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Abstract: With proven reserves of 9.836 × 1010 m3, the largest known natural gas reservoir among
terrigenous basement rocks has been discovered within the granitoids of the northern Qaidam Basin.
Due to their high heterogeneity, the genesis of basement reservoirs remains unknown. Herein, the
structure of the weathering crust in granitoids and their potential controlling factors on the reservoir
development mechanism are discussed using a multidisciplinary approach based on data from cores,
thin sections, scanning electron microscopy (SEM), conventional and imaging logs, and physical
property and major elements analyses. Moreover, the classification standard of the weathering crust
structure is established. The dissolution belt holding diverse reservoir spaces accounts for more
than 50% of the total porosity, while the disintegration belt is the main context for the development
of cleavage fractures and crack fractures. The original pores exist mainly among the crystal grains
of quartz and mica, while the secondary pores and fractures were generated by the alteration of
aluminosilicate minerals as well as biotite or hornblende. The quality of these reservoirs is controlled
by their mineral composition, tectonic uplift, faulting, and paleogeomorphology. The femic granitoid
is the main reservoir-forming lithology in the case of dissolution, while the felsic granitoid is more
likely to develop cracks. The formation of the disintegration belt is significantly linked to the presence
of faulting. These belts were mostly induced by tectonic deformation along the Altyn fault belt
from the late Oligocene to the early Miocene. The diversity in paleogeomorphology influences
the extent of the weathering. The exhumation in the Altyn terrane from the late Jurassic to the
Cenozoic corresponds to the weathering and hypergene leaching period of the weathering crust
within granitoids. Three types of reservoirs are present in the rocks: fractured-porous (Type I); porous
(Type II); and fractured (Type III). The fractured-porous and fractured reservoirs were developed
mainly in the granitic gneiss and granite, while the porous reservoir was formed in granitic diorite
and granitic gneiss. The reservoirs that developed in the weathering crust of granitoids are dominated
by Type I and Type II. The highest quality reservoir, which is the fractured-porous type, developed
mainly in the dissolution belt of the weathering crust, and has a porosity ranging from 1.56% to
8.48% and a permeability ranging from 0.03 mD to 14.48 mD. The mechanisms of the development of
weathering crust reservoirs provide further information for the hydrocarbon exploration of basement
rocks worldwide.

Keywords: basement reservoir; weathering crust; granitoid; hydrocarbon; Qaidam Basin

1. Introduction

Basement rocks, a crucial type of reservoir, are characterized by typical features such
as a strong physical heterogeneity, multiple tectonisms, and a deep burial [1,2]. Basement
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rocks with abundant hydrocarbons have been extensively discovered [3–5]. The total
proven reserves of basement reservoirs (including Bonger Basin, Suez Basin, Qaidam
Basin, Panno Basin, and Tampico Basin) contribute approximately 15% of the world’s
known reserves [6]. The conventional production of petroleum from sedimentary rocks is
currently occurring in increasingly tough conditions [7,8], thus making the exploration of
unconventional reservoirs, such as basement reservoirs, urgent [2,9,10]. The basement rocks,
especially metamorphics, carbonates and volcanics, have been broadly analyzed in terms
of petrology, time–temperature evolution, and property appraisal [11–13]. As documented
by Ma et al. [14], granitoids make up about 40% of basement rocks. In particular, as the
igneous rocks have a higher effective porosity and permeability when compared with
other basement rocks, the oil and gas exploited in granitoids contribute 75% of the total
amount found in basement rocks [15]. Therefore, granitoids are crucial targets for basement
reservoir appraisal and have a great potential for future energy exploration [16].

Natural fracturing is a key parameter in granitoids, and the prediction of fracture distribu-
tion can be made using seismic, wireline, numerical simulation, and core data [9,17–19]. Some
granitic reservoirs rich in hydrocarbons, however, are dominated not only by fractures but
also by pores [20]. The pores and fractures developed within basement rocks are usually
located at the topographical highs or in the inner parts of the weathering crust [21]. The
basement reservoirs are thus dominated by secondary pores and fractures, which typically
make the granitoids highly heterogeneous [22]. These basement reservoirs are eligible to be
classified as fracture–pore-dominated and fracture-controlled types [15,23]. The reservoir
spaces developed in granitoids are adjacent to the top of the weathering crust. Thus, far
little attention has been given to the formation mechanism of different types of granitoid
reservoirs. Furthermore, the contribution that diverse reservoir spaces have to the overall
reservoir properties is still unclear [6].

Geophysical tools such as three-dimensional modeling has been widely used to study
the controlling factors for oil and gas accumulation [4,13,24]. The hydrocarbon reservoirs
formed in volcanic weathering crusts are now at the frontier of reservoir research [25,26].
Despite this, only a few volcanic hydrocarbon reservoirs have been found in or below
Paleozoic strata, with the majority of the studies mainly focusing on lithology and chronol-
ogy [27,28]. Amongst the known Paleozoic basements, the Qaidam Basin (northwestern
China) is a promising target due to the development potential of weathering crust reservoirs
in granitoids [29,30]. In 2012, large natural gas reserves were discovered in the Dongping
area, where reservoirs consist mainly of granites and granitic gneiss [23]. By 2016, the
defined geological reserves were equivalent to 10.2 × 108 t after the discovery of a further
29 oil and gas fields [29]. By 2017, the proven reserves of natural gas in the Jianbei area
and the Dongping area reached 476.21 × 108 m3 and 519.41 × 108 m3, respectively. Sig-
nificant exploration work has been conducted in the north Qaidam Basin and the areas of
Niudong, Niuzhong, and Jianbei, where a daily capacity of 0.035 × 108 m3 for natural gas
in granitoids has been found. The Qaidam Basin hereby can represent an ideal case for
exploring the genesis of weathering crust reservoirs and the significance of its influence on
reservoir properties.

