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Abstract 

In recent years, the interaction between numerosity and continuous quantities has grown from a 

methodological nuisance to a theoretically relevant issue to understand the mechanisms of numerosity 

perception and representation, as well as to clarify the connection between basic numerical abilities 

and formal mathematical skills. This thesis explores the interplay between numerosity and continuous 

magnitude processing by investigating the role of spatial and temporal features in numerosity 

judgments. After a first overview of the relevant literature, we describe two studies where we 

introduce an innovative stimulus space inspired by a recently developed method to assess the 

influence of temporal information during sequential numerosity judgments. Based on this method, 

we present a study demonstrating that individuals do not rely uniquely on non-numerical information 

in temporal numerosity discrimination, but they can be significantly biased by temporal cues both in 

the visual and auditory modalities. Moreover, a second study shows that temporal biases emerge even 

in absence of an explicit conflict between magnitudes at the response-selection level, such as in 

numerosity estimation tasks, in support of theoretical accounts that assume a partial representational 

overlap between magnitudes, specifically for the temporal and numerical domains. A third study 

focuses on the investigation of non-numerical interference effects in developmental dyscalculia, to 

understand the specificity of the numerical difficulties displayed in this learning disability compared 

to domain-general deficits. We compared children with dyscalculia and children with average 

mathematical skills but similar visuospatial memory abilities in an explicit numerosity comparison 

task and a spontaneous categorization task assessing the saliency of numerosity and total surface area 

of the elements. We found in children with dyscalculia evidence of a reduced precision in 

discrimination without increased reliance on continuous features, suggesting a deficit in numerosity 

representation not necessarily linked with reduced filtering abilities. Finally, the last work introduces 

a new tool for generating non-symbolic numerical stimuli with precise manipulation of spatial visual 

features of the images. Specifically, through a user-friendly interface, the presented program aims at 

helping researchers with different levels of expertise to generate experimental sets with flexible and 

personalized characteristics, based on the specific experimental questions. Taken together, the 

original empirical studies and methodological innovation described in this work provide a multi-

faceted contribution to understand the mechanisms of numerosity perception and the refinement of 

basic numerical skills. 
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Synopsis 

The current thesis presents three contributions related to the investigation of the relationship 

between numerosity and continuous magnitude processing, specifically exploring the interference of 

non-numerical temporal and spatial features on numerosity judgments. 

The first part of the thesis will introduce the general framework where the current work 

originates. Chapter 1 will offer a broad overview of numerical cognition, with a particular focus on 

numerosity representation, in the context of the Number Sense theory (Dehaene, 1997). The ability 

to rapidly assess and manipulate the numerical information present in the environment, shown by 

human and non-human animals, will be presented as an expression of the Approximate Number 

System, a specialized system characterized by an abstract code of numerical magnitude (Feigenson 

et al., 2004). A brief introduction to the most common methods used in the field will also anticipate 

the methods used in the experimental work of the following section. Chapter 2 will then introduce 

the debate regarding the interplay between numerosity representation and continuous quantity 

processing, presenting the evidence demonstrating that numerosity judgments can be modulated by 

non-numerical quantities covarying with numerosity (Clayton et al., 2015; Gebuis & Reynvoet, 

2012). The chapter will then focus on the competing theoretical proposals that have been offered to 

describe the interaction between numerical, spatial, and temporal processing, with alternative 

proposals claiming that interference between numerical and non-numerical magnitudes arises from a 

conflict at the response-selection level or suggesting a more prominent role of continuous magnitudes 

at the sensory extraction level or a commonality in representation (Gebuis et al., 2016; Leibovich et 

al., 2017; Walsh, 2003). The second part of the thesis stems from this unresolved debate, offering 

three different contributions to increase our understanding of the interplay between numerosity and 

continuous magnitudes from three different points of view. 

In the first work, we tried to better characterize the effect of temporal magnitudes on different 

numerosity judgments in the healthy adult population. While spatial biases in visual parallel 

numerosity processing have been extensively studied, the impact of temporal features of the stimuli 

on numerosity judgments is still largely unknown. Specifically, current studies provide contradictory 

evidence on the existence and direction of interference effects from temporal quantities (e.g., 

duration, rate) on sequential numerosity perception (Dormal et al., 2008; Tokita & Ishiguchi, 2011). 

Chapter 3 will then describe an online study in which we explored the impact of several temporal 
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quantities in a non-symbolic sequential numerosity comparison task in either visual or auditory 

modality. To this aim, we introduce a novel stimulus space based on the adaptation of a recently 

developed methodological framework (DeWind et al., 2015) that allows to vary the temporal 

properties of sequences to assess their contribution to response and individuate potential non-

numerical biases and strategies. Results suggest an interaction between temporal and numerical 

magnitude in shaping participants’ numerical judgments, with a similar pattern in the two sensory 

modalities. Chapter 4 presents a similar online investigation in which we assessed the impact of 

temporal quantities in a numerosity estimation task with either visual or auditory sequences. Using a 

similar method to the previous study we varied sequences of events in numerosity, Duration, and 

Temporal Spacing, aiming to better assess the direction of non-numerical biases using an unrestricted 

response. Results replicated the findings obtained with the numerosity comparison task in both 

sensory modalities, confirming a significant interaction between numerical and temporal information 

even in the absence of an explicit conflict in response selection. A discussion on the possible locus 

of interaction between magnitudes is then presented. 

The second contribution focused on investigating the link between interference effects and 

mathematical learning deficits. Since numerosity representation has been linked to symbolic 

numerical skills (Chen & Li, 2014), the study of interference effects in numerosity perception can be 

useful to understand the role of basic number processing in the acquisition of formal mathematical 

abilities, both in typical and atypical development (Gilmore et al., 2013; Piazza et al., 2018). In 

particular, impaired numerosity perception in developmental dyscalculia has been interpreted as 

evidence of reduced representational precision in the neurocognitive system supporting non-symbolic 

number sense (Mazzocco et al., 2011). However, recent studies suggest that poor numerosity 

judgments might stem from stronger interference from non-numerical visual information, in line with 

alternative accounts that highlight domain-general impairments in executive functions and 

visuospatial abilities in the etiology of dyscalculia (Bugden & Ansari, 2016). In Chapter 5 we present 

a study investigating the specificity of numerosity impairments, assessing the contribution of 

numerical and non-numerical features in an explicit numerosity comparison task and the relative 

saliency of number and total surface area in a spontaneous categorization task. Children with 

dyscalculia were compared to control children with average mathematical skills but matched for age, 

IQ, and visuospatial memory. In both tasks, children with dyscalculia presented weaker number-based 

responses compared to matched controls, with no evidence of a stronger influence of non-numerical 

information. Results are discussed in terms of a weaker number encoding in dyscalculia not 

necessarily related to reduced filtering abilities. 
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Finally, the third work focused on practical methodological aspects related to the generation 

of non-symbolic visual collections of elements. In particular, the growing awareness of the research 

community towards the interplay between numerical and non-numerical quantities has increased the 

necessity in many different sub-fields of numerical cognition for careful consideration of the 

continuous magnitudes of visual arrays. Chapter 6 introduces CUSTOM GUIde, a MATLAB 

application for creating visual arrays of elements with precise and flexible control of several visual 

magnitudes of the arrays (e.g., the surface of the elements, convex hull) that we developed to help 

researchers in the generation of experimental sets. The chapter offers a description of the new 

program, based on the CUSTOM algorithms (De Marco & Cutini, 2020) but improved and equipped 

with a user-friendly interface to allow researchers with different backgrounds the creation of sets of 

single arrays or pairs of arrays and the generation of stimuli suited for a large range of empirical 

studies. An overview of the versatile applications of the program is offered through examples of how 

to easily replicate common methods from literature or generate personalized datasets to address novel 

research questions. 

Last, Chapter 7 will provide a more general discussion, drawing conclusions on the 

theoretical implications of the results of the experimental studies and the potential applications of the 

methodological work. 
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1 CHAPTER 1 

Numerical Cognition 

Numbers are abstract mathematical objects associated with symbolic numerals such as Arabic 

digits or number words. As such, they are cultural concepts learned through language and formal 

education, at the basis of sophisticated human inventions such as algebra and calculus. However, the 

word number is also used to describe discrete quantities, such as the cardinality of a set of individual 

objects. In this sense, number, also called numerosity, is a property of the environment. 

1.1 An approximate sense of number 

As first introduced by the mathematician Tobias Dantzig in 1930, humans and even some 

non-human animals are endowed with the ability to appraise the numerosity of sets quickly and 

effortlessly, an ability he called “number sense”. Originally, the author was referring to the exact 

enumeration of elements in small sets, similar to the process defined by the current term of 

“subitizing” (Kaufman et al., 1949). Nowadays, number sense is more generally used to describe the 

ability to intuitively attend, perceive, discriminate and manipulate numerical information (Dehaene, 

1997).  

In fact, when prevented from counting, individuals show to estimate the cardinality of a set 

in an approximate and imprecise manner (Dehaene, 1992) and the variability in the estimates 

increases with the numerosity to be estimated (Whalen et al., 1999; Jevons, 1871). More specifically, 

when asked to discriminate which between two sets contains more elements, individuals become 

faster and more accurate as the numerical distance between collections increases (numerical distance 

effect), while their response times and error rates worsen when, for equal numerical distances, the 

absolute numerical magnitude of the sets increases (size effect) (Moyer & Landauer, 1967). In other 

words, it appears that the discriminability between numerosities does not depend on their absolute 

distance, but rather on their relative distance (i.e., their ratio). This is in accordance with Weber’s 

law, stating that the minimum change in stimulus intensity that an individual can perceive (just 

noticeable difference or discrimination threshold) is a constant proportion of stimulus intensity (but 

see Testolin & McClelland, 2020).  
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According to the most credited theory in numerical cognition, the ability to discriminate and 

estimate numerosity without counting is thought to rely on a nonverbal mechanism, called the 

Approximate number system (ANS), consisting of an analog representation of numerical magnitude 

(Feigenson et al., 2004). This representation is conceptualized as distributions of activation mapped 

on an internal continuum, often referred to as a “number line”, with two competing mathematical 

formulations. The first one models numerosity distributions as linearly spaced and defined by a 

variability proportional to numerical magnitude (Scalar variability model), so that large numerosity 

distributions are characterized by a progressively larger overlap that increases the likelihood of 

confounding nearby numerosities (Gallistel & Gelman, 1992). In the second model (Logarithmic 

model), numerosity curves are characterized by equal noise, but they are compressed in a logarithmic 

scale, resulting in a similarly larger overlap between the distributions of larger numerosities (Dehaene 

& Changeux, 1993).  

Despite the different mathematical definitions, these two formal models make similar 

psychological predictions compatible with the described signatures of numerosity processing, and 

they have therefore been often used interchangeably in the literature to model response accuracy in 

psychophysical tasks. However, it must be noted that neurobiological evidence in human and non-

human animals favors the idea of a compressive scaling of numerosity representation (Dehaene, 2003; 

Nieder & Miller, 2004; Piazza et al., 2004). 

More generally, numerosity perception is believed to rely on an accumulator process that, 

after object identification, sums the input items normalizing their physical properties, resulting in an 

approximate estimate of numerosity irrespective of their position and dimension (Dehaene & 

Changeux, 1993; Nieder, 2016). 

1.1.1 Measuring number processing 

As previously described, in both conceptualizations of the ANS, the discriminability between 

two numerical magnitudes depends on the overlap between their distributions. More specifically, we 

can take the width of the Gaussian curves (or a scaling factor of the width, in the linear model of the 

mental number line) as the noise in the approximate representation (Dehaene, 2007). This is referred 

to as the internal Weber fraction (w) and it is taken as a measure of number acuity, an indirect index 

of the quality of the underlying numerosity representation (Halberda & Odic, 2015).  

Behaviorally, the Weber fraction can be estimated from performance in basic numerosity 

judgments. One of the most common tasks used in this field is the numerosity discrimination (or 

comparison) task, which consists in presenting participants with pairs of sets of items, varying in their 

numerical ratios, and asking them to indicate which set contains more. Variants of this task include 
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the comparison of single sets with an internal reference or reporting if two sets contain the same 

number of items, also called match-to-sample task. 

An alternative method relies on asking participants to estimate the number of elements in sets 

by providing verbal labels (numerosity estimation task or numerosity-labeling task). As previously 

introduced, in this type of tasks participants’ estimates become progressively more variable as the 

target numerosity increases, with variability increasing proportionally to mean estimates (i.e., scalar 

variability). Following the linear model of the ANS, the precision of the response is then represented 

by the Coefficient of Variation (CoV), the standard deviation of the estimates divided by the mean 

estimate, which is expected to be constant across target numerosities (Izard & Dehaene, 2008).  

Another characteristic of numerosity estimation is the tendency of participants to largely 

underestimate the number of items in the sets, which increases for larger sets following a power-law 

function. However, it is assumed that this phenomenon is related to a mismatch in the translation 

from the internal activation of the number line to number words, due to a different scaling of the 

response criteria used by participants (Izard & Dehaene, 2008). In this line, estimation tasks that do 

not require verbal labels, like tasks where participants are asked to reproduce the number of elements, 

can elicit different patterns of responses (Crollen et al., 2011). 

1.1.2 Subitizing, estimation, and texture ranges 

In contrast with the described approximate and ratio-dependent performance, when 

individuals are asked to estimate or compare collections with a few items, up to four or six, they 

provide fast and errorless responses, an ability called “subitizing” (Kaufman et al., 1949). In this 

range, performance in numerosity comparison tasks usually violates Weber’s law, and participants 

display similar accuracy and speed for different numerosities and ratios (Choo & Franconeri, 2014). 

Although in one view this phenomenon would be just a by-product of the scalar variability of the 

numerical representation, which predicts almost perfect discriminability for small numerosities 

(Cheyette & Piantadosi, 2020; Gallistel & Gelman, 1992; Sengupta et al., 2017), it has been proposed 

that “subitizing” might reflect an ability to precisely identify, localize and keep track of objects, 

related to a domain-general system called the Object Tracking System (OTS) (Feigenson et al., 2004;  

Trick & Pylyshyn, 1994). In support of this view, it has been shown that it is easier to compare two 

numerosities in the subitizing range compared to two sets with a similar ratio but higher magnitude 

(Revkin et al., 2008). In addition to this discontinuity in performance, several studies report that 

subitizing and estimation are differently affected by attentional load, with a major disruption of 

subitizing abilities due to an increase in attentional load (Burr et al., 2010), while larger numerosity 

processing appears less dependent on attentional mechanisms (Piazza et al., 2011). More specifically, 
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the number of items that individuals can immediately appraise (i.e., their subitizing limit) seems 

connected to working memory capacity (Green & Bavelier, 2003). 

A deviation from the typical patterns associated with numerosity estimation and 

discrimination has been identified also for high numerosities (hundreds of items). When sets of visual 

items are densely packed and the individual elements are difficult to perceptually segregate, 

participants appear to base their numerosity judgments on other aspects of the sets related to their 

density  (Anobile et al., 2014). The switch between different mechanisms is suggested by changes in 

numerosity discrimination thresholds, proportional to numerosity for sparse arrays and increasing 

with the square root of numerosity after certain increments in the number of items or their density 

(Anobile et al., 2015). Moreover, a discontinuity between mechanisms is supported also by different 

patterns in reaction times (Pomè, Anobile, Cicchini, & Burr, 2019) and different susceptibility to 

attentional costs in sparse sets and texture-like arrays (Pomè, Anobile, Cicchini, Scabia, et al., 2019). 

Additional support for distinct mechanisms involved in different numerosity ranges comes from 

neuropsychological evidence. A recent case study reported that a patient with a brain injury leading 

to deficits in object-tracking presented not only increased thresholds in discriminating small 

numerosities below ten but also large numerosities above sixty, with a concurrent impairment in 

discriminating inter-item distance (i.e., density). Instead, they displayed a relatively spared 

performance for intermediate numerosities, further suggesting a partial independence of numerosity 

perception from attentional control (Anobile, Tomaiuolo, et al., 2020). 

Altogether, these distinct characteristics suggest the implication of separate mechanisms 

differently or additionally involved in small number processing and in texture perception compared 

to numerosity estimation. 

1.2 Origin and development of basic numerical abilities 

The ability to attend to the numerical information in the environment is not uniquely human, 

but it is displayed by various animal species. Several non-human animals show spontaneous 

numerical assessments supporting adaptive behaviors such as joining a larger group of conspecifics 

as a defensive strategy (Ledesma & McRobert, 2008), maximizing foraging decisions (Giurfa, 2019), 

or evaluating whether to engage in fights (Benson-Amram et al., 2011). For example, Hauser and 

colleagues (2000) report that rhesus monkeys spontaneously discriminate small numbers of apple 

slices with discrimination ability up to 3 vs. 4 and 3 vs. 5. Similarly, mosquitofish tend to select the 

larger shoal if different groups present a large enough ratio (Agrillo et al., 2008). 
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As for humans, numerosity performance displayed spontaneously or by trained animals 

follows Weber’s law. For example, rhesus monkeys tested in numerosity ordering judgment, with 

different ranges from 1 to 30 items, show response times and accuracy modulated by the numerical 

ratio (Cantlon & Brannon, 2007). Ratio dependency in numerosity-related responses is also displayed 

by other vertebrates and invertebrates (Agrillo et al., 2012; Ward & Smuts, 2007). Moreover, a 

dissociation in discrimination performance related to small and large numerosity has been 

individuated even in distant taxa like fish and primates or monkeys, suggesting their reliance on 

different systems for small and large quantities (Bisazza et al., 2010; Hauser et al., 2000). Taken 

together, these results indicate that basic numerical abilities in humans could be subserved by 

evolutionarily ancient mechanisms common to different animal species. 

This view is further supported by studies on the numerical abilities of infants, which report 

that humans are sensitive to numerosity shortly after birth. Izard and colleagues (2009) showed that 

infants within one week from birth, after being familiarized with a stream of auditory syllables, 

presented a preference (longer looking times) for visual-spatial arrays with the same number of 

elements, discriminating large numerosity differing by a 1:3 ratio. This result was replicated in a later 

study, where newborns showed to differentiate a 1:3 ratio with large numerosities (4 vs. 12 or 3 vs. 

9), although they failed when the comparison pair involved numerosity equal to 2 (Coubart et al., 

2014). Altogether, these results from human infant studies and comparative cognition research have 

been interpreted as evidence that the mechanisms supporting numerical abilities could be innate. 

However, it must be noted that computational studies have revealed that numerosity representation 

can also emerge from simple architectural constraints and domain-general learning processes (Zorzi 

& Testolin, 2018). 

Nonetheless, converging evidence suggests that numerical competence is present or emerges 

in early development and that it undergoes a rapid progressive improvement over the first years of 

life. Rudimentary discrimination of sets differing by a 1:3 ratio has been reported not only in 

newborns but also in 4-month-old infants, through habituation paradigms with redundant visual and 

auditory numerical inputs (Wang & Feigenson, 2021). Discrimination precision improves over 

development, with 6-month-olds successfully discriminating 1:2 ratios and 9-month-olds being able 

to distinguish sequences of tones differing by a 2:3 ratio (Lipton & Spelke, 2003; Xu & Spelke, 2000). 

Similar attention to the numerical information has been reported also using violation-of-expectation 

paradigms, in which 9-month-old infants show to look preferentially at unexpected results of 

additions and subtractions (McCrink & Wynn, 2004). This increase in numerical acuity has been 

reported to continue throughout childhood and adolescence (Halberda & Feigenson, 2008; Piazza et 

al., 2010; Sella, Berteletti, et al., 2016) with adult participants being able to discriminate numerosities 
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up to 9:10 or 10:11 ratios (Barth et al., 2003; Halberda & Feigenson, 2008; Pica et al., 2004). Despite 

the methodological differences between studies in paradigms, stimulus modality, and manipulation 

of visual properties, which decrease the comparability of the presented results, the overall picture 

emerging from developmental studies suggests a progressive increase in the ability to discriminate 

numerosity during the lifespan. 

1.3 Supramodal numerosity processing 

Although prevalently investigated through the presentation of visual arrays of items, 

numerosity perception is not limited to dot arrays, but it concerns also other modes of presentations 

(time-variant or time-invariant, such as spatial arrays or temporal sequences of events) and other 

sensory modalities (visual, auditory or tactile). 

We have already mentioned that even newborns and infants respond to numerosity integrating 

information converging from different modalities, for example showing, after familiarization with 

sequences of auditory stimuli, a preference for visual arrays with the same number of items (Izard et 

al., 2009; Jordan & Brannon, 2006). Recently, it has also been shown that infants can benefit from 

redundant information from different modalities, which increases discrimination precision (Wang & 

Feigenson, 2021). This ability to generalize or match numerical information across sensory modalities 

has also been reported in non-human animals such as rats (Church & Meck, 1984) and monkeys 

(Jordan et al., 2005, 2008).  

Moreover, similarities in response to numerosity conveyed through different sensory 

modalities have been identified from infancy to adulthood. Lipton and Spelke (2003) report that 6-

month-old infants can discriminate auditory sequences differing by a 2:1 ratio, similar to the threshold 

described in another study for a group of infants with the same age in response to visual arrays (Xu 

& Spelke, 2000). Other studies highlighted similar precision in the estimation of numerosity from 

visual or auditory sequences as well as for parallel visual arrays, both in children and adults (Anobile 

et al., 2018), and individuated in adult participants similar thresholds in the numerosity discrimination 

of auditory or tactile streams of events (Tokita & Ishiguchi, 2016). Moreover, both children and adults 

seem able to compare numerosity across different sensory modalities or modes of presentation 

without additional cost in performance or speed (Barth et al., 2005; Barth et al., 2003). 

Additional support for the abstractness of numerosity representation, independent from 

modality and mode of presentation, comes from a line of research reporting adaptation effects to 

numerosity. Specifically, it has been demonstrated that individuals judge as more numerous visual 

arrays of elements preceded by arrays with small numerosities and perceive as less numerous arrays 
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preceded by a large number of elements (Burr & Ross, 2008). This effect has been reported not only 

with visual arrays of items but also using sequences of flashes or tones, thereby suggesting that it is 

not modality specific. More importantly, it has been shown that adaptation occurs also across sensory 

modalities and generalizes across modes of presentation, so that repeated exposition to auditory 

sequences with high numerosity leads to underestimation of visual sequences, and adaptation to time-

variant numerosity affects estimates of time-invariant stimuli (Arrighi et al., 2014). Interestingly, a 

similar distortion of perceived numerosity has been found also when numerosity judgments were 

performed after motor adaptation to a sequence of self-generated motor routines (i.e., finger tapping 

in mid-air), with fast tapping decreasing estimates of large numerosities and slow tapping leading to 

overestimation, with similar results in either simultaneous or sequential mode and both in the visual 

and auditory modality (Anobile, Arrighi, et al., 2016; Maldonado Moscoso et al., 2020; Togoli et al., 

2020). This interaction between motor actions and numerosity perception further suggests a 

supramodal encoding of numerical magnitude constituting a link between perception and action 

(Anobile et al., 2021). 

However, it must be noted that differences between sensory modalities and presentation 

modes have also been reported. For example, Tokita and colleagues (2013) found that adults are more 

precise in discriminating sequential numerosity in the auditory modality compared to the visual one, 

with an in-between performance for cross-modal comparisons. Differences between presentation 

modes have also been reported by the same authors, with higher precision in discriminating 

simultaneous arrays compared to visual sequences of events (Tokita & Ishiguchi, 2012). 

In conclusion, although research with infants and adaptation studies point to a generalized 

mechanism to represent and process numerosity irrespective of modality and presentation mode, some 

discrepancies across sensory modalities suggest a distinct processing. 

1.4 From numerosity to mathematics 

Given the possible hereditary origin of the number sense, and more in general its non-verbal 

nature, it has been proposed that the approximate number system could play a scaffolding role in the 

acquisition of symbolic number representation and the construction of more advanced mathematical 

abilities (Piazza, 2010, for a review). 

