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a b s t r a c t 

Plant-based measurements such as leaf water potential (LWP) are widely used for irrigation scheduling because 

they are accurate at indicating when irrigation is needed. Despite being a good indicator, scheduling irrigation 

with LWP is time consuming and scale-limited. The work reported in this study explored the potential of using 

thermal remote sensing to estimate cotton crop water status in the humid southeastern U.S.A. The study was con- 

ducted over two growing seasons (2018 and 2020) in southwestern Georgia, U.S.A using a complete randomized 

block design plot scheme with three irrigation treatments (0% ET c (crop evapotranspiration; rainfed), 100% ET c 
(well-irrigated), and 125% ET c (over-irrigated). To monitor the irrigation treatment effects on cotton physiologi- 

cal responses, predawn LWP (LWP PD ), stomatal conductance (g s ) and leaf area index (LAI) data were collected in 

both growing seasons. UAV-based images collected in the thermal infrared waveband were used to calculate crop 

water stress index (CWSI) based on three different methodologies and evaluated as predictors of LWP PD . Results 

in this study suggest that LWP PD values above -0.45 MPa indicate a non-stressed crop. No negative effects in leaf 

stomatal conductance and crop growth were observed in 2018. In 2020, the less and more irregular precipitation 

led to significant differences in LAI and g s , as well as in LWP PD . A moderate to strong relationship was observed 

for all dates in 2020, with the CWSI based on the Monteith approach (CWSI Monteith ) showing the two highest R 2 

values among the 3 dates (0.65 and 0.58) with low RMSE values of 0.02 and 0.04 MPa, respectively. Overall, 

the results showed that there is potential of using an affordable UAV-based thermal system to produce predicted 

LWP maps that are representative of the current field water status. 
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. Introduction 

Cotton ( Gossypium hirsutum L . ) is the most important fiber crop in the

nternational commodity markets. It is also an extremely economically

mportant crop in the U.S.A [1] . In 2021, approximately 4.5 million

ectares were planted to cotton in the U.S.A with an average lint yield

f 976 kg/ha mainly concentrated in the country’s southern region [2] .

rom a global perspective, cotton production is mostly concentrated in

emi-arid and arid regions often under irrigated conditions due to its

egative response to excessive rainfall in certain developmental stages

3] [4] , as well as its requirements for high solar radiation levels and
Abbreviations: CWSI Jones1 , Jones 1 crop water stress index; CWSI Jones2 , Jones 2 cro

fter planting; ET c , crop evapotranspiration; ET 0 , reference evapotranspiration; g s , st

eaf water potential; PAR, photosynthetically active radiation; PGR, plant growth reg

hermal images; T wet , temperature of wet baseline; T dry , temperature of dry baseline;
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emperatures [5] . Even though its production is concentrated in arid

reas, it can be cultivated under a variety of different water regimes

6] [7]. 

In the state of Georgia, the average rainfall during the cotton growing

eason is sufficient to meet the crop water needs. Average precipitation

etween the months of April and October for the past 30 years is ap-

roximately 740 mm [8] , whilst cotton requirements to achieve high

ields in the same region are around 457 mm [9] . However, the distri-

ution of rainfall during the growing season may not always align with

he peak crop water requirements. An agronomic drought episode, even

f short, at a critical stage of crop development can reduce the number
p water stress index; CWSI Monteith , Monteith crop water stress index; DAP, days 

omatal conductance; K c , crop coefficient; LAI, leaf area index; LWP PD , predawn 
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f floral buds, boll retention [7] , boll weight and distribution [10] and

nal yield [11] . In addition, drought stress can cause reductions in pho-

osynthetic rate caused by, among other factors, reductions in stomatal

onductance [12] . As a result, approximately 50% of the cotton grown

n Georgia is irrigated. Overirrigation can also be a problem since it can

esult in low irrigation efficiency by creating drainage problems in the

oil and resulting in depressed yields [13] . In addition, excessive irriga-

ion can negatively impact water resources, causing in some cases, the

epletion of surface and ground water [14] [15]. 

Because of the yield limitations imposed by water stress, a variety

f irrigation scheduling techniques have been developed with the aim

f improving the timing and amount of irrigation water applied and

ncreasing irrigation water use efficiency [16] [17] [18] . Jones [19] di-

ided the most commonly used irrigation scheduling methods into three

ain classes; 1) soil water measurement that includes irrigation based

n soil water potential and soil water content, 2) soil water balance

alculations, which involves estimating rainfall and evapotranspiration

ET), and 3) plant stress sensing, which is subdivided into tissue wa-

er status measurements and physiological responses. One direct plant

tress indicator is leaf water potential (LWP). 

Plant-based measurements such as LWP are widely used for irrigation

cheduling [20] [21] [22] because of their accurate indication of when

rrigation is needed. Although there has been some controversy around

he effectiveness of LWP as an irrigation indicator due to temporal fluc-

uations caused by environmental conditions [19] , authors have found

atisfactory results for different crops [23] [24] . In cotton, Argyrokas-

ritis et al. [25] measured LWP under two different irrigation methods

full and deficit irrigation) and found that LWP for stressed plants was

ignificantly lower than for the fully irrigated plants, which provides a

ey insight into the crop’s water status and the need for irrigation. In a

tudy conducted in 2016, predawn LWP thresholds were used for trig-

ering irrigation resulting in a 7 to 31% increase in water use efficiency

hile achieving similar yields as a checkbook method (weekly irrigation

ased on crop phenological stages) commonly used by farmers [22] . 