The characterization of weathering crusts has been broadly undertaken using petro-
graphical factors, chemical indices, and engineering parameters [31–36]. Krauskopf [37]
used the concentrations of immobile elements in parent rock to study chemical changes
during weathering. The evaluation of the cation packing index and the cation exchange
capacity were taken as an effective way to classify the degree of weathering [38–40]. Von
Eynatten et al. [41] focused on the modeling of compositional changes in the weathering
rocks. Typical properties used for the classification of weathering materials are the degree
of mineral alteration, the presence of original texture, and the extent of weathering along
joint planes [42,43]. Hence, the current quantitative classification system is predominantly
related to the petrography and geochemistry of weathered outcrops, and there is a lack
of evidence from the wireline log information to support the weathering classification.
Parameters including the weathering potential index (WIP), residual value (V), chemical
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index of alteration (CIA), chemical index of weathering (CIW), and paleoweathering index
of alteration (PIA) are currently used to quantify the degree of weathering [40,44–48], but
limited focus has been put on the classification of the structure of the weathering crust. The
aim of this work is to elucidate the characterization of the weathering crust in granitoids
and summarize their influence on the basement reservoir through in-depth experiments.
Taking the Qinghai oilfield as an example, this study firstly employs the dataset based on
the outcrop and the wireline logs. This dataset is a combination of cores, thin sections,
scanning electron microscopy (SEM), conventional and imaging logs, physical properties,
and major elements. These are used to classify the structure of the weathering crust, in
order to understand the development mechanism and potential controlling factors of the
weathering crust reservoir. This study therefore provides not only a significant supple-
ment to the understanding of the weathering crust reservoir, but also crucial guidance to
hydrocarbon exploration activities in basement rocks worldwide.

2. Geological Setting

The Qaidam Basin is a continental basin bounded by the Altyn strike-slip fault range
to the north, the Qilian Mountain system to the northeast and the Kunlun Mountain belts
to the southwest [49–51]. The formation of the basement of the Qaidam Basin involved
tectono-thermal episodes, including Neoproterozoic, early Paleozoic, late Paleozoic, and
Mesozoic [52]. The Mesozoic strata of the Qaidam Basin includes Jurassic and Cretaceous
continental sediments, which are mainly composed of sandstone and conglomerate from
fluvial to lacustrine depositional environments. The Cretaceous strata, meanwhile, were
fully eroded in the sub-basins along the Altyn strike-slip fault [53] (Figures 1 and 2). The
north Qaidam Basin along the Altyn strike-slip fault consists mainly of Proterozoic and
Paleozoic basements, most of which were overlain by Paleozoic–Cenozoic sediments and
intruded by Paleozoic granitoids [54–56]. Based on the chrono-stratigraphy and lithology,
the strata of the study area are classically divided into lithostratigraphic units as follows:
the crystalline basement (Proterozoic and Paleozoic), the Dameigou Formation (J1+2d), the
Lulehe Formation (E1+2l), the lower member of the Xiaganchaigou Formation (E3

1xg), the
upper member of the Xiaganchaigou Formation (E3

2xg), the Shangganchaigou Formation
(N1sg), the Xiayoushashan Formation (N2

1xy), the Shangyoushashan Formation (N2
2sy),

the Shizigou Formation (N2
3s), and the Qigequan Formation (Q1q).
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Figure 1. (a) Geological sketch map of the Qaidam region. (b) Tectonic sketch map of the Altyn 
orogenic belt (modified after Wu et al. [57] and Niu et al. [58]). (c) Sampled areas analyzed in this 
study (modified after Niu et al. [58]). (d) Lithological distribution and the drilling well locations of 
Qinghai oilfield in Qaidam Basin. 

(d) 

Figure 1. (a) Geological sketch map of the Qaidam region. (b) Tectonic sketch map of the Altyn
orogenic belt (modified after Wu et al. [57] and Niu et al. [58]). (c) Sampled areas analyzed in this
study (modified after Niu et al. [58]). (d) Lithological distribution and the drilling well locations of
Qinghai oilfield in Qaidam Basin.
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Figure 2. Stratigraphic column and distribution of source, reservoir, and seal rocks in Qaidam Basin
(modified after Cheng et al. [59]; the hydrocarbon dataset is from PetroChina Qinghai oilfield).

Due to several collisional tectonic episodes which occurred during the Caledonian,
Yanshanian, and Himalayan orogenic periods [60], structural units that include the Jianbei
Slope, Dongping Uplift, Niuzhong Slope, Niudong Uplift, and Lengbei Slope were formed
in front of the Altyn Fault (Figure 1). The Altyn Block experienced a Proterozoic orogeny
firstly due to the continental collision and the postcollisional extension that occurred between
the Tarim Basin and the Qaidam Basin. The formation stage of the Altyn Block was accom-
panied by multiple evolutions of ocean basins, island oceans, and paleocontinents in north
Qaidam [56]. The paleo-ocean basins in the Altyn Block displayed extensional environments
during the Cambrian and then developed collisional tectonics under the influence of the
Caledonian orogenic event [61,62]. In conjunction with the subduction and reopening of the
Paleo-Tethys Ocean in the south and the Paleo Asian Ocean in the north, from the Cambrian
to the Permian, the Altyn Block has recorded not only several episodes of collisional tectonics
but also the transition from continental collision to a postcollisional and extensional environ-
ment with the emplacement of magmatic rocks [50,56,57,61–64]. Approaching the Triassic, the
southern segment of Gondwana started to break and expand [60], making the Qaidam Basin
a rift basin in the early Jurassic until the early Cretaceous when it became contractional [53].
When the Yanshanian and Himalayan orogenic phases occurred in the Mesozoic and the
Cenozoic, the India Plate experienced a northward subduction and collided with the Eurasian
Plate, after which the Tethys Ocean underwent subduction and closure. The far-field effects of
this tectonic movement included the formation of the Altyn strike-slip fault zone [65,66].
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The outcropping sediments of the tectonic units situated in front of the Altyn fault zone
are composed mainly of Jurassic, Paleogene, Neogene, and Quaternary strata (Figure 1).
Further north, the basements that include granite, diorite, monzonite, syenite, and basaltic
tuff were intruded by the Datonggou and Caishiling plutons [57,58].

With production reaching 519.41 × 108 m3, the Dongping area has been shown to yield
abundant natural gas from granitoids. The natural gas from granitoid reserves in the Jianbei
area amount to 476.21× 108 m3. The Niuzhong and Niudong areas are dominated by basement
reservoirs where about 800 m3 per day of natural gas have been produced. The granites and
granitic gneiss of this region are typically buried at a depth of 2000 m to 3000 m, and the
Jurassic hydrocarbon source rocks are located in the northern margin of Qaidam Basin [67].
The Lower-Middle Jurassic strata are the main coal-bearing layers and the possible secondary
hydrocarbon source rocks in the Qaidam Basin [53]. Deep fractures formed after tectonic
events had transported the hydrocarbons from the generation sag to rock reservoirs [68].

