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Recovery of neural dynamics criticality in
personalized whole-brain models of stroke
Rodrigo P. Rocha 1,2,3✉, Loren Koçillari3,4,5, Samir Suweis3,5, Michele De Filippo De Grazia 6,

Michel Thiebaut de Schotten 7,8, Marco Zorzi 6,9 & Maurizio Corbetta 3,10,11

The critical brain hypothesis states that biological neuronal networks, because of their

structural and functional architecture, work near phase transitions for optimal response to

internal and external inputs. Criticality thus provides optimal function and behavioral cap-

abilities. We test this hypothesis by examining the influence of brain injury (strokes) on the

criticality of neural dynamics estimated at the level of single participants using directly

measured individual structural connectomes and whole-brain models. Lesions engender a

sub-critical state that recovers over time in parallel with behavior. The improvement of

criticality is associated with the re-modeling of specific white-matter connections. We show

that personalized whole-brain dynamical models poised at criticality track neural dynamics,

alteration post-stroke, and behavior at the level of single participants.
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The fundamental mechanisms underlying the dynamics of
brain activity are still largely unknown. Interdisciplinary
research in neuroscience, inspired by statistical physics, has

suggested that healthy brain’s neural dynamics stay close to a
critical state1, i.e., in the vicinity of a critical phase transition
between order and disorder2,3, or between asynchronous or
synchronous oscillatory activity4,5. In physics, critical phenomena
occur at the transition of different states of the systems (also
known as phase transitions) for specific values of the so-called
system’s control parameter (e.g., temperature). There is mounting
evidence that biological systems (or parts, aspects, or groups)
operate near/at critical points6,7. Examples include gene expres-
sion patterns8, bacterial clustering9, flock dynamics10, as well as
spontaneous brain activity. Indeed, neural systems seem to dis-
play features that are characteristic of systems at criticality. These
include (i) the scaling invariance of neural avalanches5,11 reported
in diverse species12,13, through different imaging techniques14,
and electro-physiological signals15; (ii) the presence of long-range
spatiotemporal correlations in the amplitude fluctuations of
neural oscillations16,17, including the observation of 1/f power
spectra from simultaneously recorded MEG/EEG signals15,
fMRI18, and cognitive responses19; and (iii) the increase of the
correlation length with system size17,20,21.

Critical brains benefit from these emergent features to
promptly react to external stimuli to maximize information
transmission22, hence sensitivity to sensory stimuli, storage of
information23, and a coordinated global behavior11,24. If criti-
cality is indeed a fundamental property of healthy brains2, then
neurological dysfunctions shall alter this optimal dynamical
configuration. However, we know little about the effect of brain
disorders on criticality25. Some studies have reported disrupted
criticality during epileptic seizures26,27, slow-wave sleep28,
anesthesia29, sustained wakefulness30, states of (un)
consciousness31,32, and Alzheimer’s disease33. However, a crucial
test of the hypothesis requires showing alterations of criticality
after focal brain injuries that cause local alterations of the brain’s
structural and functional architecture. If criticality is essential for
behavior, then its alteration after focal injury shall relate to
behavioral dysfunction. Over time as behavior improves in the
course of recovery, so shall criticality. Finally, we hypothesize that
changes in criticality with recovery will depend on specific plas-
ticity mechanisms or functional remodeling as shown in previous
fMRI studies34–37.

There are several aspects of our investigations. First, we employ
a stochastic whole-brain model to simulate large-scale neural
dynamics38 using as input the directly measured structural con-
nectivity of a stroke patient or healthy control. Importantly, we
do not fit the resulting dynamics with empirical measured
functional connectivity. The structural connectivity, measured at
two time-points: 3 months after stroke (t1) and 1 year after stroke
(t2), or 3 months apart in healthy controls, was used to build
personalized whole-brain models. Lesions certainly produces
departures from normal structural connectivity, but these struc-
tural alterations do not necessarily correspond to an alteration of
criticality. Critical dynamics results from the combination of a
topology (determined by the structural connectivity) and a given
value of excitability. Our method allows measuring departures
from criticality at the group level or in individual participants, as
well as the recovery of criticality over time.

This approach contrasts with other studies that used average or
atlas-based structural connectivity models to simulate activity
time courses39–47. For example, a recent study by Haimovici et al.
found that lesions push the system out of criticality towards a
sub-critical state48. However, these theoretical results were not
validated with real patient data. Other studies found abnormal
global metrics of network function, such as information capacity,

integration, and entropy in stroke patients as compared to healthy
participants49,50. However, these models were not personalized,
i.e., did not use directly measured individual structural con-
nectivity but healthy group average structural connectomes that
were fit with many (hundreds) free model parameters to mini-
mize the distance between the model and the empirical functional
connectivity49.

Secondly, we apply this computation model strategy to a
unique cohort of stroke patients studied prospectively and long-
itudinally at Washington University in St. Louis. This cohort has
been investigated with a large battery of neurobehavioral tests and
structural-functional magnetic resonance imaging at 2 weeks,
3 months, and 12months after the stroke. This cohort is repre-
sentative of the stroke population both in terms of behavioral
deficits, their recovery, and the lesion load location51. In previous
work, we have characterized the behavioral, structural, and
functional connectivity abnormalities in this cohort and their
relationship to behavioral impairment and recovery34–37,52 (see
Corbetta et al.53 for a review). In network terminology, strokes
cause an acute decrease of modularity that normalizes over
time34,54.

In this work, we use stroke as the prototypical pathological
model of human focal brain injury and whole-brain computa-
tional models to estimate neural dynamics, related alterations in
criticality and behavior, and the underlying neural mechanisms.
We show that stroke lesions engender a sub-critical state char-
acterized by decreased levels of neural activity, entropy, and
functional connectivity, that recovers over time in parallel with
behavior. The improvement of criticality is associated with spe-
cific white-matter connections remodeling.

Results
Simulation of large-scale neural dynamics. To simulate neural
activity at the individual whole-brain level we employed the
homeostatic plasticity model recently developed in21,38. Figure 1
illustrates the main ingredients of our modeling strategy. Indi-
vidual structural connectivity matrices are the key inputs of the
stochastic model (Fig. 1a). Imaging and behavioral data are taken
from a large-scale stroke study described in previous
publications35,51,55. Structural connectivity data was available for
79 patients, acquired 3 months (t1) and 1 year (t2) after stroke
onset. The same study includes data from 28 healthy controls,
acquired twice 3 months apart. The difference in the time interval
between stroke and controls is that diffusion imaging in patients
was obtained only at three and 12 months since the diffusion
signal is highly variable early post-injury. In contrast behavioral,
structural, and functional connectivity were obtained at all three
time points in both groups (see Methods sections for details about
the stroke dataset, lesion analysis, diffusion-weighted imaging
(DWI), and resting-state Functional magnetic resonance
imaging).

The whole-brain is described as a network of N= 324 nodes
(i.e., cortical brain regions), linked with symmetric and weighted
connections obtained from DWI scans and reconstructed with
spherical deconvolution56,57. The weights of the structural
connectivity matrix, Wij, describe the connection density, i.e,
the number of white-matter fiber tracts connecting a given pair of
regions of interest (ROIs) normalized by the product of their
average surface and average fiber length58. The ROIs are derived
from a functional atlas of the cerebral cortex59. Fig. 1a shows the
topography of structural connections, the corresponding network
assignment, and the corresponding averaged structural matrices.
The matrix is sparse, and contains many short-range connections
and fewer long-range connections. In the control group, inter-
hemispheric connections between homotopic regions of the same
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network are visible (dorsal view of the brain Fig. 1a). In stroke
patients, inter-hemispheric connectivity is decreased, as shown by
Griffis et al.35 who found that loss of inter-hemispheric
connections—both structural and functional—is the predominant
aberrant pattern in stroke. The lesion load topography in the
stroke cohort is shown in Supplementary Fig. 1 and matches the
topography of larger cohorts51,60.

Cortical activity is modeled through stochastic dynamics based
on a discrete cellular automaton with three states, namely, active
(A), inactive (I), and refractory (R). The state variable of a given
node i, si(t), is set to 1 if the node is active and 0 otherwise. The
temporal dynamics of the i-th node is governed by the following
transition probabilities between pair of states: (i) I→ A either
with a fixed small probability r1∝N−1 or with probability 1 if the
sum of the connections weights of the active neighbors j, ∑jWij, is
greater than a given threshold T, i.e., ∑jWijsj > T, otherwise I→ I,
(ii) A→ R with probability 1, and (iii) R→ I with a fixed
probability r238. The state of each node is overwritten only after
the whole network is updated. Therefore, during the temporal

dynamics, a node activation happens (most frequently) when the
incoming input excitation from its nearest active neighbors
exceeds a fixed threshold T, i.e, ∑jWijsj > T. In other words, T
plays the role of a threshold parameter that regulates the
propagation of incoming excitatory activity. On the other hand,
the two parameters r1 and r2 control the time scale of self-
activation and recovery to the excited state21,38. As we clarify in
the methods section, r1 and r2 are set as a function of the network
size, while T is the control parameter of the model.