Despite being a good indicator for irrigation scheduling, LWP mea-

ured with a Scholander pressure chamber is time consuming and scale

imited [26] [27] as each measurement in the field requires several min-

tes to perform with cumbersome equipment. In this context, authors

ave explored the use of remote sensing to detect or estimate crop water

tatus as an alternative [28] [29] [30] . One approach is to calculate crop

ater stress index (CWSI) from thermal infrared image-based canopy

emperature and to establish a relationship between CWSI and LWP

31] . LWP predicted from this relationship has shown high agreement

ith measured LWP in arid environments and has been used to map

WP variability [30] . 

In humid regions, the use of thermal infrared images to measure

anopy temperature can be challenging when compared to arid regions

32] . Crops that exhibit isohydric behavior tend to show an increase

n leaf temperature when experiencing water stress because of reduced

ranspiration as a result of stomatal closure [33] . However, leaf temper-

ture is also highly dependent on other environmental factors such as

elative humidity, air temperature, wind speed and incident radiation

34] . In humid environments, the lower vapor pressure deficit (VPD)

esults in smaller differences in canopy temperature between stressed

nd non-stressed plants since the air tends to be more saturated [33] .

oreover, the partial cloud cover which is commonly observed in humid

limates causes rapid changes in canopy temperature within portions of

 field making it difficult to capture whole-field images under uniform

ight conditions [35] . 

The overall goal of this study was to explore the potential of using

n affordable UAV-based thermal imagery system to detect crop water

tress in cotton in the humid environment of southern Georgia where

elative humidity exceeds 80% for the majority of the growing season.

pecific objectives were 1) to use UAV-based thermal images to predict

WP PD , 2) to compare the relationship between CWSI derived from three

ifferent methodologies and 3) and to demonstrate the application of
2 
he CWSI/LWP relationship in creating representative predicted LWP PD 

aps. 

. Materials and methods 

.1. Study site and management practices 

A two-year study was conducted in 2018 and 2020 in two differ-

nt experimental fields at the University of Georgia’s Stripling Irriga-

ion Research Park (SIRP) in Camilla, GA ( Fig. 1 ). In 2018, 54 plots

ere established in a field of approximately 1 ha in size (31°16 ′ 43.33"N,

4°17 ′ 48.17"W). Plots consisted of 4 rows each with 12.2 m in length.

he center 2 rows of each plot were used for data collection. Three dif-

erent cultivars were planted at 2.5 cm depth on May 2 nd . The three cul-

ivars used were PHY 330 and PHY 490 (PhytoGen, Dow AgroSciences

LC, IN), and ST 6182 (GLT – Bayer Stoneville). Irrigation treatments

onsisted of 0% ET c (crop evapotranspiration, 100% ET c and 125% ET c .

 randomized complete block design was used with six replicates of each

reatment (3 varieties ×3 irrigation treatments ×6 replicates). 

In 2020, 27 plots were established in an experimental field with ap-

roximately 3.6 ha in size (31°16 ′ 58.88"N, 84°17 ′ 47.95"W). Plots had

he same length and width as plots in 2018. The field was planted on

ay 13 th with the DP 1646 (Deltapine, Bayer) cultivar. Irrigation treat-

ents were the same as in 2018 and were combined with three plant

rowth regulator treatments (PGR). PGR treatments consisted of a con-

rol (no PGR application) a moderate (355 ml pix + 473 ml pix at first

ower + 2 weeks) and aggressive treatment (296 ml at 8 leaf, 355 and

73 ml at first flower + 2 weeks). A randomized complete block design

as used with three replicates of each treatment (3 irrigation treat-

ents ×3 PGR treatments ×3 replicates). 

.2. Irrigation treatments 

The irrigation treatments were applied using a linear move system

ith overhead sprinkler irrigation in 2018, and from three center pivot

ystems in 2020, both equipped with variable rate irrigation (VRI) tech-

ology. ET c was estimated using the SmartIrrigation Cotton App [15] . In

he SmartIrrigation App, ET c is estimated daily from reference ET (ET 0 )

sing meteorological data from the Camilla weather station ( University

f Georgia Weather Station Network ) located within 300 m of both fields

nd a crop coefficient (K c ) extracted from a K c curve that was validated

or more than five years at SIRP [15] . Daily K c was multiplied by daily

T 0 to estimate daily ET c . The 100% ET c treatment was based on the

eficit between daily ET c and rainfall and was considered a well-watered

reatment. The 125% ET c treatment irrigation amount was estimated by

ultiplying daily ET c – precipitation by 1.25. This was considered an

ver-irrigated treatment. The rainfed treatment received irrigation un-

il the squaring stage to help with initial development and growth. No

upplemental water was applied for the remaining of the season. The

rrigation amount per irrigation event was 19.05 mm in 2018 and 20.3

m in 2020. The amounts were estimated to avoid runoff and were also

ased on the irrigation system capacity. 