3. Materials and Methods

This study employed data collected from 24 wells and 2 field outcrops which included:
5 wells from the Jianbei Slope (Jb1, Jb2, Jb4, Jb101, Jb1.1), 14 wells from the Dongping
Uplift (Dp1, Dp3, Dp4, Dp5, Dp7, Dp103, Dp105, Dp106, DpH101, Dp306, Dp307, DpH301,
Dp123, Dp1H23), 3 wells from the Niuzhong Slope (Nb1, Nb2, Nb3), 2 wells from the
Niudong Uplift (N3, N4), and 2 outcrops (DT, CSL) from South Datonggou (38◦37′42′′ N,
92◦12′07′′ E) and Caishiling (38◦23′19′′ N, 90◦31′59′′ E), respectively. A series of analytical
techniques including an optical microscopy observation, an SEM observation, wireline log
data interpretation, a physical property analysis, and a geochemical data analysis were
undertaken (Table 1).

Table 1. Summary of the dataset from the Qaidam Basin in this study.

Data Thin Sections SEM Physical
Property Wireline Log Major

Eelements

Number 235 9 123 19 26

Depth/m 975.82–4945.87,
outcrop

998.20–4645.90,
outcrop 1879.80–3744.17 670–4750 1881.60–4645.90,

outcrop

Petrography and reservoir property analyses were undertaken at China University
of Petroleum-Beijing. Stained thin sections were made to gain textural and mineralogical
information on different structures of the weathering crust. A petrographic analysis was
undertaken using a Leica microscope under plane- and cross-polarized light, with 400-point
mineral counts per section. At 95% confidence limits, the constituent which has an absolute
error of about ±5% accounts for 50% of the sample [69]. In addition, polished sections
were prepared and impregnated with blue-dyed resin to allow the identification of pore
spaces and fractures. The SEM system employed in this study was a Quants 200F SEM
coupled with X-ray energy dispersive spectroscopy, running at an accelerating voltage of
5 or 15 KV. A total of 123 borehole samples were tested for physical properties using a
helium porosimeter and a gas permeameter by PetroChina Qinghai oilfield. The porosity
testing was processed using an Ultra-poreTM 400 porosimeter (Core Laboratories, Tulsa,
OK, USA). The porosity was obtained after the volumes of grains and rocks were analyzed.
The permeability was tested with an DX-07G permeameter (China Petroleum Exploration
and Development Research Institute, Huiao Instrument Equipment Manufacturing Co.,
Ltd., Wuxi, China) based on Darcy’s law. A total of 38 samples that were abundant in pores
and fractures were selected to analyze their surface porosity.

The conventional modern wireline log data of 19 wells were collected from the
PetroChina Qinghai oilfield, which comprised borehole-compensated sonic (AC), gamma
ray (GR), bulk density (DEN), compensated neutron (CNL), and resistivity logs (RLLD and
RLLS). The wireline log data were compiled using the Eclips-5700 logging series. Fullbore
Formation MicroImager (FMI, Baker Atlas, Houston, TX, USA) logs were collected from the
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19 wells mentioned above, which are widely used for structural characterization [70,71]. In
the image logs, the open fractures display as dark, continuous or discontinuous sinusoidal
waves, with a vertical resolution of 5 mm [72,73].

To define the chemical characteristics of the weathering crust, 18 borehole samples
and 8 outcrop samples were chosen and analyzed at the laboratory of Wuhan Geosciences
Institute in Hubei, China, including Jb1-1, Jb1-2 in the Jianbei area, Dp5-1, Dp7-1, Dp306-1,
Dp306-2, Dp306-3, DpH301, Dp1H23-1~Dp1H23-8 in the Dongping area, Nb1-1 in the
Niuzhong area, N3 in the Niudong area, DT-1~DT-5 in the southern Datonggou area, and
CSL-1~CSL-3 in the Caishiling area. These samples were firstly washed and trimmed and
then pulverized and sieved with a 200 mesh. X-ray fluorescence spectrometry (Rigaku RIX
2100) was used for the analysis of major element compositions (relative standard deviation
ranged from 2% to 8%). Next, the samples were digested using acid materials in Teflon
bombs, and selected trace elements were analyzed by ICP-MS (Agilent 7500a with a shield
torch) with analytical uncertainties of 1%–3%. The thermohistory of tectonic uplift was
defined by a critical review of literature apatite/zircon fission track data [74].

4. Results
4.1. Quantification of the Weathering Crust

The characterization of the weathering crust was made by considering a variety of
aspects including the depositional environment, geomorphology, crystalline structure, and
the comparison of parent rocks [75,76]. Through the combination of petrological methods
and a wireline log analysis, this study classified the structure of the weathering crust as:
a soil layer, a complete weathering layer, a partial weathering layer–dissolution belt, a
partial weathering layer–disintegration belt, and a nonweathering layer (parent rock layer)
(Figure 3). With respect to the analysis of major elements, high concentrations of SiO2,
Al2O3, and Fe2O3 indicated the intensity of the weathering, whereas the concentrations
of MgO and CaO in the weathering layer tended to be less than those in the soil layer
and parent rock layer. CIA, CIW, and PIA have been commonly regarded as an indication
of the extent of the weathering, but these criterions do not allow an identification of
different layers [46–48]. As, Na, K, Ca, and Mg are mobile elements, thus the decrease in
concentration of the related oxides is more likely to result from chemical leaching. During
the incipient stage of the weathering, the oxides including Na2O, K2O, CaO, and MgO
were largely lost from the profiles. On the contrary, elements including Al and Fe tend to
concentrate in weathering products [39]. In this study, we propose the basement weathering
index (BWI) to quantify the extent of the weathering (Table 2):

BWI = (Al2O3 + TFeO + TFe2O3)/(Na2O + K2O + CaO + MgO) (1)
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Table 2. Identification of weathering crust structure using weathering values.