Following38,61, we consider homeostatic plasticity principles
regulating network excitability by introducing a normalization of
the structural connectivity matrixeWij ¼ Wij=∑

j
Wij: ð1Þ

As shown by38, the above normalization minimizes the
variability of the neural activity patterns and the critical point
of the stochastic model for different participants, facilitating
statistical comparison among model outputs for single

a b

d

c
t1 t2 t3

T = Tc

Fig. 1 Overview of whole-brain modeling. a Average structural connectivity (SC) matrices (top) and their corresponding network architecture embedded
in a glass dorsal view of the brain (bottom). SC matrices and brain networks are organized according to regions of interest (ROI) defined on the cortical
parcellation of Gordon et al.59. b The probability distribution function of the structural connectivity weights in controls and patients after homeostatic
normalization (see main text, Eq. (1)). For each group, the (non-zero) weights of all individual matrices were pooled together and then the histogram was
computed leading to a representative pdf for the corresponding group. c Top. Illustration of the network dynamics with homeostatic plasticity following the
transition probabilities between the three possible states: inactive (I), active (A) and refractory (R). The temporal evolution of the central inactive node
(pink) is as follows: in t1, it is surrounded by three active nodes (green) and one refractory node (orange); in t2, the incoming excitation is propagated
( eW31 þ eW32 þ eW34 > T); and finally, in t3, it reaches the refractory state. Bottom. Procedure used to transform node's activity, si(t), in functional BOLD
signals, xi(t). BOLD time-series are obtained by convolving instantaneous si(t) with a canonical hemodynamic response function (HRF). d Behavior of the
neural variables, the largest (S1, continuous line), and the second largest (S2, dotted line) cluster size as a function of T (top). The peak in S2 (red dot) is
identified as the critical phase transition62. Blue and green dots correspond to minimal and maximal values of T, and corresponding activity and BOLD time-
series in the lower panels. Left panel: instantaneous network activity, A(t)=∑isi(t), for different values of the activation threshold T; the super-critical
phase T≪ Tc (blue time-series), the critical phase T= Tc (red) and the sub-critical phase T≫ Tc (green). Right panel: example of the simulated BOLD
signals between two arbitrary ROIs and their corresponding Pearson correlation ρ. The highest correlation is achieved at the critical phase, where BOLD
fluctuations are long-range correlated.
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individuals. Moreover it facilitates the emergence of functional
networks at rest, and increases the correlation coefficients
between model and empirical data.

For each participant (stroke, control) and time point (t1: 3
months for stroke, first scan for control; t2: 12 months for stroke,
second scan 3 months apart for control) we calculate the
following neural state variables (see Methods section): the average
activity (A), the standard deviation of the activity (σA), and the
size of the averaged clusters, the largest (S1), and the second
largest (S2), as a function of the activation threshold T. These
clusters of activity are defined as the size of the connected
components of the graph defined by the sets of nodes that are
both structurally connected to each other and simultaneously
active38. In the numerical experiments, we set the total simulation
time-steps ts= 2000, to approximate the length of a typical fMRI
experimental time-series (~15 min).

A typical behavior of the simulated brain activity for different
values of T, while keeping r1 and r2 fixed, is illustrated in Fig. 1c.
The brain dynamics displays a phase transition at critical
threshold Tc given by the corresponding value of T. In fact, at
T= Tc brain activity has the largest variability, the maximal
second largest cluster size, and a steep change in the first cluster
size21,38,62. In contrast, for small values of the activation threshold
(T≪ Tc), the system is characterized by high levels of excitation,
i.e, the signal from an active node will easily spread to its
neighbors. In this scenario, we have the so-called super-critical or
disordered phase, which is characterized by sustained sponta-
neous activity with fast and temporally uncorrelated fluctuations
(Fig. 1d, blue time-series). On the other hand, high values of T
(T≫ Tc) lead to a sub-critical or ordered phase, which is
characterized by regular, short propagating and not self-sustained
activity. In this case, only those nodes with the strongest
connections will determine the excitation flow in the network.
In the sub-critical phase, simulated BOLD signals have very small
correlations (Fig. 1d, green time-series). The critical phase
appears in between of these two states, when brain activity
displays oscillatory behavior and long-range temporal correla-
tions of their envelope21,38,48. At criticality the simulated BOLD
activity shows the highest correlation (Fig. 1d, red time-series)38.

In the next sections, first, we present simulations of the whole-
brain model with homeostatic plasticity for stroke and control
individuals, as well as at the group level. Next, we study the
structural connectivity correlates of neural dynamics alterations
induced by stroke lesions. Third, we identify components of the
structural networks that are most strongly related to criticality
and its recovery over time. Fourth, we compare the simulations
output with empirical functional networks, and with behavioral
data obtained in multiple domains (e.g., language, motor,
memory) from an extensive neuropsychological battery (see
Methods section and Supplementary Note 2).

Abnormal neural dynamics in stroke. In this section, we shall
investigate the model’s fingerprint of criticality loss. Stroke is not
a binary phenomenon, thus we do not expect that all individuals
will lose criticality following a lesion. While some patients neural
patterns will behave similarly to controls others will significantly
depart from normality. First, we show the fingerprints of criti-
cality loss and associated recovery in a representative patient,
then we quantify the variability of the neural activity patterns
across groups and time points. All the statistical tests reported
throughout this study met the assumptions of normality and
equal variances.

Figure 2a–d shows the model’s neural activity variables for an
arbitrary control-patient pair. The neural profiles for each stroke
patient and healthy control can be seen in the Supplementary

Fig. 10–16. To facilitate the comparison between individual
control and stroke data, we also present the average and standard
deviation of the healthy controls (blue dashed line and shaded
area, respectively). In general, the neural dynamics in healthy
participants are quite distinct from stroke patients who manifests
a loss of criticality. First, let us consider one healthy participant,
Fig. 2a, b (black/gray dots). The neural patterns follow the
expected behavior, with a critical point T= Tc around the
maximum of S2, or equivalently, near the sharp decrease of S1.
Moreover, as expected, the two curves have low variability across
the two time points (t1 and t2), displaying the same Tc (within one
standard deviation), and stable shape as a function of T.

The pattern is dramatically different in the stroke patient. The
characteristic peak in S238,62 describing the critical phase
transition is completely absent at 3 months post-stroke, but
normalizes at 1 year, where the transition is sharper and both, S1
and S2, with a behavior similar to normal. The monotonic
behavior of S2 is associated with a loss of a critical phase
transition (for any value of excitability T), as shown in a recent
study by Zarepour and colleagues62. Accordingly, this monotonic
behavior is encountered when the average degree or the disorder
of the structural connectivity matrix ( eWij) is low. When the
connectivity disorder or degree increases then criticality emerges.
Therefore, the recovery of criticality at 12 months predicts a
reorganization of the topology of the structural connectome, with
an associated increase of both, the average degree and the
connectivity disorder, as a function of time. We shall investigate
the anatomical bases of brain criticality modifications in the next
section.

As already observed in38, the homeostatic normalization on the
weights of the structural matrix decreases the inter-participant
variability of neural activity patterns. More importantly, it fixes
the critical point of healthy controls to a universal value,
Tc ~ 0.122. In other words, thanks to the homeostatic plasticity
mechanism, the critical point is independent of the individual
variability in the structural connectivity matrix. However, the
strength of the S1 and S2 peaks provides the characterization of
differences in criticality. In fact, near the critical point the
differences in the stroke patient at t1 and t2 are pronounced. The
most interesting feature, as shown in Fig. 2c, d, is the recovery-
like pattern: the 1 year post-stroke curve resembles, both
qualitatively and quantitatively, the pattern of the healthy
controls. Similar results are shown for several examples of
individual stroke patients and healthy participants (see Supple-
mentary Figs. 10–16 and Supplementary Note 4).

We next examined the variability of the neural activity patterns
across groups and time points. Figure 3 summarizes the results
for S1, S2, A (the average activity) and σA (the variability of
activity), respectively (the functional connectivity (FC) and the
entropy (H) are shown in Supplementary Fig. 3). The thin solid
curves represent each individual stroke patient, while the thick
dashed lines (brown= stroke 3 months; green= stroke
12 months; blue= average control) represent the group average,
i.e., Xav � ∑n

i XðiÞ=n, where n is the number of individuals in
each group. Individual stroke patients, as expected, showed great
variability of S1, S2 behavior at t1 with some exhibiting loss of
criticality (monotonic S2 and flat S1) while others showing normal
curves. On average, however, the stroke group at t1 manifested a
less critical behavior as apparent both in the distribution of
individual (brown) curves and the average curves. In t2, this
abnormal condition was restored, and S2 decreased toward
normal, while S1 increased. These changes in cluster sizes reflect
alterations in segregation-integration balance within/between
networks63. The total average activity, A, followed the behavior
of S1. The variability of neural activity, σA, presented a sharp peak
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Fig. 2 Fingerprints of criticality loss and associated recovery in a representative patient. Analysis of neural activity patterns, S1 and S2, of a healthy
participant (Con. / a, b) and stroke patient (Pat. / c, d). In blue dashed line we show the corresponding control's group average, while the shaded area
corresponds to one standard deviation. For the healthy participant, t1 and t2 correspond at two different time points 3 months apart. For the patient, t1 and t2
correspond to 3 months and 12 months post-stroke. The healthy participant exhibits features of criticality at both time points with small variability across
time points and within the variability of the healthy group. At the same threshold T, both S1 and S2 sharply change their size. For the stroke patient under
consideration, the flattened shape at t1 of both, S1 and S2, combined with the monotonic behavior of S2 indicates lack of criticality, which, however, returns
at t2 as depicted by the emergence of a peak in S2. The black vertical dashed line depicts the critical point of healthy controls. Source data are provided as a
Source Data file.

Fig. 3 Variability of the neural dynamics criticality across groups and time points. a, b Group based analysis of neural activity patterns, S1 and S2, as a
function of T for all patients and controls. The brown lines represent patients at t1 (3 months post-stroke, n= 54), and the green lines at t2 (12 months post-
stroke, n= 59). The thin solid curves indicate each individual stroke patient, while the thick dashed lines represent the group average. The group analysis
reveals that on average patient's neural activity patterns are abnormal at t1, but approach control levels at t2. c, d Average activity and standard deviation of
activity, respectively. Note improvement of the activity and its variability across time points. Insets: Probability distribution function (pdf) of the Euclidean
distances d in individual age-matched-controls and stroke patients at t1 (brown) and t2 (green). Patients at t1 show greater variability of model neural
activity as depicted by the longer pdf's tails. Note trend toward normalization from t1 to t2. The black vertical dashed line depicts the critical point of healthy
controls. Source data are provided as a Source Data file.
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at the critical point for healthy participants, but was significantly
attenuated in patients. We statistically assessed how the neural
variables evaluated at the critical point shown in Fig. 3 varied
between groups and across the two-time points using mixed
ANOVA. The group main effect was reliable for all variables (all
p-values < 0.004), confirming the alterations in the neural
dynamics for stroke patients with respect to healthy controls.
However, the main effect of time was not significant. We expected
a group by time interaction reflecting longitudinal changes
restricted to the patient group, but this was only significant for
the standard deviation (p-value= 0.022) due to the large
variability across patients. Nevertheless, we carried out planned
paired two-tailed t-tests to further assess changes in the patients’
neural variables over time. We found statistically significant
differences for S1 (p-value= 0.03) but not for S2 and A
(Supplementary Table 3).