The idea that symbolic numerals might be grounded in approximate magnitude 

representations arises from evidence showing that ANS signatures such as size and distance effects 

are present also in tasks that involve exclusively symbolic numbers (Dehaene et al., 1990). This effect 

has been interpreted as direct access to the analog magnitude representation of quantity independently 
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from format, as postulated by the Triple Code Model (Dehaene, 1992), or more specifically as a 

semantic mapping between numerals and approximate numerosity representation that individuals 

would form during the acquisition of counting (Gallistel & Gelman, 1992). However, the general 

underestimation shown by individuals in perceptual estimation tasks, when they are asked to assign 

a symbolic label to a non-symbolic quantity, suggests a more complex mapping between the two 

formats. Moreover, other authors have failed in finding psychophysical similarities between symbolic 

and non-symbolic processing (Sasanguie et al., 2017) and observed that individuals are slower and 

less precise when they have to integrate numerical information in symbolic and non-symbolic formats 

(Lyons et al., 2012; Marinova et al., 2020), suggesting a less immediate cross-format access 

(Leibovich & Ansari, 2016). 

A more general supporting role of the ANS in the development of numerical competence is 

proposed by studies that relate inter-individual differences in numerical acuity and mathematical 

achievement, especially during development (Gilmore et al., 2010; Halberda et al., 2008; Libertus et 

al., 2011, 2013). The correlational nature of most studies leaves open the interpretation of this 

relationship. In fact, a bidirectional influence has been proposed, so that the acquisition of formal 

mathematical abilities and symbolic labels for number shows an impact on the performance in 

approximate tasks (Elliott et al., 2019; Piazza et al., 2013; Pica et al., 2004). Nonetheless, several 

longitudinal studies have more precisely identified numerical acuity in infancy as a predictor of later 

mathematical abilities during childhood, irrespective of other general skills such as IQ and verbal 

competence (Mazzocco et al., 2011b; Starr et al., 2013; van Marle et al., 2014). However, different 

studies suggest that such a relationship could be mediated by other performance predictors such as 

executive functions (Gilmore et al., 2013), which have been also related to the acquisition of 

mathematical skills (Cragg & Gilmore, 2014, for a review). Studies on the adult population also led 

to mixed results. While some found a significant relationship between numerical acuity and 

concurrent mathematical abilities (Castronovo & Göbel, 2012; Halberda et al., 2012), others report 

no relationship between the two (Anobile et al., 2018; Inglis et al., 2011; Starr et al., 2017). Recent 

meta-analyses report stable, although moderate associations between numerical acuity and 

mathematical abilities only during childhood, while the predictive role of basic symbolic judgments 

seems more stable also in adulthood (Chen & Li, 2014; De Smedt et al., 2013; Fazio et al., 2014; 

Schneider et al., 2017). 

This open question extends further in the discussion regarding the etiology of the specific 

learning disorder with impairment in mathematics. This neurodevelopmental disorder, also known as 

Developmental Dyscalculia (DD), is characterized by persistent difficulties in the acquisition of 

mathematical and numerical skills that cannot be explained by a lack of adequate education and 
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learning experience, intellectual disability, or sensory deficits (American Psychiatric Association, 

2013). One view proposes that mathematical difficulties in DD could be related to a deficit in 

numerosity representation. Specifically, children and adolescents with DD have shown increased 

numerical distance effects (Mussolin, Mejias, et al., 2010; Price et al., 2007), higher thresholds in 

discriminating two numerosities (Decarli et al., 2020; Mazzocco et al., 2011a; Piazza et al., 2010), 

and a reduced precision in estimating non-symbolic numerical quantities (Mejias, Mussolin, et al., 

2012) suggesting a noisier representation of numerical magnitude. On the other hand, other studies 

have failed to find differences between younger children with DD and their peers in non-symbolic 

magnitude judgments, reporting instead a reduced precision in the discrimination and manipulation 

of symbolic numbers (Iuculano et al., 2008; Rousselle & Noël, 2007). These results led to the proposal 

that difficulties in DD would emerge from a deficit in connecting numerical symbols with their 

semantic meaning (De Smedt & Gilmore, 2011; Vanbinst et al., 2014). Moreover, given the 

bidirectional influence between ANS and formal mathematical education (Piazza et al., 2013), in DD 

an initial deficit in linking exact symbols with approximate magnitude could prevent the refinement 

of the non-symbolic representation during development (De Smedt et al., 2013). Alternatively, 

different accounts relate mathematical and arithmetic difficulties to impairments in domain-general 

cognitive abilities such as working memory, visuospatial skills, or inhibition (Mammarella et al., 

2018; Passolunghi & Siegel, 2004; Szucs et al., 2013), relating the low mathematical performance of 

DD on a continuum with the typical population (Mammarella et al., 2021; Peters & Ansari, 2019). 

Reports on the association between basic non-symbolic numerical processing and 

mathematical skills have also inspired intervention studies that aimed at training the former in order 

to improve the latter. However, evidence on the efficacy of a training in non-symbolic numerical 

abilities to potentiate mathematical abilities is mixed. On one hand, computerized games with a partial 

focus on non-symbolic numbers have proved to be effective in enhancing symbolic numerical abilities 

in preschool children (Sella, Tressoldi, et al., 2016) and improving the overall number skills in 

children with DD and Down Syndrome (Sella et al., 2021; Wilson et al., 2006). Moreover, similar 

protocols based on practicing approximate calculation have led children with widely different cultural 

origins to improve their arithmetic skills (Hyde et al., 2014; Khanum et al., 2016). On the other hand, 

other studies on adults failed to find improvements in symbolic numerical abilities after training in 

approximate addition and subtraction (Szkudlarek et al., 2021), suggesting that training in 

approximate arithmetic might be more effective during development. 

Taken together, results suggest that the approximate numerical representation could play a 

more important role during the initial acquisition of symbolic numerical concepts, with decreasing 

importance following formal education. However, the inconsistent results across studies on DD and 
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regarding the relationship between non-symbolic and symbolic numerical processing in the general 

population are inconclusive regarding the foundational role of the ANS in the development of 

mathematical abilities. 

1.5 Neural bases of number representation 

Converging neuroscientific evidence has associated numerical processing with frontoparietal 

cortical networks (Nieder, 2005; Nieder & Dehaene, 2009). Piazza and colleagues (2004), using a 

functional magnetic resonance imaging (fMRI) adaptation paradigm, revealed a rebound effect in the 

hemodynamic response in the left and right intraparietal sulcus (IPS) selective to change in the 

numerosity of non-symbolic arrays of items, with a response proportional to numerical ratio, in line 

with the behavioral signatures of ANS. Similar regions had previously shown consistent activation in 

response to numerical information with modulations from numerical magnitude or distance, which 

led to the proposal that the IPS could be an important neural substrate supporting numerosity 

representation (see Dehaene et al., 2003, for a review). Indeed, recent studies using multi-voxel 

pattern analysis (MVPA) report successful decoding of numerical magnitude from visually presented 

non-symbolic numerical stimuli in parietal cortices (Bulthé et al., 2014; Cavdaroglu & Knops, 2019; 

Eger et al., 2015). Moreover, other studies using population receptive field (pRF) models describing 

population activity with Gaussian functions, showed tuned responses to passively observed 

numerosity in bilateral human posterior parietal cortex, with tuning width increasing with preferred 

numerosity (Harvey et al., 2013). Additional numerosity-selective neural populations with a 

topographic organization were identified in the association cortex, such as at the lateral temporo-

occipital junction, at the superior end of the parieto-occipital sulcus, around the postcentral sulcus 

and in between the precentral and superior frontal sulci, suggesting a role of quantity information in 

several perceptual, cognitive and motor processes (Harvey & Dumoulin, 2017a). Furthermore, 

several studies report the involvement of the parietal cortex in numerical magnitude processing during 

different tasks such as approximate computations (Bugden et al., 2019; Castaldi et al., 2020). 

Neurophysiological studies on animals further support the involvement of the parietal cortex 

in numerosity representation. Nieder and Miller (2004) report a parietal-frontal cortical circuit in the 

macaque with an initial response to numerosity in the posterior parietal cortex (PPC) and subsequent 

propagation in the lateral prefrontal cortex (PFC). The same group individuated, during a delayed 

match to sample task, numerosity selective neurons in the ventral portion of the parietal cortex (VIP), 

with an approximate response tuned to a preferred numerosity. Furthermore, numerosity-selective 

neurons were found also in the PPC and PFC of monkeys in the absence of an explicit numerical task 
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(Viswanathan & Nieder, 2013). Taken together, these neural parallelisms with humans support the 

idea of a primitive shared mechanism for numerosity representation (Nieder, 2016). However, it must 

be noted that both animal studies and some human studies found numerosity selectivity for a limited 

numerical range, usually not beyond the subitizing range (Harvey & Dumoulin, 2017a; Nieder & 

Miller, 2004). Moreover, IPS response to numerosity has sometimes been associated with response-

related processes more than numerosity processing itself (Göbel et al., 2004; Cavdaroglu et al., 2015). 

While decoding of non-symbolic numerosity has been successful in response to visual arrays 

of items, results are mixed regarding the existence of an abstract representation of numerosity, 

irrespective of presentation mode (temporal or spatial) and sensory modality. Some studies report 

similar modulation in human frontoparietal cortical networks from visual and auditory stimuli in 

simultaneous or sequential presentation mode (Castelli et al., 2006; Dormal et al., 2010; Piazza et al., 

2006). Moreover, a neuronal population responding to numerical magnitude irrespective of mode of 

presentation has been reported in monkeys, alongside separate ones with selective responses for time-

variant or time-invariant presentations of numerical stimuli (Nieder et al., 2006). Additionally, in the 

neural activity of crows between visual numerosity perception and reproduction, Kirschhock and 

Nieder (2022) individuated, in neural areas implicated in number processing and movement planning, 

a neuronal population whose activity was not only preferentially tuned to input numerosity but also 

predicting the number of pecks in the subsequent self-generated sequence, thereby reinforcing the 

hypothesis that numerosity perception could be tightly linked to action preparation. However, in 

humans, recent studies using support-vector classification (SVC) were able to significantly decode 

from parietal sites large numerical magnitude only for time-invariant arrays but not for temporal 

sequences. In addition, they failed in finding common neural substrates in response to visual arrays 

of elements and visual streams of events (Cavdaroglu & Knops, 2019). The same authors also failed 

in decoding numerosity-selective activation in response to sequential numerosity in both visual and 

auditory modality in the absence of an active task (Cavdaroglu et al., 2015). Instead, other authors 

individuated neural populations responding to haptic numerosity, showing a partial overlap with those 

individuated in response to visual stimuli. However, the different topographic organization of 

numerosity-selective responses in the two modalities suggests modality-specific populations as part 

of a supramodal functional network rather than a common representation (Hofstetter et al., 2021). 

Mixed evidence also characterizes the debate on a shared semantic representation of 

numerosity for different formats (symbolic vs non-symbolic) and specific symbolic notations (Arabic 

digits and number words). A meta-analysis from Sokolowski and colleagues (2017) reports several 

regions, including bilateral inferior parietal lobules, left superior parietal lobule, and right superior 

frontal gyrus, showing overlapping activation from symbolic and non-symbolic numerical processing 
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during explicit or implicit tasks. More specifically, several studies have reported that IPS shows 

adaptation to numerical information irrespective of presentation mode or format, and that adaptation 

effects occur also in cross-format conditions (Cohen Kadosh et al., 2007; Piazza et al., 2007). 

However, while overlapping activation in response to the two format is robust, a similarity at a more 

fine-grained scale is still debated. Eger and colleagues (2009) report an overall less accurate SVC 

decoding of small numerical magnitudes from activation in response to Arabic digits compared to 

visual arrays but found that pattern classification generalized from symbolic to non-symbolic format 

(although not vice-versa), suggesting a similarity in the neural patterns evoked by the two formats. 

Instead, Bulthé and colleagues (2014) did not find a generalization across formats in the classification 

of neural patterns in response to visual arrays and digits, neither in IPS nor in smaller regions 

individuated through searchlight analysis. Similarly, Lyons and colleagues (2015) could not detect, 

using representational similarity analysis (RSA), a significant relationship between the neural 

dissimilarity matrices derived from activation in response to symbolic and non-symbolic stimuli. 

In sum, while parietal cortical regions have been consistently implicated in numerical 

processing, possibly as part of the neural substrates involved in approximate magnitude 

representation, neuroimaging studies are inconclusive regarding the existence of a common 

representation of numerical magnitude irrespective of its source and modality and regarding 

similarities in the processing of non-symbolic and symbolic numerical information, leaving open the 

debate on the existence of an abstract numerosity representation as postulated by the Number Sense 

theory. 
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2 CHAPTER 2 

Number in Time and Space 

Whether we are studying infants or adults’ behavior, monkey electrophysiology, human 

neuroimaging, or computational models, one of the most pervasive challenges in studying the 

response to numerosity is the intrinsic correlation between the number of items and other perceptual 

features of the stimuli, namely continuous spatial magnitudes in case of visual (or tactile) arrays of 

items, and temporal features in case of sequences of visual, auditory or tactile events. More generally, 

it is believed that associations between the number of elements and other features occur with 

statistical regularity in the natural environment, so that in daily life the need to rely on numerical 

information independently from other quantities is rare (Gebuis et al., 2016). Critically, even in 

experimental setups, with carefully controlled stimuli, it has been demonstrated that it is 

mathematically impossible to vary the number of items of sets without changing other temporal or 

spatial features of the sets and that equating one feature inevitably causes others to vary proportionally 

to the number of elements (DeWind et al., 2015; Leibovich et al., 2017; Salti et al., 2017; Starr et al., 

2017). Researchers in the numerical cognition field have always tried to develop elaborated 

manipulations and clever experimental designs to disentangle the effect of numerical information 

from other perceptual cues, but the natural and intrinsic relationship between magnitudes has also 

fueled theoretical accounts of magnitude processing alternative or complementary to the theory 

presented in the previous chapter, that try to explain and incorporate the intrinsic covariance between 

spatial, temporal and numerical domains. 

2.1 Quantity interference in number processing 

It is now widely accepted that in performing a numerosity discrimination task, individuals can 

be influenced by other characteristics of the sets to be compared. For example, when comparing which 

of two visual arrays is more numerous, children and adults are faster and more accurate when the 

numerically larger set is distributed in a larger convex hull (i.e., the smallest envelope that contains 

all the elements of the set), than if the most numerous array is displayed in a smaller area (Clayton et 

al., 2015; Gebuis & Reynvoet, 2012a; Gilmore et al., 2016). Other studies have also reported a 

significant influence of the dimension of the items, although the direction of the effect is not 
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consistent (Clayton & Gilmore, 2015; Dakin et al., 2011; Gebuis & Reynvoet, 2012b; Leibovich & 

Henik, 2014; Starr et al., 2017; Yousif & Keil, 2020) and some studies have failed in finding a 

significant influence from item size (DeWind et al., 2015; Odic, 2018). 

Less clear is the effect of time cues, such as duration, on numerical judgments. Some have 

reported a positive influence of the duration of the stimuli on the numerosity estimation of visual 

arrays (Javadi & Aichelburg, 2012). Experiments using dynamic arrays with time-variant 

presentation have shown an opposite effect of overestimation of shorter events (Lambrechts et al., 

2013; Martin et al., 2017) or null results (Dormal & Pesenti, 2013). Although some inconsistencies 

can be related to differences in the nature of the stimuli, results are also mixed from investigations 

using a fully sequential presentation of events. Some studies did not report any interference on 

numerosity from the overall duration of the sequences (Agrillo et al., 2010; Dormal et al., 2006; Droit-

Volet et al., 2003) while others reported that variation in duration and rate in the sequences leads to 

a decrease in discrimination performance and influences the estimation of the number of events in 

the sequences (Philippi et al., 2008; Tokita & Ishiguchi, 2011). In sum, further investigations are 

required to better clarify under which conditions numerical and temporal quantities interact, while 

interference across discrete and continuous magnitude processing is more evident between 

numerosity and spatial extent. 

As previously introduced, the significant interference of continuous magnitudes during 

numerosity-related paradigms is relevant in the investigation of numerical magnitude processing and 

representation from a methodological point of view. Researchers in the field have always tried to 

control the non-numerical aspects of their stimuli, for example by varying continuous cues across 

trials or in different subsets to disrupt their correlation with numerosity (Piazza et al., 2004). However, 

this control method has been heavily criticized, since it assumes that individuals are not switching 

between different criteria attending to different features in different trials (Gebuis et al., 2016). It has 

been shown that spatial features can bias numerical decisions even when single features are not an 

informative cue, that is, when they do not correlate with numerosity in the entire set, and that 

congruency effects can arise from combinations of different cues (Gebuis & Reynvoet, 2012a). 

Moreover, it was reported that during numerosity decisions, individuals can be aware of alternative 

strategies and use them in a flexible way (Roquet & Lemaire, 2019). This concern was further 

supported by evidence showing that measures obtained with separate protocols are affected by the 

specific manipulation of the continuous features of the stimuli used, casting doubts on the reliability 

of past results based on numerical acuity measures and numerosity-related performance (Clayton et 

al., 2015; DeWind & Brannon, 2016). Most importantly, the growing body of evidence on the 

interaction between numerosity and continuous magnitudes revealed the necessity to better 
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characterize this relationship to understand the neurocognitive mechanisms of number and quantity 

processing. 

2.2 From sensory extraction to response conflict 

The nature of interference effects in numerosity judgments is the subject of an open and 

passionate debate in the field, with separate proposals differing on the processing level at which 

interaction between quantities might occur. 

A seminal model based on a neural network designed to explain numerosity perception is the 

Numerosity Detection System proposed by Dehaene & Changeux (1993). In this model, visual objects 

elicit activation in an input retina, projecting to a layer coding for object location that normalizes 

input size through lateral inhibition mechanisms. Normalized inputs would then elicit the activation 

of summation clusters, estimating the input numerosity in a threshold-like manner. Last, numerosity 

detectors, tuned to specific numerosity, would be activated based on the activity pattern of summation 

clusters. Later computational studies, revealing the emergence of numerosity representation in deep 

generative models of visual arrays of items, identified signatures of a normalization signal in 

inhibitory connections from units responding to the cumulative size of the items to numerosity 

detectors (Stoianov & Zorzi, 2012). This led to the idea that numerosity can be coded independently 

from other continuous properties of the sets. Moreover, they showed that degradation in the inhibitory 

connections worsened the numerosity discrimination abilities of the model on arrays where the 

cumulative area was equated (Cappelletti et al., 2014). In this vein, interference from the physical 

properties of the sets can occur due to inefficient mechanisms of normalization in the extraction of 

numerosity from the environment. However, it must be noted that this impaired mechanism was used 

to explain atypical performances in numerosity decisions, such as decreased discrimination in elderly 

individuals, rather than the typical numerosity response of healthy adults. Alternative models have 

been recently proposed for the extraction of numerical information from basic visual properties of the 

environment, such as aggregate Fourier power, that could explain modulation in numerosity 

perception due to variations in density (Paul et al., 2022). However, a fundamental issue in placing 

non-numerical biases at the sensory extraction level of visual numerosity is the flexibility that seems 

to characterize interference between numerical and non-numerical magnitudes, both in strength and 

direction. Moreover, biases in other sensory modalities or presentation formats remain unaddressed. 

To account for all the interactions between magnitudes during quantity judgments, one 

credited theory proposes that separate magnitude representations could compete at response selection 

if they provide contrasting information, such as in incongruent trials (Dramkin et al., 2022; Gilmore 
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et al., 2013; Nys & Content, 2012; Rousselle & Noël, 2008). This effect has been often compared to 

a Stroop-like conflict, in which the automatic reading of a word interferes with naming the word 

color, although the semantic meaning of the word is irrelevant to the task (Odic & Starr, 2018). At 

the neural level, it was recently reported that during a comparison task, congruent and incongruent 

trials elicit similar ratio-dependent responses at the parietal level, while differences between trials 

emerge as a difference in overall activation in task-related regions such as the inferior frontal gyrus, 

suggesting that congruency conditions would not differ in the underlying mechanism of numerosity 

extraction but in the recruitment of additional resources due to attentional and inhibitory control 

demands (Wilkey et al., 2017). At the behavioral level, DeWind & Brannon (2012) showed that trial-

by-trial feedback during a numerosity comparison task diminished the influence of total surface area, 

in support of a malleable process subject to top-down control. Moreover, other research highlighted 

how biases from task-irrelevant cues or congruency effects between different magnitudes might 

emerge more prominently during comparison tasks than other tasks with a less explicit response 

conflict, such as estimation tasks or match-to-sample tasks (numerosity and size: Dramkin et al., 

2022; Smets et al., 2015; duration and size: Yates et al., 2012). However, this theory is severely 

undermined by other studies that have reported a significant influence of spatial cues on numerosity 

estimation tasks, where a symbolic numerical response was required (Abalo-Rodríguez et al., 2022; 

Gebuis & Reynvoet, 2012b; Picon et al., 2019). 

2.3 Indirect numerosity perception 

Other theoretical frameworks interpret the malleable interaction between quantities as 

evidence that numerosity is not spontaneously and automatically extracted from the environment 

through a dedicated and specialized neurocognitive system, in direct contrast with the ANS account. 

Instead, they posit that numerical information is inferred from the combination of other continuous 

magnitudes. In one view, numerosity representation could emerge during development and language 

acquisition, through statistical learning of the correlation between non-numerical features (Leibovich 

et al., 2017). According to other perspectives, humans would not possess a numerosity representation 

at all, at least in the abstract sense proposed by the ANS, and numerosity judgments would entirely 

depend on the dynamic integration of non-numerical quantities (Gebuis et al., 2016; Gevers et al., 

2016). More specifically, the Sensory Integration Theory (Gebuis et al., 2016) proposes that 

numerosity estimates are based on the simultaneous evaluation and integration of the sensory features 

present in the sets, which would contribute to the final estimate with a weight proportional to their 

saliency. According to the authors, this mechanism would explain the flexible pattern of non-
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numerical biases emerging across studies and in particular inverse congruency effects, following 

several reports of overestimation of sets of items with small item sizes (Gebuis & Reynvoet, 2012a; 

Pekár & Kinder, 2020). Moreover, a complete reliance on non-numerical features could also be 

related to the inaccurate performance of individuals in numerosity estimation tasks, due to the absence 

of an immediate reference (Gebuis & Reynvoet, 2012b; Izard & Dehaene, 2008). 

In contrast to this view, several studies suggest that performance in numerosity comparison 

tasks cannot be reduced to a simple combination of the features characterizing the dimension or 

dispersion of the items in space (DeWind et al., 2015; Starr et al., 2017). Further evidence against an 

indirect extraction of numerosity comes from the effect of connectedness, so that visual arrays where 

items are connected by segments or clustered by enclosed shapes are systematically underestimated, 

compared to arrays of unconnected objects, even if the arrays present identical item size or density 

(Franconeri et al., 2009; He et al., 2009, 2015). Notably, this effect has been replicated also by studies 

that used open collinear inducers eliciting illusory connections between items, in which participants 

reported different numerosity estimates based on the alignment of the illusory contours in otherwise 

identical visual configurations (Adriano et al., 2021; Kirjakovski & Matsumoto, 2016). More 

importantly, different studies investigating the spontaneous saliency of numerical information in the 

categorization or reproduction of visual sets revealed that the performance of children, adults, and 

even non-human animals is better explained by their reliance on numerical magnitude than other 

visual features (Cicchini et al., 2019; Ferrigno et al., 2017; Roitman et al., 2007). Finally, in contrast 

with estimates entirely based on visual features, it was recently shown that in numerosity estimation 

individuals are minimally influenced by the physical properties of the array used to calibrate their 

numerical response (Abalo-Rodríguez et al., 2022). 

Additional evidence for a direct and separate extraction of numerical information derives from 

electrophysiological and neuroimaging studies. Using a stringent manipulation of visual magnitudes 

and evaluating their contribution to neural activity during passing viewing of visual non-symbolic 

arrays, several EEG studies found visual evoked potentials modulated by numerosity as early as 75 

ms in early visual areas (Fornaciai et al., 2017; Park et al., 2016), suggesting that numerosity 

processing occurs at early stages of the dorsal visual stream. Numerosity-related responses in the low-

level visual cortex were also revealed by an event-related fMRI paradigm (DeWind et al., 2018) and 

were detected, independently from other visual features, with MVPA techniques (Castaldi et al., 

2019). Furthermore, other studies implementing frequency-tagging EEG paradigms revealed 

occipital responses to changes in numerosity, rather than other visual magnitudes in adults (van 

Rinsveld et al., 2020), although this response seems to emerge in children between 3 and 10 years of 

age (Park, 2018). 
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Another result unexplained by the Sensory Integration theory is the bidirectional influence 

that characterizes quantities. Specifically, while there is evidence showing spatial and temporal 

interference during numerosity judgments, several studies highlighted the opposite interference of 

numerical magnitude during spatial or temporal decisions. For example, numerical information 

showed to bias participants’ response in cumulative area discrimination, hindering performance in 

case of incongruent trials (Nys & Content, 2012) with a stronger bias in children, negatively 

influenced by the number of items in reporting which between two sets had more area (Tomlinson et 

al., 2020). Similarly, Dormal and colleagues (2006) report that participants make more errors and are 

slower in reporting which of two sequences lasts longer when the number of events is incongruent 

with the duration of the sequence. Overall, the presence of these reverse biases is not accounted for 

by the proposal of an indirect extraction of numerical information from other magnitudes. 