Sample CIA CIW PIA BWI Structure

Jb1-1 60.411 66.586 62.782 2.143 Partial Weathering
Jb1-2 53.800 59.476 54.696 1.814 Partial Weathering
Dp5-1 61.280 78.374 70.007 1.878 Partial Weathering
Dp7-1 66.076 83.789 77.852 2.173 Partial Weathering

Dp306-1 58.806 72.967 64.393 1.652 Partial Weathering
Dp306-2 60.761 74.903 67.290 1.789 Partial Weathering
Dp306-3 59.992 77.236 68.054 1.688 Partial Weathering
DpH301 60.430 77.041 68.337 1.760 Partial Weathering

N3 58.529 63.060 59.961 1.759 Partial Weathering
Nb1-1 61.271 76.967 69.035 1.843 Partial Weathering

Dp1H23-1 8.890 9.049 7.398 0.157 Nonweathering
Dp1H23-2 38.669 42.291 36.327 0.997 Nonweathering
Dp1H23-3 68.007 78.460 74.548 2.456 Complete Weathering
Dp1H23-4 46.865 52.019 46.091 1.017 Partial Weathering
Dp1H23-5 58.720 70.667 63.174 1.567 Partial Weathering
Dp1H23-6 63.198 82.911 75.164 1.910 Partial Weathering
Dp1H23-7 63.818 77.665 71.476 2.230 Partial Weathering
Dp1H23-8 64.351 79.075 72.867 2.237 Partial Weathering

DT-1 60.112 65.652 62.165 1.978 Partial Weathering
DT-2 58.972 77.289 67.056 1.635 Partial Weathering
DT-3 57.264 77.764 65.366 1.497 Partial Weathering
DT-4 59.368 64.662 61.202 2.097 Partial Weathering
DT-5 58.627 68.182 61.986 1.893 Partial Weathering

CSL-1 59.608 67.711 62.631 2.160 Partial Weathering
CSL-2 62.989 63.540 63.218 2.736 Complete Weathering
CSL-3 55.904 59.857 56.802 1.820 Partial Weathering

CIA: 100 × Al2O3/(Al2O3 + Na2O + K2O + CaO); CIW: 100 × Al2O3/(Al2O3 + Na2O + CaO); PIA: 100 × (Al2O3
− K2O)/(Al2O3 + Na2O + CaO − K2O); BWI = (Al2O3 + TFeO + TFe2O3)/(Na2O + K2O + CaO + MgO).

4.1.1. Soil Layer and Complete Weathering Layer

The soil layer (consisting of mudstone) was identified through the interpretation of
imaging logs, including the stratification given by quartz bands and black bands with low
resistivity (Figures 4a and 5a). The soil layer presented BWI values that were less than or
equal to 1.0 (Table 2). The complete weathering layer, with a thickness of approximately
1.8 m to 32 m, was the transitional zone between basement rocks and sedimentary rocks
deposited above. This layer was composed mainly of greywacke and granitic gneiss.
Specifically, the greywacke consisted of alkali feldspar, quartz, and matrix, the rock structure
of which showed line-to-line contacts and point-to-point contacts (Figure 4b). The granitic
gneiss was crystallized with abundant alkali feldspar and biotite (Figure 4c,d) and a low
content of quartz, whose undulating extinction could be due to mild tectonic deformation
or compaction. The complete weathering layer contained more matrix, soil materials, and
altered plagioclases when compared to other layers in the weathering crust. The authigenic
minerals such as kaolinite, gypsum, and calcites were clearly seen in the granitic gneiss
of the complete weathering layer. The values of the log data, including AC, GR, CNL,
decreased from the top to the bottom of the wireline (Figure 5). Notably, where CNL
decreased rapidly, RLLD and RLLS rose to a high level. High-resistivity bright spots and
low-resistivity black spots were visible in the imaging logs as a response to the angular
weather-resistant grains and residual clay minerals, respectively (Figure 5b). Due to deep
weathering, the structure of the basement was completely lost; only some gypsum and
carbonate bands were formed, which were identified as light bands through the imaging
log. The complete weathering layer of granitoids showed a BWI value of more than 2.3
(Table 2).
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Figure 4. Petrography of granitoids that were exploited from distinct weathering crust belts. (a) Mud-
stone in soil layer, Dp1H23, 3070.88 m. (b) Greywacke in complete weathering layer, cross-polarized
light, Dp1H23, 3075.48 m. (c) Granitic gneiss in complete weathering layer, Dp1H23, 3078.67 m.
(d) Granitic gneiss in complete weathering layer, cross-polarized light, Dp1H23, 3078.67 m. (e) Grani-
toid in dissolution belt, N3, 2178.88 m. (f) Granitoid in dissolution belt, plane-polarized light, N3,
2178.88 m. (g) Granitoid in dissolution belt, cross-polarized light, N3, 2178.88 m. (h) Granite in
disintegration belt, Dp306, 1907.8 m. (i) Monzonitic granite in disintegration belt, plane-polarized
light, Dp306, 1916.76 m. (j) Monzonitic granite in disintegration belt, cross-polarized light, Dp306,
1916.76 m. (k) Granite in parent rock layer, Nb1, 3744.2 m. (l) Granite in parent rock layer, cross-
polarized light, Nb1, 3744.2 m. Red arrows represent minerals. Qz: quartz, Af: alkali feldspar, Pl:
plagioclase, Bt: biotite, Hbl: hornblende, Anh: anhydrite.
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Figure 5. Characterization of weathering crust in granitoids through wireline logging data, taking
well Dp1H23 as an example. (a) Soil layer in imaging log. (b) Complete weathering layer in imaging
log. (c) Dissolution belt in imaging log. (d) Disintegration belt in imaging log. (e) Non-weathering
layer in imaging log. QB: quartz band; GCB: gypsum and carbonate band; HCF: high-conductivity
fracture; DP: dissolution pore; RF: reticular fracture; CB: cement band.

4.1.2. Partial Weathering Layer

Regarding the granitoids in the dissolution belt, most of the feldspars including alkali
feldspar and plagioclase experienced dissolution, after which anhydrite was formed on
feldspars or filled in the dissolution pores and fractures (Figure 4e–g). The thickness of
the dissolution belt ranged from 30 m to 142 m. The log data such as GR and AC varied
intensely when approaching the boundary between the compete weathering layer and the
dissolution belt. Moreover, a sharp jump caused by a weak frequency and a small amplitude
was visible in the wireline curves, with the sections with a box-shape plateau indicating
deep dissolution. The dissolution belt still had the structure of the basement framework in
the imaging logs, since it was only partially weathered. It could be observed that many
high-conductivity sinusoidal fractures were connected to form a network. The edge of
the fractures was blurred, partially due to dissolution broadening and large dark spots,
indicating the low-resistivity areas where the dissolution pores or holes had developed
(Figure 5c).

