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Bit Error Rate Evaluation of a Dual-Filter
Heterodyne FSK Optical System
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Summary
The frequency separation between the two channels of a
dual-filter heterodyne FSK optical system is a very
important parameter to evaluate in the presence of laser
phase noise. In this work the impairment due to the
crosstalk interference between the two transmitted tones
of a weakly coherent FSK optical system is investigat-
ed. In order to make accurate computations, the
method of moments seems to be the most suitable: to
this aim, in this work an algorithm for the moments
evaluation is proposed. The numerical results are then
compared with a Monte Carlo simulation approach.

1 Introduction
The interest in coherent optical communication systems
is mainly addressed to their capability of very narrow
channel spacing in multichannel systems with frequency
division multiplexing. Among the different modulation/
demodulation techniques, the heterodyne frequency shift
keying (FSK) is one of the most promising [1-3] for its
different advantages (possibility of direct modulation,
simplicity of the receiver structure, etc.). In a dual-
filter FSK system, one of the most important para-
meters to evaluate is represented by the frequency

In this work we present an algorithm for the evaluation
of the joint moments of the vector process representing
the useful signal and the interfering signal.
The moments are then used in the performance evalua-
tion of a dual-filter heterodyne FSK optical system in
order to take into account the effects of both laser
phase noise and crosstalk interference.

2 Receiver scheme
The receiver scheme is depicted in Fig. 1. The signal
coming from the fiber is combined with the local oscil-
lator power and then sent to a photodetector. The
output current at the intermediate frequency (IF) is then
filtered with two bandpass filters centered at the fre-
quencies f0 and f t . The filters are assumed to be in-
tegrate and dump filters since they are the only ones to
allow an accurate analysis and they can be taken as a
benchmark for different type of filters [4]. The resulting
signals are sent to square-law envelope detectors; then,
the difference between the two signals is filtered again
with a low pass post-detection filter. We follow the
model generally accepted in the literature [1, 2] in
which the intermediate frequency filter has integration
time T' which is an integer fraction of the bit period T,

f«

Γ
I

LO

Balanced

Mixer

i£

·(')

BPF,

BPFo

*,(<)

«o(t)

Square Law
Detector

Square Law
Detector

f^\ "O > LPF ^ " . rWIcmn *

I
_l«o(0

Fig. 1: Reference scheme for the receiver

distance between the two channels, in order to have an
acceptable crosstalk between them. The characteriza-
tion of the contribution of the phase noise at the
intermediate frequency is therefore very important.
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i.e. T' = T/K, and the post-detection filter is modeled as
a discrete time filter taking the average of the K sam-
ples. Finally the decision on the transmitted bit is taken
by comparison with a zero threshold.

3 Phase noise characterization
The characterization of phase noise at the output of the
intermediate filters play a fundamental role in the an-
alysis of the crosstalk interference. From a mathemati-
cal point of view, the problem reduces ot the statistical
characterization of the following random processes [4]:

(1)

(2)) = x2(t) + iy2(t)=fe i [ew+2 'MtldT,

where the process θ(·) represents the phase noise, mod-
elled as the integral of a Gaussian white noise process
with spectral density D, related to the 3 dB bandwidth
B of the laser (Ο = 2πΒ), and Af= | f i - fo l is the fre-
quency deviation between the transmitted tones of the
FSK system. The complete statistical characterization
of this processes is a very hard task even in the simpli-
fied case in which the crosstalk is neglected [4].
In this section we give a method for the moments
evaluation of the vector process ζ whose components
are given by (1) and (2). It stems from an approximation
of the random process z2(t) which represents the inter-
fering signal: this approach is very accurate only for
small phase noise, i.e. when the variance of the process
0(t) is small. The reason to present an approximation
method is due to the impractical numerical complexity
in the evaluation of the exact joint moments of the
vector process z.
In fact, following the same approach carried out in [5],
it is possible to find a recursive relation of the Laplace
transform of the exact joint moments. The numerical
calculation of the exact moments is an extremely heavy
task. From a computational point of view, the only
possibility is represented by the evaluation of the mar-
ginal moments of Zj(t) and z2(t).

