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Abstract: This research provides an insight on the performances of machine learning (ML)-based algorithms 

for the estimation of the energy consumption in metal forming processes and is applied to the radial-axial 

ring rolling process. To define the mutual influence between ring geometry, process settings, and ring 

rolling mill geometries with the resulting energy consumption, measured in terms of the force integral over 

the processing time (FIOT), FEM simulations have been implemented in the commercial SW Simufact 

Forming 15. A total of 380 finite element simulations with rings ranging from 650 mm < DF < 2000 mm have 

been implemented and constitute the bulk of the training and validation datasets. Both finite element 

simulation settings (input), as well as the FI (output), have been utilized for the training of eight machine 

learning models, implemented with Python scripts. The results allow defining that the Gradient Boosting 

(GB) method is the most reliable for the FIOT prediction in forming processes, being its maximum and 

average errors equal to 9.03% and 3.18%, respectively. The trained ML models have been also applied to 

own and literature experimental cases, showing a maximum and average error equal to 8.00% and 5.70%, 

respectively, thus proving once again its reliability. 

Keywords: ring rolling; process energy estimation; metal forming; thermo-mechanical FEM analysis; machine 

learning; artificial neural network 
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by proposing a more accurate mathematical approach for the determination of the ring geometry 

for a subsection of the ring geometry, defined as a slice. 

As concerns the force prediction for the ring rolling process, Quagliato and Berti [7,8] 

proposed two mathematical models based on the slip line theory and estimated radial and axial 

 
1 . Introduction 

The radial axial-ring rolling (RARR) is a versatile forging process widely used in different industrial sectors such as 

automotive, agricultural, wind power, piping, and aerospace [1]. In recent years, several improvements have been introduced 

helping to obtain good surface quality, fine tolerances, and a considerable saving in material cost [2] with less production time 

compared to the machining process. Rings manufactured through RARR have high durability and structural strength, but the 

complexity of the process makes its settings and control hard to be handled without numerical simulations or prediction 

algorithms. For these reasons, several authors focused their attention on the development of algorithms and finite element 

models for a better understanding of the ring rolling process, as is hereafter summarized. 

Lugora and Bramley [3] utilized Hill’s general method for predicting the evolution of the ring during the process 

considering a rigid-perfectly plastic and incompressible material. Bruschi et al. [4] established a real-time control model, based 

on the artificial neural network (ANN) approach, to predict the geometrical accuracy of the ring, showing a good correlation 

between the ANN model and FEM results. Guo and Yang [5] defined the steady forming condition for the ring rolling process 

and built a mathematical model based on a constant velocity growth condition of the ring and considered the ring geometry 

in terms of average diameters. More recently, Quagliato and Berti [6] superseded this limit 
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forces with a deviation equal to ~5% and ~6%, respectively, in comparison to the relevant FEM 

simulations and experimental results. Furthermore, Ryoo et al. [9] defined the relationship 

between the parameters that affect the ring rolling process at high temperatures and investigated 

the influence of the main roll rotational speed and the mandrel feeding speed. Kalyani et al. [10] 

investigated radial and axial forces during the forming process of profiled rings in terms of time 

and temperature, calculated the forces with an analytical approach, and compared them with FEM 

simulations. Kim et al. [11] investigated the influence of process parameters in producing large 

rings, focusing on minimizing the load, but did not consider temperature and process parameters’ 

reciprocal influence. 

As concerns energy estimation and starvation algorithms for industrial process, due to the 

strong influence of the energy demand on production planning and control [12], several authors 

focused on this topic. Unver and Kara [13] introduced a decision support tool called HORUS 5.0 to 

determine the lowest energy-consuming route within the scope of sustainable energy efficiency. 

Meissner et al. [14] developed an indicator system considering the impact of the materials, 

energies, and economic attributes of energy efficiency, concluding that strategic decision-making 

concerning energy optimization is important to be competitive. Larkiola et al. [15] investigated 

the role of energy efficiency in the rolling processes employing an ANN-based approach and 

achieved an improvement estimated in 1.8% of the overall energy efficiency. Giorleo et al. [16] 

compared simulation analyses with an industrial case to evaluate the effect of utilizing different 

ring preform geometries to reduce the total energy required during the process but focused on a 

single material and single set of process parameters. Allegri et al. [17] defined a main roll speed 

law that allows maintaining a constant ring angular velocity and achieved a 35% fishtail defect 

reduction and a 9% energy consumption reduction. 

As summarized so far, several authors developed models for the prediction of the kinematic 

expansion, the force, and torque but it seems that the impact of the process parameters on the 

energy consumption has not been thoroughly investigated in the literature. In the hot radial-axial 

ring rolling process, as in every metal forming process carried out at hot or warm forming 

conditions, a lower process force can be obtained by reducing the feeding, or the deformation, 

over time. On the other hand, a longer manufacturing time induces a higher temperature drop in 

the workpiece, which leads to an increase in the resistance to the deformation of the material. 

The energy integral over time can be estimated by employing numerical simulations [18–21] but, 

considering the complex tools-workpiece interaction in the RARR process, the computational time 

required for one single simulation might range between several hours and a few days. 

In the literature, machine learning algorithms have been already applied to various 

manufacturing topics, such as for the prediction of joint strength of ultrasonic welding processes 

[22], to estimate the tool wear in milling operations [23], to diagnose the dimensional variation of 

additive manufactured parts [24], to classify the cutting phase of the natural fiber reinforced 

plastic composites [25] and to predict the tool life in the micro-milling process [26]. More recently, 

Wang et al. [27] developed a deep learning-based algorithm for the recognition of the defects in 

the strip rolling process, Marques et al. [28] investigated the performances of parametric and non-

parametric models for the correlation of process and material variables to springback and wall 

thinning, Palmieri et al. [29] defined a metamodel to correlate the process parameters and key-

quality indicators for the optimization of the blank-holding forces in the stamping process, and 

Winiczenko [30] utilized a hybrid response surface methodology combined with a genetic 

algorithm to simulate and optimize the friction welding parameters in AISI 1020-ASTM A536 joints. 

Although ML algorithms have been applied to various manufacturing processes, they have 

not yet been utilized for the investigation of the influence of process, material, and 
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geometrical parameters in metal forming processes and have not been applied yet to the RARR 

process. Accordingly, the research presented in this paper aims to fill this gap in the literature by 

investigating the influence of (i) process parameters, (ii) material properties, (iii) initial/final ring 

geometries, and (iv) processing conditions on energy consumption. Based on the implemented 

numerical simulation database, eight machine learning (ML) models have been trained and 

utilized for the prediction of the energy consumption during the process based on the above-

mentioned (i, ii, iii, iv) parameters clusters. The mandrel forming force integral over time, (FIOT), 



 

has been utilized as the output variable in the analysis, and as response value for the training 

and validation of the ML algorithms. Based on the most recent applications of machine learning 

model, eight different models have been adopted in the research presented in this paper, 

namely: linear methods [31,32], the kernel methods [33,34], the ensemble methods [35–37], 

and the artificial neural network (ANN) methodology [38–40], respectively. 

