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Abstract: For single-molecule toroics (SMTs) based on noncollinear Ising spins, intramolecular
magnetic dipole–dipole coupling favours a head-to-tail vortex arrangement of the semi-classical
magnetic moments associated with a toroidal ground state. However, to what extent does this
effect survive beyond the semi-classical Ising limit? Here, we theoretically investigate the role of
dipolar interactions in stabilising ground-state toroidal moments in quantum Heisenberg rings with
and without on-site magnetic anisotropy. For the prototypical triangular SMT with strong on-site
magnetic anisotropy, we illustrate that, together with noncollinear exchange, intramolecular magnetic
dipole–dipole coupling serves to preserve ground-state toroidicity. In addition, we investigate the
effect on quantum tunnelling of the toroidal moment in Kramers and non-Kramers systems. In the
weak anisotropy limit, we find that, within some critical ion–ion distances, intramolecular magnetic
dipole–dipole interactions, diagonalised over the entire Hilbert space of the quantum system, recover
ground-state toroidicity in ferromagnetic and antiferromagnetic odd-membered rings with up to
seven sites, and are further stabilised by Dzyaloshinskii–Moriya coupling.

Keywords: quantum Heisenberg ring; toroidal moment; single-molecule toroics; magnetic dipole–
dipole interaction

1. Introduction

The existence of exotic electromagnetic multipoles, such as the toroidal moment,
was first discussed in a pioneering work by Yanov Zel’dovich, where he proposed that,
owing to the parity-violating effects of the electroweak force, Dirac particles ought to
exhibit electromagnetic moments which were odd under both time- and parity-reversal
operations [1]. Zel’dovich suggested that these moments might be realised in a classical
electrodynamics setup in which poloidal electrical currents wrap around the tube of a
torus, generating a circulating magnetic field throughout the solenoid and leading to a
toroidal moment perpendicular to the ring. Subsequently, in 1997, Wood et al. successfully
detected these moments in Caesium nuclei via parity non-conservation of 6 s→ 7 s atomic
transitions in the presence of an inhomogeneous magnetic field [2]. The discovery of these
exotic moments has led to a flurry of investigation, with some authors suggesting their use
in negative refractive index metamaterials [3,4] and as a handle for the detection of dark
matter [5]. The manifestation of toroidal moments in diamagnetic molecular species as a
response to an applied inhomogeneous magnetic field has been reported [6–10]. In addition
to other pioneering work in the analysis of magnetically induced current densities in
molecules [11–14], Riccardo Zanasi and co-workers have provided useful insights into the
toroidal response of diamagnetic molecules [15], even contributing recently a theory of
dynamic molecular toroidisability, utilising optical electric fields [16].
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The quantum toroidal moment arising from a molecular system comprised of N
paramagnetic centres is quantified by the expectation value of the following toroidal
moment operator:

τ = ∑
i

ri ×mi (1)

where ri is the position vector of the ith paramagnetic ion and mi is its magnetic moment
(for ions with a pure spin ground multiplet, modelled with the local spin operators Si,
the local magnetic moments are mi = gµBSi with µB as the Bohr magneton and g as the
electron g-value). From a semi-classical perspective, and in the absence of orbital currents,
the toroidal moment can be visualised as a collection of magnetic moments arranged
tangentially to a molecular ring in a vortex configuration [9,17,18]. Thus, paramagnetic
cycles with strong on-site magnetic anisotropy oriented in the plane of the ring represent
the most promising candidates for single-molecule toroics.

In fact, since the first prediction [19], preparation [20] and observation [21] of ground-
state toroidal moments in magnetically anisotropic rings with nearest-neighbour exchange
connectivity, the syntheses of three- [22–25], four- [26–28] and six-membered [29–31] rings
comprised of strongly magnetically anisotropic Ln3+ ions have been reported in the litera-
ture, with theoretical models supporting the existence of ground-state toroidal moments in
each case. Efforts to maximise the molecular toroidal moment have also been undertaken
in an attempt to realise materials displaying toroidically ordered phases, either by coupling
Ln3 triangular subunits intramolecularly with 3d metal ions [32–35] or by grafting them
together in planar configurations [36–38].

Despite the ubiquity of semi-classical Ising spin models for the characterisation of
single-molecule toroics, it was demonstrated in one of the early works [19] that quantum
spin fluctuations induced by the transversal spin components of a Heisenberg exchange
interaction can disrupt the formation of toroidal ground states (with a non-intuitive geo-
metric dependence) by introducing a tunnel splitting between the otherwise degenerate
semi-classical spin vortex ground states of the paramagnetic ring. Such a tunnelling ground
state (i.e., a linear superposition of toroidal states) sets the stage for quantum computation
based on toroidal qubits given appropriate quantum gating operations could be performed
on a timescale shorter than spin–lattice and spin–spin dephasing processes [39]. Quan-
tum effects are also pertinent for the realisation of toroidally polarisable ground states
for quantum information technologies based on spin-frustrated 3d metal triangles with
weak or vanishing on-site magnetic anisotropy [40,41]. The coherent control of chiral
(not toroidal) quantum states in molecular triangles through localised electric field pulses,
by means of spin–electric coupling, has been previously suggested [18,42–45] and was
recently demonstrated for a Cu3 triangle [46]. Since the quantum toroidal states of the spin
frustrated ring may be prepared from the chiral states via an SU(2) basis rotation, it may
then be feasible to address the toroidal states of a 3d metal triangle, in second order, via the
coherent manipulation of its chiral states. Unfortunately, for N > 3-odd-membered rings,
spin frustration is a necessary but insufficient condition to observe ground-state toroidal
moments. When only an antiferromagnetic isotropic exchange interaction between nearest
neighbours in the ring is considered, toroidal states emerge only in excited spin multiplets
for N = 5-, 7- and 9-membered rings (vide infra). It has previously been suggested that
these states can be stabilised by next-nearest-neighbour exchange interactions, albeit for
rather stringent connectivities, which may be difficult to realise synthetically [47].