3.1 Approximate moments derivation
An approximate solution to the problem can be ob-
tained applying the approximations made by Foschini
and Vannucci in [4] to the process (2) only.
The random process z2 (t) in equation (2) has the follow-
ing Taylor series expansion:

+ i jeio"0(T)dT-Mei'""02(T)dT + ... (3)
ο 2 0

Note that the first term (3) is due to the deterministic
crosstalk from channel #2 into channel #1. Now, let
us consider the integral:

(4)

Following the same approximation method used in [6],
the leading asymptotic behaviour of (4) is obtained
integrating by parts; on this way we get:

f 6!β"θ(τ) dT « - [eifflt9(t) - 0(0)] - - f eio"ico
di .

ico
(5)

The last integral vanishes more rapidly than 1/co, thus
the second side of (5) can be approximated as :

ico (6)

since it can be assumed 0(0) = 0. On this way we get:

-ω (7)

In the following, the assumption Aft = n, with η integer,
is assumed. This corresponds to the condition of ortho-
gonal signals in the absence of phase noise. Then, we
obtain:

z2(t)«-eio>t0(t), Af»B,
ω

whereB = D/27t.
In conclusion:

|z2(t)|2«^02(t).

In [5] it has been shown that:

• = M[h,k,u;s]

(8)

(9)

(10)

where the functions M[h, k, u;s] satisfy the following
recursive equation

M[h,k,u;s]= Σ (hM[h-l,k,u + l;
S ~T~ U

+ kM[h,k-l,u-l;s])

with initial condition

1
M[0,0,u;s] =

(11)

(12)

and D = 2. From the series expansion of exp (i u θ) one
can then obtain:

M[h,h,u;s]=£{E[eiue|z1|2h]|s}

=Q\E\L(^lz

r = 0

= Σ
r = 0

8 rM[h,h,u;s]
8ur

ur

(13)

Thus, since the last equality holds for every value of the
real variable u, we get:
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i'C{E[9r|z1|2h]|s} =

and

3 rM[h,h,u;s]
8ur (14)

u = 0

Λ f r ζι,/ΊΥΊ l
(-l) r82 rM[h,h,u;s]
ω2r ,2r (15)

On the basis of the recursive equation (11) and the
results obtained in [5] one can get the following for-
mula for the joint moments:

ω (16)

where the functions W [n, q, s; j] satisfy the equation

)' 1

(17)

with initial condition:

W [0,0, S ; l ] = - r
'8u' s + u^

0 ' lodd (18)
(-1)1/21!- , I even.

s /

The proof is deferred to Appendix A.

4 Systems analysis
The complex envelope of the signal after the photo-
detector is given by

s(t) = Aexp{i9(t) + 27tbAft} + n(t), (19)

where b e {0,1} is the transmitted symbol, 9(t) is the
combined phase noise of the transmitting and local
oscillator lasers, Af is the frequency deviation between
the two tones and n(t) is a white Gaussian noise taking
into account the effect of both shot and thermal noise.
Owing to the system simmetry we may consider the
case in which the transmitted symbol is 1. Then, the
equivalent complex envelopes at the output of the IF
filters are given by

·- i ·•TV J
1 ,_τ·

(20)

s0 W= __ f ei[eM
Τ' ,_T ,

n0W, (21)

where n0(t) and njt) are complex Gaussian noises. The
first term of s0(t) represents the crosstalk interference.
In the absence of the phase noise this term vanishes if
1/T' is submultiple of Af. The samples at the output of
the envelope detectors are given by

;iU l(kT') =

where

2·,== _±_ | είβ<τ)(1τ
T (k-i)T·
1 "'

(22)

(23)

(24)

(25)

and nlk, n0k, k = l,...,K, are independent complex
Gaussian variables, whose real and imaginary parts are
independent with zero mean and equal variance σ2.
Having defined the averages

"-it'̂  k=l

the final decision gives

V l > V 0b =
.0,

Then the bit error probability is given by

(26)

(27)

(28)

The random variables uik in (26) are mutually in-
dependent as shown in [3]. Conditioning on the values
of Ζ and W

(29)

(30)

the variables v0 and \1 are non centrally χ-squared
distributed random variables [7]. Then, the error prob-
ability can be written as

Pe = J ίP[v1<v0 |Z = λ,W = μ]fzw(λ,μ)dλdμ, (31)
0 0

where Γζ\ν(λ, μ) is the joint probability density function
of Ζ and W. The inner probability in (31) can be ex-
pressed as [9]

= λ^ = μ] = ί J f v l (a |X)f v 0 (b |u)dbda

j = o

ΤΊ K - n - 1-n-1 /->K" 1\,?„ (Τ)
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where In(x) denotes the n-th order modified Bessel
function [8], ρ is the signal to noise ratio (SNR) defined
as

Δ A2

Q = 2σ2 '

and Q(ot, β) denotes the Marcum Q-function [7].

