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Știrbu M-I, Roibu C-C, Carrer M, 

Mursa A, Unterholzner L and 
Prendin AL (2022) Contrasting 

Climate Sensitivity of Pinus cembra 
Tree-Ring Traits in the Carpathians.

Front. Plant Sci. 13:855003.
doi: 10.3389/fpls.2022.855003

Contrasting Climate Sensitivity of 
Pinus cembra Tree-Ring Traits in the 
Carpathians
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High-elevation ecosystems are one of the most sensitive to climate change. The analysis 
of growth and xylem structure of trees from marginal populations, especially the ones 
growing at the treeline, could provide early-warning signs to better understand species-
specific responses to future climate conditions. In this study, we combined classical 
dendrochronology with wood density and anatomical measurements to investigate the 
climate sensitivity of Pinus cembra L., a typical European high-elevation tree species 
distributed in isolated patches in the Carpathians. Samples were collected from the Retezat 
Mountains, South-Western Romania. We analyzed ring width (TRW), maximum density 
(MXD), xylem anatomical traits [cell number per ring (CNo), cell density (CD), conduit area 
(CA), and cell wall thickness (CWT)] time series, split into ring sectors and assessed the 
relationships with monthly and daily climate records over the last century (1901–2015). 
The analysis showed a strong dependency of TRW on CNo and MXD on CWT. Summer 
temperature positively correlated with MXD and CWT [monthly correlation (r) were 0.65 
and 0.48 respectively] from the early to late wood but not TRW (r = 0.22). CA positively 
correlated with water availability (r = 0.37) and negatively correlated with temperature 
(r =  −0.39). This study improves our general understanding of the climate–growth 
relationships of a European high-elevation tree species and the results could be considered 
for forecasting population dynamics on projected changes in climate.

Keywords: dendroanatomy, functional traits, inter–intra-annual climate–structure relationships, stone pine, 
treeline, climatic divergence

INTRODUCTION

Temperatures have increased rapidly worldwide during the last decades (IPCC, 2021) along 
with variation in seasonal precipitation and evaporation regimes (Konapala et  al., 2020). This 
climate change is observed and predicted to deeply affect the structure and functioning of 
different forest ecosystems (Dawes et  al., 2013; Büntgen et  al., 2015). Among the different 
ecosystems, the high altitude ones, generally identified as temperature-limited environments, 
are experiencing warming at a faster rate than the global average (Körner, 2012; Pepin et  al., 
2015). Therefore, high-elevation forests are expected to be  very sensitive terrestrial regions, 
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where the effects of climate change are most likely to be observed 
(Harsch et al., 2009; Körner, 2012; Dawes et al., 2015). Further, 
the frequency, duration, and severity of the extreme climatic 
events are expected to increase in the future with additional 
consequences on the productivity, function, and distribution 
of forests worldwide. Recently, a trend of shifting vegetation 
belts toward higher altitudes and latitudes has occurred at the 
global scale (Körner, 1998; Harsch et  al., 2009), together with 
an increase in productivity and photosynthetic activities (Grace 
et  al., 2002; Carlson et  al., 2017; Cazzolla Gatti et  al., 2019). 
These changes have been mainly attributed to the effects of 
increasing anthropogenic greenhouse gas emissions on global 
temperatures (Cannone et  al., 2007; Körner, 2012). Still, it is 
not clear what the long-term implications of such plant responses 
are, nor which structural adjustments will primarily allow trees 
to acclimate to environmental changes. For this reason, marginal 
populations, such as the ones growing at the elevational edge 
of a species’ distribution, are of particular interest. Compared 
to populations growing within their optimum (Fritts, 1976), 
marginal populations allow for investigation of climate–growth 
relationships and for gaining insight into inter- and intra-
specific responses of trees growing at their physiological limits. 
The improved understanding of these plant responses could 
allow for forecasting the future dynamics of these populations 
(Hampe and Petit, 2005).