.3. Field data collection 

To monitor the irrigation treatment effects on cotton growth and

hysiological response, LWP PD , leaf area index (LAI) and stomatal con-

uctance (g s ) were collected in both seasons. Data collection was per-

ormed from squaring stage until the last week of irrigation. Measure-

ents were collected weekly in 2018 and reduced to two-week intervals

n 2020 due to personnel limitation. Predawn LWP was collected from

4:00 to 06:00 h for the uppermost fully expanded leaf of two plants

n each plot using a Scholander pressure chamber (Model 615; PMS In-

truments, Albany, OR). Cotton leaves were cut at the base of the peti-

le and sealed inside the chamber, where pressure was applied until

http://weather.uga.edu/
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Fig. 1. Layout of fields in 2018 and 2020. Irrigation treatments are shown in different colors. Well-watered treatment is represented as 100% ET c , and over-irrigated 

is represented as 125% Et c . 
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P  

c  
ylem sap exuded from the petiole’s cut surface. In-field LAI was col-

ected using an AccuPAR LP-80 (Decagon Devices Inc., Pullman, WA)

eptometer. This equipment consists of two light probes connected to

 datalogger. A small quantum sensor is placed on a tripod to collect

bove canopy photosynthetically active radiation (PAR) while an elon-

ated probe containing multiple quantum sensors is placed under the

anopy to collect below-canopy PAR values simultaneously. Two above

nd below measurements were taken in each plot with one measurement

eing taken with the long probe positioned parallel to the cotton rows,

nd one perpendicular to the rows. In addition, gas exchange measure-

ents were taken from the uppermost fully expanded leaf in two plants

n each plot. Gas exchange measurements were conducted from 12:00

o 14:00 h using an LI-6800 (LI-COR Biosciences, Lincoln, NE) portable

hotosynthesis system. The leaf chamber settings included a reference

O 2 concentration of 400 μmol mol − 1 , a flow rate of 600 μmol s − 1 ,

hamber light intensity = 1500 μmol m 

− 2 s − 1 photosynthetic active ra-

iation (PAR), relative humidity = 60%, and air temperature = ambient

emperature. Among the parameters measured, g s was selected for anal-

sis in this study. 

.4. UAV sensors and data acquisition 

Remotely sensed data were collected using a 3DR Solo quadcopter

3D Robotics, Berkeley, CA, United States) equipped with a FLIR Vue Pro

 (Model 640, 69°FOV, 9mm, 30Hz; FLIR Systems, Inc., Wilsonville, OR)

amera. The camera was adapted to the UAV using a fixed mount and a

PS geotagger (sUAS LLC, Beltsville, MD) to geotag images during the

ight. The FLIR Vue pro R uses an uncooled Vox microbolometer detec-

or and collects 14-bit images (with embedded calibrated temperature

alues) in the 7.5 to 13.5 μm region of the electromagnetic spectrum. 

Flights to collect thermal images began 65 days after planting (DAP)

o ensure higher canopy coverage to mitigate the influence of back-

round soil temperature on the imagery. Before each flight the camera

as turned on for a period of 15 to 20 minutes to warm up. Flights were

erformed within 2 hours of solar noon on all dates between 12:00 and

4:00 h. In 2018, flights were performed at 50 m altitude at a speed of

 m/s and 80% frontal and side overlap. The spatial resolution of the

hermal images was 10.5 cm. In 2020, side and front overlaps for flights

ere the same as in 2018, but flights were performed at a higher alti-

ude of 90 m and higher speed of 9 m/s due to the bigger experimental

rea used in that year. The spatial resolution in 2020 was 16.5 cm. 
3 
.5. Image processing 

UAV flight images were stitched using Pix4Dmapper software (Pix4D

A, Lausanne, Switzerland). The processing template was personalized

o ensure the highest stitching quality. Ground control points (GCPs)

ere placed in the four corners of the field and used during the stitch-

ng process to increase projection accuracy. The position of each GCP

as taken with a GPS receiver in the field and coordinates were then

ploaded to Pix4Dmapper. GCPs were selected in at least 10 images for

alibration. 

Final thermal reflectance maps generated on Pix4Dmapper were then

nalyzed using ArcMap (ESRI, Redlands, CA, U.S.A) for data processing

nd extraction. Shapefile with plot boundaries were created based on

he images from the first flight, that also served as a base for georefer-

ncing for subsequent images throughout the season to further minimize

iscrepancies in the rows’ locations between dates. In addition, a buffer

rea of 0.5 m was created between plot boundaries. Both measures were

aken to avoid extraction of pixels from rows outside the plot area. 

Canopy temperature extraction was performed using an empirical

ethodology demonstrated by Meron et al. [36] . This methodology is

ased on the assumptions 1) that canopy and soil-related pixels in ther-

al images are separated by upper and lower thresholds related to the

ir temperature as shown in Eq.1 : 

𝑇 𝑎𝑖𝑟 − 10 
)
< 𝑇 𝑐𝑟 < 

(
𝑇 𝑎𝑖𝑟 + 7 

)
(1) 

here T air is air temperature (°C) and T cr is the temperature of canopy-

elated pixels in a thermal image, and 2) that canopy temperature is rep-

esented by an average temperature of the coolest 33% canopy-related

ixels. In this step, mixed reflectance pixels commonly seen at the edges

f rows are eliminated. The final canopy temperature is calculated using

he class conditional histogram following Eq. 2 . 

 𝑐 = 

∑0 . 33 𝑛 
𝑖 =1 𝑇 𝑐𝑟 ∗ 𝑓 𝑖 ∑0 . 33 𝑛 

𝑖 =1 𝑓 𝑖 

(2) 

here T c ( ̊C) is the canopy temperature, f i is the number of pixels in

ach class cr of the histogram, and n is the number of pixels retained

fter the non-crop related pixels were excluded. 