5 Numerical evaluation of the bit error
rate

The error probability can be expressed as the integral

(33)

ί f g (x ,y) f z w (x ,y)dxdy, (34)
- 00 — CC

where g(x, y) is a known analytical function, while
fzw(x> y) is the joint probability density function of
which only a finite set of moments is known. Actually,
Ζ and W are the sum of K independent random var-
iables related to the random process z t(t) and z2(t)
described in Section 3.
A suitable approximation of the integral is given by a
cubature formula

f J 8(λ, μ) f(λ, k) dx dy * Σ £ g(x„ yj) W,j (35)
— oo — oo i j

where {x;, yj} are the abscissas and Wu the weights of
the cubature formula. The abscissas and the weights of
the cubature can be derived from the moments via a
sub-optimum approach due to Dogliotti et al. [10],
since no optimum method is known for a set of non-
symmetric moments. Shortly, from the first 2M. mar-
ginal moments of Z and W one can find the sets of
orthogonal polynomials ρ,(χ) and q^y) corresponding
to the probability density functions fz(i) and ίνν(μ). As
known, the roots of the M-th polynomial density give
the Μ abscissas of the corresponding quadrature rule
and can be obtained by the algorithm of Golub and
Welsch [11]. Then, the abscissas of the cubature are
given by the cartesian product of the two sets of abscis-
sas evaluated separately with the marginal moments.
This leads to a sub-optimum sets of point for the
cubature unless the two random variables are independ-
ent. The joint moments are used to obtain the weights
expressing the integrand function in terms of the ortho-
gonal polynomials Pj(x) and qj(y). In conclusion, the
abscissas are obtained on the basis of the marginal
moments and the weights on the basis of the joint
moments.

6 Numerical results
The error probability is mainly related to the following
system parameters:
• BT: normalized laser linewidth (B denotes the sum

of the 3-dB linewidths of the local oscillator and the
transmitting laser).

• ΔΓΓ: normalized frequency deviation between the
two tones.

• SNR: the SNR is defined by (33).

The error probability has been evaluated via the cu-
bature method once that the joint moments have been
obtained with the method described in Section 3. The
results obtained are compared with a Monte Carlo
simulation of the joint probability density function of
the random variables Z and W. The simulation is just
taken as a reference because of the computational com-
plexity needed to achieve accurate results. The case con-
sidered for the simulation is K = 1. An example of the
joint probability density obtained by simulation is given
in Fig. 2 for BT = 0.4 and AfT = 2.
A comparison between the results obtained with the
different methods is reported in Figs. 3 and 4: it is
evident that the approximation gives accurate results
(within 0.5 dB at Pe = 10~9) for small values of the
normalized linewidth BT, while for larger values the
accuracy tends to decrease for small normalized fre-
quency deviation AfT. This is in agreement with the
analysis carried out in Section 3 (see eq. (8)).
Note that for such values of the normalized linewidth
the performance is extremely poor, so that a greater
value of K is necessary. For K > 1 the random variables
Z and W are the sum of K contributions obtained for a

Journal of Optical Communkations.

Fig. 2: Joint probability density of Z and W obtained by
simulation for K = 1, BT = 0.4 and AfT = 2

— No cross-talk
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AfT = 4 Cubature
-ΛΓΓ = 2 Simulation
-AfT=2 Cubature
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Journal of Optical Communkations.
Fig. 3: Error probability versus SNR for Κ = 1, BT = 0.1 and
different values of AfT: comparison between the different
approaches
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Fig. 4: Error probability versus SNR for K = l, BT=0.4 and
different values of ACT: comparison between the different
approaches
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Fig. 5: Error probability versus SNR with optimum value of
K, for BT = 0.2 and different values of Af T

normalized linewidth BT/K, with a subsequent increase
in the accuracy of the approximation.
In Fig. 5 the error probability is presented for a fixed
normalized linewidth BT = 0.2 and for different values
of the frequency separation. All the computation refer
to an optimal value of the parameter K which rep-
resents the bandwidth expansion factor of the IF filters.

