with the highest normalized counts on each snapshot) seem to share a com-
mon pa�ern: a �rst node (�3) a�er posting on �1’s (or �2’s) wall triggers �1
(or �2’s) to post on the remaining node’s wall with �1 posting also on such
node’s wall to close the triangle, as captured by motifs M3, M7 and M8. Ob-
serve that by identifying the users that mostly act as �3 in the occurrences
of such frequent motifs one is able to identify, for example, the nodes more
engaged in spreading most of the information over the Facebook network in
a short period of time (recall that we set � to one day). Not surprisingly mo-
tif M5 is the less frequent one since its occurrences require node �2 to post
on �3’wall before receiving the post from �2 therefore without being “trig-
gered” by such node, that received the post from �3. Interestingly, without
considering the orderings of occurrence among such pa�erns we will not
be able to distinguish between the most frequent motifs and the least fre-
quent ones since for exampleM4 andM5 have the same static directed graph
structure but they have very di�erent counts on the di�erent snapshots of
the Facebook network.

Motifs with Varying ` - Frequent vs Infrequent.

In this Section we brie�y discuss the properties and show visually the motifs
with highest and lowest Z -scores obtained in Section 4.5.4 on the Facebook
wall post network for ` = 6. �e motifs are reported in Figure 4.8, where
we report the 4-top motifs ranked by Z -score on the top and the 4-lowest
motifs by Z -scores on the bo�om. Note, that the top 4 motifs share a similar
structure, both temporal and topological. Interestingly in the original paper

3We used the one provided by SNAP: https://github.com/snap-stanford/snap,
more e�cient implementations can be also adopted improving the global running times.

83

https://github.com/snap-stanford/snap


1 3

CMZ
1

= 1188894 (7.1%)

ZMZ
1

= 1496494

2 MZ
1

1 3

CMZ
2

= 1072282 (7.1%)

ZMZ
2

= 1215602

2 MZ
3

1 3

CMZ
3

= 1018769 (7.1%)

ZMZ
3

= 1215069

2 MZ
3

1 3

CMZ
4

= 1110062 (7.1%)

ZMZ
4

= 1165630

2 MZ
4

1 3

CMZ
5

= 8825 (2.5%)

ZMZ
5

= 666

2 MZ
5

1 3

CMZ
6

= 6170 (2.4%)

ZMZ
6

= 800

2 MZ
6

1 3

CMZ
7

= 5535 (2.5%)

ZMZ
7

= 907

2 MZ
7

1 3

CMZ
8

= 3890 (2.3%)

ZMZ
8

= 908

2 MZ
8

t4

t3

t
1 , t

5 , t
6

t2

t4

t3

t
1 , t

2 , t
5

t
6

t3

t4

t
1 , t

2 , t
5

t
6

t3

t4t
1 , t

6

t
2 , t

5

t2, t5

t3, t6t
1

t
4

t2, t3
t6
t4t1, t5

t2, t4

t5t
1

t
3 , t

6

t3, t4

t5

t
1

t
6 t2

Figure 4.8: Graphical representation of the 4 motifs with highest (top) and
lowest (bo�om) Z -scores in Figure (4.6c) for ` = 6. For each motif we re-
port the exact count (which we computed for such representation) and the
relative error in the approximation obtained with ���N in brackets, we ad-
ditionally report each Z -score of the motif as obtained from Section 4.5.4
(i.e., by using only ���N).

by Viswanath et al. [2009] the authors noted that there were very few pair of
nodes that exchanged more than 5 messages (with median 2). �e most fre-
quent temporal motifs seem to involve a pair of highly active nodes (which
exchanged many messages between them, i.e., more than 4) and another
third node that is reached by such pair of nodes. We unfortunately do not
have the original messages to understand be�er the information captured by
such frequent motifs (since we do not have the original posts), but it is re-
ally surprising that the top 4 motifs all share similar properties especially in
the orderings of their edges. Additionally, it seems that triangles involving
nodes that are pairwise very active seem to be the rarest type of interac-
tion as captured by the 4 motifs with lowest Z -score, reported in Figure 4.8
bo�om.
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Chapter 5

Estimating Temporal
Betweenness Centralities in
Temporal Networks

In this chapter we present approximate algorithms for obtaining high-
quality estimates to the temporal betweenness centrality values of the nodes
in a temporal network. We then empirically evaluate the algorithms on sev-
eral temporal networks, and show how our proposed algorithm “ONBRA”
can be used to obtain results on datasets on which exact algorithm fails to
scale the computation.

5.1 Introduction
�e study of centrality measures is a fundamental primitive in the analysis
of networked datasets [Borga�i and Evere�, 2006, Newman, 2010], and plays
a key role in social network analysis [Das et al., 2018]. A centrality measure
informally captures how important a node is for a given network according
to structural properties of the network. Central nodes are crucial in many
applications such as analyses of co-authorship networks [Liu et al., 2005, Yan
and Ding, 2009], biological networks [Wuchty and Stadler, 2003, Koschützki
and Schreiber, 2008], and ontology summarization [Zhang et al., 2007].

One of the most important centrality measures is the betweenness cen-
trality [Freeman, 1977, 1978], which informally captures the fraction of
shortest paths going through a speci�c node. �e betweenness centrality has
found applications in many scenarios such as community detection [Fortu-
nato, 2010], link prediction [Ahmad et al., 2020], and network vulnerability
analysis [Holme et al., 2002]. �e exact computation of the betweenness cen-
trality of each node of a network is an extremely challenging task on mod-
ern networks, both in terms of running time and memory costs. �erefore,
sampling algorithms have been proposed to compute provable high-quality
approximations of the betweenness centrality values, while remarkably re-
ducing the computational costs associated to this problem [Riondato and
Kornaropoulos, 2016, Riondato and Upfal, 2018, Brandes and Pich, 2007].

85



Modern networks, additionally to being large, have also richer informa-
tion about their edges. In particular, one of the most important and easily
accessible information is the time at which edges occur. Such networks are
o�en called temporal networks [Holme and Saramäki, 2019]. �e analysis
of temporal networks provides novel insights compared to the insights that
would be obtained by the analysis of static networks (i.e., networks with-
out temporal information), as, for example, in the study of subgraph pat-
terns [Paranjape et al., 2017, Kovanen et al., 2011], community detection
[Lehmann, 2019], and network clustering [Fu et al., 2020]. As well as for
static networks, the study of the temporal betweenness centrality in tempo-
ral networks aims at identifying the nodes that are visited by a high number
of optimal temporal paths [Holme and Saramäki, 2012, Buß et al., 2020]. In
temporal networks in fact, the de�nition of optimal paths has to consider the
information about the timing of the edges, making the possible de�nitions
of optimal paths much more richer than in static networks [Rymar et al.,
2021].

In this work, a temporal path is valid if it is time respecting, i.e., if all the
edges de�ning the path occur at increasing timestamps (see Figures 5.1b-
5.1c). Additional to paths we will also consider walks that, intuitively, are
time respecting paths where a node can appear multiple times across the
edges de�ning the walk. We considered two di�erent optimality criteria for
temporal paths (or walks), chosen for their relevance [Holme and Saramäki,
2012]1: (i) shortest temporal path (STP) criterion, a commonly used criterion
for which a path is optimal if it uses the minimum number of interactions
to connect a given pair of nodes; (ii) shortest restless temporal walk (RTW)
criterion, for which a walk is optimal if, in addition to being shortest, all its
consecutive interactions occur at most within a given user-speci�ed time
duration parameter � 2 R+ (see Figure 5.1c). �e RTW criterion �nds ap-
plication, for example, in the study of spreading processes over complex
networks [Pan and Saramäki, 2011], where information about the timing
of consecutive interactions is fundamental. �e exact computation of the
temporal betweenness centrality under the STP and RTW optimality crite-
ria becomes impractical (both in terms of running time and memory usage)
for even moderately-sized networks. Furthermore, as well as for static net-
works, obtaining a high-quality approximation of the temporal betweenness
centrality of a node is o�en su�cient in many applications. �us, we pro-
poseONBRA, the �rst algorithm to compute rigOrous estimatioN of tempo-
ral Betweenness centRality values in temporAl networks2, providing sharp
guarantees on the quality of its output. As for many data-mining algorithms,
ONBRA’s output is function of two parameters: � 2 (0, 1) controlling the
estimates’ accuracy; and � 2 (0, 1) controlling the con�dence. �e algo-
rithmic problems arising from accounting for temporal information are re-
ally challenging to deal with compared to the static network scenario, al-

1�e general schema of ONBRA can be adapted to other optimality criteria, as we will
discuss.

