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Abstract 
 

 

Welding undoubtedly represents one of the most efficient and most frequently employed 

technological processes for efficiently joining metallic components. Unfortunately, it is well 

known that the safety and structural durability of metallic structures relays on the strength of 

their joints, since most of their in-service failures are due to fatigue actions occurring in the 

joints. Furthermore, fatigue failures are also very critical for another reason: they occur 

apparently without warning at a load level far below the static strength of the structure.  

International standards and recommendations suggest design welded joints against fatigue 

using the nominal stress approach. It consists in evaluating the applied nominal stress by means 

of standard solid-mechanics-based stress calculations without considering any stress 

concentration at the weld bead and assuming a linear elastic material behaviour. Then, its value 

is compared with the fatigue strength of the considered joints, the latter being directly evaluated 

from the specific S-N design curve chosen from a list of classified structural details. The most 

significant limitation of this method becomes clear in case of complex joint geometries whose 

standard fatigue curve for the specific geometry of the welded detail is not available.  

However, it has been demonstrated in the literature that this limitation can be overcome by 

adopting local approaches, i.e. fatigue lifetime evaluation criteria based on local rather than 

nominal quantities. Among all local approaches, the Peak Stress Method (PSM) is a rapid 

technique to estimate the Notch Stress Intensity Factors (NSIFs) at the weld toe and weld root, 

which are idealised and modelled as sharp notches having null tip radius. Essentially, the PSM 

takes advantage of the singular, linear elastic, opening, sliding, and tearing peak stresses 

evaluated at the notch tip using coarse free mesh patterns to estimate the mode I, II, and III 

NSIF-terms, respectively. By adopting the averaged Strain Energy Density (SED) as a fatigue 

strength criterion, a PSM-based design stress, i.e. the so-called equivalent peak stress, can be 

defined as a function of the relevant peak stresses. Noteworthily, the equivalent peak stress 



 

II 

 

according to the PSM allows to assess the fatigue strength of welded joints regardless the joint’s 

geometry, the steel grade, or the testing conditions and the capability and effectiveness of this 

method have been extensively checked and validated in many publications. Unfortunately, 

despite the great capability demonstrated by the PSM, there are of course many aspects that still 

requires to be improved. The aim of the present work was precisely to overcome some of these 

limitations and to extend the capability of the method. 

The main feature that has been analysed in the present manuscript is that the PSM has only 

been defined and validated under Constant Amplitude (CA) local stresses, i.e. fatigue cyclic 

stresses with a constant amplitude and a constant mean stress. However, welded structures 

under real in-service conditions are typically subjected to rather complex load-time histories 

composed by Variable Amplitude (VA) uniaxial or multi-axial sequence of stresses both 

deterministic and stochastic in nature. 

Another aspect which has been investigated and discussed is that the PSM does not include 

any prediction of the fatigue limit, i.e. the stress level below which, theoretically, an infinite 

number of CA load cycles can be applied to the structure without causing fatigue failure, despite 

the significant implications of this threshold value on practical problems. In light of the above 

discussed, the present manuscript addresses some theoretical developments of the PSM and the 

subsequent validation against experimental data. 

More in detail, Chapter 1 will introduce the problem and will give the theoretical background 

on the local approaches used in the rest of the manuscript. In particular, the concepts of Stress 

Intensity Factor (SIF), the Notch Stress Intensity Factor approach (NSIF), the averaged Strain 

Energy Density (SED) criterion and the Peak Stress Method (PSM) will be introduced along 

with their theoretical background, and their application to fatigue lifetime assessment of welded 

joints. 

Then, Chapter 2 will deal with the first extension of the PSM which allows to account for 

variable amplitude (VA) uniaxial as well as in-phase and out-of-phase multiaxial fatigue 

loadings applied to steel arc-welded joints. The extension to VA loading situations has been 

based on Palmgren-Miner’s linear damage rule (LDR) to account for cumulative damage. The 

proposed method has been validated against a large bulk of VA fatigue data taken from the 

literature proving the PSM as an extremely valid technique to design welded joints against CA 

or VA uniaxial as well as multiaxial fatigue local stresses. The proposed method has also been 

checked against new experimental data generated by fatigue testing non-load-carrying (nlc) 
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fillet-welded double transverse or inclined attachments made of S355 structural steel under pure 

axial loading.   

Later on, another extension of the PSM will be presented in Chapter 3, to estimate the 

constant amplitude uniaxial fatigue limit of welded structures in the stress-relieved state. To 

address this topic, a fracture mechanics-based criterion has been used starting from the 

observation that at the fatigue limit a non-propagating short crack exists in the structure. The 

chosen criterion adopts the so-called cyclic R-curve analysis for the calculations. More in detail, 

it simply consists of comparing the driving force for a propagating crack (depending on the 

geometry, the material and the external loads) with the cyclic R-curve, i.e. the crack size 

dependence of the fatigue crack propagation threshold in the short crack regime. After an 

accurate calibration, the method based on the cyclic R-curve analysis has been combined with 

the PSM obtaining a new procedure that allows to a rapid and effective design of weld toe 

failures in the infinite life region. The huge advantage given by this new approach is that it 

works without the need of complex and time-consuming fracture mechanics-based calculations.  

Interestingly, results obtained in this chapter move from the assumption that the cyclic R-

curve represents a material property measured by means of experimental fracture mechanics 

fatigue tests using flat specimens like e.g. the single edge notch bend (SENB). However, in the 

case of small cracks (e.g. the cyclic R-curve), International Standards advise using different 

specimens’ geometry, such as for example single-edge-crack round bars. At the same time, they 

do not give any give information on how to perform real-time in-situ crack length measurement 

on such specimens’ geometry, this aspect being undoubtedly critical and extremely challenging.  

For this reason, the possibility of experimentally determining the cyclic R-curve on complex 

specimens’ geometries has been investigated in the present work. More in detail, Chapter 4 will 

give an insight on some critical aspects relevant to the experimental determination of the cyclic 

R-curve and, in general, on experimental fracture mechanics tests dealing with short cracks. In 

particular, Chapter 4 will discuss how to perform real-time in-situ crack length measurement of 

a single-edge-crack propagating in round bars adopting the Direct Current Potential Drop 

(DCPD). In this context, the performances of the DCPD method, in terms of measurability, 

sensitivity and reproducibility, have been analysed thanks to 3D electrical FE analyses. 

Numerical results allowed to investigate the effect of the current and the potential probes 

position on the performances. Finally, the accuracy of the numerical analyses has been checked 

against experimental results. 
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List of symbols 

 

2α   V-notch opening angle 

a   Reference dimension for selecting the maximum FE size d 

cw1, cw2, cw3  Mode I, II, and III coefficients accounting for mean stress effect 

d   Average FE size 

Δ   Range of cyclic quantities (maximum minus minimum) 

e1, e2, e3  Mode I, II, and III coefficients for evaluating ΔW̅ 

E   Young’s modulus 

fw1, fw2, fw3  Mode I, II, and III coefficients for calculating σeq,peak 

KI, KII, KIII  Mode I, II, and III Stress Intensity Factors (SIFs) 

K1, K2, K3  Mode I, II, and III Notch Stress Intensity Factors (NSIFs) 

KFE
*, K FE

**, KFE
*** Non-dimensional NSIF parameters based on PSM 

λ1, λ2, λ3  Mode I, II, and III stress singularity degrees 

λ   Local biaxiality ratio defined according to PSM 

ν   Poisson’s ratio 

ρ   Notch tip radius 

R0   Size of material-structural volume according to SED criterion 

r, θ, z  Coordinates of cylindrical reference system at crack/notch tip 

σeq,peak  Equivalent peak stress based on PSM 

σrr, σθθ, σzz  Normal stress components in cylindrical coordinate system 

σθθ,θ=0,peak  Mode I linear elastic peak stress calculated by FEA according to PSM 

τrθ, τrz, τθz  Shear stress components in cylindrical coordinate system 

τrθ,θ=0,peak  Mode II linear elastic peak stress calculated by FEA according to PSM 

τθz,θ=0,peak  Mode III linear elastic peak stress calculated by FEA according to PSM 

W̅   Averaged SED 
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1.1. Fatigue of weldments 

 

The process of joining different components has a fundamental role in designing high-

performance engineering structures. When it comes to metallic materials, welding is 

undoubtedly one of the most efficient and most frequently employed technological processes 

in many different industries. Just think, for example, of the automotive industry, where a 

significant number of structural parts of the frame, the suspensions, the engine, and the 

transmission are welded. Unfortunately, it is just as well known that the safety and structural 

durability of metallic structures relays on the strength of their joints, since most in-service 

failures of metal structural components are due to fatigue actions occurring in the joints (50% 

to 90% of mechanical assembly failures [1]). Furthermore, fatigue failures are also very critical 

for another reason: they occur apparently without warning at a load level far below the static 

strength of the structure. 

To make matters worse, beyond the safety aspects, certainly not negligible, there are many 

other aspects that industries must face, first of all costs. Indeed, metal’s fatigue may seem like 

a niche issue, far from everyday life problems, but some research, even if relatively dated, have 

shown that in industrialized countries, the cost of in-service component rupture amounts to 

around 4% of Gross National Product [2–5]. Last but not least, industries must deal with the 

2030 Agenda and its 17 global Sustainable Development Goals (SDGs), according to which 

there is an urgent need for a global solution to stop Climate Change and global warming worst 

impacts. This turns out in the need of improving not only the safety of industrial structures and 

components but also in the need of improving their environmental impact expressed in terms 

of material and energy consumption with the associated production, inspection, and 

maintenance costs. 

Lack of knowledge in the design of welded structures against fatigue leads to the need to 

oversize components or the unnecessary use of expensive materials and processes. Improving 

knowledge and technologies in structural components design can help not only save lives 

through safer structures but also reduce production, inspection, and maintenance times and 

costs, making industries more competitive and sustainable. This complex scenario makes clear 

the reasons why the research on fatigue lifetime evaluation of welded joints has always been 
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(and still is) of great interest from an engineering perspective. Companies involved in the 

process of designing and manufacturing engineering structures subjected to in-service fatigue 

loadings are constantly looking for new design criteria.  

A huge amount of work has been put into formalizing and validating design criteria against 

fatigue since a century and a half ago, when metal’s fatigue was first recognised as an 

engineering problem by Wöhler [6]. Nowadays, among all proposed criteria for assessing the 

fatigue life of welded details, international standards and recommendations [7,8] suggest the 

nominal stress approach as probably the simplest method. Such a method consists in evaluating 

the applied nominal stress by means of standard solid-mechanics-based stress calculations 

without considering any stress concentration at the weld bead and assuming a linear elastic 

material behaviour. For fatigue assessment, its value is compared with the fatigue strength of 

the considered joints, the latter being directly evaluated from the specific S-N design curve 

chosen from a list of classified structural details.  

The most significant limitation of this method emerges when either the nominal stresses 

cannot be computed or the standard fatigue curve for the specific geometry of the welded detail 

is not available, e.g. in the case of complex joint geometries, whose proper reference design 

category does not exist. To overcome this issue, the standards and recommendations suggest 

carrying out dedicated expensive and time-consuming experimental fatigue tests as the only 

alternative. On the contrary, in the Literature, it has been demonstrated that this limitation can 

be overcome by adopting local approaches [9]. The idea of adopting fatigue lifetime evaluation 

criteria based on local rather than nominal quantities comes from experimental observations on 

the nature of metals fatigue. In fact, it occurs whenever a component is subjected to fluctuating 

stresses and strains, which may lead to failure due to progressive and localized structural 

damage accumulation. Metal fatigue being a localized process of damage accumulation, the 

local geometrical parameters, the local stresses and the material have a major influence on the 

fatigue strength and service life of structural members. Accordingly, criteria based on local 

quantities proved reliable for the fatigue lifetime assessment of welded structures [10]. 

Among all local phenomenological approaches well established in the literature to design 

welded structures against fatigue, the following deserve to be mentioned (the literature is huge, 

only few criteria and papers are cited here): 
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• Notch stress approach [9–13] 

• Strain-life approach [9,14–17] 

• Notch-Stress Intensity Factors (NSIFs) approach [9,18,19] 

• Averaged Strain Energy Density (SED) criterion [20–25] 

• Critical plane models [15,26–28] 

• Theory of Critical Distances (TCD) [26,28–35] 

• Peak Stress Method (PSM) [36–41] 

• Fracture Mechanics (FM) [8,42,43] 

 

Moreover, for the sake of completeness, additional well-established literature on 

phenomenological local approaches applied to non-welded structures can be cited here: 

 

• Notch stress approach [44–46] 

• Strain-life approach [47,48] 

• Notch-Stress Intensity Factors (NSIFs) approach [49,50] 

• Averaged Strain Energy Density (SED) criterion [51,52] 

• Critical plane models [53–57] 

• Theory of Critical Distances (TCD) [26,58,59] 

• Strain energy-based approach [60,61] 

• Fracture Mechanics [62] 

• Thermodynamics in continuum mechanics [63–68] 

 

In the context of this complicated scenario, the aim of the present chapter is that of giving 

the theoretical background on the local approaches used in the rest of the manuscript. In 

particular, the notch stress intensity factor approach (NSIF), the averaged strain energy density 

(SED) criterion and the peak stress method (PSM) will be introduced together with their 

theoretical background, and their application to fatigue lifetime assessment of welded joints. 
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1.2. Notch-Stress Intensity Factors (NSIFs) approach 

1.2.1. Crack: Stress Intensity Factors (SIFs) 

 

The need of analysing the local stress distribution has originally been developed in the 

context of fracture mechanics. It is well known that a crack in a body can be subjected to three 

different opening modes (or a combination of them) (Figure 1.1):  

 

• Mode I, symmetric in-plane tensile loading.  

• Mode II, anti-metric in-plane shear loading.  

• Mode III, out-of-plane shear loading.  

 

 
Figure 1.1. The three basic loading modes of a crack. 

 

 

In the framework of Linear Elastic Fracture Mechanics (LEFM), each local stress mode 

generates singular stresses at the crack tip (Figure 1.2). Generally speaking, the stress field 

ahead the crack tip can be described by superimposition of three independent singular stress 

components corresponding to three independent loading modes of the crack tip (mode I, II and 

III). For an isotropic linear elastic material behaviour, the singularity is always inversely 

proportional to the square root of the distance from the crack tip 1/r0.5 (σ ∝ 1/r0.5, r → 0 ⇒ σ 

→ ∞) and the asymptotic stress distribution in the vicinity of the crack tip restricted to the first-

order terms can be written in closed-form as follow [69–71]: 

 

Mode I

(opening)
Mode II

(in-plane shear)
Mode II

(out-of-plane shear)
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Where σij and σkz represent the stress components in polar coordinates (Figure 1.2), fI,ij, fII,ij, 

and fIII,ij are the angular functions and describe the effect of the angular position on the stresses 

distribution, while KI, KII and KIII are the mode I, mode II, and mode III Stress Intensity Factors 

(SIFs), respectively, are constant whose values depend on the geometry of the analysed 

component, the crack length and the applied load and constraint conditions. These equations 

easily describe the stresses singularity since the stresses are asymptotic to r = 0. In particular, 

they highlight how the stress components near the crack tip vary with 1/r0.5, regardless of the 

geometry of cracked body is. Nevertheless, it must be noted that, Eqs. (1.1) and (1.2) are valid 

for any cracked body when r → 0, i.e. in the singularity-dominated region of the stress field. 

Otherwise, far away from the crack type, the stress field is dominated by the boundary 

conditions instead of the singularity. 

 
Figure 1.2. Definition of the polar coordinate system at the crack tip (2α = 0°, ρ = 0) and the corresponding stress components 

in a generic three-dimensional stress field.  
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r

Z

Crack tip
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σrr
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Along the bisector line, the stress components simplify in the following form: 
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Such stress components are of fundamental importance in the evaluation of the SIFs KI, KII 

and KIII, which are defined as follow [70,72,73]: 

  

0
lim 2 ( , 0)I
r

K r r  
→

=   =        (1.6) 

0
lim 2 ( , 0)II r
r

K r r  
→

=   =        (1.7) 

0
lim 2 ( , 0)III z
r

K r r  
→

=   =        (1.8) 

 

These limits exist and are unique. The measurement unit of the SIFs KI, KII and KIII is 

MPa∙m0.5. They denote the intensity of the asymptotic stress field, since stresses near the crack 

tip increase homothetically with them, and they completely describe the crack tip conditions. 

Indeed, once KI, KII and KIII are known, all components of stress, strain, and displacement are 

known as a function of r and θ.  This means the Stress Intensity Factors (SIFs) are capable of 

completely describing the stress distribution around the singularity dominated region. This 

description of the crack tip stress fields making use of a single-parameter has been found to be 

one of the most important concepts in fracture mechanics, since the asymptotic singular stress 

field distribution in the vicinity of the crack front controls the phenomenon of both fatigue and 

static fracture.  
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1.2.2. Sharp V-Notch: Notch Stress Intensity Factors (NSIFs) 

 

The Notch Stress Intensity Factors (NSIFs) approach for welded joints is based on the 

assumption that conventional arc-welding techniques result in very small values for the weld 

toe and weld root radius. Accordingly, both the weld toe and the weld root are modelled as 

sharp V-notches having a null tip radius (ρ = 0, worst-case hypothesis) and a certain opening 

angle 2α (Figure 1.3). It must be noted that this assumption also states when the notch tip radius 

is small (ρ → 0) but not null (ρ ≠ 0), since, as demonstrated by Smith and Miller [74], their 

fatigue behaviour is the same as that of a sharp V-notch having the same notch depth and 

opening angle. 

 

 
Figure 1.3.Worst case assumption according to the NSIF-based approach in fatigue design of welded joints. (a) example of a 

fillet welded joints with double attachments and (b) corresponding geometrical model. Typically, the sharp V-notch opening 

angles are 2α ≈ 0° for the weld root and 2α ≈ 135°for the weld toe. 

 

As a consequence of the null radius at the V-notch tip, singular stress fields are produced at 

the weld toe and at weld root by the external loads acting on the component. In the framework 

of linear elasticity, similarly to Eqs. (1.1) and (1.2), the stress field in the nearby of a sharp V-

notch tip can be described in polar coordinates by the following expressions [75] (Figure 1.4): 

 

1 21 1, 2 2,1 1

1 1 1 1
( ) ( )

2 2
ij ij ijK f K f

r r   
 − −=   +       (1.9) 

33 3,1

1 1
( )

2
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 −=          (1.10) 
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Weld root
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ρ = 0
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Where, again, σij and σkz represent the stress components in polar coordinates, f1,ij, f2,ij, and 

f3,ij are angular functions which describe the effect of the angular position on the stress values, 

while K1, K2 and K3 are the mode 1, mode 2, and mode 3 Notch Stress Intensity Factors (SIFs), 

which are constant whose values depend on the geometry of the analysed component, the 

applied load and constraint conditions, the notch size and the notch opening angle 2α.  Finally, 

λ1, λ2, and λ3 represent the stress singularity degrees relevant to the corresponding local stress 

mode (mode 1, 2, and 3 respectively). Just as in the cracked component (2α = 0), the complete 

solution consists in additional non-singular higher-order terms, so Eqs. (1.9) and (1.10) are 

strictly valid only for r → 0 since these equations describe an asymptotic distribution of stresses 

to r = 0.  

 

 

 

Figure 1.4. Definition of the cylindrical coordinate system (r, θ, z) cantered at the sharp V-notch tip (2α, ρ = 0) and the 

corresponding local stress components in a generic three-dimensional stress field. 

 

λ1, and λ2 are the smallest positive eigenvalues in the Williams’ solution for the in-plane 

symmetrical and in-plane anti-metrical stress field, respectively [75]. Similarly, λ3 is the 

smallest positive eigenvalue obtained from the solution of the out-of-plane stress field [76].  

In more detail, they are the first positive solutions of the following transcendent equations: 
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1 1sin(2 ) sin(2 ) 0  +  =         (1.11) 

2 2sin(2 ) sin(2 ) 0  −  =         (1.12) 

3sin(2 ) 0 =          (1.13) 

 

Where 2γ = 2π – 2α. They define the degree of the stress singularity (in simple words, the 

rate at which the stress field approaches infinity as the distance from the notch tip approaches 

zero r → 0) at the notch tip and are function of only the notch opening angle 2α. Table 1.1 

reports their values for certain opening angles.  

 

Table 1.1. Stress singularity exponents for certain notch opening angles (values from [21]) 

2α 

[°] 

λ1 λ2 λ3 

[-] [-] [-] 

0 0.500     0.500 0.500 

90 0.545 0.909 0.667 

120 0.616 - 0.750 

135 0.674 - 0.800 

 

In a very recent contribution [77] the following parametric expression function of the 

opening angle 2α has been proposed to compute the stress singularity exponents: 

 

4 3 21 (2 ) (2 ) (2 ) (2 )i a b c d e    − =  +  +  +  +     (1.14) 

 

Where i = 1, 2 and 3, 2α is the V-notch opening angle and must be expressed in degrees [°], 

while a, b, c, d, and e are coefficients whose values are reported in Table 1.2 as a function of 

the local stress mode. 

 

Table 1.2. Coefficients of Eq. (1.14) for estimating the stress singularity exponents. 

Coefficient λ1  λ2  λ3  

a  -5.643·10-10 0 0 

b  5.379·10-8 -9.491·10-8 -3.768·10-8 

c  -7.777·10-6 -9.802·10-6 -1.167·10-7 

d  1.785·10-4 -2.906·10-3 -1.525·10-3 

e  0.500 0.500 0.500 



1.2 Notch-Stress Intensity Factors (NSIFs) approach 

 

12 

 

Eq. (1.14) has been plotted in Figure 1.5 which shows that the singularity exponents for a 

sharp V-notch (2α > 0), expressed in terms of 1- λi (for i = 1, 2, 3), are always smaller than that 

of cracked components (2α = 0). Indeed, in the case of a cracked component, all the singularity 

exponents collapse into the same value, i.e. 0.5. Interestingly, the mode 2 stress singularity 1- 

λ2 is weaker, i.e. has a smaller value for a fixed notch opening angle 2α, than the mode 3 stress 

singularity 1- λ3, which in turn is blander than 1- λ1 (Figure 1.5). Finally, it is important to note 

that when 1- λi (for i = 1, 2, 3) become null (i.e. the eigenvalue is λi = 1) the corresponding 

stress field component is no more singular. This happens, i.e. the stress singularity completely 

disappear, in case of straight edges (2α = π) for modes 1 and 3 whilst when the opening angle 

is 2α ≥ 102.6° for mode 2.  

As for the cracked body, the stress components along the bisector line (θ = 0) simplify in the 

following form: 
 

11 1

1 1
( , 0)

2
r K

r
  

 −= =         (1.15) 

22 1

1 1
( , 0)

2
r r K

r
  

 −= =         (1.16) 

33 1

1 1
( , 0)

2
z r K

r
  

 −= =         (1.17) 

 

Somehow, the NSIFs extend the concept of SIFs describing not only the stress singularity at 

crack tips but also that of sharp V-notches having null tip radius (ρ = 0). 
 

 
Figure 1.5. Mode I, II and III stress singularity exponents 1- λi (for i = 1, 2, 3) as a function of the opening angle [19]. 
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The definitions of Mode I and Mode II NSIFs (for plane problems) were given by Gross and 

Mendelson in 1972 [73]: 

 

11-λ
1 θθ,θ=0

r 0
K = 2π lim σ r

→
           (1.18) 

 

21-λ
2 rθ,θ=0

r 0
K = 2π lim τ r

→
           (1.19) 

 

while the mode III N-SIF was defined in 1997 [76]: 

 

31-λ
3 θz,θ=0

r 0
K = 2π lim τ r

→
           (1.20) 

 

Their dimensions are MPa·m1-λ1, MPa·m1-λ2, and MPa·m1-λ3, respectively. The NSIFs are linear 

elastic stress parameters applicable to sharp V-shaped notches (having notch tip radius equal to 

zero) where the linear elastic stress concentration cannot be defined, the stress distributions 

being singular there. Therefore, the NSIFs take the same role that the SIFs have in the Linear 

Elastic Fracture Mechanics discipline.  

 

 

1.2.3.   Numerical evaluation of the NSIFs 

 

The most robust and well-known method to compute the NSIFs is by directly applying the 

NSIFs definition, i.e. evaluating all stress distributions in the vicinity of the V-notch tip along 

the bisector line (θ = 0 in Figure 1.4 and Figure 1.6) and performing the limit calculation 

reported in Eqs. (1.18), (1.19), and (1.20). Certainly, the use of finite element analysis (FEA) 

is a very common and effective tool in calculating the stress distribution. In this case, the 

element size must be very small, i.e. the mesh must be extremely dense, in order to capture the 

gradient of the local stress field.  

As an example the evaluation of the mode I NSIF, ΔK1, at the weld toe of the transverse non-

load-carrying welded joint reported in Figure 1.6, the minimum element size in the nearby of 
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the singularity point (the weld toe) must be in the order of 10-5 mm (Figure 1.7) to properly 

capture the stress distribution in the singularity dominated region (Figure 1.8).  

 
Figure 1.6. Geometry of the transverse non-load-carrying welded joint considered in the example for the calculation of the 

mode I NSIF at the weld toe according to the NSIF definition (Eqs. (1.18), (1.19), (1.20)). On the right there is a detail of the 

weld toe modelled as sharp V-notch with highlight the opening (mode I) singular stress distribution along the bisector line 

σθθ,θ=0(r).  

 

In particular, the 2D geometry of Figure 1.6 has been modelled exploiting both the planes of 

symmetry. Then it has been discretized using 2D 4-node quadrilateral plane elements under 

plane strain conditions. The mesh pattern has been carefully generated so as to obtain a smooth 

gradient of element size ranging from 10-5 mm at the notch tip to 1mm far away from it. Finally, 

a uniform tensile nominal stress Δσ = 1 MPa has been applied on the main plate (Figure 1.7).  

 
Figure 1.7. FE model adopted for the definition-base calculation of the mode I NSIF at the weld toe of the joint in Figure 1.6. 
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Eventually, once solved the model, the local stress distribution along the bisector line (θ = 

0) has been obtained by the FE model, it has been possible to apply the definition (Eqs. (1.18), 

(1.19), (1.20)) and obtaining the mode I NSIF range ΔK1 = 2.76 MPa·mm0.326. 

 

 
Figure 1.8. Singular linear elastic mode I stress field along the weld toe bisector line of the joint in Figure 1.6 obtained from 

FEA (Figure 1.7) with applied Δσ = 1 MPa and having very fine mesh (d ~ 10-5mm) to apply the NSIF definition. The numerical 

solution is compared with the asymptotic analytical solution showing very good agreement. 

 

 

1.2.4. The Peak Stress Method: rapid estimation of the NSIFs 

 

It is clear that the definition-based K1 numerical computation approach cannot be easily 

extended to industrial applications. In fact, the calculations can be very complex and time-

consuming, both due to the needed mesh density and the post-processing required in calculating 

the limit. To overcome this limitation, Meneghetti and Lazzarin [36] proposed the so-called 

Peak Stress Method (PSM), which is a simplified engineering approach to rapidly estimate the 

NSIFs using linear elastic FE analyses having rather coarse meshes compared to that required 

for applying the NSIFs’ definition. This numerical method is based on that by Nisitani and 

Teranishi [78] for the rapid numerical estimation of the SIF of a crack emanating from an 

ellipsoidal cavity. Under these conditions, they observed that the ratio KI/σpeak between the 

mode I SIF KI and the linear elastic peak stress σpeak calculated at the crack tip by means of FE 
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analyses depends only on the adopted element size, as long as the mesh pattern has a constant 

element size. In other words, they showed the linear elastic peak stress σpeak calculated by FEM 

at the crack tip, can be used to quickly estimate KI even if the linear elastic analysis does not 

converge and the finer the mesh is, the higher the linear elastic stress, the linear elastic stresses 

being singular at the crack tip. The KI calculation is possible provided that a previous calibration 

of the adopted mesh pattern has been performed on geometries whose exact KI are known.  

Similarly, the strength of the PSM is exactly to establish a link between the singular linear 

elastic peak stresses calculated by FEM at the V-notch tip, the finite element size and the 

relevant NSIF. To rapidly estimate K1, K2, and K3 the PSM exploits the opening (mode I), in-

plane shear (mode II), and out-of-plane shear (mode III) peak stresses σθθ,θ=0,peak, τrθ,θ=0,peak, and 

τθz,θ=0,peak, respectively, obtained from linear elastic FE analyses (see Figure 1.9, Figure 1.10, 

Figure 1.11, and Figure 1.12). More in detail, σθθ,θ=0,peak, τrθ,θ=0,peak, and τθz,θ=0,peak are the peak 

stresses computed in a local cylindrical coordinate system, which must be centred at the node 

located at the V-notch tip and have z-direction tangent to the notch tip line and θ-direction 

aligned with the notch bisector line, r being the radial direction. In such reference system, peak 

stresses are referred to the notch bisector line identified by the direction θ = 0°, as an example 

σθθ,θ=0,peak is the opening stress acting normal to the notch bisector, as reported in Figure 1.9, 

Figure 1.10, Figure 1.11, and Figure 1.12. 

The PSM has three main advantages compared to the definition-based K1 numerical 

computation. The first one is that the element size necessary to perform the FE analyses 

according to the PSM is order of magnitude larger than that required to apply the NSIF 

definition (see the example in Figure 1.9, Figure 1.10, Figure 1.11, and Figure 1.12). The second 

is that the free mesh generation algorithm can be used avoiding any time consumption in the 

pre-processing phase. Finally, the last is that it requires only one nodal stress value, i.e. the peak 

stresses σθθ,θ=0,peak, τrθ,θ=0,peak, and τθz,θ=0,peak, instead of the whole stress distribution, greatly 

simplifying the post-processing of the data.  

Then, the NSIFs can be estimated as follow [36–38]: 

11-λ*
1 FE θθ,θ=0,peakK K σ d          (1.21) 

21**
2 FE rθ,θ=0,peakK K τ d −          (1.22) 

31-λ***
3 FE θz,θ=0,peakK K τ d          (1.23) 
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where K*
FE, K**

FE and K***
FE are calibrated non-dimensional constants, d is the average size 

of the finite elements, λi (i = 1, 2 and 3) are the stress singularity exponents which depend on 

the notch opening angle 2α, and σθθ,θ=0,peak, τrθ,θ=0,peak, and τθz,θ=0,peak are the opening (mode I), 

in-plane shear (mode II), and out-of-plane shear (mode III) peak stresses, respectively, obtained 

from linear elastic FE analyses according to the rules of the PSM.  
 

 
Figure 1.9. FE models to apply the PSM according to Eqs. (1.21), (1.22), and (1.23) for a partial-penetration tube-to-flange 

welded joint under combined bending and torsion loading using 2D 4-node plane elements. Image taken from [41]. 

 

More in detail, K*
FE, K**

FE and K***
FE (Eqs. (1.21), (1.22), (1.23)) have been calibrated by 

using 2D as well as 3D finite elements available in several commercial FE codes (Abaqus®, 

Straus7®, MSC Patran/Nastran®, Lusas®, Ls-dyna®, Optistruct®) [41,79,80] since they depend 

on the element type and formulation, on the FE mesh pattern and on the employed FE 

commercial code [79,80]. The calibration for 2D elements has been performed on 4-node 

quadrilateral plane elements (PLANE 182 with K-option 1 set to 3, activating the ‘simple 

enhanced strain’ element formulation, of the Ansys® element library) and on 4-node harmonic 

elements (PLANE 25 of the Ansys® element library) [36–38] (see Table 1.3). 
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Figure 1.10. FE models to apply the PSM according to Eqs. (1.21), (1.22), and (1.23) for a partial-penetration tube-to-flange 

welded joint under combined bending and torsion loading using 3D 8-node brick elements. Image taken from [41]. 
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Figure 1.11. FE models to apply the PSM according to Eqs. (1.21), (1.22), and (1.23) for a partial-penetration tube-to-flange 

welded joint under combined bending and torsion loading using 3D 4-node tetra elements. Image taken from [41]. 

 

 
Figure 1.12. FE models to apply the PSM according to Eqs. (1.21), (1.22), and (1.23) for a partial-penetration tube-to-flange 

welded joint under combined bending and torsion loading using 3D 10-node tetra elements. Image taken from [41]. 
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Instead, the calibration for 3D elements has been performed on 8-node brick elements [81] 

(SOLID185 with K-option 2 set to 3, activating the ‘simple enhanced strain’ element 

formulation, of the Ansys® element library) and on both 4-node linear tetra elements (SOLID 

285 of the Ansys® element library) and 10-node quadratic tetra elements (SOLID 187 of the 

Ansys® element library) [40,41]. The corresponding values of K*
FE, K**

FE and K***
FE calibrated 

using 2D 4-node plane [36–38], 3D 8-node brick elements [81], and 3D 10-node tetrahedral 

[40,41] elements of Ansys® software are summarised in Table 1.3. 

Table 1.3 also show that some restrictions about the mesh pattern in the nearby of the V-

notch tip take place when 2D 4-node plane elements and 3D 8-node brick elements are used. In 

particular, the PSM requires the node located at the notch tip is shared by four elements when 

the notch opening angle 2α is smaller than 90° or two elements when the opening angle 2α is 

greater than 90° [41,79]. This condition can be automatically satisfied by the free mesh 

generation algorithm available in Ansys® software after having imputed only the ‘global 

element size’ parameter d, without any further settings, as depicted in Figure 1.13. Figure 1.13 

summarizes the requirements on the FE mesh pattern showing some examples of FE mesh 

patterns according to the PSM taking advantage of the symmetry plane.  

 

 
Figure 1.13.Standard FE free mesh pattern according to the PSM for 4-node plane and 8-node brick elements. 
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Table 1.3. Summary of parameters K*FE, K**FE and K***FE, mesh density a/d, and FE mesh pattern requirements to apply the 

PSM with Ansys® [36–41,81,82]. 

