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Abstract: Plant-based proteins are generally characterised by lower Indispensable Amino Acid 

(IAA) content, digestibility, and anabolic properties, compared to animal-based proteins. However, 

they are environmentally friendlier, and wider consumption is advocated. Older adults have higher 

dietary protein needs to prevent sarcopenia, a disease marked by an accelerated loss of muscle mass 

and function. Given the lower environmental footprint of plant-based proteins and the importance 

of optimising dietary protein quality among older adults, this paper aims to assess the net periph-

eral Amino Acid (AA) appearance after ingestion of three different plant protein and fibre (PPF) 

products, compared to whey protein with added fibre (WPF), in healthy older adults. In a random-

ised, single-blind, crossover design, nine healthy men and women aged ≥65 years consumed four 

test meals balanced in AA according to the FAO reference protein for humans, matched for leucine, 

to optimally stimulate muscle protein synthesis in older adults. A fasted blood sample was drawn 

at each visit before consuming the test meal, followed by postprandial arterialise blood sampling 

every 30 min for 3 h. The test meal was composed of a soup containing either WPF or PPF 1-3. The 

PPF blends comprised pea proteins with varying additional rice, pumpkin, soy, oat, and/or almond 

protein. PPF product ingestion resulted in a lower maximal increase of postprandial leucine con-

centration and the sum of branched-chain AA (BCAA) and IAA concentrations, compared to WPF, 

with no effect on their incremental area under the curve. Plasma methionine and cysteine, and to a 

lesser extent threonine, appearance were limited after consuming the PPF products, but not WPF. 

Despite equal leucine doses, the WPF induced greater postprandial insulin concentrations than the 

PPF products. In conclusion, the postprandial appearance of AA is highly dependent on the protein 

source in older adults, despite providing equivalent IAA levels and dietary fibre. Coupled with 

lower insulin concentrations, this could imply less anabolic potential. Further investigation is re-

quired to understand the applicability of plant-based proteins in healthy older adults. 
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1. Introduction 

Older adults under-consume both protein and fibre, independent of appetite status 

[1–6]. While it was previously believed that protein ingestion might attenuate appetite, 

recent studies have shown that neither protein nor fibre reduces food intake in older 

adults when consumed at recommended daily levels [7–9]. It is now well acknowledged 

that adequate protein intake is key to maintaining a balanced muscle mass and function 

to prevent sarcopenia due to its role in muscle anabolism (creation) and catabolism (break-

down) [10]. Sarcopenia is characterised by an accelerated loss of muscle mass and strength 

[11]. It is associated with frailty [12], mobility disability [13], loss of independence [14], 

reduced quality of life [15], and exacerbated by undernutrition [16]. Albeit many studies 

have addressed the impact of animal and plant protein on postprandial AA profiles [17–

24], to our knowledge, none have examined the potential interactions between protein 

and dietary fibre on AA availability, which is key for understanding how protein from 

plant sources, naturally higher in fibre, would appear in circulation. Furthermore, fibre is 

important in preventing constipation and other chronic diseases common in older popu-

lations (e.g., chronic inflammation [25], irritable bowel syndrome [26], obesity, diabetes 

[27], heart disease [28], and some cancers [29,30] known to challenge negatively muscle 

mass and function. 

Further, while fasted Muscle Protein Synthesis (MPS) rates are similar between 

healthy young and older adults, the MPS response to protein feeding and exercise [31–35] 

is often blunted in older individuals (referred to as Anabolic Resistance [36]). In the rested 

state, healthy older adults require ~0.4 g of protein/kg of body mass to maximise post-

prandial MPS and overcome anabolic resistance, wherein the anabolic MPS response to 

protein intake is blunted [37]. In contrast, young adults prompt a similar MPS response 

after approximately half of that dose [38]. Therefore, older adults require higher protein 

diets than younger adults to preserve muscle mass and function [39,40]. Moreover, older 

adults are known to have higher AA splanchnic extraction than their younger counter-

parts [21,41], resulting in less dietary absorbed AA reaching the peripheral tissues, includ-

ing muscle tissue, and available for MPS. However, it could be challenging for older adults 

to consume high amounts of protein due to a decreased appetite [4–6] and physiological 

challenges [42] that are common in ageing. Hence, it is important to optimise the quality 

of their dietary proteins to constrain the increase in protein consumption as much as pos-

sible while ensuring the need for each AA is met [10]. For this, not only protein quantity, 

but also the quality, are key determinants of AA bioavailability and whole-body protein 

metabolism [10]. Animal proteins have been shown to more effectively stimulate MPS 

than plant proteins at the same amount ingested [24,43], which is attributed to plant pro-

tein’s suboptimal IAA content [44,45] and digestion and absorption kinetics [18–20,46,47]. 

However, substantially increasing plant protein intake can match such MPS stimulus [22]. 

Aside from higher protein consumption, other strategies to match plant protein’s ability 

to stimulate MPS to that of animal protein include improving the AA profile via specific 

AA fortification or blending different plant proteins [36,48,49]. 