2.4 A common magnitude system 

In addition to the bidirectional interference between different quantities, a large body of 

evidence shows that there are strong similarities in the way we track numbers, space, and time. There 

is consensus that when individuals perform quantity judgments on either one of these domains, they 

display a performance that adheres to Weber’s law, with scalar variability in estimates or ratio-

dependent thresholds in comparing numerosities, spatial extents, or temporal durations. 

This similarity is at the basis of a different framework proposing a common magnitude system 

involved in quantity processing of discrete and continuous spatial and temporal magnitudes. Walsh  

(2003) coined the term A theory of magnitude (ATOM), proposing that numerical, spatial, and 

temporal processing would be subserved by common parietal circuits and would share similar 

representational co-ordinates, due to the human need to integrate space, time, and quantity to produce 

action response. In the original conceptualization, the author specifically proposed that the inferior 

parietal cortex could be the neural substrate of a common magnitude system, operating from birth 

and progressively creating “apparent specializations” for each domain. Notably, this interpretation 

not only relates numerosity with spatial and temporal extent processing but also hypothesizes a 

common mapping of spatial, numerical, and temporal order and position, linked to the existence of 

spatial-numerical and spatio-temporal behavioral associations (e.g., SNARC and STARC effects) 

(Bueti & Walsh, 2009). 

2.4.1 Generalized magnitude behavior 

 In support of a common magnitude system, comparable precision in the discrimination of 

number, duration, and surface area has been reported in infancy (Brannon et al., 2006; VanMarle & 
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Wynn, 2006; Xu & Spelke, 2000). Similar sensitivity across the different magnitudes has been 

reported also in children and adults, although with mixed results. Droit-Volet and colleagues (2008) 

report that in comparison tasks of numerosity, duration, and line length, all quantity discrimination 

tasks for both children and adults were characterized by similar and superimposed psychophysical 

functions, at least when all three domains were presented sequentially. However, several studies 

report differences between magnitude processing, with higher precision for area discrimination than 

for numerosity comparison (Leibovich & Henik, 2014) or the opposite (Tomlinson et al., 2020). 

Mixed results were obtained also by studies investigating the correlation of discrimination precision 

within individuals, with reports of similarities between the threshold of numerical, length or density 

discrimination (DeWind & Brannon, 2012; Tibber et al., 2012) while others failed to replicate such 

results (Nys & Content, 2012). A progressive differentiation of magnitude domains is suggested also 

by cross-sectional studies focusing on children from 3 to 11 years of age and adults that revealed 

different developmental trajectories of discrimination acuity across different domains, with a fast 

improvement in area and length discrimination and a slower growth in the comparison of temporal 

duration or density, with numerosity discrimination showing an intermediate trajectory (Odic et al., 

2013; Odic & Starr, 2018). 

As previously stated, a common metric in the representation of different magnitudes could 

also account for the bidirectional cross-domain interaction observed during quantity judgments. In 

this vein, congruency effects have been found since infancy. Newborns and infants show congruency 

effects between numerical, spatial, and temporal quantities that lead them to attend to changes in 

length, compared to familiarization, only when they are congruent with changes in the number of 

concurrent auditory streams of syllables or changes in the duration of a continuous tone, but show no 

preference for discordant changes (De Hevia et al., 2014; Lourenco & Longo, 2010). Moreover, it 

was shown that the strength of the size-to-numerosity congruity effect in infancy predicts later 

interference in numerosity discrimination tasks in preschool age, even controlling for domain-general 

predictors such as inhibition skills (Lourenco & Aulet, 2019). Additional support for a cross-

magnitude interaction preceding response selection derives from evidence that adaptation effects 

generalize across domains. Several studies report that adaptation to long temporal durations (Togoli, 

Fedele, et al., 2021; Tsouli, Dumoulin, et al., 2019; Tsouli, van der Smagt, et al., 2019) or large areas 

(Zimmermann & Fink, 2016) leads to underestimation of a subsequent array of elements.  

Other studies have highlighted a connection between magnitude processing and action, as 

proposed by the ATOM theory. As introduced in the previous chapter, some studies show that 

adaptation to numerical information can occur also when adaptors are self-generated actions, 

suggesting a common processing of numerosity deriving from external events in the environment or 
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internal events (Anobile, Arrighi, et al., 2016). Crucially, similar cross-modal distortions were 

reported also in temporal and spatial domains. In separate studies, adaptation with fast (or slow) mid-

air finger tapping led to an underestimation (or overestimation) of the temporal duration of subsequent 

visual stimuli and the length of the distance between two elements (Anobile, Domenici, et al., 2020; 

Petrizzo et al., 2020). A link between magnitude representations subserving action is further 

supported by studies reporting a bidirectional influence between number processing and hand-

grasping movements. Some studies report a priming effect of Arabic digits on grasp hand shaping, 

with numerical magnitude influencing the speed and the extent of grip aperture (Andres et al., 2004; 

Namdar et al., 2014). Others showed a reverse priming effect of grasp movement on random number 

generation, with a spontaneous production of numeral congruent with the observed grip aperture 

(Badets et al., 2012). While these studies used symbolic numbers, a similar connection was recently 

revealed also in infants of 7-9 months, who showed to spontaneously associate large grip apertures 

to large non-symbolic numerical magnitudes during a habituation paradigm (Decarli, Veggiotti, et 

al., 2022).  

Overall, all these results contribute to suggesting the existence of a generalized system 

involved in sensorimotor transformations of numerical, spatial, and temporal magnitudes to enable 

effective action planning and execution (Anobile et al., 2021). However, the flexible direction of 

cross-magnitude biases, sometimes causing reverse congruency effects, remains unexplained in the 

context of a common magnitude representation (Gebuis & Reynvoet, 2012a). 

2.4.2 Shared neural circuits 

In parallel to the behavioral evidence, a common ground between magnitudes is suggested 

also at the neural level. Several neuroimaging studies implicate partially overlapping neural circuits 

in parietal regions, including the intraparietal sulcus, in numerosity, spatial and temporal processing 

(Cohen Kadosh et al., 2005; Dormal et al., 2012; Fias et al., 2003; Hubbard et al., 2005; Pinel et al., 

2004). Moreover, transcranial magnetic stimulation (TMS) on IPS has been associated with a 

disruption in the comparison of the numerosity of sets, the discrimination of length, and judgments 

of duration (Dormal et al. 2012; Hayashi et al., 2013; but see Dormal et al., 2008). Recently, a meta-

analysis identified a frontoparietal network implicated in discrete and continuous magnitude 

processing, involving bilateral parietal lobules and the right medial frontal gyrus. However, additional 

regions showed independent activation for numerosity processing (Sokolowski, Fias, Bosah Ononye, 

et al., 2017). Moreover, it remains discussed if the spatial overlap between domains at a larger scale 

could still be the expression of distinct neural populations. 
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Evidence of a more fine-grained overlap in the mechanisms of magnitude processing has 

instead been reported in non-human animals. Single units recording in macaque monkeys revealed in 

their PFC and PPC neurons simultaneously encoding numerosity and length with a tuned response 

for both, but also distinct populations, although anatomically interleaved, separately encoding 

discrete and continuous magnitude information (Tudusciuc & Nieder, 2007; Tudusciuc & Nieder, 

2009). Recently, topographic maps of tuned responses to object size have been reported also in 

humans (Harvey & Dumoulin, 2017a), in similar and partially overlapping locations to numerosity 

ones. In favor of a similar magnitude system and potentially explaining cross-magnitude 

interferences, significant correlations were identified between numerosity and size preferences in the 

overlapping areas. However, differences in the qualitative organization of the maps and partial 

independence between sites also suggest that while numerosity and size representation might share 

the same topographic organization, they could be the expression of different mechanisms. Moreover, 

a recent computational study showed that the interaction between numerical and non-numerical 

information might emerge from a partially shared representational space, and that cross-magnitude 

interference can decrease, through experience, due to a progressive disentangling in the encoding of 

numerical and non-numerical features (Testolin et al., 2020). 

In sum, current behavioral and neuroscientific data show general similarities in the processing 

mechanisms of different magnitudes and cross-magnitude interferences unrelated to conflicts in 

response selection and potentially linked to sensorimotor integration. However, partially independent 

neural substrates implicated in the three domains and differences in the developmental trajectory of 

discrimination abilities do not support the literal predictions of the original ATOM proposal. To 

account for these discrepancies, more liberal interpretations of this theory are being forwarded, for 

example by hypothesizing a developmental differentiation of discrete and continuous magnitude 

processing from an innate generalized magnitude system (developmental divergence model of 

quantity representation; Hamamouche & Cordes, 2019). 

2.5 The role of inhibitory control 

Irrespective of the specific interpretation of the underlying mechanism responsible for the 

interaction between discrete and continuous magnitude processing, converging evidence suggests 

that, although interactions commonly occur also in adulthood, the strength of congruency effects 

decrease during development (Gilmore et al., 2013; Starr et al., 2017; Tomlinson et al., 2020). This 

result led all the different accounts presented in the previous paragraphs to consider a role of 

inhibitory and filtering processes in the development of basic numerical abilities. In particular, 
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theories assuming an indirect perception of numerosity propose a fundamental role of cognitive 

control to increase the ability to integrate multiple continuous features to solve numerical tasks, 

instead of responding to single salient cues (Gebuis et al., 2016). Similarly, domain-general abilities 

such as inhibition and executive functions are likely to affect numerosity judgments even if we 

assume a late-stage interaction between separate magnitude representations. 

This phenomenon is particularly relevant in the discussion regarding the connection between 

basic numerosity processing and more formal mathematical skills (see paragraph 1.4) since several 

studies suggested that correlations between numerical acuity and mathematical abilities would be an 

artifact mediated by the inhibitory control demands of numerosity-related tasks. In particular, some 

studies highlighted that the significant relationship between numerosity discrimination precision and 

formal math achievements holds only considering incongruent trials and becomes irrelevant when 

controlled for inhibitory skills (Fuhs & Mcneil, 2013; Gilmore et al., 2013). The involvement of 

inhibitory control in measuring, if not shaping, numerosity-related task performance, extends to 

research with clinical populations, such as developmental dyscalculia. Some studies claim that 

reduced numerical acuity in this population emerges only when numerical information conflicts with 

other magnitudes and that it would be a by-product of impaired executive functions or inhibitory 

skills (Bugden & Ansari, 2016; Szucs et al., 2013). However, contrasting data failed in finding a 

significant relationship between cross-magnitude interference and inhibition abilities in infancy and 

childhood (Lourenco & Aulet, 2019; Starr et al., 2017) and highlighted developmental improvements 

in numerical acuity irrespective of congruency (Wilkey et al., 2021). Notably, different filtering 

mechanisms have also been proposed in the refinement of numerical representation, not as domain-

general abilities, but as a specific mechanism of quantity magnitude processing during development, 

supported by formal learning (Piazza et al., 2018). However, the specific mechanism responsible for 

this phenomenon is still being investigated. 

Crucially, this unresolved discussion unveils the critical implications of cross-magnitude 

interference not only in the theoretical debate regarding the extraction and representation of numerical 

information, but also in the practical effort of outlining the typical and atypical development of basic 

numerical abilities. In this vein, understanding the mechanisms of numerical and non-numerical 

quantity processing becomes fundamental for the development of effective educational programs and 

interventions to enable or facilitate an effective acquisition of numerical and mathematical concepts. 
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3 CHAPTER 3 

Measuring temporal bias on 

sequential numerosity comparison1 

3.1 Introduction 

To summarize what introduced in the previous section, humans are able to quickly appraise 

the number of elements in collections of items without counting, although in an imprecise manner. 

Response to the numerical information of the environment is displayed even by young infants (Xu & 

Spelke, 2000) and shared also with several non-human species (Agrillo et al., 2008; Bortot et al., 

2019; Cantlon & Brannon, 2007) indicating an ancient evolutionary and ontogenetic origin of 

nonverbal number abilities. According to an influential theory, this intuitive number sense is 

supported by a specialized cognitive system called the Approximate number system (ANS), 

consisting of a noisy representation of numerical magnitude (Feigenson et al., 2004). The ANS is 

often modeled as a logarithmically compressed number line where numerosities are defined by 

partially overlapping Gaussian curves (Dehaene, 2003). This conceptualization originates from the 

evidence that behavioral and neural response to numerosity is dependent on the relative difference 

between numerosities (Weber’s law) (Piazza et al., 2004). Notably, the precision of numerosity 

discrimination increases during development and it has been identified as a predictor of symbolic 

numerical abilities, suggesting a pivotal role of the ANS in the acquisition of formal mathematical 

skills (see Chen & Li, 2014, for a meta-analysis). 

Non-symbolic number processing is also thought to be independent of presentation mode 

(time-variant or invariant; e.g., spatial arrays vs. sequences of flashes) or sensory modality (e.g., 

visual or auditory). Individuals show similar precision in discriminating or estimating visual 

collections of elements as well as sequences of visual, auditory, or tactile events, and they can 

compare numerosity across modality or presentation mode with little or no cost in performance 

(Anobile et al., 2018; Barth et al., 2003; Tokita & Ishiguchi, 2016). However, inconsistencies between 

different sensory modalities and modes of presentation have also been reported (Droit-Volet et al., 

 
1  In collaboration with Simone Cutini, Alberto Testolin and Marco Zorzi  
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2008; Tokita et al., 2013). Nonetheless, the ability to integrate numerical information across sensory 

modalities seems to appear early in life, as infants and newborns match the number of visual 

collections of elements with the number of sounds in auditory sequences (Izard et al., 2009; Jordan 

& Brannon, 2006). A supra-modal encoding of numerical information is supported also by studies 

reporting effects of adaptation to numerosity that generalize across modality and presentation mode 

(Arrighi et al., 2014). Yet, neuroimaging studies are still inconclusive regarding a possible 

overlapping neural circuitry involved in numerosity perception across modality and presentation 

mode, especially in the absence of an explicit task (Cavdaroglu & Knops, 2019; Eger et al., 2003; 

Cohen Kadosh & Walsh, 2009; Piazza et al., 2006).  

Another open question regarding numerosity perception concerns the relationship between 

discrete and continuous quantity processing. Converging evidence shows that visual numerosity 

judgments are influenced by spatial non-numerical quantities covarying with numerosity, such as 

total surface area, convex hull, or density, with a general overestimation of sparse arrays (Clayton et 

al., 2015; Dakin et al., 2011; Gebuis & Reynvoet, 2012a). According to one hypothesis, these 

interactions can be explained by a partially overlapping representation of numerical and non-

numerical quantities (Walsh, 2003), subserved by shared neural resources (Sokolowski et al., 2017, 

for a meta-analysis). Alternatively, another possibility is interference between competing 

representations at response selection level after an initial parallel processing (Nys & Content, 2012), 

as suggested by the variability of interference effects in different contexts (Dramkin et al., 2022). 

Crucially, some authors explain this dynamic effect of visual cues as evidence that numerical 

information would be indirectly extracted by weighting non-numerical quantitative information, 

proposing that numerosity responses could be entirely driven by non-numerical features (Gebuis et 

al., 2016; Gevers et al., 2016). 

Despite the lack of consensus on the underlying mechanism, the interplay between spatial 

extent and numerosity is well documented. On the other hand, the relationship between numerical 

magnitude and time is less clear. While few studies report significant interference from temporal 

duration during parallel numerosity comparison, with an overall overestimation of arrays displayed 

for longer intervals of time (Javadi & Aichelburg, 2012), the specific effect of time on static 

numerosity is difficult to disentangle from the possible role of exposure duration on performance 

(Inglis & Gilmore, 2013). However, studies using dynamic visual stimuli indicate that interference 

also emerges when duration and numerical information similarly accumulate over time (Togoli, 

Fornaciai, et al., 2021). For example, in numerosity discrimination tasks with arrays of appearing and 

disappearing dots, participants report a general underestimation of numerosity associated with longer 

stimuli duration (Lambrechts et al., 2013; Martin et al., 2017; but see Dormal & Pesenti, 2003). 
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Investigations based on a sequential presentation of events similarly suggest that duration can 

influence numerosity processing, but with inconsistent results on the direction of its effect. In a 

comparison task, Tokita and Ishiguchi (2011) found that participants perceive visual stimuli presented 

at shorter intervals as more numerous, while Philippi and colleagues (2008) found that faster 

presentation rates lead to the underestimation of visual, auditory, and tactile sequences. Moreover, a 

large portion of studies on developmental or adult populations failed altogether to find any 

interference from the duration of the stimuli on numerical judgments of sequences of visual or 

auditory events (Agrillo et al., 2010; Dormal et al., 2006; Droit-Volet et al., 2003). Finally, almost all 

studies limited their focus to the effect of the duration of the overall sequence or intervals between 

events, ignoring other potential interferences related to the duration of individual events.  

From current evidence it is thus still largely unclear if temporal duration influences 

numerosity judgments and what could be the nature of such interference. The goal of the current study 

is then to investigate the interplay between numerical and non-numerical magnitude processing as 

well as to individuate potential relevant temporal cues in numerosity perception. To this aim, we 

adopted and translated to the temporal domain a recent framework (DeWind et al., 2015; Park, 2021) 

that proposes to systematically vary several features of the stimuli to quantify their separate 

contribution to response. Specifically, we performed two comparison tasks where participants were 

presented with sequences of either flashing dots or tones varying in number, duration, and distance 

in time, to shed light on how temporal cues impact numerical judgments. We conducted the 

experiments in both visual and auditory modalities in order to identify potential differences in strategy 

or in the extent of non-numerical bias, as well as numerical precision.  

3.2 Materials and method 

3.2.1 Participants 

One hundred forty individuals took part in the study, with 69 participants completing the 

comparison task in the visual modality and 71 in the auditory modality. Due to the internet-based data 

collection procedure (see below), we first excluded 13 participants for which we could detect 

technical issues in the presentation of the stimuli and 28 participants who showed poor 

comprehension of task instructions (accuracy below 50% in practice trials), or low attention during 

the task, indicated by low accuracy in the easiest trials or a high number of outlier response times. 

Finally, 13 additional participants were excluded during the analyses (see Analysis section). The final 

sample was then composed of 41 participants (28 females) with a mean age of 24.12 (range: 20 – 36) 

for the visual modality and 45 participants (34 females) with a mean age of 22.47 (range: 20 – 31) 
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for the auditory modality. This sample size provides 80% power to detect a 0.44 effect size with a 

0.05 significance level in a one-sample t-test (R pwr package). Participants were students from the 

University of Padova that received course credits for their participation and volunteers recruited 

through social media. All participants gave their written informed consent. Research procedures were 

approved by the Psychological Science Ethics Committee of the University of Padova. 

3.2.2 Stimuli 

The stimulus dataset was built following the framework originally developed in the seminal 

work of DeWind and colleagues (2015), later described by Park (2021). As noted by the same authors, 

a sequence of events is characterized not only by the number of events, but also by other intrinsic 

(related to the individual events) and extrinsic (related to the entire sequence) temporal features (see 

Fig. 3.1). Specifically, we define mean event duration as the average duration of the individual events 

(MED) and total event duration as the sum of the length of all pulses (TED). Similarly, we refer to 

total stimulus duration as the time from the beginning of the first pulse to the end of the last pulse, 

intervals included (TSD), and mean event period as the total stimulus duration divided by the number 

of events (MEP). Based on the relationship between intrinsic and extrinsic features, on a logarithmic 

scale, we derived two dimensions orthogonal to numerosity, named Duration and Temporal Spacing 

(see Fig. 3.2). Mathematically, these two dimensions can be defined as: 

 

 𝑙𝑜𝑔2(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) = 𝑙𝑜𝑔2(𝑇𝐸𝐷) + 𝑙𝑜𝑔2(𝑀𝐸𝐷) (3.1) 

 𝑙𝑜𝑔2(𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑆𝑝𝑎𝑐𝑖𝑛𝑔) = 𝑙𝑜𝑔2(𝑇𝑆𝐷) + 𝑙𝑜𝑔2(𝑀𝐸𝑃) (3.2) 

 

Figure 3.1. Temporal magnitudes in sequential non-numerical stimuli. Schematic representation of an 

example of an auditory sequence of events. Black sections of the sequence timeline highlight on separate rows 

the temporal features considered in the present study. 
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In this sense, Duration is the dimension that varies simultaneously TED and MED, keeping 

numerosity constant, while Temporal Spacing is the dimension that changes both TSD and MEP 

holding numerosity constant. For a fixed number of events, a change in Duration is associated with a 

change in the average temporal length of the events spread in a fixed interval, while a change in 

Temporal Spacing can be imagined as a change in their temporal distance, keeping a fixed average 

duration. 

 

Figure 3.2 Relationship between extrinsic and intrinsic temporal features. (A) Depiction of the 

relationship between the considered intrinsic and extrinsic temporal magnitudes and numerosity. Duration is 

the axis orthogonal to numerosity representing a change in total event duration (TED) and mean event duration 

(MED). Similarly, Temporal Spacing is the axis representing a change in both total stimulus duration (TSD) 

and mean event period (MEP).  (B) Schematic representation of the three-dimensional parameter space defined 

by taking numerosity, Duration, and Temporal Spacing as cardinal axes, inspired by Park et al. (2021). 

We then varied independently Numerosity, Duration, and Temporal Spacing across 13 levels 

equally distant on a logarithmic space. Numerosity varied between 7 and 28. A similar maximum 

range of 1:4 was used for Duration and Temporal Spacing. Sequences were not homogeneous, so the 

individual duration of an event and the single interval between one pulse and the next were variable 

within the same stimulus, with events lasting between 2 and 16 frames (33 ms – 270 ms at 60 Hz) 

and empty intervals between 3 and 30 frames (50 ms – 500 ms). 

An initial dataset of 500 pairs was created: to build each pair, we selected a ratio between 

1:1.12 and 1:2 independently for Numerosity, Duration, and Temporal Spacing. Then, sequences 

were created from the combination of appropriate pairs of Numerosity, Duration, and Temporal 
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Spacing randomly selected from the 13 levels. For each participant, at the beginning of the 

experiment, a subsample of 120 pairs, randomly drawn from the initial dataset to obtain an equal 

range for the three orthogonal dimensions and a balanced distribution of the ratios in the entire dataset, 

was presented in a randomized order. 

Stimuli were created in MATLAB (R2020a) (The Mathworks Inc., Natick, MA) as sequences 

of timestamps and instantiated online directly in PsychoPy/PsychoJS (Peirce et al., 2019) as 

sequences of visual or auditory events. Visual stimuli were sequences of flashes (white discs on a 

grey background) presented centrally on the screen. The dimension of the dot scaled with the 

resolution of the participants’ screen. Auditory stimuli were sequences of sounds (pure tones at 400 

Hz). At the beginning of the experiment, participants were allowed to adjust the volume as they 

preferred. Independently from modality, all durations were controlled in frames. 

3.2.3 Task 

All participants performed a computerized numerosity comparison task with either visual or 

auditory sequences of events (see Fig. 3.3). They were presented with pairs of sequences of rapid 

flashes or tones and were instructed to indicate which one contained more events by pressing the left 

and right arrow keys to select respectively the first or the second sequence. Each trial began with a 

fixation cross lasting 1 s, after which the two sequences were presented, one after the other, with a 

fixed interval of 2 s between the first and the second one. The duration of the sequences changed 

depending on the stimulus, ranging from 1.70 to 6.83 s. During the interval between the two 

sequences, a green fixation cross appeared in the center of the screen to indicate the end of the first 

sequence, to prevent participants from consistently overestimating the duration of the first stimulus. 

After the second sequence, a blank screen was presented until the participant response, followed by 

a pseudorandom blank inter-trial interval between 500 and 1500 ms. Participants did not receive any 

feedback based on their responses. Both tasks consisted of 120 test trials (around 40 minutes), divided 

into four blocks; participants could take a short break between blocks. Before the test phase, each 

participant completed five easy practice trials with a numerical ratio equal to 1:4, identical to the test 

block: in this phase, participants received feedback indicating if their response was correct or 

incorrect. 