Loading FE analysis PSM parameters 2α = 0° 2α = 90° 2α = 120° α = 135° a – root side° a – toe side° 

2D/3D FE type#      

Mode I 2D Plane-4 K*
FE 1.38±3% 1.38±3% 1.38±3% 1.38±3% min{l, z} t 

   (a/d)min 3 3 3 3   

   FE at notch tip^ 4 4 2 2   

 3D+ Brick-8 K*
FE 1.38±3% 1.38±3% 1.38±3% 1.38±3% min{l, z} t 

   (a/d)min 3 3 3 3   

   FE at notch tip^ 4 4 2 2   

 3D+ Tetra-4 K*
FE 1.75±22% 1.75±22% 1.75±22% 1.75±22% min{l, z} t 

   (a/d)min 3 3 3 1   

   FE at notch tip^ not to be checked     

 3D+ Tetra-10 K*
FE 1.05±15% 1.05±15% 1.05±15% 1.21±10% min{l, z} t 

   (a/d)min 3 3 3 1   

   FE at notch tip^ not to be checked   

Mode II 2D Plane-4 K**
FE 3.38±3% 2.62±10% - - min{l, z} - 

   (a/d)min 14 10 - -   

   FE at notch tip^ 4 4 - -   

 3D+ Brick-8 K**
FE 3.38±3% 2.62±10% - - min{l, z} - 

   (a/d)min 14 10 - -   

   FE at notch tip^ 4 4 - -   

 3D+ Tetra-4 K**
FE 2.65±15% 2.90±10% - - min{l, z} - 

   (a/d)min 3 1 - -   

   FE at notch tip^ not to be checked - -   

 3D+ Tetra-10 K**
FE 1.63±20% 2.65±10% - - min{l, z} - 

   (a/d)min 1 1 - -   

   FE at notch tip^ not to be checked   

Mode III 2D Plane-4 K***
FE 1.93±3% 1.93±3% 1.93±3% 1.93±3% min{l, z} t 

   (a/d)min 12 - - 3   

   FE at notch tip^ 4 - - 2   

 3D+ Brick-8 K***
FE 1.93±3% 1.93±3% 1.93±3% 1.93±3% min{l, z} t 

   (a/d)min 12 - - 3   

   FE at notch tip^ 4 - - 2   

 3D+ Tetra-4 K***
FE 2.20±15% 2.20±15% 2.20±15% 2.20±15% min{l, z} t 

   (a/d)min 5 5 5 5   

   FE at notch tip^ not to be checked     

 3D+ Tetra-10 K***
FE 1.37±15% 1.37±15% 1.70±10% 1.70±10% min{l, z} t 

   (a/d)min 3 3 3 3   

   FE at notch tip^ not to be checked   

+ ‘Full graphics’ option must be activated when calculating peak stresses according to 3D PSM 

#  FE of Ansys® code: Plane-4 = PLANE 182 (K-option 1 set to 3) or PLANE 25, Tetra 10 = SOLID 187 

^  number of finite elements which share the node at the notch tip 

°  l, z, t are defined in Figure 1.14 
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As for 3D tetra elements, they have no mesh pattern restrictions to comply with when are 

used [41] (see Figure 1.11 and Figure 1.12). This makes them even more efficient in discretizing 

very complex 3D geometries compared to brick elements for which the discretization of such 

geometries would be impossible. Unfortunately, they lead to irregular FE mesh patterns along 

the notch tip line, which means the nodes located on it share a different number of tetra 

elements. As a result, such a mesh pattern results in a noisy distribution of the NSIFs, due to a 

noisy distribution of the peak stresses (see Eqs. (1.21), (1.22), (1.23)) even in 3D geometries 

where the NSIFs are rigorously constant along the V-notch tip line [39]. To address this issue, 

Campagnolo et al. [40] suggest smoothing the peak stresses distribution along the V-notch tip 

line by substituting into Eqs. (1.21), (1.22), (1.23) the peak stresses σθθ,θ=0,peak, τrθ,θ=0,peak, and 

τθz,θ=0,peak with the corresponding average peak stresses , 0,= peak  , , 0,=r peak  , and , 0,=z peak   

defined as follow: 

 

ij,peak,n=k-1 ij,peak,n=k ij,peak,n=k+1

ij,peak,n=k

n=node

σ +σ +σ
σ =

3     (1.24) 

 

Where σij = σθθ,θ=0,peak, τrθ,θ=0,peak, τθz,θ=0,peak. In few words, the average peak stresses , 0,= peak 

, , 0,=r peak  , and , 0,=z peak   are defined as the moving averages of the peak stresses calculated on 

three adjacent vertex nodes. (1.24) gives the example for calculating the peak stress at node n 

= k (see Figure 1.11 and Figure 1.12). Moreover, as explained in [40,80], the peak stresses at 

nodes on a free surface of the investigated structure (red nodes in Figure 1.11 and Figure 1.12) 

must neglected and not be inputted into Eq. (1.24). An additional restriction comes up when 

dealing with 10-node tetra elements. It consists in neglecting peak stresses at mid-side nodes 

(blue nodes in Figure 1.12) and considering only that relevant to vertex node in Eq. (1.24). 

Finally, it is important to highlight that the global element size d can be arbitrarily chosen, 

provided it is within a certain range of applicability, to properly generate a finite element model 

consistent with the rule of the PSM. In particular, the mesh pattern must satisfy a certain mesh 

density ratio a/d, where d is the ‘global element size’ to be given as an input to the free mesh 

generation algorithm of the FE software, while a is a reference dimension defined as a function 

of the geometrical parameters t, z, l of Figure 1.14. As reported in Table 1.3, the minimum 

values of a/d depend on the adopted FE type, the local stress mode and the considered notch 
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opening angle 2α. For example, in the case of a weld toe (2α = 135°) under pure mode 1 loading 

and modelled using 10-node tetra elements, the minimum mesh density ratio a/d required by the 

PSM is a/d ≥ 3 to obtain KFE∗=1.21±10%, a being the plate thickness t (Figure 1.14 and Table 

1.3). More details on the applicability of the PSM can be found in a recent review [41]. 

 

 

Figure 1.14. Definition of the parameters l, z, t required in the evaluation of the reference dimension a according to Table 1.3. 

Image taken from [41].  

 

For comparison, the PSM has been applied to the mode I NSIF evaluation at the weld toe 

of the transverse full penetration welded joint in Figure 1.15 having the same geometry and 

loading conditions as that reported in Figure 1.6. Again, the FE model has been generated 

exploiting the two symmetries, and the model has been discretized using 4-node quadrilateral 

plane elements (PLANE 182 with K-option 1 set to 3, activating the ‘simple enhanced strain’ 

element formulation, of the Ansys® element library). The minimum mesh density ratio must 

be a/d = 3 to apply the PSM at the weld toe under mode I local stresses, where a = t = 8 mm 
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for considered joint geometry. According, a global element size d = a/3 = 8/3 = 2.7mm has 

been given as an input to the free mesh generation algorithm of the Ansys® FE software, and 

it has been obtained the mesh pattern showed in Figure 1.16. After the solution, the maximum 

principal stress range Δσ11,peak = 1.4097 MPa has been evaluated at the weld toe, since under 

pure mode I stresses, it approximately corresponds to the opening (mode I) peak stress range 

Δσθθ,θ=0,peak, but it is easier to be obtained since it is invariant with respect to the reference 

system. Then, the mode I NSIF range ΔK1 has been evaluated according to Eq. (1.21) obtaining 

ΔK1 = 1.38∙Δσ11,peak∙d.326 = 1.38∙1.4097∙2.70.326 = 2.689 MPa∙mm0.326 in very good agreement 

with the value obtained applying the definition, the percentage error being (2.689-2.76)/2.76 = 

-2.6%.  

 

 
Figure 1.15. Geometry of the transverse non-load-carrying welded joint considered in Figure 1.6 here applied for the 

calculation of the mode I NSIF at the weld toe according to the PSM (Eqs. (1.21), (1.22), (1.23)). On the right, a detail of the 

weld toe modelled as sharp V-notch with highlight the opening (mode I) singular peak stress σθθ,θ=0,peak evaluated at the FE 

node laying at the V-notch tip. 

 

By comparing Figure 1.16 with Figure 1.7, it appears clear the advantage of using the PSM 

instead of the NSIF-definition-based calculation of the NSIFs. Actually, the global element 

size adopted to apply the PSM (d = 2.7 mm) is extremely greater (i.e. the FE model is 

computationally extremely faster and more efficient) than that required for the calculation of 

K1 according to the definition, which locally required element in the order of 10-5 mm. 
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Figure 1.16. a) FE model adopted for the PSM calculation of the mode I NSIF at the weld toe of the joint in Figure 1.15. b) 

Contour map of the maximum principal stress obtained from FEA according to the PSM with applied Δσ = 1 MPa with highlitet 

the value at the node laying at the sharp V-notch tip. 

 

 

1.2.5. Fatigue design against pure mode I weld toe using the NSIFs approach 

 

The NSIFs quantify the intensity of the asymptotic stress distributions at the V-notch tip and 

they have been shown to be fatigue relevant parameters [9,18,19]. More in detail, in the case of 

pure mode I loading (there are no mode II and III contributions), the idea behind the NSIF 

approach for the fatigue lifetime assessment of welded joints is that joints subjected to the same 

value of the applied NSIF range ΔK1 (calculated maximum value minus minimum value, Kmax 

- Kmin), will exhibit the same fatigue life (i.e. number of cycles to failure Nf). That because ΔK1 

conveys all information on the intensity of the local stress field, regardless the type of loads (as 

long as they generate only pure mode I local stresses) or the geometry of the component.  

A very important application of what has been described is the one reported by Lazzarin and 

Tovo [18] about welded joints under pure mode I local stresses showing fatigue failure at the 

weld toe. In this case, they demonstrated the weld toe can be modelled like a sharp V-notch 

having opening angle 2α = 135° (Figure 1.3). They considered the fatigue strength of non-load-

carrying fillet welded joints made of structural steel and having different geometry. As 

expected, they found the experimental data were badly descripted by a single design scatter 

band expressed in terms of applied nominal stress range Δσ versus the cycles to failure Nf, which 

resulted very wide by virtue of the great variability of the considered geometries (Figure 1.17). 

Indeed, according to the nominal stress approach [7,8], it is necessary to adopt a different S-N 

D = 1 MPa

Weld toe d = 2.7 mm

t = 8 mm

D =1 MPa

D11,peak=1.4097 MPa

a) b)
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design curve chosen from a list of classified structural details for each joint geometry rather 

than including all the data in a single scatter band.  

However, by adopting the applied NSIF range ΔK1 instead of the applied nominal stress 

range Δσ all data collapsed within a single scatter band having a much narrower dispersion 

(Figure 1.17). In other words, similarly to the SIF in the context of the Linear Elastic Fracture 

Mechanic (LEFM), the NSIF includes all information about the component geometry and the 

scale effect on the local stress field, properly correlating the fatigue strength of joints having 

different geometries and different absolute dimensions.  
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Figure 1.17. Design scatter band for the fatigue lifetime assessment of non-load-carrying fillet welded joints according to the 

nominal stress approach and to the NSIF based approach [18]. 

 

So, summarizing the advantages of the NSIF approach compared to a nominal stress 

approach are the following: 

 

• It allows to use a single design curve whatever the joint geometry (as long as they 

have always the same opening angle 2α) for a fixed survival probability (PS). For 
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example, in case of weld toe failure (2α = 135°) the fatigue strength at ND = 5∙106 

cycles for PS = 50% (mean value) is ΔK1D = 22.65 MPa∙m0.326 = 211 MPa∙mm0.326 

(2α = 135° → 1-λ1 = 0.326, see Figure 1.5 and Table 1.1). 

• It is independent on the complexity of the joint geometry, since it also works in the 

case of geometries whose proper reference design category does not exist. Indeed, 

the NSIFs’ values can be easily assessed on the analyticallly, numericallly or 

experimentally. 

 

 

1.2.6. Limitations of the NSIFs approach 

 

The advantages of the NSIF based approach in designing notched components (welded 

joints) against fatigue hold true as long as the analysed notches have the same opening angle 

are subjected only to one of the local stress modes (the other must be null or negligible). 

Otherwise, the NSIFs K1, K2, and K3 can no longer be used as a failure criterion as their size is 

different and their direct comparison can no longer be done. Unfortunately, many 

practical/industrial applications relevant to the fatigue of welded joints must deal with 

components having different notches with different opening angles and subjected to multiaxial 

loadings, i.e. the notch tip is subjected to not-negligible values of K1, K2, and K3 applied at the 

same time. A typical example is that of a load-carrying fillet-welded cruciform joint (Figure 

1.18a) or of a fillet-welded lap joint (Figure 1.18b) in which both the weld toe (2α = 135°) and 

the weld root (2α = 0°) are critical point in the structure where fatigue failure can occur. In this 

case, the mode II at the weld toe is not singular, the opening angle 2α being larger than 102°, 

while at the weld root both mode I and II are singular. Accordingly, it is no more possible to 

perform the fatigue lifetime assessment of the welded joints because a criterion would be 

needed to combine modes I and II and establish the severity of the stress field in the nearby of 

the notches subjected to mixed mode I+II local stresses.  

The NSIF approach cannot be used even in case the mode II component is negligible if 

compared to mode I (this happens for example in the case of load-carrying fillet-welded 

cruciform joint, see Figure 1.18a). Indeed, in both the critical points of the structure, i.e. the 

weld toe and root, the K1 is a fatigue relevant parameter capable of completely describing the 

intensity of the local stress field in the nearby of the notches. However, a direct comparison 
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between K1 for the weld toe and the weld root is not possible, the NSIF measurement units 

being MPa∙m0.326 for the weld toe (1-λ1= 0.326 for 2α = 135°) and MPa∙m0.5 for the weld root 

(1-λ1= 0.5 for 2α = 0°).  

 

 
Figure 1.18. Example of welded details exhibiting mode I+II singular local stresses at the weld root (2α = 0°) and pure mode 

I singular local stress at the weld toe (2α = 135°, mode II is not singular at the weld toe). a) load-carrying fillet-welded 

cruciform joint and b) fillet-welded lap joint. 

 
 
Noteworthily, the local stress fields relevant to the weld toe and the weld root are not 

comparable to each other as they are not parallel due to the different stress singularity degree 

(Figure 1.19). Consequently, it is not possible to establish whether the weld toe or the weld root 

is the most critical point and performing the fatigue lifetime assessment of the welded joint. 
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Figure 1.19. Comparison between mode I singular stress field at the weld toe (2α = 135°) and at the weld root (2α = 0°). 

 

1.3. The averaged Strain Energy Density (SED) criterion 

 

In the context of the NSIF approach and taking advantage of the observations on notch 

sensitivity moved by Neuber [83], Lazzarin and Zambardi [25] proposed the local Strain Energy 

Density (SED) approach. The principle behind the method is quite simple. The method is based 

on the idea of Beltrami [84] who proposed for the first time to adopt the elastic Strain Energy 

Density W as a strength parameter. The problem in the definition of the SED criterion is that as 

for the stress components, also the SED is singular in case of sharp V-notches having null tip 

radius (ρ = 0 implies that σ → ∞ and W → ∞). The solution they found was moved by Neuber’s 

observations [83], according to which both static and cyclic crack initiation at notches is 

regulated by the average value of the stress over an ‘elementary material volume’ or 

‘microstructural support length’ instead of the elastic peak stress. Accordingly, as a static and 

fatigue damage parameter [20–25] they suggest to adopt the average strain energy density 

(SED) W̅ evaluated over a finite material-structural volume close to the notch (or crack) tip. 

Lazzarin and Zambardi [25] proposed a circular-shaped material-structural volume, 

surrounding the crack initiation point, i.e., the weld toe or the weld root, and geometrically 

described by a radius R0, the latter being taken as a material property (see Figure 1.20).  
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Figure 1.20. Circular-shaped average SED material-structural control volume with radius R0 surrounding the crack initiation 

point, i.e., the weld toe or the weld root, of a) a transverse non-load-carrying fillet welded joints and b) a load-carrying fillet 

welded cruciform joint. 

 

So, according to the SED approach, two components having sharp V-notches with different 

opening angles 2α (Figure 1.20) subject to a generic combination of loads generating different 

multiaxial local stresses at the V-notch tips (mode I+II+III), will exhibit the same fatigue life 

Nf if characterized by the same average SED range ΔW̅. This means the SED criterion 

overcomes the limitations of the NSIF approach related to the notch opening angle and to the 

multiaxial load conditions in the fatigue design of welded joints. Indeed, regardless the notch 

opening angle and the multiaxial stress state, the damage parameter is always an energy density 

having unit of measurement equal to Nm/m3.  Furthermore, they observed that in the case of a 

sharp V-notch under mixed mode I+II+III loading and when high-order non-singular stress 

terms are negligible inside the structural volume, the SED W is directly linked to the NSIFs K1, 

K2, and K3. In particular, concerning fatigue loading, they proved that the averaged SED ΔW̅ can 

be written as a function of the ranges of the NSIFs, ΔK1, ΔK2, and ΔK3 (i.e. maximum value 

minus minimum value, Kmax - Kmin) according to the following expression [21]: 
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where E is the Young’s modulus of the material, e1, e2, and e3 are coefficients depending on 

the sharp V-notch opening angle 2α and the Poisson’s ratio ν [21], while cw1, cw2, and cw3 

account for the mean stress sensitivity in case of stress-relieved joints. More in detail, the total 

SED coefficients ei (for i = 1, 2, 3) are defined by the following expressions [25,85]: 
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Where fe1,ij, fe2,ij, and fe3,ij are the angular terms of the strain energy (see [25,85] for their 

explicit expressions). Some notable value relevant to structural steels (ν = 0.3) is reported in 

Table 1.4 as a function of the opening angle.  

 

Table 1.4. Total SED exponents (Eqs. (1.26), (1.27), (1.28)) for certain notch opening angles of structural steel (ν = 0.3) under 

plain strain conditions. 

2α 

[°] 

e1 e2 e3 

[-] [-] [-] 

0 0.134 0.341 0.414 

90 0.146 0.168 0.310 

120 0.130 - 0.276 

135 0.117 - 0.259 

 

 

A parametric polynomial expression which gives the total SED coefficients the total for a 

generic V-notch opening angle 2α and Poisson’s ratio ν is the following [77]: 
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Where the pjk are coefficients (their values are reported in Table 1.5) depending on the local 

stress mode (i = 1, 2, and 3) which subscripts i and j refer to the grades of the variable opening 

angle 2α and Poisson’s ratio ν, respectively. 

 

Table 1.5. Coefficients of Eq. (1.29) for estimating the total SED coefficients (Eqs. (1.26), (1.27), (1.28)). 

 

 

 

Figure 1.21 shows the total SED coefficients dependence on the opening angle 2α in case of 

structural steels (ν = 0.3) under plain strain conditions. It can be noted that e3 is always higher 

than e1 and e2. The latter, in turn, is always larger than e1, at least in the region where the mode 

II SED field (i.e. mode II the stress field) is singular (2α ≤ 102.6°).  

 

 
Figure 1.21. Total SED coefficients e1, e2 and e3 as a function of the notch opening angle 2α for structural steels (ν = 0.3) 

under plane strain conditions. 
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Going back to Eq. (1.25), the cwi coefficients are introduced to include the mean stress effect 

in the averaged SED calculation [41]. Lazzarin et al. [20,21] suggest using the cw coefficients 

only in the case of stress-relieved welded joints, forcing cw = 1 for as-welded joints, 

independently of the residual stress state. This assumption is somehow linked to what suggested 

in international standards and recommendations [7,8,86] according to which there is no mean 

stress effect on the fatigue strength of welded joints for R ≥ -0.25 since the residual stresses are 

tensile and medium-high if compared to the yield strength of the material. Nevertheless, the cw 

coefficients, to be used in case of stress-relieved joints, are defined as a function of the nominal 

load ratio Ri = (σmin/σmax)i for each local stress mode (i = 1, 2, 3) according to the following 

expression [19]: 
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Eq. (1.30) is plotted in Figure 1.22 as a function of the nominal load ratio R. Noteworthy the 

factor of 2 between the coefficients for pulsating (R = 0 → cw = 1) and fully reversed loading 

(R = -1 → cw = 0.5). The last and most important aspect to be discussed is the circular-shaped 

material-structural volume radius R0 (Figure 1.20). It must be thought as a material property 

which value differs from material to material. Interestingly, Lazzarin and Livieri [20] found a 

unique value of R0 for all welded joints made of structural steels. They proposed to calibrate 

the control radius R0 by equating the range averaged strain energy density at the fatigue limit 

(or at a reference number of cycles) of a plain specimen to that of a notched one: 

 

notch plainW WD = D          (1.31) 

 

 To estimate the range of average strain energy density of the notched component ΔW̅notch, 

Lazzarin and Livieri [20] considered the fatigue data relevant to the toe failure of fillet-welded 

joints in the as-welded state (cw = 1) under pure axial fatigue loading. The V-notch opening 

angle has been assumed to be 2α = 135°, this way the averaged mode 2 local SED W̅2 is 
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negligible (the stress field being not singular since 2α > 102°) and only the averaged mode I 

local SED W̅1 has a significant contribution. 

 

 

Figure 1.22. Coefficients cw as a function of the nominal load ratio R. 

 

Accordingly, assuming isotropic and linear-elastic material behaviour under plane strain 

conditions together with the Beltrami total strain energy criterion [84], the range of the average 

strain energy density for the notched component ΔW̅notch can be written as a function of the 

mode I NSIF range at the fatigue limit ΔK1D starting from Eq. (1.25) as follow: 
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For the plain material, they chose the fatigue data relevant to a butt weld flush ground to 

plate since this joint has no notch effect being subjected to a uniform tensile stress field. 

Therefore, the range of the average strain energy density for the plain specimen ΔW̅plain is only 

function of the applied stress range at the fatigue limit ΔσD and can be obtained with the 

following expression: 
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Then, equating Eq. (1.32) with Eq. (1.33) as in Eq. (1.31) and by making the unknown 

variable R0 explicit, the following expression can be obtained: 
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        (1.34) 

 

According to which it is possible to determine the value of the control radius if ΔK1D and 

ΔσD are known. The welded material instead of the base metal fatigue resistance properties must 

be used in the calculations since it is known that the welding processes locally alter the base 

material in the nearby of the weld bead (i.e. were the fatigue failure occurs). Lazzarin and 

Livieri [20] proposed to consider the fatigue data with reference to a number of cycles ND = 

5∙106 relevant to a survival probability PS = 50% (mean value) cycles, and obtained under 

pulsating loading (nominal load ratio R = 0). Thus, by substituting the mode I NSIF range at 

the fatigue limit relevant to the toe failure of fillet-welded joints in the as-welded state ΔK1D = 

211 MPa∙mm0.326 (see Figure 1.17) [18] and the nominal stress range at the fatigue limit relevant 

to a butt weld flush ground to plate ΔσD = 155 MPa [29] into Eq. (1.34), Lazzarin and Livieri 

[20] have found the material-structural control volume radius is equal to R0 = 0.28 mm for arc-

welded structural steel joints.  

Once the R0 value is known, the SED criterion can be applied to any potential fatigue crack 

initiation point in a welded structure allowing the comparison between them (both the fatigue 

strength at the weld toes and the weld roots are expressed in averaged SED range ΔW̅, thus they 

have the same measurement unit) and the following fatigue strength calculation. Figure 1.23 

demonstrates the capability of the averaged SED method in summarizing approximately 900 

experimental data relevant to the fatigue failure of welded joints made of structural steel if 

expressed in terms of average SED versus the number of cycles to failure ΔW̅-Nf. 
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Figure 1.23. Fatigue design scatter band for fatigue weld toe and weld root failures of welded joints made of structural steel 

according to the averaged SED criterion. Image taken from [87]. 

 

 

1.4. The Peak Stress Method: equivalent peak stress 

 

Taking advantage of the rapid evaluation of the NSIFs by means of the PSM, Meneghetti et 

al. [88,89] proposed to express Eq. (1.25) as a function of the peak stresses obtained from FE 

analyses according to the PSM: 
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Or in case of tetra elements: 

 

1 2 3
2 2 21- 1- 1-

* ** ***31 2
, 0,peak r , 0,peak z, 0,peakw1 FE w 2 FE w3 FE

0 0 0

ee ed d d
W c K c K c K

E R E R E R

  

 =  =  =

          
     D = D  + D  + D      
               

 (1.36) 

 

 

0.1 

1.0 

 

105 104 106 107 

R0=0.28 mm 

~900 fatigue test data 

Various steels 

Inverse slope k=1.5 

P.S. 97.7 % 

2D, failure from the weld toe, R= 0 

2D, failure from the weld root, R = 0 

Butt welded joints -1 < R < 0.2 

3D, -1 < R < 0.67 

Hollow section joints, R= 0 

A
v
er

ag
ed

 s
tr

ai
n
 e

n
er

g
y
 d

en
si

ty
 D

W
 N

m
m

/m
m

3
] 

TDW= 3.3 

0.192 
0.105 

0.058 

R0 R0 

2    

Cycles to failure, Nf 

10 

0.104 

0.031 

0.057 



CHAPTER 1: Introduction 

 

37 

 

The SED value thus obtained, once equated to an equivalent uniaxial plane strain state 

( )2 2
,1 / 2eq peakW E D = − D , allows to define an equivalent peak stress generating the same local 

SED [88,89]: 

 

2 2 2 2 2 2
eq,peak w1 w1 , 0,peak w2 w2 r , 0,peak w3 w3 z, 0,peakc f c f c f =  =  =D =  D +  D +  D   (1.37) 

 

Or in the case of tetra elements: 

 

2 2 22 2 2
, 0,peak r , 0,peak z, 0,peakeq,peak w1 w1 w2 w2 w3 w3c f c f c f =  =  =D =  D +  D +  D   (1.38) 

 

where fw1, fw2, fw3 are coefficients accounting for the stress averaging inside the material-

structural volume with size R0 defined as follow: 
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It is worth highlighting that both the peak stresses σθθ,θ=0,peak, τrθ,θ=0,peak, and τθz,θ=0,peak and the 

parameters fwi depend on the global element size d adopted to generate the free mesh pattern 

(Eqs. (1.21), (1.22), (1.23) and (1.39), (1.40), (1.41)). On the other hand, the equivalent peak 

stress is independent of the FE size d, due to the multiplication of the peak stresses by the 

corresponding fwi parameters (see Eq. (1.37) or Eq. (1.38)).  

Similarly to the averaged SED range ΔW̅, the equivalent peak stress range Δσeq,peak (Eqs. 

(1.37) and (1.38)) has been adopted as fatigue damage parameter for the fatigue lifetime 

assessment of arc-welded details made of structural steels subjected to uniaxial and multiaxial 

constant amplitude local stresses [41]. In particular, two components having sharp V-notches 

with different opening angles 2α subject to a generic combination of loads generating different 
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multiaxial local stresses at the V-notch tips (mode I+II+III), will exhibit the same fatigue life 

Nf if characterized by the same equivalent peak stress range Δσeq,peak. 

Two different PSM design curve, expressed in terms of equivalent peak stress range Δσeq,peak 

versus the number of cycles to failure Δσeq,peak-Nf, were obtained for the fatigue design of 

welded joints made of structural steel under pure mode I and under pure mode III local stresses, 

respectively [38,41,90]. The design curve relevant to pure mode I local stresses has been 

defined analysing approximately 180 experimental data relevant to weld toe failure of 

transverse or cruciform fillet welded joints having different main plate thickness and made of 

different structural steels [41,90]. All joints were tested in the as-welded conditions under 

pulsating loadings (R = 0). As a result, they obtained scatter band is characterized by a fatigue 

strength at NA = 2∙106 cycles Δσeq,peak,A,50% = 214 MPa for a survival probability PS = 50%, an 

inverse slope k = 3 and scatter index Tσ with reference to survival probabilities of 2.3%-97.7% 

equal to 1.90. On the other hand, the design curve relevant to pure mode III local stresses has 

been identified analysing approximately 20 experimental data relevant to weld toe failure of 

stress relieved full-penetration or fillet-welded tube-to-flange joints having different main plate 

thickness and made of different structural steels tested under fully-reversed loadings (R = -1) 

[38,41]. The resulting scatter band is characterized by a fatigue strength at NA = 2∙106 cycles 

Δσeq,peak,A,50% = 354 MPa for a survival probability PS = 50%, an inverse slope k = 5 and scatter 

index Tσ with reference to survival probabilities of 2.3%-97.7% equal to 1.90. 

The proper PSM design scatter band must be chosen on the basis of a local biaxiality ratio λ 

which summarizes the relative SED contributions due to mode II/III shear stresses and mode I 

normal stresses. It can be expressed as a function of the peak stresses according to the following 

expression: 

 

2 2 2 2
w2 w2 r , 0,peak w3 w3 z, 0,peak

2 2
w1 w1 , 0,peak

c f c f

c f
 =  =

 =

  D +   D
 =

  D
      (1.42) 

 

Or for tetra elements: 

 

2 22 2
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22
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  D
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It is easy to observe that when the considered notch is subjected to a pure mode I local stress 

state the local biaxiality ratio becomes λ = 0, whilst it is subjected only to mode II+III local 

stresses λ → ∞, otherwise the λ assumes a finite value between 0 and ∞ in case of mixed mode 

I+II+III local stresses. The criterion to choose the proper PSM design curve as a function of the 

value of λ is the following [41] (Table 1.6): fatigue data relevant to λ = 0 must be compared 

with the PSM-based design scatter band having Δσeq,peak,A,50% = 214 MPa and k = 3, while 

fatigue data relevant to λ > 0 must be compared with the PSM-based design scatter band having 

Δσeq,peak,A,50% = 354 MPa and k = 5.  

 

Table 1.6. Criterion for selecting the PSM-based fatigue design curves for arc-welded joints made of structural steels [41]. 

T 

[mm] 

λ Eq. (1.42) 

[-] 

NA 

[cycles] 

Δσeq,peak,A,50% 

[MPa] 

Δσeq,peak,A,97.7% 

[MPa] 

Δσeq,peak,A,2.3% 

[MPa] 

k 

[-] 

Tσ 

[-] 

T ≥ 2 mm λ = 0 2∙106 214 156 296 3 1.90 

T ≥ 2 mm λ > 0 2∙106 354 257 488 5 1.90 

 

 

The equivalent peak stress has been adopted to re-analyse many experimental data relevant 

to arc-welded joint made of structural steel subjected to pure axial/pure bending, pure torsion, 

and in-phase and out-of-phase multiaxial local stresses [41]. Please note that the scatter band 

have never been updated (in terms of slope and endurable stresses) after the original calibration 

[38,90]. Subsequently, they have systematically validated by adding new experimental data 

points and simply checking whether or not the new ones fell inside the pre-existing scatter band.  

Figure 1.24 and Figure 1.25 demonstrate the capability of the method in summarizing 

approximately 860 and 430 experimental data relevant to the weld toe and weld root fatigue 

failure of welded joints made of structural steel for λ = 0 (pure mode I) and λ > 0 (mode I+II+II), 

respectively, when expressed in terms of equivalent peak stress range Δσeq,peak versus the 

number of cycles to failure Δσeq,peak-Nf. 

Additional details on the PSM for the fatigue strength assessment of welded structures 

undergoing constant amplitude multiaxial loadings and the conditions of applicability of the 

method can be found in a recent review [41]. Among recent developments of the PSM, its 

automated implementation [91,92] for the fatigue assessment of complex welded structures 

under CA multiaxial loadings and the application of the PSM to the fatigue assessment of 

welded details included in industrial case studies [93] deserve to be mentioned. 
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Figure 1.24. Fatigue assessment of pure mode I (λ = 0) weld toe and weld root failures of welded joints made of structural 

steels tested in as-welded or stress-relieved conditions according to the PSM. Image taken from [41]. 

 
Figure 1.25. Fatigue assessment of pure multiaxial mode I+II+III (λ > 0) weld toe and weld root failures of welded joints made 

of structural steels tested in as-welded or stress-relieved conditions according to the PSM. Image taken from [41]. 
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1.5. Conclusions 

The aim of the present chapter was introducing the reader to the fatigue of weldments and 

giving all the theoretical background on the local approaches for the fatigue lifetime assessment 

of welded joints. What described here will be extensively exploited in the rest of the manuscript 

especially the concepts of Stress Intensity Factor (SIF), the Notch Stress Intensity Factor 

(NSIF), the averaged Strain Energy Density (SED) criterion and the Peak Stress Method (PSM).  

In Chapter 2 the theoretical framework for developing the Peak Stress Method for the fatigue 

strength assessment of welded joints subjected to Variable Amplitude (VA) uniaxial as well as 

in-phase and out-of-phase multiaxial local stresses will be presented. Then, the proposed 

method will be validated against a large bulk of VA fatigue data taken from the literature 

proving the PSM as an extremely valid technique to design welded joints against CA or VA 

uniaxial as well as multiaxial fatigue local stresses. The proposed method will also be checked 

checked against new experimental data generated by fatigue testing non-load-carrying (nlc) 

fillet-welded double transverse or inclined attachments made of S355 structural steel under pure 

axial loading.   

Next, Chapter 3 will address the introduction of a constant amplitude fatigue limit in the 

mode I PSM design scatter band. Accordingly, a novel approximate approach will be presented 

to a rapid and effective estimate of the constant amplitude uniaxial fatigue limit of welded 

structures in the stress-relieved state by using the PSM, without the need of complex and time-

consuming fracture mechanics-based calculations. This topic will be addressed exploiting a 

fracture mechanics-based criterion based on short fatigue crack propagation and on the so-

called cyclic R-curve analysis, whose theoretical background will be presented in Chapter 3.   