The Euclidean distance, d, was then used to quantify the
similarity between individual’s neural activity pattern (i.e, X(i))
with the corresponding control group average (see Methods
section (Eq. 9)). This measure takes in consideration the behavior
of the neural profile across all values of excitability T. A low d
indicates low variability of the dynamic parameters across
participants and time points as observed in health participants
(e.g. Fig. 2a, b). A high d indicates high variability across
participants and time points of the neural state variables implying
the presence in the group of abnormal dynamics. The insets in
Fig. 3 show the normalized distribution of the Euclidean distances
for each variable (S1, S2, A, σA). Each variable shows higher
variability in stroke than controls, and higher variability at t1 than
t2. Based on62 changes in criticality of the model must depend on
changes in the underlying structural connectivity, a biological
prediction that we will examine in more detail in the next section.

In summary, both at the level of single participants and group
level, the models of stroke patients show a significant loss of the
critical dynamics at 3 months that recover on average at 1 year.
This is consistent with the first hypothesis that criticality is a
property of the normal brain structural architecture. Next, we
examine the anatomical bases of brain criticality modifications.

Structural connectivity explains criticality and its recovery. The
recovery of criticality from three to 12 months must reflect a
change in the underlying structural connectivity. Therefore, we
applied measures from graph theory to quantify the topology of
the corresponding structural brain networks and associated
alterations following stroke recovery. We choose the average
degree as a measure of the overall network connectivity (density),
the modularity and the global efficiency as measures of the degree
of network segregation and integration64, respectively. Further-
more, to quantify the connectivity disorder, we defined the
entropy of the homeostatic connectivity matrix (HSC) in an
analogous way to the functional connectivity entropy50 (see
Method’s section).

Inspired by Zarepour et al.62, we built a map-like parameter
space using each participant average degree (K) and connectivity
disorder (HSC) for t1 and t2. We identified stroke patients with S2
monotonic decay (through numerical derivative, see Method’s
section) to obtain the critical value of average degree K and
connectivity disorder HSC below which the critical transition
disappears (triangular dots in Fig. 4a). This critical threshold was
sharp and close to Kc ~ 14 and Hc ~ 0.055 (the healthy
participant’s average degree is K= 18 ± 3 and connectivity
disorder HSC= 0.059 ± 0.004). Therefore, the change in the
criticality regime is associated with a decrease of the average
degree and the connectivity disorder below Kc and Hc,
respectively. Healthy controls and patients at t1 showed quite

separate distributions for K as well as HSC, while these values
tended to normalize at t2. Still there were several stroke patients
who maintained a loss of criticality at t2 (green triangles). The
recovery of criticality from t1 to t2 was associated with an increase
of both the average degree (paired t-test: t= 2.1, p-value= 0.04)
and the connectivity disorder (paired t-test: t= 2.2, p-value=
0.03). The amount of recovery can be captured by the recovery
indexes HSC(t2− t1) and K(t2− t1), defined as the difference of
HSC and K between the two time points. We found a significant
positive correlation between the latter two quantities (R2= 0.87,
ρ= 0.93 and p-value < 10−16, inset of Fig. 4a). In summary,
changes in criticality regime appear to be strictly related to
changes of the stroke patient’s network average degree and
connectivity disorder in accordance with the theory62.

Then we analyzed the effect of lesion size on K and HSC, to
disentangle its contribution for the criticality regime alterations.
The lesion size predicted a small amount of variance for both
variables. We find a small negative correlation with the average
degree (t1: ρ=−0.26, p-value= 0.051; t2: ρ=−0.15, p-value=
0.25). The lesion size captured slightly more variance at the first
time-point, however, the statistical significance was lost after
correcting for multiple comparisons. For the connectivity
disorder, the correlation with lesion size was even weaker (t1:
ρ=−0.21, p-value= 0.11; t2: ρ=−0.09, p-value= 0.5). Further-
more, recovery indexes of both variables did not correlate with
lesion size (ρ ~ 0). These results indicate a weak relationship
between lesion size and loss of criticality.

We further characterized the brain network organization in
terms of modularity (an index of network segregation) and global
efficiency (an index of network integration). Healthy participants
are highly clustered in the upper left region of the scatter plot and
show the highest values of global efficiency and lowest values of
modularity. This pattern reflects a balanced network configura-
tion that supports functional segregation between distinct
specialized brain regions while allowing for functional integra-
tion. However, stroke disrupts this balance. In fact, patients at t1
show decreased global efficiency reflecting a decrement of
network integration with reduced capacity for information
transfer between distant brain regions. At t2 global efficiency
and modularity tend to normalize moving their distribution
toward controls. Changes of modularity from t1 to t2 are
negatively correlated with changes in global efficiency (R2= 0.8,
ρ=−0.9 and p-value < 10−14, inset of Fig. 4b). A pathological
increase of network segregation therefore comes at the cost of
diminished integration and vice-versa. The global efficiency
presents more robust variations across time points (paired t-test:
t= 1.8, p-value= 0.08) than modularity (paired t-test: t=−1.2,
p-value= 0.23). In summary these analyses indicate remodeling
of white-matter connections from three to 12 months post-stroke
that correspond to changes in network organization. In the
Supplementary Information we provide additional evidence for
this remodeling (Supplementary Table 1 and Supplementary
Note 1). We tested whether the structural connectivity matrices,
or portions of them, changed over time in terms of the number of
white-matter fibers. We found significant global changes (aver-
aging across all nodes) from 3 to 12 months both in the number
of fibers and their topology. We also found significant increases in
the number of fibers at the level of many brain networks. In
contrast, no significant differences from t1 to t2 were detected in
healthy controls.

Next, we investigate which connections were more strongly
related to the alteration and recovery of criticality. To this end, we
used a multivariate machine learning approach, based on a cross-
validated Ridge Regression65, to relate the model’s neural activity
variables to the structural connectivity matrix. This approach
allows to identify edges (and sub-networks) across the whole
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brain that are most strongly related to the variable of interest (see
Methods for details).

First, we investigate the relationship between structural
connectivity and criticality, both in healthy participants and in
stroke patients. We employ the threshold independent dynamical
variable I2, defined as: I2= ∫S2dT. The rationale behind the choice
of this variable is twofold. First, I2 is positively correlated to S2
evaluated at the critical point (ρ ~ 0.9 and p-value < 10−16), but it
is much more stable. Indeed, the integration of S2 over the entire
range of excitability smooths out the fluctuations due to the
intrinsic variability in brain topologies and associated dynamics.
Second, this variable predicts a large amount of behavioral
performance at each time point separately (see next section).
Figure 5 shows that the structural connectivity accounts for a
large proportion of variance in I2 (controls: R2= 0.68; patients at
t1: R2= 0.57; patients at t2: R2= 0.69). The map of predictive
edges, Wij (see Eq. (14)), plays a key role in understanding the
alterations of neural dynamics criticality (I2) vis-a-vis white-
matter remodeling. We provide two distinct complementary
visualizations of Wij. First, we display the top 200 edges
embedded in an anatomical space (top, Fig. 5). Small values of
I2 correspond to neural patterns compatible with critical
dynamics. Thus, positive edges (colored orange) contributes to
criticality loss (Wij > 0), while negative edges (colored green,
Wij < 0) reinforce the emergence of critical dynamics. In healthy
participants predictive edges concentrate in auditory, cingulo-
opercular, default mode, fronto-parietal and somato-motor
mouth networks; interestingly, the visual network contributes
with few regions with weak edges. Healthy participants show a
predominance of negative edges (positively associated with the
emergence of criticality). In contrast, predictive maps of
structural connections in stroke patients show a different
organization. The connectivity weights are not as balanced as
controls (see width of the edges). The visual network is more
prominent in patients, especially at t2.

The second analysis considers the network topology involving
different functional networks (bottom, Fig. 5). Specifically, we
analyze the average link between pairs of functional networks,
〈W〉X,Y=∑i∈X∑j∈YWi,j/NXY, where X and Y designate ROIs

belonging to a given functional network (visual, default mode etc)
and NXY=NXNY is the total number of connections. We use the
same sign convention described above for edge colors and show
the quartile 50% for ease visualization. The network topology of
controls is quite balanced, but few connections are stronger, such
as AUD-SMM, SAL-CPA, VAT-CPA, etc. The network topology
is dramatically different for patients at t1. Many pairs of RSNs are
associated with criticality loss (orange edges, 〈W〉 > 0), such as
DMN-SAL, DMN-SMM, SAL-VAT, to name a few. There are
also more and stronger negative edges between networks than in
healthy participants (e.g., VIS-SMM/AUD/COP/VAT). The
pattern normalizes on t2, with more balanced connections
compared to t1, although relatively stronger compared to
controls. We used Pearson’s correlation to estimate the similarity
between healthy and stroke networks in predicting criticality, as
described by the average connectivity across RSNs, 〈W〉XY. The
correlation between healthy and stroke network at t2 was
moderately high (ρ〈W〉= 0.72), but much smaller at t1 (ρ〈W〉=
0.36). Both p-values were statistically significant. In summary
these findings show that structural connectivity at 12 months
post-stroke predictive of criticality becomes more like that of
healthy participants.

To examine whether structural connectivity changes predicting
criticality truly reflect remodeling of structural connections, we
compared, at the level of networks, the ridge regression maps of
the edges predicting criticality at 3 or 12 months with the maps of
the structural connectivity changes in the same interval. The
correlation was moderate at 3 months (ρ= 0.52), but high at
12 months (ρ= 0.80). This result implies that connections
predicting criticality values were remodeled over time.