As the world population increases exponentially [50], with those aged 60+ years esti-

mated to more than double to 2 billion by 2050 [50], animal-based protein may not be 

available in sufficient quantities to satisfy the growing older population’s dietary require-

ments. In addition, plant proteins may have less environmental impact [51–53] than ani-

mal proteins and are more affordable [52,54,55]. Grasso et al. [56] reported that older 

adults show high acceptability toward ingesting plant protein sources. If the consumer 

demands [57,58] and dietary recommendations [59,60] favour increasing plant-based 

foods, plant protein consumption will increase compared to animal-sourced proteins. 

However, we must ensure the functional effects of plant-derived AA to avoid sarcopenia. 
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There is not enough data to support this transition, as plant proteins’ absorption, diges-

tion, and muscle metabolism in older adults have not been robustly investigated [61]. 

This study aimed to investigate the arterialise plasma dietary AA profile after inges-

tion of three different plant protein and fibre (PPF) products compared to whey protein 

with the same fibre (WPF). The three PPF blends provided different plant AA sources, but 

matched fibre content. The test meals were matched for leucine content, providing ~2.8 g, 

the leucine level required to stimulate MPS in healthy older adults [62], and PPF blends 

were designed to have a high-quality AA profile (as per FAO recommendation [63]) and 

high in vitro digestibility. Thus, the test meals were designed to address the potential at-

tenuated efficacy of plant proteins on MPS, in comparison to animal proteins, primarily 

ascribed to the lower leucine content and secondly to unfavourable digestion kinetics 

compared to animal proteins [24,64]. All protein sources in this study were used as isolates 

(and, when not possible, concentrates) to reduce differences in digestibility rates 

[22,24,45,65].  

2. Materials and Methods 

2.1. Ethical Approval 

This study was approved by the University College Dublin (UCD) Sciences and Uni-

versity of Padova (UNIPD) Human Research Ethics Committee and followed the ethical 

standards laid down in the 1964 Declaration of Helsinki and its later amendments. Partic-

ipants were informed of the experimental procedures and risks involved in the study. 

They each gave their written, informed, and voluntary consent before enrolment. This trial 

was registered at clinicaltrials.gov as NCT05420142. 

2.2. Participants 

Twelve healthy older men and women were recruited to participate in the study 

through poster and e-mail advertisements. A Consolidation Standards of Reporting Trials 

(CONSORT) diagram showing the progress from recruitment through the completion of 

the study is shown in Figure 1. Two participants dropped out during the study due to 

personal reasons and were therefore excluded from the analysis. A third participant could 

not finish test meal 3, consuming only 50% of the meal, and was therefore excluded from 

the analysis. Inclusion criteria were: 65 years of age or older, non-heavy smokers (<10 cig-

arettes per day) or heavy drinkers (<14 or 21 alcoholic drinks per week in females or males, 

respectively), and otherwise healthy, according to responses to a standard medical screen-

ing questionnaire. Exclusion criteria included self-reported diabetes mellitus, prediabetes, 

cardiovascular disease, renal disease, gastrointestinal (GI) disease, chronic obstructive 

pulmonary disease, significant body mass loss in the six months preceding the study, 

medical condition or use of medication known to impact appetite or energy intake, loss of 

taste or smell associated with COVID-19, and allergic or unwilling to consume study 

foods.  



Nutrients 2023, 15, 35 4 of 19 
 

 

 

Figure 1. CONSORT diagram. 

2.3. Study Overview  

This was a pilot, randomised, single-blind crossover study conducted in UCD, Ire-

land, and UNIPD, Italy. Recruitment and the intervention took place between 10 February 

2022, and 6 May 2022. Participants completed four identical visits in their respective study 

centres (Ireland or Italy). The only difference between visits was the protein source, WPF 

or PPF (1 to 3), added to the test meal. Before the first visit, participants completed a health 

screening questionnaire, and the protocol was explained in detail. After receiving answers 

to any questions they had, participants signed the consent form. Body mass was assessed 

with participants dressed lightly using a calibrated scale (SECA, Hamburg, Germany), 

and height was measured using a stadiometer (Holtain, Crymych, UK) during the first 

visit. A schematic overview of the study design is presented in Figure 2. Test days were 

separated by one to three weeks. Participants presented after an overnight fast (≥10 hrs) 

and were immediately cannulated, and a fasted blood sample was drawn before con-

sumption of the test meal. Subsequently, postprandial arterialised blood samples were 

drawn into Vacutainer Plastic Lithium Heparin plasma collection tubes (4 mL) using the 

previously inserted cannula every 30 min for 3 h. Samples were centrifuged at 4 C and 

stored at −80 C. The blood arterialisation protocol included a 10 min heating period of 

the forearm, above the area where the cannula was inserted, before each blood draw. A 

randomisation tool available at https://ctrandomization.cancer.gov/tool/ was used to ran-

domly assign the test meals to participants over the four visits. Participants were blinded 

to the identity of the meal containing WPF or PPF 1-3. The study outcome was the appear-

ance of total peripheral AA (IAA and BCAA) concentrations in plasma following the in-

gestion of a meal containing PPF 1-3 compared to the standard control (WPF). 