To have accurate forecasting, we  need long-term data sets. 
Tree-ring data give a long-term, retrospective quantification 
of annual growth of trees, from different sites and species 
(Fritts, 1976; Cook and Kairiukstis, 1990), and enables 
identification of the factors that mainly determine tree growth 
(D’Arrigo and Jacoby, 1993; Mäkinen et  al., 2003; Bouriaud 
et al., 2005). Additionally, wood density reflects a plant’s carbon 
accumulation in the xylem (Rathgeber, 2017), giving insight 
to the plant’s ecology, including functional physiology, mechanical 
properties, architecture, and climate responses (Hacke et  al., 
2001; Chave et  al., 2009; Rathgeber, 2017). Tree-ring width 
and wood density have been the most widely used tree-ring 
features in dendro-climatological and -ecological studies. They 
are commonly used environmental proxies, that effectively 
record the climate signal (e.g., maximum density MXD), and 
they are also used to calibrate models that predict net primary 
production (Babst et  al., 2014; Klesse et  al., 2018). Still, a 
better understanding of plant responses to ongoing climate 
change requires insight into the physiological growth responses 
at a finer resolution (e.g., intra-annual). Therefore, coupling 
dendrochronology with tree-ring anatomy adds a “time 
component” to the functional mechanisms and plasticity of 
xylem formation (Fonti et  al., 2010). This aids in identifying 
how wood anatomical adjustments determine variation in growth 
and density and can improve the interpretation of how they 
are connected and climatically controlled (Björklund et  al., 
2017). Thus, investigating how tree xylem structures and their 
associated functions change over time and in relation to 
environmental variability is of high importance to improve 
the ecophysiological understanding of the process of growth 
and to infer potential marginal population responses under 
different climate change scenarios.

Dendroanatomy is an emerging field that specifically focuses 
on the quantitative assessment of xylem tissues, cells, and 
derived metrics or traits linked to specific functional roles. 
This approach is based on the fact that the xylem structural 
adjustments are permanently recorded and chronologically 
archived in the structure of tree rings (Fonti et  al., 2010), 
thus allowing retrospective analysis of the structure–function 
responses of trees to climate variability (Fonti and Jansen, 
2012). Therefore, wood anatomical features (e.g., lumen area, 
related to hydraulic efficiency or cell wall thickness, related 
to carbon costs), localized at a certain position within yearly 
dated annual growth rings are linked to the time of their 
formation and become useful proxies to quantify long-term 
tree structural–functional responses and growth dynamics at 
an unprecedented time resolution (Fonti et  al., 2010; Pritzkow 
et  al., 2014; Baas et  al., 2016; Prendin et  al., 2017; Björklund 
et  al., 2020).

The recent methodological progress in sample processing 
and image analysis allow for, for example, an increasing in 
the number of automatically measured tracheids of ~10- to 
20-fold (Gärtner and Schweingruber, 2013; Von Arx et  al., 
2016; Prendin et al., 2017). Thanks to this, studies that combined 
tree-ring proxies at both annual and intra-annual resolution 
added depth to the inferences and improved our understanding 
of plant responses to climate and environmental variability 
(Panyushkina et  al., 2003; Ziaco et  al., 2014; Lange et  al., 
2020). Despite such progress, studies evaluating the responses 
of marginal populations at high elevation are scarce (Carrer 
et  al., 2018).

A limited number of European high-elevation stands are 
characterized by the presence of the glacial relict stone pine 
(Pinus cembra L.; Caudullo et  al., 2017). Isolated populations 
are growing in the Alps and Carpathians (Blada, 2008; Saulnier 
et  al., 2011; Beloiu and Beierkuhnlein, 2019) as a consequence 
of climatic fluctuations, such as glacial/interglacial periods, 
together with species competition and anthropogenic disturbances 
that occurred in the last millennia (Ali et  al., 2005). However, 
the future dynamics of these isolated populations are still 
uncertain as they could both expand their range due to the 
limitation of anthropogenic pressure and increasing temperature 
(Vittoz et  al., 2008) or retreat, due to water limitations and 
competition with other taxa (Lyu et  al., 2019). Despite being 
very suitable for investigating the climate–growth relationship, 
as they are rarely affected by biotic disturbances (e.g., defoliators 
and bark beetle outbreaks) compared to European larch (Larix 
decidua Mill.) or Norway spruce (Baltensweiler, 1993; Carrer 
et  al., 2007; Saulnier et  al., 2011), to our knowledge, only a 
few studies assessed the long-term intra annual climate sensitivity 
of this typical treeline species at the edge of its distribution 
(Carrer et al., 2018) and none have investigated it in combination 
with wood density measurements (that are rarely performed 
in this species).