.6. Thermal camera accuracy 

To assess the accuracy of the temperature measured by the FLIR Vue

ro R camera system, a low-cost reference surface (RS) structure was

onstructed to emulate the emissivity of a black body ( Fig. 2 ). Black
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Fig. 2. Electronics for temperature sensing in real time (a), 

placement of RTDs in the aluminum plate (b), electrical junc- 

tion box with boards (c), and white, gray, and black RS in the 

field (d). 
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odies have emissivity of 1 and are regarded as perfect emitters. The

missivity of an object is defined as the ratio of energy radiated com-

ared to that radiated from a black body [37] . The RS consisted of a

0 ×60 cm aluminum plate that was 2.2 cm thick. The size of the sur-

aces ensured that they would be represented by multiple pixels in the

hermal images. One side of the plate was painted with a matte paint

ith high emissivity. To measure the surface temperature, four thin film

latinum resistance temperature detectors (RTDs) with three conductors

ere attached to the bottom side of the plates. These sensors are classi-

ed as type A with an accuracy of + /- 0.15°C. To enable real time tem-

erature readings, an Arduino Mega embedded system (Arduino LLC,

orino, Italy) powered by rechargeable lithium batteries was used ( Fig.

 a). The Arduino was programmed to take readings every 5 seconds.

n RTD sensor amplifier with MAX31865 breakout (Adafruit Industries,

Y, U.S.A) was used to connect the RTD sensors to the Arduino board

nd to ensure accuracy. The four sensors were attached to the bottom

f the plate and covered by a 25 mm layer of expanded polystyrene in-

ulation foam ( Fig. 2 b) to mitigate the effects of air temperature on the

emperature readings and to avoid high temperature fluctuation in the

lates. All electronics components were stored in a plastic project box to

rotect the boards from direct sunlight and dust ( Fig. 2 c). A frame con-

tructed from plastic pipe was used to secure all structural components

plate, insulation foam and project box) together. During each flight, the

urfaces were placed in the field at a central location to secure that the

lates would appear in a high number of images during the flight ( Fig.

 b,d). 

In 2018, three surfaces painted black were placed in the field dur-

ng the thermal flights to assess accuracy of temperature data extracted

rom the images. To obtain a wider range of known temperatures, two

urfaces were modified and painted white and gray in 2020 ( Fig. 2 c). Av-

rage temperatures measured by the four RTD sensors were calculated
 b

4 
or comparison with the thermal camera. The ThermaCAM Researcher

ro 2.10 software (FLIR Systems, Inc., Wilsonville, OR) was used for in-

ividual image analysis. For each flight, at least two images in which a

S appeared perpendicular to the camera were analyzed and the pixel

emperature was extracted for comparison with averaged temperature

easured from the four RTD sensors. Time stamps were used to ensure

emperature values from both platforms were from the same period. The

ensor temperature was plotted versus the temperature measured from

he FLIR camera and good agreement between the two was observed

 Fig. 3 ). An error of + 1.54°C was seen in 2018, and + 2.18°C in 2020, in-

icating that the image temperatures tended to be overestimated. How-

ver, error values were below the + /- 5°C accuracy range expected for

his type of sensor. 

.7. Crop water stress index 

Canopy temperature data collected with the UAV-based thermal

amera were used to calculate CWSI based on the following equation

WSI = (T c – T wet ) / (T dry – T wet ), where CWSI varies from 0 to 1,

epresenting a crop without any water limitation and a non-transpiring

rop, respectively [38] , T wet is the temperature of a fully transpiring leaf

nd T dry is the temperature of a non-transpiring leaf. The wet and dry

aselines were calculated using three different methodologies. The first

WSI (CWSI Jones1 ) was calculated using theoretical dry and wet base-

ines based on the energy balance equation suggested by Jones [39] .

he second CWSI (CWSI Jones2 ) used the same theoretical wet baseline,

ut the dry baseline was calculated empirically by adding 5°C to the air

emperature. The third CWSI (CWSI Monteith ) was calculated using a theo-

etical wet baseline based on Monteith and Unsworth [40] and the same

mpirical dry baseline used on CWSI Jones2 . Meteorological data used for
aseline calculations was collected from the Camilla weather station. 
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Fig. 3. Comparison between FLIR-based temperature and RTD sensor temperature in (a) 2018, and (b) 2020. White, grey, and black points in 2020 refer to the 

different colored surfaces. 
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Table 1 

Irrigation, rainfall, and total water applied in both fields in Camilla, 

GA during the 2018 and 2020 growing seasons. 

Year Treatment Irrigation Precipitation Total Water 

mm 

2018 Rainfed 0 828 828 

100% ET c 220 828 1048 

125% ET c 251 828 1079 

2020 Rainfed 36 347 383 

100% ET c 252 347 599 

125% ET c 309 347 656 
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d  
ata recorded every 15 minutes from 12:00 to 14:00 h were averaged

nd used in calculations. The average of the 33% coolest pixels of each

lot was used as T c in the CWSI equation. 

.8. Statistical analysis 

A two-way mixed analysis of variance (ANOVA) was used to analyze

rrigation treatment effects (between-subject factor) over different time

eriods (within-subject factor) using rstatix package in R 4.1.0 (R Foun-

ation for Statistical Computing, Vienna, Austria). Post hoc analysis was

onducted to test differences between treatment means using the Bon-

erroni test. Data from all irrigation and cultivar treatments were used

or 2018 and from all irrigation and PGR treatments for 2020 for the LAI,

WP PD , and g s analysis. A second-order polynomial regression was used

o determine the relationship between all three CWSIs calculated and

WP PD . The coefficient of determination (R 

2 ) and the root mean square

rror (RMSE) were used to assess the CWSI ability to predict LWP PD .

he CWSI method with the highest R 

2 and the lowest RMSE (MPa) was

pplied to the thermal images for LWP PD prediction demonstration. The

MSE was calculated using Eq. 3 . 