Intramolecular magnetic dipole–dipole interactions are regularly considered in the the-
oretical characterisation of semi-classical SMTs based on strongly magnetically anisotropic
4 f ions, in which case they favour head-to-tail vortex configurations of spin dipoles in the
ring, hence the stabilising molecular toroidal states. In this work, we investigate the role of
magnetic dipole–dipole interactions in quantum single-molecule toroics in the strong and
weak anisotropy regimes, where the full noncollinear Heisenberg exchange can, in prin-
ciple, remove ground-state toroidicity altogether. The extent to which intra-ring dipole
coupling may preserve ground-state toroidicity will be discussed in both limits of magnetic
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anisotropy, and hence can guide the synthesis of future quantum SMTs for future quantum
information applications.

2. Quantum Heisenberg Triangle with Strong On-Site Magnetic Anisotropy

To investigate the dependence of magnetic axis canting angle on the ground-state
toroidal moment with and without the inclusion of magnetic dipole–dipole coupling,
we consider a ring comprised of three paramagnetic ions located in the xy-plane at
ri =

(
R cos

(
2π(i−1)

3

)
, R sin

(
2π(i−1)

3

)
, 0
)

. Trivalent dysprosium atoms have, as of late,
been the ions of choice for the synthesis of SMTs, owing to their large magnetic moment
and often thermally well-isolated ground-state mJ = ±15/2 doublet. In recent theoretical
models of such systems [21,28,33], these ions are treated as pseudo-spin 1/2 semi-classical
entities with strongly axial g-tensors. As a first step to recovering quantum effects in the
prototypical SMT triangle, we choose an on-site S = 3/2 ion as the simplest example of a
Kramers system displaying on-site magnetic anisotropy; our model is readily extended to
larger spin lengths. The on-site magnetic anisotropy and nearest-neighbour Heisenberg ex-
change connectivity of the ring is well described by the following Hamiltonian model [19]:

H = −D ∑
i

S2
i,z − Jex ∑

〈ij〉
Si · Sj (2)

where the ith spin operator Si is quantised along the local noncollinear magnetic axis
specified by ni =

(
sin
(

2π(i−1)
3

)
sin(θ),− cos

(
2π(i−1)

3

)
sin(θ), cos(θ)

)
, with θ as the uni-

form canting angle of the axes (see Figure 1a). In Equation (2), D > 0 is the magnitude of
an easy-axis magnetic anisotropy and Jex is the Heisenberg exchange coupling constant
between nearest neighbours 〈ij〉 in the triangle. Notably, the microscopic origins of on-site,
axial magnetic anisotropy for paramagnetic rings constituted by transition metal ions or by
lanthanide ions is rather different. Magnetic anisotropy, in the former case, generally arises
from a partial recovery of orbital angular momentum in the pure spin ground multiplet,
2S+1Γ0, of each ion, through spin–orbit coupling effects in second-order perturbation theory,
thus leading to a zero-field splitting of the otherwise 2S + 1-degenerate MS levels of each
ion in the ring. In the latter case, however, where strong spin–orbit coupling necessitates
the use of the total angular momentum operator, J = L + S, the comparatively weak
ligand field of each ion lifts the 2J + 1 degeneracies of each spin–orbit multiplet 2S+1LJ in
first-order perturbation theory via the crystal field Hamiltonian HCF = ∑qk Bq

kO
q
k , where

Oq
k are even-rank Stevens’ operators [48] with q = 2, 4 and 6, −q ≤ k ≤ q and real coef-

ficients Bq
k . If one had in mind a particular molecular ring, then complete active-space,

self-consistent field (CASSCF) calculations, beginning from a microscopic Hamiltonian,
might be employed for each paramagnetic ion in the ring (with all others substituted
with their diamagnetic analogues), to uncover the direction and magnitude of on-site
magnetic anisotropy [33,35]. Furthermore, intramolecular exchange coupling can be ap-
proximated using the broken symmetry density functional theory approach pioneered by
Noodleman [49] and which is often utilised in the study of molecular wheels composed of
paramagnetic ions [50,51]. While the model Hamiltonian presented in Equation (2) clearly
represents an approximation to the full electrostatic Hamiltonian for the ring, it nonetheless
embodies the minimal physical ingredients required to capture a non-intuitive geometric
dependence of the strongly axial on-site magnetic anisotropy on the toroidal ground-state
properties of the prototypical triangular SMT motif.
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θ