Finally to test if criticality predictive edges were part of the
normal functional architecture or reflect random connections, we
correlated the number of predictive edges for each node (ROI)
with the corresponding node’s strength in the healthy controls’
average functional connectivity. The high correlation seen at both
time-points (ρ= 0.98 for positive/negative edges vs. node
functional connectivity) indicates that the predictive edges are
not random, but consistent with the normal variability of the
brain functional architecture.

Fig. 4 Alterations in network topology and associated changes in criticality regime. a Average degree (K) versus connectivity disorder (i.e., structural
entropy HSC) for all patients and controls. Controls are colored in blue (n= 46). Brown dots represent patients at t1 (3 months post-stroke, n= 54), while
green dots at t2 (12 months post-stroke, n= 59). Normalized density plots (histograms) are also shown. Triangular dots correspond to patients who have
S2 monotonic decay and so lack of criticality. In the inset we show the recovery indexes (see main text) K(t2− t1) versus HSC(t2− t1). In the legend, we
show the (linear) correlation, ρ and the R2. Normalization of both, the average degree and the connectivity disorder, from t1 to t2 supports the
corresponding recovery of patients criticality. b The same as a but for the global efficiency (E) and modularity (Q). Strokes cause an overall decrease in
global efficiency at the cost of an associated increase in modularity, but that recovers from t1 to t2 towards the controls. Source data are provided as a
Source Data file.
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Relationship between recovery of criticality, functional con-
nectivity, and behavior. Up to this point, our results strongly
suggest that stroke recovery induces a normalization of the neural
activity patterns that can be quantified by criticality. One
important question is whether these dynamical signatures reflect
the patients’ recovery as typically seen in behavioral measures55

and in the functional connectivity34. We used the framework
described in38 to simulate the functional connectivity from the
structural one for each individual patient. Briefly, the time-series
of node’s activity, si(t), is convolved with a canonical hemody-
namic response function (HRF). We further applied a band-pass
filter in the range of 0.01− 0.1 Hz. Next, we obtain the functional
connectivity matrix, FC, through the Pearson correlation, Eq. (6),
between each pair of ROIs in the network48. We use the averaged
correlation across ROIs FC to characterize the strength of the
functional connections in patients and controls (see Eq. (7)). We
also compute the entropy, H, of the functional matrices following
the framework of Saenger et al.50 (see Methods section, Eq. (13)).
The entropy measures the repertoire diversity and the complexity
of the functional connections, and may serve as a biomarker of
stroke recovery as well50. The behavioral performance of patients
and controls was inferred from a neuropsychological battery

measuring performance in 8 behavioral domains (motor left /
right, language, verbal and spatial memory, attention visual field,
attention average performance, attention shifting)51. The Sup-
plementary Note 2 report a full description of the tests used. We
used principal component analysis (PCA), a common data
reduction strategy that identifies hidden variables or factors, to
capture the possible correlation of behavioral scores across par-
ticipants. In each domain one component explained the majority
of variance across participants (57–77% depending on the
domain). The component scores were normalized with respect to
healthy controls (mean= 0 and SD= 1). This normalization
allows to express the patients’ scores in units of standard devia-
tions below average—i.e. B(Lang)=− 4 is equivalent to language
function 4 SD below the control average. Here, to characterize
each patient’s overall performance, we use the average component
score obtained from averaging the normalized factor scores across
domains51, 〈B〉=∑iBi/8.

The composite behavioral score (B) is well behaved as it
accurately tracks individual behavioral deficit variability across
time points (R2= 0.81 and ρ= 0.9) (Supplementary Fig. 2). To
quantify the relationship between dynamical and behavioral
deficits we used the integral of the first, I1= ∫S1dT, and second,

RR - Controls RR - Patients t1 SC - Patients (t2-t1)

RR - Patients t2

RR - Controls

RR - Patients t1

RR - Patients t2

Fig. 5 Structural connectivity related to criticality (integral of the second cluster size I2= ∫S2dT). Top: map of predictive connections of W (see Eq.
(14)). Structural edges that predict higher (green edges) and lower criticality (orange edges) values (top: controls; middle: patients at t1; bottom: patients at
t2). Only the highest 200 connections are shown for ease interpretation. The size of each ROI, colored by network, corresponds to the number of predictive
edges converging on it. The scatter plot shows real vs. predicted criticality values from the Ridge Regression model. The gray dashed line has a slope of one
and is a guide to the eye. Circle plots: architecture of averaged network connections across resting-state networks (〈W〉X,Y, see main text). The first three
plots, from left to right, represents the ridge regression maps (Eq. (14)), while the last map represents the difference of the patients' structural connectivity
matrix at t2− t1. The size of each RSNs corresponds to the average connections within networks. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30892-6

8 NATURE COMMUNICATIONS |         (2022) 13:3683 | https://doi.org/10.1038/s41467-022-30892-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


I2= ∫S2dT, cluster sizes over the entire range of excitability T,
respectively. Notably, both variables were strongly correlated with
B (Fig. 6a, b, e, f) . The correlation is positive for I1 (t1: ρ= 0.4;
t2: ρ= 0.5) while it is negative for I2 (t1: ρ=− 0.25; t2: ρ=− 0.51).
This relationship indicates that a larger S1 cluster and a smaller S2
cluster are associated with better performance. Note the improve-
ment in correlation of both variables from t1 to t2 (compare t1
Fig. 6a, e with t2 b, f). This suggests normalization of the structure-
function (behavior) relationship, well captured by the stochastic
model over the course of the stroke recovery. Supplementary
Table 2 shows the relevant statistical tests corrected for multiple
comparisons (FDR). All correlation with behavior were significant
except I2 at t1 (Fig. 6b). These findings are consistent with the
second prediction that variations in neural dynamics are
behaviorally relevant.

Variations in neural dynamics estimated from the structural
model may be reflected in the patterns of functional connectivity
(FC). In Fig. 1 we already showed that the model FC derived from
applying an hemodynamics response model to the neural
dynamics of the whole-brain model is weak at sub-critical and
super-critical regimes, but strongest at criticality. Here we
consider the relationship between model FC and empirically
measured FC in the same participants. Studies in stroke have
highlighted the behavioral importance of homotopic functional
connectivity, i.e. inter-hemispheric connections between symme-
trical regions belonging to the same network37,66,67. Hence, we
examined the relationships between homotopic FC, both
empirical—measured directly—and model, with behavioral
performance. As a control we used the average FC mediated
across all regions. Empirical homotopic FC (homo-FCe) corre-
lated significantly with behavioral performance across partici-
pants at both time points (t1: ρ= 0.43 and t2: ρ= 0.40; p-
values < 0.05, corrected; Fig. 6c–g). As predicted homo—FCe

showed a stronger correlation with behavior than the average FCe

(Supplementary Fig. 4). Next, we computed the linear correlation

between model homotopic FC (homo-FCm) and behavior for the
whole range of excitation threshold T (Fig. 6d–h). Notably, we
observed at both t1 and t2 a sharp increase of the correlation
(black dots) close to the critical phase transition (dashed line) that
corresponded to a global minimum in the p-value (red dots). In
other words, the stochastic whole-brain model poised close to the
critical point reproduced the correlation with behavior observed
empirically. Statistically significant results were obtained at t2
(p < 0.05), not at t1. Also note the fall-off of the correlation
between the model homotopic FC and behavior as the value of T
moves toward the subcritical regime. These findings confirm that
the model can generate functional connectivity patterns that are
like those empirically measured, and that these model FC patterns
also correlate with behavioral performance.

To complete the analysis the next step is to compare model
neural dynamics with empirical functional connectivity, a well-
studied biomarker of stroke and behavior relationships34,35.
Based on previous studies we employed either the average homo-
FC (across all pairs of homotopic regions) or the average FC
across all ROIs. We found that variations of the model’s neural
activity, as described by I1 and I2, were significantly correlated
with the empirical average homo-FCe (Fig. 7a–d). The correlation
was positive for I1 (t1: ρ= 0.43; t2: ρ= 0.46; p-values < 0.05,
corrected), i.e, large values of S1—hence more integrated
networks, correlated with the average homotopic connectivity at
both time points. On the other side, the correlation was negative
for I2 (t1: ρ=− 0.27; t2: ρ=− 0.44; only the latter p-value
remained significant). Interestingly, the relationship with the
average empirical FC (FCe) was in the same direction, but weaker
in correlation strength (Supplementary Table 2): I1 (t1: ρ= 0.23;
t2: ρ= 0.29) and I2 (t1: ρ=− 0.11; t2: ρ=− 0.37). In contrast, we
did not find any overall significant correlation between average
homo-FCm and average homo-FCe at the critical point Tc
(Supplementary Fig. 17). Furthermore, the relationship between
FCm and FCe not only was maximal at the critical point, but it

Fig. 6 Relationship between recovery of criticality, functional connectivity, and behavior. a, e Correlation between I1 and behavior at t1 and t2,
respectively. The legend shows the (linear) correlation, ρ and the R2. b, f Same but for I2. The dynamical variables (I1, I2) predicted a significant amount of
behavioral variance, higher at t2. c, g Correlation between empirical homotopic FCe and behavior at t1 and t2, respectively. d, h Linear correlation between
model homo-FCm and behavior for different values of the excitation threshold T. Near the critical point (Tc, black vertical lines) the stochastic model
reproduces the positive correlation with behavior observed empirically (black dots) with a corresponding peak in the statistical significance (red triangles).
Note the sharp increase in correlation as T nears the critical point and the subsequent fall of as T becomes subcritical. We added red horizontal lines at
p= 0.05 for ease interpretation. All the p-values were Benjamini–Hochberg corrected for multiple comparisons with false discovery rate (FDR) of α= 0.05.
The p-value reported in panel b did not remain significant after correcting. However, note the abnormal behavior of a single individual close to B(t1) ~−6.
Removing this outlier from the analysis we obtain ρ=− 0.42 with p-value < 0.05. See Supplementary Table 2 for accessing the sample size and the
significance for all the tests. The (two-tailed) p-values reported in panels (d, h) were not corrected for multiple comparisons. Source data are provided as a
Source Data file.
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reached statistical significance at criticality at t2 (p < 0.05), not at
t1 (Supplementary Fig. 4). These findings therefore suggest that
both model and empirical FC normalize and become more
similar consistently with a normalization of structure-function
relationships. These results are very encouraging since we did not
use any optimization of the model inputs to reproduce the
empirical FC as done for example in ref. 49.