2https://vec.wikipedia.org/wiki/Onbra.
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though ONBRA shares a high-level sampling strategy similar to the work
by Riondato and Upfal [2018]. Finally, we show that in practice our algo-
rithm ONBRA, other than providing high-quality estimates while reducing
computational costs, it also enables analyses that cannot be otherwise per-
formed with existing state-of-the-art algorithms. Our main contributions
are the following:

• We propose ONBRA, the �rst sampling-based algorithm that outputs
high-quality approximations of the temporal betweenness centrality
values of the nodes of a temporal network. ONBRA leverages on an
advanced data-dependent and variance-aware concentration inequal-
ity to provide sharp probabilistic guarantees on the quality of its es-
timates. ONBRA is able to compute high-quality estimates for the
temporal betweenness centrality values of the nodes de�ned both on
paths or walks under many di�erent optimality criteria.

• We show how to adaptONBRA for the temporal betweenness central-
ity de�ned on paths under the STP criterion and on walks under the
RTW criterion. In particular, we devise speci�c algorithms to be used
withinONBRA to address the computation of the estimates under the
STP and RTW criteria.

• We perform an extensive experimental evaluation with several goals:
(i) under the STP criterion, show that studying the temporal be-
tweenness centrality provides novel insights compared to the static
betweenness; (ii) under the STP criterion, show that ONBRA pro-
vides high-quality estimates, while signi�cantly reducing the compu-
tational costs compared to the state-of-the-art exact algorithm, and
that it enables the study of large datasets that cannot practically be
analyzed by the existing exact algorithm; (iii) show that ONBRA is
able to estimate the temporal betweenness centrality under the RTW
optimality criterion by varying the value of � 2 R+, for which no
practical algorithms currently exist.

5.2 Preliminaries
In this section we introduce the fundamental notions needed throughout the
development of our work and formalize the problem of approximating the
temporal betweenness centrality of the nodes in a temporal network.

We start by recalling the de�nition of temporal networks.

De�nition 5.1. A temporal network T is a pair T = (V , E), where V is a set
of n nodes (or vertices), and E = {(u,�, t) : u,� 2 V ,u , �, t 2 R+} is a set of
m directed edges34.

3ONBRA can be easily adapted to work on undirected temporal networks with minor
modi�cations.

4Without loss of generality we assume the edges (u1,�1, t1), . . . , (um,�m, tm) to be sorted
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Figure 5.1: (5.1a): (le�) a temporal network T with n = 8 nodes andm = 12
edges, (right) its associated static networkGT obtained fromT by removing
temporal information. A shortest temporal path cannot be identi�ed by a
shortest path in the static network: e.g., the shortest paths from node �1 to
node �8, respectively coloured in green in T and purple inGT , are di�erent.
(5.1b): A path that is not time respecting. (5.1c): A time respecting path that
is also shortest in T . With � � 42 such path is also shortest � -restless walk.

Each edge e = (u,�, t) 2 E of the network represents an interaction
from node u 2 V to node � 2 V at time t , which is the timestamp of the
edge. Figure 5.1a (le�) provides an example of a temporal network T . Next,
we de�ne temporal paths.

De�nition 5.2. Given a temporal networkT , a temporal path P is a sequence
P = he1 = (u1,�1, t1), e2 = (u2,�2, t2), . . . , ek = (uk,�k, tk)i of k edges of T
ordered by increasing timestamps5, i.e., ti < ti+1, i 2 {1, . . . ,k � 1}, such that
the node �i of edge ei is equal to the node ui+1 of the consecutive edge ei+1, i.e.,
�i = ui+1, i 2 {1, . . . ,k � 1}, and each node � 2 V is visited by P at most once.

A shortest temporal walk is a temporal path were we drop the constraint
of each node � 2 V of being visited at most once. A walk W = he1 =
(u1,�1, t1), e2 = (u2,�2, t2), . . . , ek = (uk,�k, tk)i is said � -restless if ti+1�ti  �
for i 2 {1 . . . ,k � 1}, � 2 R+. Given a temporal path P made of k edges, we
de�ne its length as `P = k . An example of temporal path P of length `P = 3
is given by Figure 5.1c. Given a source node s 2 V and a destination node
z 2 V , z , s , a shortest temporal path (resp. shortest � -restless walk) between
s and z is a temporal path (resp. � -restless temporal walk) Ps,z of length `Ps ,z
such that inT there is no temporal path (resp. � -restless temporal walk) P0s,z
connecting s to z of length `P0s ,z < `Ps ,z . Given a temporal shortest path (resp.
shortest � -restless walk)Ps,z connecting s and z, we de�ne Int(Ps,z) = {w 2
V | 9 (u,w, t) _ (w,�, t) 2 Ps,z,w , s, z} ⇢ V as the set of nodes internal

by increasing timestamps.
5Our work can be easily adapted to deal with non-strict ascending timestamps (i.e., with

 constraints) for the STP criterion.
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to the path Ps,z . Let � sh
s,z (resp. � rstw

s,z ) be the number of shortest temporal
paths (resp. shortest � -restless walks) between nodes s and z. Given a node
� 2 V , we denote with � sh

s,z(�) (resp. � srtw
s,z (�))the number of shortest tempo-

ral paths (resp. shortest � -restless walks) Ps,z connecting s and z for which�
is an internal node, i.e., � {sh,rstw}

s,z (�) = |{Ps,z |� 2 Int(Ps,z)}| where Ps,z will
be clear from the context if referred to a shortest temporal path or a shortest
� -restless temporal walk. Now we introduce the temporal betweenness cen-
trality of a node � 2 V , which intuitively captures the fraction of optimal
temporal paths (or walks) visiting � .

De�nition 5.3. Given an optimality criterion OPT over paths (or walks) we
de�ne the temporal betweenness centrality b(�) of a node � 2 V as

b(�) =
1

n(n � 1)

’
s,z2V , s,z

�OPT
s,z (�)

�OPT
s,z

. (5.1)

In the above Equation (5.1) we will use “sh” insteadOPT to denote opti-
mal paths under the STP criterion (i.e., shortest temporal paths) and “srtw”
to denote optimal walks under the RTW criterion (i.e., shortest � -restless
temporal walks). Let B(T ) = {(�,b(�)) : � 2 V } be the set of pairs composed
of a node � 2 V and its temporal betweenness value b(�). Since the ex-
act computation of the set B(T ) using state-of-the-art exact algorithms [Buß
et al., 2020, Rymar et al., 2021] is impractical on even moderately-sized tem-
poral networks (see Section 5.5 for experimental evaluations), in our work
we aim at providing high-quality approximations of the temporal between-
ness centrality values of all the nodes of the temporal network. �at is, we
compute the set B̃(T ) = {(�, b̃(�)) : � 2 V }, where b̃(�) is an accurate esti-
mate of b(�), controlled by two parameters �,� 2 (0, 1), (accuracy and con-
�dence). We want B̃(T ) to be an absolute (�,�)-approximation set of B(T ), as
commonly adopted in data-mining algorithms (e.g., in [Riondato and Upfal,
2018, Riondato and Vandin, 2020]): that is, B̃(T ) is an approximation set such
that

P


sup
�2V

|b̃(�) � b(�)|  �

�
� 1 � �.

Note that in an absolute (�,�)-approximation set, for each node � 2 V , the
estimate b̃(�) of the temporal betweenness value deviates from the actual
value b(�) of at most � , with probability at least 1��. Finally, let us state the
main computational problem addressed in this work.

Problem 5.1. Given a temporal networkT and two parameters (�,�) 2 (0, 1)2,
compute the set B̃(T ), i.e., an absolute (�,�)-approximation set of B(T ).

5.3 Related Works
Given the importance of the betweenness centrality for network analysis,
many algorithms have been proposed to compute it in di�erent scenarios. In
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this section we focus on those scenarios most relevant to our work, grouped
as follows.