𝑀𝑆𝐸 = 

√ √ √ √ 

1 
𝑛 
𝑥 

𝑛 ∑
𝑖 =1 

( 𝑃 𝑖 − 𝑂𝑖 ) 2 (3) 

here n is the number of samples and 𝑃 𝑖 and 𝑂𝑖 represent the predicted

nd observed values. 

. Results and discussion 

.1. Weather and Irrigation 

Minimum and maximum air temperatures and precipitation during

oth growing seasons are represented in Fig. 4 . Precipitation was high

n 2018 with average monthly rainfall above 100 mm in May and June

nd above 200 mm towards the middle of the season, while in 2020,

recipitation was lower at the beginning of the season and higher in

ugust and September. Total water (rainfall + irrigation) per treatment

n 2018 was more than 1.5 times the amount in 2020 due to the high

recipitation ( Table 1 ). Cotton grown in Georgia requires approximately

60 mm of water well distributed among the growth stages [9] [41] . In

018, precipitation was well above the cotton water requirement while

n the second year, the precipitation was approximately 113 mm lower

han that required. 
5 
The approximate daily water requirement for cotton in humid re-

ions from emergence to first square is around 2.54 mm [42] [43] . This

aily requirement ranges from 2.54 to 5.08 mm from first square to

he first flower stage and reaches its peak between early flowering and

eak bloom with daily water use increasing from 5.08 to 7.11 mm. Cot-

on plants are sensitive to water stress during squaring [42] and drought

uring this period can limit growth and number of nodes [44] , but the

ighest sensitivity is seen during early bloom. Episodic drought in this

eriod is critical and can lead to lower yield and lower fiber quality.

fter peak bloom, daily water use decreases, but cotton plants still have

 moderate sensitivity to water stress. In 2018, precipitation was better

istributed, and plants received enough water to supply their require-

ents in all growth stages. Contrary to 2018, in 2020 lower and incon-

istent precipitation events caused episodic drought in the rainfed plots.

everal consecutive days without rain caused the daily average precipi-

ation to be 0.86 mm for the squaring period, which is well below cotton

ater needs for the same period. Similarly, in a period of 17 days during

arly bloom, total accumulated precipitation was only 7.87 mm. 

.2. Leaf area index (LAI) 

LAI treatment averages are presented in Fig. 5 . In both seasons, LAI

verall trends were similar with low values during the initial stages of

evelopment, close to 1 at around 36 to 50 DAP, a rapid increase in

anopy growth between 50 and 80 DAP, and a subsequent decrease at

he end of the season. This peak curve response from early flowering

o the open boll stage is often observed in cotton, independent of wa-

er regime [45] . During the 2018 season, excessive rainfall resulted in

imilar LAI values between the irrigation treatments and no significant

ifferences were observed on any dates ( Fig. 5 a). Conversely, in 2020,
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Fig. 4. Daily precipitation, relative humidity (%) and maximum and minimum air temperatures during the cotton growing season in 2018 (a) and 2020 (b). 

Fig. 5. Leaf area index (LAI) treatment averages and seasonal trends in Camila, GA in 2018 (a) and 2020 (b). The two-way mixed ANOVA results are represented in 

the figures as follow: p < 0.05 ( ∗ ), p < 0.01( ∗ ∗ ), and p < 0.001( ∗ ∗ ∗ ). Data represent means ± SE (2018; n = 18, 2020; n = 9). 
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ainfed and irrigated plots presented significant differences on all dates

xcept 38 DAP ( Fig. 5 b). In the early season, irrigation was applied to

ll treatments to ensure stand establishment resulting in similar growth

etween treatments. 

The highest treatment average LAI values in 2020 were achieved at

4 DAP with an average of 6.99, 6.79 and 4.26 for 125% ET c , 100%

T c and 0% ET c treatments, respectively. Overall, the rainfed treatment

ad the lowest weekly averages with values being 38 to 45% lower than

he well-watered treatment and 44 to 51% lower than the over-irrigated

reatment. The greatest differences between treatments were seen at the

eak flowering stage when maximum LAI was achieved. In contrast,

hen comparing irrigated treatments, well-watered and over-irrigated

lots showed similar trends presenting no significant differences on any

ate. Similar irrigation regime effects on cotton LAI were observed by

oreen et al. [46] . The rainfed treatment had lower LAI with the greatest

ffects of drought being observed during the peak flowering stage in

hich plants achieved the highest LAI values and differences between

reatments were more evident. 

Leaf area is an important cotton morphological trait as it is a critical

eterminant of crop ET [47] and because of its influence on final yield

48] . Leaf area is very sensitive to drought once water stress leads to re-

uced cell division and expansion [49] [50] . Noreen et al. [46] observed

 high correlation between LAI and final total boll weight (r = 0.77)

o  

6 
n well-watered conditions. This correlation was even more prominent

hen plants were exposed to drought conditions (r = 0.95) corroborat-

ng the assumption that the decrease in LAI due to water stress is a

eterminant factor of final yield. 