To create the dataset for the training and the validation of machine learning models, radial-

axial ring rolling finite element simulations models have been implemented in the commercial 

software Simufact Forming 15: six ring final outer diameters, equal to 650, 800, 1100, 1400, 1700, 

and 2000 mm have been considered along with three different materials, largely utilized in the 

ring rolling process, namely the 42CrMo4 steel [4], the Inconel 718 superalloy [41], and the 

AA6082 (AlMgSi) aluminum alloy [42]. The material properties have been accounted for by its 

temperature-dependent elastic modulus and yield strength. Since the training and validation 

datasets have been all acquired through FE simulations, the implemented FEM model has been 

validated by comparing its results with a previously published once [8], showing a maximum 

deviation equal to 2.15% and 0.95% in the prediction of the radial forming force outer diameter 

of the ring. 

A total of 380 numerical simulation models have been implemented and 80% of the results 

have been utilized for the training of the ML models, whereas the remaining 20% were for their 

validation. An additional validation phase has been carried out considering the previous literature 

experimental results published in [5,8,11]. Based on both validation phases, the Gradient Boosting 

method, belonging to the ensembles methods, has been shown to be able to accurately predict 

the force integral over time (FIOT) and is therefore considered to be the most reliable for the case 

of a complex thermo-mechanical forming process, such as the radial-axial ring rolling process. 

2. Materials and Methods 

2.1. Finite Element Simulation Model Definition 

To create the database for the training of the machine learning-based force integral over 

time (FIOT) prediction models, presented in Section 3 of the paper, thermo-mechanical FEM 

simulations have been implemented in the commercial software Simufact Forming 

15 following the general implementation scheme shown in Figure 1. In the numerical simulation 

models, the dies are considered as rigid with conductive, convective, and radiation heat transfer 

with the ring and the surrounding environment. The reason for introducing this approximation is 

justified by the fact that, although the elastic deformation in the rolls can slightly affect the final 

shape of the ring, its influence is negligible in comparison to the size of the rings considered in this 

paper. The dimensions for the tools of the ring rolling mill utilized in all the implemented FEM 

models are summarized in Table 1 along with the additional common process conditions. Friction 

has been modeled considering a shear friction law, Equation (1), and the utilized friction factor 

[6–8,18] is also reported in Table 1. In Equation (1), k is defined as the ratio between the yield 

strength of the material and the square root of 3, according to the von Mises criterion. 

 τ = m · k (1) 

 

Figure 1. Configuration of the ring rolling process. 
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Table 1. Ring rolling mill characteristics and general process settings. 

Parameters Values 

Radius of the main roll [mm] 325 

Radius of the mandrel [mm] 125 

Length of the axial rolls [mm] 595.9 

Half of axial rolls vertex angle [◦] 17.5 

Temperature of the environment [◦C] 50 

Tool initial temperature [◦C] 150 

Friction factor mandrel and main roll [−] 0.85 

Friction factor axial and guide rolls [−] 0.6 

A higher friction factor has been considered for the contact conditions between the ring, 

mandrel, and the main roll due to higher thickness draft along the radial direction in comparison 

to the vertical deformation, carried out by the axial rolls. As concerns the centering rolls, their 

role is mainly to avoid excessive shifting of the ring during the process, thus their contact with 

the ring is limited and discontinuous over the processing time. 

Friction influences the force calculation but, as will be shown in the results section, even 

though the training of the machine learning models has been carried out with a single set of 

friction constants (Table 1) when the model is applied to literature experimental cases, where 

different friction conditions are considered, an accurate FIOT prediction can still be achieved. 

Considering the training and validation (phase 1) datasets altogether, it is composed of 380 

thermo-mechanical radial-axial ring rolling numerical simulations where the final outer diameter 

of the ring (DF) ranges from 650 mm to 2000 mm. 

As concerns the initial annular blanks, they have been defined in terms of initial outer 

diameter D0, initial blank height h0, and initial inner diameter d0 according to the relevant final 

shape, by means of the procedure defined in Berti et al. [18]. A total of 16 different preform 

sizes have been utilized for the considered six final outer diameter geometries, as summarized in 

Table 2. 

The ring preforms have been optimized considering four different mesh detail levels, and the 

best compromise between accuracy has been identified in (i) 1 element every 0.5◦ for the 

circumferential direction, 1 element every 2.5 mm for the radial direction, and 1 element every 5 

mm for the vertical direction. These 16 geometries have been combined with different materials, 

Section 2.2, and process settings, Section 2.3, allowing obtaining the final database of 380 FEM 

simulations. Due to the impracticality of reporting the whole 380 settings in table form, a summary 

is added in Appendix A, whereas the whole dataset is made available as Supplementary Material. 
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Table 2. Initial and final ring geometries. 

   

Ring Initial Geometries [mm]  Ring Final Geometries  

D0 d0 h0 DF dF hF 

 490.5 325 188.8 650 530 180 

 510.9 325 156.2 650 505 145 

 549.3 325 112.2 650 450 100 

 518.9 325 195.4 800 680 180 

 550.9 325 175.4 800 645 155 

 575.3 325 218.7 1100 975 190 

 621.6 325 209.0 1100 930 170 



 

 621.6 325 209.0 1100 930 170 

 668.7 325 171.8 1100 855 122.5 

 876.2 600 208.2 1400 1220 180 

 909.3 600 221.3 1400 1190 190 

 897.7 600 209.4 1700 1530 170 

 875.7 600 226.3 2000 1875 190 

 944.5 600 232.4 2000 1820 180 

 944.7 600 232.4 2000 1820 180 

 1049.3 600 224.7 2000 1700 150 

2.2. Materials 

In the FEM models, presented in the previous section, three materials largely utilized in the 

hot ring rolling process [4,41,42] have been considered: (i) 42CrMo4 steel, (ii) Inconel 718 super 

alloy and (iii) AA6082 (AlMgSi) aluminum alloy. Due to the high diversity of mechanical behaviors, 

the consideration of these three materials allows widening the range of validity of the proposed 

investigation. For the definition of the plastic material behavior, the Hansel-Spittel flow stress 

model [43] has been utilized, as reported in Equation (2) whereas the relevant model constant 

(C1, C2, n1, n2, L1, L2, m1, m2), for the three considered 

. materials, are reported in Table 3. In 

Equation (2), ε, ε, and T represent the considered strain, the strain rate, and temperature. The 

combined consideration of these three parameters during the FEM simulations allows estimating 

the flow stress of the material for each element of the mesh, thus accurately estimating the 

relevant forming force. 

 σF = C1 · e  (2) 

Table 3. Validity range and Hansel-Spittel flow stress model constants for the (i) 42CrMo4 steel, (ii) Inconel 718 super alloy and (iii) 

AA6082 (AlMgSi) aluminum alloy. 

Parameters 42CrMo4 IN 718 AA6082 

Temperature range for the model [◦C] 800–1250 950–1100 200–530 

Strain range for the model [[–] 0.05–2 0.05–2 0.05–0.9 
Strain rate range for the model [1/s] 0.01–150 0.01–150 0.01–63 

C1 5290.5 10501.1 378.5 

C2 −0.00370 −0.00307 −0.00492 

n1 −0.00033 −0.00018 −0.00011 
n2 0.20612 0.54398 −0.02573 

L1 −8.26584 × 10−5 −2.17606 × 10−5 6.03612 × 10−5 

L2 0.02891 0.02376 −0.02548 

m1 0.000301 −2.67316 × 10−6 0.000345 

m2 −0.15618 0.09746 −0.031501 

To be able to consider the influence of the material in the FIOT prediction models, the initial 

temperature of the ring, set as initial boundary conditions in the FEM models, as well as Young’s 

modulus and yield strength at that temperature, have been considered as features in the analysis. 