Approximation Algorithms for Static Networks. Recently, many al-
gorithms to approximate the betweenness centrality in static networks
have been proposed, most of them employ randomized sampling ap-
proaches [Riondato and Kornaropoulos, 2016, Riondato and Upfal, 2018,
Brandes and Pich, 2007]. �e existing algorithms di�er from each other
mainly for the sampling strategy they adopt and for the probabilistic guar-
antees they o�er. Among these works, the one that shares similar ideas to
our work is by Riondato and Upfal [2018], where the authors proposed to
sample pairs of nodes (s, z) 2 V 2, compute all the shortest paths from s to z,
and update the estimates of the betweenness centrality values of the nodes
internal to such paths. �e authors developed a suite of algorithms to out-
put an (�,�)-approximation set of the set of betweenness centrality values.
�eir work cannot be easily adapted to temporal networks. In fact, static and
temporal paths in general are not related in any way, and the temporal sce-
nario introduces many novel challenges: (i) computing the optimal temporal
paths, and (ii) updating the betweenness centrality values. �erefore, our
algorithm ONBRA employs the idea of the estimator provided by Riondato
and Upfal [2018], while using novel algorithms designed for the context of
temporal networks. Furthermore, the probabilistic guarantees provided by
our algorithm ONBRA leverage on the variance of the estimates, di�erently
from Riondato and Upfal [2018] that used bounds based on the Rademacher
averages. Our choice to use a empirical based variance-aware concentration
inequality is motivated by the recent interest in providing sharp guarantees
employing the empirical variance of the estimates [Cousins et al., 2021, Pel-
legrina and Vandin, 2021].

Algorithms for Dynamic Networks. In this se�ing the algorithm keeps
track of the betweenness centrality value of each node for every timestamp
t1, . . . , tm observed in the network [Lee et al., 2012, Hanauer et al., 2021].
Note that this is extremely di�erent from estimating the temporal between-
ness centrality values in temporal networks. In the dynamic scenario the
paths considered are not required to be time respecting. For example, in
the dynamic scenario, if we consider the network in Figure 5.1a (le�) at any
time t > 20, the shortest path from �1 to �8 is the one highlighted in pur-
ple in Figure 5.1a (right). Instead, in the temporal se�ing such path is not
time respecting. We think that it is very challenging to adapt the algorithms
for dynamic networks to work in the context of temporal networks, which
further motivates us to propose ONBRA.

Exact Algorithms for Temporal Networks. First of all we note that algo-
rithms for temporal betweenness centrality are strictly related to algorithms
for counting temporal paths (or walks) for which signi�cant work has been
done [�ejaswi et al., 2020, Casteigts et al., 2021, Xuan et al., 2003, Enright
et al., 2022, Michail, 2016]. Related to our de�nition of paths Wu et al.
[2014] discussed several conditions and algorithms to �nd shortest, fore-
most, fastest, and reverse foremost paths in temporal networks. �eir algo-
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rithms which are state-of-the-art for counting such paths do not enumerate
all optimal temporal paths (or walks) according to the optimality criterion
adopted as required for computing the temporal betweenness centrality but
rather adopt several pruning conditions to speed-up the computation, in
fact computing all fastest paths is #P-Hard as proved by Buß et al. [2020].
Michail [2016] discussed algorithms that can be used for computing paths
(or walks) through static expansions, which become ine�cient when tem-
poral networks are supplemented with �ne-grained information as in our
scenario. Additionally Casteigts et al. [2021] proved that identifying restless
temporal paths is NP-Complete in temporal networks, but such problem is
known to be solvable in polynomial time on shortest restless walks, as con-
sidered in this work.

Several exact approaches have been proposed in the literature for tempo-
ral betweenness centrality [Tsalouchidou et al., 2020, Alsayed and Higham,
2015, Kim and Anderson, 2012]. �e algorithm most relevant to our work
was presented by Buß et al. [2020], where the authors extended the well-
known Brandes algorithm [Brandes, 2001] to the temporal network scenario
considering the STP criterion (among several other criteria). �ey showed
that the time complexity of their algorithm is O(n3(tm � t1)2), which is of-
ten impractical on even moderately-sized networks. Recently, Rymar et al.
[2021] discussed conditions on temporal paths under which the temporal
betweenness centrality can be computed in polynomial time, showing a gen-
eral algorithm running in O(n2m(tm � t1)2) even under the RTW criterion,
which is again very far from being practical on modern networks.

We conclude by observing that, to the best of our knowledge, no approx-
imation algorithms exist for estimating the temporal betweenness centrality
in temporal networks.

5.4 ONBRA

In this section we discussONBRA, our novel algorithm for computing high-
quality approximations of the temporal betweenness centrality values of the
nodes of a temporal network. We �rst discuss the sampling strategy used in
ONBRA, then we present the algorithm and all its subroutines required for
ONBRA to work under the STP and RTW criteria, and �nally we prove the
theoretical guarantees on the quality of the estimates of ONBRA.

5.4.1 Sampling Strategy
In this section we discuss the sampling strategy adopted by ONBRA that is
independent of the optimality criterion of the paths (or walks) considered.
However, for the sake of presentation, we discuss the sampling strategy for
the STP-based temporal betweenness centrality estimation, then we discuss
how to adapt ONBRA to work for the temporal betweenness de�ned on the
RTW as optimality criterion.
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ONBRA samples pairs of nodes (s, z) and computes all the shortest tem-
poral paths from s to z. More formally, let D = {(u,�) 2 V 2 : u , �}, and
` 2 N, ` � 2 be a user-speci�ed parameter. ONBRA �rst collects ` pairs of
nodes (si, zi)i, i = 1, . . . , `, sampled uniformly at random from D. Next, for
each pair (s, z) it computesPs,z = {Ps,z : Ps,z is shortest}, i.e., the set of short-
est temporal paths from s to z. �en, for each node � 2 V s.t. 9Ps,z 2 Ps,z

with� 2 int(Ps,z), i.e., for each node� that is internal to a shortest temporal
path of Ps,z , ONBRA computes the estimate b̃0(�) = � sh

s,z(�)/�
sh
s,z , which is an

unbiased estimator of the temporal betweenness centrality value b(�) as we
show in Lemma 5.1 (i.e., E[b̃0(w)] = b(�)). Note, that the estimates obtained
by ONBRA can be stated in the framework we presented in Section 2.2. In
particular, X is identi�ed with D, and � is uniform over X, given x = (s, z)
an element sampled from X, F is as follows, f�(x) = � sh

s,z(�)/�
sh
s,z,� 2 V , and

X̂ f� (x) = f�(x),� 2 V .

Lemma 5.1. Let � 2 V , then b̃0(�) is an unbiased estimator of b(�).

Proof. Let Xsz be a Bernoulli random variable that takes value 1 if the pair
of nodes (s, z) 2 D is sampled, and 0 otherwise. Since E[Xsz] = 1/(n(n � 1)),
then by the linearity of expectation,

E[b̃0(�)] =
1

n(n � 1)

’
s,z2Vs,z

� sh
s,z(�)

� sh
s,z

E[Xsz]

1/n(n � 1)
= b(�).

⇤

Finally, a�er processing the ` pairs of nodes randomly selected, ONBRA
computes for each node � 2 V the (unbiased) estimate b̃(�) of the actual
temporal betweenness centralityb(�) by averaging b̃0(�) over the ` sampling
steps: b̃(�) = 1/`

Õ`
i=1 b̃

0
(�)i , where b̃0(�)i is the estimate of b(�) obtained by

analyzing the i-th sample, i 2 [1, `]. We will discuss the theoretical guaran-
tees on the quality of the estimates b̃(�),� 2 V in Section 5.4.5.

5.4.2 Algorithm Description
Sampling Algorithm: ONBRA

ONBRA is presented in Algorithm 7. In line 1 we �rst initialize the set D of
objects to be sampled, where each object is a pair of distinct nodes from V .
Next, in line 2 we initialize the matrix B̃ of size |V | · ` to store the estimates
of ONBRA for each node at the various iterations, needed to compute their
empirical variance and the �nal estimates. �en we start the main loop (line
3) that will iterate ` times. In such loop we �rst select a pair (s, z) sampled
uniformly at randomly from D (line 4). We then compute all the shortest
temporal paths from s to z by executing Algorithm 8 (line 5), which is de-
scribed in detail later in this section. Such algorithm computes all the short-
est temporal paths from s and z adopting some pruning criteria to speed-up
the computation. If at least one STP between s and z exists (line 6), then
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Algorithm 7: ONBRA.
Input: Temporal network T = (V , E), � 2 (0, 1), ` � 2
Output: Pair (�0, B̃(T )) s.t. B̃ is an absolute (�0,�)-approximation set

of B(T ).
1 D  {(u,�) 2 V ⇥V ,u , �}
2 B̃�,:  Æ0`,8� 2 V
3 for i  1 to ` do
4 (s, z) uniformRandomSample(D)
5 SourceDestinationSTPComputation(T , s, z)
6 if reached(z) then
7 updateSTPEstimates(B̃, i)