3.2.4 General procedure 

The experiment was conducted online through Pavlovia, a hosting platform for running online 

PsychoPy tasks. Stimuli were generated and presented using PsychoJS, which allows online 

experiments to run with high timing precision (Bridges et al., 2020). Participants were instructed to 
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perform the task in a single session, on a laptop or computer, in a quiet environment without 

distractions, and sitting approximately one arm from the screen. Differences in screen refresh rate 

between participants were accounted for a posteriori, and all participants with a refresh rate different 

from 60 Hz were discarded, independently from modality. In the case of the auditory comparison 

task, participants were free to use the speakers or headphones connected via cable to the computer. 

In the final sample, 18 participants performed the task using a headset or earphones, while the 

remaining ones used computer speakers. 

 

 

Figure 3.3 Comparison task. Schematic depiction of one trial of the sequential numerosity comparison task. 

3.2.5 Data analysis 

Before the analyses, we excluded participants that were not appropriately engaged in the task. 

Due to the reduced number of trials, we planned to consider the largest numerical ratio (1:2) as catch 

trials, discarding participants with an accuracy below 75% in the easiest condition. As previously 

reported, with this procedure we excluded 12 participants in each sensory modality. To exclude 

unattended trials, in both modalities we discarded responses recorded before 200 ms (anticipations) 

or later than 4 s (Halberda et al., 2012), planning to exclude participants if more than 20% of their 

total trials were discarded. Based on this cut-off, we excluded one additional participant in the 

auditory task. 

We then modeled individual participant choice data (selection of the first sequence) with a 

generalized linear model (GLM) with binomial error distribution and probit link function, with 



 

44 

 

regressors for the log ratios of Numerosity, Duration, and Spacing of the first and second sequences 

(see DeWind & Brannon, 2016, and Tomlinson et al., 2020, for examples of the same analysis method 

applied to parallel numerosity comparison). As previously mentioned, we excluded from subsequent 

analyses 8 participants for the visual task and 5 participants for the auditory task whose performance 

was not well described by the GLM, indicated by an R2
adj below 0.2.  

The combination of the estimated coefficients of the regressors (βNum, βDur, and βTempSp) is 

informative regarding the influence of numerical and non-numerical quantity on participant 

selections. If the response is entirely based on numerical ratios and is unaffected by non-numerical 

temporal features, it will lead to a positive coefficient for Numerosity, and coefficients for Duration 

and Temporal Spacing equal to zero. In this context, βNum can also be considered an indication of 

numerical acuity, with larger values of the numerosity coefficients corresponding to a better 

performance in discriminating more difficult ratios. Instead, βDur and βTempSp quantify the influence 

of temporal features (the duration of the events and their spread in time) on participant responses. A 

positive βDur is associated with an overestimation of long events, while a negative coefficient for 

Duration indicates that shorter events are perceived as more numerous. Similarly, a positive 

coefficient for Temporal Spacing indicates that events separated by longer intervals are perceived as 

more numerous, while negative βTempSp is related to an overestimation of higher rates of events. We 

tested the significance of coefficients at the group level with one sample Student t-tests against zero. 

Following the method from DeWind and colleagues (2015), the three coefficients can also be 

thought of as defining a discrimination vector in the parameter space. The vector norm depends on 

overall discrimination acuity, while its orientation is informative about the relevant features 

determining performance. In the case of a response unbiased by temporal magnitudes, the 

discrimination vector is perfectly aligned with the numerosity axis; significant non-numerical biases, 

instead, cause the vector to deviate from the numerosity dimension. Thus, irrespective of the 

orientation of the discrimination vector, its angle from the numerosity axis can be used to quantify 

non-numerical bias. Moreover, thanks to the linear relationship between the three orthogonal axes 

and the individual features (see the equations in Appendix I), the contribution of each temporal feature 

to participant choice can be estimated considering the proximity of the discrimination vector to the 

individual feature dimensions. If the point defined by the three coefficients is closer to a specific 

feature rather than the numerosity dimension, we can assume that the participant selection is based 

on that feature. For example, a participant consistently selecting the sequence with a longer total 

duration of the events would be characterized by a positive and equal coefficient for Numerosity and 

Duration (i.e., the vector would be aligned with the total event duration dimension). 
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From individual coefficient estimates, we thus estimated the non-directional angle, and we 

computed the vector projections onto the dimensions of the temporal features. We determined the 

closest to the discrimination vector at the group level with a series of paired t-tests. Non-parametric 

tests (Wilcoxon signed rank) were performed in case of violation of the normality assumption, and 

Bonferroni's method was used to correct multiple comparisons whenever necessary. We also assessed 

differences in acuity and bias between modalities with frequentist and Bayesian t-tests. In the latter 

case, we report the Bayes factor BF10, expressing the probability of current data under H1 relative to 

H0 (Kass & Raftery, 1995). Values larger than one are in favor of H1 and values smaller than one are 

in support of H0. A BF between 1 and 3 (or between 1 and 0.33) can be considered anecdotal 

evidence, a BF between 3 and 10 (0.33-0.10) can be considered moderate evidence and a BF larger 

than ten (< 0.03) can be considered as strong evidence (van Doorn et al., 2020). Bayesian analyses 

were conducted using Jasp (ver. 0.12.1 2020), with default priors. Analyses were otherwise performed 

with MATLAB. 

3.3 Results 

Overall, accuracy (as the proportion of correct responses over the total number of trials) was 

above chance in both the visual (M = 0.80, range 0.68-0.88) and auditory modality (M = 0.81, range 

0.65-0.93). Mean response times ranged between 457 and 1498 ms (M = 878 ms) in the visual 

modality and between 454 and 1506 ms (M = 1010 ms) in the auditory modality.  

We then estimated the contribution of Numerosity, Duration, and Temporal spacing on 

individual participant responses. The GLM fit was significantly better than a constant model for all 

participants in the final sample of the visual comparison task (mean R2
adj = 0.44, all χ² > 29.82, all ps 

< .001) and the auditory comparison task (mean R2
adj = 0.46, all χ² > 27.71, all ps < .001). The 

individual coefficient estimates are presented in Fig. 3.4, with the lines representing non-orthogonal 

temporal features. At the group level, the model coefficients were significantly different from zero 

for Numerosity (M (SD) = 1.89 (0.53), t(40) = 22.96, p < .001, d = 3.59), Duration (M (SD) = -0.16 

(0.32), t(40) = -3.21, p = .002, d = -0.50) and Temporal Spacing (M (SD) = 0.24 (0.40), t(40) = 3.85, 

p < .001, d = 0.60) in the visual modality. For the auditory task, βNum (M (SD) = 1.95 (0.77), t(44) = 

16.90, p < .001, d = 2.52) and βTmSp (M (SD) = 0.31 (0.52), t(44) = 4.07, p < .001, d = 0.61) were 

significantly different from zero at group level, while the coefficient magnitude of Duration was not 

significantly different from zero (M (SD) = -0.05 (0.31), t(44) = -1.16, p = .25, d = -0.17) (see Fig. 

3.5a).  
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Figure 3.4 Results from GLM analysis of visual and auditory comparison tasks. Individual coefficient 

estimates are plotted in the three orthogonal planes defined by the cardinal axes, with visual modality in the 

left column and auditory modality in the right column. Grey dots indicate individual participants, while the 

black dots indicate the group means. Grey lines represent the temporal features. 
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Figure 3.5 Group results of visual and auditory comparison tasks. (A) Distributions of individual 

coefficient estimates for Numerosity, Duration, and Temporal Spacing in the visual (left) and auditory 

modality (right). (B) Psychometric curves derived from the coefficients estimated at the group level. Black 

lines represent the predicted probability of choosing the first sequence as a function of the logarithm of the 

first to second numerical ratios when the ratios of Duration and Temporal Spacing are equal to 1. Red lines 

represent the same probability in trials with large ratios of Duration, with Temporal Spacing ratio equal to 1, 

while green lines are predicted curves for trials with large Temporal Spacing ratios, with Duration ratio equal 

to 1. In both cases, full lines represent trials where the first sequence has a larger Duration or Temporal Spacing 

than the second, and dashed lines indicate the opposite. 

To confirm the results, we also fit a mixed-effect model on all data, separately for the two 

modalities, with similar fixed effects but including random intercepts and slopes for each participant. 

In the visual task, we found a significant βNum (M (SE) = 1.73 (0.06), t(4699) = 26.82, p < .001), βDur 

(M (SE) = -0.14 (0.04), t(4699)  = -3.20, p = .001), and βTmSp  (M (SE) = 0.22 (0.05), t(4699)  = 4.18, 
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p < .001). In the auditory task, we found a significant effect of numerosity ratio (M (SE) = 1.75 (0.07), 

t(5094)  = 22.92, p < .001) and Temporal Spacing ratio (M (SE) = 0.29 (0.06), t(5094)  = 4.45, p < 

.001), while the effect of Duration was not significant (M (SE) = -0.03 (0.04), t = -0.80, p = .42). 

Psychometric curves obtained by the estimated fixed effect from these two group models are 

presented in Fig. 3.5b.  

To assess the relevant dimensions in participants’ selection, we then computed at the 

individual level the vector projections onto the non-orthogonal dimensions and tested if any other 

magnitude projection was higher than the numerosity coefficient. Differences between the numerosity 

coefficient and the feature magnitude projections are shown in Fig. 3.6. βNum was higher than the 

projection on the Mean event duration, Total event duration, Total stimulus duration, Mean event 

period, and Coverage lines in the visual modality (Paired t-tests with Bonferroni correction: all ts(40) 

> 8.16, ps < .01, ds > 1.28) as well as auditory modality (Wilcoxon signed-rank tests with Bonferroni 

correction: all W > 930.00, ps < .01, r > 0.79). 

 

Figure 3.6 Results from projection analysis in visual and auditory tasks. Distribution of differences 

between the numerosity coefficient and the projection of the individual discrimination vector onto each 

temporal feature line for the visual (left) and auditory modality (right). Positive values indicate discrimination 

vectors closer to the numerosity dimension compared to the considered feature, while negative values indicate 

closer proximity to the specific feature. 

We then compared the numerosity coefficient, as a numerical acuity indicator, in visual and 

auditory modality. The magnitude of the numerosity coefficient was not significantly different 

between sensory modalities (t(84) = 0.38, p = .70, d = 0.08, BF10 = 0.24 (0.03), moderate evidence). 

As for bias, we estimated the angle between the numerosity dimension and individual discrimination 

vectors as a non-directional measure of non-numerical bias (see Fig. 3.7). No difference emerged in 
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the vector-line angle estimated in visual (M (SD) = 15.15° (6.59)) and auditory (M (SD) = 16.50° 

(9.40)) modality (U = 941, p = .88, r = 0.02, BF10 = 0.29 (0.03), moderate evidence). 

 

Figure 3.7 Comparison of vector-line angle between modalities. (A) Group discrimination vector in the 

three-dimensional parameter space (visual: black; auditory: grey). (B) Distribution of the angles (in degrees) 

between the individual discrimination vectors and the numerosity dimension in the two modalities (visual: 

black; auditory: grey). 

3.4 Discussion 

The present study aimed to assess the role of temporal information in numerosity perception 

and to individuate potentially relevant cues for sequential numerosity judgments in different sensory 

modalities. To this aim, we measured the contribution of numerosity and several temporal features 

on the discrimination of the number of visual and auditory events presented sequentially in time. 

Specifically, we adopted the framework proposed by DeWind and colleagues (2015), which 

allows a quantitative estimation of how much participants rely on numerical and non-numerical 

information and to identify biases or entirely non-numerical strategies. This work extends the use of 

this method to the sequential mode of presentation of non-symbolic number stimuli and the 

investigation of numerosity perception in time. 

Our results show that in both visual and auditory comparison tasks, adults are significantly 

influenced by both numerical and non-numerical information in their decision. The pattern of 

coefficients and the projection analysis indicate that, at the group level, our participants discriminated 

sequences prevalently based on the number of flashes and tones and were only marginally affected 

by temporal cues present in the sequences. The prominent numerical strategy adopted by our 

participants adds to a growing body of evidence suggesting that performance in numerosity tasks 

cannot be uniquely explained by the effect of non-numerical magnitudes (Abalo-Rodríguez et al., 
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2022; Cicchini et al., 2019; DeWind et al., 2015). More specifically, current results rule out that 

participants relied consistently on any single time cue considered. However, we note that the used 

method is not apt to individuate a more complex and dynamic integration of non-numerical 

magnitudes, proposed by some (informal) accounts as the basis of numerosity perception (Gebuis & 

Reynvoet, 2012a). To better address this issue, the illustrated model could be applied to 

electrophysiological and neuroimaging investigations. Previous studies suggest that early visual areas 

show specific sensitivity to numerosity (DeWind et al., 2018; Fornaciai et al., 2017; but see Park, 

2018), but further evidence is needed to corroborate a direct and independent extraction of numerical 

information with other senses. 

As mentioned before, our results also suggest that numerical discrimination is affected, to 

some extent, by task-irrelevant temporal characteristics of the stimuli. We found that in both 

modalities participants were particularly influenced by the temporal spread of the events, associated 

with an overestimation of the number of events in longer sequences with longer blank intervals. 

Additionally, in the visual modality, we could detect a small bias associated with an overestimation 

of the number of shorter flashes. These results are inconsistent with those of Dormal and colleagues 

(2006) or Droit-Volet et al. (2003), who failed to find a temporal bias in numerosity discrimination. 

However, one possible explanation of this discrepancy could be the different numerical range 

considered in the cited studies, below the dozen and sometimes extending to possibly subitizable 

numerosities. Tokita & Ishiguchi (2011), who considered lager set sizes, identified instead a decrease 

in discrimination performance when visual sequences differed from reference ones in event duration 

or interval duration, compared to a control condition where event duration was fixed, and interval 

duration was incongruent with numerosity. Moreover, they report that events separated by longer 

intervals were overestimated. Similarly, an overestimation of the events occurring in shorter time 

intervals has been highlighted also in the perception of dynamically appearing spatial arrays 

(Lambrechts et al., 2013; Martin et al., 2017). However, the authors do not attribute this result to an 

interference of duration per se, but rather to its indirect effect on estimation through the rate of 

accumulation of evidence, which would affect the noisiness of magnitude representations. 

While our study is in agreement with a significant temporal bias, contrary to previous reports 

we found a tendency to underestimate the numerosity of shorter visual sequences (i.e., faster 

presentation rates), which contrast with the hypothesis of Martin et al. (2017). At least one study 

reports underestimation of sequences where events were separated by shorter intervals in visual, 

auditory and tactile modality, with a larger underestimation of visual events, compared to other 

modalities, for shorter intervals (Philippi et al., 2008). The same authors suggest that this interaction 

could have emerged from a flicker-fusion illusion for visual sequences, due to the high presentation 
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rates of their stimuli (up to 33Hz) (Levinson, 1978). Even though our stimuli were slower and with 

irregular durations of events and intervals, we cannot completely exclude that underestimation of 

faster sequences could have emerged from a perceptual fusion of extremely close pulses, despite our 

efforts to keep the minimum interval between pulses above 50 ms. However, the parallel result in the 

auditory modality, where the temporal resolution is largely below the used average frequency of 

presentation, is a strong indicator that our results cannot be entirely explained by a possible fusion of 

close events.  

Indeed, we found a similar pattern in the two sensory modalities, both in overall 

discrimination precision and in the effect of temporal magnitudes. This result is in line with previous 

reports of similar numerical acuity across auditory or tactile modalities and correlations in the 

estimation precision of sequences of flashes and sounds (Anobile, Cicchini, et al., 2016; Tokita & 

Ishiguchi, 2016). Collectively, these results suggest that basic numerosity judgments in different 

senses could rely on a common mechanism, although evidence for the contrary has also been reported 

(Tokita et al., 2013). However, in the current results, the moderate statistical evidence and the absence 

of within-subject measures do not allow us to draw strong conclusions on similarities between sensory 

modalities. Further investigations could benefit from the introduced methodological framework in 

exploring the role of temporal cues in visual, auditory, and tactile numerosity, as well as cross-modal 

or multi-modal presentation. 

The significant interference from perceptual features during numerosity judgments is 

generally interpreted as evidence of an overlap in the representation of numerical and non-numerical 

magnitude, as proposed by theories that posit the existence of a shared parietal network implicated in 

processing space, time, and number (Bueti & Walsh, 2009). While our results are among the firsts to 

demonstrate an influence of temporal cues on sequential numerosity processing, further support for 

this account derives from studies reporting that adaptation to duration affects numerosity perception 

(Togoli, Fedele, et al., 2021; Tsouli, van der Smagt, et al., 2019). However, discrepancies in the 

developmental trajectory of numerical and non-numerical acuities and in neural responses associated 

to numerical, spatial and temporal processing leave open the possibility that different domains could 

be associated with different specialized systems (see Hamamouche & Cordes, 2019, for a review). 

Critically, the current design does not allow us to determine if the non-numerical bias originates from 

a shared representation of magnitude or a non-perceptual competition at the response-selection level. 

To elucidate this crucial point, future investigations could adopt a similar manipulation of features to 

assess the spontaneous saliency of different numerical and temporal magnitudes (Roitman et al., 

2007) or test the existence of cross-dimensional adaptation effects on temporal numerosity. 
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In conclusion, the presented findings reveal a significant interaction between numerical and 

temporal information in shaping individuals’ numerosity judgments, with potential similarities in the 

visual and auditory modalities. Collectively, these results pave the way for future cross-modal 

investigations adopting a similar framework and feature manipulation, which could help shed light 

on the specific nature of the interplay between number and time and obtain a more comprehensive 

knowledge of human quantitative reasoning. 
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4 CHAPTER 4 

Temporal bias 

in sequential numerosity estimation2 

4.1 Introduction 

The experiment reported in the previous chapter indicates that the temporal properties of 

sequences can affect the discrimination of the number of events. In particular, we showed that 

individuals tend to select a sequence as more numerous when the events are separated by longer 

intervals. As previously highlighted, the presence of interferences from sensory cues in numerosity 

tasks has important implications for our knowledge of the neurocognitive mechanisms at the basis of 

numerical processing, particularly concerning how numerical information is extracted from the 

environment and how it is mentally and neurally represented.  

Although our investigation focused on the unidirectional interference of duration on 

numerosity perception, several studies report the opposite direction, with numerosity affecting the 

processing of temporal information (Cappelletti et al., 2009; Dormal et al., 2006; Droit-Volet et al., 

2003). Along with behavioral similarities in their perception, the symmetric interference between the 

two domains has been largely interpreted in favor of a shared magnitude system, as proposed in the 

Theory of Magnitude (ATOM, Bueti & Walsh, 2009; Walsh, 2003). The ATOM theory has received 

large support from neuroimaging studies showing that common areas of the parietal cortex are 

involved in spatial, numerical, and temporal processing (Dormal et al., 2012; Hayashi et al., 2013; 

Hubbard et al., 2005). Moreover, both distinct and overlapping processing of numerical and 

continuous quantities has been reported also by electrophysiological studies on non-human animals 

(Tudusciuc & Nieder, 2007). 

However, as mentioned in the previous chapter, the current body of research in the field 

provides a contradictory picture of the influence of temporal cues in numerosity judgments, with 

inconsistencies in the overall presence of interaction (Agrillo et al., 2010; Dormal & Pesenti, 2013; 

Droit-Volet et al., 2003) as well as the potential direction of the effect (Lambrechts et al., 2013; 

 
2 In collaboration with Simone Cutini, Alberto Testolin and Marco Zorzi 
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Philippi et al., 2008; Tokita & Ishiguchi, 2011). Notably, variations in the pattern of the interaction 

between continuous magnitudes and numerosity are a common finding also considering the effect of 

spatial cues such as size, area, and length. Specifically, while some studies show that large visual 

features such as dot size and convex hull (i.e., the smallest envelope encompassing all items in a set) 

lead to an overestimation of the number of items, others report a negative relationship between item 

size and numerosity, with an overestimation induced by smaller elements, especially for fixed 

densities (DeWind et al., 2015; Gebuis & Reynvoet, 2012b, 2012a; Guillaume et al., 2013). From the 

dynamic interaction between numerical and continuous quantities stem alternative proposals on its 

source, with the main hypothesis proposing that behavioral interference between magnitudes could 

be related to response-selection conflicts (Yates et al., 2012). Notably, even in the case of a non-

perceptual and non-representational bias, a significant effect of continuous magnitudes during 

numerosity-related paradigms still represents a methodological issue in the investigation of numerical 

representation, due to the necessity to partial out the contribution of non-numerical magnitudes from 

behavioral or neural responses and find standardized methods that allow the comparability of 

measures obtained by using different stimuli and tasks. 

The use of different tasks and paradigms could also contribute to the reported inconsistencies 

on interference effects and their direction. First, different stimulus sets can lead to different non-

numerical biases, since their strength and direction can be related to the respective saliency of 

different numerical and continuous quantities in the presented stimuli (DeWind & Brannon, 2016; 

Park, 2021; Salti et al., 2017). Additionally, different paradigms could specifically involve additional 

non-numerical processing. As an example, some studies show that perceptual visual cues have a lower 

impact on numerosity estimation than numerosity comparison (Smets et al., 2015), in line with the 

idea that non-numerical biases emerge from a competition in magnitude representation that requires 

active inhibition (Clayton & Gilmore, 2015). In this vein, several studies found no evidence that the 

duration of the stimuli impacted on numerosity estimation of sequences of events or dynamic spatial 

arrays (Agrillo et al., 2010; Dormal & Pesenti, 2013). On the other hand, some studies report that 

spatial information in the stimuli still affects numerical estimates, possibly due to an implicit inter-

trial comparison and integration of visual information on the running average of feature range (Abalo-

Rodríguez et al., 2022; Gebuis & Reynvoet, 2012b). Indeed, some research found that individuals 

tend to overestimate the number of dots presented dynamically when stimulus duration is shorter both 

in an estimation task and a comparison task (Lambrechts et al., 2013; Martin et al., 2017). However, 

the direction of the bias in these tasks suggests that the source of such interference could be unrelated 

to the temporal magnitudes themselves and connected with how temporal numerosity is encoded.   
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In continuity with the previous study, the goal of the current research is then to verify if an 

interference of temporal information on numerosity processing also emerges when individuals have 

to estimate the number of sequentially presented events, to investigate if the influence of temporal 

cues could be task specific. Moreover, differently from a dichotomous response, the direct estimation 

of magnitude allows a more direct assessment of the direction of temporal biases, thereby shedding 

light on the contradictory evidence in the literature. In this work, we present two experiments that 

address this issue. In the first experiment, we asked participants to estimate the number of rapidly 

presented dots in a visual sequence. We manipulated the temporal properties of our sequences 

according to the method developed in the previous chapter and based on the framework introduced 

by DeWind and colleagues (2015), varying independently the numerosity, Duration, and Temporal 

Spacing of the sequences to assess their contribution to response and individuate potential non-

numerical biases and strategies. In a second experiment, we used an auditory presentation of the 

sequences to assess the stability of our results in different modalities. 

4.2 Experiment 1: numerosity estimation on visual sequences 

4.2.1 Materials and method 

Participants 

The initial sample included 221 participants. Twenty-two were excluded due to a screen 

refresh rate different from 60 Hz or technical issues in the presentation of the stimuli. Moreover, 25 

additional participants who showed low attention during the task and responded incorrectly in more 

than half the catch trials (see task description) were discarded from further analyses. The final sample 

was then composed of 174 participants, mean age of 22.80 (range: 19 – 45), with 128 females. The 

sample size provides 80% power to detect a 0.21 effect size with a 0.05 significance level in a one-

sample t-test (R pwr package). Participants were students from the University of Padova that received 

course credits for their participation. All participants gave their written informed consent to take part 

in the study.  