Finally, Chapter 4 will give an insight on some critical aspects relevant to the experimental 

determination of the cyclic R-curve (used in Chapter 3) and, in general, on experimental fracture 

mechanics tests dealing with short cracks. In particular, the problem of performing real-time 

in-situ crack growth monitoring of short cracks will be extensively discussed, this aspect being 

undoubtedly the most crucial when performing fracture mechanic tests on short cracks.  
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List of symbols 

 

2α   V-notch opening angle 

a   Reference dimension for selecting the maximum FE size d 

cw1, cw2, cw3  Mode I, II, and III coefficients accounting for mean stress effect 

d   Average FE size 

Δ   Range of cyclic quantities (maximum minus minimum) 

e1, e2, e3  Mode I, II, and III coefficients for evaluating ΔW̅ 

E   Young’s modulus 

fs1, fs2, fs3  Mode I, II, and III coefficients accounting for the LDR equivalency 

fw1, fw2, fw3  Mode I, II, and III coefficients for calculating σeq,peak 

KI, KII, KIII  Mode I, II, and III Stress Intensity Factors (SIFs) 

K1, K2, K3  Mode I, II, and III Notch Stress Intensity Factors (NSIFs) 

KFE
*, K FE

**, KFE
*** Non-dimensional NSIF parameters based on PSM 

λ1, λ2, λ3  Mode I, II, and III stress singularity degrees 

λ   Local biaxiality ratio defined according to PSM 

nI,ij, nII,hk, nIII,mp Mode I, II and III number of applied cycles from cycle counting 

NI, NII, NIII  Mode I, II, and III total number of applied cycles from cycle counting 

N0   Reference number of cycles 

ν   Poisson’s ratio 

qIi, qIIh, qIIIm  Mode I, II and III number of peak stress levels from cycle counting 

qIj, qIIk, qIIIp  Mode I, II and III number of local load ratios from cycle counting 

RI,j, RII,k, RIII,p Mode I, II and III local load ratios from cycle counting 

R0   Size of material-structural volume according to SED criterion 

ρ   Notch tip radius 

r, θ, z  Coordinates of cylindrical reference system at crack/notch tip 

… 
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… 

σeq,peak  Equivalent peak stress based on PSM 

σrr, σθθ, σzz  Normal stress components in cylindrical coordinate system 

σθθ,θ=0,peak  Mode I linear elastic peak stress calculated by FEA according to PSM 

τrθ, τrz, τθz  Shear stress components in cylindrical coordinate system 

τrθ,θ=0,peak  Mode II linear elastic peak stress calculated by FEA according to PSM 

τθz,θ=0,peak  Mode III linear elastic peak stress calculated by FEA according to PSM 

W̅   Averaged SED 
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2.1. Introduction 

 

As discussed in the introduction, most failures of metal structural components are due to 

fatigue actions occurring in the joints. For this reason, companies involved in the process of 

designing and manufacturing engineering welded structures subjected to in-service fatigue 

loadings are constantly looking for new design criteria. Indeed, improving knowledge and 

technologies in structural components design can help not only save lives through safer 

structures but also reduce production, inspection, and maintenance times and costs, making 

industries more competitive and sustainable. 

Unfortunately, nowadays a huge lack of knowledge still exists when in-service load 

conditions are considered and performing a reasonable accurate fatigue lifetime prediction in 

this design situation is still a challenge for engineers. All fatigue damage criteria have been 

defined and validated under Constant Amplitude (CA) local stresses, i.e. fatigue cyclic stresses 

with a constant amplitude and a constant mean stress. A typical example of CA load is that of 

a sinusoidal load, usually adopted to perform standard fatigue tests for the characterization of 

materials and components’ fatigue properties. However, under real in-service conditions all 

welded structures are usually subjected to rather complex load-time histories composed by 

Variable Amplitude (VA) uniaxial or multi-axial sequence of stresses that can be both 

deterministic and stochastic in nature. Lack of knowledge in the design of welded structures 

against VA fatigue stresses leads to the need to oversize components or the unnecessary use of 

expensive materials and processes.  

In the Literature, there are many attempts to formulate and validate new criteria for the 

design of welded structures against VA fatigue, but none of them has reached yet universal 

acceptance. International standards and recommendations suggest the nominal stress approach 

as probably the simplest method. As presented in the previous chapter, this method consists in 

evaluating the applied nominal stress by means of standard solid-mechanics-based stress 

calculations without considering any stress concentration at the weld bead and assuming a linear 

elastic material behaviour. The fatigue lifetime assessment is done by comparing the value of 

the applied nominal stress with the fatigue strength of the considered joints, the latter being 
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directly evaluated from the specific S-N design curve (see Figure 2.1a) chosen from a list of 

classified structural details. In case of VA loads, standards and recommendations [1,2] suggest 

combining the CA design curves with a cumulative damage rule, i.e. the so-called Palmegren-

Miner Linear Damage Rule (LDR) [3,4]. According to the original formulation of the LDR by 

Miner [4], a certain fatigue damage is present in the analysed component when applying ni 

loading cycles at the same stress level Δσi (CA), the damage being proportional to the total 

amount of net work wi absorbed during the ni loading cycles. If the component is loaded with 

the same stress level Δσi until failure, then the number of loading cycles become equal to the 

corresponding fatigue life endurance ni = Ni and the absorbed net work become equal to the 

total work absorbed at failure wi = Wi. Then, assuming the absorbed work wi is proportional to 

the applied number of loading cycles ni, Miner suggested mathematically describing the fatigue 

damage induced by these ni loading cycles at the same stress level Δσi as follow: 

 

i i
i

i i

w n
D

W N
= =          (1.1) 

 

The damage Di being obviously equal to 1 at failure. Finally, assuming the total amount of 

net work absorbed at failure Wi is constant with the stress level (Wi = W for any Δσi), Miner 

suggested evaluating the total damage provoked by different loading cycles n1, n2, ..., nn applied 

at different load levels Δσ1, Δσ2, ..., Δσn by the following expression: 

 

1 1 1

1
n n n

i i
i

i i i i

w n
D D

W N= = =

= = = =          (1.2) 

 

After its first formulation in 1945, many fatigue tests were undertaken with the aim of 

validating the LDR and, unfortunately, significant differences were experimentally observed in 

several instances. Although such disagreements encouraged the publication of a huge number 

of novel theories on VA fatigue [5,6], to date no one has reached yet universal acceptance, the 

reasons being for example the absence of a physical meaning, a complex mathematical and 

experimental description or the lack of generality which makes the criteria appliable to some 

specific conditions only. Consequently, standards and recommendations [1,7] suggest keep 

using the LDR but in a modified version as proposed by Haibach [8,9].  
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Figure 2.1. a) Fatigue resistance S-N curves for steel welded joints subjected to normal stresses. b) Modified 

resistance S-N curves of steel welded joints for the Palmgren-Miner summation. Images taken from [2]. 

 

According to the standard LDR formulation, all the loading cycles applied at a stress level 

below the Constant Amplitude Fatigue Limit (CAFL) of the welded details are not damaging, 

k2 = 2k1-1 = 5

k1 = 3

C
A

F
L

k1 = 3
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in this case the number of cycles to failure being theoretically Ni → ∞ and the consequent 

fatigue damage ni/Ni → 0. In VA fatigue, this observation holds true when all the loading cycles 

are applied below the fatigue limit. On the contrary, it is well known from experimental 

observations that loading cycles applied below the CAFL can contribute to increase the fatigue 

damage when loads are applied both above and below the CAFL during VA fatigue tests. To 

overcome this limitation of the LDR, standards and recommendations [1,7] indicate 

extrapolating the S-N curve beyond the fatigue limit with a slope k2 = 2∙k1-1 according to 

Haibach’s modification [8,9] (see Figure 2.1b which shows the modified S-N curves for welded 

joints under normal stresses taken from the IIW recommendations [2]).  

Noteworthy, important differences still exist between available standards and 

recommendations. The first that needs to be highlighted is the definition of the CAFL. In 

particular, both Eurocode 3 [1] and IIW recommendations [2] define the CAFL as the stress 

level corresponding to a certain fixed number of cycles to failure (see the knee points on Figure 

2.1 for the case of IIW recommendations), this number being dependent on the considered 

standard (5∙106 cycles for [1] and 107 cycles for [2]).  

Another fundamental difference relays on the total damage sum to failure D. Indeed, 

although the Eurocode 3 [1] suggest using a total damage sum D = 1 in agreement with the first 

formulation of the LDR [4], it has been widely demonstrated in the Literature that this parameter 

can assume significantly smaller values than 1 [10,11]. One reasonable and effective way to 

overcome the possible unconservative predictions of the LDR was suggested for the first time 

by Schütz [12] and consists in the use of a relative Palmegren-Miner rule, i.e. introducing a 

safety factor in the LDR. This results in fixing the total damage sum to failure D = Dspec < 1, 

the value of Dspec to be selected by experience on similar components and VA tests. 

Accordingly, Hobbacher [2] recommends using Dspec = 0.5 for standard applications and Dspec 

= 0.2 when considering “spectra with high mean stress fluctuations”. 

As argued in the previous chapter, most significant limitation of the nominal stress approach 

appears when considering real components for which either the nominal stresses cannot be 

computed or the standard fatigue curve for the specific geometry of the welded detail is not 

available. It has also been discussed that this limitation of the nominal stress approach can be 

overcame by adopting fatigue approaches based on local quantities instead of global ones 

[13,14]. Among local approaches, the notch stress approach [13–15], the strain-life approach 

[13,16–19], those based on the Notch-Stress Intensity Factors (NSIFs) approach [13,20,21], the 
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averaged Strain Energy Density (SED) criterion [22–27], the critical plane approach [17,28,29], 

the Theory of Critical Distances (TCD) [28,30,31] or the Peak Stress Method (PSM) [32–37] 

deserve to be mentioned.  

It is worth noting that most of previous local approaches have been extended to account also 

for variable amplitude fatigue loadings [38–41]. Interestingly, all these methods have been 

always reformulated in the same way, i.e., by combining their CA formulation with the 

Palmgren-Miner LDR as cumulative damage rule to account for VA loads. The difference 

between these methods is the adopted fatigue damage parameter. In particular, Nykänen et al. 

[38] proposed using the effective notch stress approach [2,13–15,42–44] which in very few 

words consists in modelling a fictitious notch tip radius r at the weld toe or root of the welded 

joint (r = 1 mm for steel welded joints [2,42]) and evaluating the total stress at the rounded 

notch tip assuming linear elastic behaviour. Otherwise, Hu et al. [39] suggested adopting the 

averaged SED [22–27] (see Chapter 1) as fatigue damage parameter and evaluating it by means 

of the direct approach which requires modelling the material/structural cylindrical volume 

having radius R0 (R0 = 0.28 mm for steel welded joints) into FE analyses. Finally, Susmel et al. 

[40,41] recommended using the Modified Wöhler Curve Method (MWCM) [45,46] together 

with the Theory of Critical Distances (TCD) [28,30,31,47–52] for evaluating the fatigue 

damage in welded details. Concisely, the MWCM is a bi-parametrical critical plane approach 

which assumes the maximum shear stress amplitude as a reference parameter to define the 

critical plane and assess the fatigue lifetime of welded connections under multiaxial stresses, 

while the TCD [53], starting from Neuber [54] and Peterson [55] observation on notch 

sensitivity, indicates either the stress averaged over a line having a certain critical length (Line 

Method – LM) or the stress evaluated at a certain critical distance from the notch tip (Point 

Method – PM) as fatigue damage parameter. 

Interestingly, although the accuracy and validity of the methods discussed above is 

unquestionable, their application can certainly be very difficult from a practical/industrial point 

of view. For example, rounding the weld beads and the weld roots with a fictitious radius r = 1 

mm as required by the effective notch stress approach, or modelling the material/structural 

cylindrical volume having radius R0 (R0 = 0.28 mm for steel welded joints) into FE analyses as 

suggest by the averaged SED calculation with the direct approach are very difficult and time-

consuming operations. On the contrary, both the TCD and the Peak Stress Method (PSM) [32–

37] can be easily implemented without the need of modelling complex geometrical feature, 
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especially when complicated three-dimensional geometries are involved. Moreover, the 

presented methods require a mesh pattern that tends to be finer than that needed to apply PSM 

(e.g. when applying the SED direct approach the mesh inside the material/structural volume 

must be considerably smaller than R0) significantly increasing the computational effort required 

to solve the models. Finally, the PSM requires only one nodal stress value rather than the whole 

stress field at the notch tip, i.e. a set of stress-distance FE data usually which definition usually 

requires a lot of time in the post processing phase, as required for applying the TCD.  

The rapidity and effectiveness of PSM in the pre-processing, solving and post-processing 

phases make this method very advantageous for industrial applications where the welded 

structures can assume very complex 3D geometries, with many different critical weld toes and 

roots, and whose dimensions give rise to huge FE models difficult to solve from a computational 

point of view. In addition, among recent developments of the PSM, its automated 

implementation [56,57] for the fatigue assessment of complex welded structures under CA 

multiaxial loadings is making the PSM application even easier and faster. 

Consequently, the aim of the present manuscript was extending for the first time the 

formulation of the PSM to account also for variable amplitude loading conditions. According 

to the observations relevant to the available theories on VA fatigue [5,6] and in agreement with 

main standards and recommendations [1,2] as well as with the other approaches discussed 

above [38–41], the PSM [37] has been extended to VA loading by combining the existing CA 

formulation with the Palmgren-Miner LDR [3,4].  

In the following paragraph, the procedure for applying the Peak Stress Method in case of 

uniaxial/multiaxial constant or variable amplitude loads will be presented. Then, the efficacy 

of the proposed method will be checked against a large set of experimental fatigue data taken 

from the literature as well as new experimental results generated by fatigue testing non-load-

carrying (nlc) fillet-welded joints having double transverse or inclined attachment. The 

considered fatigue data are relevant to several welded joint geometries, made of different steel 

grades, and subjected to different types of VA uniaxial and multiaxial fatigue loads. 
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2.1. The Peak Stress Method for variable amplitude multiaxial local stresses 

 

The physical basis of the PSM, its theoretical background together with the procedure for its 

applicability and the corresponding limitations have been extensively presented in the previous 

chapter of this manuscript. As discussed, it is an NSIF-based approach that assume the weld 

toes and the weld roots can be modelled as sharp V-notches described by a certain opening 

angle 2α and having a null tip radius (ρ = 0, worst-case condition). Owing to this assumption, 

the external loads generate singular stress fields at the weld toe and at the weld root and in the 

framework of linear elasticity, the NSIFs have been shown to be fatigue relevant parameters. It 

is important to note that the effects of loading type, shape and scale of the welded joint are fully 

accounted for the NSIFs as largely demonstrated in the literature [20,58]. 

Combining the PSM for the rapid evaluation of the NSIFs with the averaged SED as fatigue 

damage criterion, Meneghetti et al. [59,60] proposed to define the following equivalent peak 

stress as fatigue damage parameter to assess the fatigue lifetime of welded joints under CA 

uniaxial as well as multiaxial local stresses: 

 

2 2 2 2 2 2
eq,peak w1 w1 , 0,peak w2 w2 r , 0,peak w3 w3 z, 0,peakc f c f c f =  =  = =   +   +    (1.3) 

   

Where cw1, cw2, cw3 account for the mean stress sensitivity (see Chapter 1 and Eq. (1.30)), 

σθθ,θ=0,peak, τrθ,θ=0,peak, and τθz,θ=0,peak are the opening (mode I), in-plane shear (mode II), and out-

of-plane shear (mode III) peak stresses, respectively, obtained from linear elastic FE analyses 

according to the PSM,  while fw1, fw2, fw3 account for the stress averaging inside the material-

structural volume with size R0  and are defined as follows:  
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2e d
f K

1 R

−

 
=   −  

        (1.6) 

 

Noteworthy, Eqs. (1.3), (1.4), (1.5), and (1.6) have been defined and completely described 

in the previous Chapter. They have been here reported for the sake of clearness but the reader 

is referred to Chapter 1 for a more detailed description of the PSM CA formulation. 

In principle, the suggested method for VA fatigue combines the CA fatigue design curves 

with the Linear Damage Rule (LDR) by Palmgren-Miner in order to provide a new damage 

parameter accounting for all types of loadings, i.e. uniaxial/multiaxial and constant/variable 

amplitude. The new damage parameter is defined in terms of an equivalent peak stress like the 

CA formulation (see Eq. (1.3)). The mode I, II, and III peak stress spectra at the critical points 

of the welded structure obtained by a linear elastic FE analysis according to the criteria of the 

PSM are required as an input for the definition of the new equivalent peak stress. After that, 

each local stress spectra must be used separately to evaluate a ‘constant amplitude equivalent 

peak stress’ producing the same fatigue damage as the spectrum according to the LDR, the latter 

being separately applied for each local stress mode. It should be emphasized that ‘equivalent’ 

highlights the stress averaging inside the material-structural volume with size R0 using the fwi 

coefficients (Eqs. (1.4), (1.5), and (1.6)), while ‘constant amplitude’ emphasizes the synthesis 

of the spectrum using Palmgren-Miner's law. Then, a single equivalent peak stress accounting 

also for multiaxiality is obtained by combining the three ‘constant amplitude equivalent peak 

stresses’ that were previously computed separately for each local stress mode. The resulting 

damage parameter, i.e. the equivalent peak stress is defined under a CA uniaxial plane strain 

state in such a way that it generates the same averaged SED existing at the weld toe or the weld 

root subjected to a general mixed mode I+II+III VA local stress state [59,61–63]. In the end, 

the equivalent peak stress must be compared to the pertinent PSM design curve, which must be 

selected using a local biaxiality ratio. More specifically, the procedure is divided into the 

following steps: 
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1. The welded joint must be modelled according to the worst-case scenario, i.e. both the weld 

toe and the weld root are considered as sharp V-notches having a null tip radius (ρ = 0) and 

a certain opening angle 2α as reported in the example of Figure 2.2. 

 

 

Figure 2.2. Geometry according to the NSIF-based approach and the worst-case hypothesis for the fatigue lifetime 

assessment of welded joints. (a) example referred to a non-load-carrying fillet-welded double inclined 

attachments. The sharp V-notch opening angle is typically 2α = 135° for the weld toe and 2α = 0° for the weld 
root. Detail on the local cylindrical reference systems (r,θ,z) centred at the weld toe and at the weld root with 

highlighted the local stress components. (b) the material-structural volume having radius R0 centred at the weld 

toe and at the weld root according to the averaged SED criterion. 

 

2. Then, a linear elastic FE analysis should be performed in order to evaluate the mode I, II, 

and III peak stress time-histories, i.e. σθθ,θ=0,peak(t), τrθ,θ=0,peak(t) and τθz,θ=0,peak(t), respectively 

(Figure 2.3a and c), at the critical points in the welded structure, i.e. weld roots and/or weld 

toes (Figure 2.3a). The modelled geometry must be discretized with linear elastic Finite 

Elements according to the guidelines of the PSM [37] (see the example in Figure 2.3a). 

Here, it must be reminded that in case 3D tetra elements are used for the analysis, the peak 

stresses distribution along the V-notch tip line obtained from the FE analysis σθθ,θ=0,peak, 

τrθ,θ=0,peak, and τθz,θ=0,peak must be smoothed by calculating the average peak stresses 
, 0,= peak 

, 
, 0,=r peak  , and 

, 0,=z peak   defined as the moving averages of the peak stresses calculated on 

three adjacent vertex nodes [36]: 

 

ij,peak,n=k-1 ij,peak,n=k ij,peak,n=k+1

ij,peak,n=k

n=node

σ +σ +σ
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3
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Where σij = σθθ,θ=0,peak, τrθ,θ=0,peak, τθz,θ=0,peak. Moreover, as explained in the first chapter, the 

peak stresses at nodes laying on a free surface of the investigated structure (red nodes in 

Figure 2.3b) must neglected and not be inputted into Eq. (1.7). Additionally, when dealing 

with 10-node tetra elements, peak stresses at mid-side nodes (blue nodes in Figure 2.3b) 

must be neglected, while that obtained from vertex node are the only to be considered for 

the calculations in Eq. (1.7) [36,64]. It deserve to be highlighted that just one FE analysis 

can be performed to obtain the peak stress time-histories σθθ,θ=0,peak(t), τrθ,θ=0,peak(t), and 

τθz,θ=0,peak(t), as due to the hypothesis of linear elasticity it is possible to scale the obtained 

value of the peak stresses by multiplying them for the external loads time histories. 

 

 

 

Figure 2.3. Example of application of the PSM to the joint geometry of Figure 2.2. (a) and (b) FE model obtained 

exploiting the XY symmetry plane and discretized using 10-node tetra elements (SOLID 187 of the Ansys® element 

library) with detail on the peak stresses evaluated in a cylindrical reference system (r,θ,z) oriented along the V-

notch bisector line and located at the node laying at the weld toe or the weld root notch tip. (c) example of mode 

I, II, and III peak stress time histories at the weld root, output of the FE analysis. 

 

 

3. The next step consists in applying the Rainflow cycle counting algorithm [65–67] to the 

peak stress time-histories σθθ,θ=0,peak(t), τrθ,θ=0,peak(t), and τθz,θ=0,peak(t) (or the average peak 

stress time-histories 
, 0, ( )peak t  =

, 
, 0, ( )r peak t  =

, and 
, 0, ( )z peak t  =

 in case of tetra elements). 
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This way, all the information of the time-histories are summarized in the mode I, II and III 

Rainflow matrices (Figure 2.4a), which give the applied number of cycles for each 

combination of local load ratio and peak stress range, or in the mode I, II, and III peak stress 

spectra (Figure 2.4b), which replace the rainflow matrices when all the peak stress ranges 

are applied at the same mean peak stress, i.e. with the same local load ratio. To clarify what 

presented and simplify the explanation, it is worthwhile symbolize some parameters as 

follow (see Figure 2.4): 

 

• Δσθθ,θ=0,peak,i, Δτrθ,θ=0,peak,h, Δτθz,θ=0,peak,m are the peak stress range levels relevant to 

mode I, II, and III, respectively. 

 

• qIi, qIIh, and qIIIm are the number of stress levels resulting from the Rainflow cycle 

counting, referred to mode I, II, and III, respectively. 

 

• Δσθθ,θ=0,peak,max, Δτrθ,θ=0,peak,max, Δτθz,θ=0,peak,max denote the maximum applied peak 

stress range for mode I, II, and III, respectively. 

 

• RI,j, RII,k, RIII,p are the mode I, II, and III local load ratio, respectively. They gather 

all information about the level of the mean peak stress at which each peak stress 

range is applied. 

 

• qIj, qIIk, and qIIIp are the corresponding number of local load ratio levels resulting 

from the Rainflow cycle counting, referred to mode I, II, and III, respectively. 

 

• nI,ij, nII,hk, nIII,mp, are the number of applied cycles for each combination of peak 

stress range levels (i.e. Δσθθ,θ=0,peak,i, Δτrθ,θ=0,peak,h, Δτθz,θ=0,peak,m) and local load ratios 

(i.e. RI,j, RII,k, RIII,p). 

 

• NI, NII, NIII are the total number of cycles of each loading mode and can be evaluated 

as follow: 

,
1 1

IjIi
qq

I I ij

i j

N n
= =

=        (1.8) 



2.1 The Peak Stress Method for variable amplitude multiaxial local stresses 

 

 

65 

 

,
1 1

IIh IIkq q

II II hk

h k

N n
= =

=        (1.9) 

,
1 1

IIIpIIIm
qq

III III mp

m p

N n
= =

=        (1.10) 

• N0 identifies a reference number of cycles defined by Eq. (1.11). 

 

 0 min , ,I II IIIN N N N=       (1.11) 

 

 

 

Figure 2.4. Result of the Rainflow cycle counting algorithm applied to the peak stresses time-histories. (a) mode 

I, II, and III Rainflow matrices giving the applied number of cycles for each combination of local load ratio 

(gathering all information on the mean peak stresses) and peak stress range. (b) the special case of mode I, II and 

III peak stress spectra which replace the Rainflow matrices when all the peak stress ranges are applied at the 

same mean peak stress. 
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specific loading mode), induced in accordance with the LDR by the real peak stress time-

histories when applied for N0 cycles. In more detail, this can be done converting the mode 

I, II and III peak stress Rainflow matrices (Δσθθ,θ=0,peak,i, RI,j, nI,ij), (Δτrθ,θ=0,peak,h, RII,k, nII,hk), 

(Δτθz,θ=0,peak,m, RIII,p, nIII,mp), (or spectra (Δσθθ,θ=0,peak,i, nI,i), (Δτrθ,θ=0,peak,j, nII,j), (Δτθz,θ=0,peak,h, 

nIII,h), see Figure 2.4) into equivalent peak stress Rainflow matrices (or spectra) by 

multiplying each peak stress range by the relevant fwi coefficient (Eqs. (1.4), (1.5), and (1.6)

). Secondly, the Palmgren-Miner LDR must be applied separately for each loading mode 

by comparing each equivalent peak stress spectra with the PSM CA fatigue design curve 

relevant to the same loading mode (see Figure 2.5 and Table 2.1). For the sake of simplicity, 

the PSM CA fatigue design curves must be taken without any cut-off or slope change.  

What presented above to obtain the three constant amplitude equivalent peak stresses 

generating the same fatigue damage (according to the LDR) as the equivalent peak stress 

spectra when applied for N0 cycles (see Figure 2.5) is very easily summarized by the 

following expressions: 

 

eq,peak,I s1 w1 , 0,peak,maxf f  = =         (1.12) 

eq,peak,II s2 w 2 r , 0,peak,maxf f  = =         (1.13) 

eq,peak,III s3 w3 z, 0,peak,maxf f  = =         (1.14) 

 

where the fsi coefficients, which account for the Palmgren-Miner LDR equivalency, are 

defined by the following expressions:  

 

1
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Wherein, the mean stress effect is taken into account by the cw coefficients, which 

definitions are the followings: 

 

( ) ( )

( )

2
I, j

2

I, jw1, j I, j

2
I, j

2

I, j

1             if as welded for any R valu e  

1 R
if stress relieved and 1 R 0,

1 Rc R

1 R
if stress relieved and 0 R 1, 

1 R

−
 + − −   −= 
 − −  
 −

  (1.18) 

 

 

( ) ( )

( )

2
II,k

2

II,kw2,k II,k

2
II,k

2

II,k

1             if as welded for any R valu e  

1 R
if stress relieved and 1 R 0,

1 Rc R

1 R
if stress relieved and 0 R 1, 

1 R

−
 + − −   −= 
 − −  
 −

 (1.19) 

 

( ) ( )

( )

2
III,p

2

III,pw3,p III,p

2
III,p

2

III,p
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1 R
if stress relieved and 1 R 0,

1 Rc R

1 R
if stress relieved and 0 R 1, 

1 R

−
 + − −   −= 
 − −  
 −

 (1.20) 

 

Again, it deserve to be remembered that when using the PSM based on tetra elements, the 

average peak stresses 
, 0,= peak  , 

, 0,=r peak  , and 
, 0,=z peak   must be used in place of the peak 

stresses σθθ,θ=0,peak, τrθ,θ=0,peak, and τθz,θ=0,peak, as described in Chapter 1. 
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Table 2.1. Parameters of the PSM CA fatigue design curves to be used when applying the Palmgren-Miner LDR 

equivalency. 
Mode 

[-] 

NA 

[cycles] 

Δσeq,peak,A 

[MPa] 

k 

[-] 

Mode I 2∙106 214 3 

Mode II 2∙106 354 5 

Mode II 2∙106 354 5 

 

 

Figure 2.5. Mode I, II and III constant amplitude equivalent peak stresses generating the same fatigue damage 

(according to the LDR) as the equivalent peak stress spectra when applied for N0 cycles (Eqs.(1.12), (1.13), (1.14)

, respectively). 

 

 

5. Finally, the three ‘constant amplitude equivalent peak stresses’ pertinent to the mode I, II, 

and III, i.e. Δσeq,peak,I, Δσeq,peak,II, Δσeq,peak,III, respectively, must be combined together to 

provide the ‘multiaxial equivalent peak stress’ Δσeq,peak accounting also for multiaxial  local 

stresses. This can be done, as for the constant amplitude formulation, by simply adding 

together the mode I, II and III averaged SED contributions. This turns out into the following 

expression: 

 

2 2 2
eq,peak eq,peak,I eq,peak,II eq,peak,III =  + +     (1.21) 

 

In order to keep the nomenclature concise and consistent with other published work on the 

PSM, the term ‘multiaxial equivalent peak stress’ (Eq.(1.21)) will be used interchangeably 

with ‘equivalent peak stress’ throughout the whole manuscript. Noteworthy, when CA local 

stresses are considered, the equivalent peak stress Δσeq,peak (Eq.(1.21)) simplifies to its 

original formulation for CA loads (Eq. (1.3)) [37]. Indeed, in this case, the application of 

the Rainflow cycle counting algorithm is not required and the coefficients fs1, fs2, fs3 collapse 

into √cw1, √cw2, and √cw3. 
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6. Eventually, the fatigue lifetime of the investigated welded joints can be evaluated by 

entering the equivalent peak stress Δσeq,peak (Eq.(1.21)) into the appropriate PSM design 

scatter band for steel joints, the latter being chosen based on a local biaxiality ratio λ (Figure 

2.6). Like the (‘multiaxial’) equivalent peak stress, the local biaxiality ratio λ is defined as 

a function of the mode I, II and III ‘constant amplitude equivalent peak stresses’, i.e. 

Δσeq,peak,I, Δσeq,peak,II, and Δσeq,peak,III, respectively: 

 

2 2
eq,peak,II eq,peak,III

2
eq,peak,I

 + 
 =


       (1.22) 

 

In particular, the local biaxiality ratio λ summarizes the relative SED contributions due to 

mode II/III shear stresses and mode I normal stresses. It is easy to observe that λ = 0 under 

pure mode I local stresses, λ → ∞ under mode II+III local stresses and 0 < λ < ∞ in case of 

mixed mode I+II+III local stresses. The criterion to choose the appropriate PSM fatigue 

design curve as a function of the value of λ is the same as that proposed in [37] (Table 2.2). 

Fatigue data relevant to λ = 0 must be compared with the PSM-based design scatter band 

having Δσeq,peak,A,50% = 214 MPa and k = 3, while fatigue data relevant to λ > 0 must be 

compared with the PSM-based design scatter band having Δσeq,peak,A,50% = 354 MPa and k 

= 5. Noteworthily, the calculated equivalent peak stress range has to be directly compared 

against the CA PSM design curve having 50% of survival probability (PS). On the other 

hand, the CA PSM design curves relevant to PS = 2.3% and PS = 97% can be used to check 

if all the analysed fatigue data lie within this scatter band. Interestingly, as observed by 

Meneghetti et al. [60] correspond to a scatter index Tσ = 1.90, i.e. the intrinsic scatter of 

single test series tested un CA loadings (see Haibach [9,68] and Sonsino [17,69] for more 

details). 

 

Table 2.2. Criterion for selecting the PSM-based fatigue design curves for arc-welded joints made of structural 

steels. 
λ 

Eq. (1.22) 

NA 

[cycles] 

Δσeq,peak,A,50% 

[MPa] 

Δσeq,peak,A,97.7% 

[MPa] 

Δσeq,peak,A,2.3% 

[MPa] 

k 

[-] 

Tσ 

[-] 

λ = 0 2∙106 214 156 296 3 1.90 

λ > 0 2∙106 354 257 488 5 1.90 



CHAPTER 2: Variable amplitude multiaxial local stresses 

 

 

70 

 

 

 

Figure 2.6. Multiaxial equivalent peak stress Δσeq,peak (Eq. (1.21)) compared with the proper design curve 

depending on the local biaxiality ratio λ (Eq. (1.22)). a) the PSM design scatter band for pure mode I local stresses 

(λ = 0) and b) the PSM design scatter band for multiaxial local stresses (λ > 0). 
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2.2. Validation with data from the literature 

 

A large number of data has been taken from the literature to validate the proposed model 

against experimental fatigue test results. The analysed data were referred to many different 

specimens’ geometries, materials, and loading conditions [70,71,80,81,72–79]. In particular, 

the specimens were butt-welded joints, transverse non-load-carrying (nlc) joints, longitudinal 

stiffeners, and also tube-to-flange welded joints, made of different steel grades, and subjected 

to different types of uniaxial as well as multiaxial CA and VA fatigue loads. See Table 2.3 for 

details on materials, welding process, and testing conditions of all the considered steel welded 

joints. 

 

Table 2.3. Summary of experimental data. 