8 B̃(T ) {(�, 1/`
Õ`

i=1 B̃�,i) : � 2 V }

9 �0  sup�2V

⇢q
2V(B̃� ,:) ln(4n/�)

` +
7 ln(4n/�)
3(`�1)

�

10 return (�0, B̃(T ))

for each node � 2 V internal to a path in Ps,z we update the correspond-
ing estimate to the current iteration by computing b̃0(�)i using Algorithm 9
(line 7). While in static networks this step can be done with a simple recur-
sive formula [Riondato and Upfal, 2018], in our scenario we need a speci�c
algorithm to deal with the more challenging fact that a node may appear
at di�erent distances from a given source across di�erent shortest temporal
paths. We will discuss in detail such algorithm later in this section. At the
end of the ` iterations of the main loop,ONBRA computes: (i) the set B̃(T ) of
unbiased estimates (line 8); (ii) and a tight bound �0 on sup�2V |b̃(�) � b(�)|,
which leverages the empirical variance V(B̃�,:) of the estimates (line 9). We
observe that �0 is such that the set B̃(T ) is an absolute (�0,�)-approximation
set of B(T ). We discuss the computation of such bound in Section 5.4.5. Fi-
nally, ONBRA returns (�0, B̃(T )).

5.4.3 Shortest Temporal Path Betweenness
We now describe the subroutines employed in Algorithm 7 focusing on the
STP criterion. �en, in Section 5.4.4, we discuss how to address the estima-
tion of the temporal betweenness de�ned under the RTW criterion.

Source-Destination Shortest Paths Computation.

We start by introducing some de�nitions needed through this section. First,
we say that a pair (�, t) 2 V ⇥ {t1, . . . , tm} is a vertex appearance (VA) if
9(u,�, t) 2 E. Next, given a VA (�, t) we say that a VA (w, t 0) is a predecessor
of (�, t) if 9(w,�, t) 2 E, t 0 < t . Finally, given a VA (�, t) we de�ne its set of
out-neighbouring VAs as N+(�, t) = {(w, t 0) : 9(�,w, t 0) 2 E, t < t 0}.

We now describe Algorithm 8 that computes the shortest temporal paths
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Algorithm 8: Source-Destination STP computation.
Input: T = (V , E), source node s , destination node z

1 for � 2 V do
2 dist�  �1; ��  0
3 for (u,�, t) 2 E do
4 ��,t  0; P�,t  ;; dist�,t  �1
5 dists  0; dists,0  0
6 �s  1; �s,0  1; dmin

z  1

7 Q  empty queue; Q .enqueue((s, 0))
8 while !Q .empty() do
9 (�, t) Q .dequeue()

10 if (dist�,t < dmin
z ) then

11 for (w, t 0) 2 N+(�, t), do
12 if distw,t 0 = �1 then
13 distw,t 0  dist�,t + 1
14 if distw = �1 then
15 distw  dist�,t + 1
16 if w = z then
17 dmin

z  distw

18 Q .enqueue((w, t 0))
19 if distw,t 0 = dist�,t + 1 then
20 �w,t 0  �w,t 0 + ��,t
21 Pw,t 0  Pw,t 0 [ {(�, t)}
22 if distw,t 0 = distw then
23 �w  �w + ��,t

between a source node s and a destination node z (invoked inONBRA at line
5). Such computation is optimized to prune the search space once found the
destination z. �e algorithm initializes the data structures needed to keep
track of the shortest temporal paths that, starting from s , reach a node in
V , i.e., the arrays dist[·] and � [·] that contain for each node � 2 V , respec-
tively, the minimum distance to reach � and the number of shortest tem-
poral paths reaching � (line 2). In line 4 we initialize dist[·, ·] that keeps
track of the minimum distance of a VA from the source s , � [·, ·] that main-
tains the number of shortest temporal paths reaching a VA from s , and P
keeping the set of predecessors of a VA across the shortest temporal paths
explored. A�er initializing the values of the data structures for the source s
and dmin

z keeping the length of the minimum distance to reach z (lines 5-6),
we initialize the queue Q that keeps the VAs to be visited in a BFS fashion
in line 7 (observe that, since the temporal paths need to be time-respecting,
all the paths need to account for the time at which each node is visited).
Next, the algorithm explores the network in a BFS order (line 8), extracting
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a VA (�, t) from the queue, which corresponds to a node and the time at
which such node is visited, and processing it by collecting its setN+(�, t) of
out-neighbouring VAs (lines 9-11). If a VA (w, t 0) was not already explored
(i.e., it holds distw,t 0 = �1), then we update the minimum distance distw,t 0
to reach w at time t 0, the minimum distance distw of the vertex w if it was
not already visited, and, ifw is the destination node z, we update dmin

z (lines
12-17). Observe that the distance dmin

z to reach z is used as a pruning crite-
rion in line 10 (clearly, if a VA appears at a distance greater than dmin

z then it
cannot be on a shortest temporal path from s to z). A�er updating the VAs
to be visited by inserting them inQ (line 18), if the current temporal path is
shortest for the VA (w, t 0) analyzed, we update the number �w,t 0 of shortest
temporal paths leading to it, its set Pw,t 0 of predecessors, and the number �w
of shortest temporal paths reaching the nodew (lines 19-23).

Recall that for static graphs, if a shortest path leading from s to z con-
tains one nodew then also the path leading from s tow needs to be shortest
(i.e., let s, z be two nodes if we have that hs, . . . ,w, . . . , zi is shortest then the
two paths hs, . . . ,wi and hw, . . . , zi will be shortest). In order to prove the
correctness of Algorithm 8 we need to prove an analogous property of tem-
poral paths (that can be phrased in the more general framework by Rymar
et al. [2021] of pre�x-compatibility).

Property 5.1. Given a shortest temporal path Ps,z from s 2 V to z 2 V , let
(w, t 0) be a VA s.t., it appears in Ps,z, then the temporal (sub)path leading from
s tow at time t 0 is shortest.

Proof. By contradiction, assume that a temporal path Ps,z =

h(s, ·, t1), . . . (·,w, t 0), . . . , (·, z, t2)i is shortest, then suppose that the
temporal sub-path P1 = h(s, ·, t1), . . . (·,w, t 0)i is not shortest, this means
that there exists a path P2 = h(s, ·, t1), . . . (·,w, t 0)i such that |P2 | < |P1 |.
�at is, the composition of P2 and the path a�er P1 in Ps,z forms a path that
is shorter than Ps,z contradicting the initial assumption. ⇤

Lemma 5.2. Algorithm 8 computes exactly �w,t for each vertex appearance
internal to path in Ps,z , and �w,8w : w 2 P, P 2 Ps,z _w = z.

Proof. First observe that during the execution of Algorithm 8 the follow-
ing properties are maintained, distw,t maintains the minimum distance to
reach node w at time t with a path starting from s . �is is immediate to
observe since the algorithm exploits nodes (and therefore paths) through a
BFS, hence nodes are visited in increasing order of distance from s . Hence,
the �rst time a vertex appearance is processed (i.e., distw,t = �1) the algo-
rithm is guaranteed that the distance of such VA is minimum by Property
5.1. Additionally, if a node is reached trough a path having minimum dis-
tance �w,t 0 is updated accordingly by adding ��,t , i.e., the number of shortest
paths going through the VA preceding (w, t 0). Hence the algorithm com-
putes exactly the desired quantities �w,t and �w8w : w 2 P, P 2 Ps,z_w = z.
Additionally, the truncation occurs only for VAs that dist more than dmin

z
and such VAs cannot contribute to optimal paths by Property 5.1. ⇤

95



Algorithm 9: Update betweenness estimates - STP.
Input: B̃, i .

1 for (u,�, t) 2 E do
2 �z

�,t  0;M�,t  False

3 R  empty queue;
4 foreach t : (�z,t > 0) do
5 for (w, t 0) 2 Pz,t do
6 �z

w,t 0  �z
w,t 0 + 1

7 if !Mw,t 0 then
8 R.enqueue((w, t 0));Mw,t 0  True

9 while !R.empty() do
10 (w, t) R.dequeue()
11 if w , s then
12 B̃w,i  B̃w,i + �z

w,t · �w,t/�z
13 for (w0, t 0) 2 Pw,t do
14 �z

w 0,t 0  �z
w 0,t 0 + �

z
w,t

15 if !Mw 0,t 0 then
16 R.enqueue((w0, t 0));Mw 0,t 0  True

Lemma 5.3. Algorithm 8 runs in O(m log(d+max)).