.3. Predawn Leaf water potential (LWP PD ) and stomatal conductance (g s )

Seasonal weekly LWP PD and g s trends from both growing seasons

re shown in Fig. 6 . In 2018, significant differences in LWP PD between

rrigation treatments were observed in 6 out of the 8 dates evaluated

 Fig. 6 a). At 36 and 65 DAP, the 125% ET c treatment had the highest

WP PD values, while at all dates after 71 DAP the 0% ET c (dryland)

reatment had the highest values. Despite the differences between the

rrigation treatments, measured LWP PD remained relatively high during

he whole season. The highest and lowest weekly LWP PD averages ob-

erved for the whole season were -0.21 and -0.45 MPa, both from the

25% ET c treatment. The low range in LWP PD variability indicates that

lants were not exposed to any water stress level which was a result

f the high precipitation in that year. The absence of water stress is

lso reflected in the weekly treatment g s averages ( Fig. 6 b). No signif-

cant differences in average g s between the irrigation treatments were

bserved in 2018. The lowest and highest g values were observed for
s 
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Fig. 6. Predawn leaf water potential (LWP PD ) expressed in MPa (a,c) and stomatal conductance (g s ) expressed in mmol H 2 O m 

− 2 s − 1 (b,d) treatment averages and 

seasonal trends for three difference irrigation treatments during the 2018 and 2020 growing seasons. The 2018 growing season is represented on the left panel and 

the 2020 in the right panel. The two-way mixed ANOVA results are represented in the figures as follow: p < 0.05 ( ∗ ), p < 0.01( ∗ ∗ ), p < 0.001( ∗ ∗ ∗ ), p < 0.0001( ∗ ∗ ∗ ∗ ). Data 

represent means ± SE (2018; n = 18, 2020; n = 9). 
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5  
he 125% ET c treatment at 86 DAP (0.57 mmol H 2 O m 

− 2 s − 1 ) and at 44

AP (1.79 mmol H 2 O m 

− 2 s − 1 ), respectively. 

In the 2020 growing season, weekly irrigation treatment LWP PD av-

rages were significantly different on three separate occasions ( Fig. 6 c).

ainfed treatment averages significantly differed from the well-watered

reatment at 38 DAP (p < 0.001), 74 DAP (p < 0.0001), and 95 DAP

p < 0.05). The over-irrigated treatment was significantly different than

ainfed at 74 DAP (p < 0.0001), while well-watered and over-irrigated

ere significantly different at 95 DAP (p < 0.001). The highest average

WP PD value during the season was observed in the well-watered treat-

ent (-0.34 MPa) followed by the over-irrigated treatment (-0.37 MPa).

he lowest LWP PD weekly average was observed for the rainfed (-0.6

Pa). The rainfed plots had an average LWP PD value 16% lower than

he 100% ET c treatment. The decreased LWP PD is a result of the isohy-

ric response of cotton plants [51] [1] in which the water potential in

he leaf decreases in response to a lower soil water potential. 

As previously shown, canopy growth was substantially reduced in

he rainfed plots displaying a lower LAI than irrigated treatments in

020. Chastain et al. [22] pointed out that plant growth inhibition was

nly observed when LWP PD reached values below -0.8 MPa. Although

easured LWP PD values for the second season were higher than that

hreshold, a more severe drought occurred during the season in the
7 
eeks in-between measurements. Despite these periods of low precipita-

ion not coinciding with LWP PD field sampling days, the drought effects

ere prominent in the rainfed plots and can be detected by the leaf area

ifferences between rainfed and irrigated treatments. 

Stomatal conductance (g s ) treatment averages were statistically dif-

erent on two separate occasions for the 2020 growing season ( Fig. 6 d).

he rainfed treatment g s average was significantly lower than the well-

atered and the over-irrigated treatments (p < 0.0001) at 59 DAP, and

ower than the well-watered treatment (p < 0.05) at 95 DAP, while both

rrigated treatments showed significant differences (p < 0.001) only at

5 DAP. Similar to the results seen for LWP PD , g s average values were

requently lower in the rainfed plots. Well-watered and over-irrigated

reatments had similar average g s throughout the season and did not

how any significant difference. 

The reduction in leaf stomatal conductance is a mechanism com-

only seen in drought stressed plants to limit water loss [52] . A lower

eaf water potential is observed when soil water availability is decreased,

hich triggers stomatal closure [53] . In the same study, a substantial

ecrease in g s was detected three days after plants were exposed to

rought. A recent study indicated that g s in rainfed plots was 72 and

8% lower than irrigated treatments in two consecutive years [1] . Pi-
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Fig. 7. Crop water stress index (CWSI) approaches treatment averages and seasonal trends for three difference irrigation treatments during the 2018 and 2020 

growing seasons. The 2018 growing season is represented on the left panel and the 2020 in the right panel. The two-way mixed ANOVA results are represented in 

the figures as follow: p < 0.05 ( ∗ ), p < 0.01( ∗ ∗ ), p < 0.001( ∗ ∗ ∗ ), p < 0.0001( ∗ ∗ ∗ ∗ ). Data represent means ± SE (2018; n = 18, 2020; n = 9). 
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on et al. [53] observed even higher differences of 81% between well-

atered and drought stressed cotton plants. 