Overall this section shows that neural dynamics from the
model correlate with behavioral performance and that this
relationship becomes stronger at 12 months. Moreover, the
model can reproduce the patterns of homotopic FC that behave
similarly to empirical FC in the correlation with behavior. While
it is not surprising given the lack of any optimization that overall
empirical FC does not correlate across participants with model
FC, the model shows that interestingly empirical and model FC
become more similar at criticality, especially when the lesioned
model approximates normality in the course of recovery (from 3
to 12 months).

Discussion
We set out to examine whether criticality is affected by lesions,
and whether alterations of criticality are behaviorally relevant. We
use lesions as a causal manipulation to test the theory that cri-
ticality is a fundamental property of healthy brains that provides
optimal functional and behavioral capabilities. Several interesting
results are worth of discussion.

First, our stochastic model is personalized since it used as input
direct estimates of structural connectivity at the individual level.
The model provides measures of activity, functional connectivity,
and criticality that tracked individual variability in healthy and
stroke participants. Importantly, alterations in stroke patients
were evident both at the group and individual level, and easily
separated stroke from healthy participants. Second, these criti-
cality alterations normalized over time. This normalization reflect
changes of the underlying structural connectivity, with associated
changes in the average degree, connectivity disorder, modularity
and global efficiency. We describe which connections are most

predictive of the final level of criticality, and which predict
improvements in criticality. The distribution of predictive con-
nections was not random but matched the normal functional
architecture of the healthy brain. Third, we show that alterations
of criticality were behaviorally relevant as they correlate with
improvements in performance. Finally, we show that the model
can reproduce the relationship between functional connections
and behavioral deficits/recovery that have been established
empirically in many studies34–36,50,55,66,67.

Methodological considerations. The whole-brain mesoscopic
model, a variant of the Greenberg-Hastings cellular automata68,
was proposed by Haimovici et al.21. When poised at the critical
point, the model captures, at the group level, the emergence of
experimental spatiotemporal patterns, the temporal correlation
between regions (functional connectivity, FC), the organization of
brain wide patterns in so-called resting-state networks (RSNs),
and the scaling law of the correlation length, among others.

We improved the Haimovici model by adding a normalization
to each node’s excitatory input, a mechanism of homeostatic
plasticity69–71. This simple adjustment balanced the macroscopic
dynamics increasing the strength of critical transitions. The
clusters of activity became more heterogeneous spreading along
the whole network and not mainly in the hubs, as in the un-
normalized model. In the normalized model, the cluster size
distribution in proximity to the critical point follows a truncated
power-law with a critical exponent α close to the hallmark
exponent of avalanches sizes, α= 3/2. Finally, the homeostatic
normalization mechanism significantly improves the correspon-
dence between simulated and empirical functional networks
based on fMRI.

An important feature of the normalized model is that it
minimizes the variability of the critical points and neuronal
activity patterns among healthy participants. The normalization
collapses the model state variables of healthy participants into
universal curves, which allows to compare critical points between
patients and stroke, and stroke patients at different time points.

Fig. 7 Statistical correlates between model dynamical patterns and empirical homotopic functional connectivity. In the legend we show the (linear)
correlation, ρ and the R2. a, c Relationship between I1 and empirical homo-FCe at t1 and t2, respectively. b, d The same as before, but for I2. Both dynamical
variables predicted a significant amount of functional variance, but panel b did not remain significant after correcting at level of α= 0.05. Sample size
(n= 50). Source data are provided as a Source Data file.
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Whether similar results could be obtained without the inclusion
of the homeostatic mechanism is an interesting question that we
shall investigate in future work.

Another important innovation is that the input to the model
were individually measured structural connectomes, both in
healthy participants and stroke patients at two time points. The
repeated measures allowed the estimation of the stability of the
criticality values that were quite narrow in healthy participants,
thus supporting the inference that changes of criticality in stroke
were related to the effect of the lesions, and not to the inter-
individual variability. The availability of individual structural
connectomes is not common, and most whole-brain studies have
used population atlases of white-matter connections49,72. The
group of patients studied here is partially in overlap with Lin
et al.73 who, however, only studied a subgroup of patients with
motor deficits. Also Lin et al. used fractional anisotropy, a
measure of white-matter microstructure in an anatomically
defined ROI. Here, for the first time, we use direct tractography
creating a structural connectome of each control and stroke
patient. This approach is also different from the recent
Salvalaggio et al.65 in which we used an indirect approach to
estimate structural disconnections by embedding the lesion in a
normative atlas of white-matter connections. Another innovative
methodological aspect of this work is that we use the structural
connectomes without additional optimization - fMRI connectivity
is often used to enhance the accuracy of structural connectivity
due to its low sensitivity or incomplete coverage49,50.

However, the model can be certainly improved. The DWI data
were not state-of-the-art. The sequence was 10-year old with 60
directions and a single b-value of 1000 s/mm2. This group of
healthy and stroke participants began enrollment in a prospective
stroke study at Washington University in 2010 with completion
in 2015 (WU Stroke cohort I). The tractography used in this
study has been produced following the standards of analyses that
lead to the publication of classical atlases of the white matter74,75

that match post-mortem dissections76 and axonal tracing77.
Tractography reconstructions were checked by an expert
neuroanatomist (MTS). The controls were tested 3 months apart
while the stroke patients were tested at 2 weeks, 3 months and
12 months with the last two time points being the object of this
study. We did not acquire diffusion imaging data at 2 weeks given
the rapid changes of diffusion signals in the first 1–2 weeks post-
stroke. Since most behavioral changes in stroke occur in the first
3 months post-injury, it is likely that the changes in structural
connectivity in relation to criticality were actually underesti-
mated. In healthy participants we did not expect significant
changes 3 months apart in their structural connections based on
the literature78,79. This was empirically confirmed in our healthy
control analyses. We have completed the acquisition of a second
cohort (WU Stroke cohort II 2016–2020) from which we will
have access to multi-shell, multi-directional and multi-weighted
diffusion-weighted images80 at 2 weeks, 3 and 12 months. This
will allow us to track structural connectivity changes from
2 weeks to 3 months when the rate of behavioral recovery is the
strongest.

We simulated fMRI functional connectivity by augmenting the
stochastic whole brain personalized model with a standard
hemodynamic model. We used the average (across ROIs) and
inter-hemispheric homotopic functional connectivity (homo-FC)
and entropy (H, which measures the functional weight diversity)
to characterize stroke-related changes. The model reproduced
changes of functional connectivity observed empirically in stroke,
such as a decrease of inter-hemispheric FC35–37,66,67 and
entropy50, subsequent normalization34, and correlation with
behavioral performance35. However, the model’s fit with the
empirically measured FC was low (see Supplementary Fig. 4a, c),

but approached significance at t2. We elected not to optimize the
input through functional connectivity because it would have
hidden the role of structural connectivity in supporting critical
phase transitions in stroke patients and longitudinal changes.
Fitting the model with free parameters has its own issues
including variable parameter sensitivities81, identifiability
problem82 and overfitting issues83. More importantly, this work
aims at unveiling robust and universal features of brain criticality
in relation to the anatomical brain connectivity structure and
focal lesions, and therefore it is crucial that the model dynamics
has the smallest possible degrees of freedom84.

The whole-brain modeling is invariably based on arbitrary
choices of the density of structural connectivity and the brain
parcellation as well85. The latter has been often employed without
scrutiny to accommodate the hypotheses of the study in question
(e.g., functional versus structural); while the former is subject of
intense research and ongoing debates in the literature86. A recent
study by Jung et al.85 shed light on the effect of these two
variables on the performance of a whole-brain model represented
by a system of interacting oscillators. They reported that the
parcellation with different atlases showed similar changes of the
architecture of the structural networks, but distinct trends of
the goodness-of-fit of the model to the empirical data across
tractography densities (i.e, number of streamlines). On the one
hand, high densities are desirable to guarantee the reproducibility
of the graph-theoretical properties of the structural network; on
the other hand, high densities are not always the best condition
for whole-brain modeling. These nonlinear effects reflect the
inter-individual variability of the brain topologies, thus making it
difficult to have a closed set of tractography parameters that
reliably capture the brain architecture. One possible middle
ground approach would be based on personalized data processing
and modeling85.

Along these lines, in the supplementary information (Supple-
mentary Figs. 5–9 and Supplementary Note 5) we investigate the
sensitivity of the results with respect to the brain parcellation. We
test the robustness of our results by replicating our analyses in a
uniform parcellation87. Specifically, we characterized each brain
voxel uniquely based on its anatomical location, in terms of x, y,
and z coordinates. The matrix of anatomical coordinates of the
brain was then fed into the k-means clustering in python. We
asked the algorithm to parcellate the brain in 400 clusters, to
enable the comparison with the Gordon parcellation. In this
uniform parcellation all ROIs have equal size, but their functional
or anatomical macroscopic relationship have been disorganized,
i.e., neighboring voxels can be randomly assigned to other
neighboring voxels that can be either correlated or not. However,
replication indicates that global neural dynamics parameters like
S1 and S2 seem to be more dependent on maintenance of local
connectivity rather than large-scale functional systems.