Ref. Model Material fy fU Welding Process TCs* Failure Criterion 

[-] [-] [-] [MPa] [MPa] [-] [-] [-] 

Demofonti et al. [70] (1-4) S355N 378 560 GMAW/SAW AW Complete Separation 

  S355M 422 524 GMAW/SAW AW Complete Separation 

  S690Q 784 868 GMAW/SAW AW Complete Separation 

  S960Q 998 1072 GMAW AW Complete Separation 

Maddox and Zhang [71,72] (5) BS 4360 Grade 50B 418 554 GMAW AW Complete Separation 

Vanrostenberghe et al. [73] (6) S700MC - - Robot arc-welding AW Complete Separation 

  S960MC - - Robot arc-welding AW Complete Separation 

Yildirim et al. [74] (7) AH36 423 546 Robot arc-welding AW Complete Separation 

  S690QL 832 856 Robot arc-welding AW Complete Separation 

Bertini et al. [75–78] (8-9) S355JR 355 520 - AW Break Through 

Sonsino et al. [79] (10) Fe E 460 520 670 GMAW SR Break Through 

Witt et al. [80,81] (11) P 460 520 670 GMAW SR Break Through 

* Testing Conditions: AW = as-welded; SR = stress-relieved 

 

In the analysed contributions CA and VA pure axial or pure bending loadings were used to 

test butt-welded joints, transverse non-load-carrying (nlc) joints and longitudinal stiffeners. The 

applied nominal stress range Δσ has been calculated with reference to the main plate according 

to the following expressions:  
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F F

A B t

 
 = =


                  axial loading     (1.23) 

 

f f

2f

M M
1W B t
6

 
 = =

 
         bending loading    (1.24) 

 

wherein ΔF and ΔMf represent the ranges of the applied axial force and of the bending 

moment, respectively, whilst A and Wf are the section area and the section modulus, 

respectively, both defined as a function of the plate width B and the plate thickness t. In the 

case of tube-to-flange welded joints pure bending, pure torsion and multiaxial CA as well as 

VA fatigue loadings have been used. The nominal stress ranges have been defined on the tube 

side according to the following expressions: 

 

( )
f f

44
f e e

e

M M

W d d 2t

32 d

 
 = =

− −


          bending loading   (1.25)  

 

( )
t t

44
t e e

e

M M

W d d 2t

16 d

 
 = =

− −


   torsion loading   (1.26) 

 

where ΔMf and ΔMt are the bending and torsional moment ranges, respectively, Wf and Wt 

are the section moduli, de is the tube outer diameter and t is the tube thickness. Moreover, a 

nominal biaxiality ratio has been defined in the case of combined bending and torsion loadings: 

 


 =


          (1.27) 

 

In the original publications, the authors provided the experimental fatigue data stated in 

terms of cycles to failure as a function of the applied nominal stresses. Many different Variable 

Amplitude (VA) fatigue loadings have been used in the analysed papers (see Table 2.4). Figure 
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2.7 reports a summary of the adopted load spectra expressed in terms of normalized nominal 

stress range Δσ/Δσmax versus the number of exceedings cycles N, i.e. the number of cycles for 

which the applied normalized nominal stress ranges are greater than or equal to Δσ/Δσmax, whose 

maximum value is the block length Ls (their main parameters are summarized in Table 2.4). 

 

 

Table 2.4. Summary of load spectra applied in [70–74,79–81]. 
Code Ref. Spectrum type Ls Δσmin/Δσmax 

[-] [-] [-] [cycles] [-] 

VA-I [70][79][80,81] Gaussian 5.0∙104 0 

VA-II [70] Gaussian + Overloads 5.0∙104 0 

VA-III [71,72] Concave-Up Shape 1042 0.25 

VA-IV [71,72] Concave-Up Shape 2167 0.20 

VA-V [71,72] Concave-Up Shape 4982 0.15 

VA-VI [71,72] Concave-Up Shape 14482 0.10 

VA-VII [73] Log-Lin 1.0∙105 0.15 

VA-VIII [74] Log-Lin 2.5∙105 0.16 

 

 

 

 

Figure 2.7. Normalized stress range spectra applied in [70–74,79–81]  for VA tests. The main parameters are 

summarized in Table 2.4.  
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It is worth noting that multiaxial load spectra from VA-IX and VA-XV have been generated 

by two constant amplitude (CA) loading blocks applied in sequence, e.g. ΔN1 cycles under pure 

bending followed by ΔN2 cycles under pure torsion loadings. The spectra have been reported 

in Figure 2.8 and Table 2.5 in terms of number of cycles instead of exceedings and the torsional 

stress range Δτ has been normalized with reference to the maximum bending stress range Δσmax. 

 

 

 

Figure 2.8. Normalized stress range spectra applied for VA tests in Bertini et al. [75–78]. The main parameters 

are summarized in Table 2.5. 

 

 

Table 2.5. Summary of load spectra applied in Bertini et al. [75–78] 
Code Ls i ΔNi Δσ/Δσmax Δτ/Δσmax 

[-] [cycles] [-] [cycles] [-] [-] 

VA-IX Undefined 1 276000 1 0 

  2 Until Failure 0 1.13 

VA-X Undefined 1 414000 1 0 

  2 Until Failure 0 1.13 

VA-XI Undefined 1 306000 0 1.13 

  2 Until Failure 1 0 

VA-XII Undefined 1 459000 0 1.13 

  2 Until Failure 1 0 

VA-XIII 21 1 10 1 0 

  2 11 0 1.13 

VA-XIV 210 1 100 1 0 

  2 110 0 1.13 

VA-XV 21000 1 10000 1 0 

  2 11000 0 1.13 
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Depending on the joint geometries, three different element types of Ansys® element library 

have been adopted to generate the free FE mesh patterns according to the PSM: 

 

• 2D 4-node quadrilateral plane elements (PLANE 182 with K-option 1 set to 3), named 

‘PLANE-4’ in the following, have been adopted to generate a 2D free mesh pattern of plane 

joint geometries, such as butt-welded joints and transverse nlc joints under axial or bending 

loadings (see models 1-2 in Figure 2.9, models 3-4 in Figure 2.10, and model 7 in Figure 

2.17). 

 

• 2D 4-node quadrilateral harmonic elements (PLANE 25), named ‘PLANE-4’ in the 

following, have been adopted to generate a 2D free mesh pattern of axis-symmetric joint 

geometries, such as tube-to-flange joints under bending or torsion loadings (see models 8-

9 in Figure 2.19, model 10 in Figure 2.21, and model 11 in Figure 2.23). Such element type 

is applicable to axis-symmetric components subjected to loads expressible through a Fourier 

series expansion of the angular co-ordinate (it is worth noting that the axis-symmetric 

loading condition is just a particular case of that). Accordingly, PLANE 25 can be used to 

simulate 3D axis-symmetric structures subjected to bending or torsion loads, while keeping 

the advantage of managing 2D FE models. 

 

• 3D 10-node tetrahedral elements (SOLID 187), named ‘TETRA-10’ in the following, have 

been adopted to generate a 3D free mesh pattern of more complex, non axis-symmetric joint 

geometries, such as the longitudinal stiffeners under axial loading (see models 5 in Figure 

2.13 and model 6 in Figure 2.15). 

 

Additional details relevant to the experimental fatigue tests and the PSM analysis procedure 

of each test series are reported in Table 2.7 and described in the following sub-sections. 
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2.2.1. Demofonti et al. [70], two-sided full penetration butt-welded joints and 

transverse nlc full-penetration welded joints 

 

The authors analysed two-sided full penetration butt-welded joints (models 1 and 2 in Figure 

2.9) and transverse non-load-carrying (nlc) full-penetration welded joints (models 3 and 4 in 

Figure 2.10), both specimen geometries having different plate thickness and being made of 

different steel grades. In particular, the main plates thickness was either t = 10 mm or t = 30 

mm and they were made of structural steels with four different steel grades, i.e. S355N, S355M, 

S690Q and S960Q. All the specimens were fatigue tested in the as-welded state with different 

load type depending on the plate thickness. The joints having 30-mm-thick plates were loaded 

under pure bending (using a 4-point-bending device), whereas those having 10-mm-thick plates 

were tested under pure axial loading.  

The tests were carried out under fully reversed (R = -1) or under pulsating (R = 0) constant 

amplitude and under variable amplitude loading. The VA loads consisted in two different 

spectra applied in random order. The first one was a base Gaussian spectrum [82,83] having a 

block length Ls = 5∙104 cycles (VA-I in Figure 2.7 and Table 2.4). The second one was generated 

by the superposing of a Gaussian overload spectrum to the base Gaussian spectrum with Ls = 

5∙104 cycles. More in detail, the Gaussian overload spectrum was obtained by amplifying with 

a factor of 1.40 the stress ranges of a standard Gaussian spectrum having a block length of 1000 

cycles (VA-II in Figure 2.7 and Table 2.4). As expected, the authors reported that failures, i.e. 

crack initiation and following early fatigue crack propagation, always occurred at the weld toe, 

the reason of this being the fully penetrated welding execution. The failure condition and the 

corresponding number of cycles to failure relate to complete specimen’s separation. 

The experimental fatigue results have been here reported in Figure 2.11 and Figure 2.12 

expressed in terms of the number of cycles to failure Nf versus the maximum applied nominal 

stress range Δσmax. 
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The relevant peak stresses have been calculated from 2D free FE mesh patterns of 4-node 

plane elements (PLANE 182 with K-option 1 set to 3 of Ansys® element library) under plane 

strain conditions. Only one quarter of the joint geometry was modelled, taking advantage of the 

double symmetry under axial loading, while the symmetry and anti-symmetry has been 

exploited under bending loading. It is worth noting that only the weld toe is a potential crack 

initiation location for these full-penetration joints and the mode II stress field is not singular, 

2α being greater than 102° [84]. According to the PSM guidelines [37] for PLANE-4 (see also 

Table 2.6 here recalled from Chapter 1 for the sake of clarity), the minimum mesh density ratio 

must be a/d = 3 to apply the PSM at the weld toe under mode I loading, where a = min{z,t/2} 

for the butt-joints, while a = t/2 for the double  transverse attachments. Therefore, element sizes 

d ≈ z/3 and d ≈ (t/2)/3 have been adopted to generate the free mesh patterns of butt-joints 

(models 1 and 2 in Figure 2.9) and transverse joints (models 3 and 4 in Figure 2.10), 

respectively. After having solved the FE model, the maximum principal stress Δσ11,peak has been 

evaluated at the weld toe, since under pure mode I stresses, it approximately corresponds to the 

opening peak stress, Δσθθ,θ=0,peak, but it is easier to be obtained since it does not require a polar 

reference system aligned with the notch bisector line. Then, the equivalent constant amplitude 

peak stress range has been derived from Eq. (1.21), by assuming cw1 = 1 in both cases, all 

specimens having been tested in the as-welded conditions. The local biaxiality ratio λ (Eq. 

(1.22)) resulted null due to the pure mode I stress state at the weld toe. The resulting opening 

peak stress Δσθθ,θ=0,peak as well as the factors fs1 (Eq. (1.15)) and fw1 (Eq. (1.4)) have been 

reported in Table 2.7. It is worth noting that in the case of butt joints having opening angle 2α 

at the weld toe in the range between 145° and 155° the coefficient fw1 has been calculated by 

introducing in Eq. (1.4) the parameter K*
FE = 1.38, even if it was originally calibrated only in 

the range 0° ≤ 2α ≤ 135° (Table 2.6), the same extrapolation having been done in Ref. [85]. 
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Figure 2.9. Demofonti et al. [70], two-sided full penetration butt-welded joints: a) and d) joint geometry and 

loading conditions. b) and e) FE model according to the PSM. c) and f) table summarizing the geometrical 

parameters reported in a) and d). 
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Figure 2.10. Demofonti et al. [70], transverse nlc full-penetration welded joints: a) and d) joint geometry and 

loading conditions. b) and e) FE model according to the PSM. c) and f) table summarizing the geometrical 

parameters reported in a) and d). 
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Figure 2.11. Fatigue test results from Demofonti et al. [70] relevant to (a) two-sided full penetration butt-welded 

joints with t = 10 mm (model 1 in Figure 2.9) and (b) two-sided full penetration butt-welded joints with t = 30 mm 

(model 2 in Figure 2.9):data are expressed in terms of maximum applied nominal stress. 
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Figure 2.12. Fatigue test results from Demofonti et al. [70] relevant to (a) transverse non-load-carrying (nlc) full-

penetration welded joints with t = 10 mm (model 3 in Figure 2.10) and (b) transverse non-load-carrying (nlc) full-

penetration welded joints with t = 30 mm (model 4 in Figure 2.10):data are expressed in terms of maximum applied 

nominal stress. 
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Table 2.6. Summary of parameters K*FE, K**FE and K***FE, mesh density a/d, and FE mesh pattern requirements 

to apply the PSM with Ansys® [32–37,86,87]. 
Loading FE analysis PSM parameters 2α = 0° 2α = 90° 2α = 120° α = 135° a – root side° a – toe side° 

2D/3D FE type#      

Mode I 2D Plane-4 K*
FE 1.38±3% 1.38±3% 1.38±3% 1.38±3% min{l, z} t 

   (a/d)min 3 3 3 3   

   FE at notch tip^ 4 4 2 2   

 3D+ Brick-8 K*
FE 1.38±3% 1.38±3% 1.38±3% 1.38±3% min{l, z} t 

   (a/d)min 3 3 3 3   

   FE at notch tip^ 4 4 2 2   

 3D+ Tetra-4 K*
FE 1.75±22% 1.75±22% 1.75±22% 1.75±22% min{l, z} t 

   (a/d)min 3 3 3 1   

   FE at notch tip^ not to be checked     

 3D+ Tetra-10 K*
FE 1.05±15% 1.05±15% 1.05±15% 1.21±10% min{l, z} t 

   (a/d)min 3 3 3 1   

   FE at notch tip^ not to be checked   

Mode II 2D Plane-4 K**
FE 3.38±3% 2.62±10% - - min{l, z} - 

   (a/d)min 14 10 - -   

   FE at notch tip^ 4 4 - -   

 3D+ Brick-8 K**
FE 3.38±3% 2.62±10% - - min{l, z} - 

   (a/d)min 14 10 - -   

   FE at notch tip^ 4 4 - -   

 3D+ Tetra-4 K**
FE 2.65±15% 2.90±10% - - min{l, z} - 

   (a/d)min 3 1 - -   

   FE at notch tip^ not to be checked - -   

 3D+ Tetra-10 K**
FE 1.63±20% 2.65±10% - - min{l, z} - 

   (a/d)min 1 1 - -   

   FE at notch tip^ not to be checked   

Mode III 2D Plane-4 K***
FE 1.93±3% 1.93±3% 1.93±3% 1.93±3% min{l, z} t 

   (a/d)min 12 - - 3   

   FE at notch tip^ 4 - - 2   

 3D+ Brick-8 K***
FE 1.93±3% 1.93±3% 1.93±3% 1.93±3% min{l, z} t 

   (a/d)min 12 - - 3   

   FE at notch tip^ 4 - - 2   

 3D+ Tetra-4 K***
FE 2.20±15% 2.20±15% 2.20±15% 2.20±15% min{l, z} t 

   (a/d)min 5 5 5 5   

   FE at notch tip^ not to be checked     

 3D+ Tetra-10 K***
FE 1.37±15% 1.37±15% 1.70±10% 1.70±10% min{l, z} t 

   (a/d)min 3 3 3 3   

   FE at notch tip^ not to be checked   

+ ‘Full graphics’ option must be activated when calculating peak stresses according to 3D PSM 

#  FE of Ansys® code: Plane-4 = PLANE 182 (K-option 1 set to 3) or PLANE 25, Tetra 10 = SOLID 187 

^  number of finite elements which share the node at the notch tip 

°  l, z, t are defined in Chapter 1 
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2.2.2. Maddox and Zhang [71,72], longitudinal stiffeners with full penetration welds 

 

The fatigue strength of longitudinal stiffeners with full penetration welds made of BS 4360 

Grade 50B (model 5 in Figure 2.13) has been investigated in [71,72] under both CA and VA 

pure axial loadings.  

 

 

Figure 2.13. Maddox and Zhang [71,72], longitudinal stiffeners with full penetration welds: a) and d) joint 

geometry and loading conditions. b) and e) FE model according to the PSM. c) and f) table summarizing the 

geometrical parameters reported in a) and d). 
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on the fatigue life. The tested joints being with full penetrated weldment, the fatigue crack 

initiation location always was the weld toe at the main plate side. The complete separation of 

the joint was adopted as failure criterion. 

The experimental fatigue results have been here reported in Figure 2.14 expressed in terms 

of the number of cycles to failure Nf versus the maximum applied nominal stress range Δσmax. 

 

 

Figure 2.14. Fatigue test results from Maddox and Zhang [71,72] relevant to longitudinal stiffeners with full 

penetration welds (model 5 in Figure 2.13):data are expressed in terms of maximum applied nominal stress. 
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free surface where the average peak stress can be evaluated being the third vertex node 

according to the PSM based on TETRA-10 (see also Figure 2.3b). Accordingly, a more refined 

mesh pattern having element size d = (t/2)/4 ≈ 1.56 mm has been generated (model 5 in Figure 

2.13, alternatively one quarter of FE model, instead of one eighth, could have been generated). 

After solution, the maximum principal stress Δσ11,peak has been evaluated at FE nodes located 

along the weld toe line, then the average peak stress ∆σ̅11,peak has been calculated from Eq. 

(1.7), again by taking advantage of the approximate equivalence Δσθθ,θ=0,peak ≈ Δσ11,peak. 

Eventually the equivalent peak stress range has been computed from Eq. (1.21), by assuming 

cw1 = 1 since all joints have been tested in the as-welded conditions. The maximum value of the 

equivalent peak stress was found at the weld toe where fatigue cracks experimentally initiated. 

The local stress state at the critical location being of pure mode I, the local biaxiality ratio is λ 

= 0 (Eq. (1.22)). Table 2.7 summarises the resulting opening peak stress ∆σ̅θθ,θ=0,peak as well 

as the factors fs1 (Eq. (1.15)) and fw1 (Eq. (1.4)). 

 

 

2.2.3. Vanrostenberghe et al. [73], longitudinal stiffeners with full penetration welds 

 

Longitudinal stiffeners with full penetration welds (model 6 in Figure 2.15) having two 

different plate thicknesses (t = 5 or 10 mm) and made of two different steel grades (S700MC 

and S960MC) were fatigue tested under pure axial loading. The local geometry of the weld 

bead was not reported in the original reference, but it has been derived from figures of the joint 

[73]. CA fatigue loadings were applied at load ratios R = 0.1 and 0.5, while VA loadings were 

applied at R = -1 according to a log-linear spectrum applied in random order, having a block 

length of 105 cycles and the smallest stress range equal to the 15% of the largest one (VA-VII 

in Figure 2.7 and Table 2.4). The fatigue crack initiation always occurred at the weld toe, 

because of the fully penetrated welding execution, at the main plate side. The fatigue tests have 

been stopped either at the complete specimen’s separation or at a number of cycles equal to 107, 

which was defined the run-out condition. 

The experimental fatigue results have been here reported in Figure 2.16 expressed in terms 

of the number of cycles to failure Nf versus the maximum applied nominal stress range Δσmax. 
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Figure 2.15. Vanrostenberghe et al. [73], longitudinal stiffeners with full penetration welds: a) and d) joint 

geometry and loading conditions. b) and e) FE model according to the PSM. c) and f) table summarizing the 

geometrical parameters reported in a) and d). 

 

 

Figure 2.16. Fatigue test results from Vanrostenberghe et al. [73] relevant to longitudinal stiffeners with full 

penetration welds (model 6 in Figure 2.15):data are expressed in terms of maximum applied nominal stress. 
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Again, the mode I peak stresses at the weld toe have been calculated from a 3D FE model 

which has been free-meshed  using 10-node tetrahedral elements (SOLID 187 of Ansys® 

element library). The triple symmetry has been employed to model only one eight of the joint 

geometry. The PSM based on TETRA-10 finite elements [37] (see also Table 2.6) requires a 

minimum mesh density ratio a/d = 1 to analyse the weld toe (2α = 135°) under mode I loading, 

where a = t/2. However, for the same reason discussed in previous case, a more refined mesh 

pattern having element size dlocal ≈ (t/2)/4 has been generated by refining locally at the weld toe 

line a global FE mesh having size dglobal = 3 mm (model 6 in Figure 2.15). After solution, the 

maximum principal stress Δσ11,peak has been calculated at FE nodes of the weld toe line; 

afterwards the average peak stress ∆σ̅11,peak has been evaluated with Eq. (1.7), given that 

Δσθθ,θ=0,peak ≈ Δσ11,peak in the present case. Then the equivalent peak stress range has been 

calculated with Eq. (1.21), by assuming cw1 = 1, all joints having been tested in the as-welded 

conditions. The maximum value of the equivalent peak stress occurred at the weld toe at the 

main plate side where fatigue cracks experimentally initiated and λ (Eq. (1.22)) is null. The 

main results, i.e. ∆σ̅θθ,θ=0,peak, fs1 (Eq. (1.15)) and fw1 (Eq. (1.4)), have been collected in Table 

2.7. 

 

 

2.2.4. Yildirim et al. [74], transverse nlc fillet-welded joints 

 

The fatigue strength of transverse nlc fillet-welded joints (model 7 in Figure 2.17) made of 

two different steel grades (AH36 and S690QL) has been investigated under pure axial loading. 

The CA fatigue tests were performed adopting load ratios R = -0.43 and 0.1, while the VA 

fatigue tests were carried out at a load ratio R = -0.43 by applying a log-linear spectrum in 

random order and by assuming a block length of 2.5∙105 cycles with the smallest applied stress 

range equal to the 16% of the largest one (VA-VIII in Figure 2.7 and Table 2.4). The Authors 

observed the fatigue crack initiation always at the weld toe and reported the number of cycles 

to complete separation of the tested joints. 

The experimental fatigue results have been here reported in Figure 2.18 expressed in terms 

of the number of cycles to failure Nf versus the maximum applied nominal stress range Δσmax. 
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Figure 2.17. Yildirim et al. [74] , transverse nlc fillet-welded joints: a) and d) joint geometry and loading 

conditions. b) and e) FE model according to the PSM. c) and f) table summarizing the geometrical parameters 

reported in a) and d). 

 

 

Figure 2.18. Fatigue test results from Yildirim et al. [74] relevant to transverse nlc fillet-welded joints (model 7 in 

Figure 2.17):data are expressed in terms of maximum applied nominal stress. 
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A 2D free FE mesh pattern of 4-node plane elements (PLANE 182 with K-option 1 set to 3 

of Ansys® element library) under plane strain conditions has been generated to compute the 

relevant peak stresses. Only one quarter of the joint geometry has been modelled, taking 

advantage of the double symmetry. Moreover, the PSM has been applied here only to the weld 

toe, since it is intuitively the crack initiation location of a transverse fillet-welded attachment, 

even if in principle both the weld root and the weld toe are present in such joint. According to 

the PSM guidelines for PLANE-4 [37] (see also Table 2.6), a minimum mesh density ratio a/d 

= 3 is required to analyse the weld toe under mode I loading, a being equal to half the plate 

thickness, i.e. t/2 = 3 mm. Therefore, an element size d ≈ 3/3 = 1 mm has been adopted to 

generate the free mesh pattern (model 7 in Figure 2.17). The maximum principal stress Δσ11,peak 

has been calculated at the weld toe from the FE analysis, again by virtue of the approximation 

Δσθθ,θ=0,peak ≈ Δσ11,peak; then, the equivalent peak stress range has been evaluated from Eq. (1.21)

, by assuming cw1 = 1, since all joints were tested in the as-welded conditions. The local 

biaxiality ratio λ (Eq. (1.22)) resulted null due to the pure mode I stress state at the weld toe. 

The resulting opening peak stress Δσθθ,θ=0,peak as well as the factors fs1 (Eq. (1.15)) and fw1 (Eq. 

(1.4)) have been reported in Table 2.7. 

 

 

2.2.5. Bertini et al. [75–78], tube-to-flange joints 

 

Two different geometries of tube-to-flange fillet-welded joints (models 8 and 9 in Figure 

2.19) made of S355JR structural steel have been fatigue tested. CA fatigue tests were performed 

under both pulsating (R = 0) and fully reversed (R = -1) pure bending, pure torsion and 

combined bending and torsion loadings. Both in-phase (ϕ = 0°) and out-of-phase (ϕ = 90°) 

multiaxial loadings were applied in the fatigue tests, by assuming a nominal biaxiality ratio Λ 

= 0.31 or Λ = 1.14 according to Eq. (1.27). VA fatigue tests have been performed by applying 

seven different sequences of pulsating (R = 0) pure bending and pulsating (R = 0) pure torsion 

loadings (Figure 2.8 and Table 2.5). More in detail, VA-IX and VA-X involved the application 

of pure bending CA loading for 276000 and 414000 cycles, respectively, and, afterwards, pure 

torsion CA loading until failure. On the other hand, VA-XI and VA-XII consisted in applying 

first the pure torsion CA load for 306000 and 459000 cycles, respectively, and then pure 
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bending CA load until failure. At last, VA-XIII, VA-XIV, and VA-XV included a block of pure 

bending, made of 10, 100, and 10000 cycles, respectively, followed by a block of pure torsion, 

made of 11, 110, and 11000 cycles, respectively, applied repeatedly in such a sequence until 

failure. The authors [75–78] observed the fatigue crack initiation always at the weld root 

relevant to the outer welding and reported the number of cycles to break-through, which was 

detected from the air pressure drop in the small volume generated by the sleeve between the 

tube and the flange (see models 8 and 9 in Figure 2.19). The fatigue results have been reported 

in the original works [75–78] in terms of bending and torsion nominal stresses calculated in the 

weld throat as follows [75–78]: 
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   torsion loading  (1.29) 

 

being de the tube outer diameter and s = 10/√2 the weld throat.  

The experimental fatigue results have been here reported in Figure 2.20 expressed in terms 

of the total number of cycles to failure Nf versus the maximum applied nominal bending stress 

range evaluated at the tube side Δσmax (Eq. (1.25)) in case of pure bending or combined bending 

and torsion loadings. Pure torsion data have been reported in terms of maximum applied 

nominal torsion stress range evaluated at the tube side Δτmax (Eq. (1.26)). 

2D axis-symmetric FE models free meshed with 4-node harmonic elements (PLANE 25 of 

the ANSYS® element library) were employed to apply the PSM. It is worth noting that several 

potential crack initiation sites are present in each joint geometry (models 8 and 9 in Figure 

2.19), however, the most critical ones are intuitively the weld toe at the tube side and the weld 

root between tube and flange. Moreover, the authors [78] observed that the weld toe on the tube 

had a significantly large radius, namely on the order of 2 mm. Such large radius reduces the 
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notch severity at the weld toe, therefore only the weld root has been analysed here as a sharp 

V-notch.  

 

 

 

Figure 2.19. Bertini et al. [75–78], tube-to-flange joints: a) and d) joint geometry and loading conditions. b) and 

e) FE model according to the PSM. c) and f) table summarizing the geometrical parameters reported in a) and d). 
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The most demanding condition to apply the PSM is the mode II loading at the weld root, 

which requires a minimum mesh density ratio a/d = 14 [37] (see also Table 2.6), a being the 

tube thickness, i.e. t = 10 mm. Therefore, a FE mesh pattern having element size d = 10/14 = 

0.7 mm has been generated for each considered joint geometry (see models 8 and 9 in Figure 

2.19). The connection between the flange and the test bench has been simulated by constraining 

the back surface of the flange, as indicated in in Figure 2.19 (models 8 and 9). First, the FE 

models have been solved, after that, the relevant peak stresses Δσθθ,θ=0,peak, Δτrθ,θ=0,peak and 

Δτθz,θ=0,peak have been calculated; eventually the equivalent peak stress range (Eq. (1.21)) has 

been evaluated at the weld root, by assuming cw1 = 1, all joints having been tested in the as-

welded conditions. The local biaxiality ratio λ calculated at such location through Eq. (1.22) 

resulted greater than zero for all considered loading conditions, due to the presence of mode II 

or mode III stresses (see Table 2.7). Table 2.7 summarises the relevant peak stresses as well as 

the factors fsi (Eqs. (1.15), (1.16), and (1.17)) and fwi (Eqs. (1.4), (1.5), and (1.6)). 

 

 

Figure 2.20. Fatigue test results from Bertini et al. [75–78] relevant to two different geometries of tube-to-flange 

fillet-welded joints (models 8 and 9 in Figure 2.19):data are expressed in terms of maximum applied nominal 

stress. 
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2.2.6. Sonsino et al. [79], tube-to-flange joints 

 

The fatigue strength of tube-to-flange full-penetration welded joints (model 10 in Figure 

2.21) made of Fe E 460 has been investigated under multiaxial loadings. Fully reversed (R = -

1) both CA and VA pure bending, pure torsion and combined bending and torsion loadings 

were applied. Multiaxial loadings were applied both in-phase (ϕ = 0°) and out-of-phase (ϕ = 

90°) by adopting a nominal biaxiality ratio Λ = 0.58 (Eq. (1.27)). VA loadings followed a 

standard Gaussian load spectrum [82,83] with a block length of 50000 cycles and were applied 

in random order (VA-I in Figure 2.7 and Table 2.4). All joints, having a full-penetration 

weldment, failed at the weld toe. The number of cycles to obtain a through-the-thickness crack 

has been adopted as failure criterion in the original paper [79].  

The experimental fatigue results have been here reported in Figure 2.22 expressed in terms 

of the total number of cycles to failure Nf versus the maximum applied nominal bending stress 

range evaluated at the tube side Δσmax (Eq. (1.25)) in case of pure bending or combined bending 

and torsion loadings. Pure torsion data have been reported in terms of maximum applied 

nominal torsion stress range evaluated at the tube side Δτmax (Eq. (1.26)). 

The mode I and mode III peak stresses have been calculated at the weld toe, mode II being 

not singular there, by employing a 2D axis-symmetric FE model free meshed with 4-node 

harmonic elements (PLANE 25 of the ANSYS® element library). According to the PSM 

guidelines for PLANE-4 [37] (see also Table 2.6), the minimum mesh density ratio must be a/d 

= 3 to apply the PSM at the weld toe under mode I or mode III loading, where a = t = 10 mm. 

Therefore, a mesh pattern having element size d = 10/3 = 3.33 mm has been generated (model 

10 in Figure 2.21). The peak stresses Δσθθ,θ=0,peak and Δτθz,θ=0,peak have been evaluated at the 

weld toe from the FE analysis; then, the equivalent peak stress range has been derived from Eq. 

(1.21), by introducing cw1 = cw3 = 0.5 (Eqs. (1.18) and (1.20) with R = -1), all specimens having 

been tested after stress-relieving treatment. The local biaxiality ratio λ (Eq. (1.22)) resulted null 

under pure bending loading, while it was greater than zero under pure torsion and combined 

bending and torsion loading (see Table 2.7). The resulting peak stresses Δσθθ,θ=0,peak and 

Δτθz,θ=0,peak as well as the factors fsi (Eqs. (1.15) and (1.17)) and fwi (Eqs. (1.4) and (1.6)) have 

been summarised in Table 2.7, for all considered loading conditions. 
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Figure 2.21. Sonsino et al. [79], tube-to-flange joints: a) and d) joint geometry and loading conditions. b) and e) 

FE model according to the PSM. c) and f) table summarizing the geometrical parameters reported in a) and d). 
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2.2.7. Witt et al. [80,81], tube-to-flange joints 

 

Tube-to-flange welded joints with partial penetration (model 11 in Figure 2.23) made of 

fine-grained steel P460 have been fatigue tested under both CA and VA multiaxial loadings. 

Concerning CA fatigue tests, both pulsating (R = 0) and fully reversed (R = -1) pure bending, 

pure torsion and combined bending and torsion loadings were applied.  Combined bending and 

torsion loadings were applied both in-phase (ϕ = 0°) and out-of-phase (ϕ = 90°) as well as with 

different frequency proportions (fT = fB, fT = fB/5 or fT = 5fB), by adopting in all cases a nominal 

biaxiality ratio Λ = 1 (Eq. (1.27)). In addition, other combined bending and torsion loading 

configurations have been generated by superposing a fully reversed (R = -1) bending loading 

with a constant torsional stress and vice versa, i.e. a fully reversed (R = -1) torsion loading and 

a constant bending stress. VA fatigue tests have been performed under almost the same loading 

configurations as for CA tests, but applied according to a standard Gaussian load spectrum 

[82,83] of 50000 cycles in random order (VA-I in Figure 2.7 and Table 2.4). In addition to 

previous loading configurations, VA fatigue tests have also been performed under fully 

reversed (R = -1) combined bending and torsion loadings, applied in an “uncorrelated” manner, 

i.e. “the load histories for bending and torsion are generated in a different way” as stated in the 

original works [80,81]. The Authors [80,81] reported the number of cycles to obtain a through-

the-thickness crack, which initiated always at the weld toe, tested joints having a very short 

weld root of depth equal to 1 mm. 

The experimental fatigue results have been here reported in Figure 2.22 expressed in terms 

of the total number of cycles to failure Nf (this being given in the number of cycles of the higher 

frequency load when bending and torsion were applied simultaneously but at different 

frequencies) versus the maximum applied nominal bending stress range evaluated at the tube 

side Δσmax (Eq. (1.25)) in case of pure bending or combined bending and torsion loadings. Pure 

torsion data have been reported in terms of maximum applied nominal torsion stress range 

evaluated at the tube side Δτmax (Eq. (1.26)). 

A 2D free FE mesh of 4-node harmonic elements (PLANE 25 of the ANSYS® element 

library) has been generated to compute the mode I and mode III peak stresses at the weld toe, 

mode II being not singular and weld root being not of interest due to its negligible size. The 
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most demanding condition to apply the PSM is the mode I or mode III loading at the weld toe, 

which requires a minimum mesh density ratio a/d = 3 [37] (see also Table 2.6), a being the tube 

thickness, i.e. t = 8 mm. Therefore, a FE mesh pattern having element size d = 8/3 = 2.67 mm 

has been generated (model 11 in Figure 2.23). After evaluating the peak stresses Δσθθ,θ=0,peak 

and Δτθz,θ=0,peak at the weld toe from the FE analysis, the equivalent peak stress range has been 

derived from Eq. (1.21), by introducing cw1 = cw3 = 0.5 (Eqs. (1.18) and (1.20) with R = -1), 

because of the thermal stress-relieving treatment performed on all specimens before they had 

been tested. The local biaxiality ratio λ (Eq. (1.22)) resulted null under pure bending loading, 

while it was greater than zero under pure torsion and all combinations of cyclic bending and 

torsion loadings (see Table 2.7). Table 2.7 reports the resulting peak stresses Δσθθ,θ=0,peak and 

Δτθz,θ=0,peak and the factors fsi (Eqs. (1.15) and (1.17)) and fwi (Eqs. (1.4) and (1.6)). 