Proof. Note that each vertex appearance (w, t 0) is processed atmost once and
the number of such VAs isO(m). To �nd (w, t 0) 2 N+(�, t) of a given VA (�, t)
it requires O(log(d+(�))) through our data-structures, where d+(�) = |{t :
9(�,w, t) 2 E}| Additionally, for each VA that is processed the algorithm
performsO(1) number of operations. �erefore the �nal complexity follows.

⇤

Update Estimates – STP criterion

Now we describe Algorithm 9, which updates the temporal betweenness
estimates of each node internal to a path in Ps,z already computed (through
Algorithm 8). With Algorithm 8 we computed for each VA (w, t) the number
�w,t of shortest temporal paths from s reaching (w, t). Now, in Algorithm
9 we need to combine such counts to compute the total number of shortest
temporal paths leading to each VA (w, t) appearing in a path inPs,z , allowing
us to compute the estimate of ONBRA for each nodew .

At the end of Algorithm 8 there are in total |Ps,z | shortest temporal paths
reaching z from s . Now we need to compute, for each node w internal to a
path in Ps,z and for each VA (w, t), the number �z

w,t of shortest temporal
paths leading from w to z at a time greater that t . �en, the fraction of
paths containing the nodew is computed with a simple formula, i.e.,

Õ
t �

z
w,t ·

�w,t/�z , where �z = |Ps,z |. �e whole procedure is described in Algorithm
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9. We start by initializing �z
�,t that stores for each VA (�, t) the number of

shortest temporal paths reaching z at a time greater than t starting from
� , and a boolean matrix M that keeps track for each VA if it has already
been considered (line 2). In line 3 we initialize a queue R that will be used to
explore the VAs appearing along the paths inPs,z in reverse order of distance
from s starting from the destination node z. �en we initialize �z

w,t 0 for each
VA reaching z at a given time t 0 (line 6), and we insert each VA in the queue
only one time (line 8). �e algorithm then starts its main loop exploring
the VAs in decreasing order of distance starting from z (line 9). We take the
VA (w, t) to be explored in line 10. If w di�ers from s (i.e., w is an internal
node), then we update its temporal betweenness estimate by adding �z

w,t ·

�w,t/�z (line 12). As we did in the initialization step, then we process each
predecessor (w0, t 0) of (w, t) across the paths in Ps,z (line 13), update the
count �z

w 0,t 0 of the paths from the predecessor to z by summing the number
�z
w,t of paths passing through (w, t) and reaching z (line 14), and we enqueue
the predecessor (w0, t 0) only if it was not already considered (lines 15-16).
So, the algorithm terminates by having properly computed for each node
� 2 V ,� , s, z the estimate b̃0(�)i for each iteration i 2 [1, `].

Proposition 5.1. Algorithm 9 computes correctly b̃0(�)i = �sz(�)/�sz for each
node � 2 V internal to a path between s and z at each iteration i 2 [1, `] for
the STP criterion.

Proof. First observe that the correctness follows if �z
w,t contains the num-

ber of paths in Ps,z that reach z a�er the VA (w, t), i.e., paths of the form
h(·,w, t), . . . , (·, z, t 0)i s.t. t 0 > t , since if this is correct b̃0(�)i can be com-
puted by:

b̃0(w)i =
’

t :� zw ,t>0

�z
w,t�w,t

�z
. (5.2)

�e terms �z
w,t can be computed recursively by exploiting the sets Pw,t where

w , s and t : �w,t > 0. Starting from z, �x a node w , z such that
9P 2 Ps,z : (w, z, t) 2 P (i.e., w dists one edge from z on an optimal short-
est temporal path) we have that �z

w,t =
Õ

t 0:Pz,t 0,; |{(w, t) : (w, t) 2 Pz,t 0}|.
�en for the other nodes w 2 int(Ps,z), Ps,z 2 Ps,z,w , s, z we have that
�z
w,t =

Õ
w 0:9t 0,(w,t)2Pw 0,t 0

Õ
t 0:Pw 0,t 0,; �

z
w 0,t 0 and this is computed recursively in

line 14. We explore VAs in reverse order of distance from s , hence thanks to
Property 5.1 we know that once we process a VA, this can appear only at a
�xed distance from s . Since VAs are explored in decreasing order, once we
process a VA (w, t) the value �z

w,t has been correctly computed by evaluating
the queue, since it is based on VAs preceding (w, t) in the queue, hence we
can update the betweenness of the node w by summing �z

w,t · �w,t/�z , that
contributes to the general summation in Equation (5.2). Hence as the ex-
ploration of the algorithm concludes all the estimates b̃0(w)i are computed
correctly. ⇤

Lemma 5.4. Algorithm 9 runs in O(md�max).
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Figure 5.2: Considering the temporal network in Figure 5.1 and � = 10, the
paths from node �1 to node �6 on the le� are not shortest � -restless since
both violate the timing constraint (i.e., 45 � 20, 70 � 20 > � ). Instead, the
walk on the right is shortest and meets the timing constraint with � = 10:
so, it is a shortest � -restless walk.

Proof. Note that again each vertex appearance (w, t) is processed at most
once and the number of such VAs is O(m). �e maximum size of a set Pw,t
is O(d�(w)), where d�(w) = |{t : 9(�,w, t) 2 E}| Additionally, for each
VA in the set Pw,t that is processed the algorithm performs O(1) number of
operations. �erefore the �nal complexity follows. ⇤

Lemma 5.5. �e running time of ONBRA under the STP criterion is bounded
by O(`[m(log(d+max) + d

�
max) + n])

Proof. �is is immediately obtained by combining Lemma 5.3, Lemma 5.4,
and recalling that such algorithms are executed on O(`) samples, and the
fact that to evaluate the bound providing �0, for each node in the temporal
network we needO(`) time, hence the additionalO(n`) time complexity. ⇤

5.4.4 Shortest Restless Temporal Walk Betweenness
In this section we present the algorithms that are used inONBRAwhen con-
sidering the RTW criterion for the optimal walks to compute the temporal
betweenness centrality values, i.e., when de�ning Equation (5.1) for shortest
� -restless temporal walks hence when we set OPT = srtw .

Recall that, in such scenario, a temporal walkW = he1 = (u1,�1, t1), e2 =
(u2,�2, t2), . . . , ek = (uk,�k, tk)i is considered optimal if and only ifW, addi-
tionally to being shortest, is such that, given � 2 R+, it holds ti+1  ti + �
for i = 1, . . . ,k � 1. Considering the RTW criterion, we need to relax the
de�nition of shortest temporal paths and, instead, consider shortest temporal
walks. We provide an intuition of why we need such requirement in Figure
5.2. Given � 2 R+, we refer to a shortest temporal walk as shortest � -restless
temporal walk.

In order to properly work under the RTW criteria, ONBRA needs novel
algorithms to compute the optimal walks and update the betweenness esti-
mates. Note that to compute the shortest � -restless temporal walks we can
use Algorithm 8 provided that we add the condition t 0 � t  � in line 11.

More interestingly, the biggest computational problem arises when up-
dating the temporal betweenness values of the various nodes on the optimal
walks. Note that, to do so, we cannot use Algorithm 9 because it does not ac-
count for cycles (i.e, when vertices appear multiple times across a walk). We
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Algorithm 10: Update betweenness estimates - RTW.
Input: B̃, i .

1 for (u,�, t) 2 E do
2 �z

�,t  0; u�,t  0
3 R  empty queue;
4 foreach t : �z,t > 0 do
5 for (w, t 0) 2 Pz,t do
6 R.enqueue(h(w, t 0), {z}i);

7 while !R.empty() do
8 h(w, t), Si  R.dequeue()
9 if w , s then
10 if w < S then
11 B̃w,i  B̃w,i + �z

w,t · �w,t/(�z · uw,t )

12 S0  S [ {w}

13 for (w0, t 0) 2 Pw,t do
14 �z

w 0,t 0  �z
w 0,t 0 + �

z
w,t/uw,t

15 uw 0,t 0  uw 0,t 0 + 1
16 R.enqueue(h(w0, t 0), S0i);

therefore introduce Algorithm 10 that works in the presence of cycles. �e
main intuition behind Algorithm 10 is that we need to recreate backwards
all the optimal walks obtained through the RTW version of Algorithm 8. For
each walk we will maintain a set that keeps track of the nodes already vis-
ited up to the current point of the exploration of the walk, updating a node’s
estimate if and only if we see such node for the �rst time. �is is based on
the simple observation that a cycle cannot alter the value of the between-
ness centrality of a node on a �xed walk, allowing us to account only once
for the node’s appearance along the walk.