In this study, we  used a multiproxy approach to investigate 
the mechanism that regulates xylem growth of Pinus cembra 
L. at high elevation in the Carpathians, Romania. Specifically, 
we combined the classical dendroecological measurements (TRW, 
MXD) with dendroanatomical ones (e.g., cell density, cell 
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number, conduit area, and cell wall thickness) to: (i) gain 
insight into the anatomical basis of tree-ring width and wood 
density; (ii) identify the key factors that determine stone pine 
growth and structural variability at inter- and intra-annual 
resolution; (iii) and shed light on the mechanism that regulates 
xylem growth formation of this species at the easternmost 
margin of its distribution area.

MATERIALS AND METHODS

Study Site and Climate
The study site is represented by a natural timberline (1,700–
1,800 m) of stone pine stands, located on the north-facing 
slope in the Retezat National Park in the South-Western 
Carpathians (Romania; 45o39′ N, 22o89′ E; Figure  1). The soil 
is shallow and the geological structure complex, mostly composed 
of crystalline rocks and limestone. The mean annual temperature 
is 4.6°C with monthly values ranging from −9.7°C in January 
to 19.7°C in July. Mean multiannual precipitation is 1,066 mm/
year, with a peak of 156 mm/month in June (Figure  1C). 

Climate records used in this study were obtained from the 
CRU TS4.04 (Harris et  al., 2020; monthly and self-calibrating 
Palmer Drought Severity Index (scPDSI), 1901–2015) from the 
closest grid points to our study region (22.50–23.00°E/45.00–
45.50°N) and Rocada dataset (Dumitrescu and Birsan, 2015, 
daily, 1961-2013) from the closest grid points to our study 
region (22.80–22.90°E/45.25–45.50°N).

Sample Collection and Processing
One increment core per tree was extracted from 28 dominant, 
isolated, and undamaged mature stone pine trees in June 2015. 
The increment cores were collected at breast height following 
standard procedure (Schweingruber et al., 1990) using a Pressler 
borer and later stored in paper straws. To perform densitometric 
measurements, a one-millimeter-thick longitudinal lath of wood 
was cut from the middle of each core, paying attention to 
the tracheid orientation. To obtain the MXD time series, the 
laths were boiled for 48 h in a Soxhlet extractor with 98% 
ethanol following standard protocol (Wang et al., 2002; Pritzkow 
et  al., 2014). The radiographic images were obtained with an 
Itrax MultiScanner (Cox Analytical Systems, Gothenburg, 