Stroke lesions cause changes in activity, entropy, and criti-
cality. Whole-brain models of healthy controls showed stable
patterns of neural activity, both across time-points and indivi-
duals. It is important to understand the model dynamics in
healthy participants before considering changes in stroke. For low
thresholds of activation, the system is super-critical with high
levels of activity, low entropy, low levels of functional con-
nectivity, and a single giant first cluster (S1). This is akin to a
brain in status epilepticus with very high level of activity but low
entropy, hence no efficient processing of information and lack of
consciousness. For very high thresholds of activation, the system
is sub-critical with low levels of activity, low functional con-
nectivity, and entropy. Activity is mostly local with small clusters
(S1). For intermediate thresholds, the neural patterns followed the
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expected behavior, with a phase transition peaking around the
maximum of S2 (Fig. 3). In contrast, simulations of the patients’
brains at 3 months post-stroke show striking attenuation in the
signatures of brain criticality for many individuals, as revealed by
the patients S2 monotonic behavior62 (see individual profile in the
Supplementary Figs. 10–16). The curves of overall activity (A),
variability of activity (σA), clusters sizes (S1 and S2), functional
connectivity (FC), and entropy (H) are significantly decreased.
The first cluster is significantly decreased in size, while the second
cluster is significantly larger as compared to controls at multiple
thresholds of activation. All these patterns are consistent with
lack of criticality62. Crucially, the same criticality signatures reveal
the recovery at 1 year post-stroke for many individuals and on
average for the group. The neural patterns at t2 approach the
corresponding controls’ average (see probability distributions of
Euclidean distances Fig. 3 and Supplementary Fig. 3). Long-
itudinal changes of the neural variables from t1 to t2 were con-
firmed for σA, S1, and I1.

Correlation between criticality and behavior. The role of criti-
cality in behavior has been discussed in prior studies88,89. For
instance, Palva et al.90 reported a correlation between scale-free
neuronal avalanches and behavioral time-series in MEG/EEG
data. The connection between human cognitive performance and
criticality has also been investigated. Ezaki et al. provided
empirical support that participants with higher-IQ have neural
dynamics closer to criticality than participants with lower-IQ91.

Our findings show that focal lesions from stroke, a causal
manipulation of brain activity, modify criticality in a significant
behavioral manner. We used an aggregate measure of behavioral
impairment across multiple domains (motor, vision, attention,
memory, language) by averaging factor scores of impairments
across domains as in51. This aggregate index captured global
motor and cognitive disability, as we did not have a specific
hypothesis about a link between one behavioral domain and
criticality. This performance index manifested known properties
such as a strong relationship between different time points, with
3-month scores predicting 12-month scores55. It also showed a
robust relationship with homotopic inter-hemispheric FC as in
previous work34–36. Importantly, model neural patterns as
indexed by the integral of S1 and S2 (I1, I2) correlated with
behavioral performances at both time points (Fig. 6a, e/b, f).
Patients with higher (normal) performance showed larger S1 and
smaller S2 clusters. Interestingly, the integral of the cluster sizes, I1
and I2, proved a better predictor of behavioral performance than
variations in model FCm (Supplementary Fig. 4b, d) or homo-
FCm (Fig. 6d, h).

We find a weak relationship between lesion size and loss of
criticality. We did not investigate the effect of lesion size on
behavioral dysfunction, a topic that we shall investigate in future
work. However, we did not expect a significant influence of lesion
size on behavioral deficits and functional/structural connectivity
abnormalities post-stroke based on the literature35,36,51.

The use of the integrated variables (I1, I2) instead of the
original ones (S1, S2) is motivated by the relevance of the former
for clinical applications. First, these integrated variables are highly
correlated with the corresponding original variables (S1, S2),
however, they are more stable. Second, the aberrant behavior of
the patients’ neural dynamics is more easily quantified when
considering the profile of the curves for all excitation regimes, and
not just the value of the cluster’s sizes at the critical point; this
latter is more subject to fluctuations from different sources, such
as noise in data acquisition, the neural dynamics itself, etc. The
integrated variables capture relevant biological information as
they consider the neural dynamics response to different excitation

regimes; this makes it possible to access the response of a brain
(from its connectivity matrix) to intrinsic changes in (self)
regulatory mechanisms (caused by stroke, for example) that are
responsible for the degree of activation and inhibitions. In other
words, in general we may have different excitation’s thresholds
over the trials (during fMRI acquisition, for instance) and
therefore it is a way to conditioning out this degree of freedom
that is not accessible from the data.

Anatomical connections supporting criticality and prediction
of recovery. The available theory predicts that criticality devia-
tions are closely related to alterations of the brains network
topology62. We find statistically significant changes in stroke
patients’ average degree, connectivity disorder, modularity and
global efficiency as compared to healthy controls (Supplementary
Table 3). All these measures exhibited a normalization pattern,
with associated probability distributions shifting toward the
healthy control distributions (Fig. 4a, b). Patients at t1 showed
significantly lower average degree, connectivity disorder and
global efficiency, but significantly higher modularity. These
results are in line with a recent study92 performed in a smaller
stroke cohort (n= 17; patients with >6 months since stroke
onset) where the authors reported significantly lower global
efficiency with significantly higher values of global clustering and
modularity as compared to healthy controls. The evolution of
these measures over time points was not investigated. In this
study, we find notable recovery of these global graph measures
across time points. Indeed, patients at t2 tend to normalize the
integration-segregation balance exhibiting statistically significant
increase in average degree, connectivity disorder, global efficiency
and a less robust decrease in modularity. In the Supplementary
Information we provide an additional compelling evidence of the
intricate relationship between brain criticality, the underlying
network topology and behavior (see Supplementary Table 4 and
Supplementary Note 3).

Few studies have addressed the relationship between the
structural and functional network topology in recovering stroke
patients. This same cohort was investigated by Siegel et al.35 who
analyzed the functional network organization based on fMRI. It is
worth noting that the functional modularity presents the opposite
trend as reported here; modularity increases over time-points
towards the controls; this same study did not find significant
differences in global efficiency between controls and patients or
over recovery. However, an important difference is that Siegel
et al measured modularity in a priori selected functional networks
while we measured modularity using a data-driven Louvain
community detection to optimize the modular organization of the
structural network. There are many potential differences that can
explain such opposite trend. Functional networks are bilaterally
organized, and the breakdown of inter-hemispheric connectivity
post-stroke decreases their modularity35,36. Moreover, some
networks become abnormally linked with other networks, which
further decreases network modularity, proportionally to the
decrement of inter-hemispheric interaction. In contrast, in a data-
driven approach communities will be detected in each hemi-
sphere, early on post-stroke, but their number will decrease in the
course of recovery as inter-hemisphere interactions improve.

A notable result is the remodeling of the structural connectivity
in the white matter supporting the normalization of criticality
from 3 to 12 months post-stroke. Indeed, we find that specific
connections in the brain predicted with high accuracy, in a ridge
regression model, criticality values (e.g., I2) at both time points,
but with higher accuracy at 12 months. Notably the maps of
predictive edges differ from healthy controls at 3 months,
normalize at 12 months, but are even more like the map of
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structural connection changes occurring in the same time
interval. In other words, the brain normalizes criticality post-
stroke using a different set of connections than a healthy brain.
Importantly, these new connections are not randomly located but
are part of the normal functional architecture as shown by the
strong correlation with the intrinsic pattern of functional
connectivity.

The structural connections that predict criticality are best
illustrated by the circle plots in Fig. 5. Healthy controls show a
balanced set of structural connections predicting criticality (e.g.,
auditory-ventral attention, ventral attention-cinguloparietal)
while others become negatively related to criticality, i.e., their
strength predicts low criticality value. Interestingly, some of these
latter connections involve the default mode network and other
networks (motor, salience). It is speculative to think that this
effect may be related functionally to the loss of segregation
between regions of the default mode and sensory-motor-attention
networks, previously reported35–37. At 12 months many of the
edges that were negatively predicting criticality (including DMN
edges) become positively correlated to criticality. In a recent
review, Gollo et al.25 hypothesized that hub regions within the
DMN represent a structural signature of near-critical dynamics.
Our findings provide some support for this idea. Edges to/from
DMN regions as well as networks sub-serving visual, attention
and executive control (cingulo-opercular and dorsal attention
networks) predicted higher criticality values at t2.

An increase in critical signatures from t1 to t2 must correspond
to the recovery of structural (anatomical) connections, which is
captured by diffusion-weighted imaging (DWI) and tractography
(Supplementary Table 1). Changes in DWI and tractography may
reflect a number of different homeostatic plasticity mechanisms,
including structural plasticity in gray and white-matter tracts,
recovery of neural cells, remyelination, and rewiring. Whether
long-range anatomical connectional changes support the recovery
of function in stroke is not a well-explored issue. Longitudinal
changes in micro- and macro-scale structural anatomy and
physiology following experimentally induced strokes have been
tracked in animals, mostly in the perilesional area93. However,
there are also observations of long-range plasticity94–96. In
humans, structural plasticity can be measured at the macro-
scale level with diffusion MRI97. There is now convincing
evidence in both humans and animals that learning through
activity-dependent plasticity can modify white matter in healthy
adults98,99, and possibly in stroke patients100–102.

In summary, our theoretical framework to model individual
brain dynamics based on real structural connectivity networks
suggests that patients affected by stroke present decreased levels
of neural activity, decreased entropy, and decreased strength of
the functional connections. All these factors contribute to an
overall loss of criticality at 3 months post-stroke that recovers at
12 months, driven by white matter connections remodeling.
Notably, our model contains only three parameters (r1, r2, and T),
all set apriori without any fitting procedures. In conclusion,
personalized whole-brain dynamical models poised at criticality
track and predict stroke recovery at the level of the single patient,
thereby opening promising paths for computational and transla-
tional neuroscience.

Methods
This research complies with all relevant ethical regulations. All studies with human
participants were approved by the Washington University Institutional Review
Board. Stroke patients and healthy controls provided informed consent according
to procedures approved by the Washington University Institutional Review Board.

Stroke dataset. All data came from a large prospective longitudinal stroke study
described in previous publications35,51,55. We provide here a brief description of

the dataset and refer the reader to those articles for a more comprehensive
description.