We now describe Algorithm 10 by discussing its di�erences with Al-
gorithm 9. In line 2, instead of maintaining a matrix keeping track of the
presence of a VA in the queue, we now initialize a matrix u[·, ·] that keeps
the number of times a VA is in the queue. �e queue, initialized in line 3,
keeps elements of the form h·, ·i, where the �rst entry is a VA to be explored
and the second entry is the set of nodes already visited backwards along
the walk leading to such vertex appearance. While visiting backwards each
walk, we check if the nodes are visited for the �rst time on such walk: if so,
we update the betweenness values by accounting for the number of times
we will visit such VA across other walks (lines 10-11). Next, we update the
set of nodes visited (line 12). Finally, we update the count �z

w 0,t 0 of the walks
leading from the predecessor (w0, t 0) of the current VA (w, t) to z (line 14),
the number uw 0,t 0 of times such predecessor will be visited (line 15), and en-
queue the predecessor (w0, t 0) to be explored, together with the additional
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information of the set S0 of nodes explored up to that point. To conclude,
note that Algorithm 10 is more expensive than Algorithm 9 since it recreates
all the optimal walks, while Algorithm 9 avoids such step given the absence
of cycles. In fact, we just brie�y highlight that Lemma 5.3 holds also with the
modi�cation on RTWs. Instead Algorithm 10 runs in O(m |W|

⇤d�max) where
|W|

⇤ = max{|Ws,z | : s, z 2 V 2, s , z} hence the �nal time complexity of
ONBRA is bounded by O(`[m(log(d+max + |W|

⇤d�max) + n)]).

5.4.5 ONBRA –�eoretical Guarantees
In order to address Problem 5.1, ONBRA bounds the deviation between the
estimates b̃(�) and the actual values b(�), for every node � 2 V . To do so,
we leverage on the so called empirical Bernstein bound, which we adapted to
ONBRA.

Given a node � 2 V , let B̃�,: = (b̃0(�)1, b̃0(�)2, . . . , b̃0(�)`), where b̃0(�)i is
the estimate of b(�) by analysing the i-th sample, i 2 {1, . . . , `}. Let V(B̃�,:)
be the empirical variance of B̃�,::

V(B̃�,:) =
1

`(` � 1)

’
1<i<j`

(b̃0(�)i � b̃
0
(�)j)

2.

We use the empirical Bernstein bound to limit the deviation between
b̃(�)’s and b(�)’s, which represents Corollary 5 of Maurer and Pontil [2009]
adapted to our framework, since Corollary 5 of Maurer and Pontil [2009] is
formulated for generic random variables taking values in [0, 1] and for an
arbitrary set of functions.
�eorem 5.1 (Corollary 5, [Maurer and Pontil, 2009]). Let ` � 2 be the
number of samples, and � 2 (0, 1) be the con�dence parameter. Let b̃0(�)i be
the estimate ofb(�) by analysing the i-th sample, i 2 {1, . . . , `} and� 2 V . Let
B̃�,: = (b̃0(�)1, b̃0(�)2, . . . , b̃0(�)`), and V(B̃�,:) be its empirical variance. With
probability at least 1 � �, and for every node � 2 V , we have that

|b̃(�) � b(�)| 

s
2V(B̃�,:) ln(4n/�)

`
+
7 ln(4n/�)
3(` � 1)

.

�e right hand side of the inequality of the previous theorem di�ers from
Corollary 5 in the work of Maurer and Pontil [2009] by a factor of 2 in the
arguments of the natural logarithms, since in [Maurer and Pontil, 2009] the
bound is not stated in the symmetric form reported in�eorem 5.1. Finally,
the result about the guarantees on the quality of the estimates provided by
ONBRA follows.
Corollary 5.1. Given a temporal networkT , the pair (�0, B̃(T )) in output from
ONBRA is such that, with probability > 1��, it holds that B̃(T ) is an absolute
(�0,�)-approximation set of B(T ).

Observe that Corollary 5.1 is independent of the structure of the optimal
paths considered by ONBRA, therefore such guarantees hold for both the
criteria considered in our work, and possibly many others.
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Table 5.1: Datasets used and their statistics.

Name n m Granularity Timespan

HighSchool2012 (HS) 180 45K 20 sec 7 (days)
CollegeMsg 1.9K 59.8K 1 sec 193 (days)
EmailEu 986 332K 1 sec 803 (days)

FBWall (FB) 35.9K 199.8K 1 sec 100 (days)
Sms 44K 544.8K 1 sec 338 (days)

Mathover�ow 24.8K 390K 1 sec 6.4 (years)
Askubuntu 157K 727K 1 sec 7.2 (years)
Superuser 192K 1.1M 1 sec 7.6 (years)

5.5 Experimental Evaluation
In this section we present our experimental evaluation that has the follow-
ing goals: (i) motivate the study of the temporal betweenness centrality by
showing two real world temporal networks onwhich the temporal between-
ness provides novel insights compared to the static betweenness computed
on their associated static networks; (ii) assess, considering the STP criterion,
the accuracy of theONBRA’s estimates, and the bene�t of usingONBRA in-
stead of the state-of-the-art exact approach [Buß et al., 2020], both in terms
of running time and memory usage; (iii) �nally, show how ONBRA can be
used on a real world temporal network to analyze the RTW-based between-
ness centrality values.

5.5.1 Setup
We implemented ONBRA in C++20 and compiled it using gcc 9. �e code
is publicly available6. All the experiments were performed sequentially on a
72 core Intel Xeon Gold 5520@ 2.2GHzmachine with 1008GB of RAM avail-
able. �e real world datasets we used are described in Table 5.1, which are
mostly social or message networks from di�erent domains. Such datasets
are publicly available online7. For detailed descriptions of such datasets we
refer to the links reported and [Paranjape et al., 2017]. To obtain the FBWall
dataset we cut the last 200K edges from the original dataset [Viswanath et al.,
2009], which has more than 800K edges. Such cut is done to allow the exact
algorithm to complete its execution without exceeding the available mem-
ory.

5.5.2 Temporal vs Static Betweenness
In this section we assess that the temporal betweenness centrality of the
nodes of a temporal network provides novel insights compared to its static

6https://github.com/iliesarpe/ONBRA.
7http://www.sociopatterns.org/ and https://snap.stanford.edu/

temporal-motifs/data.html.
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Table 5.2: Static vs temporal top-k nodes Jaccard similarity � (k). We also
report the size of the intersection.

Name � (25) � (50)

HS 0.28 (11) 0.56 (36)
FB 0.22 (9) 0.18 (15)

version. To do so, we computed for two datasets, from di�erent domains, the
exact ranking of the various nodes according to their betweenness values.
�e goal of this experiment is to compare the two rankings (i.e., temporal
and static) and understand if the relative orderings are preserved, i.e., verify
if the most central nodes in the static network are also the most central
nodes in the temporal network. To this end, given a temporal network T =
(V , E), let GT = (V , {(u,�) : 9(u,�, t) 2 E}) be its associated static network.
We used the following two real world networks: (i) HS, that is a temporal
network representing a face-to-face interaction network among students;
(ii) and FB, that is a Facebook user-activity network [Viswanath et al., 2009]
(see Table 5.1 for further details).

We �rst computed the exact temporal and static betweenness values of
the di�erent nodes of the two networks. �en, we ranked the nodes by
descending betweenness values. We now discuss how the top-k ranked
nodes vary from temporal to static on the two networks. We report in Ta-
ble 5.2 the Jaccard similarity between the sets containing the top-k nodes
of the static and temporal networks. In particular, given T and GT , let
SkT = {�1, . . . ,�k} be the top-k nodes ranked by their temporal between-
ness values and let SkGT

= {�01, . . . ,�
0

k} be the top-k nodes ranked by their
static betweenness values. We report in Table 5.2 the Jaccard similarity
� (k) = |SkT \ S

k
GT

|/|SkT [ S
k
GT

| for two di�erent values of k . On HS, for k = 25,
only 11 nodes are top ranked in both the rankings, which means that less
than half of the top-25 nodes are central if only the static information is
considered. �e value of the intersection increases to 36 for k = 50, since
the network has only 180 nodes. More interestingly, also on the Facebook
network only few temporally central nodes can be detected by considering
only static information: only 9 over the top-25 nodes and 15 over the top-50
nodes. In order to be�er visualize the top-k ranked nodes, we show their be-
tweenness values in Figure 5.3a: note that there are many top-k temporally
ranked nodes having small static betweenness values, and vice versa.