 

Figure 2. Overview of study design. Each participant underwent four visits (* between one to three 

weeks apart). The meals were allocated randomly (containing WPF or PPF 1-3). Each PPF product 

Visits 1 – 4*

Blood sampling

Meal ingestion à

0  30  60  90  120 150 180 min

* Visits were 1 - 3 weeks apart and differed only in the

test meal consumed containing PPF 1 - 3 or whey

protein, assigned at random.
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included a blend of plant protein sources and 20% pea fibre. Pea fibre (10 g) was also added to the 

whey-containing meal. PPF, plant protein fibre; WPF, whey protein fibre. 

2.4. Test Meal Composition 

The test meals were soups of varying protein identities (Table 1). The three PPF prod-

ucts contained a blend of plant proteins (80%) and 20% fibre (40 g of plant protein blend 

to 10 g of pea fibre). The PPF products differed in the composition of the plant protein 

(PP) blend (PP1: 67% pea and 33% pumpkin; PP2: 68% pea, 21% oat, and 11% almond; 

and PP3: 45% pea, 33% soy, and 22% rice). We added 10 g of pea fibre to the whey protein 

product to match the fibre content of the PPF products. These three PPF products were 

chosen from six initially developed products due to their higher scores during sensory 

evaluation by healthy older adults. Fraunhofer Institute provided the PPF products for 

Process Engineering, and Packaging IVV, Freising, Germany and the rest of the ingredi-

ents were bought in local supermarkets, except for the whey protein (Gold Standard 100% 

Whey, Optimum Nutrition Co. Middlesbrough, UK), which was bought by UCD and dis-

tributed evenly between UCD and UNIPD for standardisation.  

All test meals were made with a Knorr low-sodium vegetable stock cube, butter, 

cornflour, water, and one of three PPF products or WPF (see Supplementary Table S1 for 

PPF nutritional composition details). Test meals were between 454 and 498 kcal and con-

tained 30 g of lipids, 15.2 g of CHO, and 30.9 g (WPF-containing test meal), and between 

41.1–41.8 g (PPF-containing test meal) of protein, all theoretically containing 3.3 g of leu-

cine. The remaining AA profile of all PPF products was matched as much as possible while 

optimised for human consumption, as per FAO recommendation [63]. PPF-containing test 

meals required a higher protein content to achieve the leucine target of 3.3 g (+32 % of 

protein). The cooking methods were as follows: common ingredients were slowly heated 

in a saucepan until thoroughly combined; then allowed to cool to 40 C; protein (and fibre 

for the WPF meal) powders were added, combined, and reheated to no higher than 40 C 

immediately before serving. The 40 C temperature ceiling ensures the structural stability 

of a protein is maintained without thermal denaturation, which is known to affect protein 

digestion [66,67]. 

Table 1. Test meal nutritional compositions 1. 

 Meal Containing 

Meal Composition  WPF  PPF1  PPF2 PPF3 

Lipids, g 30.0 30.0 30.0 30.0 

CHO, g 15.2 15.2 15.2 15.2 

Protein, g 30.9 41.3 41.8 41.1 

Salt + ash, g 0.8 1.4 1.5 1.1 

Energy, kcal 454.2 495.7 497.8 495.2 
1 Macronutrients and energy theoretical values (calculated from the manufacturer’s food nutrition 

label). CHO, carbohydrate; PPF, plant protein fibre; WPF, whey protein fibre. 

2.5. Analytical Procedures 

2.5.1. In Vitro PPF Product Digestibility Assessment  

In vitro digestibility was assessed by an in vitro assay kit (Megazyme, Wicklow, Ire-

land), described here [68]. Briefly, to simulate the physiological conditions of gastric and 

intestinal digestion, the samples are first digested at pH 2 by pepsin and then at neutral 

pH by trypsin and chymotrypsin. Undigested proteins are removed by precipitation with 

trichloroacetic acid. Amine groups of AA are made available for reaction by the digestion 

process, which are readily quantified by reaction with ninhydrin to form Ruhemann’s 

purple. The amount of Ruhemann’s purple formed during this reaction is proportional to 

the amount of reactive α-AA present in the sample and is quantified by measuring the 

increase in absorbance at 570 nm. A glycine standard curve is used to determine the 
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linearity of the colourimetric determination of the amines. After correcting the relative 

reactivity of certain α-AA, an in vitro digestibility score was calculated. 