The disintegration belt was identified from the abundance of fractures, especially
common in granitoids which are abundant in felsic materials (Figure 4h). As the felsic
minerals included brittle, quartz, and feldspars, these were likely to be cracked by tectonic
activity. The fractures formed during tectonic movements not only provide a way for
leaching but also play an important role in the natural gas transportation. The alkali
feldspars were replaced by kaolinites due to the alteration induced by acid meteoric water
(Figure 4i). When meteoric water carrying sulfate materials passed through the fractures,
some minerals such as anhydrite were crystallized in fractures or on the surface of feldspars
(Figure 4j). Unlike other layers of the weathering crust, quartz cements were crushed to
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broken grains during the interaction of later deep compaction and tectonic activities. The
thickness of the disintegration belt was from 34 m to 194 m, with low baseline values in
AC and a sharp curve showing a low frequency and small amplitude. The baseline values
of GR, RLLD, and RLLS were high, while the lower parts of the above values indicated
the sites where the fractures had developed. In the imaging logs, the fractures had a high
conductivity, shown as dark stripes (Figure 5d). The dissolution belt and the disintegration
belt had values of the BWI ranging from 1.0 to 2.3, which thus indicated the existence of
the partial weathering layer (Table 2).

4.1.3. Nonweathering Layer

The granitoids in the nonweathering layer were abundant in plagioclase, with concavo-
convex contact relationships. Some hornblendes formed on the edge of the feldspar grains,
where no pores or effective fractures could be identified (Figure 4k,l). The RLLD and RLLS
values of the nonweathering layer were lower than the values of the above disintegration
belt. The CNL and AC values of the nonweathering layer increased slightly while the
density (DEN), RLLS, and RLLD values decreased moderately compared with those in
the disintegration layer. This layer also included no massive structure that resulted from
weathering; however, some cement bands were generated within it (Figure 5e).

4.2. Reservoir Property Characterization

The reservoir spaces included matrix pores, dissolution pores, residual pores, and
dissolution fractures that were developed mainly in the dissolution belt. The greatest
contribution to the total porosity was given by the matrix porosity (approximately 70%) [77],
which can have two different origins. Many dissolved matrix pores were developed within
the clay minerals such as illite/smectite; these ranged in size between 124.4 nm and 689.0
nm (Figure 6a). Due to the crystallization which occurred in the mica, another type of matrix
pore included intergranular pores and intragranular pores (Figure 6b). In comparison to
the matrix pores, the dissolution pores were formed mainly in feldspar and the size of
these pores tended to be much larger, ranging typically from 4 µm to 9 µm (Figure 6c). As
a result of the interaction with acid meteoric water, the feldspars were usually replaced
by kaolinites and thus, some residual pores were formed (Figure 6d). The residual pores,
resulting from mineral alteration, were preserved among the aluminosilicate grains. Even
though the fractures were not the dominant reservoirs in the dissolution belt, dissolution
fractures could be observed in this layer, especially within the aluminosilicate minerals.
The average width of the fractures that developed in the dissolution belt was from 6 µm to
2 mm, and those that were not filled with grains could be regarded as effective reservoirs
(Figure 6e). With respect to the disintegration belt, more fractures resulting from tectonic
activity developed in this belt than other layers, but some of them were filled with calcites
or anhydrites (Figure 6f).

4.3. Physical Characteristics of Reservoirs

The results of the analysis of the physical properties from 123 cores showed that the
granitoids developed low-porosity and low-permeability reservoirs. The porosity of the
granitoids ranged from 0.50% to 9.76%, with an average value of 3.59%. The permeability
of the granitoids in the study area ranged from 0.02 mD to 115.82 mD, with an average
value of 1.98 mD (Figure 7). A clear correlation was identified between the porosity and
the permeability of the granitoids.
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Figure 6. Reservoir characteristics of distinct weathering crust belts. (a) Dissolved matrix pores,
Dp7, 2170.6 m; (b) Intergranular and intragranular matrix pores, Jb1, 4645.9 m; (c) Dissolution pores,
N4, 998.2 m; (d) Residual pores, Nb1, 3742.37 m; (e) Dissolution fractures, N4, 998.2 m; (f) Tectonic
fractures, South Datonggou, DT-1.

The reservoirs herein were classified as three types. The first type consisted of
fractured-porous reservoirs that had a moderate porosity and permeability as shown
in Figure 7. For this type of reservoir, the porosity usually varied from 1.56% to 8.48%,
with a permeability which was significantly less than that of a fractured reservoir. The
second type consisted of fractured reservoirs which had a porosity of no more than 5%
and a permeability that was much higher than the other two types of reservoirs with the
same porosity (Figure 7). The third type consisted of porous reservoirs that demonstrated a
porosity ranging from 0.83% to 9.76%, while the permeability was so low that almost no
fractures could possibly be found within rocks. Given these relationships between porosity
and permeability, it is concluded that the granite mainly formed fractured-porous and
fractured reservoirs, whereas the granitic diorite developed fractured-porous and porous
reservoirs. Furthermore, the granitic gneiss held three types of reservoirs, but the most
significant reservoir formed within the granitic gneiss was the fractured-porous reservoir
(Figure 7).
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Figure 7. Cross-plot of the relationship between porosity and permeability of core samples from
Qinghai oilfield.

5. Discussion
5.1. Contributions of the Weathering Crust to Reservoir Quality
5.1.1. Differentiation of Reservoir Quality