�ese experiments show the importance of studying the temporal be-
tweenness centrality, which provides novel insights compared to the static
version.

5.5.3 Accuracy and Resources of ONBRA
In this section we �rst assess the accuracy of the estimates B̃(T ) provided by
ONBRA considering only the STP criterion, since for the RTW criterion no
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Figure 5.3: (5.3a): static and temporal betweenness values of the top-50
ranked nodes of the dataset FB; (5.3b): for dataset EmailEu, the deviations (or
absolute errors) |b̃(�) � b(�)| between the estimates b̃(�) and the actual val-
uesb(�) of the temporal betweenness centrality, for decreasing order ofb(�);
(5.3c,5.3d): comparison between the temporal betweenness values based on
STP and RTW, for �=15 days (le�) and �=1 month (right).

implemented exact algorithm exists. �en, we show the reduction of com-
putational resources induced by ONBRA compared to the exact algorithm
by Buß et al. [2020].

To assess ONBRA’s accuracy and its computational cost, we used four
datasets, i.e., CollegeMsg, EmailEu, Mathoverflow, and FBWall. We �rst
executed the exact algorithm, and then we �x � = 0.1 and ` properly for
ONBRA to run within a fraction of the time required by the exact algorithm.
�e results we now present, which are described in detail in Table 5.3, are
all averaged over 10 runs (except for the RAM peak, which is measured over
one single execution of the algorithms).

Remarkably, even using less than 1% of the overall pairs of nodes as sam-
ple size,ONBRA is able to estimate the temporal betweenness centrality val-
ues with very small average deviations between 4 · 10�6 and 5 · 10�4, while
obtaining a signi�cant running time speed-up between ⇡1.5⇥ and ⇡4⇥with
respect to the exact algorithm [Buß et al., 2020]. Additionally, the amount
of RAM memory used by ONBRA is signi�cantly smaller than the exact al-
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Table 5.3: For each dataset, the average andmaximum deviation between the
estimate b̃(�) and the actual temporal betweenness value b(�) over all nodes
� and 10 runs, respectivelyA��. Error and sup�2V |b(�)� b̃(�)|, the theoret-
ical upper bound �0, the Sample rate (%) of pairs of nodes we sampled, the
running time tEXC and peak RAM memory MEMEXC required by the exact
approach [Buß et al., 2020], the running time tONBRA and peak RAM mem-
ory MEMONBRA required by ONBRA. �e symbol 7 denotes that the exact
computation of [Buß et al., 2020] is not able to conclude on our machine.

Dataset Avg. Error sup�2V |b(�) � b̃(�)| �0 Sample rate (%) tEXC (sec) tONBRA (sec) MEMEXC (GB) MEMONBRA (GB)

CollegeMsg 1.74 · 10�4 6.38 · 10�3 2.27 · 10�2 0.083 231 148 12.0 0.13
EmailEu 4.69 · 10�4 1.35 · 10�2 6.15 · 10�2 0.093 7211 1808 23.9 2.1

Mathoverflow 6.35 · 10�6 2.1 · 10�3 5.38 · 10�3 0.005 79492 36983 1004.3 6.8
FBWall 4.25 · 10�6 5.89 · 10�4 2.13 · 10�3 0.003 11489 3145 738.0 11.1

Askubuntu 7 7 6.92 · 10�3 0.00006 7 35585 >1008 20.3
Sms 7 7 1.54 · 10�3 0.00231 7 13020 >1008 16.2

Superuser 7 7 1.02 · 10�2 0.00003 7 41856 >1008 16.7

gorithm by Buß et al. [2020]: e.g., on the Mathoverflow dataset ONBRA
requires only 6.8 GB of RAM peak, which is 147⇥ less than the 1004.3 GB
required by the exact state-of-the-art algorithm [Buß et al., 2020]. Further-
more, in all the experiments we found that the maximum deviation is dis-
tant at most one order of magnitude from the theoretical upper bound �0

guaranteed by Corollary 5.1. Surprisingly, for two datasets (EmailEu and
Mathoverflow) the maximum deviation and the upper bound �0 are even of
the same order of magnitude. �erefore we can conclude that the guaran-
tees provided by Corollary 5.1 are o�en very sharp. In addition, ONBRA’s
accuracy is demonstrated by the fact that the deviation between the actual
temporal betweenness centrality value of a node and its estimate obtained
using ONBRA is about one order of magnitude less than the actual value, as
we show in Figure 5.3b and Figure 5.4 (in Section 5.6).

Finally, we show in Table 5.3 that on the large datasets Askubuntu, Sms,
and Superuser the exact algorithm [Buß et al., 2020] is not able to conclude
the computation on our machine (denoted with 7) since it requires more
than 1008GB of RAM. Instead, ONBRA provides estimates of the tempo-
ral betweenness centrality values in less than 42K (sec) and 21 GB of RAM
memory.

To conclude, ONBRA is able to estimate the temporal betweenness cen-
trality with high accuracy providing rigorous and sharp guarantees, while
signi�cantly reducing the computational resources required by the exact al-
gorithm by Buß et al. [2020].

5.5.4 ONBRA on RTW-based Betweenness
In this section we discuss how ONBRA can be used to analyze real world
networks by estimating the centrality values of the nodes for the temporal
betweenness under the RTW criterion.

We used the FB network, on which we computed a tight approximation
of the temporal betweenness values (�0 < 10�4) of the nodes for di�erent
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values of � , i.e., �=1 day, �=15 days, and �=1 month. For �=1 day, we found
only 4 nodeswith temporal betweenness value di�erent from 0, which is sur-
prising since it highlights that the information spreading across wall posts
through RTWs in 2008 on Facebook required more than 1 day of time be-
tween consecutive interactions (i.e., slow spreading). We present the results
for the other values of � in Figures 5.3c and 5.3d, comparing them to the
(exact) STP-based betweenness. Interestingly, 15 days are still not su�cient
to capture most of the betweenness values based on STPs of the di�erent
nodes, while with �=1 month the betweenness values are much closer to
the STP-based values. While this behaviour is to be expected with increas-
ing � , �nding such values of � helps to be�er characterize the dynamics over
the network. To conclude, ONBRA also enables novel analyses that cannot
otherwise be performed with existing tools.

5.6 Additional Material

a b

c d

Figure 5.4: (5.4a): static and temporal betweenness values of the top-50
ranked nodes of the dataset HS; (5.4b),(5.4c), and (5.4d): respectively for
datasets CollegeMsg, FBWall, and Mathoverflow, the deviations (or abso-
lute errors) |b̃(�) � b(�)| between the estimates b̃(�) and the actual values
b(�) of the temporal betweenness centrality, for decreasing order of b(�).
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Chapter 6

Conclusion

In this chapter we summarize the contributions achieved in this thesis, by
commenting each chapter separately. We then conclude with some �nal
remarks and possible extensions for the works and topics presented in this
thesis.

In Chapter 3 we addressed the problem of computing a count of a tem-
poral motif through exact and approximate algorithms. To this end, we in-
troduced a novel exact algorithm than can be used, combined with existing
state-of-the-art algorithms for exact enumeration, to parallelize the compu-
tation of temporal motif counts. �is algorithm renders therefore practical
the exact computation of a count of a temporal motif in a temporal network.
We then extensively discussed the problem of computing an approximate
count of a temporal motif introducing PRESTO, a simple yet practical ran-
domized algorithm for the rigorous approximation of temporal motif counts.
We introduced two variants of PRESTO that di�er on how the sampled sub-
networks are collected inside the algorithm, and for each variant we derived
bounds on the number of samples for the algorithms to concentrate within
desired accuracy with controlled probability. Our extensive experimental
evaluation shows that our proposed exact algorithm enables the computa-
tion of temporal motif counts when these cannot be computed with existing
state-of-the-art exact algorithms. Our algorithm is able in fact to e�ciently
save signi�cant amount of resources, both time and memory, which coupled
with its parallel implementation provides a novel fundamental tool for the
exact computation of motif counts. We then evaluated our randomized ap-
proximate algorithm PRESTO, showing that it provides more accurate results
on large real-world networks and is much more scalable than the state-of-
the-art sampling approaches. In particular, PRESTO o�en uses a signi�cantly
smaller amount of resources when compared with existing state-of-the-art
approximate approaches providing more accurate estimates, and is able to
parallelize e�ciently its computation in a parallel environment. With our
algorithms we therefore contributed towards enabling the practical compu-
tation of arbitrary temporal motif counts in a temporal network.