Stimuli 

The stimulus dataset was based on the method presented in the previous chapter and inspired 

by the general framework originally proposed by DeWind and colleagues (2015) (see Fig 3.1). Across 

sequences of visual events, we varied mean event duration (MED), total event duration (TED), total 

stimulus duration (TSD), and mean event period (MEP), to manipulate two latent variables orthogonal 

to numerosity: Duration, and Temporal Spacing (see Equations 3.1 and 3.2 and Appendix I).  
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We varied independently Numerosity, Duration, and Temporal Spacing using 13 levels 

equally spaced in logarithmic space. Numerosity varied between 7 and 28. A similar maximum range 

of 1:4 was used for Duration, varying between 120 and 480, and Temporal Spacing, varying between 

1500 and 6000 (see Table 4.1). We used aperiodic irregular sequences, built so that the duration of 

single events and the interval between two events could vary within the same stimulus, with single 

pulses lasting between 2 and 16 frames (33 ms – 270 ms at 60 Hz) and blank intervals between 3 and 

30 frames (50 ms – 500 ms). An initial dataset of 2197 stimuli was generated by the combination of 

the different levels of Numerosity, Duration, and Temporal Spacing. For each participant, at the 

beginning of the experiment, a subset of 91 stimuli was randomly drawn from this dataset to sample 

from the full range of values and to avoid correlations between the cardinal features. Stimuli were 

created in MATLAB (R2020a) as sequences of timestamps and instantiated online directly in 

PsychoJS as sequences of white discs on a grey background, presented at the center of the screen. 

The size of the disc was scaled depending on the resolution of the participant’s screen. 

 

Table 4.1 Cardinal feature values. Values of Numerosity, Duration and Temporal Spacing in the entire 

dataset (rounded) 

Num 7 8 9 10 11 12 14 16 18 20 22 25 28 

Dur 120 135 151 170 190 214 240 269 302 339 381 428 480 

TempSp 1500 1684 1890 2121 2381 2673 3000 3367 3780 4243 4762 5345 6000 

 

Task  

Participants completed a numerosity estimation task where they had to report the number of 

events of sequences of rapid flashes (see Fig. 4.1). Each trial began with a fixation cross lasting 1 s, 

followed by the visual sequence. The duration of the sequence changed depending on the stimulus, 

ranging from 800 ms to 6.83 s. After the sequence, a blank screen was presented for 500 ms, followed 

by a response cue. The response was unrestricted in range and could be inserted by participants in 

Arabic format with the keyboard. After the response, a blank inter-trial interval was displayed, 

varying pseudo-randomly from 500 to 1500 ms. 

The task consisted of 98 trials (7 trials for each target numerosity and random combination of 

Duration and Temporal Spacing, and 7 catch trials with numerosity equal to 3) in randomized order, 

divided into three blocks of 33, 33, and 34 trials, for a duration of around 30 minutes. Participants 
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were instructed to take a short break between blocks. Before the test phase, each participant performed 

a calibration phase: four sequences of 13 elements and variable temporal features were presented, 

with an explicit indication of the number of events contained in the sequence. Numerosity 13 was 

selected because it was close to the geometric mean of the numerical range, but it was not later 

displayed in the test phase. During the test phase, participants did not receive any feedback on their 

responses. 

 

Figure 4.1 Numerosity estimation task. Schematic depiction of one trial of the numerosity estimation task 

of visual sequences of events. 

 General procedure 

The experiment was conducted online, on Pavlovia, based on PsychoJS. Participants 

completed the experiment in a single session on their laptops or computers. Due to the use of different 

devices, individual screen refresh rate was checked a posteriori, and all participants with a refresh 

rate different from 60 Hz were discarded. Participants were asked to perform the task in a quiet 

environment without distractions, sitting approximately one arm away from the screen. All research 

procedures were approved by the Psychological Science Ethics Committee of the University of 

Padova. 

Data analysis 

To check participant engagement, we inserted 7 catch sequences of 3 events, interleaved with 

the test trials. Before the analyses, we excluded 25 participants with less than 4 correct responses in 

these catch trials, which indicates low attention during the task. Moreover, to exclude responses in 
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unattended trials, in both modalities we discarded responses recorded later than 10 s. Before the 

analysis, for each participant, we also excluded outlier responses above or below four standard 

deviations from individual mean estimates and estimates below one, assumed to be typing mistakes. 

With these procedures, we discarded 160 trials, around 0.01% of the total. 

For each participant, we then characterized the performance by computing the coefficient of 

variation (CoV = standard deviation of mean response/mean response) and mean absolute error score 

(AES = absolute distance between the estimate and target numerosity) by target numerosity. To 

estimate the contribution of numerosity and temporal magnitudes on estimates, we then fit a linear 

regression at the individual level modeling the log of the estimate as a function of the log of 

numerosity, Duration, and Temporal Spacing, expanding the model of numerosity estimation 

proposed by Izard and colleagues (2008). Both response and predictors were standardized into z-

scores.   

The resulting combination of coefficients (βNum, βDur, and βTempSp) is informative regarding 

the influence of numerical and non-numerical quantity on participant estimates. A response pattern 

that depends only on the number of events in the sequences without being influenced by temporal 

magnitudes would be characterized by a positive coefficient for numerosity and null coefficients for 

Duration and Temporal Spacing. Note that, due to the standardization of the estimates at the 

individual level, differently from Izard and colleagues (2008) the coefficient of numerosity cannot be 

easily taken as an indicator of the non-linearity of the response (i.e., a βNum of one does not indicate 

a linear relationship between target numerosity and estimates). Significant βDur and βTempSp quantify 

instead the influence of temporal features on the estimated values, indicating an overestimation or 

underestimation of longer events caused by variations in the length of the events or their rate of 

presentation. The group significance of coefficients was tested with one sample Student t-tests against 

zero. To confirm the results, we also fit a mixed-effect linear regression model at the group level, 

with identical fixed effects but including random intercepts and slopes for each participant. 

Moreover, the linear relationship between the three cardinal features and each temporal 

magnitude (see the equations in Appendix I) allows the estimation of the contribution of each 

temporal feature to participant estimates. To do so, we considered the three coefficients as a vector 

in the parameter space and evaluated its deviation from the numerical axis and its proximity to other 

individual feature dimensions. When the point defined by the three coefficients is closer to a specific 

feature rather than the numerosity dimension, we can infer that the participant estimates are based on 

that feature. For example, a participant who uses the total duration of the sequences as a proxy for 

estimation would be characterized by a positive and equal coefficient for Numerosity and Temporal 

Spacing, as their vector would lie on the total stimulus duration dimension. 
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From the coefficients estimated at the individual level, we then computed vector projections 

onto the dimensions of the different temporal features and individuated the closest to the vector at the 

group level with a series of paired t-tests. Non-parametric tests (Wilcoxon signed rank) were 

performed when the normality assumption was violated, and the Bonferroni method was used to 

correct multiple comparisons in the projection analysis. Analyses were performed with MATLAB 

and Jasp (ver. 0.12.1 2020). 

4.2.2 Results 

Despite the calibration phase, the group showed to greatly underestimate the number of 

events, especially for the highest numerosities (see Fig. 4.2a). Overall, for all participants mean 

estimates and their standard deviation increased with target numerosity. The mean coefficient of 

variation across target numerosity was 0.19 (SD = 0.04), while the mean absolute error score was 

4.27 (SD = 1.23). CoV and AES by target numerosity are reported in Fig. 4.2b. 

 

Figure 4.2 Overall performance in visual estimation task. (A) Mean estimate by target numerosity for the 

visual estimation task. The black solid line represents the group mean, with error bars indicating the standard 

deviation. Grey lines represent individual participant means. The diagonal dashed line represents the perfect 

correspondence between target numerosity and estimate. (B) Mean group coefficient of variation (on the top 

row), and mean group absolute error score (bottom row) by target numerosity. Error bars represent standard 

errors of the mean. 

We then estimated the contribution of numerosity, Duration, and Temporal Spacing on 

individual participant estimates. The individual fit of the linear regression modeling log estimate as 

a function of the logarithm of numerosity and the two non-numerical latent variables was significant 
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for all participants (all Fs > 12.69, ps < .001) with a mean R2 of 0.72 (range 0.28 – 0.94). The 

individual coefficient estimates are presented in Fig. 4.3, together with the lines representing non-

orthogonal temporal features. The group significance of coefficients was tested with one sample 

Student t-tests against zero. We found a significant effect of Numerosity (M (SD) = 0.80 (0.09), t(173) 

= 114.38, p < .001, d = 8.67), as well as a significant influence of Duration (M (SD) = - 0.05 (0.06), 

t(173) = -10.83, p < .001, d = -0.82) and Temporal Spacing (M (SD) = 0.25 (0.10), t(173) = 32.87, p 

< .001, d = 2.49). 

 

Figure 4.3 Results from regression model analysis of visual estimation task. Individual coefficient 

estimates plotted in the three orthogonal planes defined by the cardinal axes. Grey dots indicate individual 

participants, while the black dot indicates the group mean. Grey lines represent the temporal features. 

To confirm the results, we also fit a mixed-effect model on all data, with similar fixed effects 

but including random intercepts and slopes for each participant. The group model indicated a 
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significant βNum (M (SE) = 0.74 (0.009), t(15698) = 84.60, p < .001), βDur (M (SE) = -0.05 (0.005), 

t(15698)  = -9.98, p = .001), and βTmSp  (M (SE) = 0.22 (0.006), t(15698)  = 36.42, p < .001). 

Regression lines plotting the fixed effect of the group model are plotted in Fig. 4.4a.  

To assess the relevant dimensions in participants’ selection, we then computed at the 

individual level the vector projections onto the non-orthogonal dimensions and tested if any other 

magnitude projection was higher than the numerosity coefficient (see Fig. 4.4b). βNum was higher than 

the projection on the Mean event duration, Total event duration, Total stimulus duration, Mean event 

period, and Coverage lines (Paired t-tests with Bonferroni correction: all ts(143) > 10.48, ps < .01, ds 

> 0.79).  

 

 

Figure 4.4 Group model and projection analysis for visual estimation task. (A) Regression lines depicting 

the fixed effects estimated by the group mixed model. Black lines represent the predicted estimate as a function 

of the log target Numerosity, with mean Duration and Temporal Spacing. Red lines represent the variation in 

estimates caused by extreme values of Duration (full line indicating the minimum value and dashed line 

indicating the maximum value) and mean Temporal Spacing, while green lines are predicted estimates for 

trials with extreme values of Temporal Spacing (full line = minimum value, dashed line = maximum value), 

and intermediate Duration. All values are standardized into z-scores. (B) Distribution of differences between 

numerosity coefficient and the projection of the individual vector point, onto each temporal feature line. 

4.3 Experiment 2: numerosity estimation on auditory sequences 

4.3.1 Materials and method 

Participants 

Sixty-five participants completed the auditory estimation task. From this sample, we excluded 

8 participants due to a screen refresh rate different from 60 Hz or technical issues in the presentation 
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of the stimuli. Moreover, we excluded 3 additional participants who responded incorrectly in more 

than half the catch trials, indicating poor attention during the task. Finally, 2 participants were 

excluded during the analyses. The final sample was then composed of 53 participants, mean age of 

23.26 (range: 20 – 45), with 43 females. This sample size provides 80% power to detect a 0.39 effect 

size with a 0.05 significance level in a one-sample t-test (R pwr package). Participants were students 

from the University of Padova that received course credits for their participation. 

Stimuli 

Stimuli were identical to the one used in the visual estimation task, described in Paragraph 

4.2.1. They were created in MATLAB as sequences of timestamps and instantiated online directly in 

PsychoJS as sequences of sounds (pure tones at 400 Hz). At the beginning of the experiment, 

participants were allowed to adjust the volume as they preferred. 

Procedure and task 

The paradigm and procedure used were identical to the visual estimation task described in the 

previous experiment, except for the auditory nature of the sequences. During the online task, 

participants were free to use the speakers or headphones connected via cable to the computer. In the 

final sample, 24 participants performed the task using a headset or earphones, while the remaining 

ones used computer speakers.  

Data analysis 

Before the analyses, we excluded participants that showed low attention during the task as 

indicated by more than 3 errors in catch trials. Based on this criterion, we excluded 3 participants. 

For each participant, we also discarded outlier trials where a response was inserted later than 10 s 

after the response cue and responses above or below four standard deviations from individual mean 

estimates, as well as estimates below one. Based on these criteria, we discarded 49 trials, less than 

0.01% of the total. We then performed an analysis parallel to the visual estimation task. Analyses 

were performed with MATLAB and Jasp (ver. 0.12.1 2020). 

4.3.2 Results 

For all participants, mean response and the variability of estimates increased a function of 

target numerosity, but with an overall underestimation of the number of events. In this task, group 

CoV across target numerosity was 0.17 (SD = 0.05), while the mean AES was 4.11 (SD = 1.33). 

Mean estimates, CoV, and AES by target numerosity are reported in Fig. 4.5. 
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We then estimated the effect of numerosity, Duration, and Temporal Spacing on participants’ 

estimates. The individual fit of the linear regression model was significant for all participants (all Fs 

> 15.14, ps < .001) with a mean R2 of 0.72 (range 0.32 – 0.94).  

 

Figure 4.5 Overall performance in auditory estimation task. (A) Mean estimate by target numerosity for 

the auditory estimation task. The black solid line represents the group mean, with error bars indicating the 

standard deviation. Grey lines represent individual participant means. The diagonal dashed line represents an 

ideal perfect response. (B) Mean group coefficient of variation (on the top row), and mean group absolute error 

score (bottom row) by target numerosity. Error bars represent standard errors of the mean. 

 

Figure 4.6 Results from regression model analysis of auditory estimation tasks. A) Individual coefficient 

estimates (grey dots) plotted in the 3D parameter space. Grey lines represent the temporal features. 
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The individual coefficient estimates of Numerosity, Duration, and Temporal Spacing are 

presented in Fig. 4.6 in two orthogonal planes of the parameter space. Coefficients were tested with 

one sample Student t-tests against zero. We found a significant effect of Numerosity (M (SD) = 0.83 

(0.10), t(52) = 57.94, p < .001, d = 7.96), and Temporal Spacing (M (SD) = 0.17 (0.12), t(52) = 10.72, 

p < .001, d = 1.47). The coefficient of Duration was instead not significantly different from zero (M 

(SD) = - 0.008 (0.06), t(52) = -1.04, p < .001, d = -0.14). The mixed-effect model confirmed these 

results, highlighting a significant effect of numerosity (M (SE) = 0.75 (0.02), t(4789) = 35.84, p < 

.001) and Temporal Spacing (M (SE) = 0.15 (0.01), t(4789)  = 12.03, p < .001), while the effect of 

Duration was not significant (M (SE) = -0.01 (0.007), t(4789)  = -1.38, p = .17). The predicted 

estimates derived from the group model are plotted in Fig. 4.7a. 

We then computed at the individual level the vector projections onto the non-orthogonal 

dimensions to test if any other magnitude projection was higher than the numerosity coefficient. Also 

in this task, the projections of the individual vectors onto each temporal dimension were significantly 

smaller than the numerosity coefficient (Paired t-tests with Bonferroni correction: all ts(52) > 9.13, 

ps < .01, ds > 1.25) (see Fig. 4.7b). 

 

Figure 4.7 Group model and projection analysis for auditory estimation task. (A) Regression lines 

depicting the predicted values as a function of numerosity for different values of Duration and Temporal 

Spacing (in different colors). (B) Distribution of differences between numerosity coefficient and the projection 

of the individual vector point onto each temporal feature line. 

4.4 Discussion 

The aim of the current study was to assess the influence of temporal features on sequential 

numerosity estimation. Using the same method as our previous experiment, we sought to verify the 
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stability of our results and increase comparability with previous investigations. In the first experiment, 

we measured the contribution of numerosity and multiple temporal magnitudes on the estimation of 

sequences of flashes, varying independently in Numerosity, Duration, and Temporal Spacing. The 

same stimuli were then presented as auditory sequences in the second experiment to detect potential 

differences in the overall strategy. 

Surprisingly, despite the initial calibration to an explicitly labeled numerosity, both groups of 

participants showed to largely underestimate the number of events in the sequences during the test 

phase, especially in case of larger numerosities, in close resemblance to the typical pattern of 

estimation without calibration in perceptual tasks (Crollen et al., 2011). This result is puzzling 

compared to the powerful effect of calibration reported in the literature. Izard and Dehaene (2008) 

showed that not only do individuals become more accurate in their estimates after an exact inducer, 

but also that providing a misleading calibrator leads to a systematic over- or underestimation of 

subsequent sets. One possibility could be that the number of example trials used in our paradigm was 

insufficient to produce an accurate mapping between numeral labels and numerical magnitudes. 

Indeed, other studies found estimates closer to target numerosities by implementing practice blocks 

with feedback (Mejias, Mussolin, et al., 2012; Mejias & Schiltz, 2013), or repeating the calibration 

stimulus periodically (Izard & Dehaene, 2008). However, there is evidence of a recalibration from 

underestimation to more accurate performance or overestimation even after one single example trial 

(Abalo-Rodríguez et al., 2022). Critically, in the present research, the absence of pre-calibration 

measures does not allow us to further clarify the specific effect of the used inducers. Nonetheless, 

despite the absolute values of the estimates, the overall performance in both experiments matched the 

typical signatures of numerical estimation tasks. In particular, mean estimates and their standard 

deviation increased in proportion to target numerosity, resulting in a stable coefficient of variation, 

with an average precision coherent with previous research using static visual stimuli (Anobile et al., 

2018). 

In both experiments, participants presented a significant influence of both numerical and non-

numerical quantities. The combination of Numerosity, Duration, and Temporal Spacing coefficients 

from the regression model indicate that participants were primarily basing their estimates on the 

number of flashes or tones in the sequences. However, in the first experiment, the estimated number 

of flashes was significantly influenced by the duration of the pulses and by the dispersion of events 

in time, with an overestimation of shorter and sparser events. Similarly, in the second experiment 

participants produced larger estimates for slower auditory sequences. Overall, this outcome perfectly 

replicates the pattern of non-numerical bias found in the numerosity comparison task presented in the 

previous chapter, both for the visual and the auditory modalities. As in the previous experiment, 
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results reveal that individuals did not use any other single feature as a proxy of numerosity, even 

though the current task cannot rule out a more complex interaction between temporal features (Gebuis 

& Reynvoet, 2012b). However, the significant influence of temporal cues on numerical estimates 

suggest that cross-magnitude interference can arise even in numerosity judgments with a less explicit 

decisional conflict in response-selection than comparative tasks (Yates et al., 2012).  

The specific pattern of bias presented by our participants is once again in contrast with 

previous reports of an opposite overestimation of arrays of dots dynamically appearing in time, in 

case of shorter sequences (Lambrechts et al., 2013). In particular, the same authors proposed that the 

effect of duration on numerosity estimation could be related to the rate of accumulation of sensory 

evidence, rather than the duration magnitude, which was further supported by a similar 

underestimation of the surface area of the elements at lower rates of presentation, and an overall 

resilience of time estimation to numerical and spatial manipulations. While our results are compatible 

with an influence of the rate of evidence accumulation, they point to the opposite direction, suggesting 

an underestimation of events in case of faster regimes. However, an exclusive influence of sensory 

accumulation rate is not consistent with studies showing that static arrays of items, where magnitude 

information is immediately and simultaneously available, are overestimated when presented for 

longer time periods (Javadi & Aichelburg, 2012; Togoli et al., 2021; but see Inglis & Gilmore, 2013 

for a different interpretation of this phenomenon). Nonetheless, our results are not in contrast with 

their revision of the ATOM theory in which different magnitudes might be combined at sensory level 

under Bayesian rules, so that magnitude representation would result from an integration of all 

quantities (Martin et al., 2017). The inconsistent pattern of results across studies could however be 

an indicator that interaction between magnitudes can occur at multiple levels, from the encoding of 

magnitudes through sensory integration to a memory interference between magnitudes (Cai et al., 

2018) or competition at response-selection, and that diverse modes of presentation might differently 

reveal such processes.  

The comparison between contradictory results in different studies is further complicated by 

the use of either static array or dynamic visual arrays, and temporal sequences of events. Indeed, even 

if in both dynamic arrays and sequences the numerical information is unfolded progressively, 

dynamic arrays are characterized by a spatial configuration changing over time, while the train of 

flashes and tones presented in the current study originated from a single source, to exclude additional 

potential interference from spatial information. Furthermore, differently from trains of flashes or 

tones, both in Martin et al. (2017) and Lambrecht et al. (2013), a subset of elements of the array was 

always visible on screen. Additional illusory phenomena related to the perception of filled and empty 

temporal intervals (Thomas & Brown, 1974) or intervals defined by markers of different durations 
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(Hasuo et al., 2012) could then modulate the interaction between temporal cues and numerosity 

perception in case of temporal sequences more than dynamic arrays. While these effects are seldom 

considered when studying the interaction between time and number, studies focusing on the effect of 

spatial cues in numerosity estimation suggest that it could be a promising avenue. For example, 

Dormal and colleagues (2018) have shown that numerosity estimation can be influenced by spatial 

length even when variations in length are illusory. Moreover, an interesting future direction could be 

to investigate the estimation of stimuli where a fully sequential presentation of events is combined 

with a spatial configuration of the flashes, to assess a potential interaction between spatial and 

temporal cues on numerosity perception. 

In conclusion, this second study further confirmed stable interactions between numerical and 

temporal information even in the absence of an explicit conflict in response-selection, both in visual 

and auditory modality. Additional investigations are required to clarify inconsistent results in the 

extent and direction of such biases, to better understand the source of the interaction between different 

magnitudes. 
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5 CHAPTER 5 

Interference effects 

in developmental dyscalculia3 

5.1 Introduction 

As outlined in the previous chapters, the ability to compare large numerical sets is believed 

to rely on a non-verbal system, the Approximate Number System (ANS), where numerical magnitude 

would be represented as Gaussian distributions of activation on a logarithmically compresses number 

line (Dehaene et al., 1998). The accuracy in comparing numerical quantities follows the Weber-

Fechner law, with error rates increasing when the ratio between the to-be-compared numerical sets 

approaches one. The precision in numerosity comparison improves over development, allowing 

discrimination of large 1:3 numerical ratios at birth and up to 9:10 in adulthood (Halberda & 

Feigenson, 2008; Izard et al., 2009; Libertus & Brannon, 2010; Xu & Spelke, 2002; but see Wang & 

Feigenson 2021 in support of the malleability of numerical acuity in infants). Moreover, some studies 

have shown that numerical acuity can predict later mathematical achievements (Chen & Li, 2014; 

Halberda et al., 2008; Schneider et al., 2017; Starr et al., 2013).  

In this vein, a reduced precision of non-symbolic numerical representation has been proposed 

at the basis of developmental dyscalculia (DD), a learning disability characterized by persistent 

mathematical impairments that cannot be explained by inadequate education, intellectual disability, 

or sensory deficits (DSM-5, American Psychiatric Association, 2013). Individuals with dyscalculia 

present difficulties with arithmetic and number-related concepts that can significantly impact on 

arithmetic achievements, with negative outcomes, within our technological society, on career success 

and income (Ritchie & Bates, 2013). In support of the idea of a deficit in numerosity processing, 

children with DD between 9 and 15 y.o. have shown increased numerical distance effects (Mussolin, 

Mejias, et al., 2010; Price et al., 2007) or reduced precision in discriminating two numerosities 

(Decarli et al., 2020; Mazzocco et al., 2011a; Piazza et al., 2010). Similarly, individuals with DD 

 
3 In collaboration with Gisella Decarli, Maristella Lunardon, Alberto Testolin, Michele De Filippo De Grazia, 

Francesco Sella, Giuseppe Cossu, Silvia Lanfranchi and Marco Zorzi. 
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seem less precise compared to their peers in estimating non-symbolic numerical quantities (Mejias, 

Mussolin, et al., 2012), a difficulty that has been reported to persist into adulthood (Mejias, Grégoire, 

et al., 2012). 

However, the possibility of a deficit in numerosity representation in DD is challenged by 

several studies demonstrating that performance in non-symbolic comparison tasks can be influenced 

by other perceptual magnitudes co-varying with numerosity, such as the size of the elements or their 

position in space (Gebuis & Reynvoet, 2012a; Leibovich & Henik, 2014). As an example, children 

and adults commit more errors when choosing the larger between two sets of dots when the 

numerically larger set is enclosed in a smaller space (Clayton et al., 2015; Clayton & Gilmore, 2015; 

Nys & Content, 2012). In particular, young children struggle to disregard misleading non-numerical 

features, but the ability to ignore irrelevant characteristics co-varying with numerosity improves 

during development (Ferrigno et al., 2017; Starr et al., 2017). Crucially, individuals with DD seem 

more influenced by non-numerical information. Several studies report that children with DD display 

increased congruency effects from total surface area and density compared to their peers during a 

discrimination task (Mussolin, Mejias, et al., 2010) or produce more reliable number estimates when 

cumulative area is congruent with numerosity (Mejias, Mussolin, et al., 2012). Moreover, recent 

evidence suggests that individuals with DD would exhibit difficulties in numerosity judgments 

uniquely when the numerical information is competing with these other visual magnitudes. In 

particular, Bugden & Ansari (2016) found a difference in discrimination acuity between elementary 

school children with DD and a control group, only in trials where the number of elements and the 

total area of the items were incongruent, while no difference emerged when the more numerous arrays 

contained also larger elements. Similarly, another study showed how previous reports of higher 

numerosity discrimination threshold in DD (Piazza et al., 2010) could be explained by an increased 

interference effects from non-numerical cues (Piazza et al., 2018).   