2.5.2. AA Quantification in WPF and PPF 1-3 

Three standardised hydrolysation procedures (AOAC, 2000) at 110 °C, as previously 

described [69], were used to calculate fasting and postprandial AA concentrations in each 

meal (WPF and PPF 1-3). Briefly, samples were either placed in 6N HCl for 24 hrs or 48 

hrs (BCAA) or in 6N HCl for 24 hrs after peroxidation using H2O2 (methionine and cyste-

ine). After drying and buffer dilution, AA concentrations in each sample were determined 

by ion exchange chromatography with ninhydrin post-column detection (L-8900 high-

speed amino acid analyser, Hitachi). 

2.5.3. Blood Analyses 

Ultra-performance liquid chromatograph (UPLC) was used to determine plasma AA 

concentrations before and 30, 60, 90, 120, and 180 min after the test meal was ingested 

using the UPLC Amino Acid Analysis Solution Waters AccuTag (Manchester, UK) 

method. First, plasma samples were diluted in TCA (150 µL TCA 50% + 350 µL plasma). 

The TCA plasma samples were further diluted 2-fold with water and derivatised using 

Waters AccQ-TagTM ultra reagent kit. Briefly, 10 µL of the sample was mixed with borate 

buffer containing an internal standard (homoarginine). Then 20 µL of the reconstitute 

derivatising reagent was added to the mixed solution, followed by a heating step at 55 °C 

for 10 min. Derivatised AA were analysed with a Waters ultimate 3000 UHPLC system 

coupled with a fluorescence detector. Briefly, 2 µL of derivatised standards and samples 

were injected on a column Xbridge C18 (150 × 3.0 mm, 3.5 µm) eluted at a flow rate of 0.98 

mL/min. The separation gradient was generated using 4 mobile phases: (A) AccQ-Tag el-

uant A, (B) water/acetonitrile 90/10 + 2% formic acid, (C) water, and (D) acetonitrile + 2% 

formic acid for a total run of 23 min. The Waters software, EmpowerTM3, was used for 

data acquisition and AA chromatogram treatment. AA concentrations were determined 

based on an AA calibration standard run at 8 concentrations, as follows: 1.25, 2.5, 12.5, 50, 

125, 250, 625, and 1250 µM. The proportional molar concentration for each AA was calcu-

lated after correction with the internal standard (Homoarginin) and based on the concen-

tration of the standard AA. 

Plasma insulin was assessed using a commercial ELISA kit (Mercodia, Sweden), and 

plasma glucose concentrations were measured by using enzymatic reactions on an auto-

analyser (Pentra C400; Horiba).  

2.5.4. Statistical Analysis 

All statistical analyses were performed using IBM SPSS (version 27.0.1.0, Dublin, Ire-

land), and GraphPad Prism 8.2.1 (279, San Diego, CA, USA) was used for graphing. Data 

were evaluated for the presence of outliers and normality before analysis. Variables not 

normally distributed according to the Shapiro–Wilk test were log-transformed to achieve 

normality before the analysis. Variables that were not normally distributed after transfor-

mation were analysed using non-parametric tests. AA, glucose, and insulin Incremental 

Area Under the Curve (iAUC) and AA maximum Concentration (Cmax) were compared 

between treatments using a one-way repeated-measures Analysis of Variance (ANOVA). 

In contrast, Time to reach Cmax (Tmax) was analysed using the non-parametric version of 

this test (Friedman Test). A two-way repeated-measures ANOVA, with treatment (WPF 

and PPF 1-3) and time (seven time points) as the within factors, was used to examine 

plasma AA, glucose, and insulin concentrations over time following the ingestion of the 

test meal. Where a significant interaction was detected, simple main effects were calcu-

lated. All pairwise comparisons were subjected to Bonferroni correction for multiple com-

parisons. Of note, there was no power analysis performed in this study. Results are 
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presented as means ± SD unless otherwise stated. Significance was set at p < 0.05. Further 

significance was reported as p < 0.01 and p < 0.001.  

3. Results 

3.1. Participants and PPF In Vitro Digestibility and Composition 

The n = 9 participants (5 females and 4 males) aged 74 ± 3 years had a BMI of 25.5 ± 

3.8. Before the postprandial investigations in the older subjects, in vitro protein digestibil-

ity was determined (Table 2). Plant protein blends had higher digestibility than PPF prod-

ucts containing 20% fibre. However, all PPF products scored >100% digestibility (100% is 

standardised to casein digestibility). 

Table 2. In vitro protein digestibility of plant protein (PP) and plant protein fibre (PPF) products 1. 

 In Vitro Digestibility (%) 
 PP PPF * 

PP 1: Pea (67%), Pumpkin (33%) 114 ± 5 110 ± 0 

PP 2: Pea (68%), Oat (21%), Almond (11%) 108 ± 3 103 ± 3 

PP 3: Pea (45%), Soy (33%), Rice (22%) 109 ± 1 105 ± 0 
1 All values are means ± SD. * Plant protein fibre products contain 80% plant-based protein and 20% 

pea fibre. PP, plant protein; PPF, plant protein fibre. 