 

 

 

 

Figure 2.23. Witt et al. [80,81], tube-to-flange joints: a) and d) joint geometry and loading conditions. b) and e) 

FE model according to the PSM. c) and f) table summarizing the geometrical parameters reported in a) and d). 
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Figure 2.24. Fatigue test results from Witt et al. [80,81] relevant to tube-to-flange welded joints with partial 

penetration (model 11 in Figure 2.23):data are expressed in terms of maximum applied nominal stress. 
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2.2.8. Assessment of weld toe and weld root fatigue failures according to the PSM 

 

After having analysed all joint geometries according to the PSM, the experimental data 

originally expressed in terms of range of nominal stress have been re-converted in terms of 

range of the equivalent peak stress (Eq. (1.21)) evaluated at the crack initiation location. To do 

this, Table 2.7 summarises all required parameters to input in Eq. (1.21), i.e. the coefficients fwi 

(Eqs. (1.4), (1.5), and (1.6)) and fsi (Eqs. (1.15), (1.16), and) and the relevant peak stresses 

evaluated at the critical point, where Δ = Δ = 1 MPa have been applied to the FE models. 

Therefore, the original experimental results have been converted from the nominal stress ranges 

to the constant amplitude equivalent peak stress ranges of the individual modes I, II and III, by 

multiplying the nominal stress ranges applied in the original experimental tests by the 

coefficients fsi, fwi and by the relevant peak stress ranges calculated from the FE analyses. 

Eventually, the equivalent peak stress (Eq. (1.21)) has been evaluated.  

Figure 2.25 to Figure 2.32 compare the experimental fatigue results relevant to welded joints 

made of structural steels with the PSM-based fatigue design scatter bands for steel welded joints 

as a function of the local biaxiality ratio λ calculated at the crack initiation point according to 

Eq. (1.22). More in detail, experimental results relevant to λ = 0 (see Figure 2.25 to Figure 2.29, 

Figure 2.31a, and Figure 2.32a) have been compared with the PSM-based design scatter band, 

which has an endurable stress range Δσeq,peak,A,50% = 214 MPa, an inverse slope k = 3 and a 

scatter index referred to survival probabilities of 2.3%-97.7%, i.e. the mean value ± two 

standard deviations, Tσ = 1.90 (see Table 2.2). On the other hand, experimental results relevant 

to λ > 0 (see Figure 2.30, Figure 2.31b, and Figure 2.32b) have been compared with the PSM-

based design scatter band, which has Δσeq,peak,A,50% = 354 MPa, k = 5 and the 2.3%-97.7% scatter 

index Tσ = 1.90 (see Table 2.2). It is worth noting that PSM-based curves referred to a given 

probability of survival (PS) are iso-damage curves. More precisely, by taking the 50% curves 

as references with a total damage to failure D = 1, the 2.3% and 97.7% curves of the scatter 

band having Δσeq,peak,A,50% = 214 MPa and k = 3 are referred to damages D = 0.39 and 2.65, 

respectively; while the 2.3% and 97.7% curves of the scatter band having Δσeq,peak,A,50% = 354 

MPa and k = 5 are referred to damages D = 0.20 and 4.98, respectively. 
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Figure 2.25. Fatigue strength assessment of (a) two-sided full penetration butt-welded joints with t = 10 mm 

(model 1 in Figure 2.9) and (b) two-sided full penetration butt-welded joints with t = 30 mm (model 2 in Figure 

2.9) adopting the PSM: comparison between the pure mode I (λ = 0) PSM design scatter band and experimental 
data from Demofonti et al. [70]. 
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Figure 2.26. Fatigue strength assessment of  (a) transverse non-load-carrying (nlc) full-penetration welded joints 

with t = 10 mm (model 3 in Figure 2.10) and (b) transverse non-load-carrying (nlc) full-penetration welded joints 

with t = 30 mm (model 4 in Figure 2.10) adopting the PSM: comparison between the pure mode I (λ = 0) PSM 
design scatter band and experimental data from Demofonti et al. [70]. 
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Figure 2.27. Fatigue strength assessment of longitudinal stiffeners with full penetration welds (model 5 in Figure 

2.13) adopting the PSM: comparison between the pure mode I (λ = 0) PSM design scatter band and experimental 

data from Maddox and Zhang [71,72]. 

 

 

Figure 2.28. Fatigue strength assessment of longitudinal stiffeners with full penetration welds (model 6 in Figure 

2.15) adopting the PSM: comparison between the pure mode I (λ = 0) PSM design scatter band and experimental 
data from Vanrostenberghe et al. [73]. 
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Figure 2.29. Fatigue strength assessment of transverse nlc fillet-welded joints (model 7 in Figure 2.17) adopting 

the PSM: comparison between the pure mode I (λ = 0) PSM design scatter band and experimental data from 
Yildirim et al. [74]. 

 

Figure 2.30. Fatigue strength assessment of two different geometries of tube-to-flange fillet-welded joints (models 

8 and 9 in Figure 2.19) adopting the PSM: comparison between the multiaxial (λ > 0) PSM design scatter band 
and experimental data from Bertini et al. [75–78]. 
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Figure 2.31. Fatigue strength assessment of tube-to-flange full-penetration welded joints (model 10 in Figure 

2.21) adopting the PSM: comparison between (a) pure mode I (λ = 0), and (b) multiaxial (λ > 0) PSM design 
scatter bands and experimental data from Sonsino et al. [79]. 
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Figure 2.32. Fatigue strength assessment of tube-to-flange welded joints with partial penetration (model 11 in 

Figure 2.23) adopting the PSM: comparison between (a) pure mode I (λ = 0), and (b) multiaxial (λ > 0) PSM 
design scatter bands and experimental data from Witt et al. [80,81]. 
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Figure 2.25 to Figure 2.32 show that theoretical estimations are in good agreement with the 

great majority of experimental fatigue results generated under CA uniaxial as well as multiaxial 

loadings, while theoretical estimations resulted on the safe side with respect to only few data 

(see Figure 2.26b and Figure 2.32). Such result was expected based on the recent review [37]. 

Theoretical estimations based on the PSM are in good agreement also with most of 

experimental fatigue results generated under VA uniaxial as well as multiaxial fatigue loadings, 

as highlighted by Figure 2.25b, Figure 2.26a, Figure 2.27, Figure 2.29, Figure 2.31a, and Figure 

2.32b. Only in few cases, the theoretical estimations based on the PSM do not match the 

experimental results, since theoretical estimations are either on the unsafe side (see Figure 

2.25a, Figure 2.31b) or on the safe side (see Figure 2.26b, Figure 2.28, Figure 2.30, and Figure 

2.32a). 

The VA cases for which theoretical estimations are on the unsafe side are those relevant to 

two-sided full penetration butt-welded joints having thickness t = 10 mm (Figure 2.25a) and to 

tube-to-flange joints (Figure 2.31b) tested by Demofonti et al. [70] and Sonsino et al. [79], 

respectively. Concerning butt-welded joints having thickness t = 10 mm, Demofonti et al. [70] 

obtained an extremely large scatter of the experimental results, documented by values of 

damage to failure D based on nominal stress curves in the range between 0.06 and 6.0, 

depending on the spectrum type, the applied axial load level and the steel category. More in 

detail, lower values of the damage to failure D were obtained when applying the overload 

spectrum (VA-II in Figure 2.7). Moreover, the results reported in Figure 2.25a are affected by 

two assumptions: (i) the weld bead of butt-joints showed a strong variability, therefore an 

average local geometry has been assumed in the FE models, (ii) the effect of misalignments has 

been neglected, since authors [70] declared that 10-mm-thick joints tested under axial loading 

were affected by misalignments, but they did not report any value of misalignments or of the 

induced secondary bending stress. Dealing with tube-to-flange joints, Sonsino et al. [79] 

observed that joints tested under both CA and VA combined out-of-phase bending and torsion 

loading exhibited a significant reduction of life by a factor of four as compared to the 

corresponding in-phase loading, for a given applied stress range. Difference between in-phase 

and out-of-phase loading is not captured by the approach adopted here, since Eq. (1.21) - on 

which the PSM is based - does not take into account the phase shift between the different load 

contributions. However, the experimental outcome obtained by Sonsino et al. [79] is not found 
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systematically in the literature. In fact, in other investigations it has been observed that the 

influence of the phase shift between normal and shear stresses can be distinguished but it is not 

that remarkable [60,88]. In refs [60,88] the PSM has been applied to the fatigue strength 

assessment of steel welded joints subjected to CA multiaxial loadings taken from the literature 

[17,75,76,81,89–91]. 

The VA cases for which theoretical estimations are on the safe side are those referred to 

transverse nlc welded joints having thickness t = 30 mm (Figure 2.26b), longitudinal stiffeners 

(Figure 2.28) and to tube-to-flange joints (Figure 2.30, and Figure 2.32a) tested by Demofonti 

et al. [70], Vanrostenberghe et al. [73], Bertini et al. [75–78] and Witt et al. [80,81], 

respectively. Among these, the most evident is the case of longitudinal stiffeners (Figure 2.28) 

tested under VA axial fatigue loading, for which the authors [73] observed that the Miner’s rule 

was not accurate for the applied loading spectrum and hence resulted in over conservatism, 

documented by values of the damage to failure D evaluated on the basis of the nominal stress 

curves in the ranges between 1.73 and 3.19 for test series 6.1, between 3.16 and 30.04 for test 

series 6.2, while values between 0.95 and 1.87 were obtained for test series 6.3, which indeed 

is in good agreement with PSM estimations. 

All in all, the PSM-based scatter bands have been validated (not fitted) against a large bulk 

of fatigue data taken from the literature: approximately 1500 experimental data obtained under 

pure mode I local stresses (λ = 0, Figure 2.33a) and 540 experimental data relevant to multiaxial 

local stresses (λ > 0, Figure 2.33b). Of all analysed data, approximately 320 are referred to VA 

tests. Again it should be remembered that a scatter index of 1.90 referred to the 2.3–97.7% 

survival probabilities corresponds to the intrinsic scatter of single test series tested under CA 

loadings according to Haibach [9,68] and Sonsino [17,69]. Obtained results (see Figure 2.33) 

also justify the observation of Gurney [11], according to which it is reasonable, in first 

approximation, to expect the scatter in variable amplitude tests is almost the same as that in 

constant amplitude tests. 
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Figure 2.33. PSM-based fatigue assessment of weld toe and weld root failures in welded joints made of structural 

steels tested in the as-welded or stress-relieved conditions subjected to pure mode I Constant Amplitude (CA) [37] 
or Variable Amplitude (VA) [63] loadings. a) The design scatter band for pure mode I loading (λ = 0) has been 
calibrated in [61], while b) The design scatter band for mixed mode loading (λ > 0) has been calibrated in [34]. 
Both are not fitted on the re-analysed experimental data. 
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Table 2.7. Summary of fatigue test results and parameters to apply the PSM on the considered fatigue data taken from the Literature. 

Code Ref. Load°  Spectrum°° Λ°°° Rσ Rτ ϕ Δσmax Δτmax Failure Mode I Mode II Mode III 

          Toe Root fs1 fw1 ΔσI* fs2 fw2 ΔτII* fs3 fw3 ΔτIII** 

[-] [-] [-] [-] [-] [-] [-] [°] [MPa] [MPa] [-] [-] [-] [-] [MPa] [-] [-] [MPa] [-] [-] [MPa] 

1.1 [70] A CA 0 -1 - - 200-500 - 6 - 1 0.852 1.587 - - - - - - 

    0 0 - - 120-350 - 5 - 1 0.852 1.587 - - - - - - 

   VA-II 0 -1 - - 510-753 - 5 - 0.242 0.852 1.587 - - - - - - 

1.2 [70] A CA 0 -1 - - 250-376 - 6 - 1 0.781 1.568 - - - - - - 

    0 0 - - 200-320 - 11 - 1 0.781 1.568 - - - - - - 

   VA-I 0 -1 - - 500-720 - 5 - 0.337 0.781 1.568 - - - - - - 

   VA-II 0 -1 - - 638-876 - 5 - 0.242 0.781 1.568 - - - - - - 

1.3 [70] A CA 0 -1 - - 128-480 - 7 - 1 0.899 1.620 - - - - - - 

    0 0 - - 160-480 - 6 - 1 0.899 1.620 - - - - - - 

   VA-I 0 -1 - - 496-992 - 5 - 0.337 0.899 1.620 - - - - - - 

   VA-II 0 -1 - - 689-977 - 5 - 0.242 0.899 1.620 - - - - - - 

1.4 [70] A CA 0 -1 - - 200-360 - 7 - 1 0.726 1.664 - - - - - - 

    0 0 - - 140-390 - 8 - 1 0.726 1.664 - - - - - - 

   VA-I 0 -1 - - 406-784 - 5 - 0.337 0.726 1.664 - - - - - - 

   VA-II 0 -1 - - 420-801 - 6 - 0.242 0.726 1.664 - - - - - - 

2.1 [70] B CA 0 -1 - - 166-530 - 7 - 1 0.852 1.662 - - - - - - 

   VA-II 0 -1 - - 412-823 - 5 - 0.242 0.852 1.662 - - - - - - 

2.2 [70] B CA 0 -1 - - 126-438 - 13 - 1 0.877 1.643 - - - - - - 

    0 0 - - 128-440 - 9 - 1 0.877 1.643 - - - - - - 

   VA-I 0 -1 - - 352-588 - 8 - 0.337 0.877 1.643 - - - - - - 

    0 0 - - 320-600 - 6 - 0.337 0.877 1.643 - - - - - - 

   VA-II 0 -1 - - 493-823 - 6 - 0.242 0.877 1.643 - - - - - - 

2.3 [70] B CA 0 -1 - - 176-658 - 11 - 1 0.852 1.656 - - - - - - 

   VA-I 0 -1 - - 328-548 - 8 - 0.337 0.852 1.656 - - - - - - 

   VA-II 0 -1 - - 574-815 - 6 - 0.242 0.852 1.656 - - - - - - 

2.4 [70] B CA 0 -1 - - 146-552 - 13 - 1 0.824 1.565 - - - - - - 

    0 0 - - 166-552 - 11 - 1 0.824 1.565 - - - - - - 

   VA-I 0 -1 - - 396-768 - 9 - 0.337 0.824 1.565 - - - - - - 

    0 0 - - 428-664 - 6 - 0.337 0.824 1.565 - - - - - - 
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   VA-II 0 -1 - - 496-960 - 8 - 0.242 0.824 1.565 - - - - - - 

    0 0 - - 834-1112 - 5 - 0.242 0.824 1.565 - - - - - - 

3.1 [70] A CA 0 -1 - - 100-400 - 8 - 1 1.309 1.526 - - - - - - 

    0 0 - - 100-350 - 6 - 1 1.309 1.526 - - - - - - 

   VA-II 0 -1 - - 300-720 - 5 - 0.242 1.309 1.526 - - - - - - 

3.2 [70] A CA 0 -1 - - 80-280 - 7 - 1 1.309 1.503 - - - - - - 

    0 0 - - 120-350 - 5 - 1 1.309 1.503 - - - - - - 

   VA-I 0 -1 - - 194-580 - 5 - 0.337 1.309 1.503 - - - - - - 

   VA-II 0 -1 - - 314-610 - 5 - 0.242 1.309 1.503 - - - - - - 

3.3 [70] A CA 0 -1 - - 100-326 - 7 - 1 1.376 1.552 - - - - - - 

    0 0 - - 150-376 - 5 - 1 1.376 1.552 - - - - - - 

   VA-I 0 -1 - - 262-692 - 5 - 0.337 1.376 1.552 - - - - - - 

   VA-II 0 -1 - - 395-868 - 5 - 0.242 1.376 1.552 - - - - - - 

3.4 [70] A CA 0 -1 - - 160-320 - 6 - 1 1.309 1.541 - - - - - - 

    0 0 - - 100-250 - 7 - 1 1.309 1.541 - - - - - - 

   VA-I 0 -1 - - 396-552 - 5 - 0.337 1.309 1.541 - - - - - - 

   VA-II 0 -1 - - 566-1196 - 5 - 0.242 1.309 1.541 - - - - - - 

4.1 [70] B CA 0 -1 - - 710-912 - 2 - 1 1.945 1.136 - - - - - - 

    0 0 - - 134-508 - 7 - 1 1.945 1.136 - - - - - - 

   VA-II 0 -1 - - 330-661 - 5 - 0.242 1.945 1.136 - - - - - - 

4.2 [70] B CA 0 -1 - - 132-898 - 9 - 1 2.231 1.188 - - - - - - 

    0 0 - - 132-498 - 6 - 1 2.231 1.188 - - - - - - 

   VA-I 0 -1 - - 234-490 - 8 - 0.337 2.231 1.188 - - - - - - 

    0 0 - - 220-526 - 6 - 0.337 2.231 1.188 - - - - - - 

   VA-II 0 -1 - - 328-686 - 5 - 0.242 2.231 1.188 - - - - - - 

4.3 [70] B CA 0 -1 - - 156-910 - 13 - 1 1.645 1.140 - - - - - - 

    0 0 - - 210-912 - 7 - 1 1.645 1.140 - - - - - - 

   VA-I 0 -1 - - 332-734 - 10 - 0.337 1.645 1.140 - - - - - - 

    0 0 - - 402-666 - 6 - 0.337 1.645 1.140 - - - - - - 

   VA-II 0 -1 - - 482-865 - 5 - 0.242 1.645 1.140 - - - - - - 

    0 0 - - 465-1025 - 5 - 0.242 1.645 1.140 - - - - - - 

4.4 [70] B CA 0 -1 - - 118-896 - 14 - 1 2.090 1.104 - - - - - - 

    0 0 - - 108-898 - 7 - 1 2.090 1.104 - - - - - - 

   VA-I 0 -1 - - 236-490 - 9 - 0.337 2.090 1.104 - - - - - - 
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    0 0 - - 264-546 - 6 - 0.337 2.090 1.104 - - - - - - 

   VA-II 0 -1 - - 328-574 - 8 - 0.242 2.090 1.104 - - - - - - 

    0 0 - - 398-767 - 5 - 0.242 2.090 1.104 - - - - - - 

5.1 [71,72] A CA 0 0.1 - - 90-240 - 6 - 1 1.077 2.658 - - - - - - 

    0 σmax=280MPa - - 90-140 - 4 - 1 1.077 2.658 - - - - - - 

    0 σmax=135MPa - - 65 - 1 - 1 1.077 2.658 - - - - - - 

   VA-III 0 σmax=280MPa - - 210 - 2 - 0.350 1.077 2.658 - - - - - - 

    0 σmin=70MPa - - 210 - 1 - 0.350 1.077 2.658 - - - - - - 

    0 σm=175MPa - - 210 - 1 - 0.350 1.077 2.658 - - - - - - 

   VA-IV 0 σmax=280MPa - - 210 - 1 - 0.292 1.077 2.658 - - - - - - 

    0 σmax=147MPa - - 210 - 1 - 0.292 1.077 2.658 - - - - - - 

    0 σmin=70MPa - - 210 - 1 - 0.292 1.077 2.658 - - - - - - 

    0 σm=175MPa - - 210 - 1 - 0.292 1.077 2.658 - - - - - - 

   VA-V 0 σmax=280MPa - - 210 - 1 - 0.233 1.077 2.658 - - - - - - 

   VA-VI 0 σmax=280MPa - - 210 - 1 - 0.171 1.077 2.658 - - - - - - 

6.1 [73] A CA 0 0.1 - - 50-350 - 6 - 1 0.766 4.510 - - - - - - 

    0 0.5 - - 90-303 - 5 - 1 0.766 4.510 - - - - - - 

   VA-VII 0 -1 - - 560-770 - 5 - 0.246 0.766 4.510 - - - - - - 

6.2 [73] A CA 0 0.1 - - 69-342 - 4 - 1 0.766 4.510 - - - - - - 

    0 0.5 - - 50-351 - 5 - 1 0.766 4.510 - - - - - - 

   VA-VII 0 -1 - - 768-1056 - 12 - 0.246 0.766 4.510 - - - - - - 

6.3 [73] A CA 0 0.1 - - 90-347 - 4 - 1 0.996 3.130 - - - - - - 

    0 0.5 - - 70-302 - 6 - 1 0.996 3.130 - - - - - - 

   VA-VII 0 -1 - - 560-770 - 12 - 0.246 0.996 3.130 - - - - - - 

7.1 [74] A CA 0 0.1 - - 117-190 - 7 - 1 1.062 1.489 - - - - - - 

    0 -0.43 - - 136-243 - 6 - 1 1.062 1.489 - - - - - - 

   VA-VIII 0 -0.43 - - 483-605 - 4 - 0.245 1.062 1.489 - - - - - - 

7.2 [74] A CA 0 0.1 - - 135-262 - 8 - 1 1.062 1.489 - - - - - - 

    0 -0.43 - - 180-262 - 6 - 1 1.062 1.489 - - - - - - 

   VA-VIII 0 -0.43 - - 483-832 - 5 - 0.245 1.062 1.489 - - - - - - 

8.1 [75–78] B CA 0 -1 - - 181-295 - - 10 1 1.184 2.955 1 4.627 0.098 - - - 

    0 0 - - 122-275 - - 9 1 1.184 2.955 1 4.627 0.098 - - - 

  T CA ∞ - -1 - - 144-228 - 13 - - - - - - 1 2.911 1.136 

    ∞ - 0 - - 148-248 - 13 - - - - - - 1 2.911 1.136 
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  B+T CA 0.31 -1 -1 0 177-245 54-75 - 7 1 1.184 2.955 1 4.627 0.098 1 2.911 1.136 

    0.31 0 0 0 117-250 36-77 - 8 1 1.184 2.955 1 4.627 0.098 1 2.911 1.136 

    1.14 -1 -1 0 110-147 125-167 - 5 1 1.184 2.955 1 4.627 0.098 1 2.911 1.136 

    1.14 0 0 0 86-108 98-123 - 5 1 1.184 2.955 1 4.627 0.098 1 2.911 1.136 

   VA-IX 1.13 0 0 - 165 187 - 3 1 1.184 2.955 1 4.627 0.098 1.348-1.477 2.911 1.136 

   VA-X 1.13 0 0 - 165 187 - 3 1 1.184 2.955 1 4.627 0.098 1.058-1.320 2.911 1.136 

   VA-XI 1.13 0 0 - 165 187 - 3 1.265-1.680 1.184 2.955 1.152-1.365 4.627 0.098 1 2.911 1.136 

   VA-XII 1.13 0 0 - 165 187 - 3 1.238-1.633 1.184 2.955 1.136-1.342 4.627 0.098 1 2.911 1.136 

9.1 [75–78] B+T CA 0.31 -1 -1 90 126-241 39-74 - 5 1 1.184 2.088 1 4.627 0.155 1 2.911 1.321 

    0.31 0 0 90 101-229 31-70 - 5 1 1.184 2.088 1 4.627 0.155 1 2.911 1.321 

    1.14 -1 -1 90 72-129 82-147 - 5 1 1.184 2.088 1 4.627 0.155 1 2.911 1.321 

    1.14 0 0 90 65-116 74-132 - 5 1 1.184 2.088 1 4.627 0.155 1 2.911 1.321 

   VA-XIII 1.13 0 0 - 165 187 - 4 1 1.184 2.088 1 4.627 0.155 1.020 2.911 1.321 

   VA-XIV 1.13 0 0 - 165 187 - 4 1 1.184 2.088 1 4.627 0.155 1.020 2.911 1.321 

   VA-XV 1.13 0 0 - 165 187 - 4 1 1.184 2.088 1 4.627 0.155 1.020 2.911 1.321 

10.1 [79] B CA 0 -1 - - 174-742 - 9 - 0.707 1.569 1.645 - - - - - - 

   VA-I 0 -1 - - 320-560 - 8 - 0.238 1.569 1.645 - - - - - - 

  T CA ∞ - -1 - - 362-458 4 - - - - - - - 0.707 2.389 1.209 

   VA-I ∞ - -1 - - 300-600 7 - - - - - - - 0.276 2.389 1.209 

  B+T CA 0.58 -1 -1 0 248-346 144-200 8 - 0.707 1.569 1.645 - - - 0.707 2.389 1.209 

    0.58 -1 -1 90 160-336 92-200 10 - 0.707 1.569 1.645 - - - 0.707 2.389 1.209 

   VA-I 0.58 -1 -1 0 368-524 212-302 7 - 0.238 1.569 1.645 - - - 0.276 2.389 1.209 

    0.58 -1 -1 90 258-518 150-298 9 - 0.238 1.569 1.645 - - - 0.276 2.389 1.209 

11.1 [80,81] B CA 0 -1 - - 204-820 - 17 - 0.707 1.460 1.679 - - - - - - 

    0 -1 τm=σa - 260-397 - 7 - 0.707 1.460 1.679 - - - - - - 

    0 0 - - 164-619 - 8 - 1 1.460 1.679 - - - - - - 

   VA-I 0 -1 - - 496-695 - 7 - 0.238 1.460 1.679 - - - - - - 

    0 0 - - 453-602 - 6 - 0.337 1.460 1.679 - - - - - - 

  T CA ∞ - -1 - - 238-397 8 - - - - - - - 0.707 2.286 1.214 

    ∞ σm=τa -1 - - 220-298 7 - - - - - - - 0.707 2.286 1.214 

    ∞ - 0 - - 205-306 14 - - - - - - - 1 2.286 1.214 

   VA-I ∞ - -1 - - 397-496 4 - - - - - - - 0.276 2.286 1.214 

  B+T CA 1 -1 -1 0 143-306 143-306 7 - 0.707 1.460 1.679 - - - 0.707 2.286 1.214 

    1 -1 -1 90 137-215 137-215 9 - 0.707 1.460 1.679 - - - 0.707 2.286 1.214 
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    1 -1 -1 fT=fB/5 165-512 165-512 8 - 1.209 1.460 1.679 - - - 0.707 2.286 1.214 

    1 -1 -1 fT=5fB 202-456 202-456 5 - 0.707 1.460 1.679 - - - 0.976 2.286 1.214 

    1 0 0 0 140-354 140-354 7 - 1 1.460 1.679 - - - 1 2.286 1.214 

    1 0 0 90 144-306 144-306 7 - 1 1.460 1.679 - - - 1 2.286 1.214 

   VA-I 1 -1 -1 0 306-524 306-524 9 - 0.238 1.460 1.679 - - - 0.276 2.286 1.214 

    1 -1 -1 90 338-479 338-479 5 - 0.238 1.460 1.679 - - - 0.276 2.286 1.214 

    1 -1 -1 fT=5fB 301-505 301-505 6 - 0.238 1.460 1.679 - - - 0.380 2.286 1.214 

    1 -1 -1 Uncor. 307-460 307-460 5 - 0.238 1.460 1.679 - - - 0.276 2.286 1.214 

    1 0 0 0 325-409 325-409 6 - 0.337 1.460 1.679 - - - 0.390 2.286 1.214 

    1 0 0 90 238-327 238-327 7 - 0.337 1.460 1.679 - - - 0.390 2.286 1.214 

° Axial (A), Bending (B), Torsion (T). 

°° Details are reported in Figure 2.7, Figure 2.8, Table 2.4, and Table 2.5. 

°°° According to Eq. (1.27). 

* ΔσI = Δσθθ,θ=0,peak and ΔτII = Δτrθ,θ=0,peak. In the case of 3D FE models meshed with 10-node tetra elements, values of ∆σ̅θθ,θ=0,peak and ∆τ̅rθ,θ=0,peak have been reported. All values calculated from FE models where Δσ = 

1 MPa was applied. 

** ΔτIII = Δτθz,θ=0,peak. In the case of 3D FE models meshed with 10-node tetra elements, values of ∆τ̅θz,θ=0,peak have been reported. All values calculated from FE models where Δτ = 1 MPa was applied 
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2.3. New experimental fatigue data: non-load-carrying fillet welded joints 

2.3.1. Introduction 

 

The presented equivalent peak stress has been proved to be a fatigue relevant parameter and 

it has been shown to be capable of summarizing a huge amount of experimental data relevant 

to constant and variable amplitude uniaxial as well as multiaxial stresses. Indeed, a validation 

exercise has been done by analysing a huge amount of fatigue data taken from the Literature 

and relevant to steel joints having different geometries, made of different steel classes, and 

tested under different uniaxial as well as multiaxial stress spectra. 

The same validation exercise has been done on new experimental results, generated by 

fatigue testing non-load-carrying (nlc) fillet-welded double transverse or 45° inclined 

attachments made of S355 structural steel under pure axial loading. The choice of fatigue testing 

such specimens started observing that as fatigue life of joints under multiaxial stresses is 

concerned, relatively few data are available in the Literature, especially when dealing with 

multiaxial variable amplitude stresses. To the best of Author’s knowledge, the few available 

fatigue results are relevant only to tube-to-flange joints under combined bending and torsion 

loads. One possible reason why few data are available is that a complex and dedicated test rig 

having two independent actuators is generally required to apply combined bending and torsion 

both in-phase/out-of-phase as well as constant/variable amplitude loadings to tube-to-flange 

joints [77,79,80], resulting in expensive and time-consuming experiments.  

Alternatively, to generate experimental fatigue data under multiaxial in-phase 

constant/variable amplitude stresses using a standard uniaxial testing machine, which is 

generally faster and cheaper, a solution was proposed by Booth and Maddox [92], who axially 

fatigue tested joints having weld bead inclined with respect to the load direction. In this way, 

the weld toe and the weld root are subjected to in-phase normal as well as shear stresses. 

However, it is worth noting that such solution does not allow to generate out-of-phase 

multiaxial local stresses and investigating the effect of different ratios between normal and 

shear stresses would require different joint geometries having different weld bead inclination. 

Accordingly, the joints having inclined attachments have been chosen to investigate the effect 

of a local in-phase multiaxial stress state using a uniaxial testing machine.  
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In the following paragraph, new experimental results have been generated by fatigue testing 

non-load-carrying (nlc) fillet-welded steel joints, both with double transverse attachment and 

with double 45° inclined attachment, under constant amplitude (CA) as well as variable 

amplitude (VA) axial loadings. The effects of the applied stress range, load ratio, deterministic 

and stochastic loads, misalignments and welding residual stresses on the fatigue life of the 

tested joints have been considered and discussed. Finally, the obtained results have been 

analysed adopting the extension of the PSM, capable of taking into account either uniaxial or 

multiaxial constant and variable amplitude local stresses.  

 

 

2.3.2. Fatigue tests: specimens 

 

Fatigue tests were performed using two different joint geometries made from an 8-mm-thick 

S355J2+N steel plate whose nominal mechanical properties are reported in Table 2.8. Both 

geometries were non-load-carrying (nlc) fillet-welded joints, one with double transverse 

attachment (see model 1 in Table 2.9, β = 90°) and the other with double 45° inclined attachment 

(see model 2 in Table 2.9, β = 45°), the latter being chosen to investigate the effect of a local 

in-phase multiaxial stress state using a uniaxial testing machine. Welding was performed 

perpendicular to the rolling direction using metal active gas welding (MAG) technique. 

Table 2.8. Material properties (nominal values) and welding process of the welded joints. 

Joint 

[-] 

Material 

[-] 

fy 

[MPa] 

fU 

[MPa] 

Welding Process 

[-] 

TCs* 

[-] 

Failure Criterion 

[-] 

Transverse (T) S355J2+N 355 510 MAG AW Complete Separation 

Inclined (I) S355J2+N 355 510 MAG AW Complete Separation 

* Testing Conditions: AW = as-welded 

 

Micro-hardness and microstructural analyses have been performed on the specimens. The 

sample for micro-hardness measurements and microstructural analysis has been extracted by 

saw cutting a transverse joint which has never been fatigue loaded. The sample was grinded by 

means of sandpaper with grit P120 up to P1200 and then polished with 6 μm and 1 μm diamond 

suspensions. Vickers micro-hardness HV0.5 has been measured by using a Leitz™ Durimet 

indentation machine according to [93], by applying a weight of 0.5 kg. The measurements have 

been performed:  
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• in a material region close to the weld toe (Figure 2.34a), whose results have been 

reported in color map mode in the same figure. 

• along a straight path starting from the transverse attachment to the main plate through 

the weld bead (Figure 2.34d), the relevant results having been reported in Figure 

2.34b as a function of the coordinate along the path 

 

Table 2.9. Joints geometries and FE analyses according to the PSM. 

 

Joint Geometry – Loading Conditions FE analyses according to PSM 

 

 

z = 6 

2α = 135° 

(1) Transverse 

4-node quadrilateral PLANE 182 
finite elements of Ansys ® FE code 

d = a/3 = 1.33 mm 

1 MPa 

X 

Y 

Weld Toe 

θ = 0° 

X 
Y 

CRACK 
INITIATION 

POINT 

Δσθθ,θ=0,peak
 

a = t 

β = 90° 

1 MPa 

z = 6 

2α = 135° 
CRACK 

INITIATION 
POINTS 

10-node tetrahedral SOLID 187 
finite elements of Ansys ® FE code 

Fixed:  
UX = UY = UZ = 0 X 

Y 

Z 

ZX Symmetry 
Plane (UY = 0) 

Δσθθ,θ=0,peak
 

d
local 

≈ 0.0  mm 

dglobal=1.33mm 

a = t = 4mm 

r z 
θ 

Δτθz,θ=0,peak
 

R
0
/2 = 0.14 mm 

(2) Inclined 

A 

B 

 ’ 

B 

β = 45° 
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Figure 2.34. Micro-hardness measurements and microstructural analysis of a transverse joint which has not been 

fatigue tested. (a), (c), and (d) macrographies of the etched sample. (a) and (b) results of micro-hardness 

measurements. (A)-(F) micrographs of the main microstructures highlighted in (d). 
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After that, the sample was etched with 4% Nital solution to better highlight the 

microstructure. Micrographs were taken using an optical microscope and allowed to distinguish 

three main regions, i.e. the Weld Metal (WM), the Heat Affected Zone (HAZ), and the Base 

Metal (BM) (see Figure 2.34A-F). The analysis showed that the BM has a microhardness of 

~175 HV and consists in a typical ferritic-pearlitic microstructure, whose grains are elongated 

in the rolling direction (see Figure 2.34F). Differently, the maximum values of the hardness 

(~330-340 HV) have been measured in the HAZ, which has an inhomogeneous bainitic-

martensitic microstructure, divided into two main subregions: the Coarse Grain (CGHAZ, 

Figure 2.34C) and the Fine Grain (FGHAZ, Figure 2.34E). Figure 2.34 also shows the 

microstructure of the WM (Figure 2.34A) and the transition in between different 

microstructures (Figure 2.34B,D). 