Figure 1. (a) Schematic depiction of the molecular triangle with on-site magnetic anisotropy axes
(blue arrows) arranged tangentially about the vertices of the triangle and canted by an angle θ from ẑ.
(b) Ground and first excited exchange multiplets of the semi-classical Ising states of the triangle with
idealised in-plane magnetic anisotropy θ = 90◦. (c,d) Energy as a function of canting angle θ of the
lowest lying Ising exchange manifolds in the semi-classical on-site spin S = 3/2 molecular triangle
for ratios of |Jex|/R3 = 0 cm−1 Å−1 (solid), 0.25 cm−1 Å−1 (dashed) and 1 cm−1 Å−1 (fine dashed)
for (c) ferromagnetic and (d) antiferromagnetic exchange coupling Jex.

In addition to the Heisenberg exchange Hamiltonian, with strong on-site magnetic
anisotropy, as presented above, we extend the model of Ref. [19] by including also magnetic
dipole–dipole interactions between paramagnetic ions in the ring using the following
well-known dipolar Hamiltonian [52]:

Hdip =
µ0µ2

Bg2

4π ∑
ij

(
Si · Sj∣∣Rij

∣∣3 − 3

(
Si · Rij

)(
Sj · Rij

)∣∣Rij
∣∣5

)
(3)

where µ0 is the permeability of free space and Rij = ri − rj is the displacement vector
between sites i and j. Typically in paramagnetic triangles with strong on-site anisotropy,
the displacement vectors are on the order of

∣∣Rij
∣∣ ∼ 3–4 Å [20,22,32,33], so that the strength

of dipole–dipole interactions in the ring is of the order Edip ∼ µ0µ2
Bg2/4πR3 = 0.2 cm−1

(note that, for paramagnetic ions with unquenched orbital angular momentum, gµB should
be replaced with µ̄, the magnetic moment of the ion, e.g., µ̄ ≈ 10 µB for Dy3+, leading
to a much stronger intramolecular dipole interaction). In contrast to previous theoretical
models, here we consider the exact eigenstates of Equation (2), which include quantum
fluctuations between Ising configurations, and which are clearly further influenced by the
transverse components of the dipolar-spin Hamiltonian Equation (3).

2.1. The Semi-Classical Ising Picture

Before proceeding to the fully quantum spin ring, we first consider the semi-classical
limit of the triangular SMT, formally obtained by letting D → ∞ in Equation (3). In this
limit, the ground multiplet of the triangle consists of states with maximal spin projections
mi = ±S along the noncollinear magnetic axes of the triangle, which are then split into
sets of degenerate levels by the semi-classical exchange and magnetic dipole interactions.
The energy of each state |m〉 = |m1, m2, m3〉 (up to a common additive constant from the
zero-field splitting) is

Em =

[
−Jex

(
cos2 θ − 1

2
sin2 θ

)
+

µ0µ2
Bg2

4π

(
cos2 θ − 5

4 sin2 θ
)

3
√

3R3

]
∑

i
mimi+1 (4)
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where a non-trivial angular dependence of the magnetic axes already emerges in both
the exchange and dipole coupling parts. In Figure 1b, we illustrate the splitting of the
ground-state multiplet for an idealised SMT with completely in-plane magnetic anisotropy.
When the exchange coupling is ferromagnetic and overcomes magnetic dipole–dipole
coupling, the resultant ground state is sixfold degenerate and consists of configurations
with a net magnetic moment in the plane of the triangle [53]. These states are referred to
as exchange-frustrated states, and do not support a toroidal moment. On the other hand,
when Jex is weaker than magnetic dipole coupling or Jex is antiferromagnetic, a toroidal
doublet characterised by the vortex arrangement of the magnetic moments about the
triangle is stabilised. In Figure 1c,d, we explore the energetic stabilisation of these two
manifolds for a molecular triangle with on-site spin S = 3/2 as a function of canting angle
θ when Jex is ferromagnetic or antiferromagnetic. Notably, for the strengths of dipole–
dipole coupling explored here, a level crossing between each manifold always occurs
as a function of canting angle. From Equation (4), the angle at which the level crossing

occurs is θ0 = arctan
(√
−α/β

)
, where α = −Jex +

µ0µ2
Bg2

4π
1

3
√

3R3 and β = Jex
2 −

µ0µ2
Bg2

4π
5

12
√

3R3 .
Notably, θ0 depends upon the microscopic electronic parameters of the ring as well as its
inherent geometry. For ferromagnetic coupling Jex > 0, Figure 1c illustrates that the doubly
degenerate toroidal manifold is stabilised between 0◦ < θ ≤ θ0 with magnetic dipole–
dipole coupling moving the level crossing to larger θ. For antiferromagnetic coupling,
the semi-classical toroidal states are stabilised between θ0 ≤ θ ≤ 90◦ where dipole–dipole
coupling acts to reduce θ0.