The mechanism underlying the developmental decrease in non-numerical biases, as well as 

the higher interference in DD, is still debated. Some studies have highlighted a link between DD error 

rates in incongruent numerosity comparison and their visuospatial working memory abilities (Bugden 

& Ansari, 2016), in line with a domain-general account of dyscalculia, which associates cognitive 

impairments in working memory, visuospatial skills, or executive functions to a reduced arithmetic 

proficiency (Ashkenazi et al., 2013; Cirino et al., 2015; Peng et al., 2018). Accordingly, one research 

showed that, in DD, increased congruency effects in non-symbolic comparison were accompanied by 

stronger bidirectional interferences in symbolic Stroop-like tasks both from physical size during 

number judgment and from number on size judgment, suggesting a common underlying difficulty in 

inhibition of task-irrelevant information (Szucs et al., 2013). Importantly, similar executive functions 
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have been related to the acquisition of mathematical abilities in typical development, and inhibition 

abilities have been proposed to mediate the relationship between basic number processing and 

mathematical skills (Cragg & Gilmore, 2014; Gilmore et al., 2013). In support of this account, several 

studies failed in finding impairments in basic number processing in children with dyscalculia while 

reporting working memory and inhibition deficits (Mammarella et al., 2021; Passolunghi & Siegel, 

2004).  

However, another view suggests that filtering mechanisms, and therefore filtering deficits, 

could be specific to magnitude processing and quantity judgments, with learning about symbolic 

numbers possibly supporting children’s ability to focus on numerosity (Piazza et al., 2018). 

According to this view, higher non-numerical biases in children with DD could be related to a reduced 

benefit from formal education. In line with this interpretation, some authors did not find a significant 

relationship between measures of non-numerical bias in a comparison task and inhibitory control 

abilities in typically developing children of 4 and 6 years of age (Starr et al., 2017). Accordingly, 

recent evidence shows that adults with DD display higher biases from item size than a control group 

when discriminating numerosities, but similar influence from numerosity when comparing item size 

(Castaldi et al., 2018), suggesting that higher interference effects are not necessarily related to 

domain-general deficits.  

In support of this view, several neuroimaging studies report a weaker modulation from 

numerical distance in the activity of the intraparietal sulcus (IPS) in children with DD (Mussolin, De 

Volder, et al., 2010; Price et al., 2007). Furthermore, a recent study based on multivariate pattern 

analysis has found that adults with DD presented less distinct activation in response to different 

numerosities in parietal and frontal lobes compared to controls, suggesting a noisier numerical 

representation (Bulthé et al., 2019). However, since inhibition and working memory have been related 

to similar frontoparietal networks, it has also been underlined how IPS dysfunctions in DD could also 

be linked to domain-general cognitive functions (Dumontheil & Klingberg, 2012; Rotzer et al., 2008; 

Szucs et al., 2013). Nonetheless, computational models of numerosity perception based on deep 

neural networks show that a reduction of bias from non-numerical cues can emerge from experience-

dependent refinement in the encoding of numerical and non-numerical information, rather than 

domain-general processes such as those involved in response selection (Testolin et al., 2020).  

To summarize, it is currently unclear whether lower accuracy in incongruent trials in DD 

might emerge from domain-general difficulties in inhibiting non-numerical features leading to higher 

interference effects in numerosity comparison, or if it arises from deficient numerical magnitude 

processing. In the present work, we address this question by assessing the influence of several 

continuous non-numerical features in 8-to-14-year-old children with severe dyscalculia (< 2 SDs 
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below the normative mean) and controls matched for age, IQ, and visuospatial memory skills. We 

measured their performance in a numerosity comparison task where we varied pairs of dot arrays 

independently in numerosity, Size (related to item and total surface area) and Spacing ratios (related 

to the field area and density of the collections), to estimate the relative contribution of numerical and 

non-numerical information on participants’ response (DeWind et al., 2015). We also administered a 

spontaneous categorization task, where children spontaneously decided whether to divide small or 

large sets based on numerosity or area, thereby revealing the saliency of these dimensions when pitted 

against each other (Ferrigno et al., 2017).  

5.2 Materials and method 

5.2.1 Participants 

One-hundred and ninety-five children between 8 and 14 y.o. (between grade four of primary 

school and grade three of middle school, in Italy) underwent a full assessment to evaluate the presence 

of learning and/or cognitive disabilities. From this sample, we first excluded children with an 

incomplete cognitive assessment, neuropsychological disorders, sensory deficits, ADHD or motor 

disorders, and children with an IQ below the normal range (WISC score < 85; Wechsler, 2003). In 

the remaining sample, we classified as children with DD 53 individuals presenting a performance in 

the clinical range on a standardized battery of mathematical and numerical abilities (BDE-2; 

Biancardi et al., 2016). Children were included in the DD group when their total score was 2 SDs 

below the expected mean (< 70) or, in the case of younger children (7-8 years old), if they performed 

below the 5th percentile in half or more subtests from the battery. We also individuated a control 

sample of 75 children with average cognitive skills and without difficulties in the numeracy battery, 

presenting a total score within the normal range (> 85) or with a performance below the 5th percentile 

in maximum one subtest. We then selected a group from the control sample matching all children 

from the DD group with the closest individual based on chronological age, visuospatial memory, and 

IQ. Since the two groups differed in IQ scores, we then iteratively excluded from the control group 

the individuals with the highest IQ scores until the two groups had similar scores (i.e., Bayes factors 

< 1 for all matching variables). Due to missing data and additional exclusion of participants during 

the analyses, the number of participants considered for the two tasks differ (see Table 5.1). 

The numerosity comparison task was completed by all children. Before matching DD and 

control participants, we additionally discarded 10 children from the DD group and 11 children from 

the control sample due to the exclusion of a large number of trials or to a non-satisfactory fit of the 

general linear model. The final sample was composed of 43 children in the DD group (17 males) and 
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34 children in the Control group (29 males). The two groups did not differ for IQ (BF10 = 0.84), 

chronological age (BF10 = 0.24), and visuospatial memory (BF10 = 0.24). Twenty-nine children in the 

DD group and 7 in the Control group presented a diagnosis of dyslexia (χ²(1) = 16.74, p < .001). The 

sample size provides 80% power to detect a 0.65 effect size with a 0.05 significance level in a two-

tailed t-test (R pwr package). The spontaneous categorization task was completed by 50 children (22 

males) of the DD group. A control group (n = 48, 35 males) was selected with the previously described 

matching procedure and iterative exclusion. The two groups did not differ for IQ (BF10 = 0.87), 

chronological age (BF10 = 0.22), and visuospatial memory (BF10 = 0.23). Thirty-two children in the 

DD group and 12 in the Control group presented a diagnosis of dyslexia (χ²(1) = 15.06, p < .001). 

Table 5.1 Age, IQ and NEPSY-M3a in the two samples. Mean and standard deviations of age, intelligence, 

and visuo-spatial working memory scores in the two samples, separately for each task.  

M (SD) Numerosity comparison  Spontaneous categorization 

 DD  

(n = 43) 
 

Controls  

(n = 34) 
 

DD  

(n = 50) 
 

Controls  

(n = 47) 

        

Age in months  129.51 (18.28)  130.00 (19.11)  129.52 (17.86)  130.17 (19.35) 

        

IQ                    97.21 (8.87)  100.26 (6.01)  98.76 (9.68)  101.87 (7.32) 
        

NEPSY-M3a  118.86 (22.12)  118.86 (22.12)  115.60 (22.58)  117.75 (23.25) 
        

 

 

5.2.2 Procedure 

Assessment and testing were conducted in two different sessions at the child neuropsychiatric 

unit in Padova, Italy. During the first session, children completed the cognitive and mathematical 

assessment, while in the second session, they performed a visuospatial memory test, the 

categorization task, and the comparison task, as well as other computerized tasks not relevant for the 

current investigation (in random order), presented on a laptop using the E-Prime 2.0 software 

(Psychology Software Tools). Parents provided their written informed consent for their children to 

participate in the study. The research protocol was approved by the Psychological Science Ethics 

Committee of the University of Padova. 
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5.2.3 Cognitive assessment 

Intelligence 

Children’s intelligence was measured with the Wechsler Scale of Intelligence (WISC-IV; 

Wechsler, 2003) from which a measure of full IQ (M = 100, SD = 15) was extracted for every child, 

based on chronological age. 

Visuospatial memory 

This ability was assessed with the Memory for designs (Immediate) subtest from the NEPSY-

II (Korkman, Kirk & Kemp, 2011). In this test, children were presented with 6-10 pictures placed on 

a grid for 10 seconds, and they had to memorize and reproduce the pictures and their location. A total 

score was computed by the combination of correctly remembered pictures and locations. 

Numeracy 

Children’s numerical competence was assessed with the Batteria per la discalculia evolutiva 

(BDE-2) (Biancardi et al., 2016), a standardized battery used in Italy for the clinical assessment of 

dyscalculia including different subtests related to general number knowledge, calculation abilities, 

number sense, and arithmetic problems. The raw score of each subtest can be transformed into a 

normative score, the sum of which corresponds to a total score (M = 100, SD = 15). 

5.2.4 Experimental tasks 

Numerosity comparison task and stimuli 

Children performed a numerosity comparison task that required them to indicate which of two 

dot arrays contained more elements. In each trial (see Fig. 5.1a), after a readiness cue of 500 ms, two 

arrays of white dots on a black background were presented simultaneously on the two sides of the 

screen for 500 ms, followed by a blank screen until response and by an inter-trial interval between 

1250 and 1750 ms. Children were instructed to indicate which arrays contained more dots as fast and 

as accurately as possible by pressing the trackpad buttons corresponding to the side of appearance of 

the selected array. Before the test phase, the task began with two practice phases of 4 trials each. The 

first was a slower version with a longer readiness cue and stimulus presentation (1000 ms) and a fixed 

numerical ratio of 1:2 in all pairs. In these trials, participants received trial-by-trial feedback regarding 

the correct response. In case of an incorrect response, the experimenter repeated the instructions, and 

the same trial was presented until a correct response was provided. The second practice block 

consisted of 4 trials with a similar speed to the test phase and a fixed ratio of 1:2. The transition from 

practice to test phase was based on an accuracy criterion of 3 out of 4 correct responses in the second 
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practice block. If participants failed to achieve the required accuracy threshold, the practice block 

was repeated until the criterion was met. In the test phase, children completed 200 trials split in three 

blocks.  

 

 

Figure 5.1 Description of the two experimental tasks (A) Schematic description of one trial in the 

numerosity discrimination task. (B) The three-dimensional stimulus and coefficient space defined by the 

orthogonal manipulation of Numerosity, Size, and Spacing in the numerosity comparison task. Dashed arrows 

represent continuous magnitudes. (C) Depiction of one trial from the spontaneous categorization task. (D) 

Stimuli used in the spontaneous categorization task. On the diagonal, stimuli with a positive correlation 

between numerosity and total surface area (standard stimuli). In the rest of the images, numerosity and total 

surface area were independently varied (probe stimuli). 

Stimuli were 400 unique images (200x200 pixels) representing white dot arrays on a black 

background. A dataset inspired by the stimulus set introduced by DeWind and colleagues (2015) was 
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created, with 13 levels of Numerosity (range 7-28), 13 for Size, and 13 for Spacing, evenly spaced 

on a logarithmic scale. Size and Spacing are mathematical constructs summarizing information related 

to the dimension of the dots (Size = Item surface area x Total surface area) and the spread of the 

elements in space (Spacing = Field Area x Sparsity) (see Fig. 5.1b and Appendix II). Each 

combination of the three features had 10 different instantiations, resulting in an initial stimulus space 

of 21970 images. Stimuli were created with a custom program in MATLAB (R2017a). We then 

selected 200 pairs with a numerical ratio (smaller/larger) between 0.5 and 0.9 and Size and Spacing 

ratios ranging between 0.25 and 1 (17% with a numerical ratio between 0.5 and 0.6; 33% with a ratio 

between 0.6 and 0.7; 33% with a ratio between 0.7 and 0.8; 17% with a ratio between 0.8 and 0.9). 

The combination of Numerosity, Size and Spacing created different congruency conditions: in 

approximately one quarter of the trials (N = 40) the array containing more dots also presented larger 

Size and Spacing (fully congruent), while in a similar number of trials (N = 49) the more numerous 

dot cloud presented smaller Size and Spacing (fully incongruent). In the remaining trials numerosity 

was congruent with either Size (Size congruent, N = 59) or Spacing (Spacing congruent, N = 52). All 

participants were presented the same set of pairs and the order of presentation was kept constant to 

avoid fluctuations due to the sequence order.  

Spontaneous categorization task and stimuli 

The spontaneous categorization task was inspired by the one used in Ferrigno et al. (2017). In 

this task, children were presented with individual arrays of dots, and they had to divide dot arrays 

into two categories (small and large quantity) based on a criterion learned by rote practice. In a first 

training block, participants learned from trial-by-trial visual feedback to divide non-numerical arrays 

into the two categories. In this phase, images were built so that the arrays presented a total surface 

area proportional to the number of stimuli (standard trials), so participants could successfully solve 

the task by attending to either numerosity or the total surface area of the elements. In the test phase, 

to disclose the categorization criterion, standard trials were alternated with probe trials where 

numerosity and total surface area were systematically uncorrelated.  

To avoid any influence on the selected criterion, children were given only basic instructions 

on the nature of the task, through a practical example. They were presented with two examples of 

standard stimuli, one for each category, with the corresponding category symbol. In the training and 

test phases, each trial began with a readiness cue, followed by centrally presented arrays of dots (see 

Fig. 5.1c). After a keyboard press, two category symbols (yellow square and blue triangle) were 

presented on the two sides of the screen, counterbalanced across participants. Children answered by 

pressing the trackpad button corresponding to the side of the selected category. After a correct 
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response, positive visual feedback (green smiley face) appeared for 3 s. In case of an incorrect 

response, a blank screen would appear for 2 s, as mild negative feedback. The feedback was followed 

by an inter-trial interval of 1 s.  The training phase lasted a minimum of 30 trials, in which an equal 

number of “small/less” and “large/more” stimuli were presented. After 30 trials, participants would 

proceed to the test phase if they reached an accuracy of at least 60%, otherwise, training continued 

and performance was re-evaluated after each extra trial, to conclude the training phase after the 

minimum number of trials necessary for the individual participant to reach the accuracy threshold. 

After reaching 60% accuracy, children moved to two test blocks of 41 and 43 trials: between blocks, 

participants were encouraged to take a 2-to-5-minute break. In the test phase standard trials (N = 54) 

were randomly intermixed with probe trials (N = 30). All responses to probe trials were considered 

correct and received positive feedback.  

Stimuli were black-and-white images (350 by 350 pixels) of dot arrays (see Fig. 5.1d). 

Training and standard images presented from 8 to 12 dots for category “small/less” and 18 to 22 dots 

for category "large/more”, and they were built so that the arrays presented a total surface area 

proportional to the number of stimuli. This was achieved by equating the individual dot size to 1600 

pixels. For probe stimuli, number (10, 12, 14, 16, 18, 20) and area were systematically uncorrelated, 

with an average number of 15 dots and an average total surface area of 24000 pixels, ranging from 

12800 to 32000. A dataset was created with 100 instances for each combination of numerosity and 

area. Field area was constant in all stimulus types. During testing and training, for each participant 

standard stimuli were drawn from the entire dataset with a normal distribution such that each category 

had approximately a 15% chance at 8 or 18, 21% at 9 or 19, 27% at 10 or 20, 21% at 11 or 21 and 

15% at 12 or 22. Probe trials were instead selected from the dataset to sample all the combinations of 

numerosity and total surface area in the dataset. Stimuli were created with a custom program in 

MATLAB. 

5.2.5 Statistical analysis 

For the numerosity comparison task, we estimated the contribution of numerical and non-

numerical cues by modeling participants’ choice (selection of right stimulus) as a function of the 

logarithm of the Numerosity, Size, and Spacing right/left ratios with a general linear model with 

binomial distribution and probit link function, fit at the individual level (Tomlinson et al., 2020). The 

resulting coefficients provide both an indication of numerical acuity (βNum) and non-numerical bias 

(βSize and βSpacing). The discrimination vector was defined by the three individual coefficient estimates 

and the contribution of each feature was computed by projecting the discrimination vector onto the 

dimensions of individual features (see the equations in Appendix II) to determine the closest to the 
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discrimination vector. The angle (in degrees) of the discrimination vector from the numerosity 

dimension (vector-line angle) was used as a measure of the non-directional non-numerical bias. 

Coefficients, projections of the discrimination vectors, and their angles from numerosity were 

estimated at the individual level. Differences in acuity and bias between groups were then assessed 

with frequentist and Bayesian t-tests (R BayesFactor package with default priors). Multiple 

comparison tests were corrected using the Bonferroni method. Before the analysis, we excluded trials 

where the response was provided in less than 250 ms (anticipation) or later than 2 s (possible 

distraction) from stimulus appearance. With this procedure, we excluded from the initial sample 5 

participants from the DD group and 7 from the Control group for which we eliminated more than 

15% of the total trials. We also excluded 5 children from the DD group and 4 from the Control group 

whose performance was not well described by the general linear model (R2
adj < 0.20). The GLM fit 

at the individual level was significant for all participants included in the final sample (mean R2
adj = 

0.53, all χ² > 55.97, all ps < .001). As an additional analysis, differences in accuracy in separate 

congruency conditions between Numerosity, Size and Spacing were assessed with a mixed-effect 

logistic model of trial-by-trial accuracy with congruency condition (fully congruent, Size congruent, 

Spacing congruent, fully incongruent) and group (DD or Controls) as fixed effects and including a 

random intercept of participant to account for individual variability. 

For the spontaneous categorization task, the influence of numerosity and total surface area 

was assessed by fitting for each group a mixed-effect logistic model of category choice in probe trials 

with numerosity and total surface area as fixed effect predictors. We included a random effect of the 

participant and a random slope for numerosity and total surface area, to account for individual 

variability (Ferrigno et al., 2017). The appropriateness of the random effect structure was determined 

by sequentially inserting random intercepts and slopes in a null model and assessing the fit with 

likelihood ratio tests (Blini et al., 2016). We then compared coefficients between groups with a z-test 

(Ferrigno et al., 2017). A complementary analysis of accuracy in the different congruency conditions 

between numerosity and total surface area was carried out with a mixed-effect logistic model of trial-

by-trial accuracy in test trials with group and congruency condition (i.e., congruent, incongruent) as 

fixed effect predictors and including a random intercept of participant to account for individual 

variability. 
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5.3 Results 

5.3.1 Numerosity comparison 

In the numerosity comparison task, accuracy was well above chance in both groups (DD 

group: M = 0.82, SD = 0.05; Control group: M = 0.86, SD = 0.05). However, children with DD had 

lower accuracy compared to their peers (t(75) = 3.18, p = .002, d = 0.74, BF10 = 17.99). We then 

estimated at the individual level the relative contribution of Numerosity, Size, and Spacing on trial-

by-trial choice. Individual coefficient estimates from the GLM and their relation to the orthogonal 

and individual features are presented in Fig. 5.2a. In the case of a numerosity-based response, the 

numerosity coefficient can be interpreted as a measure of numerical acuity: a large numerosity 

coefficient reflects the ability to discriminate difficult numerical ratios (i.e., closer to 1). Significant 

coefficients for Size and Spacing, instead, reflect the presence of non-numerical biases.  

At the group level, the magnitude of the numerosity coefficient was significantly different 

from zero in both the DD group (M = 2.12, SD = 0.52, t(42) = 26.81, p < .001, d = 4.09) and the 

Control group (M = 2.69, SD = 0.98, t(33) = 16.07, p < .001, d = 2.76). Moreover, in both groups the 

coefficient weights were significantly different from zero for both Size (DD group: M = 0.19, SD = 

0.26, t(42) = 4.93, p < .001, d = 0.75; Control group: M = 0.22, SD = 0.26, t(33) = 5.03, p < .001, d 

= 0.86) and Spacing (DD group: M = 0.30, SD = 0.19, t(42) = 10.26, p < .001, d = 1.57; Control 

group: M = 0.34, SD = 0.23, t(33) = 8.62, p < .001, d = 1.48), indicating a significant influence from 

non-numerical cues. However, we found moderate evidence for similar coefficient estimates of Size 

(t(71.05) = 0.47, p = .64, d = 0.11, BF10 = 0.26) and Spacing (t(64.44) = 0.75, p = .45, d = 0.17, BF10 

= 0.31) between the two groups. On the contrary, the weight of numerosity was significantly smaller 

in the DD group (t(47.42) = 3.12, p = .003, d = 0.74, BF10 = 23.77; strong evidence), indicating that 

children with DD were, on average, less able to discriminate difficult numerical ratios (see Fig. 5.2b).  

We then estimated individual discrimination vectors and computed the projections onto the 

different feature dimensions. Paired-sample t-tests revealed that, at the group level, the weight of 

numerosity was significantly larger than any other projection in both the DD (all ts(42) > 3.49, all ps 

< .05, d > 0.53) and Control group (all ts(34) > 4.27, all ps < .001, d > 0.73). However, the vector-

line-angle was significantly different from zero for both the DD group (M = 11.55, SD = 5.28, t(42) 

= 14.34, p < .001, d = 2.19) and the Control group (M = 10.14, SD = 3.25, t(33) = 18.21, p < .001, d 

= 3.12), but it was not significantly different between the two groups (t(71.08) = -1.44, p = .15, d = -

0.32, BF10 = 0.53) (see Fig. 5.2c). 



 

80 

 

 

Figure 5.2 Results from experimental tasks. (A) Scatter plots of the coefficients for Numerosity, Size and 

Spacing, plotted pairwise. Colored shapes (red dots: control group; black triangles: DD group) represent 

individual participants, white shapes represent group average. Grey lines represent non-numerical visual 

magnitudes. (B) Mean GLM coefficient estimates (and standard error) in the two groups. (C) Distribution of 

the angles between individual discrimination vectors and the numerosity dimension in the two groups. (D) 

Group coefficients (and standard error) for numerosity and cumulative area in the spontaneous categorization 

task. 
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The mixed effect logistic model of trial-by-trial accuracy with congruency condition (fully 

congruent, Size congruent, Spacing congruent, fully incongruent) and group (DD or Controls) as 

fixed effects and including a random intercept of participant revealed a significant effect of group, 

with higher accuracy in the Control group compared to the DD group (χ²(1) = 10.84, p < .001), as 

well as a significant effect of congruency condition (χ²(1) = 441.21, p < .001). The interaction between 

group and congruency was instead not significant (χ²(1) = 0.51, p < .92). Post hoc tests revealed that 

the entire sample (both DD and Controls) presented an overall higher accuracy in fully congruent 

trials (M = 0.92, SD = 0.05) compared to all other conditions, higher accuracy in Spacing congruent 

trials (M = 0.87, SD = 0.07) compared to Size congruent ones (M = 0.83, SD = 0.06), and a lower 

performance in fully incongruent trials (M = 0.73, SD = 0.10) compared to all others (all z > 4.50, all 

ps < .001). 

5.3.2 Spontaneous categorization 

The analysis of the categorization task focused on probe trials, where numerosity and total 

surface area were independently varied. We estimated the relative contribution of numerosity and 

total surface area on the category selection at the group level with a mixed-effects logistic regression 

model with numerosity and total surface area as predictors of trial-by-trial category choice. In the DD 

group, Wald tests of fixed effects revealed a significant effect of numerosity (β (SE) = 0.59 (0.05), 

χ²(1) = 149.53, p < .001), while the effect of cumulative surface area was not significant (β (SE) = -

0.003 (0.03), χ²(1) = 0.006, p = .94). Similarly, in the control group it emerged a significant effect for 

numerosity (β (SE) = 0.89 (0.07), χ²(1) = 147.30, p < .001) but not for area (β (SE) = - 0.01 (0.03), 

χ²(1) = 0.19, p = .66). The coefficient estimate of numerosity was smaller for the DD group compared 

to the Control group (z = 3.50, p < .001), while no difference emerged in the estimate of cumulative 

surface area (z = -0.23, p = .82) (see Fig. 5.2d). 