 

 

2.3.3. Fatigue tests: loads and testing parameters 

 

The nominal stress range Δσ has been calculated with reference to the main plate: 

 

F F

A W t

 
 = =


                                (1.30) 

 

where ΔF is the range of the axial load, while A, W, and t are the cross-section area, the 

width, and the thickness of the main plate, respectively. All specimens were fatigue tested in 

the as-welded state under closed loop load-controlled pure axial loading by using a 250 kN 

MFL servo-hydraulic machine equipped with an MTS TestStar IIm digital controller. A total 

of 18 fatigue tests were performed applying CA pulsating (R = 0.05) as well as fully reversed 

(R = -1) loading at a frequency ranging between 7 and 20 Hz depending on the applied load 

level. The same nominal load ratios were used for testing 22 specimens under VA loadings 

consisting in a p-type spectrum [7,11] (see Figure 2.35) applied repeatedly until failure both as 

a six-block program (VA-DD) and as a random sequence (VA-Rand). The cycle distribution 

comes from that of a narrow-band Gaussian random process {𝜎(𝑡)}, whose probability density 
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function of the stress amplitudes follows the Rayleigh distribution [94,95]. The cycle 

distribution can be written as follows [62,83,96,97]: 

 

2

max

1 ln sL

N e




   −  
   =         (1.31) 

 

where /σmax is the normalized stress range (0 ≤ /σmax ≤ 1), N is the number of cycles 

for which the applied stress ranges are greater than or equal to Δσ/Δσmax, i.e., the number of 

exceeding cycles, while Ls is the length of the spectrum. Given the exceedance cycle 

distribution (Eq. (1.31)), the Gaussian spectrum can be converted into the p-type spectrum by 

amplifying the normalized stress ranges with the following expression [11]: 

 

max max , 0

(1 )
p Gaussian p

p p
 
 

=

    
= + −       

                             (1.32) 

 

where p = Δσmin/Δσmax is the ratio between the minimum and the maximum stress ranges. 

In the present work, the length of the spectrum and the p parameter were put equal to Ls = 104 

cycles and p = 0.25, respectively (Figure 2.35). The length of the spectrum Ls, shorter than that 

used by other authors in the Literature [82,98], was chosen to guarantee a sufficiently high 

number of blocks to failure (> 10) even in the case of relatively short fatigue life tests (~105 

cycles). The six-block program (VA-DD) has been applied in a decreasing/decreasing sequence 

with test frequencies varying between 0.01 and 20 Hz. Either in the six-block program or in the 

random sequence, the applied load history was continuously sampled during the test and was 

systematically compared to the input one to assure that it was applied correctly. The number of 

cycles to failure corresponded to complete separation of the specimen, while run-out condition 

was fixed at 2·106 cycles, if no failure or crack initiation was detected.  
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Figure 2.35. Normalized stress range spectra applied in the experimental fatigue tests. 

 

 

2.3.4. Fatigue test results: damage analysis 

 

As it was expected, all joints both with transverse and inclined attachments under all types 

of fatigue loads exhibited fatigue crack initiation at the weld toe on the main plate’s side. More 

specifically, the crack initiation took place at one point or more along the weld toe in case of 

joints with transverse attachments (see model 1 in Table 2.9 and left side of Table 2.10), while 

it always occurred at the points of the weld toe at the specimen’s edges closer to the machine 

grips in case of joints with inclined attachments (see point   or  ’ on model 2 in Table 2.9 and 

right side of Table 2.10). Then, initiated fatigue crack propagated predominantly through the 

width, but also through the thickness until final fracture occurred.   
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Table 2.10. Fracture surfaces and crack paths. 

CA, R = 0.05 

T03 ΔFmax = 80 kN, Nf = 3.44∙105 cycles I01 ΔFmax = 125 kN, Nf = 1. 2∙105 cycles 

Top 

 

Top 

 

Side 

 

Side 

 

Front 

 

Front 

 

CA, R = -1 

T09 ΔFmax = 66 kN, Nf = 1.44∙106 cycles I14 ΔFmax = 90 kN, Nf = 8.82∙105 cycles 

Top 

 

Top 

 

Side 

 

Side 

 

Front 

 

Front 

 

VA_DD, R = 0.05 

T11 ΔFmax = 135 kN, Nf = 1.54∙106 cycles I13 ΔFmax = 183 kN, Nf = 5.55∙105 cycles 

Top 

 

Top 

 

Side 

 

Side 
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Front 

 

Front 

 

VA_DD, R = -1 

T15 ΔFmax = 160 kN, Nf = 4.46∙105 cycles I16 ΔFmax = 220 kN, Nf =  .63∙105 cycles 

Top 

 

Top 

 

Side 

 

Side 

 

Front 

 

Front 

 

VA_Rand, R = 0.05 

T22 ΔFmax = 141 kN, Nf = 9.82∙105 cycles I23  ΔFmax = 139 kN, Nf = 4.01∙105 cycles  

Reduced width W = 37.5mm 

Top 

 

Top 

 

Side 

 

Side 

 

Front 

 

Front 

 

VA_Rand, R = -1 

T21 ΔFmax = 140 kN, Nf = 8.00∙105 cycles I21 ΔFmax = 220 kN, Nf = 5.15∙105 cycles 

Top 

 

Top 
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Side 

 

Side 

 

Front 

 

Front 

 

 

 

2.3.5. Fatigue test results: nominal stress 

 

The experimental fatigue results have been reported in Figure 2.36 in terms of number of 

cycles to failure Nf versus the maximum applied nominal stress range Δσmax along with the 

uniaxial FAT80 (80 MPa at 2∙106 cycles) fatigue resistance curve for normal stresses according 

to IIW recommendations and Eurocode 3 [1,15]. Interestingly, joints with inclined attachments 

showed longer fatigue lives than joints with transverse attachments for the same applied CA 

nominal stress range. In other words, fatigue life increases as the inclination angle of the 

attachments β (see models 1 and 2 in Table 2.9) decreases (compare black triangle markers with 

circular markers in Figure 2.36). The same experimental outcome is valid for the data generated 

under VA loads (compare red and blue triangle markers with circular markers in Figure 2.36).  

Furthermore, no significant mean stress sensitivity has been observed both under CA 

loadings (compare black filled and empty markers in Figure 2.36). As VA loads are concerned, 

transverse joints exhibit no significant mean stress sensitivity as for CA loads (compare red as 

well as blue filled and empty circular markers in Figure 2.36), while inclined joints showed 

being slightly sensitive to the load ratio resulting in shorter fatigue under tension-tension 

nominal stresses (R = 0.05) as compared to fully reversed (R = -1) loadings at the same nominal 

stress range (compare red filled and empty triangular markers in Figure 2.36). It must be 

highlighted that two specimens with transverse weld bead and four specimens with inclined 

bead have been tested under tension-tension VA nominal stresses (R = 0.05) with a maximum 

nominal stress higher the yield stress of the base material (σmax ~ 460-520 MPa > σy ~ 355 MPa, 
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see Figure 2.36). Finally, no significant differences were found between test results relevant to 

the six-block program (VA-DD) and the random sequence (VA-Rand) of VA loads (compare 

red and blue markers in Figure 2.36). 

 

 

Figure 2.36. Experimental results of fatigue tests performed on non-load-carrying (nlc) fillet-welded joints with 

double transverse attachments as well as with double 45° inclined attachments. Results are expressed in terms of 

number of cycles to failure as a function of the maximum applied nominal stress range. 

 

 

2.3.6. Fatigue strength assessment according to the PSM  

 

The fatigue tested joint geometries have been analysed by adopting the PSM formulation for 

VA stresses as described above. The nlc fillet-welded joints with double transverse attachment 

(see model 1 in Table 2.9) have been analysed using a 2D FE model of 4-node plane elements 

under plane strain conditions (PLANE 182 with K-option 1 set to 3 of Ansys® element library). 

The weld toe and the weld root were modelled as sharp V-notches (ρ = 0, i.e. the worst case) 

having opening angle 2α = 135° and 2α = 0°, respectively.  nly one quarter of the specimen 

geometry was modelled by taking advantage of the double symmetry and a uniform tensile 

stress of 1 MPa has been applied to the main plate. The proper finite element size to be adopted 
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was chosen regardless the weld root, which is not a fatigue critical point, and the mode II 

stresses at the weld toe, which are not singular, 2α being greater than 102° [84]. Accordingly, 

the minimum mesh density ratio a/d = 3 has been considered, which is the minimum value 

given by the PSM guidelines [37] for Plane-4 elements (see also Table 2.6) applied at the weld 

toe under mode I loading. Therefore, being the reference dimension a = t (see Table 2.6) at the 

weld toe of joints with double transverse attachment [37], the maximum admissible global 

element size d ≈ t/3 = 4/3 = 1.33 mm was used as input parameter for the free meshing algorithm 

in Ansys® (model 1 in Table 2.9). After having solved the FE analysis, the maximum principal 

stress Δσ11,peak has been evaluated at the weld toe instead of the opening peak stress Δσθθ,θ=0,peak 

(Δσθθ,θ=0,peak ≈ Δσ11,peak under pure mode I stresses), because it is easier to be obtained, the 

definition of a local coordinate system for stress evaluation being unnecessary. Separately, the 

coefficients fs1 and fw1 have been computed thanks to Eq. (1.15) and Eq. (1.4), respectively. 

More in detail, cw1 = 1 was assumed in the computation of fs1 (Eq. (1.15)) since all joints were 

tested in the as-welded condition, while d = 1.33 mm was input in Eq. (1.4) for the evaluation 

of fw1. In the present case where pure mode I stresses are involved, the final expression of the 

equivalent peak stress range Δσeq,peak (Eq. (1.21)) coincides with Eq. (1.12). Regarding the local 

biaxiality ratio λ (Eq. (1.22)), it resulted null because pure mode I stresses are acting at the weld 

toe, all shear stress contributions being null. 

In the case of nlc fillet-welded joints with double inclined attachment, a 3D FE model has 

been realized using 10-node tetrahedral elements (SOLID 187 of Ansys® element library), 

owing to the impossibility of simplifyng such geometry in a 2D model. Again, the weld toe and 

the weld root were shaped as sharp V-notches (ρ = 0) having opening angle 2α = 135° and 2α 

= 0°, respectively, and only half of the joint geometry was modelled exploiting the symmetry 

in the ZX plane (see model 2 in Table 2.9). The model was fully constrained at one end of the 

main plate and loaded with a uniform tensile stress of 1 MPa on the opposite side of the main 

plate. Similarly to the joint with transverse attachment, the weld root was not considered for 

selecting the proper element size to apply the PSM, the weld toe being the sole critical location. 

However, in this case the weld toe is subjected to mixed mode I+III local stresses. According 

to the PSM guidelines relevant to Tetra-10 elements [37] (see also Table 2.6), a/d must be 

greater than or equal to 1 to analyse the weld toe under mode I stresses, while it has to be greater 

than or equal to 3 to analyse the weld toe under mode III stresses, a being in any case equal to 

half the plate thickness, i.e. t = 4 mm. Since the most demanding mesh density requirement 
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comes from mode III, a mesh pattern having element size dglobal ≈ t/3 = 4/3 = 1.33 mm has been 

generated using the free meshing algorithm. However, by adopting multiple local mesh 

refinements, a more refined mesh with element size dlocal = 0.07 mm has been locally adopted 

at the outer edges of the weld toe line, i.e. points A and B of model 2 in Table 2.9. In fact, after 

some preliminary results obtained with a coarser FE mesh, it has been observed that the 

equivalent peak stress distribution along the weld toe line exhibited a steep gradient at points A 

and B of the weld toe. Therefore, according to the SED criterion implemented in the PSM, the 

equivalent peak stresses for steel welded joints must be evaluated in the middle of a 0.28-mm-

thick structural volume [88]. As a consequence, the average peak stresses (Eq. (1.7)) must be 

evaluated at a distance R0/2 = 0.14 mm starting from points A and B along the weld toe line; 

finally, the local element size dlocal = 0.07 mm was selected for locating the third FE vertex 

node exactly at 0.14 mm far from points A and B along the weld toe line. After having solved 

the FE analysis, both the mode I (opening) and mode III (tearing) peak stress distributions, i.e. 

Δσθθ,θ=0,peak and Δτθz,θ=0,peak, respectively, have been extracted along the weld toe line and the 

corresponding average peak stresses Δ𝜎𝜃𝜃,𝜃=0,𝑝𝑒𝑎𝑘 and Δτ̅𝜃𝑧,𝜃=0,𝑝𝑒𝑎𝑘 have been calculated 

according to Eq. (1.7). FE results are reported in Figure 2.37 as a function of the normalized 

curvilinear coordinate S/Smax running along the weld toe line. Then, the coefficients fs1 and fs3 

have been evaluated for both CA and VA loads entering cw1 = cw3 = 1 into Eqs. (1.15) and 

(1.17), while the evaluation of coefficients fw1 and fw3 (Eqs. (1.4) and (1.6)) deserved some 

attention regarding the element size d to use. The finite element size varied along the weld toe 

line, because of the mesh refinements applied at points A and B. Therefore, the actual element 

size d, estimated as the distance between two consecutive vertex nodes along the weld toe line, 

was used for evaluating the coefficients fw1 and fw3 (Eqs. (1.4) and (1.6)) at each individual 

node. Afterwards, the equivalent peak stress ranges Δσeq,peak,I and Δσeq,peak,III for mode I and 

mode III, respectively, have been computed thanks to Eq. (1.12) and (1.14) and finally the 

equivalent peak stress Δσeq,peak has been computed by means of Eq. (1.21). The results are 

reported in Figure 2.37, where the distribution of the equivalent peak stress Δσeq,peak is reported 

versus the normalized curvilinear coordinate S/Smax running along the weld toe line for both CA 

and VA loads in case of a nominal stress range equal to 1 MPa applied to the main plate. 

Noteworthily, Figure 2.37 shows that the PSM correctly estimates the crack initiation point, the 

maximum value of the equivalent peak stress range being located at point B, i.e. where fatigue 

crack initiation experimentally occurred. 
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Figure 2.37. Distribution of peak stresses in non-load-carrying (nlc) fillet-welded joints with double 45° inclined 

attachments (model 2 in Table 2.9) under pure axial loading. Mode I and mode III peak stresses and equivalent 

peak stresses (Eq. (1.21)) for both CA and VA loadings calculated along the weld toe line by applying the PSM 

based on Tetra-10 elements. 

 

 

Differently from the case of the nlc fillet-welded joint with transverse attachments, the 

existence of mode III stresses resulted in a local biaxiality ratio λ (Eq. (1.22)) greater than zero 

at all nodes lying on the weld toe line (see Figure 2.38). 
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Figure 2.38. Distribution of the local biaxiality ratio λ (Eq. (1.22)) in non-load-carrying (nlc) fillet-welded joints 

with double 45° inclined attachments (model 2 in Table 2.9) under pure axial loading according to the PSM based 

on Tetra-10 elements. 

 

 

2.3.7. Assessment of weld toe and weld root fatigue failures according to the PSM 

 

The PSM-based analyses described above allow to convert the original fatigue data from the 

maximum nominal stress range (Δσmax, Figure 2.36) to the equivalent peak stress range 

Δσeq,peak, according to Eq. (1.21) applied where crack initiated in the experimental tests. To do 

this, the maximum nominal stress ranges applied in the experimental tests have been directly 

multiplied by the relevant equivalent peak stress range derived in previous section, i.e. from 
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Eq. (1.21) by giving as inputs the peak stresses calculated from a FE model where Δ = 1 MPa 

was applied. Therefore, the linear proportionality between the peak stresses and the applied 

nominal stress range Δσ has been exploited, being valid both for transverse and inclined joints 

under pure axial loading. 

Dealing with transverse joints, Figure 2.39 reports the experimental fatigue data expressed 

in terms of reference number of cycles N0 (equal to Nf in the present case) as a function of the 

equivalent peak stress range Δσeq,peak along with the PSM-based fatigue design scatter band for 

steel welded joints relevant to pure mode I loading (λ = 0). A very good agreement has been 

observed, since all experimental data fall inside the PSM-based scatter band. It is worth noting 

that the 2.3% and 97.7% curves of the scatter band imply damages D = 0.387 and 2.646, 

respectively, if a total damage to failure D = 1 is referred to the 50% curve. 

 

 

Figure 2.39. Fatigue strength assessment of non-load-carrying (nlc) fillet-welded joints with double transverse 

attachments (model 1 in Table 2.9) adopting the PSM: comparison between the pure mode I (λ = 0) PSM design 
scatter band and experimental data. 

 

Concerning the inclined joints, Figure 2.40 reports the fatigue test data expressed in terms 

of reference number of cycles N0 (again equal to Nf) as a function of the equivalent peak stress 

range Δσeq,peak along with the PSM-based fatigue design scatter band for steel welded joints 

relevant to λ > 0. Noteworthy, Figure 2.40 shows that, once again, all experimental fatigue data 
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are in good agreement with the theoretical estimations since most of them fall within or slightly 

on the safe-side of the PSM-based fatigue curves having k = 5 and being referred to a 2.3% and 

97.7% probability of survival (PS), which correspond to damages D = 0.202 and 4.978, 

respectively, if a damage D = 1.0 is assumed for the curve having 50% probability of survival. 

 

 

Figure 2.40. Fatigue strength assessment of non-load-carrying (nlc) fillet-welded joints with double 45° inclined 

attachments (model 2 in Table 2.9) adopting the PSM: comparison between the multiaxial (λ > 0) PSM design 
scatter band and experimental data. 

 

2.3.8. Discussion: comparison with IIW and Eurocode 3 fatigue curves 

 

As it has been discussed above, the joints with inclined attachments are subjected to a local 

in-phase multiaxial stress state even if loaded through a uniaxial testing machine. According to 

[99], a normal Δσ⊥ and a shear Δτ// stress components (see Figure 2.2), namely perpendicular 

and parallel to the weld seam line, respectively, can be derived from the applied nominal stress 

range Δσ, referred to the cross-sectional area of the main plate (Eq. (1.30)), and the inclination 

angle β of the attachments with respect to the loading direction  
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2sin  ⊥ = 
         (1.33) 

 

/ / cos sin    = 
        (1.34) 

 

Existing codes and recommendations [1,2] suggest the adoption of specific procedures for 

taking into account multiaxial as well as variable amplitude loadings when estimating the 

fatigue life of welded joints. More in detail, IIW Recommendations [2] suggests the adoption 

of a Gough-Pollard type equation: 
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wherein ΔσR,IIW and ΔτR,IIW are the modified FAT classes of the structural detail under normal 

and shear stresses, respectively, CV is a coefficient called comparison value which is equal to 

1.0 for proportional loadings and 0.5 for non-proportional loadings, while Δσ⊥,eq and Δτ//,eq are 

equivalent constant amplitude stress ranges evaluated according to the modified Palmgren-

Miner rule proposed by Haibach [8]. Dealing with the contribution of normal stress 

components, when the applied stress ranges Δσ⊥,i are all above the knee point (N = 107 cycles, 

Δσ⊥ = 47 MPa), as for the joints tested in the present work, the following expression can be 

used for evaluating Δσ⊥,eq: 
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where ni is the number of cycles corresponding to the stress range Δσ⊥,i, m = 3 is the inverse 

slope of the fatigue curve above the knee point, and DIIW is the specified Miner sum whose 

value is equal to 1. The same expression is valid also for computing the equivalent constant 

amplitude shear stress Δτ//,eq apart from the inverse slope which is m = 5, and the knee point, 

which is located at N = 108 cycles for Δτ// = 37 MPa. By revising Eq. (1.35), an equivalent 

constant amplitude uniaxial normal stress Δσeq,IIW can be expressed as follow [100]: 
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All fatigue test data (Table 2.12) have been converted from nominal stress range Δσ to 

Δσeq,IIW (Eq. (1.37)) and reported in Figure 2.41 along with the uniaxial FAT80 fatigue curve 

for normal stress (ΔσR,IIW = 80 MPa) which correspond to a survival probability PS = 97.7% [2]  

(black solid line in Figure 2.41).  

The first aspect that deserves to be investigated is the capability of the proposed method to 

describe the average behaviour of the experimental data. As depicted in Figure 2.41, all 

experimental fatigue results are in satisfactory agreement with the predictions based on IIW 

Recommendations, although they all fall largely on the safe side with respect to the design 

curve, which is referred to a 97.7% probability of survival. A more appropriate comparison can 

be made with the fatigue resistance curve relevant to a survival probability PS = 50%. The latter 

being not available in the IIW recommendations [2], it can be estimated by assuming a scatter 

index Tσ = 1.85 referred to the 2.3–97.7% survival probabilities which corresponds to the 

intrinsic scatter of single test series tested under CA loadings according to Haibach [9,68] and 

Sonsino [17,69]. This way the PS = 50% fatigue resistance curve has been obtained scaling that 

relevant to PS = 97.7% by a factor √1.85 (FAT80: 80 MPa ∙ √1.85 = 109 MPa)  and reported 

in Figure 2.41 as dashed black line. Obviously, fatigue resistance curve with PS = 50% better 

describes the mean behaviour of experimental data if compared to that having PS = 97.7% 

(compare experimental data with dashed and solid black lines in Figure 2.41). Nevertheless, 

this estimate is still slightly on the safety side if compared to that offered by the PSM (Figure 

2.39 and Figure 2.40). 

Another aspect that deserves to be investigated is the capability of the method to summarize 

the experimental data in a narrow scatter band. Accordingly, all experimental data reported in 

Figure 2.41 have been statistically analysed and fitted according to BS ISO 12107:2012 [101]. 

The obtained scatter band referred to PS = 2.3% - 97.7% (reported as green lines in Figure 2.41) 

exhibits a scatter index Tσ = 2.13, greater than that of the PSM design scatter bands (Figure 

2.39 and Figure 2.40) which is equal to Tσ = 1.90 in very good agreement with the intrinsic 

scatter according to Haibach [9,68] and Sonsino [17,69].  
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Figure 2.41. Experimental fatigue data re-analyses according to the procedure posed by IIW [2] (Eq. (1.37)). Solid 

and dashed black lines are not fitted and represent the FAT80 fatigue resistance curves referred to PS = 97.7% 

and 50%, respectively. Green lines represent the scatter band fitted on experimental data according to [101]. 

 

On the other hand, to assess the fatigue life of joints subjected to combined normal and shear 

stresses, the Eurocode 3 (EC3) suggests a relationship slightly different from Eq. (1.35). More 

in detail, it proposes to evaluate separately the damages caused by equivalent constant 

amplitude normal and shear stresses according to Miner’s rule and then to simply add them  
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where ΔσR,EC3 and ΔτR,EC3 are the uniaxial normal and shear modified fatigue strengths of the 

considered detail, DEC3 is the damage sum which is equal to 1.0, while Δσ⊥,eq and Δτ//,eq are 

equivalent constant amplitude stresses. The latter must be evaluated from Eq. (1.36) substituting 

DIIW with DEC3, provided that all applied stress ranges are above the knee point which 

corresponds to N = 5∙106 cycles and Δσ⊥ = 59 MPa for normal stresses and N = 108 cycles and 
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Δτ// = 37 MPa for shear stresses. As above, starting from Eq. (1.38) it is possible to define an 

equivalent uniaxial constant amplitude normal stress [100]: 
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All fatigue data (Table 2.12) have been converted from nominal stress range Δσ to Δσeq,EC3 

(Eq. (1.39)) and reported in Figure 2.42 together with the relevant uniaxial normal fatigue curve 

of the considered detail (ΔσR,EC3 = 80 MPa) which correspond to a survival probability PS = 

97.7% [1] black solid line in Figure 2.42).  

Noteworthy, the procedure according to EC3 gave the same results as that proposed by IIW 

in the case of joints with transverse attachments subjected to a uniaxial stress state, i.e. the 

equivalent stresses proposed by EC3 (Eq. (1.39)) and that by IIW (Eq. (1.37)) collapsed into 

the same expression. Moreover, also in this case experimental data are in satisfactory agreement 

with the predictions based on EC3, although they all fall largely on the safe side with respect 

to the design curve, which is referred to a 97.7% probability of survival. Once again, to perform 

a more appropriate comparison, the fatigue resistance curve relevant to a survival probability 

PS = 50% has been estimated by assuming a scatter index Tσ = 1.85, the latter being not 

available in the Eurocode 3 [1]. Accordingly, the PS = 50% fatigue resistance curve has been 

evaluated scaling that relevant to PS = 97.7% by a factor √1.85 (80 MPa ∙ √1.85 = 109 MPa)  

and reported in Figure 2.42 as dashed black line. Similar to what obtained for IIW, fatigue 

resistance curve with PS = 50% better describes the mean behaviour of experimental data if 

compared to that having PS = 97.7% (compare experimental data with dashed and solid black 

lines in Figure 2.42) but the estimate is still remains on the safety side, confirming the PSM 

method gives a better description of the average behaviour (Figure 2.39 and Figure 2.40). 

Finally, to investigate the capability of the method to summarize the experimental data in a 

narrow scatter band, all experimental data reported have been statistically analysed and fitted 

according to BS ISO 12107:2012 [101]. The obtained scatter band referred to PS = 2.3% - 

97.7% (reported as green lines in Figure 2.42) exhibits a scatter index Tσ = 2.31, greater than 

that exhibited by the analysis according to the IIW (Tσ,IIW = 2.13, see Figure 2.41), and greater 

than that of the PSM (Tσ,PSM = 1.90, see Figure 2.39 and Figure 2.40), confirming once again 
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the PSM offers not only a better description of the average behaviour of the experimental data, 

but also gives the best summary in terms of scatter index. 

 

 

 

Figure 2.42. Experimental fatigue data re-analyses according to the procedure posed by EC3 [1] (Eq. (1.39)). 
Solid and dashed black lines are not fitted and represent the FAT80 fatigue resistance curves referred to PS = 

97.7% and 50%, respectively. Green lines represent the scatter band fitted on experimental data according to 

[101]. 

 

 

2.3.9. Discussion: effect of angular misalignments 

 

The angular misalignments (γ in Figure 2.43) were measured in all joints both with 

transverse and inclined attachments. To do so, each specimen was clamped at one end of the 

main plate and the vertical positions (Y-coordinate in Figure 2.43) of four points located at a 

specific axial position on the specimen main plate (points  , A, A’, and  ’ in Figure 2.43) were 

measured adopting a centesimal dial gauge. The chosen points were located symmetrically with 

respect to the stiffeners and their vertical position was measured after zeroing the dial gauge at 

the point O (YO = 0 mm), i.e., the nearest to the clamped side. The measurements have been 
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performed on all test specimens with transverse attachments and inclined attachments, 

respectively. As a result, it was possible to evaluate their angular misalignments 

' '[arctan(( ) / 80) arctan(( ) / 80)]O A O AY Y Y Y = − − − , which values range between 0.04 and 1.09 degrees for 

the specimens with transverse attachments and 0.07 and 1.30 degrees for the joints with inclined 

attachments.  

After that, the effect of the secondary bending generated by the misalignments, when the 

specimens are loaded under nominal pure axial loading, has been investigated by performing 

strain gauge measurements. Therefore, two specimens, namely T05 and I05, have been chosen 

among the most misaligned joints with transverse and inclined attachments, respectively, and 

they have been instrumented with four 3-mm-long grid strain gauges located on the surface of 

the main plate, where the stress state was theoretically uniform and equal to the nominal applied 

stress (Eq. (1.30)), on opposite sides with respect to the bending neutral axis of the main plate 

(1-2 and 3-4 in Figure 2.43). Then, each instrumented specimen has been tested by applying 

stepwise increasing axial static loads from 0 kN up to 120 kN, which on one side is close to the 

maximum load applied during the experimental fatigue tests, while on the other side it keeps 

the nominal stress below yielding, and then unloading to 0 kN, while measuring the 

corresponding strain gauge signals. The loads have been applied through a servo-hydraulic 

MFL axial testing machine having a ±250 kN load capacity and equipped with an MTS TestStar 

IIm digital controller, while the IMC Cronos PL-2 data acquisition unit has been adopted to 

measure the signals from the strain gauges, which have been connected adopting a quarter 

bridge configuration. 

As a result, both the axial (εaxial,i-j = (εi   εj)/2) and bending (εbending,i-j = (εi - εj)/2) strain 

components have been measured in two sections (1-2 and 3-4 in Figure 2.43) along the main 

plate. After that, the axial (σaxial,1-2, σaxial,3-4) and bending stress components (σbending,1-2, σbending,3-

4) have been computed by multiplying the strains for the material elastic modulus E = 206000 

MPa and they have been reported in Figure 2.43 along with the theoretical values of axial stress 

(σaxial,theoretical, Eq. (1.30)) as a function of the applied load level. As expected, the measured 

axial stresses (σaxial,1-2, σaxial,3-4) are in good agreement with the theoretical one (σaxial,theoretical) 

for both specimen geometries. On the other hand, Figure 2.43 shows for both joint geometries 

and both analyzed sections of the main plate (1-2 and 3-4), that a bending stress component 

equal to about 40 MPa and 30 MPa for T05 and I05 specimens, respectively, is present even if 

no axial load is applied to the specimens (σbending,1-2 > 0 and σbending,3-4 > 0 when F = 0). More 



CHAPTER 2: Variable amplitude multiaxial local stresses 

 

 

136 

 

in detail, the bending stress component increases slightly as the applied force increases, leading 

to a bending stress range (Δσbending) of 7 MPa and 5 MPa for specimens T05 and I05, 

respectively, when the applied load F varies from 0 to 120 kN, while under the same applied 

load range, the axial stress range (Δσaxial) results 300 MPa and 316 MPa, respectively. 

 

 

Figure 2.43. Measurement of angular misalignments. (a) Location of the measurement points for determining the 

angular misalignment γ. (b) Measured vertical positions Y for samples adopted for strain gauge measurements 
and average values. (c) Position of the strain gauges. (d) Results of the strain gauge measurements. 
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Accordingly, the bending stress ranges being the 2.3% and 1.6% of the axial ones, 

respectively, it has been concluded that the secondary bending generates a stress component 

having negligible range under cyclic loading; while it keeps almost constant, therefore it 

represents a mean stress component. According to International Standards and 

Recommendations [1,2], the mean stress effect introduced by the bending stresses has been 

neglected because all joints were tested in the as-welded conditions. 

 

 

2.3.10. Discussion: residual stresses 

 

Residual stresses have been measured through the X-ray diffraction method applied on one 

joint with transverse attachments and another one with inclined attachments. Figure 2.44 shows 

the measurement paths, namely an outer, a mid-plane and one intermediate between the 

previous ones, all originating from the weld toe, along which the residual stress component σxx 

has been measured. The adopted parameters of the X-ray device have been listed in Table 2.11.  

 

 

Figure 2.44. Residual stress components and paths for residual stress measurement. 

 

Figure 2.45 reports the measured residual stresses σxx as a function of the distance from the 

weld toe. In general, the residual stress components measured at weld toe, i.e. at a distance 

equal to 0 mm, show no clear trend and have been obtained with low confidence level due to 

difficulties in the measurement phase. They range from -30 MPa and +30MPa in the welded 

joint with transverse attachments while from -40 MPa to +155 MPa in the joint with inclined 

attachments. Differently, the other measures, more reliable due to a higher confidence level, 

Y

  

σxx

σxx
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show that in most cases high tensile residual stresses are present in the material region within a 

distance of 2 mm and 4 mm from the weld toe, the only exception being the outer path in the 

joint with transverse attachments, where compressive residual stresses have been measured. 

More in detail, tensile residual stresses are higher in the joint with inclined attachments, the 

maximum being 250 MPa, as compared to the joint with transverse attachments, for which the 

maximum results 105 MPa. Furthermore, far from the weld toe residual stresses become 

compressive in the case of joint with transverse attachments and reduced but still tensile in the 

case of joint with inclined attachments.  

 

Table 2.11. Residual stress measurement by the X-ray diffraction method: adopted device and experimental 

parameters. 

Surface preparation Removal of oxide layer using HCl 

X-ray device GNR Spider X 

Radiation Cr-Kα with  anadium filter, penetration depth 15 µm 

Collimator size 1 mm 

Method 𝑠𝑖𝑛2 𝜓 – method  

Measurement paths see Figure 2.44 

Residual stress components σxx (see Figure 2.44) 

Acquisition time 500 s/𝜓 angle 𝜓 − angles 7 ψ-angles: -35° < ψ < 35° 

Elastic constants E = 206 GPa, ν = 0.3 

 

 

The obtained results appear to be in agreement with the assumption that as-welded joints are 

typically subjected to high tensile residual stresses and, therefore, they are typically insensitive 

to mean stress effect when fatigue tested [1,2,102,103]. However, it is worth noting that the 

measured residual stress state is the original one, while a significant relaxation of residual 

stresses after cyclic loading is typically observed [58,59], therefore, the actual residual stress 

state and its stability during cyclic loading is not known. 
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Figure 2.45. Residual stresses along the path shown in Figure 2.44 by the X-ray diffraction method in (a) 

transverse joint and (b) inclined joint. Dashed lines have been added between measured values only to increase 

readability, however they do not represent the actual trend of residual stresses. 
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Table 2.12. Summary of fatigue test results and parameters to apply the PSM. 