2.2. The Role of Magnetic Dipole–Dipole Coupling in Quantum SMTs

Surpassing the semi-classical Ising approximation activates all non-axial terms in
Equations (2) and (3). To see the effect of these quantum fluctuations on the ground-state
toroidal moment of the on-site S = 3/2 SMT triangle, we diagonalise the lowest degenerate
manifold of energy eigenstates obtained from Equations (2) and (3) on the z projection
of the toroidal moment operator given in Equation (1) and plot the absolute magnitude
of the resultant eigenvalues (the magnitude of the toroidal moment) against the uniform
magnetic axis canting angle θ in Figure 2a,b. In correspondence with the semi-classical Ising
picture, for the ferromagnetic-exchange-coupled triangle, we observe a linearly increasing
toroidal moment with increasing canting angle θ that abruptly falls to zero when the
semi-classical vortex spin states become excited states of the system (see Figure 1c). When
the Heisenberg exchange coupling is antiferromagnetic, not only does the system exhibit
a non-zero toroidal moment for θ > θ0 where the Ising-like vortex spin states form the
ground state of the semi-classical system, but also, a non-zero toroidal moment appears in
the canting angle domain 0◦ < θ ≤ 30◦. When 0◦ < θ ≤ 30◦, the sixfold quasi-degenerate
exchange frustrated states may be prepared in linear combinations to form weakly toroidal
and non-toroidal states (a phenomenon that will be discussed at length in Section 3 of
this manuscript). The formation of this linear combination is only possible when quasi-
degeneracy of all six exchange frustrated states of the triangle is retained and, due to their
energetic splitting into three isolated doublets with increased canting angle, persists only
up until θ ≈ 30◦.

The effect of magnetic dipole–dipole coupling in both cases of exchange coupling
is to extend the domain of magnetic axis canting angle in which the triangle displays a
non-zero toroidal moment. Setting aside for now the non-zero toroidal moment observed
for the antiferromagnetically coupled triangle with θ < 50◦, the extension of a non-zero
toroidal moment to higher (lower) canting angles for ferromagnetic (antiferromagnetic)
exchange coupling corresponds directly to the shifting of θ0 by the magnetic dipole–dipole
interaction illustrated for the semi-classical Ising model in Figure 1c,d. Notably, we observe
that diagonalising the intramolecular magnetic dipole–dipole coupling Hamiltonian over
the entire Hilbert space of the S = 3/2 triangle (in addition to the magnetic anisotropy
and exchange terms) leads to a preservation of a weak toroidal moment expectation value
up to θ ≈ 50◦, shown by the blue dashed curves in Figure 2d. Magnetic dipole–dipole
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coupling works here to maintain the sixfold quasi-degeneracy of the exchange frustrated
spin states, such that their linear combination into toroidally polarised states is possible for
canting angles θ > 30◦. This effect will be discussed further later in the manuscript when
we consider the vanishing on-site magnetic anisotropy limit of SMTs.
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Figure 2. (a,b) Expectation value of the toroidal moment as a function of canting angle θ for the
on-site S = 3/2 molecular triangle with a fixed ratio of |D/Jex| = 10 and (a) ferromagnetic and
(b) antiferromagnetic exchange coupling. (c,d) Base 10 logarithm of the tunnelling rate between
toroidal states in the molecular triangle induced by a stray magnetic dipole. (c) Tunnelling rates in
the ferromagnetically coupled triangle with magnetic axis canting angle θ = 20◦. (d) Tunnelling rates
in the antiferromagnetically coupled triangle with magnetic axis canting angle θ = 80◦. The effect
of intramolecular magnetic dipole–dipole coupling between paramagnetic ions in the SMT on the
stray-dipole-assisted tunnelling rate is highlighted by vanishing (solid line), intermediate (dashed
line) and strong (fine dashed line) intramolecular dipole–dipole coupling.

It is particularly interesting (and relevant for the development of SMT qubits) to
investigate the effect of intramolecular magnetic dipole–dipole coupling on the tunnelling
of the toroidal moment. For a Kramers system, such as the S = 3/2 triangle, the tunnelling
of the toroidal moment occurs via coupling to stray dipolar fields, Bstray, in the vicinity
of the paramagnetic centres. Provided that these stray fields are weak with respect to
intramolecular exchange and magnetic dipole–dipole coupling, transitions between toroidal
ground states can be calculated in first-order perturbation theory using the following Fermi
golden rule:

Γ±τ→∓τ =
2πρ

h̄

∣∣∣∣∣〈∓τ|gµB

3

∑
i=1

Si · Bstray|±τ〉
∣∣∣∣∣
2

(5)

where |±τ〉 are toroidal states comprised of appropriate linear combinations of the Ising-
type basis states |m1, m2, m3〉, which are brought about by the activation of all non-axial
terms in Equations (2) and (3); ρ is the density of states taken here to be unity; and
Bstray = λẑ/r3 is a stray magnetic field originating from a nearby dipole located at r.
To approximate the strength of this stray field, we consider a nearby dipole, |m| ∼ 10µB,
so that λ = µ0|m|/4π ≈ 9.274 T Å3. For typical intermolecular distances r ∼ 8 Å [20,54],
the magnitude of nearby stray dipolar fields is on the order of