The AA composition of the three PPF blends, compared to the WPF, is presented in 

Table 3. The PPF products were designed to provide equivalent leucine and highly 

matched BCAA and IAA, despite being from different plant sources, and align with the 

optimal values older adults need to promote muscle mass and strength [63]. In further 

detail, the ΣAA levels provided by the four test meals were similar across the four protein 

products (47.25–51.19 g). Nevertheless, there were some differences between the AA pro-

files. The ΣIAA ranged from 19.39–21.32 g, with a higher threonine and isoleucine content 

in WPF than in the PPF products, and vice versa for methionine and phenylalanine. There-

fore, even though plant proteins are known to be deficient in some IAA, such as lysine 

methionine, this is not the case in this study. Regarding the NIAA (ΣNIAA: 18.97 g in 

WPF and 21.68–23.68 g in PPF products), higher cysteine concentrations were found in 

WPF than in the PPF products. The opposite was true for serine, arginine, glycine, glu-

tamic acid, and tyrosine, which were more concentrated in the PPF products than in WPF. 

As for the BCAA, leucine and valine were evenly distributed in all products (2.82–3.10 

and 1.61–1.87 g, respectively), whereas isoleucine was higher in WPF (2.09 g) vs. PPF 

products (1.46–1.58 g).  

Table 3. Protein products AA composition (quantitatively measured) 1. 

AA WPF  PPF1 PPF2 PPF3 

   BCAA     

        Leucine, g 3.00 2.82 3.10 2.88 

        Isoleucine, g 2.09 1.46 1.58 1.47 

        Valine, g 1.87 1.61 1.73 1.63 

        ΣBCAA 6.96 5.89 6.41 5.98 

   IAA     

        Histidine, g 0.58 0.83 0.90 0.85 

        Threonine, g 2.46 1.52 1.59 1.63 

        Lysine, g 2.68 2.24 2.40 2.01 

        Methionine, g 0.65 1.18 1.35 1.43 

        Phenylalanine, g 1.03 1.84 2.04 1.84 

       ΣIAA 21.32 19.39 21.1 19.72 

   NIAA     
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        Serine, g 1.59 1.90 1.94 1.89 

        Arginine, g 2.19 3.76 3.30 2.92 

        Glycine, g 0.58 1.57 1.60 1.44 

        Aspartic acid, g 3.59 3.86 4.16 3.87 

        Glutamic acid, g 5.72 6.33 7.40 6.56 

        Alanine, g 1.64 1.54 1.62 1.62 

        Proline, g 2.01 1.66 1.97 1.83 

        Cysteine, g 1.02 0.53 0.49 0.79 

        Tyrosine, g 0.63 1.10 1.20 0.76 

        ΣNIAA 18.97 22.25 23.68 21.68 
1 Values are g per PPF/whey protein added (fresh weight). AA, amino acid; BCAA, branched-chain 

amino acid; IAA, indispensable amino acid; NIAA, non- indispensable amino acid; PPF, plant pro-

tein fibre; WPF, whey protein fibre. 

3.2. Plasma Leucine, ΣBCAA, ΣIAA, and ΣAA Concentrations 

While similar ΣAA levels were provided by the four test meals enriched with the 

four protein products, the postprandial AA profiles were quite different. The consump-

tion of all meals containing WPF or PPF products increased postprandial plasma ΣAA, 

ΣIAA, ΣBCAA, and leucine concentrations over the 3 h postprandial period (p < 0.001), 

with differences between meals as indicated by the simple main effect of treatment, where 

WPF shows a higher concentration at times 60 and 90 min than PPF1 for ΣIAA and 

ΣBCAA (Figure 3A). ΣIAA and ΣBCAA concentrations for PPF1 were significantly lower 

in plasma, compared to PPF2 and 3 at 120 min, and overall presented a trend (not statis-

tically significant) towards lower iAUC (Figure 3B). Even though ingested leucine was 

similar amongst meals, postprandial leucine concentration curves significantly differed 

between WPF and PPF1 at 60 min, where leucine concentration was higher after WPF 

ingestion by 74% (Figure 3A). The higher concentration in AA is due to the fast increase 

in plasma AA post-WPF, followed by a rapid decrease, in comparison to a more sustained 

elevation of plasma AA post PPF products ingestion (i.e., ~40% slope difference in the 

change in AA concentration overtime during the first 90 min). Isoleucine, a BCAA, also 

appeared at higher concentrations postprandially after WPF than PPF ingestion (Figure 

4). However, this is likely due to, at least in part, a higher concentration in the source 

ingested. PPF proteins were more slowly digested than WPF proteins. Overall, the data 

gathered showed ΣIAA, ΣBCAA, and leucine Cmax were significantly higher for WPF, and 

to a lesser extent for PPF3, than for PPF1. Additionally, despite a trend towards later AA 

appearance after PPF products over WPF, Tmax values were not significantly different, ex-

cept for BCAA (WPF > PPF1) (Supplementary Table S2). Despite these kinetic differences, 

iAUC data showed no significant differences between WPF and PPF products or amongst 

PPF products for ΣAA, ΣIAA, ΣBCAA, or leucine (p > 0.05) (Figure 3B).  
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Figure 3. Plasma ΣAA, ΣIAA, ΣBCAA and leucine concentration (A) over time (min) and (B) their 

iAUC, in response to a test meal containing WPF or PPF 1, 2, or 3. Values are mean ± SD (n = 9). 