Additionally, the effect of congruency on the proportion of numerically categorized probe 

trials was investigated with a mixed-effect logistic model with congruency condition (congruent or 

incongruent) and group (DD or Controls) as fixed effects, and participant as random intercept. A 

significant effect of the group was individuated, with a higher performance in the Control group 

compared to DD (χ²(1) = 8.84, p = .002). Instead, the effect of congruency and the interaction between 

congruency and group were not statistically significant. 

5.4 Discussion 

The current study aimed to investigate non-numerical biases in developmental dyscalculia 

during explicit and implicit quantity judgments to evaluate numerical and non-numerical deficits in 



 

82 

 

DD. To this aim, we compared the performance of children with and without dyscalculia in a 

numerosity comparison task designed to evaluate the influence of non-numerical cues and in a 

spontaneous categorization task assessing the relative saliency of numerosity and total surface area. 

We found that, in both tasks, typically developing children and children with DD based their 

responses primarily on the numerical information present in the images. However, in the explicit 

numerosity comparison task, both groups showed a significant interference from non-numerical 

features, with an overall positive bias from the size of the elements and their spreading in space. This 

result adds to the large body of evidence showing how numerosity judgments are modulated by 

continuous magnitudes of the dot arrays (Abalo-Rodríguez et al., 2022; Clayton et al., 2015; Dakin 

et al., 2011; DeWind et al., 2015; Gebuis & Reynvoet, 2012b; Salti et al., 2017). However, while the 

numerical overestimation of sparser arrays seems a strong effect, the direction of the size bias is still 

debated, with evidence for an over-and underestimation of large items or failure in detecting any bias 

(Gebuis & Reynvoet, 2012b; Nys & Content, 2012; Starr et al., 2017). This inconsistency emerged 

also in the present categorization task, where, differently from the explicit task, both DD and controls 

showed negligible influence from the cumulative area of the elements. However, the discrepancy 

between the two tasks could be explained by differences in non-numerical feature manipulations. 

While, in the categorization task, numerosity and total surface area varied in similar ranges, in the 

comparison task, we used a larger range of size ratios compared to numerical ones, which could have 

contributed to increasing the saliency and thus reliance on the corresponding perceptual cues 

(DeWind & Brannon, 2016; Salti et al., 2017). Previous studies that equated perceptual saliency of 

numerical and non-numerical changes failed to find biases due to item size in the general population 

(Castaldi et al., 2018). 

Crucially, in both computerized tasks, children with DD showed lower performance than their 

peers, resulting in a reduced numerical acuity in the comparison task and a weaker number-based 

focus in the spontaneous categorization task. Nevertheless, in both tasks, we did not detect a 

concurrent increase in non-numerical bias. This pattern of results is therefore not consistent with 

domain-general accounts of dyscalculia that link poor numerosity judgments to higher interference 

from task-irrelevant information due to deficits in executive functions (Bugden & Ansari, 2016; Szucs 

et al., 2013). Moreover, these results are also difficult to reconcile with the proposal that children 

with dyscalculia would present a delay in domain-specific filtering mechanisms that, through 

education and symbolic numerical learning, would help differentiate numerical and non-numerical 

quantities (Piazza et al., 2018). In particular, this interpretation is not supported by the consistent 

selection of numerosity as the task-relevant dimension in the spontaneous categorization task, despite 

the learning phase equally encouraging children to rely on non-numerical information. Last, it has 
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also been suggested that increased non-numerical biases could emerge if individuals with dyscalculia 

used non-numerical cues as a compensatory strategy for an imprecise numerical representation 

(Castaldi et al., 2018). In line with this interpretation, individuals in the current DD sample presented 

a reduced precision in discrimination and a weaker numerosity-based categorization consistent with 

a deficit in numerical representation. However, the lack of an increased non-numerical bias suggests 

that participants with DD did not additionally exploit other perceptual characteristics of the images 

to solve the tasks. 

Overall, the lack of evidence for increased non-numerical bias is difficult to reconcile with 

previous studies that consistently showed enhanced congruency effects in DD across comparison and 

estimation tasks, both in children and adults (Bugden & Ansari, 2016; Mejias, Mussolin, et al., 2012; 

Mussolin, Mejias, et al., 2010; Piazza et al., 2018). Such inconsistency might be related to the 

different criteria in the sample selection (Peters & Ansari, 2019). In the present study, we tried to 

match children with dyscalculia and control children with similar visuospatial memory abilities, 

which could have resulted in similar non-numerical biases. A previous investigation using a similar 

matching procedure (Decarli, Sella, et al., 2022) similarly did not find increased congruency effects 

in DD in performing the Panamath numerosity comparison task (Halberda et al., 2008). Although in 

that task they did not find any difference in performance between DD and controls, they identified a 

lower performance in DD in a non-symbolic match-to-sample task. Previous evidence also suggests 

that DD can be a heterogeneous disorder (Fias et al., 2013), including subtypes characterized by 

different numerical deficits (Skagerlund & Träff, 2016) or by the co-occurrence of domain-general 

and domain-specific impairments (Bartelet et al., 2014; Kaufmann et al., 2013; Peng et al., 2018). 

Moreover, it must be noted that our result is in line with previous evidence that showed, in a similar 

spontaneous categorization task, a positive relation between mathematical skills and the perceptual 

salience of numerosity, but not of area (Ferrigno et al., 2017). 

In conclusion, the current results show that children with developmental dyscalculia present 

impairments in numerosity judgments that cannot be ascribed to increased interference effects from 

task-irrelevant magnitudes. While we do not claim that visuospatial working memory or inhibition 

skills are not important predictors of mathematical abilities, the current result suggests that the deficits 

shown by DD in numerosity judgments cannot be entirely ascribed to enhanced interference from 

non-numerical cues due to domain-general deficits, suggesting the presence of a domain-specific 

deficit related to a noisier numerical representation.  
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6 CHAPTER 6 

CUSTOM GUIde:  

a program to generate visual arrays4 

6.1 Introduction 

The studies presented in the previous chapters add to the large amount of evidence in the 

numerical cognition literature showing that, during numerical decisions, both children and adults can 

be influenced by other spatial and temporal magnitudes. However, as previously stated, further 

investigation is needed to understand the locus of the interplay between numerosity and continuous 

quantities, from sensory extraction (Gebuis et al., 2016), representation (Walsh, 2003) or response-

selection (Nys & Content, 2012). Importantly, differentiating between these alternative hypotheses is 

crucial for understanding the mechanisms of numerosity perception and the development of basic 

numerical skills. For example, studies investigating the mechanisms of extraction of numerical 

information have manipulated visual cues to disentangle numerosity related and unrelated neural 

response in the visual stream (Castaldi et al., 2019; Fornaciai et al., 2017; Harvey & Dumoulin, 

2017b; van Rinsveld et al., 2020). Similarly, the investigation of non-numerical interference revealed 

a developmental improvement in the ability to focus on numerical information during numerical 

tasks, highlighting the importance of filtering mechanisms in the maturation of number perception 

(Piazza et al., 2018; Starr et al., 2017). Moreover, a better understanding of the relation between 

interference effects and executive functions might be informative also in determining the role of basic 

number processing in the development of later mathematical abilities (Cragg & Gilmore, 2014). In 

sum, the interaction between numerosity and continuous visual cues has grown from a nuisance factor 

to a theoretically relevant aspect to understand the mechanisms of numerosity processing. Therefore, 

a precise manipulation of continuous magnitudes has become a necessity in a wide range of empirical 

studies in the field of numerical cognition.   

 
4 In collaboration with Damiano De Marco and Simone Cutini. We also thank A.D., G.D., E.D., R.S. and M.S. 

for helping in the beta testing of the program.  
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As previously underlined, numerosity processing is commonly assessed through the 

presentation of non-symbolic visual stimuli such as arrays of dots, asking individuals to estimate the 

numerosity of a group of elements or to report the most numerous between two groups of objects. 

Several methods have been developed to dissociate numerosity from continuous visual features in 

this type of experiments. Some of them rely on measuring differences in response related to 

congruency between numerical and non-numerical information (Gebuis & Reynvoet, 2012a; Salti et 

al., 2017), while another common approach is based on an independent and parametric variation in 

numerosity and other visual cues to estimate their separate contribution to behavioral or neural 

responses (DeWind et al., 2015, 2018). In both cases, useful algorithms to replicate such designs with 

similar visual stimuli have been made publicly available (Gebuis & Reynvoet, 2012a; Park, 2021; 

Salti et al., 2017). However, the stimuli produced by those algorithms are inevitably tied to the 

underlying theoretical background and experimental paradigm (although they can be adapted to novel 

studies). Moreover, it is worth noting that some manipulations might introduce an imbalance in 

saliency between numerosity and non-numerical cues (Salti et al., 2017); similarly, specific stimulus 

designs and protocols might consistently yield  different biases originating from non-numerical cues 

(Clayton et al., 2015; DeWind & Brannon, 2016). Thus, methodological differences in stimulus 

design can also result in subtle biases in favor of the theoretical frameworks in which they are 

developed (De Marco & Cutini, 2020). Therefore, researchers need to carefully consider the 

implications related to the use of a particular algorithm developed to adopt a specific method.   

To overcome this issue, more general-purpose instruments to help researchers in generating 

non-symbolic numerical stimuli have been developed in the latest years (De Marco & Cutini, 2020; 

Guillaume et al., 2020; Zanon et al., 2022). These programs allow the creation of single arrays or 

pairs of collections with control over the physical appearance of the images, without being necessarily 

tied to a specific method. However, they present important differences in the precision of the creation, 

the features that they take into account, as well as the options available to users (for a detailed 

comparison, see Zanon et al., 2022). For example, GeNEsIS (Zanon et al., 2022) is a multi-step app 

that offers high flexibility and precision over features manipulation and has the option to display the 

stimuli for several experimental designs, but it requires the manual definition of all the characteristics 

for subsets of single arrays. NASCO (Guillaume et al., 2020), provides the option to directly 

manipulate the features of pairs of collections or to define multiple sets of images, but with reduced 

flexibility in the manipulation of the size of the elements. Finally, CUSTOM (De Marco & Cutini, 

2020)  is constituted by multiple algorithms for a flexible and precise generation of single arrays or 

pairs of arrays but its usability is severely hindered by the absence of a graphic user interface.  
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To overcome such limitation, we developed CUSTOM GUIde, a new tool based on a 

graphical user interface, to facilitate the generation of non-symbolic numerical stimuli with high 

precision in the control of several visual magnitudes. The program is implemented as a MATLAB 

app based on the algorithms available in CUSTOM (De Marco & Cutini, 2020), updated and 

expanded to meet the necessity of researchers with different scientific backgrounds on number 

processing and programming expertise. To this aim, the program was equipped with a graphical user 

interface divided in different modules for each of the original functionalities of CUSTOM, so that 

users can generate datasets of single arrays or pair of arrays varying independently the number, 

dimension, and position of the elements in the arrays. The interface makes immediately and clearly 

available to the user the different options for the manipulation of visual features, as well as new 

customization options (e.g., change in shape of the elements of the arrays, change in shape of the field 

area) that were previously internal parameters of the functions. Moreover, additional modules were 

developed to allow a more automatic definition of subsets based on the desired relationship between 

numerosity and visual features and to facilitate the replication of pre-existing datasets. Crucially, 

CUSTOM GUIde is a tool meant to rapidly generate stimuli tailored to the preferred design of the 

experimenter, since it is not tied to any specific method of feature control or manipulation. 

6.2 Method 

CUSTOM GUIde is a program implemented in MATLAB (MATLAB R2020a, The 

MathWorks Inc., Natick, Massachusetts, USA) through MATLAB App Designer. With this program, 

users can easily create stimulus sets of visual arrays of elements with a precise control over the 

physical qualities of the images. The underlying code to create the stimuli is based on the CUSTOM 

toolbox described in a previous work (De Marco & Cutini, 2020). The unpackaged app code will be 

shared to be freely downloaded, together with tutorials, examples and additional detailed 

documentation. To use it, MATLAB R2020a or more recent versions are required, without any 

additional toolbox. The program has been tested on Windows (Windows 10 Intel® Core™ i7-1065G7 

- CPU: 1.30 GHz- RAM: 16 GB, Intel® Core™ i5-7400 - CPU: 3.00 GHz - RAM: 12 GB, AMD 

Ryzen 7 3700U - CPU: 2.30 GHz- RAM: 8 GB) and macOS (macOS Catalina on a MacBook Pro 

Intel® Core™ i5 - CPU: 2.6 GHz - RAM: 8 GB). 

6.2.1 Structure of the program 

CUSTOM GUIde is organized in independent modules that allow the generation of non-

symbolic numerical datasets for several experimental designs, based on the necessities of the user. A 

Single stimulus module can be used to generate single images with arrays of objects or pairs of arrays. 
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With a Manual set generation section, it is possible to create stimulus sets of single arrays or pairs of 

arrays by manually defining numerosity and several features related to their size and position. The 

Guided set generation module allows to create sets of single arrays by specifying a correlation 

between number and non-numerical magnitudes or sets of pairs by defining the ratio between 

numerical and non-numerical properties. Finally, the Load and generate section can be used to create 

different sets of arrays or pairs with features defined in pre-specified CSV files. Last, additional 

parameters affecting the stimuli appearance and their creation can be specified in a Setting page. The 

different modules are described in the following paragraphs, and an overview of the program 

organization is depicted in Fig. 6.1. Moreover, a thorough explanation of each component of the app 

is present in the extensive documentation that can be downloaded with the program.  

 

 

Figure 6.1. Organization of CUSTOM GUIde: different modules allow the creation of single stimuli or 

entire datasets, offering different methods to specify the visual properties of the arrays. Separate tabs can be 

used to create single arrays or pairs of arrays. 

6.2.2 General parameters of images  

CUSTOM GUIde can be used to create a single array of objects or pairs of arrays by 

specifying parameters related to the number of elements, their dimension, and their placement in the 

image. In all the different modules, users can manipulate the dimension of the elements, specifying 

the size of individual objects by selectively defining their Radius (or side length, in case of shapes 

other than circles) or Individual item area. Alternatively, users can control the total size of the array 
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by specifying a Total surface area or Total perimeter. Moreover, it is possible to create arrays that 

are homogeneous in size or to include variability in the radii/sides of the individual items. 

Independently from the selected control for the size of the objects, users can manipulate their 

placement in space, by specifying a general Field area in which elements can fall or, more 

specifically, a Convex hull area (i.e., the area of the smallest polygon that will contain all the 

elements). When creating pairs of arrays, users can specify different values for the two groups of 

elements. Moreover, the distance between the center of mass of the two collections can be varied in 

order to generate pairs as arrays of dots separate in space or as color-based pairs with overlapping 

field areas, similar to the Panamath algorithm (Halberda et al., 2008). In the latter case, it is also 

possible to directly control the area of appearance of all the elements in the image. Along with the 

size and positioning control, other general characteristics of the stimuli can be specified, such as the 

dimension (in pixels) of the image or the RGB color of the background and of the elements.  

6.2.3 Generation process 

The creation of the images is instantiated with the CUSTOM algorithms (De Marco & Cutini, 

2020). The general workflow consists in a Sizing phase to generate objects with a specified dimension 

and a second Placing phase to achieve a placing compatible with users’ requests. 

 In the initial Sizing phase objects are generated based on the specified dimension and 

requested variability in element size. It must be noted that, due to geometrical constraints, the size of 

the elements can be defined by a single feature at a time. This has important implications for the 

characteristics of the final datasets, since equating one feature will result in a variation in another 

non-numerical feature, in proportion to the number of elements of the array. For example, while total 

surface area is kept constant, increasing the number of elements will lead to a negative correlation 

between numerosity and item size; on the contrary, equating item surface area in arrays with different 

numerosity leads to a positive relationship between numerosity and total surface area. Similarly, in a 

pair of arrays with different numbers of objects, equating item surface area automatically leads to 

congruency between total surface area and numerosity, while equating total surface area leads 

numerosity to be incongruent with item surface area. As presented in previous chapters, the same 

relationship also characterizes other extensive/intensive features related to the position of the 

elements, such as field area/convex hull and density.  

In the Placing phase the elements are arranged in the image to achieve the control intended 

by the user. In particular, precise control over the convex hull area is achieved through an initial 

placement of the elements and progressive adjustments proportional to the distance between each 

element and the center of mass, until the expected convex hull value is reached. In this case, a 
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Tolerance value allowing a certain degree of error in the placement can be specified by the user, to 

increase the speed of the creation. Finally, iterative discard is used if images do not respect the 

required feature definition. 

Users can create collections of different shapes such as dots, squares and triangles. The Sizing 

and Positioning phases are always based on circular shapes, but an internal conversion of the features 

offers a precise manipulation of the dimension and position of the elements (although, in case of 

shapes other than dots, convex hull measures will be approximated to the circles in which the squares 

or triangles are inscribed). Finally, users can customize the format in which they prefer to save the 

specified images and associated database with summary information regarding the physical 

characteristics of the arrays. In all modules of the program, output images can be saved as PNG files 

and a table with their characteristics can be generated as a CSV file. Moreover, both the table and the 

images can be directly saved in a MATLAB file. Notably, in addition to the specified characteristics 

that can be used for generation, for each image the program provides additional measures of density 

(total surface area/convex hull), an alternative measure of average distance between dots and a 

measure of average distance from the center of mass. 

6.3 CUSTOM GUIde overview 

6.3.1 Single stimulus 

In the Single image and Single pair tabs, users can generate a single array of objects or a pair 

of arrays and immediately visualize the generated images and the corresponding output table of 

features directly in the interface (see Fig. 6.2). Each array is defined by the number of elements, a 

control method for the Sizing and Placing and the corresponding value (in pixels) of the selected 

variables. In case of pairs, users can create separate arrays or reduce the central spacing between the 

arrays to create color-based pairs with overlapping field areas (see Fig. 6.3a-b). In case of overlapping 

arrays, by default the program generates distinct sets of completely visible elements; however, 

additional options allow to include partial occlusion between arrays.  

The Single stimulus module is meant to let users familiarize with the program environment 

and options, as well as with the visual parameters. To this aim, in this section the user is guided by 

default values that change dynamically with numerosity, image size, size control and position control. 

Notably, default values are intended as a starting point for the user to individuate an appropriate range 

of features for the selected numerosity and image size and to emphasize the relation between 

numerical and non-numerical magnitudes. In addition, users can also visualize the physical properties 
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by graphically highlighting in the output image continuous magnitudes such as Total surface area, 

Total perimeter and Convex hull (see Fig. 6.3c). 

 

Figure 6.2. Graphic interface for the Single pair tab: In this section, users can generate pairs of arrays by 

separately defining their numerosity and non-numerical features determining their Sizing and Positioning. 

Generated images are directly shown in the interface, together with a table of their relevant visual 

characteristics. 

 

Figure 6.3. Examples of generated images: (A) Examples of single arrays with homogeneous and 

heterogeneous item size. (B) Examples of pairs, separated in space or defined by different colors. (C) Users 

can graphically highlight several properties of the arrays, such as the Convex hull area or the Total perimeter. 
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6.3.2 Manual set generation 

The Manual set generation module offers the possibility to create sets of multiple single 

arrays or pairs of arrays (see Fig. 6.4). Differently from the creation of single stimuli, the Images and 

Pairs tabs allow to specify more numerosities, in order to create one or more stimuli with different 

numerosities or multiple instantiations of the same numerosity, characterized by the same 

manipulation of visual properties.  

 

Figure 6.4. Graphic interface for the Images tab in the Manual set generation module. In this section, 

users can generate subsets of arrays defined by different combinations of numerosity and non-numerical 

features. Multiple subsets can be specified and reviewed in the corresponding table before generation. 

The goal of the Manual set generation section is to define multiple subsets of arrays with 

different combinations of numerosity, Sizing and Positioning control. Subsets of single arrays can be 

used to incorporate variability in the visual features present in the dataset or to create different 

correlations between numerosity and visual magnitudes. In addition, in this module users can use 

multiple subsets to create datasets of stimuli varying independently in numerosity and other visual 

quantities (see Fig. 6.5). When generating pairs, subsets can be used to create different congruency 

conditions between numerosity and size or positioning variables or to counterbalance the side or color 

of the largest array.  
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The characteristics defining a subset can be temporarily stored in the interface and can be 

reviewed in the corresponding table before generation, which allows to define multiple subsets at the 

same time maintaining an overview of the characteristics of previous subsets. Different names can be 

specified for different subsets and datasets, and they will be reported in the output table and image 

files based on the selected saving options. Although in this section images and feature tables are not 

directly shown in the app by default, modifying the additional Settings (see Section 6.3.5) it is possible 

to periodically visualize the stimuli (e.g., one image every five times) during the generation process. 

 

Figure 6.5. Example of images created with Manual set generation: images with orthogonal manipulation 

between numerosity and Item surface area, created using four different subsets (one for each ISA value) in the 

Manual set generation module.  

6.3.3 Guided set generation 

In the Guided set generation section, users can generate datasets by specifying in broader 

terms the relationship between numerosity and non-numerical features. In the Correlation tab (see 

Fig. 6.6a) users can generate sets of single arrays. After defining the desired number of elements, 

users can select the visual properties to manipulate and define a range of values (in pixels), specifying 

a positive (+) or negative (-) correlation between numerosity and the selected features. The program 

will then generate arrays with feature values in the entire specified range between the minimum and 
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maximum value provided by the user, directly or inversely proportional to numerosity (see Fig. 6.6b). 

Multiple repetitions for the same numerosity can be specified: in this case, all instances will be 

generated from the same combination of numerosity and visual properties.  

 

Figure 6.6 Graphic interface and images from the Correlation tab in the Guided set generation module. 

(A) In this section, users can generate subsets of arrays defined by different correlations between numerosity 

and non-numerical features. (B) On the left, an example of a subset of single arrays with a positive correlation 

between numerosity and item size and a negative correlation between numerosity and convex hull; on the right, 

a subset with a negative correlation between numerosity and item size and a positive correlation between 

numerosity and convex hull. 
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In the Ratio tab (see Fig. 6.7) sets of pairs can be defined by manipulating the ratio of 

numerical and non-numerical features between the two arrays. Users are required to define a reference 

numerosity and select the visual properties to control, by indicating a corresponding range of values 

(in pixels). Then, pairs of arrays can be generated by specifying independently: i) the ratio between 

the two arrays in numerosity and ii) the ratio of the selected non-numerical parameters. Each pair will 

then be generated by randomly selecting both the feature reference values and paired arrays in the 

defined range, through an iterative process discarding inappropriate combinations based on the 

desired ratios. In case of large datasets, users can decide to create more instances of the same pairs; 

in case of multiple repetitions, the precise values of the selected sizing and positioning variables are 

randomly selected in the specified range for each instantiation. 

 

 

Figure 6.7 Graphic interface of the Ratio tab in the Guided set generation module. In this section, users 

can generate subsets of pairs defined by different ratios in numerosity and selected non-numerical variables 

between the two arrays. 

The objective of the Guided set generation modules is to offer an alternative method to 

generate datasets based on explicit relations between numerosity and non-numerical properties. 

Although similar manipulations can be achieved also in the Manual set generation module, in this 
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section the explicit definition of the relationship between numerosity and continuous visual properties 

and the automatized selection of appropriate feature values leads to an easier and faster generation of 

the required datasets. For example, users can define subsets of pairs with different congruency 

conditions. Even in this case, by defining multiple subsets it is possible to create datasets with 

different correlations or congruency conditions between numerosity and size or positioning features 

(see Fig. 6.8). 

 

Figure 6.8. Example of images created with the Ratio tab. Images generated from the two subsets shown 

in Figure 6.7, where numerosity is either congruent or incongruent with total surface area and with 

counterbalancing of the side of appearance of the array with larger numerosity and larger total surface area. 