The presence of mechanical and chemical weathering extremely enhances the reservoir
quality in granitoids. Hence, the weathering crust is the most feasible situation for the
development of reservoirs [6]; this layer shows an increasing porosity and permeability
with a decreasing distance from the top of the weathering crust [78]. In this study, however,
the top of the weathering crust exhibited a low porosity and permeability due to materials
formed under severe weathering conditions. Thus, high-quality reservoirs were more likely
to be found in the partial weathering crust (Figure 8).
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The soil layer and the complete weathering layer showed low porosity properties
(Figure 8). The sediments of the soil layer were not affected by weathering, and diagenesis
seldom occurred in this layer, such that it provided insufficient conditions for the formation
of reservoirs. The complete weathering layer, with a low reservoir potential, was composed
by up to 50% of matrix, soil materials, and some of the residual grains that formed after
the weathering. The residual grains consisted of strongly altered plagioclases, with clear
cleavage fractures and some matrix pores. Due to the deep weathering and leaching,
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however, most of the unstable elements, including calcium, sodium, potassium, and
magnesium, were mobilized from the parent rocks [47,48]. Reprecipitation occurred,
facilitating authigenic minerals, including clay minerals, gypsum, and carbonate cements,
to intermix and infill the cleavage fractures and matrix pores (Figure 9a).
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Figure 9. Reservoir characterization regarding different layers of weathering crust. (a) Cleavage
fracture that is filled with calcites, Nb1, 3640.35 m; (b) Original matrix pores formed in quartz,
Nb1, 3643.25 m; (c) Dissolved matrix pores formed with the mica carbonization, Dp103, 3230 m;
(d) Dissolution pores in plagioclase, N4, 998.2 m; (e) Dissolution fractures formed in alkaline feldspars,
DP7, 2170.6 m; (f) Cleavage fractures formed in the inner region of feldspars, Nb1, 3742 m; (g) Crack
fractures that connect the intergranular pores in the margin of quartz, Jb1, 4647.95 m. (h) Crack
fracture that cuts through the quartz, Dp123, 3360 m.
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The porosity values of the cores analyzed from the dissolution belt or the disintegration
belt ranged from 1.39% to 9.53%. The partial weathering layer was therefore the most
feasible setting for the development of a granitoids reservoir. The matrix pores, dissolution
pores, residual pores, and dissolution fractures provided the primary storage space for
hydrocarbon accumulation in the Paleozoic granitoids. Specifically, the decomposition
of feldspar, under the effect of chemical weathering, leads to a loss of Na2O, CaO, and
SiO2 [79]. The decrease of oxides such as Na2O and K2O indicated that the rock had
experienced an intense chemical weathering. The effects of weathering on granitoids can be
characterized by the decomposition and the disintegration of the mineral phenocrysts and
the formation of additional pores, especially in the vicinity of preserved fractures. The total
porosity of these pores, including matrix pores, dissolution pores, and residual pores, was
approximately 23.72%, which accounted for 31.6% of the entire reservoir porosity. In the
case where the dissolution belt approached the top of the weathering crust, the weathering
and leaching that occurred in that belt was stronger than what occurred in the disintegration
belt, resulting in the formation of many dissolution fractures. The porosity measured in
these dissolution fractures ranged from 0.29% to 7.33%, which contributed 28.10% to the
total porosity. Consequently, the dissolution belt contained reservoirs which were of better
quality than those developed in the disintegration belt. The statistical analysis of the
porosity showed that the pores and dissolution fractures of the dissolution belt accounted
for more than 50% of the total porosity.

5.1.2. Reservoir Generation Processes

The genesis of the reservoirs developed in the dissolution belt can be summarized as
follows (Figure 10): (1) Two kinds of matrix pores were identified, including the original
pores that were preserved after the crystallization, and the dissolved ones that could be
ascribed to a later chemical alteration. The original matrix pores existed mainly in the
quartz and mica (Figures 6b and 9b), while the dissolved matrix pores had several paths
for their formation. Specifically, this type of matrix pore was developed not only in felsic
granitoids but also in granitic gneisses. The felsic granitoids were crystallized with large
amounts of aluminosilicate minerals. Clay minerals such as illite, smectite, and kaolinite
were formed after the alteration of alkaline feldspars, facilitating the development of pores
of nanoscale magnitude (Figure 6a). Regarding the granitic gneiss, one type of dissolved
matrix pore resulted from the alteration of biotite or hornblende, above which the chlorites
were identified, and the matrix pores were situated along the edge of Fe/Mg-bearing
minerals. Furthermore, some matrix pores were formed under the influence of alkaline
underground flows, especially in the case of mica. As a result of the interaction with alkaline
flows, the carbonization which induced the matrix pores could be identified (Figure 9c). The
calcite cements were formed with the recrystallization, under the influence of acid fluids;
the dissolution occurred within calcites with some matrix pores developing especially in
the middle diagenesis stage [80]. (2) The dissolution pores were formed under the action of
fluid flows that moved through the tectonic fractures or were preserved under the ground
surface. Due to chemical interaction with the plagioclase, the sericites or chlorites were
developed as well as some dissolution pores which were located within these minerals
(Figure 9d). Furthermore, the residual pores were preserved along the edge of the authentic
minerals after the feldspar alteration (Figure 6d). Another type of dissolution pore was
formed mainly after the alteration process that occurred inside the alkaline feldspars. The
clay minerals including kaolinite, illite, and smectite were developed subsequently and
the dissolution occurred in the presence of underground flows (Figure 6c). (3) Under the
influence of alkaline groundwater or flows containing sulfites, the felsic minerals, especially
the aluminosilicate ones, were likely to have been dissolved (Figure 6e). The dissolution
fractures here could be widely observed and some of them were filled with calcites or
anhydrites (Figure 9e). The effective fractures were those not infilled with minerals that
connected with each other or with the other pores.
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Figure 10. Genesis of reservoirs in distinct weathering crust layers.

It can be speculated that, due to mechanical weathering, the cleavage fractures were
widened and distributed commonly within the feldspars (Figure 9f). The cleavage fractures
are more likely to be found in the feldspars of the granitoids, while the granitic gneiss is a
favorable situation for the formation of cleavage fractures in the biotite. Although some of
the cleavage fractures were filled with calcites or gypsum, they contributed approximately
15% to the total porosity. Another type was made up of crack fractures that bypassed
the edge of the mineral grains or cut through the phenocrysts. The original pores were
distributed irregularly within the rocks and seldom formed effective throats to connect
with each other, but the crack fractures that are commonly developed in the margin of
minerals served as an effective channel to connect the intergranular pores among quartz
grains (Figure 9g). Meanwhile, other crack fractures that cut through the grains without
any filling of authigenic minerals showed a good connectivity, which meant these fractures
had a positive effect on the hydrocarbon accumulation (Figure 9h). Brittle minerals are
readily cracked under tectonic stress [81]. This type of crack fracture can be extensively
observed in quartz, which exists not only in granite and granitic diorite but also in granitic
gneiss. Due to the plastic deformation of mica, crack fractures are less likely to be formed
inside phyllosilicate minerals. Thus, it can be concluded that the granitoids which contain
more felsic grains are the more favorable place for the development of structural fractures.
Overall, the crack fractures contributed 25.3% to the total reservoir porosity.