.4. Crop water stress index (CWSI) 

Fig. 7 shows the weekly treatment CWSI values calculated using

he three different methodologies. All methods yielded similar seasonal

rends in both years. In 2018, no significant differences were seen be-
8 
ween the treatment CWSI averages in any of the dates observed ( Fig. 7 a-

). The 100% ET c treatment had the lowest CWSI values observed during

he season varying from 0.23, 0.3 and 0.37 for CWSI jones1 , CWSI Monteith 

nd CWSI Jones2 , respectively. The highest stress level calculated using

WSI Jones1 methodology was 0.5 and it was observed for the 100% ET c 

reatment at 65 DAP, while for CWSI Monteith , CWSI Jones2 the highest

tress indices were seen for the 0% ET c treatment at 113 DAP (0.78

nd 0.76, respectively). 
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Table 2 

Regression models between CWSI and LWP PD on different dates in 2018 and 2020. 

Year DAP CWSI method Equation R 2 RMSE (MPa) 

2018 65 Jones 1 y = -0.198x 2 - 0.302x - 0.124 0.37 0.05 

Jones 2 y = -0.268x 2 - 0.018x - 0.175 0.38 0.05 

Monteith y = -0.222x 2 - 0.057x - 0.186 0.38 0.05 

71 Jones 1 y = 2.388x 2 - 1.761x - 0.163 0.47 0.04 

Jones 2 y = 0.729x 2 - 0.308x - 0.565 0.43 0.04 

Monteith y = 0.544x 2 - 0.091x - 0.598 0.43 0.04 

86 Jones 1 y = -9.999x 2 + 6.294x - 1.301 0.35 0.04 

Jones 2 y = -6.218x 2 + 4.879x - 1.268 0.34 0.04 

Monteith y = -4.020x 2 + 2.004x - 0.560 0.33 0.04 

99 Jones 1 y = -7.202x 2 + 5.726x - 1.425 0.09 0.06 

Jones 2 y = -5.637x 2 + 4.549x - 1.205 0.08 0.06 

Monteith y = -3.398x 2 + 1.722x - 0.506 0.08 0.06 

113 Jones 1 y = 9.132x 2 - 8.461x + 1.672 0.15 0.03 

Jones 2 y = 2.004x 2 - 2.843x + 0.723 0.04 0.03 

Monteith y = 3.138x 2 - 4.177x + 1.102 0.15 0.03 

2020 74 Jones 1 y = 0.348x 2 - 0.789x - 0.258 0.57 0.04 

Jones 2 y = 0.144x 2 - 0.504x - 0.256 0.57 0.04 

Monteith y = 0.105x 2 - 0.420x - 0.304 0.58 0.04 

95 Jones 1 y = 9.483x 2 - 4.832x + 0.101 0.46 0.04 

Jones 2 y = 5.136x 2 - 3.410x + 0.052 0.44 0.04 

Monteith y = 3.795x 2 - 1.672x - 0.330 0.45 0.04 

111 Jones 1 y = -7.5207x 2 + 5.9x - 1.7061 0.65 0.02 

Jones 2 y = -2.6216x 2 + 3.4957x - 1.7137 0.65 0.02 

Monteith y = -2.1493x 2 + 2.6977x - 1.3949 0.65 0.02 
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In 2020, CWSI treatment average values were significantly differ-

nt on all dates for the Jones 1 and Jones 2 approaches and on two

ates (74 and 111 DAP) using the Monteith equation ( Fig. 7 d-f). Rain-

ed plots showed significantly higher CWSI values than the 100% ET c 

reatment for all CWSIs calculated at 74 DAP (p < 0.0001) and at 111 DAP

p < 0.01). Rainfed and the 125%ET c treatments were significantly dif-

erent for Jones 1 and Jones 2 approaches at 95 DAP (p < 0.05) and only

or Jones 1 at 74 DAP (p < 0.001). Overall, in both seasons CWSI Jones1 

sing theoretical dry and wet baselines tended to yield lower values

han Jones 2 and Monteith approaches using an empirical dry baseline.

hese differences can be attributed to the limitations of the energy bal-

nce model used in the theoretical approach. Energy balance models

ely on the characteristics of a virtual leaf that represents the average

eaf parameters, and it assumes that the leaf is in equilibrium with its

urroundings [28] . Any variations from these parameters can cause in-

ccuracies that can lead to the dry baseline being higher or lower than

mpirically calculated baselines. 

.5. Simple regression models for cotton LWP PD prediction 

The CWSI/LWP PD models were developed for all three CWSI method-

logies in 5 different dates in 2018 and 3 dates in 2020. Table 2 presents

quations, and performance for all models developed. Performance was

valuated based on R 

2 and RMSE. 

In 2018, prediction models showed a weak to moderate relationship

etween CWSI and LWP PD likely due to the low variability in water

tatus among the plots. The strongest relationships were observed at

1 DAP with R 

2 of 0.47, 0.43 and 0.43 for CWSI Jones1 , CWSI Jones2 and

WSI Monteith, respectively, followed by the models at 65 DAP with an

verage R 

2 value of 0.38 and at 86 DAP with average R 

2 of 0.34. Low-

st R 

2 values were observed at 99 DAP ranging from 0.08 for CWSI Jones2 

nd CWSI Monteith to 0.09 for CWSI Jones1 . The highest RMSE values were

lso observed at 99 DAP with values of 0.06 MPa for all 3 approaches.

verall, prediction errors were relatively low with values varying from

.03 to 0.06 for all dates. The best performing model in all dates was de-
9 
eloped based on CWSI Jones1, which showed a slightly higher R 

2 except

or 65 DAP, in which CWSI Jones2 and CWSI Monteith had slightly higher

 

2 . 