∣∣Bstray
∣∣ ∼ 15 mT. This

analysis indicates that the Fermi golden rule approach is well suited for calculating toroidal
moment tunnelling rates induced by stray dipolar fields, since the magnitude of such
fields is, at best, an order of magnitude smaller than typical intramolecular exchange and
magnetic dipole–dipole coupling.
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Utilising the above approximation, in Figure 2c,d, we plot the Fermi golden rule
tunnelling rate of the molecular toroidal moment assisted by the stray dipolar field Bstray
for representative geometries of the S = 3/2 triangle with ferromagnetic and antiferromag-
netic exchange coupling, respectively. Interestingly, in the case of ferromagnetic coupling,
the rate of stray-field-induced tunnelling of the ground-state toroidal moment is increased
when stronger intramolecular magnetic dipole–dipole coupling is experienced between
the paramagnetic ions of the ring. For an antiferromagnetically coupled ring, stronger in-
tramolecular magnetic dipole–dipole coupling serves to protect against stray-field-induced
tunnelling of the toroidal moment by reducing the rate of tunnelling between the toroidal
states; while only representative canting angles of θ = 20◦ and θ = 80◦ are shown here, this
trend persists for all other canting angles for which toroidal ground states can be prepared.

2.3. Tunnelling of the ground-state Toroidal Moment in a Non-Kramers System

As was previously demonstrated for an N = 6 molecular wheel with on-site spin S = 1
and noncollinear magnetic axes [19], the transversal components of the noncollinear ex-
change coupling (and here the magnetic dipole–dipole coupling), proportional to the ladder
operators Si,±Si+1,±, can connect the semi-classical toroidal ground states in N × Sth-order
perturbation theory, leading to a tunnelling ground state which is a linear combination of
both semi-classical vortex configurations of the ring |±S, . . . ,±S〉. Consequently, a large
tunnel splitting caused by the transversal couplings erases the ground-state toroidal mo-
ment in a non-Kramers triangle (and also in larger rings). The realisation of a ground-state
superposition of the toroidal moment nevertheless represents an important first step to-
wards the development of quantum computation based on toroidal qubits.

To re-illustrate the findings of Ref. [19], now, however, for the on-site S = 1 molecular
triangle, we numerically diagonalise Equation (2) and calculate the splitting ∆ between
ground and first excited states in the triangle (this gap corresponds to the tunnel split-
ting between vortex configurations of the semi-classical Ising states). In Figure 3a,b, we
plot the ground-state toroidal moment of the triangle obtained by diagonalising the quasi-
degenerate ground manifold of energy eigenstates (obtained from Equation (2)) on the
z-projection of the toroidal moment operator in Equation (1). With both intermediate
|D/Jex| = 5 and strong on-site magnetic anisotropy |D/Jex| = 10, a ground-state toroidal
moment is observed for Jex > 0 between 0 < θ . 50◦, where the tunnel splitting be-
tween the ground states ∆, is vanishingly small. Since ∆ < 10−2 cm−1 in this region,
the quasi-degenerate ground manifold is well described by the semi-classical Ising vor-
tex states, which support both a magnetic and toroidal moment along the uniaxis of the
triangle. For antiferromagnetic coupling, the situation is again more interesting. For all
values of |D/Jex| explored here (except |D/Jex| = 1), a vanishing tunnel splitting up to
θ < 30◦ between ground and first-excited state of the triangle is observed. These states are
predominantly composed of linear combinations of the non-toroidal semi-classical Ising
states |±S,±S,∓S〉, |±S,∓S,±S〉 and |∓S,±S,±S〉. Similarly to the Kramers system,
when these states are diagonalised on the z-component of the toroidal moment operator
in Equation (1), they give rise to a ground doublet, supporting a toroidal moment, albeit
with magnitude much less than an idealised, semi-classical planar arrangement of the
moments 〈τz〉ideal = 3gµBR. After θ ≈ 30◦, the quasi-degeneracy is lifted with a tunnel
splitting ∆ > 10−2 cm−1, and the toroidal moment drops to zero only to be recovered again
for θ > 60◦ in the strong anisotropy limit |D/Jex| = 10, whereby the semi-classical vortex
states of the triangle become good descriptors of the quasi-degenerate ground state.
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Figure 3. (a,b) Toroidal moment expectation value computed on the quasi-degenerate ground man-
ifold of the triangle with ferromagnetic (red) and antiferromagnetic (blue) Heisenberg exchange
coupling for (a) |D/Jex| = 5 and (b) |D/Jex| = 10. (c,d) Tunnelling rate of the ground-state toroidal
moment as a function of canting angle θ in the molecular triangle with on-site spin S = 1 for a
range of magnetic anisotropy strengths |D/Jex| and (c) ferromagnetic and (d) antiferromagnetic
exchange coupling.