A B

C D

FIGURE 1 | Site location (A) Map of Europe—black contour is Romania; (B) Map of Romania—black dot shows Retezat National Park location; (C) Walter–Lieth 
Climodiagram showing mean monthly precipitation (blue, mm), mean monthly temperature (red, °C), months in which frost events are likely to occur (light-blue and 
turquoise boxes) and wet periods (dark-blue filled areas) based on grided data; (D) General view of the sampling site.
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Sweden) in a climate-controlled medium (50% relative humidity 
and 20°C) using the following settings for the X-ray tube: 
voltage to 30 kV, current to 50 mA, and exposure time equal 
to 50 ms. A 16-bit, grey level, radiographic (X-ray) digital image 
was obtained for each sample at 1270 dpi resolution. The 
maximum density (MXD) was measured using WinDENDRO 
density version software (Regent Instruments, 2018). Tree-ring 
widths (TRW) were measured to the nearest 0.001 mm on the 
flat surface of the remaining sides of the cores using the 
LINTAB system and TSAP  0.53 software (Rinn, 2003). 
Measurement and dating accuracy were then checked using 
COFECHA (Holmes, 1983). After TRW and MXD measurements, 
a subset of nine samples without any visible defects or cross-
dating issue were selected for anatomical analysis. These nine 
laths left after MXD samples preparation were split into 4–5 cm 
long pieces, and from each one, a thin (10 μm) transversal 
section was cut using a rotary microtome (Leica, Heidelberg, 
Germany). The resulted microsections were double-stained with 
safranin (0.8 g in 100 ml distilled water) and astrablue (0.5 g 
in 100 ml distilled water +2 ml acetic acid; Gärtner and 
Schweingruber, 2013), and mounted on permanent slides with 
Eukitt (BiOptica, Milan, Italy). Anatomical images were captured 
using the D-sight 2.0 System (Menarini Diagnostics, Florence, 
Italy) at 100x magnification corresponding to a resolution of 
1.99 pixels/μm and were analyzed with ROXAS v3.0.250 (von 
Arx and Carrer, 2014; Prendin et al., 2017). Anatomical analysis 
was performed on >40 radial tracheid’s rows per ring and a 
total of 2.5×106 tracheids were measured. To increase the 
temporal resolution without compromising the statistics regarding 
sample size (i.e., cell number; Castagneri et  al., 2017), based 
on the information of tracheid’s positions within each ring, 
we  divided each ring into 10 ring sectors (with the 1st and 
10th sectors corresponding, respectively, to the tracheid formed 
at the beginning and at the end of the growing season (Carrer 
et  al., 2014). We  finally obtained a time series for the whole 
ring and for each decile ring sector of the following anatomical 
parameters: cell density (CD; as cell number divided by the 
ring area), cell number (CNo; number of conduit per ring, 
standardized to a tangential width of 1.5 mm to account for 
size differences in the images collected, similarly to Castagneri 
et  al. (2015), conduit area (CA), radial and tangential cell wall 
thickness (rCWT/tCWT), and mean cell wall thickness (CWT).

Statistical Analysis
All TRW, MXD, and anatomical series were standardized to 
remove the typical age-size trend (Supplementary Figure  1; 
Enquist, 2002; Carrer et  al., 2014; Prendin et  al., 2018) using a 
cubic smoothing spline with a 50% frequency cutoff response 
of 100 years (Cook and Kairiukstis, 1990; Castagneri et  al., 2015; 
Carrer et  al., 2018). The residual autocorrelation was removed 
using an autoregressive model and the mean chronologies were 
obtained by using bi-weight robust mean (Supplementary Figure 2; 
Fritts, 1976; Cook and Peters, 1997). We calculated the following 
descriptive statistics for both raw and detrended chronologies: 
mean sensitivity (MS), an index of the mean relative change 
between trait values in consecutive years, to assess the high-
frequency variations in the chronologies; mean series 

inter-correlation (Rbar), and the expressed population signal (EPS; 
Fritts, 1976; Briffa and Jones, 1990) to estimate the level of 
year-by-year growth variations shared by trees in the same site 
(Table  1).

To investigate the association between TRW, MXD, and 
xylem traits chronologies, the residual chronologies were grouped 
employing hierarchical cluster analysis (HCA; Ludwig and 
Reynolds, 1988) based on Ward’s minimum variance criterion 
(Everitt et al., 2011). Moreover, to verify the grouping consistency 
at intra-annual resolution, a cluster per ring sector was performed 
using TRW and MXD and the anatomical parameters time series.

To identify the limiting factors of tree-ring formation, 
the climate/growth and structural relationships were quantified 
using bootstrap correlations with the R packages treeclim 
(Zang and Biondi, 2015) and dendroTools (Jevšenak and 
Levanič, 2018). In particular, the analysis tested the correlation 
between temperature, precipitation and scPDSI, monthly/daily 
climate records, and TRW, MXD, and xylem traits chronologies. 
Monthly correlations were computed from June of the previous 
year to September of the current year whereas, with the 
daily climate records, we  kept the same time span adopted 
for the monthly climate–growth relationship, but we  first 
averaged the temperature and precipitation series in a 15-day 
windows, then correlations were computed between June of 
the previous year to September of the current year shifting 
the time window at a daily step (Carrer et  al., 2017, 2018). 
Three distinct 40-yr periods (1901–1940, 1941–1080, and 
1981–2013) were used in order to identify possible shifts in 
the climate growth relationship.