Clinical sample: The dataset includes 132 stroke patients (mean age 54,
standard deviation 11, range 19–83; 71 males; 68 left side lesions) at the sub-acute
stage (2 weeks post-stroke). The inclusion/exclusion criteria were as follows: first
symptomatic stroke, ischemic or hemorrhagic, and clinical evidence of any
neurological deficit. We used data from the subset of 103 patients who returned for
clinical and imaging assessments at 3 months post-stroke, as well as the data from
the 88 patients who returned for 1 year post-stroke assessment (for details see
Corbetta et al.51). The control group, formed by 28 individuals, was matched with
the stroke sample for age, gender, and years of education. Data was collected twice
in the healthy controls, 3 months apart.

The neuropsychological battery included 44 behavioral scores across five
behavioral domains: language, memory, motor, attention, and visual function.
These domains were chosen to represent a wide range of the most commonly
identified deficits in people after a stroke.

MRI Acquisition. Patients were studied 2 weeks (mean= 13.4 days, SD= 4.8
days), 3 months (mean= 112.5 days, SD= 18.4 days), and 1 year (mean= 393.5
days, SD= 55.1 days) post-stroke. Diffusion data were obtained only at 3 months
and 1 year. Controls were studied twice with an interval of 3 months. All imaging
was performed using a Siemens 3T Tim-Trio scanner at WUSM and the standard
12-channel head coil. The MRI protocol included structural, functional, pulsed
arterial spin labeling (PASL) and diffusion tensor scans. Structural scans included:
(i) a sagittal T1-weighted MPRAGE (TR= 1950 ms, TE= 2.26 ms, flip angle= 90∘,
voxel size= 1.0 × 1.0 × 1.0 mm); (ii) a transverse T2-weighted turbo spin echo
(TR= 2500 ms, TE= 435 ms, voxel size= 1.0 × 1.0 × 1.0 mm); and (iii) sagittal
fluid attenuated inversion recovery (FLAIR) (TR= 7500 ms, TE= 326 ms, voxel
size= 1.5 × 1.5 × 1.5 mm). PASL acquisition parameters were: TR= 2600 ms,
TE= 13 ms, flip angle= 90∘, bandwidth 2.232 kHz/Px, and FoV 220 mm; 120
volumes were acquired (322 s total), each containing 15 slices with slice thickness
6- and 23.7-mm gap. Resting state functional scans were acquired with a gradient
echo EPI sequence (TR= 2000 ms, TE= 27 ms, 32 contiguous 4-mm slices,
4 × 4 mm in-plane resolution) during which participants were instructed to fixate
on a small cross in a low luminance environment. Six to eight resting-state fMRI
runs, each including 128 volumes (30 min total), were acquired. fMRI Data Pre-
processing of fMRI data included: (i) compensation for asynchronous slice
acquisition using sinc interpolation; (ii) elimination of odd/even slice intensity
differences resulting from interleaved acquisition; (iii) whole-brain intensity nor-
malization to achieve a mode value of 1000; (iv) removal of distortion using
synthetic field map estimation and spatial realignment within and across fMRI
runs; and (v) resampling to 3-mm cubic voxels in atlas space including realignment
and atlas transformation in one resampling step. Cross-modal (e.g., T2 weighted to
T1 weighted) image registration was accomplished by aligning image gradients.
Cross-model image registration in patients was checked by comparing the opti-
mized voxel similarity measure to the 97.5 percentile obtained in the control group.
In some cases, structural images were substituted across sessions to improve the
quality of registration.

Diffusion-weighted imaging (DWI) included a total of 64 near-axial slices. We
used a fully optimized acquisition sequence for tractography that provided
isotropic (2 × 2 × 2mm) resolution and coverage of the whole head with a
posterior-anterior phase of acquisition. We set the echo time (TE) and the
repetition time (TR) to 9.2 ms and 9200 ms, respectively. At each slice location,
four images were acquired with no diffusion gradient applied. Additionally, 60
diffusion-weighted images were acquired, in which gradient directions were
uniformly distributed on the hemisphere with electrostatic repulsion. The diffusion
weighting was equal to a b-value of 1000 s mm2. In order to optimize the contrast
of acquisition, this sequence was repeated twice.

MRI and lesion analysis. Individual T1 MRI images were registered to the
Montreal Neurological Institute brain using FSL (FMRIB Software Library) FNIRT
(FMRIB nonlinear imaging registration tool). Lesions were manually segmented on
individual structural MRI images (T1-weighted MPRAGE, T2-weighted spin echo
images, and FLAIR images obtained 1–3 week post-stroke) using the Analyze
biomedical imaging software system (http://www.mayoclinic.org). Two board-
certified neurologists (M.C. and Alexandre Carter) reviewed all segmentations.
Special attention was given to distinguish lesion from cerebral spinal fluid (CSF),
hemorrhage from surrounding edema, and to identify the degree of periventricular
white matter damage present. In hemorrhagic strokes, edema was included in the
lesion. A neurologist (M.C.) reviewed all segmentations a second time, paying
special attention to the borders of the lesions and degree of white-matter disease.
The staff that was involved in segmenting or in reviewing the lesions was blind to
the individual behavioral data. Atlas-registered segmented lesions ranged from 0.02
to 82.97 cm3 with a mean of 10.15 cm3 (SD= 13.94 cm3). Lesions were summed to
display the number of patients with structural damage for each voxel.

Functional connectivity (FC) processing. FC processing followed previous work
from the laboratory (see ref. 34), with the addition of surface projection and pro-
cessing steps developed by the Human Connectome Project. First, data were passed
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through several additional preprocessing steps: (i) regressors were computed based
on Freesurfer segmentation; (ii) removal by regression of the following sources of
spurious variance: (a) six parameters obtained by rigid body correction of head
motion, (b) the signal averaged over the whole brain, signal from ventricles and
CSF, and (d) signal from white matter; (ii) temporal filtering retaining frequencies
in the 0.009-0.08Hz band; and (iii) frame censoring. The first four frames of each
BOLD run were excluded. Frame censoring was computed using framewise dis-
placement with a threshold of 0.5 mm. This frame-censoring criterion was uni-
formly applied to all R-fMRI data (patients and controls) before functional
connectivity computations. Participants with <120 usable BOLD frames were
excluded (13 patients, three controls).

Surface generation and processing of functional data followed procedures
similar to Glasser et al.103, with additional consideration for cortical segmentation
in stroke patients. First, anatomical surfaces were generated for each participant’s
T1 MRI using FreeSurfer automated segmentation104. This included brain
extraction, segmentation, generation of white matter and pial surface, inflation of
the surfaces to a sphere, and surface shape-based spherical registration to the
participants (native) surface to the fs average surface. Segmentations were manually
checked for accuracy. For patients in whom the stroke disrupted automated
segmentation, or registration, values within lesioned voxels were filled with normal
atlas values before segmentation, and then masked immediately after (seven
patients). The left and right hemispheres were then resampled to 164,000 vertices
and registered to each other, and finally downsampled to 10,242 vertices each for
projection of functional data. Following preprocessing of BOLD data, volumes were
sampled to each participant’s individual surface (between white matter and pial
surface) using a ribbon-constrained sampling available in Connectome
Workbench. Voxels with a high coefficient of variation (0.5 SDs above the mean
coefficient of variation of all voxels in a 5-mm sigma Gaussian neighborhood) were
excluded from volume to surface mapping103. Time courses were then smoothed
along the 10,242 vertex surface using a 6-mm FWHM Gaussian kernel. Finally,
time courses of all vertices within a parcel are averaged to make a parcelwise time
series. We used a cortical surface parcellation generated by Gordon et al.59. The
parcellation is based on R-fMRI boundary mapping and achieves full cortical
coverage and optimal region homogeneity. The parcellation includes 324 regions of
interest (159 left hemisphere, 165 right hemisphere). The original parcellation
includes 333 regions, and all regions <20 vertices (~50 mm2) were excluded.
Notably, the parcellation was generated on young adults age 18–33 and is applied
here to adults age 21–83.

Diffusion-weighted imaging (DWI) processing. For each slice, diffusion-
weighted data were simultaneously registered and corrected for participant motion
and geometrical distortion adjusting the diffusion directions accordingly105

(ExploreDTI http://www.exploredti.com). Spherical deconvolution was chosen to
estimate multiple orientations in voxels containing different populations of
crossing fibers106–108. The damped version of the Richardson-Lucy algorithm for
spherical deconvolution57 was calculated using Startrack (https://www.mr-
startrack.com).

Algorithm parameters were chosen as previously described56. A fixed fiber
response corresponding to a shape factor of α= 1.5 × 10−3 mm2/s was chosen56.
Fiber orientation estimates were obtained by selecting the orientation
corresponding to the peaks (local maxima) of the fiber orientation distribution
(FOD) profiles. To exclude spurious local maxima, we applied both an absolute and
a relative threshold on the FOD amplitude. A first absolute threshold was used to
exclude intrinsically small local maxima due to noise or isotropic tissue. This
threshold was set to three times the mean amplitude of a spherical FOD obtained
from a gray matter isotropic voxel (and therefore also higher than an isotropic
voxel in the cerebrospinal fluid). A second relative threshold of 10% of the
maximum amplitude of the FOD was applied to remove the remaining local
maxima with values higher than the absolute threshold109.

Whole-brain tractography was performed selecting every brain voxel with at
least one fiber orientation as a seed voxel. From these voxels, and for each fiber
orientation, streamlines were propagated using Euler integration with a step size of
1 mm (as described in56). When entering a region with crossing white-matter
bundles, the algorithm followed the orientation vector of least curvature (as
described in Schmahmann and Pandya110). Streamlines were halted when a voxel
without fiber orientation was reached or when the curvature between two steps
exceeded a threshold of 60∘.

Normalization to the MNI152 space was performed after reconstructing the
streamline in the native space of the patients111. We co-registered the structural
connectome data to the standard MNI 2 mm space using the following steps: first,
whole-brain streamline tractography was converted into streamline density
volumes where the intensities corresponded to the number of streamlines crossing
each voxel. Second, individual streamline density volumes were registered to the
streamline density template in the MNI152 space template derived from60 masking
for the lesion112,113 and the same transformation was applied to the individual
whole-brain streamline tractography using the trackmath tool distributed with the
software package Tract Querier114. Hence uniform deformation was applied to the
whole brain and did not produce distortion that mostly occur when applying T1w
normalization to tractography. Further quality of the streamline normalization was
visually inspected by an anatomist (MTS).