Figure 3c,d show the tunnelling rate ∆/h̄ of the toroidal moment, in the absence of
magnetic dipole–dipole coupling, as a function of canting angle θ for a range of on-site
anisotropy strengths |D/Jex|. For both ferromagnetic and antiferromagnetic exchange
coupling Jex, the tunnelling rate is maximal at θ0 ≈ 54.7◦ where the exchange gap between
the semi-classical Ising states vanishes and hence the transversal components of the linear
exchange have maximal effect at mixing the semi-classical Ising ground states. For Jex < 0,
increasing the value of |D/Jex| leads to a diminishing of the tunnelling rate away from θ0;
however, for ferromagnetic coupling, this only occurs for θ ≤ θ0.

In Figure 4a,b, we illustrate that, for both ferromagnetic and antiferromagnetic cou-
pling, the range of canting angles θ for which the molecular triangle displays a ground
stand toroidal moment is modestly increased. This is accounted for by looking once again
to the semi-classical Ising limit, where magnetic dipole–dipole coupling shifts the value of
θ0 at which the Ising exchange gap disappears. In Figure 4c,d, we show that including the
fully quantum dipole–dipole coupling Hamiltonian leads to a shift of the tunnelling rate
maxima to larger angles θ for Jex > 0 and small angles θ for Jex < 0. For the ferromagnetic
case, an increase in magnetic dipole–dipole coupling also leads to an overall increase in the
tunnelling rate ∆/h̄ for all canting angles θ. For strong enough dipole–dipole coupling, this
can again lead to a vanishing toroidal moment for all canting angles, θ. For the realisation
of robust toroidal states in quantum SMTs, magnetic dipole–dipole coupling should be
maximised when antiferromagnetic exchange coupling is present; however, the situation is
more complicated for ferromagnetic exchange.
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Figure 4. (a,b) Toroidal moment expectation value computed on the quasi-degenerate ground mani-
fold of the triangle with (a) ferromagnetic and (b) antiferromagnetic exchange coupling for varying
strengths of magnetic dipole–dipole interaction. (c,d) Tunnelling rate of the ground-state toroidal
moment as a function of canting angle θ for the on-site S = 1 molecular triangle with a fixed ratio
of |D/Jex| = 10 and with magnetic dipole–dipole coupling included between paramagnetic sites
in the ring. The tunnel splitting is shown for several dipole–dipole coupling strengths and for
(c) ferromagnetic and (d) antiferromagnetic Heisenberg exchange coupling.

3. Spin Frustration in Molecular Triangles with Vanishing Magnetic Anisotropy

We now turn to the case of vanishing on-site magnetic anisotropy in the molecular
triangle. This system has previously been discussed elsewhere in the context of spin electric
coupling [42,55] and the realisation of ground-state toroidal moments [40], both effects
based on the existence of a spin frustrated ground state when Jex < 0. Here we recapitulate
pertinent results for the triangle with a mind to extend its treatment to larger rings with
intramolecular magnetic dipole–dipole coupling.

We consider a molecular triangle consisting of three isotropic Si =
1
2 spins (e.g., three

3d9 Cu2+ atoms) again arranged in an equilateral geometry in the xy-plane. The isotropic
spins interact according to the following Hamiltonian:

Hex = −Jex ∑
〈ij〉

Si · Sj + ∑
〈ij〉

DDM ·
(
Si × Sj

)
(6)

where 〈ij〉 denotes summation between the nearest neighbours and DDM = DDMk̂ is the
Dzyaloshinskii–Moriya interaction between neighbouring spins originating from weak
spin–orbit coupling effects. The isotropic exchange coupling Jex splits the eightfold degen-
erate Hilbert spin space of the triangle into two exchange quartets separated in energy by
3Jex

2 . If Jex < 0, the ground quartet is spin frustrated. The ground manifold is split further
into two Kramers doublets separated in energy by

√
3|DDM| by the comparatively weak

Dzyaloshinskii–Moriya interaction (estimated to be DDM ∼ |Jex|/10) for Cu3 triangles [56]).
For negative values of DDM, the states comprising the ground doublet of the molecular

triangle are∣∣∣∣Mtot =
1
2

, χ = 1
〉

=
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3
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2
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〉
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3
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,
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,
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2

〉
+

ε+√
3

∣∣∣∣12 ,
−1
2

,
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2

〉 (7)

which are labelled by the total spin projection good quantum number and by the eigenvalue
of the scalar chirality operator χ = 4√

3
S1 · S2 × S3 [40,42,43], where ε± = exp(±2πi/3). It
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has previously been demonstrated [40,41] that the appropriate linear combinations of the∣∣∣Mtot = ± 1
2 , χ = ±1

〉
states give rise to a ground doublet |τ±〉 = 1√

2

∣∣∣Mtot = 1
2 , χ = 1

〉
±

i√
2

∣∣∣Mtot = − 1
2 , χ = −1

〉
, which hosts equal and opposing toroidal moments with magni-

tude gµBR, pointing perpendicular to the plane of the molecular triangle. The on-site spin
expectation values at each site adopt a perfectly in-plane, vortex arrangement, rotating
clockwise or anticlockwise for each state.