In Chapter 4, starting from an existing gap in the literature, we intro-
duced a novel problem that requires computing the counts of multiple tem-
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poral motifs, all sharing the same static topology. �is is motivated by the
fact that without prior knowledge on the ordering of a temporal motif, it is
common to count all the motifs as in the problem we proposed. We then
introduced ���N, our sampling algorithm to obtain rigorous, high-quality,
probabilistic approximations of the counts of multiple motifs with the same
static topology in large temporal networks. ���N samples edges on the
static projection of the input temporal network, and carefully identi�es and
weights each instance of the temporal motifs containing the sampled edge,
then ���N employs concentration bounds to provide rigorous probabilistic
guarantees on its output. Our experimental evaluation shows that ���N al-
lows to accurately estimate counts of hundreds of temporal motifs in large
networks in a fraction of the time required by state-of-the-art algorithms,
since these approaches do not account for the novel problem we introduced.
We believe that our algorithm ���N will be of practical interest in the anal-
ysis of temporal networks, complementing many of the existing tools and
helping in understanding complex networked systems and their pa�erns.

In Chapter 5 we presented ONBRA, the �rst algorithm that provides
high-quality approximations of the temporal betweenness centrality values
of the nodes in a temporal network, with rigorous probabilistic guarantees.
ONBRA is a sampling algorithm that collects randomly sampled pairs of
nodes, and computes all the optimal paths (or walks) connecting the sam-
pled nodes. We adapted ONBRA to work under two di�erent optimality
criteria for the paths (and walks) on which the temporal betweenness cen-
trality is de�ned: shortest paths and shortest � -restless temporal walks (STP,
RTW) criteria. To provide its rigorous probabilistic guarantees ONBRA em-
ploys advanced tail bounds based on the empirical variance of the estimates
considered. To the best of our knowledge, ONBRA is the �rst algorithm
enabling a practical computation of the temporal betweenness centrality,
especially under the RTW criterion. Our experimental evaluation on real
world networks shows that ONBRA provides high-quality estimates with
tight guarantees, while remarkably reducing the computational costs com-
pared to the state-of-the-art by Buß et al. [2020], enabling analyses that
would not otherwise be possible to perform. In fact, ONBRA thanks to its
scalability can address the computation of the temporal betweenness cen-
trality on datasets where such centrality measure cannot be computed with
existing techniques, providing therefore a fundamental tool for processing
temporal networks.

We now discuss possible future directions for the various chapters.
For Chapter 3 there are several interesting directions for future research,

such as improving the approximate algorithms by dealingwith datasets with
di�erent edge distributions and temporal motif distributions over tempo-
ral networks. Additionally, the theoretical guarantees of our proposed al-
gorithm PRESTO can be improved by �nding novel ways to bound speci�c
quantities used for proving the concentration of PRESTO’s �nal estimator.

For Chapter 4 future directions include, devising be�er edge probability
distributions for ���N and choosing such distribution based on the charac-
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teristics of the dataset, since di�erent datasets can have very di�erent tem-
poral edges distributions (e.g., with skewed behaviours as seen in Chapter 3)
and, thus, there may not exist a unique distribution that is e�ective for all
temporal networks. Another direction of future research is the derivation
of improved bounds for the number of samples required by ���N, using
for example statistical learning theory concepts, such as Pseudodimensions
or Rademacher averages. In fact it has been shown in many data mining
problems that leveraging more advanced techniques, such as based on VC-
dimension of Rademacher averages can improve the results based on union
bounds. Even if for the problem proposed in this chapter we do not expect
that such results can improve signi�cantly the sample sizes we obtained,
given the complicated structure of the problem. Another interesting direc-
tion is to extend our work on coloured temporal networks, where the num-
ber of temporal motifs combinatorially depend on the number of colours of
the networks.

For Chapter 5 there are several interesting directions that could be ex-
plored in the future, such as dealing with di�erent optimality criteria for the
paths or walks considered, and employing sharper concentration inequali-
ties to provide tighter guarantees on the quality of the estimates. In particu-
lar, leveraging statistical learning theory concepts that have been practically
used for the problem of static betweenness [Pellegrina and Vandin, 2021,
Cousins et al., 2021], even though in some cases the bound we propose are
already close to optimum, as shown in practice by our experimental evalu-
ation.
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Revealing the hidden language of complex networks. Scienti�c reports, 4:
4547, 2014.

Hao Yin, Austin R. Benson, and Jure Leskovec. Higher-order clustering
in networks. Physical Review E, 97(5):052306, may 2018. doi: 10.1103/
physreve.97.052306.

Shuo Yu, Yufan Feng, Da Zhang, Hayat Dino Bedru, Bo Xu, and Feng Xia.
Motif discovery in networks: A survey. Computer Science Review, 37:
100267, 2020.

Xiang Zhang, Gong Cheng, and Yuzhong �. Ontology summarization
based on rdf sentence graph. In Carey L. Williamson, Mary Ellen Zurko,
Peter F. Patel-Schneider, and Prashant J. Shenoy, editors, Proceedings
of the 16th International Conference on World Wide Web, WWW 2007,
Ban�, Alberta, Canada, May 8-12, 2007, pages 707–716. ACM, 2007. doi:
10.1145/1242572.1242668.

Qiankun Zhao, Yuan Tian, Qi He, Nuria Oliver, Ruoming Jin, and Wang-
Chien Lee. Communication motifs. In Proceedings of the 19th ACM in-
ternational conference on Information and knowledge management - CIKM
'10. ACM Press, 2010. doi: 10.1145/1871437.1871694.

121



Songfeng Zheng. An improved benne�'s inequality. Communications in
Statistics - �eory and Methods, 47(17):4152–4159, oct 2017. doi: 10.1080/
03610926.2017.1367818.

Bo Zong, Xusheng Xiao, Zhichun Li, Zhenyu Wu, Zhiyun Qian, Xifeng Yan,
Ambuj K. Singh, and Guofei Jiang. Behavior query discovery in system-
generated temporal graphs. Proceedings of the VLDB Endowment, 9(4):
240–251, dec 2015. doi: 10.14778/2856318.2856320.

122


	Table of Contents
	Introduction
	Preliminaries
	Preliminaries on Networks
	Static Networks
	Temporal Networks

	Sampling Algorithms
	Concentration Tools
	Concentration of a Single Function
	Concentration of a Family of Functions

	Notation

	Algorithms for Exact and Approximate Counting of a Temporal Motif
	Introduction
	Preliminaries
	Related Work
	Exact Computation of Motif Counts
	A New Algorithm for Exact Counting
	A New Matching Ordering for BT

	PRESTO: Approximating Temporal Motif Counts with Uniform Sampling
	PRESTO: General Approach
	PRESTO-A: A First Sampling Approach
	PRESTO-E: An Alternative Sampling Approach
	PRESTO: Complexity Analysis

	Experimental Evaluation
	Experimental Setup and Implementation
	2-patch: Comparison with BT 
	Quality of Approximation
	Memory Usage

	Additional Material
	Missing Theoretical Results
	Description of the Equinix-Chicago Dataset
	Reproducibility
	Selecting the Value of c
	Running Time Comparison
	Scalability of Parallel PRESTO
	Edge Timestamps Distributions – Skewed vs Uniform


	Counting Multiple Temporal Motifs Simultaneously
	Introduction
	Preliminaries
	Related Works
	odeN
	Overview of odeN
	Algorithm Description
	Time Complexity
	Theoretical Guarantees

	Experimental Evaluation
	Setup, and Datasets
	Approximation Quality and Running Time
	Parallel Implementation
	A Case Study

	Additional Material
	odeN's Subroutines
	Implementation Details
	Case Study - Motif analysis


	Estimating Temporal Betweenness Centralities in Temporal Networks
	Introduction
	Preliminaries
	Related Works
	ONBRA
	Sampling Strategy
	Algorithm Description
	Shortest Temporal Path Betweenness
	Shortest Restless Temporal Walk Betweenness
	ONBRA – Theoretical Guarantees

	Experimental Evaluation
	Setup
	Temporal vs Static Betweenness
	Accuracy and Resources of ONBRA
	ONBRA on RTW-based Betweenness

	Additional Material

	Conclusion
	Bibliography