RESULTS

Tree-Ring Width Maximum Density and 
Xylem Traits Chronologies
The mean series length is 225 ± 62 years, with a mean ring 
width of 1.10 ± 0.6 mm· and a MXD of 0.7 ± 0.1 g·cm−3. The 
subset of the nine samples included relatively younger individuals 
(174 ± 60 years), wider annual rings (1.40 ± 0.5 mm), and higher 
MXD (see Table  1; Supplementary Figure  2). The averaged 
cell density was 1110.2 ± 102.0 cells·mm−2, while the mean 
conduit area (CA) corresponded to 476.5 ± 58.4 μm2·, and the 
anatomical parameters related to cell wall thickness, presented 
similar values, ranging from 3.3 ± 0.1 (rCWT) to 3.1 ± 0.2 μm 
(tCWT) with a mean of 3.2 ± 0.2 μm (CWT). The strength of 
the common signal and the quality of the chronologies assessed 
using Rbar and EPS statistics found that MXD and cell wall 
thickness traits showed generally higher values compared to 
TRW, CD, and CA both in the RAW and detrended chronologies 
(Table  1). The mean sensitivity for TRW and CNo was higher 
(0.18) compared to MXD, CD, CA, and cell wall thickness 
traits (0.05; Table  1). Similar results were obtained when 
assessing the descriptive statistics of xylem traits chronologies 
at intra-annual resolution (10 ring sectors; Supplementary  
Table 1). Nevertheless, the signal strength between chronologies 
increased from first to last ring sectors for all anatomical traits 
(except for cell density).
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Relationships Between Tree-Ring, 
Maximum Density, and Anatomical Traits
The hierarchical cluster analysis showed a strong relationship 
between CA, MXD, CD, and CWT. TRW and CNo were more 
independent in comparison with other variables (Figure 2 and 
Table  1). Cell wall thickness chronologies (rCWT, tCWT, and 
CWT) formed two relatively closed (<0.1) clusters referring 
to the Ward distance followed by CD, MXD (<0.02), and finally 
CA (<0.3), while TRW and CNo formed the furthest away 
(>0.3) cluster on the axis (Figure  2). The HCA analysis based 

on intra-annual resolution chronologies (10 ring sectors) showed 
similar results compared to the HCA based on chronologies 
at annual resolution (see Supplementary Figure  3). Due to 
the comparable statistical parameters and similar associations 
between the rCWT, tCWT, and CWT chronologies, further 
analysis focus on the CWT chronologies only.

Relationships With Climate
Correlations computed with monthly climate records highlight 
TRW and CNo as the least sensitive parameters with very similar 

TABLE 1 | Main statistical parameters for raw and detrended xylem traits chronologies.

Trait Number of 
cores

First year Last year MA ± SD MV ± SD RAW chronology Detrended chronology

rbar EPS MS rbar EPS

CD 9 1735 2015 174 ± 60 1110.2 ± 102.0 0.20 0.58 0.06 0.13 0.47
CA 476.5 ± 58.4 0.19 0.57 0.10 0.20 0.58
tCWT 3.1 ± 0.2 0.23 0.63 0.05 0.32 0.72
rCWT 3.3 ± 0.1 0.24 0.64 0.05 0.31 0.72
CWT 3.2 ± 0.2 0.25 0.66 0.05 0.33 0.73
CNo 1711 ± 700 0.13 0.46 0.18 0.14 0.47
MXD 1735 2014 180 ± 55 0.9 ± 0.1 0.23 0.63 0.09 0.33 0.74
TRW 1.4 ± 0.5 0.17 0.54 0.18 0.19 0.58
MXD all 28 1,684 2015 225 ± 62 0.7 ± 0.1 0.27 0.87 0.09 0.30 0.89
TRW all 1,684 2015 1.1 ± 0.6 0.18 0.81 0.18 0.24 0.86