4. Magnetic Dipole–Dipole Interactions in Extended Heisenberg Rings

As was pointed out, in a recent study of larger odd-membered Heisenberg rings [47],
the antiferromagnetically coupled molecular triangle is a special case since spin frustration
alone is enough to guarantee a ground manifold with toroidally polarisable states. For odd-
membered rings with N > 3, using the Hamiltonian in Equation (6) and diagonalising
the resultant exchange manifolds on the z-projection of the toroidal moment operator
(Equation (1)) leads to states which support toroidal moments only in excited multiplets
of the paramagnetic rings. Figure 5 illustrates this phenomenon up to nine-membered
antiferromagnetically coupled rings with a weak Dzyaloshinskii–Moriya interaction.

N=3 N=5 N=7 N=9

0

1

2

3

4

5

6

Δ
E
/
J

e
x

Figure 5. Energy levels for N = 3-, 5-, 7- and 9-membered antiferromagnetically coupled Heisenberg
rings with Jex = 10DDM. Degenerate levels that support toroidal moments are labelled in red, whilst
those that do not are labelled in black. Note that only for N = 3 are toroidal moments present in the
ground state.

In [47], it was suggested that various next-nearest-neighbour isotropic exchange cou-
pling topologies could be introduced to accentuate spin frustration and thereby stabilise
toroidal moments in the ground states of N = 5-, 7- and 9-membered rings. The most
promising coupling topology required ferromagnetic nearest neighbour and antiferromag-
netic next-nearest-neighbour isotropic exchange interaction, a configuration only sparingly
reported in the literature for molecular ring systems [57]. In addition, the ratio of next-
nearest-neighbour to nearest neighbour exchange required toroidal states to be brought
into the ground manifold, which was found to be rather stringent, such that the precise
engineering of such a coupling could be challenging to achieve in practice.

Tuning intramolecular magnetic dipole–dipole interactions offers another pathway to
realise ground-state toroidal moments in spin-frustrated, odd-membered Heisenberg rings,
while reliably and predictably engineering odd-membered rings with precise exchange
coupling topologies may be beyond the reach of current state-of-the-art synthetic chemistry,
the inter-site distance of molecular Heisenberg rings (and hence the strength of magnetic
dipole coupling) can more easily be controlled at the molecular scale through an appropriate
choice of ligands. Since

[
Hdip, Stot

z

]
6= 0, eigenstates of the dipolar Hamiltonian (and

therefore the ring Hamiltonian) can not be enumerated with the total spin projection good
quantum number Mtot as is the case for rings with isotropic and anti-symmetric exchange
coupling alone.



Magnetochemistry 2022, 8, 58 11 of 15

In Figure 6, we plot the ground-state toroidal moment as a function of |Jex|/R3 for
5-membered and 7-membered S = 1

2 rings with ferromagnetic and antiferromagnetic
exchange coupling. For rings with tightly packed metal centres, the strong intramolecular
magnetic dipole–dipole coupling results in ground-state toroidal moments. As the ring
size is increased the strength of dipole–dipole coupling diminishes and, at some critical
radius R∗, the ground-state toroidal moment drops sharply to zero. Notably, building
the magnetic dipole–dipole interaction Hamiltonian on the basis of exchange coupled
eigenstates of Equation (6) revealed off-diagonal matrix elements connecting states from
different exchange multiplets on the order of ∼ 1/R3, a similar magnitude found for the
diagonal elements. This indicates that the stabilisation of the ground-state toroidal moments
in larger Heisenberg rings is a non-perturbative effect of the dipole–dipole Hamiltonian.
Naturally, the dipolar Hamiltonian becomes more effective at mixing states from different
exchange multiplets when Jex is small; thus, the critical radius for achieving ground-state
toroidal moments in odd-membered rings at least up until N = 7 grows larger as Jex → 0.
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Figure 6. Ground state expectation value of the toroidal moment operator in a five-membered (a)
and a seven-membered (b) Heisenberg ring inclusive of intramolecular magnetic dipole–dipole
interactions and ferromagnetic (red) or antiferromagnetic (blue) isotropic exchange coupling Jex.
Insets depict the expectation values of the on-site spin for one of the ring ground states below the
critical circumscribed radius R∗, where a non-zero value of the toroidal moment is observed.

While engineering rings with short metal–metal bridging ligands offers a strategy
to augment through-space dipole–dipole coupling, this approach has the drawback of
reducing the magnitude of the ground-state toroidal moment, which is linearly propor-
tional to the circumscribed radius of the ring, R. An alternative approach is to replace
S = 1

2 ions in the ring with Kramers ions that have longer spin length, e.g., Cr3+ with a
ground S = 3

2 multiplet. Accounting for isotropic exchange and magnetic dipole–dipole
interactions in a Cr5 pentagon with |Jex| = 1 cm−1 revealed toroidal ground states that
persisted in the ring up to bond lengths of 3 Å for ferromagnetic exchange and 2.4 Å for
antiferromagnetic exchange.