The three considered temperatures, for each one of the three materials, are reported in Table 4 

along with the two above-mentioned mechanical properties. All the elastic, plastic, and thermal-

mechanical properties for the three considered materials have been acquired from the MATILDA® 

(Material Information Link and Database Service) database available in Simufact Forming 15. 

Table 4. Ring rolling mill characteristics and general process settings. 
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Parameters  42CrMo4   IN 718   AA6082  

Initial temperature [◦C] 900 1050 1200 980 1025 1070 300 375 450 

Density [kg/m3]  7847   8190   2695  

Young modulus [GPa] 129 108 84 126 120 100 58 54 51 

Yield strength [MPa] 126 50 40 216 187 161 101 82 67 

Thermal conductivity [W/(m·K)] 28 29 30 29 30 31 200 208 214 

Specific heat capacity 

[J/(kg·K)] 
645 635 642 647 687 704 1032 1069 1120 

The material features reported in Table 4 have been combined with the geometrical 

features, presented in previous Section 2.1, and with the process setting features, reported in 

the following Section 2.3, allowing the creation of the dataset utilized for the training and tests 

of the considered machine learning algorithms. 

2.3. Radial-Axial Ring Rolling FEM Simulation Settings 

The process parameters for the numerical simulations have been set considering the models 

proposed and validated in Berti et al. [18]. The three main parameters utilized in the analysis are 

reported in Equation (3), for the main roll rotational speed ωR, in Equations (4) and (5) for the 

mandrel initial [vM]0 and final [vM]F feeding speeds, and in Equations (6) and (7) for the upper axial 

roll initial [vA]0 and final [vA]F feeding speeds. 

1600 

 < R < 
 (3) 

 RR RR 

 2 · 2 
 ω · R · βR · ( 1 + 1 + 1 + 1 ) 

r0)2 · ( 
1 

+ 
1 

+ 
1 

+ 
1 

) ωR · RR · 6.55 · 10−3 · (R0 − 

 RR

 RM R0 r0 < [v ] <(4) 

 1 1 1 1 

rF)2 · ( 
1 

+ 
1

ωR · RR · 6.55 · 10−3 · (RF − 

 
+ 

1 
+ 

1 
) 

 RR RM RF rF < [v ] <(5) 

  (6) 

0.0131 · h 2 

 2π · RF < [vA]F < 2π · RF (7) 

In Equations (4) and (7) RR is the radius of the main roll, RM the radius of the mandrel, R0, r0, 

and h0 the outer radius, inner radius and height of the initial ring blank, RF, rF, and hF the outer 

radius, inner radius, and height of the final ring, θ half of the axial rolls vertex angle whereas βR 

2π · R0 M 0 2π · R0 
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and βA the friction angle in the contact between main roll and mandrel and axial rolls, with the 

ring, respectively. The friction angle is calculated based on the friction factors, Table 1, as βR = 

arctg(m). 
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For each one of the implemented numerical simulations, the above-mentioned process 

parameters have been set according to the range proposed in [18] and have been considered as 

input for the force integral over time (FIOT) estimation models, presented in Section 4.3 of the 

paper. Since the process parameter setting is based on a kinematic approach, different 

temperatures or materials result in the same set of speeds. The summary of the implemented 

study cases is reported in Appendix A and is fully disclosed in the Supplementary Material. 

3. Machine Learning Models Definition, Preprocessing, and Training 

Due to the complex interaction between the considered process, materials, and geometry 

parameters, eight machine learning (ML) algorithms, one of which is based on the artificial neural 

network (ANN), with different levels of complexity, have been considered in this paper. The target 

is to implement a methodology for the estimation of the energy consumption in the radial-axial 

ring rolling process based on a set of input variables composed of geometry, process conditions, 

and materials. The architecture of the implemented ANN model is shown in Figure 2 where four 

hidden layers have been considered. As concerns the remaining ML models, input and output 

layers are the same as shown in Figure 2 but are connected through the weights vectors, defined 

during the optimization process. All the considered models have been applied to the above-

mentioned dataset, considering 80% of the set for the model training whereas the remaining 20% 

has been employed for the assessment of the model accuracy. Both sets are not predetermined 

but are randomly selected before the training. The employed algorithms belong to the (i) linear, 

(ii) kernel, (iii) ensemble and (iv) artificial neural network approaches. 

 

Figure 2. Artificial Neural Network model architecture schematic explaining the connection between input layers (input parameters 

considered in this research) and output layer, considered as the force integral of mandrel acting time. 

3.1. Linear Methods 

Linear regression methods [31,32] are utilized to model linear correlations between the 

independent variable x and dependent variable y as in Equation (8). The prediction 

^ calculated by the model is defined as y and the aim is 

to minimize the Residual Sum of Squares (RSS) of the objective function, as shown in Equation (9). 

The subscript D represents the number of considered features, whereas N represents the size of 

the dataset. 

Linear methods can be expanded to model the non-linear relationships by replacing X with 

non-linear functions. In this paper, to avoid the over-fitting problem, the regularized linear 

method has been utilized where constraints have been imposed on the weights vector (w) of 

Equation (8). 

 ^ TX (8) 
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y = w0 + w1x1 + ··· + wDxD = w0 + w 
N 

 RSS(w) = ∑ (yi−wTXi,D)2 (9) 

i=1 

Based on the general form of Equation (8), the Ridge model is defined to minimize the 

squared sum of weights, thus resulting in the objective function ( ), Equation (10). If the 

hyperparameter λ of Equation (10) is equal to 0, we return to the original linear model of Equation 

(9). The hyperparameter, present in the Ridge model, as well as in other of the models 

subsequently presented, is a tuning parameter utilized to increase the accuracy of the prediction 

and is calculated, during the training, to maximize the correlation factor between independent 

and dependent variables [44]. 

D 

 (w) = RSS  (10) 
j=1 

Another variation of Equation (8) is defined as the Least Absolute Shrinkage and Selection 

Operator (LASSO) model where the absolute values of the weights are optimized to minimize the 

derivative of the target function (w), defined as in Equation (11). 

 1 D 

 (w) = RSS  (11) 

 2N j=1 

Considering together the square of the weights, as in the Ridge model of Equation (10), and 

the norm of the weights, as in the LASSO algorithm of Equation (11), the third considered linear 

model is shown as in Equation (12) and is defined as the Elastic Net model. 

1 

 (w) = RSS  (12) 

 2N  2

 
2 

j=1 j=1 

In Equation (12), if the hyperparameter is set as λ1 = 1 then the LASSO Equation (11) is 

obtained, whereas if λ1 = 0 it results in the Ridge model, respectively. The λ1 and λ2 parameters 

represent the constants related to the first and second-order norms, respectively, and are 

calculated based on the random search method [44]. 

3.2. Kernel Methods 

Linear methods can be expanded to model non-linear relationships between the 

independent and dependent variables by replacing X, Equation (8), with the feature function φ(x). 

The feature function can be written with the Gram matrix (K), as shown in Equations (13) and (14) 

where κ(xi, xj) is the kernel function [33,34], defined to model the considered relationship. The 

Kernel Ridge (KR) model combines the kernel method with the Ridge model (10) and, in this paper, 

the polynomial kernel of Equation (15) is utilized for the Kernel Ridge model. The c and d constants 

in Equation (15) influence the feature functions and are determined through the random search 

method [44] during the training process. 