Arrows indicate the ingestion of the meal. Concentration over time data were assessed by 2-way 

repeated measurements (time x treatment) ANOVA, and iAUC was compared with a 1-way re-

peated measures (treatment) ANOVA. Significant at p < 0.05 (*) or p < 0.01 (**). The products’ names 

above the asterisk indicate the treatments in which postprandial AA concentrations significantly 

differ at that time. BCAA, branched-chain amino acids; IAA, indispensable amino acids; iAUC, in-

cremental area under the curve; PPF, plant protein fibre; WPF, whey protein fibre. 
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Figure 4. Single AA plasma concentrations, over time (min) and their iAUC, showed a significantly 

different response post WPF than PPF 1, 2, or 3 meals. Values are mean ± SD (n = 9). Arrows indicate 

the ingestion of the meal. Concentration over time data were assessed by 2-way repeated measure-

ments (time x treatment) ANOVA, and iAUC was compared with a 1-way repeated measures (treat-

ment) ANOVA. Significant at p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***). The products’ names above 

asterisk indicate the treatments in which postprandial AA concentrations significantly differ at that 

time point. BCAA, branched-chain amino acids; IAA, indispensable amino acids; iAUC, incremental 

area under the curve; PPF, plant protein fibre; WPF, whey protein fibre. 

3.3. Other Amino Acids  

Arginine, tyrosine, and phenylalanine displayed lower postprandial availability fol-

lowing WPF ingestion than PPF products (Figure 4). While arginine’s postprandial con-

centration curve was significantly lower at all time points after 30 min, tyrosine and phe-

nylalanine postprandial concentration curves had similar Cmax for all test meals. Yet, after 

PPF, these concentrations were more sustained, creating a significant difference at the lat-

est time points (150 and 180 min). All three AA were present at higher concentrations in 

the PPF- vs. the WPF-containing meal (Table 2), which could explain (part of) the observed 

differences, especially for arginine. 

In contrast, postprandial plasma threonine and cysteine concentrations were higher 

after WPF vs. PPF products consumption (Figure 4). Again, this probably reflects their 

higher concentration in the WPF-containing meal (Table 2), although it seems that differ-

ent protein metabolism is occurring with AA from the PPF products. Surprisingly, alt-

hough methionine was present at higher concentrations in the PPF products, postprandial 

methionine levels were significantly lower following all PPF products, compared to WPF, 
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as determined by iAUC differences. Notably, the postprandial plasma levels of sulphur 

AA, methionine, and cysteine decrease past their fasted concentrations after PPF inges-

tion, resulting in a negative iAUC (Figure 4). 

3.4. Plasma Glucose and Insulin Concentrations 

Overall, there were little differences in postprandial glucose and insulin kinetics in 

response to the different test meals. However, interestingly, the insulin iAUC is higher 

after WPF than after PPF1 ingestion (p < 0.001). Glycemia curves and iAUC were not sig-

nificantly different between WPF and PPF product ingestion (p > 0.05) and were overall 

flat, as presented in Figure 5. This is not surprising given the equally and low carbohy-

drate content in all meals (15.2 g). 

 

Figure 5. Insulin, but not glucose, plasma concentrations (A) over time (min), and (B) their iAUC, , 

showed a significantly different response post-WPF than PPF 1, 2, or 3 meals. Values are mean ± SD 

(n = 9). Arrows indicate the ingestion of the meal. Concentration over time data were assessed by 2-

way repeated measurements (time x treatment) ANOVA, and iAUC was compared with a 1-way 

repeated measures (treatment) ANOVA. Significant at p < 0.05 (*), p or p < 0.001 (***). The products’ 

names above the asterisk indicate the treatments in which postprandial insulin concentrations sig-

nificantly differ at that time. iAUC, incremental area under the curve; PPF, plant protein fibre; WPF, 

whey protein fibre. 

3.5. Adverse Events and Compliance  

No adverse events were observed during the study in response to the test meal; how-

ever, one participant could not finish a test meal due to digestive discomfort. 

4. Discussion 

In the present study, we assessed the net peripheral AA appearance after ingestion 

of three different PPF products, compared to an animal protein source (i.e., whey proteins 

with the same pea fibre, WPF) in community-dwelling older adults. Although equivalent 

amounts of leucine and IAA were ingested, the maximal concentrations of plasma leucine, 

BCAA, and IAA were significantly lower and delayed following all three PPF products 

compared to WPF ingestion. Surprisingly, fasting methionine and cysteine plasma levels 

increased after WPF ingestion; however, these were not elevated after consuming the PPF 

products. This is contradictory, given that all PPF products contained more methionine 

than WPF. In addition, the WPF induced higher iAUC insulin levels. Therefore, we report 

that with plant protein sources, the apparent peripheral bioavailability of some AA was 
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seriously challenged in our older adults, independently (or at least not uniquely depend-

ent) of their dietary intake.  