Dissections were performed using trackvis115 (http://trackvis.org). Regions of
interest were derived from59 and arranged 2 by 2 in order to select streamlines and
build a connectivity matrix for each patient. We considered the number of
streamlines existing between two regions as a surrogate of the strength of the
connection. Although the number of streamlines is not precise enough for an
accurate estimate of fiber strength116, it is acceptable in the context of brain
disconnection after a stroke117,118.

Our tractography approach did not set constraints on connectivity density. The
individual connectivity matrices included very weak connections and this
prevented the model from showing criticality. Indeed, as demonstrated by
Zarepour et al.62, the model shows a first-order phase transition at high densities,
no phase transition at low density, and it is critical for intermediate values. We
therefore removed the weakest connections (≤3 streamlines) from each individual
matrix (both for patients and controls), which was sufficient to reproduce the
expected critical behavior.

Characterization of simulated brain activity. We have considered the following
standard quantities to characterize the simulated brain activity:

● the mean network activity,

hAi ¼ 1
ts
∑
ts

t¼1
AðtÞ; ð2Þ

where AðtÞ ¼ ∑N
i¼1 siðtÞ is the instantaneous activity and ts is the simulated

total time;
● the standard deviation of A(t),

σA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ts
∑
ts

t¼1
AðtÞ � hAið Þ2

s
; ð3Þ

● the sizes of the averaged clusters, the largest 〈S1〉 and the second largest
〈S2〉. Clusters were defined as ensembles of nodes that are structurally
connected to each other and simultaneously active. We use numerical
derivative (forward finite difference method) to determine the monotonic
behavior of S2. In theory, the monotonic behavior occurs when the sign of
the derivative remains constant. We relaxed this criterion due to the noisy
behavior of the derivative / model data (mainly for small values of T).
Therefore, for a few cases where the change of sign happened before
T≲ 0.07 we attribute it as noise or artifact, and classified it as monotonic
behavior.

Following our previous work38, we set the model parameters to the following

values, r1= 2/N (with N= 324), r2 ¼ r1=51 , and we vary the activation threshold
T ∈ [0, 0.2]. We updated the network states, starting from random configurations
of A, I and R states, for a total of ts= 2000 time-steps. For each value of the
threshold T we computed the state variables, 〈S1〉, 〈S2〉, 〈A〉, and σA. Throughout
this study, unless stated otherwise, the final numerical results presented were
averages over 10 initial random configurations. For computation of model data, we
discarded the initial transient dynamics (first 100 time steps).

From the model output to BOLD signal. We have employed a standard procedure
to transform model output in BOLD functional signals21,38. Accordingly, the
node’s activity, si(t), is convolved with a canonical double-gamma hemodynamic
response function (HRF),

xiðtÞ ¼
Z 1

0
siðt � τÞhðτÞdτ; ð4Þ

with,

hðτÞ ¼ τ

d1

� �a1

e�
τ�d1
b1 � c

τ

d2

� �a2

e�
τ�d2
b2 ; ð5Þ

where xi(t) is the BOLD signal of the i-th node. The free parameters in (5) were
fixed according to values found in119, i.e., di= aibi, a1= 6, a2= 12, bi= 0.9, and
c= 0.35. Finally, the BOLD time-series, x(t), were filtered with a zero lag finite
impulse response band-pass filter in the frequency range of 0.01− 0.1 Hz.

From the generated BOLD signal we can finally extract the following quantities:

● the functional connectivity network (FC). In fact, the FC matrix FCij is
defined through Pearson correlation:

FCij ¼
hxixji � hxiihxji

σ iσ j
; ð6Þ

where σ i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i i � hxii2

p
is the standard deviation and 〈 ⋅ 〉 is the

temporal average of the BOLD time series.
● the average of the functional connectivity:

hFCi ¼ 2
NðN � 1Þ∑

N

i
∑
N

j>i
jFCijj: ð7Þ

From the above expression we observe that only the upper triangular
elements of ∣FC∣ are considered in the average.
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● the Shannon entropy:

H ¼ � ∑
m

i¼1
pi log pi= logm; ð8Þ

where m is the number of bins used to construct the probability
distribution function of the upper triangular elements of ∣FC∣. The
normalization factor in the denominator, i.e., logm, is the entropy of a
uniform distribution, and it ensures that H is normalized between 0 and 1.
The distributions were partitioned with m= 20 bins. The higher the
diversity of the functional connectivity matrix, the higher the entropy of
that functional connectivity matrix.

● finally, we characterize the distance between any given simulated neural
variable with the corresponding controls average through the Euclidean
distance:

dðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T
ðhXi � XtðTÞÞ2

r
; ð9Þ

where Xt(T) is a given neural pattern at time-point t and threshold T, while
〈X〉 is the corresponding controls average.

Network measures of brain connectivity. We have applied the following mea-
sures from graph theory to quantify the topology of the corresponding structural
brain networks64:

● Newman’s modularity was calculated from the binary (undirected)
adjacency matrix (Aνω):

Q ¼ 1
2m

∑
νω

Aνω � kνkω
2m

� �
δðcν ; cωÞ ð10Þ

where the network is fully subdivided into a set of nonoverlapping
communities such that node ν belongs to community cν; m ¼ 1

2∑νωAνω is
the number of edges and kν=∑ωAνω is the degree of node ν. We employed
the Louvain community detection as implemented in R (igraph package).

● The global efficiency:

EglobalðGÞ ¼
1

NðN � 1Þ ∑
i≠j2G

1
dij

; ð11Þ

where dij is the shortest path length between nodes i and j. We used the
(binary) adjacency matrix to compute the shortest path lengths.

● The average degree:

K ¼ ∑νkν
N

; ð12Þ

where N is the number of nodes and kν is the degree of node ν as
defined above.

● The connectivity disorder (i.e., structural entropy):

HSC ¼ � ∑
m

i¼1
pi log pi= logm; ð13Þ

where m= 100 is the number of bins used to construct the probability
distribution function of all the elements of eWij .

Mapping criticality to structural connectivity. The main aim of these analyses
was to identify topographical patterns of the structural connectivity matrix (SC)
that are related to criticality indexes through multivariate (machine learning)
analyses. In our multivariate approach (also see Siegel et al.35 and Salvalaggio
et al.65), features of the individual SC matrices extracted by Principal Component
Analysis (PCA) were used as multivariate predictors for a Ridge Regression (RR)
model trained to predict patients’ criticality values. RR differs from multiple linear
regression because it uses L2-normalization to regularize model coefficients, so that
unimportant features are automatically down weighted or eliminated, thereby
preventing overfitting and improving generalization on test data120. The model
weights W are computed as:

W ¼ ðXTX þ λIÞ�1
XTY ð14Þ

where X is the set of predictors and Y is the outcome variable. The regularization
term provides a constraint on the size of weights and it is controlled by parameter
λ. A tuning procedure is necessary to find the appropriate value of λ. Importantly,
this approach also allows to project predictive weights back to brain data in a very
simple way35,121. Before applying RR, principal component analysis (PCA) was
performed on the SC matrix to reduce the input dimensionality. The latter included
52, 326 edges, corresponding to all non-diagonal elements of one half of the
symmetric SC matrix of 324 nodes/parcels. Principal Components (PCs) that
explained 95% of the variance were retained and used as input for the RR model.
All predictors (PC scores) and the outcome variable (criticality value) were
z-normalized before applying RR. All RR models were trained and tested using a
leave-one-(patient)-out cross validation (LOOCV) loop122. In each loop, the reg-
ularization coefficient λ was optimized by identifying a value between λ= 10−5 and

105 (logarithmic steps) that minimized leave-one-out prediction error over the
training set. Optimal weights were solved across the entire training set using
gradient descent to minimize error for the ridge regression equation by varying λ.
These model weights were then applied to the left-out patient to predict the cri-
ticality value. A prediction was generated for all patients in this way. Model
accuracy was assessed using the coefficient of determination

R2 ¼ 1�∑ðY � Y 0Þ2
∑ðY � �YÞ2

ð15Þ

where Y are the measured criticality values, Y 0 are the predicted criticality values
and �Y is the mean of predicted criticality indexes. The statistical significance of all
LOOCV results was assessed using permutation test. For each regression model,
criticality scores were randomly permuted across participants 10,000 times, and the
entire regression was carried out with each set of randomized labels. A P-value was
calculated as the probability of observing the reported R2 values by chance (number
of permutation R2 > observed R2)/(number of permutation). Finally, the RR weight
matrix was averaged across all LOOCV loops to generate a single set of consensus
weights. Statistical reliability of each consensus weight was assessed by comparing
its distribution of values (throughout the LOOCV loops) to a null distribution
(obtained from the null models generated for permutation testing) using a FDR
corrected t-test. The final set of (statistically reliable) consensus weights was back
projected to the brain to display a map of the most predictive structural
connections.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data to replicate all the figures and tables are provided as Source data with this paper and
are also deposited in Github (https://github.com/CorbettaLab/Rodrigo2022NatComm)
and Zenodo123 (https://doi.org/10.5281/zenodo.6459955). Individual structural
connectivity matrices for controls and patients have been deposited in the Github and
Zenodo repositories. Raw neuroimaging and neuropsychological data from35,51 are
publicly available at cnda.wustl.edu and require controlled access as they contain
sensitive patients’ data. The person requesting the data must sign a confidentiality
agreement provided by Washington University stipulating that they will make no
attempt to identify the patients and to use data only for research purposes.
Correspondence and requests for materials should be addressed to R.P.R.
(rodrigo.rocha@ufsc.br) Source data are provided with this paper.

Code availability
The custom code for criticality modeling is freely available at https://github.com/
CorbettaLab/Rodrigo2022NatComm and https://doi.org/10.5281/zenodo.6459955.
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