In 2020, all CWSIs had a moderate to strong non-linear relation-

hip with LWP PD . Best performing models were observed at 111 DAP

ith a R 

2 of 0.65 and an RMSE of 0.02 MPa for all three CWSIs. Pre-

iction models at 74 DAP had R 

2 values of 0.57 for both CWSI Jones1 

nd CWSI Jones2 and of 0.58 for CWSI Monteith , and an error of 0.04 MPa.

odel performances were lower at 95 DAP with R 

2 values of 0.46, 0.44

nd 0.45 for CWSI Jones1 , CWSI Jones2 and CWSI Monteith, respectively, and

MSE of 0.04 for all three methods. Models performed very similarly in

he second season. CWSI Jones1 had a slightly higher R 

2 at 74 DAP, and

WSI Monteith was slightly higher at 95 DAP. 

The relationship between CWSI and LWP PD for the southeastern US

as originally developed by Chastain et al. [22] in a study conducted

uring 2016 in the same region as the present study but using in-field

nfrared proximal canopy temperature sensors. A non-linear relation-

hip between CWSI and LWP PD was also observed with a coefficient

f determination of 0.93. Results from the 2016 study showed a wider

ariation in LWP PD . In contrast to the Chastain et al. study, the CW-

Is in the work reported here were calculated from UAV-based sen-

ors with temperature measured over plot-sized areas and still showed

oderate to relatively strong relationships on selected dates despite

he lower variation in LWP PD . Calculated CWSI values for plots with

igher LWP PD were overall higher than observed by Chastain et al.

22] indicating an overestimation of the canopy temperature mea-

ured from the UAV camera when compared to proximal infrared

ensors. 

Results from the present work using empirical, and theoretical base-

ines and from Chastain et al. [22] using empirical wet and dry baselines

rom Idso [38] indicated a non-linear relationship between CWSI and

WP in the humid southeast of the U.S.A. Alchanatis et al. [28] devel-

ped the CWSI/LWP relationship for cotton using empirical and theo-

etical baselines and found a strong linear relationship. The work was
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Fig. 8. Predicted LWP PD maps based on the CWSI Monteith 

models developed at 74 DAP and 111 DAP in 2020. 
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zones. 
onducted in Israel where there is a Mediterranean climate with low hu-

idity during the growing season. A similar linear relationship was also

bserved in the arid environment of northwestern Texas, U.S.A. using

mpirical CWSI [54] . These results suggest that the relationship between

ifferent CWSI and LWP PD is region-specific and should be developed

aking different environmental conditions into account. 

Weekly models with R 

2 higher than 0.5 were used to create predicted

WP PD maps. The model derived from the CWSI Monteith was selected

or application as this model had the highest R 

2 among the different

pproaches at 74 DAP. The CWSI Monteith /LWP PD equations were applied

o the UAV images at 74 and 111 DAP to produce the two predicted

WP PD maps shown on Fig. 8 . 

The maps indicate that the variability in LWP PD seen in this study

as not only a function of the irrigation treatments but also the spatial

ariability of the soils and their water holding capacity in the study field.

ohen et al. [55] highlighted the usefulness of using the CWSI/LWP re-

ationship to create estimated LWP maps throughout the season. The

bility to monitor plant water status from canopy temperature can help

mprove irrigation management decisions based on crop water needs

ven in the southeastern U.S. where humidity and frequent cloud cover

akes this methodology challenging [19] . This statement is corrobo-

ated by the results from this study. The different water status patterns

esulting from the irrigation treatments can be easily identified in the

eld. In both dates, irrigated treatments showed higher predicted LWP PD 

hen compared to rainfed. The different patterns are more prominent at

4 DAP in which color classification varies from blue to red representing

he lowest to highest LWP PD values, respectively. 

. Conclusions 

Results from this study suggest that LWP PD values above -0.45 MPa

ndicate a non-stressed crop and no negative effects in leaf stomatal con-
10 
uctance or crop growth were observed as represented in the 2018 grow-

ng season. In 2020, the lower and more irregular precipitation events

ed to significant differences in LAI and g s , as well as in LWP PD . Irrigated

reatments (well-irrigated, and over-irrigated) tended to show higher

WP PD , LAI and g s than rainfed treatments, indicating that growth lim-

tation occurred in the non-irrigated plots due to drought stress. Field

easurement dates did not coincide with peak stress periods. Although

he lowest average LWP PD value recorded during the season was -0.6

Pa, rainfed plots experienced an extended drought period for about

7 days during flowering. Despite the somewhat high LWP PD values,

he different CWSIs showed a moderate to relatively strong non-linear

elationship with LWP PD , indicating that UAV-based thermal data has

he potential to detect water status patterns even in less severe drought

eriods. 

CWSI methodologies yielded similar results in the 8 dates ana-

yzed in both years. Despite the overall lower values obtained from the

WSI Jones1 calculated with theoretical wet and dry baselines, the rela-

ionship between all CWSIs and LWP PD had similar R 

2 and RMSE. Best

erforming models were observed in 2020 with moderate to relatively

trong relationships in all dates in 2020, with the CWSI Monteith showing

he two highest R 

2 values among the 3 dates (0.65 and 0.58) with low

MSE values of 0.02 and 0.04 MPa, respectively. 

Overall, the results showed potential of using an affordable UAV-

hermal system to produce predicted LWP maps that are representa-

ive of the current field water status in the humid southeastern U.S.A.

he utilization of these maps can enable farmers to monitor crop wa-

er status variability across the field during the season and help im-

rove irrigation management decisions. Moreover, these maps can be

otentially used to develop dynamic variable rate irrigation systems

hrough the delineation of crop-based in-season irrigation management
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