5.2. Controlling Factors of Weathering Crust Reservoirs
5.2.1. Lithology and Mineral Composition

The complete weathering layer is regarded as a cap for reservoirs that inhibits the
natural gas from escaping. The lacustrine mudstone and the basement rocks, which are
filled with gypsum and calcite, act as cap rocks [23], while the parent rocks play a crucial
role in the process of weathering, especially for their mineral components and soluble
constituents [25]. This research showed that the dissolution of granite was not as extensive
as in the case of granitic gneiss and granitic diorite. The thickness of the weathering crust
in femic granitoids was much greater than that found in the felsic granitoids (Table 3).
According to the reservoir properties of granite and granitic gneiss (Figure 11), the porosity
of granite was usually less than 2%–3% (these granites contributed 52.17% to the total
amount of granites), while the porosity of granitic gneiss was mostly more than 2%–3%
(the amount that granitic gneiss contributed to the total amount of granitic gneiss was
56.01%). Due to the presence of brittle minerals, the granites should be more likely to crack
within and to form crack fractures, but the permeability distribution between granite and
granitic gneiss was almost the same. Up to 73.91% of granites had a permeability that
was less than 0.50 mD and 72.72% of granitic gneiss had a similar value. We deduced that
even though the granite was more prone to develop fractures due to its felsic components,
the gneissose structure in granitic gneiss could also facilitate the format ion of fractures,
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likewise resulting in enhanced permeability. Even though the felsic and femic granitoids
had a similar permeability, the femic granitoids had a thicker disintegration belt, which
implied that some authentic minerals had infilled some of the fractures and thus reduced
the level of permeability.

Table 3. Thickness variation of distinct weathering crust structures regarding different lithological
components.

Weathering Crust Structure
Thickness/m Felsic Granitoids Femic Granitoids

Min Max Avg Min Max Avg
Complete weathering layer 3.32 32.76 13.89 1.81 21.23 11.97

Dissolution belt 30.12 100.04 58.22 35.22 142.54 86.57
Disintegration belt 34.00 114.16 65.84 48.02 194.65 103.43
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Figure 11. Physical properties of granite and granitic gneiss. (a) The distribution of porosity of
granite; (b) the distribution of porosity of granitic gneiss; (c) the distribution of permeability of
granite; (d) the distribution of permeability of granitic gneiss.

5.2.2. Tectonic Uplift

The Qaidam Basin was affected by multiple uplift episodes from the Triassic to the Miocene
as deduced by thermochronology datasets and regional tectonic background [59,82–85]. The de-
tached fault near the Altyn Tagh Range was active from the late Triassic to the early Jurassic,
corresponding to the cooling event during this period in northern Tibet [86,87]. According
to the fission-track analysis of zircon and apatite (ZFT and AFT) within crystalline-basement
rocks, the north Qaidam Basin experienced a tectonic uplift from the late Triassic to the
early Jurassic, followed by a rapid erosion during the Jurassic [83]. Other AFT and ZFT
data indicate that the northwestern Qaidam Basin was uplifted from 133.7 ± 6.6 Ma to
39.1 ± 9.3 Ma [88].

During the early Middle Jurassic, the Qaidam Basin was in an extensional tectonic
regime after a collision occurred among several blocks in Northwest China [89]. The onset
of the Paleo-Tethys Ocean could be the main factor for the formation of the rift basins in
the early Jurassic, which also led to the presence of an extensional stress field in western
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Qaidam Basin until the Middle Jurassic [65]. The Yanshanian orogenic event was sustained
from the late Jurassic to the Cretaceous. It caused the convergence between the Gangdise
Plate and the Qiangtang Plate, the collision between the Huabei Plate and the Siberia
Plate, and the closure of Tethys Ocean [90,91]. In this period, the Qaidam Basin underwent
extrusion, depression, and uplift. The north block located in front of the Altyn Mountain
was uplifted while the south block was lowered, which led to the strata of the north block
experiencing intense weathering during the late Mesozoic period. The Jurassic exhumation
was followed by a phase of sedimentation in the Cretaceous [83], except for the region along
the Altyn Tagh Fault. From the Cretaceous to the Cenozoic, several episodes of cooling
were recorded by low-temperature thermochronology [88,92–94]. The early Cretaceous
denudation was followed by a tectono-thermal event occurring from the Oligocene to the
Miocene. This latter event might correspond to strike-slip tectonics along the Altyn Fault
and furthermore, it could also be responsible for the initial formation of the high relief of
north Tibet [53,83]. In the north Qaidam Basin, a regional unconformity marks the end of
the Jurassic (Figure 2). This unconformity represents the top boundary of the weathering
crust, above which the sedimentary materials (Lulehe Formation) such as mudstones and
gypsolyte were deposited in the Paleogene. The missing strata (from the late Jurassic to the
Cretaceous) correspond to an exhumation phase in the Altyn Fault terrane (Figure 12a,c),
which facilitated the development of the weathering crust of the basement rocks in the
north Qaidam Basin.
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Figure 12. Thermal modeling results and thermochronology dataset from the block along Altyn
Fault belt: (a,b) compiled from Jolivet et al. [83] and Yu et al. [95], dotted lines indicate the expected
model results. (c) Fission track analysis of apatites and zircons in the area of Altyn Fault belt;
thermochronology data are from a. Chen et al. [96], b. Sun et al. [97], c. Wan et al. [98], d. Wang
et al. [99] and Wang et al. [100], e. Jolivet et al. [83], f. Peng [101]. Apatites and zircons used in fission
track analysis were fully or partially thermally reset.
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5.2.3. Faulting

During the Himalayan orogenesis, especially from the Neogene to the Quaternary, the
strike-slip faults that affect the north Qaidam region were formed [102,103]. Zou et al. [26]
proposed that the density of fractures depended on their distance from primary faulting
zones and that these faults had controlled the distribution and the strike of fractures
developed within the weathering crust. In this study, we selected sampling wells near the
faulting zone to understand the relationships between fractures and the reservoir properties
in granitoids (Figure 13). The thickness of the disintegration belt was larger than that of the
dissolution belt in samples from wells such as Nb2 and Nb3; moreover, these samples were
from the same paleogeography (Figure 14). Based on the regional tectonic background and
thermal modeling results, the Altyn region underwent accelerated exhumation from the
late Oligocene to the early Miocene (Figure 12b,c) and, eventually, represented the onset
of a transition along the Altyn Tagh Fault from a left-lateral strike-slip motion to a crustal
shortening [95]. The reservoirs developed in the disintegration belt were probably induced
by tectonic deformation in the early Middle Cenozoic.
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Figure 13. Identification of fault belts and characterization of their physical properties from the
logging dataset. CWL: complete weathering layer, FB: fault belt, DLB: dissolution belt, DGB: disinte-
gration belt.