It is evident the penalty due to the crosstalk interference
arising when the two tones are not sufficiently sep-
arated.
In Fig. 6 the error probability is shown for different
values of BT and for a fixed frequency separation
AfT=4.
Finally, Fig. 7 shows the penalty, with respect to the
ideal case of no phase noise and no crosstalk, as a
function of BT and for different values of the nor-
malized frequency deviation. A dramatic penalty is ob-
served for increasing values of the normalized linewidth
BT and for decreasing valus of the frequency deviation.
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Fig. 6: Error probability versus SNR with optimum value of
K, for Af T = 4 and different values of BT

7 Conclusions
The analysis of the penalty due to the crosstalk inter-
ference between the two branches of an FSK receiver
has been presented. The method of moments is very
promising to get accurate results. Anyway, the approxi-
mation of the crosstalk components is necessary to
reduce the numerical complexity.
The good agreement between the moments based tech-
nique and the simulation approach show that the meth-
od just proposed can be usefully used for the per-
formance evaluation, without the computational com-
plexity of a Monte Carlo simulation.
The results obtained show that the phase noise rep-
resents a strong impairment to reduce the spacing be-
tween the transmitted tones. Therefore the spectral
properties of lasers play a fundamental role among the
requirements for multichannel transmission systems to
reduce the channel spacing.
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Fig. 7: Penalty at Pe = 10 9 versus the normalized linewidth
BT for different values of AfT
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8 Appendix A: On the derivation of (16)
The functions M [h, k, u; s] in (10), related to the flu of
the moments, are given by (see [5]) M [h, k, u ; s]
= h!k! Q£ + k(u, s) where Q£(u, s) are rational function
satisfying the relation

with initial condition:

with boundary conditions:

1
Q8(u,s) =

CS(u,s) =

s + (u-n)

1

QiTMu.s),

Qn:l(u,s).
s + (u + n)2

On this way, from (15), we get

.(-ire^Q'Vs)
mhr(s) = ( 8u2r

(AI)

(A2)

(A3)

(A4)

Let us introduce the new functions W[n, q, s;j] defined
by

9jQ>,s)
8uj

One gets

= W[n,q,s;j]. (A5)

s + u^ u = 0

' lodd

, leven.
(A7)

(A6)

References

[1] G. J. Foschini, L.J. Greenstein, G. Vannucci: "Noncoherent detec-
tion of coherent lightwave signals corrupted by phase noise";
IEEE Trans, on Comm. (1988) 3, 306-314

[2] G. Jacobsen: "Sensitivity limits for digital optical communication
systems"; J. Optical Comm. (1993) 2, 52-64

[3] R. Corvaja, G. L. Pierobon, L. Tomba: "Exact performance eval-
uation of weakly coherent optical systems"; J. of Lightwave Tech-
nol. (1992) 11,1665-1673

[4] G.J. Foschini, G. Vannucci: "Characterizing filtered light waves
corrupted by phase noise"; IEEE Trans, on Inf. Theory (1988) 6,
1437-1448

[5] G. L. Pierobon, L. Tomba: "Moment characterization of phase
noise in coherent optical systems"; J. of Lightwave Techno!. (1991)
8, 996-1005

[6] G. Jacobsen, I. Garrett: "The effect of crosstalk and phase noise in
multichannel coherent optical ASK systems"; J. of Lightwave
Technol. (1991) 8, 1006-1017

[7] D.A. Shnidman: "The calculation of the probability of detection
and the generalized Marcum Q-function"; IEEE Trans, on Inf.
Theory (1989) 2, 389^KX)

[8] M. Abramovitz, I.A. Stegun: "Handbook of Mathematical Func-
tions"; Washington, DC: National Bureau of Standards, 1972

[9] J. G. Proakis: "Digital Communications"; New York: McGraw-
Hill, 1983

[10] R. Dogliotti, A. Luvison, G. Pirani: "Error probability in optical
fiber transmission systems"; IEEE Trans, on Inf. Theory (1979) 2,
170-178

[11] G.H. Golub, J.H. Welsch: "Calculation of Gauss quadrature
rules"; Math. Comput. 23 (1969) 221-230

Brought to you by | University of Arizona
Authenticated

Download Date | 6/10/15 9:27 AM