Again, a weak Dzyaloshinskii–Moriya interaction can also stabilise the toroidal doublet
of the dipole–dipole-coupled ring when DDM < 0. Figure 7 illustrates the increase in critical
radius R∗ as a function of DDM for rings with ferromagnetic and antiferromagnetic isotropic
exchange coupling. Curiously, the Dzyaloshinskii–Moriya coupling is less effective at
stabilising the toroidal ground state in antiferromagnetic-exchange-coupled rings with
dipolar coupling, as opposed to the ferromagnetic case. While much rarer examples of
ferromagnetically coupled Cr3+ rings have been reported in the literature [58], this suggests
that engineering molecular wheels which satisfy some if not all of the above constraints
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is a feasible approach to realising ground-state molecular toroidal moments in weakly
anisotropic rings with N > 3.

- 0.5 - 0.4 - 0.3 - 0.2 - 0.1 0.0

1.0

1.2

1.4

1.6

|DDM/J ex|

R
*

(Å
)

Jex=1 cm-1

Jex=-1 cm-1

DDM/|Jex|

Figure 7. Critical circumscribed radius R∗ at which toroidal ground states manifest in five-membered
on-site S = 1/2 molecular wheels as function of Dzyaloshinskii–Moriya coupling strength DDM in
Heisenberg rings with ferromagnetic (red) and antiferromagnetic (blue) isotropic exchange coupling.
Inset shows the dependence of the ground-state toroidal moment on the orientation of the DDM

vector for a 5-membered S = 1/2 ring with |Jex|/R = 1 cm−1 Å−1 and DDM/|Jex| = −0.1 with
ferromagnetic (red) and antiferromagnetic (blue) isotropic exchange coupling.

In this study, we have assumed a Dzyaloshinskii–Moriya vector which is uniform
across all nearest neighbour bonds in the ring and which is always perpendicular to
the plane of the polygon; however, this is not the most general form of the Dzyaloshin-
skii–Moriya interaction. In fact, a joint magnetisation and EPR study of a Cu3 molecule
found Dzyaloshinskii–Moriya vectors for the Cu-Cu pseudo-bonds with non-uniform ori-
entations, which were related to one another by 2π/3 rotations about the C3 symmetry axis
of the triangle [59]. To investigate the orientation dependence of the Dzyaloshinskii–Moriya
vector on the stabilisation of ground-state toroidal moments in a five-membered ring, we
parametrise the DM vector of the first bond (between paramagnetic ions 1 and 2) with
the polar and azimuthal angles θ and φ, respectively, such that D(1−2)

DM = DDM(cos φ sin θ,
sin φ sin θ, cos θ). The Dzyaloshinskii–Moriya vectors for all other bonds are generated by
rotating this vector about the C5 symmetry axis of the pentagon by the angles 2kπ

5 with
k = 1, . . . , 4. For both ferromagnetic and antiferromagnetic isotropic exchange coupling,
and vanishing intramolecular magnetic dipole–dipole coupling, varying the orientations
of the Dzyaloshinskii–Moriya vectors may only weakly induce a ground-state toroidal
moment whose magnitude is <5 % (for all θ and φ) of the maximal theoretical value,
5
2 µBgR. In the inset of Figure 7, we investigate the effect of different Dzyaloshinskii–Moriya
vector orientations on the ground-state toroidal moment of the molecular pentagon with
strong intramolecular magnetic dipole–dipole coupling, while the ground-state toroidal
moment in the ferromagnetically coupled pentagon appears approximately invariant to
different Dzyaloshinskii–Moriya vector orientations, we observe a precipitous drop in
the toroidal moment expectation value of the antiferromagnetic ring when θ = 2π

3 . This
behaviour is reproduced for all choices of φ. It is hence noteworthy that, if possible,
molecular wheels with vanishing on-site magnetic anisotropy should be engineered with
Dzyaloshinskii–Moriya vectors, oriented as perpendicular to the ring as possible to support
ground-state toroidal moments.

5. Discussion and Conclusions

For the development of novel SMT-based quantum information technologies employ-
ing toroidal qubits, a fully quantum description of SMTs is imperative. Quantum effects
have been shown here and elsewhere [19] to disrupt the formation of toroidal ground states
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in SMTs by introducing tunnelling mechanisms between the semi-classical magnetic vortex
ground states of the ring. Here we have investigated the role of intramolecular magnetic
dipole–dipole coupling in quantum SMTs, demonstrating, for the prototypical triangular
SMT motif, that dipole–dipole coupling extends the range of magnetic axis canting angles,
for which one may observe toroidal ground states in both ferromagnetic and antiferromag-
netically coupled triangles with strong on-site anisotropy. In the weak anisotropy limit,
despite the fact that antiferromagnetically coupled N > 3 Heisenberg rings do not usu-
ally support ground-state toroidal moments, we have demonstrated that, by utilising the
bond-length-sensitive, intramolecularly magnetic dipole–dipole interaction, these toroidal
states can be stabilised at some critical radius, R∗. In addition, we demonstrated that the
critical radius, R∗, required to observe toroidal ground states in the molecular pentagon,
may be augmented by increasing on-site spin length and also by increasing the magnitude
of Dzyaloshinskii–Moriya coupling |DDM|. Finally, we commented on the orientation
dependence of the Dzyaloshinskii–Moriya vectors in stabilising a ground-state toroidal
moment in molecular wheels.
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