5.2.4. Paleogeomorphology

The total thickness of the partial weathering layer in distinct paleogeomorphology
settings was identified in this study because of its crucial role in the capacity of weathering
crust reservoirs. Samples that had similar lithology were selected to highlight the paleogeo-
morphological controls on the development of the weathering crust reservoirs. Apart from
the wells situated close to the faults, the thickness of partial weathering crust developed on
the slopes (well Dp306, Dp5, Dp7, Nb1) was larger than that developed in the depressions
(well Dp4, Jb4). Regarding the slope, the granitoids developed in higher areas showed a
higher quality of reservoir than in the lower areas of the slopes (Figure 14). With respect
to the wells in similar paleogeomorphological areas, there were no evident relationships
between the dissolution belt and the distinction belt for the felsic granitoids and femic
granitoids, possibly due to the influence of adjacent major faults. The topographical highs
were in a strong denudation zone where the weathering denudation rate was greater than
the formation rate of the weathering crust, and thus the complete and partial weathering
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zone were not well presented [26]. As the weathering and denudation of the slopes were
weaker than on topographical highs, the complete weathering layer in the slope sections
was retained and, therefore, the partial weathering zone had the possibility to develop.
Meanwhile, in the depressions, large volumes of weathering residuals were accumulated
and formed a complete weathering layer of a large thickness. This complete weathering
layer hindered the surface water penetrating downward to erode the strata below, thus the
leaching effect was weak, and the thickness of the weathering crust in the depression area
was relatively thin.
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Figure 14. Thickness variation of partial weathering crust layer and its relationships among lithology,
tectonism, and paleogeomorphology (the contour values of paleogeomorphology are interpreted
based on the T6 reflection layer of seismic data; these values represent the height of the basement top
before the deposition above).

5.3. Reservoir Modeling and Natural Gas Implications

Based on factors such as reservoir-space systems, physical properties, lithology, fault-
ing, and paleogeomorphology, the appraisal of granitoid reservoirs in front of the Altyn
Mountain was classified into three types as outlined below (Table 4), including Type I
(highest reservoir quality), Type II (moderate reservoir quality), and Type III (poor reservoir
quality). The reservoir system herein described contained proven resources as demon-
strated by the hydrocarbon test results from the dissolution belt (Figure 15): the daily
production of natural gas from Dp3 at depths of 1850 m to 1870 m was 0.7181 × 104 m3,
while Dp1 had a natural gas production of 15.97× 104 m3 per day from depths of 3159 m to
3182 m. Both granitoids in Dp3 and Dp1 were situated in the slope zone, but the granitoid in
Dp3 was granite whereas Dp1 was drilled in granitic gneiss. The porosity of the granitoids
in Dp3 and Dp1 were 2.59% and 6.00%, respectively, and the permeability of the granitoids
were 5.20 mD and 0.01 mD, respectively. The parameters analyzed above can be classed as
corresponding to basement reservoirs of the highest quality (I).
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Table 4. Appraisal parameters of the granitoid reservoirs in Qaidam Basin.

Reservoir Quality I II III

Reservoir Type Fractured-porous reservoir Porous reservoir Fractured reservoir
Porosity/% 1.562–8.479 0.825–9.763 0.498–4.528

Permeability/mD 0.0304–14.478 0.020–0.995 0.050–115.816

Lithology
Granitic gneiss (23.58%),
granite (10.57%), granitic

diorite (4.88%)

Granitic diorite (21.95%),
granitic gneiss (17.89%),

granite (3.25%)

Granitic gneiss (12.20%),
granite (5.68%)

Palaeogeomorphology
(contour value/m) Slope (2000–3400) topographical highs

(1000–2000) depression (>3400)

Representative wells
Dp106, DpH301, Dp123,

Dp1H23, Dp306, Dp5, Dp1,
Dp3, N3, Nb1, Jb1

Dp106, DpH301, Dp123,
Dp1H23, DpH101, Jb1

Dp106, DpH301, Dp306,
Dp5, Dp123, Dp1H23
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reservoir were tested at the PetroChina Qinghai oilfield).

6. Conclusions

(1) The structure of the weathering crust was classified as complete weathering layer,
partial weathering layer (dissolution belt and disintegration belt), and nonweathering
layer based on the occurrence of different minerals, elements, and textures in the
rocks, as well as the interpretation of logging datasets. The top to middle section of
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the partial weathering crust, where the majority of the observed pores and fractures
had developed, demonstrated the most advantageous reservoir physical properties.

(2) The dissolution belt was characterized by matrix pores, dissolution pores, residual
pores, and dissolution fractures. The matrix pores represented the most important
contribution to the total porosity. The clay minerals such as illite/smectite generated
abundant dissolved matrix pores. Another type of matrix pore included intergranular
pores and intragranular pores, which were formed mainly due to the crystallization
of mica. The sericites or chlorites, together with some dissolution pores, developed
because of the chemical interactions that occurred within the plagioclase. The residual
pores were preserved among the aluminosilicate grains, whereas dissolution fractures
were formed within them. More cleavage fractures and crack fractures were formed
in the disintegration belt, but some of those were filled with calcites or anhydrites.

(3) The femic granitoids, including granitic gneiss and granitic diorite, were appropriate
lithologies for the formation of reservoirs due to the possible intense dissolution in
these rocks. The felsic granitoids had a greater fracture potential. The gneissose
structure greatly enhanced the permeability of granitic gneiss. No clear relationships
were observed between the quality of the reservoirs in the dissolution and the dis-
integration belts and the presence of femic and felsic granitoids. The thickness of
the partial weathering layer in femic granitoids, however, was larger than that in
felsic granitoids.

(4) Faulting was the main factor for the formation of the disintegration belt, which was
induced mainly by the tectonic deformation occurring from the late Oligocene to the
early Miocene in Altyn Fault belt. The reservoir quality seemed to be greater when
the granitoids had developed close to the main fractures. Therefore, the dissolution
belt was controlled by faulting, and to some extent, the mode in which the fractures
connected the pores together. The paleogeomorphology influenced the extent of the
weathering, from which the thickness of the weathering crust in the slope areas was
larger compared to that in depression areas. The exhumation that took place from
the late Jurassic to the Cenozoic in Altyn terrane corresponded to the weathering and
leaching period of the granitoids.

(5) The reservoirs in granitoids could be classified into three types: fractured-porous,
porous, and fractured. The fractured-porous type was associated with the best capacity
of reservoirs found in granitoids, and this type developed mainly in the dissolution
belt of the weathering crust. Therefore, the dissolution belt was the predominant
zone of high-quality granitoid reservoirs, in which the total porosity of pores and
dissolution fractures accounted for 59.7% of the entire reservoir porosity.
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