 φ · φ T = K (13) 
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 K  (14) 

κ(xi, xj) = (γxiTxj + c)d (15) 

Another Kernel method based on the squared norm of the weight factors is defined as the 

Support Vector Machine (SVM) model [45], Equation (16), where the RSS(w) function of 

Equation (10) is changed into the epsilon intensive loss function, Equation (17). In this paper, as 

for the case of the SVM model, the polynomial kernel function of Equation (15) has been utilized. 

 N D 

 (w) = C∑ Lε(yi, yˆi) +  (16) 

2 
 i=1 j=1 

0 if |y − yˆ| < ε 

 Lε|y − yˆ| − ε (17) 

otherwise 

3.3. Ensemble Methods 

The ensemble methods [35–37] combine different approaches and apply them to randomly 

selected data sub-sets to improve the prediction performances. Among the ensemble approaches, 

the Random Forest (RF) model, utilized in this paper, trains M decision trees and calculated the 

response for each one of them. For each tree, the response is defined considering different 

intervals for the estimator, allowing the subdivision of the problem into subclasses, which are 

classified by their accuracy by comparing their values with the true value. The final prediction is 

given by the average of the M ones, calculated as the average of each one relevant for each one 

of the subsets of every tree as shown in 
 ^ ^ 

Equation (18) where y is the average prediction over M-trees and ym is the prediction of each tree. 

 M 1 ^ 
^ 

 y = ∑ Mym (18) 

m=1 

Another ensemble method is defined as Gradient Boosting (GB) and, differently from the RF, 

in the beginning, only one tree (f) is created and it is progressively updated to minimize the 

objective function (w), Equation (19). Therefore, the m + 1 tree is based on the results of the m 

tree compensated by the gradient residual of the previous tree by considering the learning rate η, 

as shown in Equation (20). 

 ( 1(y − f)2 if |y − f| < δ 

(w) = L (y, f) = 2 (19)  otherwise 

The learning rate η is defined as the speed by which the algorithm minimizes the loss 

function, Lδ for the ensemble methods and is present only for the case of ensemble and ANN 

methods. For the case of the linear method, like those of Sections 3.1 and 3.2, the learning rate 

is not considered since the optimized value is defined as the minimum of the loss function. 

fm+1 = fm + η · rm+1 
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 (yi, fi) (20) 

ri,m fi fm where 

3.4. Artificial Neural Network Methods 

Artificial Neural Network (ANN) models [38–40] consist of: (i) input layers, (ii) hidden layers, 

and (iii) output layers, Figure 2. Input layers are connected to the hidden layers by the weight 

functions (wij) which are calculated during the training of the ANN algorithm. For each one of the 

nodes, the input coming from the previous layer is defined as xij and are multiplied by the weight 

functions (wij) and summed out to the bias values (wi0), and the output of the layer is derived 

through the activation function (Ψ), Equation (21). 

! 

yˆi(21) 

In the research presented in this paper, the weight matrix is updated considering the 

RMSprop algorithm [46], reported in Equation (22). The learning rate η and the hyperparameter 

ρ are optimized considering the random search method [44]. Finally, the activation function for 

the ANN algorithm, Ψ of Equation (23), is defined as the threshold for the activation of a 

considered node in the hidden layers. 

Only if Ψ exceeds the threshold, the considered node in the i-layer is connected to the 

nodes of the i + 1 layer. The considered ANN algorithm is composed of four hidden layers made 

up of 200, 100, 50, and 25 nodes, respectively. The number of neurons for each layer has been 

optimized to minimize the loss function. The Lδ target function of Equation (19) has also been 

utilized for the case of the ANN model. 

^ 

wi+1 = wi − η√1  · ∂Lδ(yi, yi) 

 h ∂wi 

  ^ 2 

∂L (y 

where hi = ρ · hi−1 + (1 − ρ)  δ i, yi)  

∂wi 

(22) 

( 

0 for x ≤ 0 

Ψ(x) = (23) 

x for x > 0 

3.5. Data Preprocessing and Machine Learning Algorithm Training 

For the training of the selected machine learning algorithms, presented in Sections 3.1–3.4, 

the input data for the 380 FEM simulations as well as the result, in terms of radial forming force 

integral over the mandrel time (FIOT), have been randomly arranged to avoid any bias. In both the 

training and test datasets, a single feature is defined as a row of the table composed of the 

following data: (i) main roll rotational speed, (ii) average mandrel feeding speed, (iii) initial ring 

geometry, (iv) final ring geometry, (v) initial ring temperature, (vi) material yield strength, (vii) 

material Young’s modulus and (viii) force integral over the mandrel time. Since the parameters 

considered in this research have different intervals and measurement units, normalization has 

been applied to convert them to a 0 to 1 range. As concerns the FIOT, due to the skewness of the 

data distribution, the input data has been converted into log(1 + FIOT) before the normalization 

process. Similarly, the remaining parameters have also been converted by a box-cox 

transformation defined as x0.15 /0.15, where x is the considered parameter. 

This procedure allows reducing the computational burden during the training as well as 

increasing the accuracy. The hyperparameters of the prediction models described in chapter 3 
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have been obtained by applying the random search method aiming to maximize the correlation 

factor on both the training and the test datasets. The algorithms presented in the previous 

sections of chapter 3 have been implemented in a Windows OS environment utilizing the scikit-

learn 0.22.2 and Keras 2.3.1 modules implemented in the Anaconda Spyder program with Python 

3.7.4. As previously mentioned, 80% of the dataset, corresponding to 304 data, has been randomly 

selected from the whole database and the remaining 20%, 76 data, has been utilized as a test set. 

For the evaluation of the accuracy of each model, three validation steps have been 

considered: (i) in the first step, the training dataset is fed once again to the model after the 

hyperparameters, if present, have been optimized; (ii) the test set is fed to the model and the 

accuracy, for the case of untrained data, is evaluated; (iii) finally, experimental values from 

reference papers and self-developed experiments are fed to the model and its accuracy is defined. 

The results concerning the accuracy of each of the considered methods, for the above-mentioned 

three validation steps, are reported in Section 4 of the paper along with the relevant optimized 

hyperparameters. 

4. Results 

To condense the vast amount of data relevant for the 380 numerical simulations composing 

the training and test datasets, the key results of three numerical simulations, in terms of 

equivalent plastic strain and mandrel force, have been summarized in Section 4.1. In addition to 

that, to prove the reliability of the numerical model implementation procedure, in Section 4.2 a 

validation has been carried out by comparing the outer diameter expansion and mandrel force 

over time. The results presented in Section 4.2 are from the authors’ previous work [8] and have 

been briefly summarized. 

Finally, in Section 4.3, the results of the optimization of the hyperparameters as well as the 

performances of the considered machine learning models, as presented in Section 3, are 

reported. To enhance the validation of the proposed FIOT estimation procedure, the four most 

accurate machine learning models, among the eight employed, have been utilized for the 

prediction of three experimental cases from literature papers. This second validation phase 

allowed confirming the reliability of the defined investigation procedure as well as the accuracy 

of the implemented solutions. 

4.1. Thermo-Mechanical FEM Models Results 

To provide insight on the results of the numerical simulation implemented for all the 380 

analyzed cases, in Figure 3 the equivalent plastic strain distribution at the end of the calibration 

phase, the outer diameter, and radial force evolution during the process are reported for the case 

of an 1100 mm final outer diameter ring made of 42CrMo4 steel with an initial temperature of 

1200 ◦C. The radial (mandrel) forming forces relevant for all the 380 cases have been exported 

from the FEM simulations and utilized for the creation of the training and test database for the 

machine learning algorithms. Due to the large amount of data composing the database, they are 

not included in the manuscript but submitted along with the paper as Supplementary Material. 
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Figure 3. (a) Effective plastic strain distribution on the ring at the end of the calibration phase, (b) Ring outer diameter and 

(c) radial forming force evolution throughout the simulation process (DF = 1100 mm, 42CrMo4 steel, initial ring temperature of 1200 

◦C). 