CD, Conduit density (number·mm−2); CA, Conduit area (μm); tCWT, Tangential cell wall thickness (μm); rCWT, Radial cell wall thickness (μm); CWT, mean Cell wall thickness (μm); 
CNo, Conduit number (number of conduit measured in the analyzed ring area); MXD, Maximum wood density (g·cm−3); TRW, Tree-ring width (mm); MXD all and TRW all—Maximum 
wood density and tree-ring width of all the 28 cores; cores—number of cores; MA, mean age; MV, mean values for each parameter; SD, standard deviation; rbar, inter-series 
correlation; EPS, expressed population signal; MS, mean sensitivity.

FIGURE 2 | Hierarchical cluster analysis using TRW, MXD and anatomical parameters (with yellow—first cluster, blue—second cluster).
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cluster associations, while, the temperature is the main factor, 
positively influencing xylem density (MXD and CWT). High 
precipitation amount (June previous and current year summer) 
and high self-calibrating Palmer Drought Severity Index (scPDSI) 
values seemed to negatively affect MXD and CWT (Figure  3).

The higher resolution of the 15-day running correlations showed 
more detailed information (Figures  4A,B). CD showed the least 
significant correlations with temperature, randomly scattered, 
mostly during the summer to autumn months. CA showed a 
negative correlation with temperature starting from the third ring 
sector from mid-June to the end of August in the last ring 
sectors. CA is also negatively correlated with the temperatures 
of April. CWT showed an overall stronger correlation value with 
respect to CA, with a positively significant response at the beginning 
of the growing season (April–May period) in all ring sectors. 
During the growing season the correlation shifts from sectors 1 
to 6  in the early June–July period, to sectors 4 to 10  in late 
June–late August, with a peak for the 10th ring sector in August 
(r = 0.63). Additionally, when splitting the last century into three 
equal periods (see Supplementary Figure  4), a clear weakening 

of the climatic signal emerged in all tree-ring parameters. In 
addition, the climate signal overturned in almost all the climate–
growth and structural relationships, shifting from being positive 
in the first period to negative in the last one. MXD was one 
exception, with consistent positive and negative relationships 
throughout all the periods, despite experiencing a weakening of 
its climatic signal (especially for temperature) through time. 
Another exception was CA showing strong correlation with the 
increase of drought limitation in the most recent periods, while 
in the early period there was a non-significant relationship between 
CA and scPDSI.

Similarly, to the monthly analysis, the correlations between 
precipitation and xylem traits chronologies resulted in scattered 
points and were significant for a relatively short time window, 
indicating that precipitation plays a minor role here. Still, late 
spring precipitation showed the stronger signal in the first 
half of the ring sectors for CD (positive) and CA (negative). 
CWT shows a positive response to precipitation with higher 
correlations in the first six ring sectors for a very limited time 
window in mid-May. Negative correlations of CWT to daily 

FIGURE 3 | Climate growth relationships computed between monthly climatic parameters (mean temperature, accumulation of precipitation, and scPDSI; from 
1901 to 2015) and TRW, MXD, and anatomical parameters (CA, CNo, CD, and CWT). Lower case letters show the previous year and capitalized the current year.
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precipitation are also found in June (from the 1st to the 5th 
sector) and July (from the 6th to the 8th sector).

DISCUSSION

Trees continuously increase in size during ontogeny by 
accumulating xylem biomass and adjusting their xylem structure 
to achieve an optimal balance between competing needs mostly 
related to water transport and mechanical support (Sauter, 
1986). These xylem adjustments must also take into account 
all the external environmental factors and their variability with 
climate likely being the major one, always and pervasively 
present. In the ongoing climate change context, it is fundamental 
to deal with processes often operating at decadal and longer 
time scales, especially when studying long-living organisms, 
such as trees. The retrospective analysis of tree rings provides 
useful insight into long-term wood formation dynamics and 
related relationships with climate (Fritts, 1976), and into the 
role of trees and forests in the terrestrial carbon cycle (Babst 
et  al., 2013). Within this framework, the analysis of xylem 
anatomical parameters, in parallel with tree-ring width and 

wood density, might allow insight to not just yearly and longer 
time scales but also at an intra-annual resolution (Fonti et  al., 
2010; Seo et  al., 2011; Pritzkow et  al., 2014). This study, by 
combining classical dendrochronology (ring width and maximum 
density) with quantitative wood anatomy (anatomical parameters 
related to water transport and cell enlargement (CA), mechanical 
support and wall thickening (CWT) and CD) allows us to 
better understand tree-ring structure of stone pine’s and assess 
the sensitivity to climate variability, shedding light on the 
mechanism that regulates xylem growth formation.