6.3.4 Load and generate 

In the Load and generate module, users can create datasets from features defined in pre-

specified files. Lists of stimuli and corresponding features can be imported in the app from a CSV 

file, to generate them with the CUSTOM algorithms. The imported lists can be reviewed in the app 
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before generation. Appropriate variable names and feature control definition are explained in detail 

in the Help page of the program as well as in the additional software documentation. Moreover, a 

dialog box will display errors if incompatible combinations of features are detected in the specified 

dataset. Users need to provide specific feature values for each stimulus, but they can set some general 

characteristic, like the color of the dots, directly from the interface. This section enables experienced 

users to generate images for complex stimulus designs for which the manual definition of subsets 

could be time-consuming. In addition, this module is a useful tool to replicate existing datasets and 

enhance comparability between studies adopting similar methods. 

6.3.5 Additional settings 

The Settings tab contains additional functionalities that were previously defined by internal 

parameters in the CUSTOM package, to offer a more direct control over advanced properties of the 

stimuli or the process of image generation, affecting all modules.  

Advanced stimulus settings can be used to define the shape of the elements to place in the 

arrays (dots, squares, or equilateral triangles), with homogeneous or random orientation. Moreover, 

users can modify the shape of the field area (circular or square) as well as its placement in the image 

(centered or randomly placed). Last, users can personalize the minimum distance between the objects 

and the default size range of individual elements when no control is specified for the Size control. 

Regarding control over the creation process, users have the option to check the progress in 

creation during the generation of datasets, through a periodic visualization of the output images 

directly in the interface. A personalization of the creation algorithm is offered by control over the 

number of iterations to use in the separate phases of generation and specifically in the adjustment of 

each feature or the number of resets of stimulus creation in case of failure. Moreover, when creating 

pairs defined by ratio, users can specify the number of attempts of the iterative process that selects 

values within the defined feature range to obtain the specified ratio, before reporting an error. Finally, 

through the Applied tolerance settings affecting Convex hull control, users can specify whether to 

create overall smaller than specified values, overall higher than specified values, or (default option) 

allow both smaller and larger values within the tolerance range to be accepted. 

6.4 Design decisions and limitations 

The main goal of CUSTOM GUIde is to help researchers to generate arrays of elements with 

precise control over the visual properties of the collections. As such, it is beyond its scope to include 

the possibility to directly implement experimental paradigms presenting images and recording 

participant responses. Although this option is present in some tools, it is necessarily limited to a small 
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range of experimental task settings such as numerosity discrimination or habituation (Guillaume et 

al., 2020; Halberda et al., 2008; Zanon et al., 2022), which would not cover the large variability in 

experimental applications that stimuli created with this program can achieve.  

CUSTOM GUIde is based on separate modules related to the different functionalities of the 

program. However, stimulus definition is not based on a step-by-step process. Instead of having a 

serial workflow reflecting the internal processes of generation, we believe that a simultaneous 

definition of all the numerical and non-numerical parameters of the arrays is helpful for taking into 

full consideration the interplay between different continuous magnitudes, beside the mere relationship 

between numerosity and other visual properties. Therefore, in each section we privileged a more 

comprehensive design that offers a general overview of all the different parameters affecting 

generation. Instead, separate modules aim at guiding users toward the easiest and fastest method to 

generate datasets based on experimental needs, required level of control over the physical appearance 

of the images, and user expertise. Furthermore, a modular design was selected to accommodate future 

development, to easily incorporate additional sections. 

Last, two main limitations of the current program need to be addressed. First, the program 

does not currently support the creation of elements with other shapes than dots, squares, and 

equilateral triangles. Second, the current program does not allow a direct manipulation of the density 

of the arrays, although information regarding density and inter-dot spacing is reported a posteriori 

among the stimuli characteristics. This choice was motivated by a lack in consensus in the field over 

the geometrical definition of density, which is alternatively computed as the number of elements, or 

the area of the elements divided by space occupied (Dakin et al., 2011; Gebuis & Reynvoet, 2012a; 

Salti et al., 2017). However, it must be noted that an indirect control of density based on the preferred 

definition can be achieved by the manipulation of the corresponding features (e.g., a combination of 

Total surface area and Convex hull). 

6.5 Discussion 

The increasing awareness of how continuous quantities impact numerical judgments requires 

researchers to take into account the physical appearance of non-symbolic numerical stimuli used in 

empirical studies. We developed CUSTOM GUIde to propose a flexible and multi-purpose tool that 

eases the manipulation of continuous magnitudes when generating visual arrays in a user-friendly 

environment. With the program, users can create arrays of elements that may differ in number, 

dimension, and position. In addition, images are highly customizable in the shape and color of the 
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elements of the arrays and in the position and shape of the field area, and it is possible to vary the 

center of mass of paired arrays enabling the creation of pairs separate in space or color-based pairs. 

The high flexibility of CUSTOM GUIde allows users to create images suitable for all common 

paradigms used to investigate numerical cognition in human and comparative research, such as 

estimation, discrimination or habituation tasks, more complex tasks such approximate calculation, or 

passive viewing paradigms in electrophysiological or neuroimaging studies. The manipulation of the 

physical properties of the images is not tied to any underlying theoretical background and can be 

performed independently of a specific experimental task, allowing users to tailor image parameters 

to the specific research question under investigation. 

Among the different manipulations that can be performed, CUSTOM GUIde enables the 

creation of different subsets that differs in the relation between numerosity and other non-numerical 

features, useful for designs based on reference and deviant stimuli (e.g., Guillaume et al., 2020; Piazza 

et al., 2004) or for the comparison of congruency conditions (e.g., Gebuis & Reynvoet, 2012a; Salti 

et al., 2017). Moreover, users can define parametric variations in non-numerical features of single 

images (Abalo-Rodríguez et al., 2022; Aulet & Lourenco, 2021; Castaldi et al., 2019; Ferrigno et al., 

2017), or precisely manipulate the ratios of numerical and non-numerical features in pairs of arrays 

(Castaldi et al., 2018; Tomlinson et al., 2020). Examples and tutorials on how to replicate some of 

these stimulus designs using the interface are included in the documentation of the program.  

Notably, the creation process is carried out in a user-friendly graphical interface that guides 

the user in the customization through an intuitive display of the different options and informative 

feedback such as warnings and errors. Several modules help the user with an automatic generation of 

stimuli based on a requested relationship between numerosity and visual features. Furthermore, 

during the creation of complex datasets, users can access detailed help pages directly in the interface 

and additional documentation and tutorials. Similarly, the Single stimulus section and the dynamic 

default values provided are intended not only for an initial familiarization with the parameters, but as 

a reference to obtain immediate feedback during the definition of complex stimuli (e.g., to test 

extreme combinations of parameter values).  

Last, CUSTOM GUIde aims at increasing openness and reproducibility. In this regard, the 

possibility to create stimuli from predefined files allows to easily replicate virtually any existing 

datasets with known non-numerical features. At the same time, the program code is accessible and 

modifiable by experimenters based on their necessities, to enable full customization of more advanced 

settings and to encourage the development of new functionalities. 

The presented aspects make CUSTOM GUIde a versatile tool to precisely generate non-

symbolic numerical stimuli in a user-friendly environment designed for a wide range of expertise 
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levels. This flexible program can facilitate the manipulation of visual properties of non-symbolic 

numerical stimuli for all the most popular experimental applications under different theoretical 

frameworks. In this regard, we believe that this program can represent a useful asset not only in 

numerical cognition, but also ensemble perception.  
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7 CHAPTER 7 

Conclusive remarks 

The common thread of the different contributions presented in this thesis was investigating 

the role of continuous magnitudes in numerosity processing and their impact on numerosity 

judgments, which is central to a long-lasting debate on how numerical information is extracted, 

represented, and manipulated and how it relates to more advanced symbolic numerical abilities. We 

approached this issue from three main different viewpoints. 

In Chapters 3 and 4, we tried to better characterize, in the healthy adult population, the effect 

of temporal magnitudes on numerosity judgments, a topic that has been largely neglected in the past 

literature. To this aim, we adapted the framework introduced by DeWind and colleagues (2015) to 

the temporal domain, through the orthogonal manipulation of numerosity and two mathematical 

variables summarizing the information related to the duration of events and their spacing in time 

within a given sequence. In all our studies, both comparison and estimation of numerosities presented 

as sequences of visual or auditory events did not rely on the temporal characteristics of the sequences, 

in support of theoretical accounts suggesting a direct extraction of numerical information from the 

environment (Anobile, Cicchini, et al., 2016). Nonetheless, we could detect significant biases from 

task-irrelevant temporal features, particularly related to the duration of the sequences or the rate of 

presentation of the events, with similar influence in visual and auditory modalities. More importantly, 

temporal cues played a role not only in discrimination but also in the estimation task, where 

individuals were asked to report the number of visual or auditory events using a symbolic notation, 

suggesting that cross-magnitude interplay cannot be entirely ascribed to response-selection conflicts 

(Yates et al., 2012). However, further investigations are required to clarify contradictory results 

regarding the direction of the bias, possibly emerging from the use of stimuli with a different spatial 

nature (Lambrechts et al., 2013; Martin et al., 2017). 

The method introduced in this work to manipulate the temporal features of the sequences and 

analyze responses is complementary to what has already been adopted to investigate the contribution 

of spatial extent in numerosity responses, both at the behavioral and neural levels (Park et al., 2016; 

Tomlinson et al., 2020). In this sense, our variation can represent a common ground to further explore 

the interplay between numerosity, space, and time across presentation modes and sensory modalities 
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(e.g., visual and haptic). The parallel results with visual and auditory sequences described in the 

presented studies can be taken as preliminary evidence of similarities in how temporal magnitudes 

and numerosity interact in different sensory modalities, at least under the same mode of presentation. 

However, the between-subject design of the experiments prevents a within-subject correlation and 

stronger claims in this direction. 

Although the current method allows evaluating to a certain extent alternative strategies to 

perform numerosity decisions based on the consistent reliance on other magnitudes or a simple 

combination of multiple features, the adopted models might not suffice to rule out a dynamic complex 

integration of cues since they do not consider interactions beyond the intrinsic non-linearity in case 

of the probit model. Starting from the results in the estimation task presented in chapter four, future 

investigations could more directly investigate if and how the interaction between discrete and 

continuous quantities might vary at different levels of numerical and non-numerical magnitude. Such 

finer-grained analysis is prevented here by the relatively low number of trials, which was also 

constrained by the online nature of the study. In addition, future investigations could benefit from the 

introduced method to test the spontaneous saliency of the different features or to explore the possible 

processing stage of interaction between magnitudes more directly, with investigations at the neural 

level. 

In Chapter 5 we moved our focus to the role of the interaction between numerical and 

continuous magnitudes in the development of basic numerical abilities in typical and atypical 

development. In particular, we assessed the influence of continuous spatial magnitudes during a 

parallel numerosity comparison task in a group of children (between 8 and 14 years of age) with 

dyscalculia and children with average mathematical skills but similar age, IQ, and visuospatial 

memory abilities. To investigate the spontaneous saliency of numerical and spatial information, we 

also administered a spontaneous categorization task where the numerosity and total surface area of 

visual arrays of items were pitted against each other. In all tasks, we detected a performance primarily 

based on the numerical information of the stimuli, in both groups of children. Moreover, both groups 

showed to be significantly influenced by spatial cues in the numerosity discrimination task, while 

they showed to not attend to the surface area of the stimuli in the spontaneous categorization task. 

Moreover, while no differences emerged between groups in the strength of non-numerical influences, 

children with dyscalculia showed lower precision in numerosity comparison and a weaker number-

based strategy in the implicit categorization task. Overall, the results suggest that a reduced numerical 

acuity in developmental dyscalculia is not necessarily related to reduced filtering abilities, especially 

from the perspective of a cross-magnitude interference at the response selection level (Gilmore et al., 

2013; Szucs et al., 2013). Associating the similar non-numerical bias between groups to the stringent 
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matching procedures based on standardized tests of general intelligence and visuospatial memory 

abilities, the reduced numerical acuity in children with dyscalculia compared to matched controls is 

instead compatible with a less precise numerosity representation that is not related to increased 

interference effects. However, although we tried to consider several domain-general abilities 

potentially impairing numerical-related responses, future studies could benefit from more direct 

testing of additional abilities such as inhibitory control, to corroborate the present results. 

Moreover, the lack of increased reliance on non-numerical information conflicts also with 

proposals of domain-specific filtering deficits or compensatory mechanisms in this learning disorder 

(Castaldi et al., 2018; Piazza et al., 2018). Additional work is thus necessary to clarify the potential 

role played by the saliency of numerical and non-numerical magnitudes to explain this result. Indeed, 

a critical limit of all the presented studies is the lack of calibration of the saliency of temporal and 

spatial dimensions compared to the changes in numerosity. Although similar ratios have been used 

for the different features in the third chapter, and similar ranges of variation have been considered in 

the estimation and categorization tasks in the fourth and fifth chapters, we did not perform an 

individualized calibration to equate the perceptual salience of changes in all magnitudes. This is 

particularly relevant for the spontaneous categorization task, given the complete disregard towards 

the dimension of the objects in the entire sample of children, compared to previous reports (Starr et 

al., 2017). 

Finally, in the work presented in Chapter 6, we tried to address one of the methodological 

issues in the field, namely the manipulation of spatial features in visual arrays of items. We developed 

a new program to help researchers with different backgrounds in creating experimental stimuli 

according to their specific needs. The MATLAB app, based on a graphical user interface, can be used 

without any familiarity with programming languages or rules. Instead, it aims to help users 

concentrate on a more careful consideration of the features defining the experimental sets, beyond 

numerosity. In this context, we emphasize that CUSTOM GUIde is intended as a general-purpose 

tool, and it is not linked with any specific manipulation or with any “control” method. We are aware 

that the organization of the app was shaped by the most diffused manipulations in the field, reflected 

also in the documentation and tutorial of the program, providing examples on how to generate stimuli 

similar to what has been used in past literature. However, the software leaves to the user the utmost 

freedom in how to define the non-numerical parameters of their stimuli, which should tightly depend 

on the research question, the experimental paradigm, and the intended analysis. In this sense, it must 

be noted that, in its current form, CUSTOM GUIde allows the direct manipulation of common 

relevant spatial magnitudes such as surface area or convex hull, but not to vary in an equally explicit 

manner other basic visual properties such as contrast, brightness or spatial frequency (Mix et al., 
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2016). Similarly, it does not allow users to generate visual stimuli manipulating the appearance of 

complex visual objects. However, we underline that the program structure facilitates its expansion 

with further functionalities, to incorporate manipulations of features that might reveal crucial 

following future developments and advancements in the research field. 

In conclusion, the different studies presented in the thesis offer an overview of the intriguing 

relationship between numerical and non-numerical magnitude and its pervasive ramification in all 

research areas related to numerosity processing. The experimental works described in the thesis 

provide evidence in favor of a significant interference of temporal and spatial magnitudes on 

numerosity decisions both in development and adulthood, but it reconsiders the role of filtering 

abilities or deficits in mathematical learning impairments. Further investigations are necessary to 

clarify the specific nature of the interaction between magnitudes, but even in the context of a marginal 

role of continuous quantity on numerosity representation, a better characterization of such interaction 

remains worth pursuing to improve the comparability of measures and tasks used in the investigation 

of non-symbolic number processing. 
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I - Supplementary description of methods used in Chapter 3-4 

 

In temporal sequences of events, we can consider as intrinsic features mean event duration as 

the average duration of the individual events (MED) and mean event period as the total stimulus 

duration divided by the number of events (MEP). Extrinsic temporal features are total event duration 

as the sum of length of all pulses (TED) and total stimulus duration as the time from the beginning of 

the first pulse to the end of the last pulse, intervals included (TSD). Following the reasoning of 

DeWind and colleagues (2015) we can then define two variables independent from numerosity, as: 

 

• 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇𝐸𝐷 × 𝐼𝐸𝐷                                                                                                         

or 

𝑙𝑜𝑔2(𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) =  𝑙𝑜𝑔2( 𝑇𝐸𝐷) + 𝑙𝑜𝑔2( 𝑀𝐸𝐷)                                                                  

 

• 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 = 𝑇𝑆𝐷 × 𝑀𝐸𝑃                                                                                     

or 

𝑙𝑜𝑔2(𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑆𝑝𝑎𝑐𝑖𝑛𝑔) =  𝑙𝑜𝑔2( 𝑇𝑆𝐷) + 𝑙𝑜𝑔2(MEP)                                                        

 

Where:  

𝑙𝑜𝑔2(𝑛) =  𝑙𝑜𝑔2 ( 
𝑇𝐸𝐷

𝑀𝐸𝐷
) =  𝑙𝑜𝑔2 ( 

𝑇𝑆𝐷

𝑀𝐸𝑃
)                                                                               

 

Therefore, we can mathematically describe the individual temporal features in terms of the 

three cardinal dimensions Numerosity (n), Duration (Dur) and Temporal Spacing (TmSp):  

 

• 𝑇𝐸𝐷 = √𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑛                                                                                                 

• 𝑀𝐸𝐷 = √
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑛
                                                                                                           

• 𝑇𝑆𝐷 = √𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 × 𝑛                                                                                  

• 𝑀𝐸𝑃 = √
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔

𝑛
                                                                                                 

• 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = √
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔
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Note that when we log scale the axes, the relationship between the cardinal dimensions to the 

other temporal features becomes linear. Moreover, in log space, the distance between stimulus points 

becomes proportional to the ratios of their features. 

Table A.1. Algebraic relationship between several temporal features and cardinal features in log space 

 Log of feature in terms of log of three 

orthogonal dimensions 

Log of feature ratio in terms of log of 

three orthogonal ratios 

   

Total event 

duration (TED) 
log(𝑇𝐸𝐷) =  

1

2
log(𝐷𝑢𝑟) + 

1

2
log(𝑛) log(𝑟𝑇𝐸𝐷) =  

1

2
log(𝑟𝐷𝑢𝑟) +  

1

2
log(𝑟𝑛) 

Mean event 

duration (MED) 
log(𝑀𝐸𝐷) =  

1

2
log(𝐷𝑢𝑟) − 

1

2
log(𝑛) log(𝑟𝑀𝐸𝐷) =  

1

2
log(𝑟𝐷𝑢𝑟) − 

1

2
log(𝑟𝑛) 

Total stimulus  

duration (TSD) 
log(𝑇𝑆𝐷) =  

1

2
log(𝑇𝑚𝑆𝑝) + 

1

2
log(𝑛) log(𝑟𝑇𝑆𝐷) =  

1

2
log(𝑟𝑇𝑚𝑆𝑝) +  

1

2
log(𝑟𝑛) 

Mean event 

period (MEP) 
log(𝑀𝐸𝑃) =  

1

2
log(𝑇𝑚𝑆𝑝) − 

1

2
log(𝑛) log(𝑟𝑀𝐸𝑃) =  

1

2
log(𝑟𝑇𝑚𝑆𝑝) −  

1

2
log(𝑟𝑛) 

Coverage (Cov) log(𝐶𝑜𝑣) =  
1

2
log(𝐷𝑢𝑟) − 

1

2
log(𝑇𝑚𝑆𝑝) log(𝑟𝐶𝑜𝑣) =  

1

2
log(𝑟𝐷𝑢𝑟) −  

1

2
log(𝑟𝑇𝑚𝑆𝑝) 
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II - Supplementary description of methods used in Chapter 5 

 

As described by DeWind and colleagues (2015) and Park (2021), when creating visual arrays 

of dots, we can consider various continuous magnitudes related to the single items and the entire 

arrays. We define item surface area (ISA) the individual area of the dots and total surface area the 

area of the entire set (TSA). We also define field area (FA) as the area where items are placed in the 

image (an approximation of convex hull), and sparsity (Spar) the inverse of density as n/FA. We can 

then compute two variables independent from numerosity, as: 

 

• 𝑆𝑖𝑧𝑒 = 𝑇𝑆𝐴 × 𝐼𝑆𝐴                                                                                                                

or  

𝑙𝑜𝑔2(𝑆𝑖𝑧𝑒) =  𝑙𝑜𝑔2( 𝑇𝑆𝐴) + 𝑙𝑜𝑔2( 𝐼𝑆𝐴)                                                                             

 

• 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 = 𝐹𝐴 × 𝑆𝑝𝑎𝑟                                                                                                           

or 

𝑙𝑜𝑔2(𝑆𝑝𝑎𝑐𝑖𝑛𝑔) =  𝑙𝑜𝑔2( 𝐹𝐴) + 𝑙𝑜𝑔2(𝑆𝑝𝑎𝑟)                                                                         

 

Where:  

𝑙𝑜𝑔2(𝑛) =  𝑙𝑜𝑔2 ( 
𝑇𝑆𝐴

𝐼𝑆𝐴
) =  𝑙𝑜𝑔2 ( 

𝐹𝐴

𝑆𝑝𝑎𝑟
)                                                                                  

 

Individual spatial magnitudes can be described in terms of the three cardinal dimensions 

Numerosity (n), Size (Sz) and Spacing (Sp): 

 

• 𝑇𝑆𝐴 =  √𝑆𝑧 × 𝑛 

 

• 𝐼𝑆𝐴 =  √
𝑆𝑧

𝑛
 

 

• 𝐹𝐴 =  √𝑆𝑝 × 𝑛 

 

• 𝑆𝑝𝑎𝑟 =  √
𝑆𝑝

𝑛
 

 

• 𝑇𝑜𝑡𝑎𝑙 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 (𝑇𝑃) =  2√ 𝜋 ×  𝑆𝑧
1

4 ×  𝑛
3

4 

 

• 𝐼𝑡𝑒𝑚 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 (𝐼𝑃) =  2√ 𝜋 ×  𝑆𝑧
1

4 ×  𝑛−
1

4 
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• 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝐶𝑜𝑣)  =  √
𝑆𝑧

𝑆𝑝
 

 

• 𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 (𝐴𝐶) =  √𝑆𝑧 × 𝑆𝑝 

 

Table A.2. Algebraic relationship between several spatial features and cardinal features in log space 

 Log of feature in terms of log of three 

orthogonal dimensions 

Log of feature ratio in terms of log 

of three orthogonal ratios 

   

Total surface 

area (TSA) 
log(𝑇𝑆𝐴) =  

1

2
log(𝑆𝑧) + 

1

2
log(𝑛) log(𝑟𝑇𝑆𝐴) =  

1

2
log(𝑟𝑆𝑧) + 

1

2
log(𝑟𝑛) 

Item surface 

area (ISA) 
log(𝐼𝑆𝐴) =  

1

2
log(𝑆𝑧) − 

1

2
log(𝑛) log(𝑟𝐼𝑆𝐴) =  

1

2
log(𝑟𝑆𝑧) −  

1

2
log(𝑟𝑛) 

Field area  

(FA) 
log(𝐹𝐴) =  

1

2
log(𝑆𝑝) + 

1

2
log(𝑛) log(𝑟𝐹𝐴) =  

1

2
log(𝑟𝑆𝑝) + 

1

2
log(𝑟𝑛) 

Sparsity 

(Spar) 
log(𝑆𝑝𝑎𝑟) =  

1

2
log(𝑆𝑝) − 

1

2
log(𝑛) log(𝑟𝑆𝑝𝑎𝑟) =  

1

2
log(𝑟𝑆𝑝) − 

1

2
log(𝑟𝑛) 

Total  

perimeter (TP) 
log(𝑇𝑃) = log(2 √𝜋) +  

1

4
log(𝑆𝑧) +  

3

4
log(𝑛) log(𝑟𝑇𝑃) =  

1

4
log(𝑟𝑆𝑧) + 

3

4
log(𝑟𝑛) 

Item  

perimeter (IP) 
log(𝐼𝑃) = log(2 √𝜋) +  

1

4
log(𝑆𝑧) − 

1

4
log(𝑛) log(𝑟𝐼𝑃) =  

1

4
log(𝑟𝑆𝑧) − 

1

4
log(𝑟𝑛) 

Coverage (Cov) log(𝐶𝑜𝑣) =  
1

2
log(𝑆𝑧) − 

1

2
log(𝑆𝑝) log(𝑟𝐶𝑜𝑣) =  

1

2
log(𝑟𝑆𝑧) −  

1

2
log(𝑟𝑆𝑝) 

Apparent 

Closeness (AC) 
log(𝐴𝐶) =  

1

2
log(𝑆𝑧) + 

1

2
log(𝑆𝑝) log(𝑟𝐴𝐶) =  

1

2
log(𝑟𝑆𝑧) +  

1

2
log(𝑟𝑆𝑝) 

 