After the export of the results of the radial forming force from the Simufact Forming 

15 numerical simulations, a script has been implemented in MS-Excel for the automatic calculation 

of the time integral of the force, allowing to calculate the FIOT, utilized as a sort of measure of the 

amount of energy required in the whole forming process. 

For the calculation of the FIOT, only the mandrel time, Figure 3c, utilized as user input in the 

numerical simulation, has been considered. The overall simulation time is composed of mandrel 

time and calibration time but, since the latter one can be extended at will to increase the accuracy 

of the ring geometry, it has not been considered in the analysis. The mandrel time instead is the 

time during which the mandrel is actively translating towards the main roll, thus when most of the 

process energy is employed. 

4.2. Thermo-Mechanical FEM Model Validation 

To validate the developed numerical simulation model, the experimental results presented 

in the authors’ previous research [8] have been utilized and are hereafter summarized. For the 

validation, a Pb75-Sn25 alloy has been utilized for the manufacturing of the ring preform with the 

initial dimensions D0, d0 and h0 equal to 155 mm, 105 mm, and 42 mm, and final dimensions equal 

to DF, dF and hF equal to 195 mm, 153 mm, and 37 mm, respectively (Figure 4). 

 

Figure 4. Initial and final Pb75-Sn25 ring. 

Additional details concerning the material properties of the Pb75-Sn25 and the ring rolling 

machine utilized for the validation experiments are reported in Appendix B of the paper. The 

validation of the implemented thermo-mechanical finite element simulation has been carried out 

by comparing numerical and experimental results relevant for the expansion of the outer diameter 

of the ring during the process, Figure 5a, and of the mandrel forming force, Figure 5b. 
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 (a)  (b)  

Figure 5. Comparison between the experimental and finite element (a) ring outer diameter and (b) radial forming force for the Pb75-

Sn25 validation ring. 

According to the results presented in Figure 5, the maximum deviation between 

experimental and finite element results is equal to 0.95% for the outer diameter 2.15% for the 

radial forming force, showing the reliability of the implemented numerical simulation model in 

replicating real process conditions. Since the FIOT estimation is based on the precise estimation 

of the forming force for the whole mandrel feeding time, the validation carried out against 

experimental results allows confirming the accuracy of the implemented finite element model 

solution, and thus the reliability of the input dataset for the training of the considered machine 

learning models. 

4.3. Energy Prediction Models Results and Validation 

By considering the setting parameters and FIOT results of the 380 implemented FEM 

simulations, as presented in Section 2, the hyperparameters relevant for the eight considered 

machine learning models have been calculated by means of the random search method and 

optimized during the training phase of the algorithms. The hyperparameters have been all set as 

random numbers at the beginning of the training process and optimized during the training to 

minimize the residual between prediction and true values. During the training phase, 80% of the 

whole 380 simulations have been utilized and this set is defined as the “train set”. After the 

optimization of the hyperparameters, the trained machine learning models have been applied to 

the remaining 20% of the 380 simulations, not utilized during the training, and the accuracy in the 

estimation of the FIOT has been investigated. The accuracy of the training process has been 

verified by considering the correlation factor (R2). The optimized hyperparameters as well as the 

correlation factors for each model, relevant for the training dataset and the test dataset, 

calculated for the optimized hyperparameters, are reported in Table 5. 

Table 5. Machine learning models’ optimized hyperparameters and accuracy. 

 

Correlation Factor (R2) 

 Model Hyperparameters Values 

   Train Set Test Set 

Linear method 

Ridge Lasso λ = 0.6 λ 

= 0.0005 

0.920 
0.921 

0.855 
0.852 

 Elastic Net λ 1 = 0.0005 , λ 2 = 0.9 0.953 0.921 

Kernel method 

Kernel Ridge λ = 0.02 , γ = 1.0 

d = 3.0 , c = 15.0 

0.985 0.970 

 Support Vector Machine C = 0.89 , ε = 0.03 γ = 

1.0 , d = 3.0 , c = 15.0 

0.983 0.952 

Ensemble method 
Random 
Foresting 

M = 5000 0.995 0.971 

 Gradient Boosting M = 6900 , δ = 0.9 η 

= 0.091 

0.998 0.996 

Artificial Neural 
Network method Artificial Neural Network (ANN) 

δ = 1.0 η 

= 0.001 
0.993 0.992 
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According to the results presented in Table 5, the Gradient Boosting method shows the best 

correlation factor (R2) both in the training and test datasets. This high accuracy is related to the 

capability of the ensemble methods to subdivide the training dataset into subproblems and thus, 

as concerns the research presented in this paper, to properly interpret the influence of different 

levels of the process, material, and geometrical parameters on the FIOT. Moreover, the higher 

accuracy of the Gradient Boosting method in comparison to the Random Forest method is related 

to the nature of the error minimization of the former. For the case of the Gradient Boosting 

method, only one tree is considered, and it is progressively optimized to minimize the residuals. 

The Random Forest method instead creates several trees and assigns a sub-problem to each one 

of them, optimizing the solutions for each one of them. However, the subdivision into sub-classes 

might lead to biases during the training process, a fact which is clear from the drop of the 

correlation factor between train test and test set for the case of the Random Forest method (Table 

5). 

To provide a more comprehensive evaluation of the performances of the four machine 

learning models that have shown the best results in terms of correlation factors (Table 5), the 

true values vs. prediction as well as the percentage residuals for the 76 cases of the test set are 

reported in Figure 6a,b, respectively. The true values in Figure 6a are the FEM result whereas the 

prediction values refer to the relevant ML models predictions. 

The analysis of the residuals, Figure 6b, shows that although the Kernel, Random Forest and 

ANN methods have a remarkably high correlation factor, their residuals are considerably high, 

especially for small prediction values. On the other hand, the Gradient Boosting method allows 

having low residuals for all FIOT levels. The maximum and average residuals, for the four methods 

summarized in Figure 6, are reported in Table 6. 

Table 6. Machine learning models accuracy for the test data set. 

Model Maximum Residual Average Residual 

Kernel Ridge 24.28% 6.93% 

Random Forest 48.44% 13.08% 

Gradient Boosting 9.03% 3.18% 

Artificial Neural Network 43.00% 9.17% 

In addition to that, as previously mentioned, the accuracy in the prediction of the FIOT has 

also been evaluated for the case of three experimental ring rolling cases from the literature 

[5,8,11] by applying the four trained machine learning models that showed the highest correlation 

factors (Table 6). These experimental results are all relevant for experiments carried out on 

GH4169 nickel-based superalloy [5], the Pb-Sn alloy ring also utilized for the finite element model 

validation [8], and AISI-304 steel alloy [11]. All these three cases are completely different in terms 

of the geometry and material of the ring, process conditions, and size of the ring rolling mill and 

have been selected to provide additional insight into the accuracy of the predictions carried out 

by the proposed models. True prediction percentage residuals for these three cases are 

summarized in Table 7. 

Table 7. Machine learning models accuracy for the literature experimental cases. 