The HCA analysis indicated CNo as the main determinant 
for the TRW (Vaganov et  al., 2006), confirming that wider tree 
rings were mostly formed by a higher number of cells, rather 
than larger cells (Vaganov et  al., 2006; Björklund et  al., 2017; 
Carrer et al., 2017, 2018). The CWT and MXD resulted in highly 
similar associations at both annual and intra-annual resolution 
(Figure  2 and Supplementary Figure  3), showing the strong 
dependency of cell wall material in determining the MXD, 
especially in the last ring sectors (Wang et  al., 2002; Cuny et  al., 
2014; Pritzkow et  al., 2014; Björklund et  al., 2017, 2020). 
Furthermore, MXD and CWT chronologies showed a strong 
common signal compared to tree-ring width, CNo, CA, and 

A B

FIGURE 4 | Relationships between (A) temperature, (B) precipitation and xylem anatomical traits (CA, CD and CWT) from 1961 to 2013. Correlation coefficients 
were assessed at 15-day windows, represented by sliding daily steps from previous June to current September and coded according to the color key on the right.
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CD. This confirms its high potential as high-resolution paleoclimate 
proxy (Büntgen et al., 2005; Björklund et al., 2019, 2020; Nagavciuc 
et  al., 2019). The descriptive statistics of TRW and xylem traits 
chronologies from stone pine are consistent with previous studies 
(Briffa et  al., 2001; Vaganov et  al., 2006; Carrer et  al., 2018).

Despite being at high elevation, where summer temperature 
is expected to be  the most important limiting factor (Büntgen 
et  al., 2006; Popa and Kern, 2009; Popa and Bouriaud, 2013; 
Nagavciuc et  al., 2019; Ionita et  al., 2020), in this site TRW and 
CNo seemed minimally influenced by temperature. The lack of 
climatic signal could be  explained at different levels: (i) cambial 
activity and the maximum growth rate are more influenced by 
the photoperiod and are unconstrained by concurrent climate 
conditions (Rossi et  al., 2006); (ii) this unexpected result could 
be  a consequence of the Atlantic and Mediterranean climatic 
influences on the study site on the site (ANM, 2008) that could 
buffer the role of temperature as a growth-limiting factor; or 
(iii) a weakening of the climatic signal in the TRW has also 
been observed in recent decades (D’Arrigo et  al., 2008; Carrer 
et  al., 2017; Camarero et  al., 2021). In this study, the negative 
correlations between CA and temperature could be  related to 
the cell wall thickening process. Higher temperatures can induce 
the formation of cells with narrower lumen thanks to the positive 
stimulus on cell wall thickening but with the side effect of reducing 
lumen area (CA negatively associated with temperature) from 
earlywood to latewood, causing a denser wood and higher MXD 
(Cuny et  al., 2014). Indeed, cell dimension could be  considered 
the main factor of wall thickness and density changes along a 
ring, as cell wall thickening proceeds inside the cell whose 
dimension have already been fixed before the starting of the 
thickening process (Cuny et  al., 2014; Björklund et  al., 2017; 
Carrer et al., 2017). Temperature is generally positively associated 
with CWT and wood density with the resistance to cavitation 
(Rosner, 2013; e.g., a freeze–thaw induced embolism that can 
occur at high elevation). Similarly, it seems that hydraulic safety 
is prioritized over efficiency under droughts as CA was positively 
associated with scPDSI. This suggests potential xylem modification 
under drought scenarios (Campelo et  al., 2010) since the shallow 
soils often associated with such treeline stands have low water 
holding capacity (Anfodillo et  al., 1998; Oberhuber, 2004; Mayr, 
2007). Therefore, we can infer that the improved growing condition, 
mostly related to warming in the last decades, is playing a key 
role in influencing the xylogenesis process and cell morphology 
(Schweingruber, 1996; Körner, 1998; Gruber et  al., 2009).