This study was based on a physiological-driven hypothesis, wherein the meals’ AA 

profile was designed towards older adults’ specific needs based on their protein require-

ments to overcome anabolic resistance and efficiently prompt protein synthesis, especially 

in skeletal muscle. For this, meals were matched for leucine at levels required to optimally 

stimulate MPS in healthy older adults, ~2.8 g [62], and the remaining AA concentrations 

were closely similar between meals to avoid the suboptimal IAA profile characteristic of 

plant-based proteins [45,70–72] and optimised as per FAO recommendations [63]. This is 

unlike previous plant protein bioavailability research in young [23,64,73,74] and older co-

horts [24,75,76], in which the net protein content is matched between groups regardless of 

the IAA profile, with limited research on various plant proteins, besides soy protein, 

known to broadly differ in their AA composition [77]. Additionally, our study provided 

the extra proteins with fibre, as older adults often also consume sub-optimal amounts of 

fibre. A recent study by Pham et al. [17] tested postprandial AA availability in young, 

healthy men after animal meat proteins (beef and lamb) or a meat analogue (pea protein-

based) ingestion. All meals had a highly matched overall protein content (117–118 g) and 

IAA profile, yet meat ingestion resulted in a significantly higher postprandial AA appear-

ance and higher digestion speed. Thus, plant-based protein intake must be first optimised 

and then increased to match the postprandial AA response of animal protein, particularly 

in the elderly, for whom the sensitivity of the anabolic response is triggered and stimu-

lated optimally only with higher amino acidemias.  

The results of the present study add to those previously reported that the digestion 

speed of whey protein is higher than that of plant-based proteins [18,19,23,48,73,74,76], 

even after adding fibre. However, as previously noted, others have shown similar find-

ings regarding AA appearance when comparing plant and animal proteins matched for 

net protein content [17]. One of the factors that could explain the reduced postprandial 

aminoacidemia concentrations observed after the PPF meals is the greater sequestration 

of AA in splanchnic tissue [45,78,79], which is known to be higher for plant vs. animal 

proteins [45,78,79]. Another factor affecting digestion and absorption kinetics is the pres-

ence of anti-nutritional compounds common in plant foods (e.g., protease inhibitors or 

phytic acid) [44,65], which we hypothesise could have remained as residue in the PPF 

products; however, these were not measured. It is accepted that through the processes by 

which protein isolates are generated (e.g., extraction, precipitation, several washing steps, 

temperature treatment, and/or wet fractionation processes), anti-nutritional factors are 

highly reduced. Nonetheless, protein processing (e.g., dry fractionation processes) could 

favour anti-nutritional compound accumulation when developing concentrates [80]. Dif-

ferently processed protein concentrates and isolates were used for PPF product formula-

tion, and the presence of anti-nutritional factors was not assessed directly. Although in 

vitro digestibility data do not indicate an impact of anti-nutritional factors on digestibility, 

their effect on in vivo digestibility cannot be ruled out. Other digestive elements that could 

have influenced the differences in postprandial aminoacidemia concentrations and speed 

reported here include varying gastric emptying rates, which can be slowed down by 

higher protein content [81] and/or differences in protein solubility, coagulation, and pre-

cipitation (better understood for whey than for plant proteins [82]). We should note that 

we measured static concentrations of plasma, which cannot determine the dietary protein 

processes responsible for the AA concentration readouts, for which stable AA isotope-

labelled tracing is needed [83]. Nonetheless, postprandial AA appearance and clearance 

are accepted as a proxy measure for AA digestion and absorption rates [17,84]. 

Importantly, sulphur AA, methionine, and cysteine were especially adversely af-

fected by the PPF blends. The lack of increase in their postprandial plasma concentrations 

would classify them as limiting. Methionine’s low postprandial availability was recently 

flagged after plant-based protein ingestion in young [74] and older adults [17,76], minia-

ture pigs [69], and rainbow trout [85]. Accordingly, we paid particular attention to 
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methionine in the PPF blend design, yet reduced bioavailability of methionine occurred 

despite this. Thus, increasing methionine intake was still insufficient to improve its bioa-

vailability in our older participants, who have a higher splanchnic extraction of AA, com-

pared to younger subjects [41,86]. Further, ageing is characterised by low-grade inflam-

mation, which could be partly caused by intestinal dysbiosis [87]. Localised intestinal in-

flammation could generate specific AA demands for immune reactions triggered by a 

leaky gut [88], particularly glutathione formation [89]. Glutathione contains cysteine, a 

derivate of methionine; therefore, methionine is converted by transsulfuration into cyste-

ine to sustain its utilisation [90]. Additionally, the ageing population is characterised by 

increased paracetamol intake [91], which requires glutathione for liver detoxification [92]. 