Model 
[5] FIOT 

Prediction Error 
[8] FIOT 

Prediction Error 
[11] FIOT 

Prediction Error 

Kernel Ridge 16.73% 15.11% 28.97% 

Random Forest 8.48% 13.44% 24.10% 

Gradient Boosting 7.01% 2.09% 8.00% 

Artificial Neural Network 7.23% 6.27% 9.11% 

Considering the results presented in Table 7, it is once again clear that the structure of the 

Gradient Boosting method can catch the complex nature of the interaction between geometrical, 

material, and process parameters in the radial-axial ring rolling process thanks to its ability to 
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subdivide the given task into sub-problems but while keeping error minimization linked to a single 

residual function. Moreover, as mentioned in Section 2.1, although the process conditions 

relevant for the [5,8,11] are different from those utilized in the FEM simulations utilized for the 

training, where the same friction conditions have been considered in all the cases, the accuracy is 

still remarkably good and the computational time is almost real-time, allowing a considerable 

improvement in comparison to the computational time of the thermo-mechanical numerical 

simulations, which may range from 9~12 h, for the case of the 650 mm final ring outer diameter 

simulations, to 1.5 to 3 days for the case of 2000 mm final ring outer diameter simulations. 

5. Discussion 

Considering the results relevant for all the utilized machine learning models, as presented 

in Table 5, the relatively low correlation factor shown by the linear models is an indication of the 

fact that the relationship between the considered input and output parameters is not linear. For 

the same reason, the Kernel methods, which utilize a polynomial function, show better accuracy 

than the linear methods but still have high residuals, as shown in the detailed analysis of Figure 6 

and Table 6. 

Both linear and Kernel methods calibrate the components of the weights vector (w), 

Equation (8) by minimizing the residual of the objective function, thus they tend to show low 

residuals for the case of the training dataset but relatively high ones for untrained data. On the 

other hand, both the Gradient Boosting as well as the Neural Network algorithms calibrate the 

components of the weights vector (w) considering the learning rate which allows a more robust 

consistency in both training and test datasets, as well as for additional predictions. Considering 

altogether the three validation steps carried out considering the (i) training dataset, (ii) the test 

dataset and (iii) the literature experimental cases, the complex interaction between process, 

material, and geometry parameters is therefore representable neither by a linear nor by a 

polynomial function. 

As concerns the applicability of the proposed procedure outside the ranges considered for 

the construction of the training dataset, the validation case relevant for [5] gives a remarkably 

interesting insight. Although geometry, process parameters, and material are all different in 

comparison to those considered in this paper, the robustness of the trained Gradient Boosting 

model allows obtaining a reasonable residual in the estimation of force integral, as shown in Table 

7. On the other hand, as previously mentioned, the linear and polynomial correlations considered 

by the linear and Kernel methods render their prediction to be affected by a high residual if the 

requested prediction is outside the trained ranges. Furthermore, the choice of normalizing all the 

parameters is also an important step for the application of the proposed procedure outside its 

training ranges. 

Finally, an interesting feature relevant to the machine learning methods concerns the 

balance of the training dataset. In the considered research, the amount of data relevant for low 

FIOT is considerably higher than that of high force integral, and, for the case of multivariable 

regression methods, this fact would have resulted in good predictions for the former scenario and 

bad for the latter one. In principle, the need for a balanced training dataset is also valid for the 

machine learning models but, for the case of the ensemble methods, as well as the neural 

network, their sensitivity to the data clustering is almost negligible and is therefore suitable for 

the application in sparse and not balanced data environments. Considering altogether the 

investigation proposed in this paper, the applicability of the machine learning-based algorithm for 

the prediction of energy consumption, measured in terms of force integral over time, in forming 

processes has been largely explored, and both the results and analysis reported in this paper might 

be helpful for the extension of its application to additional industrially relevant processes. 

6. Conclusions 

The research presented in this paper highlighted the importance of considering the material, 

geometrical, and process parameters when estimating the forming force during the radial-axial 
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ring rolling process. Moreover, eight different Machine Learning-based algorithms have been 

utilized for the prediction of the mandrel force integral over time (FIOT) and showed that the 

Gradient Boosting (GB) algorithm, belonging to the ensemble methods, grants the best accuracy 

in the prediction of the FIOT, being the maximum residual equal to 9.03%. Since the validation has 

been carried out on previously published results where ring geometries, process conditions, and 

materials were not included in the training dataset, the proposed approach has proven its 

robustness in predicting the FIOT also outside the range of the training data set. The trained GB 

algorithm can be directly applied to the radial-axial ring rolling (RARR) process through the 

algorithm provided as Supplementary Material and applies also to other forming and forging 

processes where the contact between workpiece and tools is defined by a curved line, as in the 

RARR process. The application of the proposed procedure allows a significant reduction in the 

time required for the estimation of the energy consumption during forming processes, its 

calculation being almost real-time, in comparison to the case of FEM simulations where the 

computational time ranges between ~10 h (for 650 mm final outer diameter rings) to 3 days (for 

2000 m final outer diameter rings). The procedure presented in this paper can also be extended 

to different metal forming and forging processes by considering the same geometry, material, and 

process parameters influence on the energy consumption, but the creation of a new training 

dataset might be required. For these reasons, the research presented in this paper might be of 

interest to researchers and process engineers interested in energy consumption in metal forming 

processes. 

Supplementary Materials: The following are available online https://www.mdpi.com/article/ 
10.3390/met11050833/s1 as supplementary material: Python code for Gradient Boosting model, Simulation 

settings, and results database. 
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Appendix A. Summary of the Geometrical Settings for the ML Model Database 

 42CrMo4 AlMgSi1 IN-718 

 T [◦C] 900 1050 1200 300  375 450 980 1025 1070 

   [  ]   [  ]   [  ]   [  ]   [  ]   [  ] 
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 42CrMo4 AlMgSi1 IN-718 

 T [◦C] 900  1050 1200 300  375 450 980 1025 1070 

ωR[rad/s] vM[mm/s] D0[mm] DF[mm] DF[mm] DF[mm] 
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4.09 575.3 1100 - - 

4.85 944.7 2000 2000 2000 

5.43 944.7 - - - 

5.67 897.7 - 1700 1700 

6.35 909.3 1400 1400 1400 

6.38 876.2 1400 1400 1400 

7.30 

5 
549.3 650 650 650 

7.69 621.6 1100 1100 1100 

8.97 550.9 800 800 800 

10.04 575.3 - 1100 1100 

12.12 518.9 800 800 800 

13.70 490.5 650 650 650 

14.00 490.5 650 650 650 

14.15 490.5 650 650 650 

Appendix B 

The material properties of the Pb75-Sn25 alloy have been determined by carrying out 

compression tests at four different strain rates at room temperature and the relevant flow stress 

curves have been derived considering the model presented in Equation (A1). The model constants 

for the flow stress model of Equation (A1) are reported in Table A1. The laboratory-size ring rolling 

machine, utilized for the validation experiment, is reported in Figure A1a whereas the comparison 

between experimental and numerical flow stress curves is shown in Figure A1b. 

  (A1) 

Table A1. Material model constants for the Pb75-Sn25 material. 

Parameters K0 a0 a1 b0 b1 

Value 92 0.1 0.03 0.015 0.17 

 

Figure A1. (a) Laboratory-size ring rolling machine utilized for the experiments and (b) Pb75-Sn25 alloy flow 

curves. 