Test FE Model Results 

Geom.^ Spectrum° R Code γ Δσmax Nf Type fs1 fw1 ΔσI* fs3 fw3 ΔτIII* Δσeq,peak λ 

[-] [-] [-]  [deg] [MPa] [cycles] [-] [-] [-] [MPa] [-] [-] [MPa] [MPa] [-] 

T CA 0.05 T01 1.1 287 1.06∙105 2D 1.000 1.166 449 - - - 524 0 

   T02 1.0 137 1.  ∙106  1.000 1.166 214    250 0 

   T03 1.1 198 3.44∙105  1.000 1.166 310    362 0 

   T04 0.9 175 5.05∙105  1.000 1.166 274    320 0 

  -1 T08 0.9 199 3.62∙105 2D 1.000 1.166 312 - - - 364 0 

   T09 0.9 165 1.44∙106  1.000 1.166 258    301 0 

   T17 0.2 255 3.16∙105  1.000 1.166 399    466 0 

   T18 0.4 300 1.18∙105  1.000 1.166 470    548 0 

 VA-DD 0.05 T06 1.0 291 2.01∙106 2D 0.500 1.166 455 - - - 265 0 

   T11 0.5 334 1.54∙106  0.500 1.166 523    305 0 

   T12 0.4 348  . 2∙105  0.500 1.166 545    318 0 

   T13 0.5 437 4.80∙105  0.500 1.166 685    399 0 

   T14 0.1 500 1.58∙105  0.500 1.166 783    456 0 

  -1 T10 0.3 350 1.53∙106 2D 0.500 1.166 548 - - - 319 0 

   T15 0.6 399 4.46∙105  0.500 1.166 625    364 0 

   T16 0.0 500 2.53∙105  0.500 1.166 783    456 0 

   T19 0.3 330 1.38∙106  0.500 1.166 517    301 0 

   T23 0.6 380 6.21∙105  0.500 1.166 595    347 0 

 VA-Rand 0.05 T22 0.5 349 9.82∙105 2D 0.474 1.166 546 - - - 302 0 

  -1 T20   2.96∙105 2D 0.474 1.166 622 - - - 344 0 

   T21   8.00∙105  0.474 1.166 541    299 0 

I CA 0.05 I01 1.3 300 1. 3∙105 3D  1.000 0.396 779 1.000 0.979 547 628 3.14 

   I02 0.6 242 4.45∙105  1.000 0.396 629 1.000 0.979 441 507 3.14 

   I04 0.7 221  .64∙105  1.000 0.396 572 1.000 0.979 402 461 3.14 

   I06 0.2 208 2.00∙106  1.000 0.396 538 1.000 0.979 378 434 3.14 

   I07 0.1 221 8.94∙105  1.000 0.396 574 1.000 0.979 403 463 3.14 
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  -1 I03 0.3 309 4.26∙105 3D 1.000 0.396 802 1.000 0.979 575 647 3.14 

   I08 0.7 329 5.6 ∙105  1.000 0.396 853 1.000 0.979 612 687 3.14 

   I09 0.9 248 6.16∙105  1.000 0.396 645 1.000 0.979 462 520 3.14 

   I14 0.3 226 8.82∙105  1.000 0.396 587 1.000 0.979 421 473 3.14 

   I17 0.6 400 1.11∙105  1.000 0.396 1038 1.000 0.979 744 836 3.14 

 VA-DD 0.05 I10 0.9 231 5.20∙105 3D 0.500 0.396 1200 0.530 0.979 860 505 3.53 

   I11 0.6 210 1.66∙106  0.500 0.396 1089 0.530 0.979 781 459 3.53 

   I12 0.6 230 4.60∙105  0.500 0.396 1191 0.530 0.979 854 502 3.53 

   I13 0.8 231 5.55∙105  0.500 0.396 1199 0.530 0.979 859 505 3.53 

  -1 I15 0.6 469 1.90∙106 3D 0.500 0.396 1217 0.530 0.979 872 513 3.53 

   I16 0.6 549  .63∙105  0.500 0.396 1424 0.530 0.979 1020 600 3.53 

   I19 0.2 510 6. 8∙105  0.500 0.396 1323 0.530 0.979 948 557 3.53 

 VA-Rand 0.05 I23 0.3 460 4.01∙105 3D 0.474 0.397 1174 0.499 0.981 837 466 3.44 

  -1 I20 0.6 503 1.18∙106 3D 0.474 0.396 1305 0.499 0.979 936 519 3.48 

   I21 0.8 554 5.15∙105  0.474 0.396 1436 0.499 0.979 1029 571 3.48 
^ Geometry: T = transverse, I = inclined 

° Details are reported in Figure 2.35 

▫ Experimental fatigue strength at 2∙106 cycles 

▫▫ Scatter index evaluated as the ratio between fatigue strengths (at 2∙106 cycles) referred to 2.3% and 97.7% survival probability, respectively.  

* ΔσI = Δσθθ,θ=0,peak and ΔτIII = Δτθz,θ=0,peak. ∆σ̅θθ,θ=0,peak and ∆τ̅θz,θ=0,peak have been reported in the case of 3D FE models meshed with 10-node tetra elements. All values have been first calculated from FE models where 1 

MPa was applied, then they have been reported here multiplied by the maximum nominal stress range Δσmax. 
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2.4. Conclusions 

 

The Peak Stress Method (PSM) represent an engineering approach for the fatigue design of 

welded structures. It allows for a quick and effective estimate of the Notch Stress Intensity 

Factors (NSIFs) at the weld toe and weld root, idealised and modelled as sharp notches having 

null tip radius. Basically, the PSM takes advantage of the singular, linear elastic, opening, 

sliding, and tearing peak stresses evaluated at the notch tip using coarse free mesh patterns to 

estimate the mode I, II, and III NSIF-terms, respectively. A PSM-based design stress called 

equivalent peak stress, can be defined as a function of the relevant peak stresses by adopting 

the averaged Strain Energy Density (SED) as a fatigue strength criterion. In previous papers, 

the equivalent peak stress has been shown to be a fatigue relevant parameter, capable of 

assessing the fatigue lifetime of steel arc-welded joints subjected to constant amplitude (CA) 

uniaxial as well as multiaxial loading conditions.  

In the present chapter, a new theoretical formulation of the PSM has been presented 

discussed in order to account also for uniaxial as well as in-phase and out-of-phase multiaxial 

variable amplitude fatigue loadings. This has been done combining the constant amplitude 

formulation of the PSM with the Palmgren-Miner’s linear damage rule (LDR) to account for 

cumulative damage.  

Then, the proposed method has been validated against a large bulk of VA fatigue data taken 

from the literature: approximately 900 experimental data, consisting of 580 CA and 320 VA, 

grouped into 71 CA and 70 VA test series have been considered all in all. For 4 of the considered 

70 VA test series, it has been observed that the PSM-based theoretical predictions were on the 

unsafe side: in three of four cases extremely low values of fatigue damage to failure were noted 

(D as low as 0.06) under VA loading with overload spectrum along with lack of information on 

misalignments-induced secondary bending stresses reported in the original papers, while in the 

other case it was due to a particularly pronounced detrimental effect of out-of-phase loading, 

which is not taken into account by the PSM. However, several experimental results generated 

from steel welded joints under multiaxial loadings show that the effect of the phase shift is 

distinguishable, but not that remarkable. On the other hand, for 18 of the considered 70 VA test 

series, the PSM-based theoretical predictions were on the safe side.  
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Only in one case, an extreme degree of conservatism was observed and attributed to the poor 

accuracy of the Palmgren-Miner’s LDR in treating the considered loading spectrum, providing 

values of damage to failure up to 30. Concerning the remaining test series, the PSM-based 

theoretical estimations resulted in good agreement with the experimental fatigue results. All in 

all, 671of the 900 experimental data considered collapsed inside the design scatter bands of the 

PSM, while 878 among 900 data fell on the safe side of the 97.7% survival probability curve. 

Moreover, fatigue tests under both constant and variable amplitude axial loading have been 

performed on non-load-carrying (nlc) fillet-welded joints, both with double transverse 

attachment and with double 45° inclined attachments made of S355J2+N structural steel. The 

latter geometry being chosen as it allows to investigate the effect of a local in-phase mixed 

mode I+III stress state using a uniaxial testing machine. Two different nominal load ratios, i.e. 

R = -1 and R = 0.05, have been adopted. In the case of VA loads, a Gaussian spectrum has been 

applied either as a six-block program or as a random sequence. Results generated under CA 

loadings showed that joints with inclined attachments exhibit longer fatigue lives as compared 

to joints with transverse attachments, for the same applied nominal stress range. Noteworthy, a 

similar conclusion has been drawn for VA loads. The effects of misalignments and welding 

residual stresses have been considered and discussed, even if their effects on the fatigue life of 

the tested joints appeared to be negligible.  

Finally, all fatigue data have been re-analysed by adopting the new formulation of Peak 

Stress Method (PSM). Once again, its effectiveness has been proved not only because it 

accurately predicted the fatigue crack initiation point and properly described the average 

behaviour of the experimental data, but also because it perfectly summarized the experimental 

fatigue results within the PSM-based fatigue design scatter bands for steel welded joints, not 

fitted on the experimental data. For comparison purposes, the procedures proposed by Eurocode 

3 and IIW Recommendations have been also applied. In conclusion, the PSM has proved to be 

the most accurate and effective criterion in designing steel welded joints against constant as 

well as variable amplitude multiaxial fatigue loadings. 
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List of symbols 

 

2α   V-notch opening angle 

a   Crack size 

aCPC   Crack length after Compression Pre-Cracking (CPC) 

ai   Initial crack size 

A   Cross-sectional area of the main plate 

c/a   Elliptical crack aspect ratio  

cw1   Mode I coefficient accounting for mean stress effect according to PSM 

d   Average FE size 

Δ   Range of cyclic quantities (maximum minus minimum) 

Δa = a - aCPC Crack size increment from CPC crack 

ΔK1,th  Mode I threshold NSIF 

ΔKI(a)  Driving force, i.e. applied SIF dependence on crack length 

ΔKI,Δσg,th(a)  Driving force at the fatigue limit 

ΔKth(Δa)  Fatigue crack propagation threshold dependence on crack size (R-curve) 

ΔKth,LC  Long cracks’ fatigue crack propagation threshold 

ΔKth,eff  Intrinsic component of the fatigue crack propagation threshold 

Δσg,th  Nominal stress range at the fatigue limit 

Δσeq,peak,th  Equivalent peak stress range at the fatigue limit 

e1   Mode I coefficient for evaluating ΔW̅ 

E   Young’s modulus 

fw1   Mode I coefficient for calculating σeq,peak 

KI   Mode I Stress Intensity Factors (SIFs) 

K1   Mode I Notch Stress Intensity Factors (NSIFs) 

KFE
*   Non-dimensional NSIF parameters based on PSM 

λ1   Mode I stress singularity degrees 

… 
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… 

Nf   Number of cycles to failure 

ν   Poisson’s ratio 

R   Load ratio 

Rax   Nominal load ratio without considering any bending component 

R0   Size of material-structural volume according to SED criterion 

ρ   Notch tip radius 

r, θ, z  Coordinates of cylindrical reference system at crack/notch tip 

σg   Nominal stress 

σg,ax   Axial component of the nominal stress 

σg,b   Bending component of the nominal stress 

σg,b,0  Bending component of the nominal stress when no axial load is applied 

σeq,peak  Equivalent peak stress based on PSM 

σrr, σθθ, σzz  Normal stress components in cylindrical coordinate system 

σθθ,θ=0,peak  Mode I linear elastic peak stress calculated by FEA according to PSM 

t   Thickness of the main plate 

W   Width of the main plate 

ξb   Ratio between bending and axial nominal stress range 
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3.1. Introduction 

 

Designing a structure against fatigue is a well-known topic and there are many criteria 

proposed in the literature, a complete understanding of the phenomenon has not yet been 

reached. The occurrence of fatigue failure can be avoided making use of one of the design 

criteria intensely discussed in the previous chapters, thanks to which engineers have to 

possibility to design welded components against fatigue in the finite life region. In reality, it is 

not true they completely allow to avoid component’s failure but to establish when this will 

occur. In particular, those criteria let have an estimate of the number of cycles at which the 

analysed structure will exhibit fatigue failure. The design philosophy behind those criteria is 

called safe life design and implicitly assumes that at the end of the design life the considered 

component is removed or dismissed and replaced by a new one.  

Unfortunately, there are several practical applications where the fatigue failure as well as the 

dismission or substitution of a structural component is undoubtedly unacceptable. Typical 

examples are that of the nuclear or aerospace industry for which extremely high safety 

requirements are necessary, as the failure of a component could lead to catastrophic 

consequences. Noteworthily, for some material classes such as structural steels, there exists a 

stress level, known as the fatigue limit, below which, theoretically, an infinite number of CA 

load cycles can be applied to the structure without causing fatigue failure. It is interesting to 

note that, despite the important and significant implications this concept has on practical 

problems, there still is a remarkable shortage of knowledge behind this parameter. 

As mentioned in the previous chapter, International standards and recommendations [1,2], 

basing their considerations on the nominal stress approach, suggest defining the Constant 

Amplitude Fatigue Limit (CAFL) of a welded detail as that stress level corresponding to a fixed 

number of cycles on the stress-life (S-N) curve of the corresponding reference detail [1,2]. Then 

the fatigue strength assessment is simply done by comparing the value of the applied nominal 

stress with the fatigue limit of the considered joints [1,2]: at a stress level below the CAFL no 
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failure will occur, the number of cycles to failure being N → ∞, otherwise the calculations must 

be done accordingly to what discussed in the previous chapters. 

It should be noted that the first problem of this procedure is that the number of cycles at 

which the vertical line has to be fixed depends on the considered standard demonstrating that 

the knowledge to understand the phenomenon is still lacking. More in detail, while Eurocode 3 

[1] identifies the fatigue limit CAFL as the stress level corresponding to 5∙106 cycles, IIW 

recommendations [2] fix that number at 107 cycles to failure (Figure 3.1). 

However, as discussed extensively in the previous chapters, the main problem of the nominal 

stress approach remains its application in case of more complex joint geometries, for which the 

proper reference design category does not exist in the list of classified structural details reported 

in [1,2]. To overcome this issue, standards and recommendations [1,2] suggest carrying out 

dedicated expensive and time-consuming experimental fatigue tests as the only alternative.  

Again, in the Literature, it has been demonstrated that this limitation can be overcome by 

adopting local approaches [3]. In particular, Frost, Smith and Miller [4,5] observed that when 

notched component is loaded at a stress level equal to its fatigue limit a crack is present at the 

notch tip. Accordingly, damage tolerant approaches based on the principles of fracture 

mechanics [6] have been shown to play a key role in this context [7]: in fact, they postulate the 

presence of a crack in the structure stating that the crack initiation period is negligible if 

compared to the propagation phase. So far as the fatigue limit is concerned, its link with fracture 

mechanics concepts is given by the long crack fatigue propagation threshold ΔKth,LC, which 

represents the range of Stress Intensity Factor (SIF) ΔKI below which a crack arrests as it has 

no more energy to propagate [6,7]. The problem is that at the fatigue limit, notched components 

exhibit short crack instead of long cracks and their fatigue behaviour can tremendously 

different. For example, short cracks can grow at rates that are faster than long cracks when 

loaded with the same crack driving force, i.e. the same SIF range ΔKI [7–10]. In particular, it 

has been intensely examined that, if compared with long cracks, they exhibit a much lower 

fatigue crack propagation threshold ΔKth due to the gradual build-up of the crack closure 

phenomena [8–10], the latter being completely described by the cyclic R-curve concept, i.e. the 

crack size dependence of the fatigue crack propagation threshold in the physically/mechanically 

short crack regime [7,9–15]. 
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Figure 3.1. Fatigue resistance S-N curves and fatigue limits for steel welded joints subjected to normal stresses 

taken from: IIW recommendations [2] and b) Eurocode 3 [1]. 
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For determining the fatigue limit of a structure adopting this concept, it is necessary to 

perform a cyclic R-curve analysis (Figure 3.2) [9,11,14,16]. Similar to the well-established 

monotonic R-curve analysis, this procedure simply consist in comparing for a propagating crack 

its driving force (black lines in Figure 3.2), which depends on the geometry, the material and 

the external loads (Δσg in Figure 3.2), with its resistance curve (red line in Figure 3.2), which 

is a material property. The crack propagation is promoted whenever the crack driving force 

assumes higher values than the resistance ones, while the crack is arrested in the opposite case. 

Consequently, this statement implies the fatigue limit of the component Δσg,th is that external 

stress level at which the crack driving force curve is tangent to the crack resistance (solid black 

line in Figure 3.2). 

 

 

Figure 3.2. Schematic of a cyclic R-curve analysis applied to a welded joint. 

  

However, the most critical aspect of this procedure is that being a fracture mechanics-based 

approach, it requires the definition of an initial crack size ai from which starting the computation 

of the driving and resistance force (Figure 3.2). In the literature, there are different proposals to 

define the initial crack size (see [17] for a recent review of them), but one of the most promising 

is the that proposed in the IBESS approach [16–19]: according to this criterion, the initial crack 

size can be calibrated using a two-criteria concept. In particular, if a large crack-like defect (e.g. 
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non-metallic inclusions, pores, cavities, shrinkage, weldments defects, microcracks, surface 

roughness, undercut, corrosion pits or scratches) exists in the structure, they suggest adopting 

its size as initial crack size ai. Otherwise, the lower bound of ai is obtained performing a crack 

arrest analysis. This procedure consists in comparing the driving force at a stress level equal to 

the fatigue limit of the plain material ΔKI,Δσg,th(a) with the corresponding resistance curve, i.e. 

the cyclic R-curve ΔKth(a). Finally, observing the cyclic R-curve is fixed along the ordinate but 

not along the abscissa, the initial crack size ai results from shifting the cyclic R-curve along the 

abscissa until the tangency condition is found with the driving force (Figure 3.2). The authors 

suggest evaluating the driving force at the fatigue limit for a semi-circular surface crack 

propagating normal to the loading plane of a smooth plate specimen under fully reversed (R = 

-1) axial cyclic loading. In particular, they proposed assuming the crack propagates by keeping 

constant its shape, i.e. the ratio between the its major and minor axes is fixed to c/a = 1. 

Moreover, they suggest using a plasticity corrected driving force, substantially based on elasto-

plastc calculations by means of the J-integral. Interestingly, the Zerbst et al. [17–19] declare the 

value of the initial crack size ai obtained from the crack arrest analysis represent a material 

property. 

In this chapter the cyclic R-curve analysis has been adopted to estimate the fatigue limit of 

welded structures. In particular, an accurate experimental calibration of the method based on 

the crack arrest analysis has been performed by comparing the driving force at the fatigue limit 

for non-load-carrying (nlc) fillet welded double transverse attachments made of S355J2+N 

structural steel and the corresponding resistance curve. The cyclic R curve has been 

experimentally determined by fatigue testing Single Edge Notch in Bending (SENB) on 

resonant testing machines making use of a new experimental procedure which allows for the 

determination of the crack propagation threshold from short to long crack regime by means of 

a single experimental test. The characterization has been carried out for a S355J2+N material 

and further for the same material but in Heat Affected Zone (HAZ) condition. The specimens 

in the HAZ condition were obtained from a transverse loaded butt weld ground flush to plate 

which residual stresses has been removed as much as possible by applying a proper stress 

relieving thermal treatment. 

Once performed the calibration of the initial crack size, its application to the estimation of 

the fatigue limit of a welded structure has been presented with different degrees of accuracy 

depending on the available information. In particular, under certain simplifying assumptions it 
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was possible to combine the cyclic R-curve analysis with the Peak Stress Method obtaining a 

new procedure that allows to a rapid and effective design of weld toe failures in the infinite life 

region, without the need of complex and time-consuming fracture mechanics-based 

calculations.  

 

3.2. Calibration of the initial crack size ai: driving force at the fatigue limit 

3.2.1. Specimens 

 

As discussed in the introduction, according to Zerbst et al. [17–19] the calibration of the 

initial crack ai can be performed with a crack arrest analysis, i.e. by shifting the cyclic R-curve  

until the tangency with the driving force evaluated at the fatigue limit is found. Interestingly, it 

has also been discussed the authors assert the obtained initial crack size represent a material 

property and, as such, its value is independent of the specimen’s geometry [17–19]. In other 

words, this means that, from a theoretical point of view, any specimen’s geometry can be used 

to perform the calibration. 

In this work, non-load-carrying (nlc) fillet-welded double transverse attachments specimens 

have been considered for the calibration. Moreover, instead of a complex elasto-plastic driving 

force as proposed in [17–19], a linear elastic parameter, i.e. the Stress Intensity Factor Range 

ΔKI, has been considered as damage parameter, the non-linear effects being completely 

included in the cyclic R-curve. Accordingly, the driving force curve at the fatigue limit can be 

mathematically expressed by the following engineering expression: 

 

,, ,g thI g thK a    =           (3.1) 

 

Where β represents a geometric factor dependent on the crack size a including all 

information about the specimen’s geometry, the loading and constraint conditions and the 

position, inclination and shape of the propagating crack, while Δσg,th is the fatigue limit of the 

component expressed in terms of nominal stress range. The evaluation of the driving force 

according to Eq. (3.1) has been done combing together results from both experimental tests and 

numerical analyses. In particular, the experimental tests has been adopted to evaluate the fatigue 
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limit Δσg,th and investigate the crack’s geometry, while the FE analyses have been adopted to 

compute the geometrical factor β. As mentioned above, the specimens were non-load-carrying 

(nlc) fillet-welded double transverse attachments made from an 8mm-thickness hot rolled plate 

of S355J2+N structural steel (EN10025-2 [20]). Welding was performed perpendicular to the 

rolling direction using Gas Metal Arc Welding (GMAW) technique. A total of 10 specimens 

have been has been obtained by band saw-cutting two larger plates. After the cut, the specimens 

have been heat treated in a muffle furnace to remove the presence of unwanted residual stresses 

originated during the welding process. The heat treatment consisted in heating up the specimens 

up to 600 °C with a gradient of 70 °C/h, a maintenance phase at 600 °C for 3h and a cooling 

ramp down to the laboratory temperature with of about 70 °C/h (Figure 3.3). 

 

  

Figure 3.3. Temperature profile adopted for the stress relieving heat treatment. 

 

Finally, the geometry of the tested specimens was that reported in Figure 3.4. The specimens’ 

geometric parameters as well as the local weld bead geometry has been carefully and accurately 

measured, these parameters having a major influence on the definition of the driving force. In 

particular, the main plate thickness (t in Figure 3.4) and the width (W in Figure 3.4) have been 

measured at the specimens’ cross sections in the nearby of the weld toe adopting a digital 
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caliper. Instead, all other parameters have been measured thanks to image analysis performed 

with a digital microscope calibrated using graph chart. All the measured parameters have been 

analysed using basic statistical calculations to obtain their mean values μ and standard 

deviations δ. The resulting parameters (reported in Table 3.1) have been computed both 

considering all the specimens together and only that used to obtain the fatigue limit with the 

staircase procedure (more details about this will be given later on this paragraph). 

 

 

Figure 3.4. Geometry of the tested specimens. 

 

 

Table 3.1. Measured geometric parameters with corresponding mean value and standard deviations. 

Parameter T25 & T26  Staircase  

 μ δ μ δ 

2α [°] 140.45 1.87 140.6* 1.8* 

z [mm] 7.36 0.42 7.2* 0.3* 

2l [mm] 6.15 0.66 6.17 0.8 

ρ [mm] 2.28 1.11 1.3* 0.2* 

up [mm] 0.09 0.02 0.09* 0.01* 

uw [mm] 0.12 0.05 0* 0* 

e [mm] 0.7 0.22 0.9 0.19 

t [mm] 8.03 0.01 8.03 0.01 

W [mm] 7.15 0.48 7.13 0.47 

*Relevant to the weld toe where the fatigue crack initiation always occurred 
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One of the specimens has been used to perform micro-hardness and microstructural analyses. 

The sample has been extracted by saw cutting a joint which has never been fatigue loaded. The 

sample was grinded by means of sandpaper with grit P120 up to P1200 and then polished with 

6 μm and 1 μm diamond suspensions. Vickers micro-hardness HV0.5 has been measured 

according to [21,22], by applying a weight of 0.5 kg for 15s with a Shimadzu hardness tester. 

The measurements have been performed 

• in a material region close to the weld toe (Figure 3.5) where the fatigue failure was 

expected to occur, whose results have been reported in colour map mode in the e figure. 

• along a straight path starting from the transverse attachment to the main plate through 

the weld bead (Figure 3.5), the relevant results having been reported in Figure 3.5 as a 

function of the coordinate along the path. 

The resulting micro-hardness have been evaluated according to [21,22]: 

 

2
0.1891

P
HV

d
=           (3.2) 

 

Where P is the applied load in newtons N, while d is the average value of the indentation’s 

diagonals in millimetres mm. After that, the sample was etched with 2% Nital solution to better 

highlight the microstructure. Micrographs were taken using an optical microscope and allowed 

to distinguish three main regions, i.e. the Weld Metal (WM), the Heat Affected Zone (HAZ), 

and the Base Metal (BM) (see Figure 3.5). The analysis showed that the BM has a 

microhardness of ~160 HV and consists in a typical ferritic-pearlitic microstructure, whose 

grains are elongated in the rolling direction (see Figure 3.5). Differently, the maximum values 

of the hardness (~230-260 HV) have been measured in the HAZ, which has an inhomogeneous 

bainitic-martensitic microstructure. Figure 3.5 also shows the average value of microhardness 

in the WM is ~220 HV. 
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Figure 3.5. Micro-hardness measurements and microstructural analysis of a transverse joint which has not been 

fatigue tested. 
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3.2.2. Experimental determination of the fatigue limit 

 

The nominal stress range Δσg,ax has been calculated with reference to the main plate: 

 

,
ax ax

g ax

F F

A W t
  

 = =


        (3.3) 

 

where ΔFax is the range of the axial load, while A, W, and t are the cross-section area, the 

width, and the thickness of the main plate, respectively. All specimens were fatigue tested in 

the stree-relieved state under closed loop load-controlled pure axial loading by using a 100 kN 

Schenck Hydropulsar PSA 100 servo-hydraulic machine equipped with a Trio Sistemi RT3 

digital controller. All fatigue tests were performed applying CA fully reversed (Rax = -1) 

sinusoidal axial loading at a frequency ranging between 25 and 30 Hz depending on the applied 

load level. The number of cycles to failure Nf corresponded to complete separation of the 

specimen, while run-out condition was fixed at 10·106 cycles, if no failure or crack initiation 

was detected. 

 

Figure 3.6. Example of specimen tested under fully reversed axial loading using the Schenck Hydropulsar PSA 

100 servo-hydraulic machine. 

F

F
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As shown in Figure 3.7 all joints exhibited fatigue crack initiation at the weld toe on the 

main plate’s side. Then crack propagated through the thickness until final brittle fracture. 

 

 

Figure 3.7. Crack propagation plane in the nearby of the weld toe where it initiated. 

 

The experimental fatigue results have been reported in Figure 3.8 in terms of number of 

cycles to failure Nf versus the applied nominal stress range Δσg,ax (Eq. (3.3)) along with the 

uniaxial fatigue resistance curve for normal stresses according to IIW recommendations [2] 

(blue line in Figure 3.8). In more detail, as indicated in [2], this curve has been obtained 

multiplying the FAT80 fatigue resistance curve (80 MPa at 2∙106 cycles for a Survival 

Probability PS = 97.7%) by the coefficient f(R) = 1.6 to account the mean stress correction, the 

latter being applicable as the joints were tested in the stress-relieved conditions when subjected 

to fully-reversed loading (Rax = -1) [2]. 

All experimental data have been statistically analysed and fitted according to BS ISO 

12107:2012 [23] by imposing a inverse slope k = 3. The obtained design curves referred to PS 

= 2.3%, 50%, and 97.7%, respectively, have been reported as black lines in Figure 3.8.  

More interestingly, the knee point on the fitted curves has been obtained intersecting them 

with the experimental fatigue limit obtained from the modified staircase procedure as proposed 

in BS ISO 12107:2012 [23]. The fatigue limit has been evaluated for a Probability of Survival 

PS = 50% and it was found to be equal to Δσg,th,ax = 215 MPa. 
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Figure 3.8. Experimental results of fatigue tests performed on non-load-carrying (nlc) fillet-welded joints with 

double transverse attachments. Results are expressed in terms of number of cycles to failure as a function of the 

applied nominal stress range according to Eq. (3.3). 

 

 

3.2.1. Misalignments: effect of a secondary bending 

 

The angular misalignments (γ in Figure 3.9) were measured in all joints. Each specimen was 

clamped to one end of the main plate on the four-jaw chuck of a lathe machine. Then a 

centesimal dial gauge has been fixed on the toolholder’s table to measure the vertical positions 

(Y-coordinate in Figure 3.9) of six points located at specific axial positions on the specimen 

main plate (points A, B, C, C’, B’, and A’ in Figure 3.9). The chosen points were located 

symmetrically with respect to the stiffeners and their vertical position was measured after 

zeroing the dial gauge at the point A (YA = 0 mm). Vertical position of points B and B’ was 

measured not for evaluating the angular misalignment of the joints but for checking the 

straightness of the main plate in the regions far away from the weld bead.  Then, the angular 

misalignments have been evaluated according to Eq. (3.4) and results reported in Table 3.2. 
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Figure 3.9. Measurement of angular misalignments. (a) Location of the measurement points for determining the 

angular misalignment γ. Dimensions are in millimetres. 

 

Table 3.2. Measured angular misalignment. 

Specimen YA YB YC YC’ YB’ YA’ γ 

[-] [mm] [mm] [mm] [mm] [mm] [mm] [°] 

T25_01 0 0.36 0.69 0.81 0.44 0.03 1.05 

T25_02 0 0.07 0.11 -0.32 -1.01 -1.72 1.08 

T25_03 0 0.09 0.13 -0.24 -0.86 -1.56 1.04 

T25_04 0 0.06 0.12 -0.31 -1.03 -1.74 1.11 

T25_05 0 0.16 0.27 -0.05 -0.68 -1.35 1.12 

T26_02 0 0.07 0.12 0.84 1.45 2.03 0.77 

T26_03 0 0.08 0.12 0.86 1.45 2.04 0.76 

T26_04 0 -0.5 -1.04 -1.33 -1.26 -1.22 0.82 

T26_05 0 0.98 2.12 4.73 6.51 8.21 0.97 

 

The effects of a secondary bending has been investigated by performing strain gauge 

measurements. Therefore, the specimen T25_5, i.e. the most misaligned (see Table 3.2), has 
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been instrumented with four 3-mm-long grid strain gauges. They have been located on the main 

plate at 30 mm from the stiffeners (see sections 1-2 and 3-4 in Figure 3.9), where the stress state 

is theoretically uniform and equal to the nominal applied stress (Eq. (3.3)), on opposite sides 

with respect to the bending neutral axis of the main plate (Figure 3.9).  

Then, the instrumented specimen has been gripped in the same testing machine and in the 

same position as that used for the tested specimens. The testing machine was a servo-hydraulic 

Schenck Hydropulsar PSA 100 servo-hydraulic machine having a ±100 kN load capacity and 

equipped with a Trio Sistemi RT3 digital controller. Finally, once the specimen was gripped, it 

has been loaded by applying stepwise increasing axial static loads from -7 kN up to +7 kN. At 

the same time, the corresponding strain gauge signals have been measured by means of a IMC 

Cronos PL-2 data acquisition unit. By taking advantage of a quarter bridge configuration, it has 

been possible to evaluate both the axial (εax = (εi + εj)/2, i = 1,3, j = 2,4) and bending (εb = (εi - 

εj)/2, i = 1,3, j = 2,4) strain components in the two analysed sections (1-2 and 3-4 in Figure 3.9). 

After that, the axial σg,ax and bending σg,b stress components have been evaluated by multiplying 

the corresponding strains for the Young’s modulus of the material E = 206000 MPa. 

Results have been reported in Figure 3.10 as a function of the theoretical values of axial 

stress (σg,ax,theoretical), the latter being evaluated as the ratio between the applied load F and the 

cross-sectional area A = 56.6 mm2 (Eq. (3.3)). As expected, the measured axial stresses σg,ax 

(red lines in Figure 3.10) were in very good agreement with the theoretical one σg,ax,theoretical 

(black lines in Figure 3.10). On the other hand, Figure 3.10 shows that a bending stress 

component of σg,b was present in the investigated range of axial stresses. More in detail, a value 

of σg,b,0,1-2 = 58 MPa and σg,b,0,3-4 = 74 MPa was measured at section 1-2 and section 3-4, 

respectively, when no axial load was applied to the specimens (σg,b,0 = σg,b(σg,ax,theoretical=0) > 0, 

see Figure 3.10a). This difference between σg,b,0 measured in the two instrumented sections has 

been explained assuming the presence of a shear load. Accordingly, a linear distribution of the 

bending stress component σg,b,0 has been used and its value at the weld toe locations (XA = -

7.36 mm or XB = +7.36mm in Figure 3.10b) was computed by a simple linear interpolation. 

Calculations resulted in σg,b,0,A = 63 MPa and σg,b,0,B = 68 MPa at the weld toe located at an 

axial coordinate XA = -7.36 mm and XB = +7.36 mm, respectively. 
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Figure 3.10. Measurement of angular misalignments: a) results of the strains’ measurements as a function of the 

applied theoretical axial stress σax,theoretical and b) the same results reported as a function of the axial position X 

along the main plate and for σax,theoretical =-124 MPa, 0 MPa and +124 MPa. 