Taken together, the overall splanchnic extraction of AA could be enhanced for plant pro-

tein sources and associated with the specific sulphur AA requirements during ageing, 

thus partly explaining our adverse results in increasing methionine and cysteine periph-

eral availability. 

To a lesser degree, threonine is a third IAA that appears to be explicitly affected in 

this study’s peripheral bioavailability. Its intake with PPF was 30% lower than WPF, but 

its apparent bioavailability was reduced by almost 60%. For the same reasons cited above 

for sulphur AA, an increase in splanchnic extraction for this AA can be hypothesised. In-

deed, the presence of low-grade intestinal inflammation in older adults, coupled with the 

presence of plant bioactive harmful to the gut barrier (i.e., lectins [93]), favours the secre-

tion of protective mucins, which are specifically rich in threonine. It has also been shown 

that in the event of inflammation, a specific need for threonine is initiated [94,95]. 

Overall, beyond differences in intake, our data indicate that the peripheral AA ap-

pearance of threonine, methionine, and cysteine, and to a lesser extent, leucine and iso-

leucine, are dependent on the protein sources in older adults. Although in this study, leu-

cine concentrations were enough to stimulate MPS in healthy older adults based on pre-

vious findings [96,97], the remaining IAA (e.g., methionine and threonine), more so than 

NIAA [98,99], must also be present in adequate concentrations at the same time to act as 

precursors and allow efficient protein accretion; otherwise, they are referred to as limiting 

AA [100,101]. Therefore, a delay in and/or insufficient IAA availability, as seen in this and 

other studies examining plant protein postprandial curves [18,19,23,48,73,74,76], com-

bined with an ageing effect hindering digestion and absorption [84,102], is expected to 

have a detrimental impact on the optimal utilisation of all the other AA in the PPF prod-

ucts. However, a recent study by Pinckaers et al. [74] showed that despite limited methi-

onine bioavailability following ingestion of a plant protein source, the muscle anabolic 

effect was preserved in healthy young males. Whether this is the case with the elderly 

remains to be studied [103,104]. 

The insulinogenic effect of leucine is well-characterised [105,106] as an important me-

diator of the anabolic effect of protein intake on MPS. While the same leucine dose was 

provided in each meal, the incremental postprandial increase in insulin concentration is 

higher after the WPF meal than PPF1 ingestion. This may be due to a faster leucine release 

into the circulation, which stimulates insulin secretion [105,106]. Thus, the insulin-medi-

ated anabolic effect of PPF1 may be sub-optimal. 

This study’s strengths include using a cross-over design and standardised meals to 

reduce intra- and inter-individual variability. The AA profile of WPF and PPF meals was 

similar and designed to cater to older adults’ specific protein requirements (i.e., higher 

leucine content), which is a novel aspect of this study, although researched recently in 

young, healthy people men [17]. Further, a wide variety of protein blends were used, aim-

ing to include those commonly present in households, beyond the scope of those previ-

ously researched (e.g., soy and wheat), with the addition of fibre to reflect a real plant food 

matrix better. Limitations include the lack of a power calculation to assess the number of 

participants required to validate the conclusions drawn in this manuscript. Further, the 

presence and composition of anti-nutritional factors were not measured; therefore, their 

effect in vivo could not be explored. Lastly, despite the addition of fibre, the results 
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presented are not comparable to those of whole foods (e.g., soy, peas, pasta, pumpkin, 

rice, or oat dishes), which are high in anti-nutritional factors known to greatly limit di-

gestibility and absorption [44,65].  

5. Conclusions 

Our results showed that, overall, WPF remained more efficient at increasing post-

prandial AA concentrations, even when PPF contained 32% more protein (to match the 

AA profile and reach the leucine target advised for older adults). Further, it is still being 

determined whether threonine, methionine, and cysteine would increase postprandially 

at higher plant protein concentrations and whether their suboptimal iAUC has a real effect 

on MPS. It is evident, however, that older adults require optimal protein and fibre intake 

for muscle and gut health. Therefore, given the increasing interest in plant-based proteins, 

both nutrients should be carefully considered when applying strategies to optimise die-

tary intakes in older adults. Lastly, despite equal leucine doses, the WPF induced greater 

postprandial insulin concentrations than the PPF products. These data show that adding 

pea fibre to whey is a potential strategy to increase fibre intake in healthy older adults 

while mounting an appropriate postprandial aminoacidemic response. However, further 

research is needed to determine the difference in postprandial aminoacidemia after in-

gesting whey protein with or without fibre. Lastly, further research assessing the anabolic 

properties of innovative protein and fibre blends and whole foods in older adults is war-

ranted to understand if shifting towards higher plant protein consumption should be ac-

companied by higher protein requirements or other novel strategies.  
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