Metals 2021, 11, 833 20 of 21 

References 

1. Kim, N.; Machida, S.; Kobayashi, S. Ring rolling process simulation by the three dimensional finite element method. Int. J. Mach. Tools 

Manuf. 1990, 30, 569–577. [CrossRef] 
2. Eruc, E.; Shivpuri, R. A summary of ring rolling technology-1. Recent trends in machines, process and production lines. Int. J. Mach. Tools 

Manuf. 1992, 32, 379–398. [CrossRef] 
3. Lugora, C.F.; Bramley, A.N. Analysis of spread in ring rolling. Int. J. Mech. Sci. 1987, 29, 149–157. [CrossRef] 
4. Bruschi, S.; Casptto, S.; Dal Negro, T.; Bariani, P.P. Real-time prediction of geometrical distortions of hot-rolled steel rings during cooling. 

CIRP Ann. Manuf. Technol. 2005, 54, 229–232. [CrossRef] 
5. Guo, L.; Yang, H. Towards a steady forming condition for radial-axial ring rolling. Int. J. Mech. Sci. 2011, 53, 286–299. [CrossRef] 6. Quagliato, 

L.; Berti, G.A. Mathematical definition of the 3D strain field of the ring in the radial-axial ring rolling process. Int. J. Mech. Sci. 2016, 115–

116, 746–759. [CrossRef] 
7. Quagliato, L.; Berti, G.A. Temperature estimation and slip-line force analytical models for the estimation of the radial forming force in the 

RARR process of flat rings. Int. J. Mech. Sci. 2017, 123, 311–323. [CrossRef] 
8. Quagliato, L.; Berti, G.A.; Kim, D.; Kim, N. Slip line model for forces estimation in the radial-axial ring rolling process. Int. J. Mech. Sci. 2018, 

138–139, 17–33. [CrossRef] 
9. Ryoo, J.S.; Yang, D.Y.; Johnson, W. The influence of process parameters on torque and load in ring rolling. J. Mech. Work. Technol. 1986, 

12, 307–321. [CrossRef] 
10. Kalyani, A.; Anand, M.; Amol, D. The Effect of Force Parameter on Profile Ring Rolling Process. Int. J. Eng. Res. 2015, V4, 840–844. 
11. Kim, N.; Kim, H.; Jin, K. Optimal design to reduce the maximum load in ring rolling process. Int. J. Precis. Eng. Manuf. 2012, 13, 1821–1828. 

[CrossRef] 
12. Roesch, M.; Lukas, M.; Schultz, C.; Braunreuther, S.; Reinhart, G. An approach towards a cost-based production control for energy flexibility. 

Procedia CIRP 2019, 79, 227–232. [CrossRef] 
13. Unver, U.; Kara, O. Energy efficiency by determining the production process with the lowest energy consumption in a steel forging facility. 

J. Clean. Prod. 2019, 215, 1362–1370. [CrossRef] 
14. Meißner, M.; Massalski, L.; Wirtz, A.; Wiederkehr, P.; Myrzik, J. Representation of energy efficiency of energy converting production 

processes by process status indicators. Procedia CIRP 2019, 79, 221–226. [CrossRef] 
15. Larkiola, J.; Myllykoski, P.; Korhonen, A.S.; Cser, L. The role of neural networks in the optimisation of rolling processes. J. Mater. Process. 

Technol. 1998, 80–81, 16–23. [CrossRef] 
16. Giorleo, L.; Ceretti, E.; Giardini, C. Energy consumption reduction in Ring Rolling processes: A FEM analysis. Int. J. Mech. Sci. 2013, 74, 55–

64. [CrossRef] 
17. Allegri, G.; Giorleo, L.; Ceretti, E.; Giardini, C. Driver roll speed influence in Ring Rolling process. Procedia Eng. 2017, 207, 1230–1235. 

[CrossRef] 
18. Berti, G.A.; Quagliato, L.; Monti, M. Set-up of radial–axial ring-rolling process: Process worksheet and ring geometry expansion prediction. 

Int. J. Mech. Sci. 2015, 99, 58–71. [CrossRef] 
19. Davey, K.; Ward, M.J. A practical method for finite element ring rolling simulation using the ALE flow formulation. Int. J. Mech. Sci. 2002, 

44, 165–190. [CrossRef] 
20. Lim, T.; Pillinger, I.; Hartley, P. A finite-element simulation of profile ring rolling using a hybrid mesh model. J. Mater. Process. Technol. 

1998, 80–81, 199–205. [CrossRef] 
21. Kim, B.; Moon, H.; Kim, E.; Choi, M.; Joun, M. A dual-mesh approach to ring-rolling simulations with emphasis on remeshing. 

J. Manuf. Process. 2013, 15, 635–643. [CrossRef] 

22. Zhao, D.; Zhao, K.; Ren, D.; Guo, X. Ultrasonic Welding of Magnesium-Titanium Dissimilar Metals: A Study on Influences of 
Welding Parameters on Mechanical Property by Experimentation and Artificial Neural Network. J. Manuf. Sci. Eng. Trans. ASME 2017, 139, 

031019. [CrossRef] 
23. Wu, D.; Jennings, C.; Terpenny, J.; Gao, R.X.; Kumara, S. A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: 

Tool Wear Prediction Using Random Forests. J. Manuf. Sci. Eng. Trans. ASME 2017, 139, 071018. [CrossRef] 
24. Tootooni, M.S.; Dsouza, A.; Donovan, R.; Rao, P.K.; Kong, Z.J.; Borgesen, P. Classifying the Dimensional Variation in Additive Manufactured 

Parts from Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches. J. Manuf. Sci. Eng. Trans. ASME 2017, 

139, 091005. [CrossRef] 

25. Wang, Z.; Chegdani, F.; Yalamarti, N.; Takabi, B.; Tai, B.; El Mansori, M.; Bukkapatnam, S. Acoustic emission characterization of natural fiber 

reinforced plastic composite machining using a Random Forest machine learning model. J. Manuf. Sci. Eng. Trans. ASME 2020, 142, 1–13. 

[CrossRef] 

26. Varghese, A.; Kulkarni, V.; Joshi, S.S. Tool life stage prediction in micro-milling from force signal analysis using machine learning methods. 

J. Manuf. Sci. Eng. Trans. ASME 2021, 143, 1–7. [CrossRef] 
27. Wang, D.; Xu, Y.; Duan, B.; Wang, Y.; Song, M.; Yu, H.; Liu, H. Intelligent recognition model of hot rolling strip edge defects based on deep 

learning. Metals 2021, 11, 223. [CrossRef] 