The uphill treeline shift observed in many sites worldwide 
could be  related to this relaxation of the limiting conditions at 
high elevation (Körner, 1998, 2012; Harsch et  al., 2009). This 
significant modifications recorded at high-elevation over time 
implies that older trees are now growing in less constrained 
conditions and brings potential implication for the climatic signal 
encoded in the tree-ring parameters (Drew et  al., 2013; see 
Supplementary Figure  4). Previous studies found similar 
contrasting results between tree-ring parameters. For example, 
temperature and TRW were not related, especially where trees 
are growing in their optimum (Poussart and Schrag, 2005; Gagen 
et  al., 2006; Drew et  al., 2013), while a strong correlation with 
summer temperature of MXD and CWT have been observed 

in similar areas (Büntgen et  al., 2010; Diego Galván et  al., 2015; 
Björklund et al., 2017). On the contrary, the negative relationship 
between MXD and CWT chronologies with precipitation could 
reflect the inverse relationship between precipitation and 
temperature, especially in mountain regions (Rebetez, 1996).

In this study, CWT was highly influenced by previous-year 
summer temperature (Frank and Esper, 2005; Babst et  al., 
2013), whereas CA mainly reflected the previous autumn–winter 
water availability conditions (Castagneri et  al., 2015). Thus, 
the xylem structure encoded information also related to previous-
year climate condition. These outcomes stressed the key role, 
not just of the current environmental conditions, but also of 
the lag effects which are usually overlooked in many investigations 
(Carrer et  al., 2010; Babst et  al., 2012). The higher detailed 
analysis at intra-monthly resolution computed with the daily 
climatic data shows significant positive correlations between 
temperature and CWT and a negative correlation with CA 
within almost all ring sectors between April and May. This 
probably reflects the effect of late spring temperatures on the 
timing of cambial activity onset and growing season duration 
(Carrer et  al., 2017), and possibly the availability of resources 
stored before the wood formation (Björklund et  al., 2017). 
Also, higher spring temperatures trigger the release of growth 
hormones (i.e., auxin and gibberellin; Aloni, 2015), implying 
an earlier onset of cambial activity (Olano et  al., 2013; Carrer 
et  al., 2017; Castagneri et  al., 2017) which translates into more 
intense carbon assimilation (Wolf et al., 2012; Castagneri et al., 
2017; Nagavciuc et  al., 2020) and finally in thicker cell walls.

Different tracheids, based on their position within the ring 
can distinctly record different climatic time windows as shown 
through the increasing significant correlations between CWT 
and temperature from the beginning of June in the first ring 
sector until the start of September in the last one (Castagneri 
et  al., 2017; Carrer et  al., 2018). CWT and MXD correlations 
with temperature are very similar, especially when considering 
the last CWT ring sectors. Therefore, we  suggest using CWT 
in dendroclimatological investigations as it represents a parameter 
less influenced by laboratory-dependent measuring techniques 
(Wang et  al., 2002; Björklund et  al., 2019).

CONCLUSION

The combination of classical dendrochronology with quantitative 
wood anatomy (dendroanatomy), is a powerful tool that provides 
high-resolution information on structure–function tree responses 
over the last century. The analysis of intra-annual variation of 
anatomical traits, together with daily temperature and precipitation 
records allowed us to assemble xylem traits chronologies that 
maximize climatic responses compared to the classical approach, 
which considers just monthly climatic values and yearly resolution 
tree-ring data. Hence, this study contributes to the general 
understanding of the climate–growth and xylem structure 
relationship of this species on different time scales. With this, 
we  highlighted the strong role of temperature in influencing the 
“carbon-sink” capacity of stone pine and gained insights into such 
high-elevation marginal populations under future climate scenarios.
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