http://doi.org/10.1016/0890-6955(90)90008-7
http://doi.org/10.1016/0890-6955(90)90008-7
http://doi.org/10.1016/0890-6955(92)90009-6
http://doi.org/10.1016/0890-6955(92)90009-6
http://doi.org/10.1016/0020-7403(87)90049-X
http://doi.org/10.1016/0020-7403(87)90049-X
http://doi.org/10.1016/S0007-8506(07)60090-0
http://doi.org/10.1016/S0007-8506(07)60090-0
http://doi.org/10.1016/j.ijmecsci.2011.01.010
http://doi.org/10.1016/j.ijmecsci.2011.01.010
http://doi.org/10.1016/j.ijmecsci.2016.07.009
http://doi.org/10.1016/j.ijmecsci.2016.07.009
http://doi.org/10.1016/j.ijmecsci.2017.02.008
http://doi.org/10.1016/j.ijmecsci.2017.02.008
http://doi.org/10.1016/j.ijmecsci.2018.01.025
http://doi.org/10.1016/j.ijmecsci.2018.01.025
http://doi.org/10.1016/0378-3804(86)90003-3
http://doi.org/10.1016/0378-3804(86)90003-3
http://doi.org/10.1007/s12541-012-0239-4
http://doi.org/10.1007/s12541-012-0239-4
http://doi.org/10.1016/j.procir.2019.02.054
http://doi.org/10.1016/j.procir.2019.02.054
http://doi.org/10.1016/j.jclepro.2019.01.168
http://doi.org/10.1016/j.jclepro.2019.01.168
http://doi.org/10.1016/j.procir.2019.02.052
http://doi.org/10.1016/j.procir.2019.02.052
http://doi.org/10.1016/S0924-0136(98)00206-4
http://doi.org/10.1016/S0924-0136(98)00206-4
http://doi.org/10.1016/j.ijmecsci.2013.04.008
http://doi.org/10.1016/j.ijmecsci.2013.04.008
http://doi.org/10.1016/j.proeng.2017.10.875
http://doi.org/10.1016/j.proeng.2017.10.875
http://doi.org/10.1016/j.ijmecsci.2015.05.004
http://doi.org/10.1016/j.ijmecsci.2015.05.004
http://doi.org/10.1016/S0020-7403(01)00080-7
http://doi.org/10.1016/S0020-7403(01)00080-7
http://doi.org/10.1016/S0924-0136(98)00106-X
http://doi.org/10.1016/S0924-0136(98)00106-X
http://doi.org/10.1016/j.jmapro.2013.05.002
http://doi.org/10.1016/j.jmapro.2013.05.002
http://doi.org/10.1115/1.4035539
http://doi.org/10.1115/1.4035539
http://doi.org/10.1115/1.4036350
http://doi.org/10.1115/1.4036350
http://doi.org/10.1115/1.4036641
http://doi.org/10.1115/1.4036641
http://doi.org/10.1115/1.4045945
http://doi.org/10.1115/1.4045945
http://doi.org/10.1115/1.4048636
http://doi.org/10.1115/1.4048636
http://doi.org/10.3390/met11020223
http://doi.org/10.3390/met11020223


Metals 2021, 11, 833 21 of 21 

28. Marques, A.E.; Prates, P.A.; Pereira, A.F.G.; Oliveira, M.C.; Fernandes, J.V.; Ribeiro, B.M. Performance comparison of parametric and non-

parametric regression models for uncertainty analysis of sheet metal forming processes. Metals 2020, 10, 457. [CrossRef] 
29. Palmieri, M.E.; Lorusso, V.D.; Tricarico, L. Robust optimization and kriging metamodeling of deep-drawing process to obtain a regulation 

curve of blank holder force. Metals 2021, 11, 319. [CrossRef] 
30. Winiczenko, R. Effect of friction welding parameters on the tensile strength and microstructural properties of dissimilar AISI 1020-ASTM 

A536 joints. Int. J. Adv. Manuf. Technol. 2015, 84, 941–955. [CrossRef] 
31. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 

1–22. [CrossRef] 

32. Kim, S.J.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An interior-point method for large-scale `1-regularized least squares. IEEE 
J. Sel. Top. Signal Process. 2007, 1, 606–617. [CrossRef] 

33. Murphy, K.P. Machine Learning: A Probabilistic Perspective; Chapter 14.4.3; The MIT Press: Cambridge, MA, USA, 2012; pp. 492–493. 
34. Chang, C.-C.; Lin, C.J. A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2019, article 27. 
35. Liu, Z.; Guo, Y. A hybrid approach to integrate machine learning and process mechanics for the prediction of specific cutting energy. CIRP 

Ann. 2018, 67, 57–60. [CrossRef] 
36. Torres-Barrán, A.; Alonso, Á.; Dorronsoro, J.R. Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing 

2019, 326–327, 151–160. [CrossRef] 
37. Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of undrained shear strength using extreme gradient boosting and random forest 

based on Bayesian optimization. Geosci. Front. 2021, 12, 469–477. [CrossRef] 
38. Stanke, J.; Feuerhack, A.; Trauth, D.; Mattfeld, P.; Klocke, F. A predictive model for die roll height in fine blanking using machine learning 

methods. Procedia Manuf. 2018, 15, 570–577. [CrossRef] 
39. Olanrewaju, O.A.; Jimoh, A.A.; Kholopane, P.A. Integrated IDA-ANN-DEA for assessment and optimization of energy consumption in 

industrial sectors. Energy 2012, 46, 629–635. [CrossRef] 
40. Ruiz, L.G.B.; Rueda, R.; Cuéllar, M.P.; Pegalajar, M.C. Energy consumption forecasting based on Elman neural networks with evolutive 

optimization. Expert Syst. Appl. 2018, 92, 380–389. [CrossRef] 
41. Zhu, X.; Liu, D.; Yang, Y.; Hu, Y.; Zheng, Y. Optimization on cooperative feed strategy for radial-axial ring rolling process of Inco718 alloy by 

RSM and FEM. Chin. J. Aeronaut. 2016, 29, 831–842. [CrossRef] 
42. Hawkyard, J.B.; Johnson, W.; Kirkland, J.; Appleton, E. Analyses for roll force and torque in ring rolling, with some supporting experiments. 

Int. J. Mech. Sci. 1973, 15, 873–893. [CrossRef] 
43. Hensel, A.; Spittel, T. Kraft und Arbeitsbedarf Bildsamer Formgebungsverfahren, 1st ed.; Deutscher Verlag für Grundstoffindustrie: Leipzig, 

Germany, 1978. (In German) 
44. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. 
45. Winiczenko, R.; Salat, R.; Awtoniuk, M. Estimation of tensile strength of ductile iron friction welded joints using hybrid intelligent methods. 

Trans. Nonferrous Met. Soc. China 2013, 23, 385–391. [CrossRef] 
46. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw. 

Mach. Learn. 2012, 4, 26–31. 

http://doi.org/10.3390/met10040457
http://doi.org/10.3390/met10040457
http://doi.org/10.3390/met11020319
http://doi.org/10.3390/met11020319
http://doi.org/10.1007/s00170-015-7751-5
http://doi.org/10.1007/s00170-015-7751-5
http://doi.org/10.18637/jss.v033.i01
http://doi.org/10.18637/jss.v033.i01
http://doi.org/10.1109/JSTSP.2007.910971
http://doi.org/10.1109/JSTSP.2007.910971
http://doi.org/10.1016/j.cirp.2018.03.015
http://doi.org/10.1016/j.cirp.2018.03.015
http://doi.org/10.1016/j.neucom.2017.05.104
http://doi.org/10.1016/j.neucom.2017.05.104
http://doi.org/10.1016/j.gsf.2020.03.007
http://doi.org/10.1016/j.gsf.2020.03.007
http://doi.org/10.1016/j.promfg.2018.07.279
http://doi.org/10.1016/j.promfg.2018.07.279
http://doi.org/10.1016/j.energy.2012.07.037
http://doi.org/10.1016/j.energy.2012.07.037
http://doi.org/10.1016/j.eswa.2017.09.059
http://doi.org/10.1016/j.eswa.2017.09.059
http://doi.org/10.1016/j.cja.2016.03.001
http://doi.org/10.1016/j.cja.2016.03.001
http://doi.org/10.1016/0020-7403(73)90018-0
http://doi.org/10.1016/0020-7403(73)90018-0
http://doi.org/10.1016/S1003-6326(13)62474-7
http://doi.org/10.1016/S1003-6326(13)62474-7