 

Moreover, Figure 3.10a shows that the measured bending stress σg,b linearly increases with 

the applied force, this increment being proportional to ξb,1-2 = 8.9% and ξb,3-4 = 9.7% of the 

applied theoretical stress σg,ax,theoretical at section 1-2 and 3-4, respectively. Then, the whole 
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bending stress distribution with the applied force has been evaluated at the weld toes in the 

same way as done before for the component σb,0. Thanks to these, the value ξb,A = 9.2% and ξb,B 

= 9.4% have been found at the weld toes having axial location XA = -7.36 mm and XB = +7.36 

mm, respectively. Finally, the experimental data reported in Figure 3.8 have been corrected 

both in terms of applied load ratio R, due to the presence of a mean stress σg,b,0 different from 

zero, and in terms of applied stress range, to account for the bending stress component 

proportional to the axial one by means of the coefficient ξb. Accordingly, the applied stress 

ranges have been corrected using to the following expression, which defines a new nominal 

stress range Δσg accounting for both the axial and bending cyclic components of stress: 

 

( ), , , 1g g ax g b g ax b     =  + =  +       (3.5) 

 

where ξb is the rate of change of the bending stress component with the axial one and is equal 

to ξb = 9.2% and ξb = 9.4% as discussed above. At the same time, the applied load ratio has 

been corrected according to Eq. (3.6), resulting different for each applied stress range: 
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Fatigue test results in terms of nominal stresses along with the correction factors have been 

reported in Table 3.3. Results have been reported also in Figure 3.11 expressed in terms of Δσg 

(Eq. (3.5)) as a function of the number of cycles to failure Nf along with the uniaxial fatigue 

resistance curve for normal stresses according to IIW recommendations [2] (blue line in Figure 

3.11). This time, the IIW curve has been obtained multiplying the FAT80 fatigue resistance 

curve (80 MPa at 2∙106 cycles for a Survival Probability PS = 97.7%) by the coefficient f(R) = 

1.31 (relevant to a load ratio R = -0.28, the higher among the tested specimens, see Table 3.3) 

to account the mean stress correction [2]. Similar to Figure 3.8, all experimental data have been 

statistically analysed and fitted according to BS ISO 12107:2012 [23] by imposing an inverse 

slope k = 3 and the obtained curves have been reported as black lines in Figure 3.11.  

More interestingly, the knee point on the fitted curves has been obtained intersecting the 

fitted resistance curve having PS = 50% with the experimental fatigue limit obtained combining 

the axial and bending components of stress relevant to the staircase procedure (Figure 3.11): 
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, , , , , 215 20 235g th g th ax g th b MPa MPa MPa   =  +  = + =    (3.7) 

 

Eventually, the load ratio at the fatigue limit Rth has been evaluated entering the stress range 

at the fatigue limit Δσg,th = 235 MPa and the mean stress σb,0 = 63 MPa into Eq. (3.6), obtaining 

Rth = -0.3. 
 

 

Figure 3.11. Experimental results of fatigue tests performed on non-load-carrying (nlc) fillet-welded joints with 

double transverse attachments. Results are expressed in terms of number of cycles to failure as a function of the 

applied nominal stress range Δσ according to Eq. (3.5). The corresponding load ratio is slightly different for each 

stress level (Eq. (3.6)). 

 

Table 3.3. Summary of fatigue test results. 

Specimen W t ΔFax Rax f Δσg,ax Δσg,b Δσg σg,b,0 R° Nf Toe+ 

[-] [mm] [mm] [kN] [-] [Hz] [MPa] [MPa] [MPa] [MPa] [-] [cycles] [-] 

T26_02 6.93 8.03 16.70 -1 25 300 28 328 68 -0.41 262496 A 

T26_03 7.09 8.03 14.23 -1 27 250 23 273 68 -0.33 510000 A 

T26_04* 7.63 8.03 14.10 -1 30 230 21 251 68 -0.30 534480 A 

T25_01* 7.47 8.03 13.79 -1 28 230 22 252 63 -0.33 366095 B 

T25_02* 6.8 8.03 11.20 -1 30 205 19 224 63 -0.28 107 B 

T25_03* 6.42 8.03 11.85 -1 27 230 22 252 63 -0.33 757383 B 

T25_04* 7.44 8.03 12.25 -1 30 205 19 224 63 -0.28 107 B 

°According to Eq. (3.6). 
*Data obtained in the modified staircase procedure. 
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+ Weld toe were crack initiation and final fatigue failure occurred. 1 and 2 are referred to weld the side according to the scheme 
reported in Figure 3.10. In case of run-out specimens, failure is referred to the beach marking fatigue tests following the 
staircase. 

 

3.2.2. Experimental determination of the crack shape evolution 

 

As discussed above, the calibration of the initial crack size requires the driving force (Eq. 

(3.1)) at the fatigue limit to be known with a high level of accuracy. It has also been discussed 

that to evaluate the driving force, the calculation of a geometric parameter β (Eq. (3.1)) the 

inclination and shape of the propagating crack is required. Accordingly, the crack shape 

evolution during the propagation at a stress level similar to the fatigue limit has been 

experimentally investigated. To do this, the idea was that of retesting the run-out specimens at 

a stress level capable of inducing fatigue failure and beach marking the crack front repeatedly 

in order to recognise post-mortem the complete evolution of the crack shape by image analysis 

of the fracture surfaces. Accordingly, run-out specimens have been retested at a slightly higher 

stress level, to induce crack initiation and propagation until failure, under closed loop load-

controlled pure axial loading by using a 100 kN Schenck Hydropulsar PSA 100 servo-hydraulic 

machine equipped with a Trio Sistemi RT3 digital controller, the same used for the fatigue tests. 

Crack front have been marked adopting a variable amplitude sequence of CA fully reversed 

(Rax = -1) sinusoidal axial loads having the following characteristics (Figure 3.12): 

• Block A:  

o Nominal stress range Δσg,ax,A = 270 MPa 

o Number of cycles NA = 104 cycles 

o Frequency fA = 20 Hz 

• Block B: 

o Nominal stress range Δ g,ax,B = 200 MPa 

o Number of cycles NB = 4∙104 cycles 

o Frequency fB = 27 Hz 

• Block C:  

o Nominal stress range Δσg,ax,C = 270 MPa 

o Number of cycles NC = 104 cycles 

o Frequency fC = 27 Hz 

• Block D: 
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o Nominal stress range Δσg,ax,D = 200 MPa 

o Number of cycles ND = 4∙104 cycles 

o Frequency fD = 37 Hz 

 

 

Figure 3.12. Load sequence used for beach marking the run-out specimens. 

 

 

The sequence AB has been applied repeatedly for a total of 10 times, then the sequence CD 

has been applied repeatedly until failure. Post-mortem, the fracture surfaces have been captured 

with a digital microscope and by image analysis has been possible to identify the marked crack 

front, as shown Figure 3.13. Accordingly, the crack geometry has been obtained analysing the 

marked crack fronts highlighted with the white lines in Figure 3.13. Then, this crack fronts have 

been fitted with an elliptical shape having minor axis equal to the crack length a and major axis 

c (Figure 3.14). The centre of all the ellipses was fixed at the weld toe and located 1 mm away 

from the side of the specimen (see Figure 3.14). 

As a result, the evolution of the ratio c/a as a function of the crack length a has been obtained 

and reported in Figure 3.14. Figure 3.14 also shows a comparison between the fitted elliptical 

cracks (in orange) and the corresponding experimental ones (in white). Unfortunately, the 

smallest crack which has been possible to identify corresponded to a = 65 μm. Then, in the 

following analyses, the ratio c/a has been assumed linearly extrapolating the experimental 

results when a < 65 μm (see dotted line in Figure 3.14). 
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Figure 3.13. Beach marked fracture surface and corresponding crack fronts. 

 

 

Figure 3.14. Crack shape evolution with the crack length a. 

 

 

3.2.3. Structural FEA analyses 

 

As discussed in 3.2.1, the analysed joints were subjected to both axial and bending loads. 

Taking advantage of the linear elasticity hypothesis it was possible to exploit superposition 

principle and write the applied stress intensity factor range ΔKI as the sum of two components: 
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, , , ,I I ax I b ax g ax b g bK K K a a      =  + =   +      (3.8) 

 

Where βax and βb are the geometric factors for the axial and bending components of stress, 

respectively. Their values have been evaluated by means of structural linear elastic FE analyses. 

In particular, the FEA have been used to estimate the KI for each loading mode (axial and 

bending) when applied 1 MPa (this way Eq. (3.8) simplifies and is possible to evaluate the 

coefficients βax and βb). To do this, both the Peak Stress Method (PSM, see chapter 1) [24,25] 

and the Fracture Tool (FT) implemented in the Ansys® FE commercial software have been 

used. The numerical model (Figure 3.15) has been generated according to the specimen’s 

geometry of Figure 3.4 whose parameters are reported in Table 3.1. More in detail, the driving 

force at the fatigue limit ΔKI,Δσg,th (so KI,Δσg,th) being the aim, the geometrical parameters of the 

specimens used for the staircase procedure (see the last two columns in Table 3.1) has been 

adopted in the FE model (Figure 3.15).  

 

 

Figure 3.15. Structural linear elastic FE model reproducing the experimental geometry. 

 

 

The fatigue crack has been introduced as an elliptical crack whose length a was varied 

between 5 a 200 μm with a gradually increasing step (see Table 3.4) and whose shape c/a was 
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varied with the crack length a according to what observed experimentally (Figure 3.14). As 

regard the c/a evolution, its value has been linearly interpolated in between experimental data 

and linearly extrapolated for a < 65 μm (Figure 3.14). The following hypotheses have been used 

in modelling the propagating crack (Figure 3.15): 

 

• Planar crack. 

• Crack initiation at the deepest point in the weld toe. 

• Crack plane parallel to notch bisector line. 

 

The Young’s modulus E = 206000 MPa and the Poisson’s coefficient ν = 0.3 have been used. 

Then, the model has been discretized using 3D 10-node tetrahedral elements (SOLID 187 of 

Ansys® element library) generated thanks to the free mesh generation algorithm present in the 

Ansys software. The element size has been made varying between dloc = a/8, proportional to the 

crack size a in the region nearby the crack, up to dglobal = 1.35 – 2.7 mm far away from it (Figure 

3.15). This continuous variation of the element size was made possible by modelling control 

volumes surrounding the crack region: in particular, within each single volume the element size 

has been kept constant, while between one volume and the next its value it has been gradually 

increased. Finally, two different models have been created to investigate separately the effect 

of the axial and the bending loads. One of the specimen’s ends has been constrained imposing 

a null displacement in all directions (ux = uy = uz = 0), while a uniform or linear distribution of 

stresses has been assigned to the other specimen’s end in case of axial or bending stress, 

respectively. In particular, the loads have been applied in a such a manner to guaranty a stress 

of 1 MPa was applied both for the axial and bending loads (Figure 3.15). 

No symmetry has been exploited in the FE model, as the propagating crack was located in 

such a manner that no symmetry planes were present in the model (Figure 3.15). In this 

configuration, the model consisted in approximately ~9∙106 degrees of freedom, repeated for 

30 times as 30 is the number of the different crack size investigated. For this reason, it appears 

clear why before starting the simulations, a simple sensitivity analysis has been performed to 

check if the position of the crack could have been changed on the symmetry plane (and 

consequently exploiting the symmetries of the model) without significantly change the results. 

Accordingly, a similar model, this time having the crack centred on the weld toe line, i.e. in the 

middle of the specimen’s width (W/2 in Figure 3.16) has been generated by exploiting the 
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symmetry XY plane (Figure 3.16). Interestingly, an error of less than 3% has been found 

between the KI evaluated with the two models (Figure 3.15 and Figure 3.16) in the investigated 

crack length range, justifying the assumption that the crack position along the weld toe line 

does not influence the KI for short cracks. Then, the model exploiting the symmetry (Figure 

3.16), whose number of degrees of freedom was more than halved if compared to the model 

without symmetry, has been adopted and solved for each of the crack length in Table 3.4.  

 

Table 3.4. Crack size analysed with the FE analyses. 

amin amax astep 

[mm] [mm] [mm] 

0.005 0.007 0.002 

0.007 0.0125 0.002 

0.0125 0.025 0.0025 

0.025 0.04 0.0025 

0.04 0.06 0.005 

0.06 0.1 0.005 

0.1 0.15 0.025 

0.15 0.2 0.05 

 

 

 

Figure 3.16. Structural linear elastic FE model exploiting the XY symmetry plane. 
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After the solution, the results have been post-processed and reported in Figure 3.17, which 

shows the evolution of the KI with the normalized curvilinear coordinate s/smax running along 

the crack front line. Results have been obtained either with the PSM (dotted line in Figure 3.17) 

or the Fracture Tool (solid line in Figure 3.17) both for the axial and the bending stress 

components were relevant to a nominal stress of 1 MPa and have reported for the minimum and 

the maximum crack length, i.e. amin = 5 μm and amax = 200 μm. 

It must be observed that results obtained with the PSM were not taken from nodes lying on 

the external surfaces of the specimens (point A and point B, green and blue in Figure 3.17, 

respectively) but on the first available node according to what discussed in chapter 1 regarding 

the application of the PSM with tetra elements [25]. However, in the light of the very small 

element size at the crack front and being not a steep gradient of KI along the crack front, results 

have been assumed to be perfectly corresponding to that of node at point A and B in Figure 

3.17. Results showed that KI distribution is always monotonically increasing along the crack 

front line running from the deepest point (point A in Figure 3.17) to the point at the weld toe 

(point B in Figure 3.17), independently on the crack size, at least within the investigate range 

of crack lengths (5 μm < a < 200 μm). Moreover, results obtained with the PSM (dotted line in 

Figure 3.17) and the Fracture Tool (solid line in Figure 3.17) were always in very good 

agreement, the errors between them being always less than 8%. Furthermore, it is interesting to 

note that the point A always resulted to be that having the highest value of the KI. 

Finally, thanks to the obtained results, it was possible to evaluate the geometrical parameters 

β in both point A and B according to the following expression: 

 

1
IK

a MPa



=


         (3.9) 

 

The obtained evolutions of the coefficients βax and βb have been reported in Figure 3.18 as a 

function of the crack length for both the point A and point B. 
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Figure 3.17. KI distribution along the crack front line for different crack size and different loading conditions. 

Results have been obtained both using the PSM and the Fracture Tool in Ansys®. 

 

 

 

 

Figure 3.18. Evolution of the factors βax and βb with the crack length a. 
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3.3. Calibration of the initial crack size ai: the cyclic R-curve 

3.3.1. Specimens 

 

The aim was that of performing experimental tests for the characterization of the S355J2+N 

structural steel mechanical properties, in particular its cyclic R-curve. Starting from the 

experimental observation that the crack initiation and early crack growth phases in welded 

joints occur within the Heat Affected Zone (HAZ), the cyclic R-curve has been characterized 

for both the Base Metal (BM) and in the HAZ. The adopted specimens (Figure 3.19) were 

Single Edge Notch in Bending (SENB), and made in two different versions, both having the 

same geometry, but one made of base metal and the other obtained from a transverse loaded 

butt weld ground flush to plate. In the latter, residual stresses have been reduced as much as 

possible by applying the proper stress relieving heat treatment. The crack starter notch made by 

EDM, has been realized within the HAZ so as to promote the propagation within this region 

and, this way, obtaining the corresponding cyclic R-curve for the HAZ.  

 

 

Figure 3.19. SENB geometry. Specimens made of: a) S355J2+N and S690QL; b) welded S355J2+N, with the EDM 

notch inside the HAZ; c) macrography of one welded specimen showing the EDM notch location 
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3.3.2. Fatigue crack growth tests setup 

 

The specimens (Figure 3.19) have been loaded in pure bending at two different load ratios, 

R = -1 and R = 0.1, thanks to a RUMUL TESTRONIC 100kN or a RUMUL TESTRONIC 

20kN resonance-testing machines having working frequency of approximately 60 Hz and 108 

Hz, respectively (Figure 3.20b). The negative load ratio was permitted due to the adoption of 

an eight-point-bending device for SENB specimens allowing the application of fully reversed 

pure bending cyclic loading (Figure 3.20b,c). In particular, during the fatigue crack growth tests 

the testing machine has been controlled in terms of applied force or applied Stress Intensity 

Factor range Δ𝐾𝐼, the value of which has been calculated adopting the equations reported in the 

standard ISO12108:2018 [26]: 
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max min
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3 2 tan
2 2 cos

2
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S SF a W
K

aB W W W

W






  + −  −   =   
 
 
 

  (3.10) 

 

Where F is the applied force, B and W are the width and the heigth of the specimen, 

respectively (Figure 3.20), a is the crack length, while Smax and Smin are major and minor span 

of the 8-point-bending fixtures, respectively (Figure 3.20). 

In-situ real-time crack growth monitoring has been performed by means of a non-destructive 

evaluation (NDE) technique based on the Direct Current Potential Drop (DCPD) method 

[12,27] (Figure 3.20b,d). In few words, this technique is based on the principle that the electrical 

resistance of the tested specimen increases due to crack growth (electrons are "forced" through 

the uncracked cross-sectional area that become smaller as the crack propagates); therefore, if 

the specimen is subjected to a constant electrical current flow, the increase of the electrical 

resistance translates in an increase of the potential drop. The crack depth can be estimated by 

entering the experimentally measured potential drop in a proper calibration curve. In case of 

SENB specimens, an analytical expression for the DCPD calibration curve is available [28]: 
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    (3.11)  

 

where 𝑎 refers to the crack-length, 𝑉 to the measured potential, W to the specimen height, 𝑦 

to the distance between the potential probes and the crack plane and 𝑉0 is the measured potential 

drop at notch depth 𝑎0 = 𝑎𝑛𝑜𝑡𝑐ℎ, before applying fatigue loads (Figure 3.20). The reader is 

referred to chapter 4 for a more detailed description of the DCPD method. The effects of 

temperature variations on the measured potential drop have been compensated by measuring in 

real-time also the temperature of the specimen Then, the measured signal has been corrected 

taking advantage of the linear correlation between the electrical resistivity of the material and 

the temperature (a detailed description of the problem will be given in chapter 4). For injecting 

the electrical current into the specimen, a DC Power Supply HP6033A with a pole-switcher for 

changing the direction of the current and compensating the thermoelectric effects [28] has been 

used, while the measure of the potential drop signal has been performed thanks to a Keithley 

2182A Nanovoltmeter.  

The procedure for evaluating the cyclic R-curve (Figure 3.21) has been that one adopted by 

Tabernig and Pippan [12] and recently updated by Pourheidar et al. [15]. Initially the notches 

have been sharpened thanks to a special razor blade polishing technique, performed using a 

customised semiautomatic device (Figure 3.22), which allowed to get extremely sharp notches 

(Figure 3.22). The reason behind the need for a sharper notch is due to the need of reducing the 

load level in the compression pre-cracking phase (the following phase), indeed the smaller the 

notch tip radius, the smaller the load to initiate a pre-crack and the smaller the required length 

of the pre-crack to avoid notch effects [12,15]. 

Then, a closure free crack has been generated at the notch tip by applying in force control 

mode a standard compression pre-cracking procedure at a load ratio R = 20 and an initial ΔKI 

= 16 MPa∙m0.5, these values being chosen based on the experience of the author (Figure 3.21). 

After the compression pre-cracking, the specimen has been initially loaded in traction by 

applying constant amplitude fatigue loadings at a stress level which generates a driving force 

very close to the intrinsic threshold Δ𝐾𝑡ℎ,𝑒𝑓𝑓 (Figure 3.21). If no propagation occurred, the load 

level has been increased with increments of about 0.5 - 1 MPa∙m0.5
 (~0.1∙ΔKth,LC [12,15]).  
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Figure 3.20. Experimental setup: a) schematic illustrating the experimental setup containing the 8-point bending 

fixture and the DCPD elements. The region A, zoomed in the right-hand side, details the sharpened notch 

performed before conducting the experiments. b) Experimental setup with detail on the testing machine and on the 

DCPD device. c) working principle of the 8-point-bending fixture. d) details on the application of the DCPD 

method. 
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 Whenever the stress level was high enough for the crack to propagate, closure phenomena built 

up and the crack arrested, reaching again the threshold condition (Figure 3.21). Then the load 

level has been increased again, and this procedure repeated until no more arrest has been found 

(Figure 3.21). At this point the control mode of the machine has been switched from controlling 

the applied force range ΔF to the applied Stress Intensity Factor range ΔKI, the value of which 

has been kept constant during the propagation, i.e. the load has been automatically and in real 

time decreased by the controller in order to keep constant the applied SIF range ΔKI. Also with 

this control mode, after each arrest the SIF range ΔKI level has been increased repeatedly until 

no more arrest has been found (Figure 3.21). 

 

 

Figure 3.21. Schematic illustrating the experimental procedure for the determination of the cyclic R-curve. Load-

cycle history and corresponding crack length evolution, on the left; corresponding cyclic R-curve with the driving 

force evolution, on the right. 

 

 

Figure 3.22. Device used to perform the razor blade polishing technique. 
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3.3.3. Results 

 

The cyclic R-curve has been obtained by reporting in a chart the values of the crack 

increment from the initial crack size Δ𝑎 and corresponding stress intensity factor range Δ𝐾𝑡ℎ 

corresponding at the arrest point (Figure 3.21). Results of the performed test have been reported 

in Figure 3.23 both for the BM and the HAZ along with results obtained in the IBESS project 

[18,19] on a similar steel, i.e. an S355NL structural steel. The first thing to note is that, 

apparently, the obtained experimental results follow the cyclic R-curve obtained in IBESS, even 

though they display a slightly higher resistance probably due to the different material 

specification (actual J2+N compared to NL in IBESS). Secondly, Figure 3.23 highlights there 

are no significant differences between the cyclic R-curve relevant to the BM and that relevant 

to the HAZ conditions at least in the very short crack regime (Δa < 0.5 mm). On the other hand, 

this difference became evident for the longer crack regime (Δa > 0.5 mm, Figure 3.23). 

 

 

Figure 3.23. Summary of the cyclic R-curves obtained with specimens made of S355J2+N compared to that taken 

from the Literature and relevant to an S355NL structural steel [18,19]. Results are relevant to different 

materials/microstructure (Base Metal-BM/Heat Affected Zone-HAZ), different testing frequencies (60 Hz and 108 

Hz), and different load ratios (R = -1 and R = 0.1). 

 

Then, according to Maierhofer et al. [29], the experimental data have been fitted using the 

following expression: 
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Where ΔKI,th,eff and ΔKI,th,LC represent the intrinsic component of the fatigue crack propagation 

threshold and the fatigue crack propagation threshold for long crack, respectively, while νi and 

li are coefficient to be found with best fit on the experimental data, provided that the following 

constraint condition is satisfied: 

 

1

1
n

i

i


=

=           (3.13) 

 

The best fit has been performed taking advantage of the curve fitting tool implemented in 

Matlab® by imposing i = 2. The resulting parameters for the cyclic R-curve of the HAZ relevant 

to R = -1, i.e. ΔKth,eff = 2.58 MPam0.5, ΔKth,LC = 10 MPam0.5, ν1 = 0.495, l1 = 0.046 mm, ν2 = 1- 

ν1 = 0.505, l2 = 1.913 mm, have been used in the following paragraphs. 

 

 

3.3.4. Discussion: a new procedure for determining the cyclic R-curve 

 

Although it is not the aim of this chapter to argue about the limits of the procedure used to 

experimentally derive the R-cyclic curve, in this paragraph a further step forward in the 

experimental procedure will be discussed. In 2022, Pourheidar et al. [15] proposed an update 

of the standard procedure for determining the cyclic R-curve [12] consisting in the introduction 

of Constant-ΔK steps (aqua green steps in Figure 3.21) after the tangency condition between 

the driving force and the resistance curve when applying Constant-ΔF steps (blue steps in 

Figure 3.21). The aim of this modification was that of better describing the upper part of the 

cyclic R-curve, i.e. determine Δa-ΔKth values close to the long crack fatigue crack propagation 

threshold ΔKth,LC, this being impossible with the Constant-ΔF procedure that provides 

undesirably conservative threshold values (see Figure 3.21). The latter aspect can be better 

understood by comparing the experimental data obtained with the Constant-ΔF + Constant-ΔK 
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with that in the IBESS project [18,19] obtained using only the Constant-ΔF technique (see 

Figure 3.23 for the comparison). Having in mind the need of better describing the long crack 

regime, in this work it has been proposed to definitely improve the procedure by adding 

Decreasing-ΔK steps, applied according to the main standards [26,30], when the Constant-ΔK 

steps can no more intersect the cyclic R-curve (Figure 3.24). This way, with just one single 

experimental test it is possible to have a complete description of the fatigue crack growth 

propagation threshold from the short to the long crack regime. 

 

 

Figure 3.24. Schematic illustrating the proposed experimental procedure for the determination of the cyclic R-

curve aimed at better describing the transition from the short to the long crack regime. Load-cycle history and 

corresponding crack length evolution, on the left; corresponding cyclic R-curve with the driving force evolution, 

on the right. 
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regime, the latter being generated by high sensitivity to extrinsic crack closure phenomena in 
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experimental results highlighted that higher frequency resulted in reduced ΔKth,LC, while no 

significant effects have been found in the short crack regime. At the same time a higher load 

ratio R, results in higher reproducibility, i.e. lower scatter (maybe because the crack is kept 

opened and there is less contact between the fracture surface affected by corrosion, etc…, i.e. 

there is a lower sensitivity to extrinsic crack closure phenomena). Finally, it is worth noting 
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overcome the oxide barriers resulting in crack closure. Therefore, a smaller crack extension is 

usually observed. 

 

Figure 3.25. Summary of the cyclic R-curves obtained with specimens made of S355J2+N according to the 

proposed experimental procedure (Figure 3.24). Results are relevant to different materials/microstructure (Base 

Metal-BM/Heat Affected Zone-HAZ), different testing frequencies (60 Hz and 108 Hz), and different load ratios 

(R = -1 and R = 0.1). 

 

3.4. Calibration of the initial crack size  

3.4.1. Results 

 

The calibration of the initial crack size ai according to the crack arrest analysis [17–19] has 

been made possible by the comparison of the driving force at the fatigue limit (paragraph 3.2) 

and the corresponding resistance curve (paragraph 3.3). Unfortunately, the comparison has to 

be made for the same load ratio R but in this work the driving force has been obtained for I = -

0.3 while the cyclic R-curve for R = -1. Accordingly, the driving force at the fatigue limit has 

been corrected assuming that all the parameter like the crack position, inclination and shape c/a 

as well as the geometrical factors β were independent of the mean stress but for the fatigue limit 

expressed in nominal stress range. To take into account the mean stress effect, it has been used 

an equation based on the Goodman equation [35,36]: 
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where the Δσg,th,R and Δσg,th,R=-1 are the fatigue limit for R ≠ -1 and R = -1, respectively, σm 

is the mean stress, while σUTS is the ultimate tensile strength of the material. To maintain the 

dependency of Δσg,th,R only from Δσg,th,R and R, the tensile strength σUTS has been replaced with 

the known relation accounting for the fatigue ratio for steels (~ 0.5): 
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Then, by replacing the mean stress σm with: 
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it was possible to define the following expression: 
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which allows the mean stress correction of the fatigue limit of a component made of steel 

once the load ratio R its fatigue limit at load ratio R = -1 are known. Accordingly, the driving 

force at the fatigue limit has been written in the following final version: 
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Where βax and βb are the geometric factor for the axial and bending load condition at the 

point A (see paragraph 3.2.3), respectively, Δσg,th,ax and Δσg,th,b represent the axial and bending 

stress components of the fatigue limit for a load ratio Rth = -0.3 (see paragraph 3.2.1). The 

obtained driving force at the fatigue limit has been reported as black solid line in Figure 3.26 

along with the corresponding cyclic R-curve (green solid line). Finally, the latter has been 

shifted along the crack length axis according to [17–19] until the tangency, or better the 
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‘initiation’, condition has been found. As a result, an initial crack size equal to ai = 5 μm has 

been found for an S355J2+N structural steel subjected to fully reversed cyclic loading (R = -1). 

 

 

Figure 3.26. Crack arrest analysis and definition of the initial crack size ai. 

 

 

3.4.2. Discussion: effect of the crack shape c/a 
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introducing the experimental evolution of the c/a into the FE analyses. Unfortunately, the values 

for very small crack length have been extrapolated as it was not possible to identify on the 

fracture surface of the tested specimen any marked crack having smaller size than a < 65 μm. 

At the same time several authors in the Literature [17–19,37] assume a semi-circular crack 

fixing c/a = 1. For these reasons, the present paragraph aims at investigating the effect of the 

aspect ratio c/a on the driving force. Taking advantage of the parametric model presented above 

(Figure 3.16), the same crack lengths (see Table 3.4) have been investigated this time by 
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thickness crack having a straight front). The obtained results have been reported in Figure 3.27 

expressed as β∙(πα)0.5 versus the crack length a for the case of pure axial loading with applied 1 

MPa. Figure 3.27 shows that for a fixed specimen geometry, external load and crack length, an 

increased aspect ratio c/a results in an increase of the SIF KI (i.e. β∙(πα)0.5) at point A and in a 

reduction of the KI at point B. For example, according to what reported in [18], in the case of 

c/a = 1 the point B is the critical one, while the opposite happens when c/a = 10 (Figure 3.27). 

Noteworthily, the highest driving force is that relevant to through-the-thickness crack having a 

straight front (c/a = ∞, in Figure 3.27). Interestingly, the results obtained imposing the 

experimental evolution of c/a (solid black line in Figure 3.27) are almost overlapped to that of 

a through-the-thickness crack having a straight front (c/a = ∞) when a < 75 μm. 

Then, the exercise of calibrating the initial crack size ai (similar to Figure 3.26) assuming 

the driving force at the fatigue limit of a crack having c/a = 1, as suggested in [17–19], has been 

done. Again, an initiation condition, instead of a tangency condition has been found and the 

output of this analysis was an initial crack size ai = 15 μm, this value being in very good 

agreement with ai = 17 μm obtained in [17–19] with the crack arrest analysis applied to the case 

of a smooth specimen with a semi-circular surface crack (c/a = 1) and adopting a complex 

elastoplastic driving-force calculation. 

 

 

Figure 3.27. Evolution of the normalized driving force for different aspect ratios c/a of the propagating crack. 
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3.5. Estimating the fatigue limit of welded structures 

3.5.1. Threshold Notch Stress Intensity Factor ΔK1,th 

 

As intensively discussed in the introduction, the cyclic R-curve can be adopted to estimate 

the fatigue limit of notched components like welded structures. Indeed, once the initial crack 

size ai along with the resistance curve ΔKth(a) (both material properties according to [17–19]) 

are known, the fatigue limit Δσg,th can be found by scaling the driving force ΔKI (a)  until the 

tangency (or initiation) condition is found with the resistance curve, the position of the latter 

being fixed by ai. In the context of welded joints, the rigorous application of the method requires 

that not only the local weld bead geometry (weld bead leg size z, weld toe and root radius ρ, 

opening angle 2α, etc.) but also the location, inclination and shape of the propagating crack 

must be known with a high degree of accuracy to evaluate the driving force and estimate the 

fatigue limit.  

Undoubtedly, the efficacy of the method can be very high when all those information are 

known, and its application can be of interest in contexts where the maximum precision in the 

estimation is required (e.g. in the aerospace or nuclear industries). However, there are many 

other practical industrial applications in which there is no the possibly to carry out accurate and 

time-consuming measurements and calculations like those required for applying a damage 

tolerant criterion based on the cyclic R-curve. Not only that, the rigorous application of the 

method to the case of complex and very large geometries (see the example reported in Figure 

3.28) could become so complicated and time-consuming to be substantially unreasonable 

and/or unfeasible. For these reasons, it is easy to understand how the use of a damage tolerant 

approach based on fracture mechanics and the use of the cyclic R curve can be, in certain 

circumstances, somehow prohibitive, this statement being truer the larger the analysed 

structure, the higher the number of welded connections present in the structure and the more 

complex the geometry of the joints. Finally, it happens that during the design phase of welded 

connections many parameters relevant to the local weld bead geometry (for example the weld 

leg size z) are not known in advance, indeed, they are the output the designer is looking for, or 

their value depends on the process parameters. 
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Figure 3.28. Welded detail taken from an example of industrial interest. 

 

In light of what discussed above, there is the need of an efficient procedure to estimate the 

fatigue limit of welded structures without the need of complex and time-consuming fracture 

mechanics-based calculations. In this work, to do this, the following simplifying assumptions 

are made: 

 

• Null weld toe and weld root radius, ρ = 0 (worst case hypotesis, see chapter 1). Similar 

assumption have been proposed yet in the Literature [3,10,24,25,38–42] 

• Planar crack having straight front, c/a = ∞. This is assumption allows for estimations on 

the safe side, the corresponding normalized driving force being the highest as discussed 

in the previous paragraph. 

• Crack propagating along the V-notch bisector line. 

 

As discussed in depth in chapter 1, the sharp V-notch hypothesis results in singular stress 

distribution ahead the V-notch tip, the latter being modelled as V-notch having null tip radius 

(ρ = 0) and described by a certain opening angle 2α (see Figure 3.29). The singular stress 

distribution is proportional to 1/r1-λ1 [43], where r is radial the distance from the V-notch tip, 

while the singularity degree 1-λ1 is a function of the opening angle [43,44]. Accordingly, the 

singular stress field is proportional to the external loads and its intensity is quantifies by the 
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Notch Stress Intensity Factor (NSIF) K1 [45], which, in few words, represent the natural 

extension of the SIF KI concept to notches having opening angle 2α > 0°. It has also been 

abundantly highlighted that the NSIF K1, or better the range ΔK1, represents a fatigue relevant 

parameter [3,38–41] and that its value can be easily estimated using FE analyses having rather 

coarse meshes [24,25] (see chapter 1 for a more complete and detailed description). 

 

 

Figure 3.29. Simplified model with the corresponding main parameters and highlighted the distribution of the 

singular stress component normal to the crack bisector line. 

 

Interestingly, the NSIF concept can be very useful in determining the SIF KI of short cracks 

propagating along the bisector line of a sharp V-notch. In fact, in these conditions, the stress 

field to which the propagating crack is subjected can be completely described by NSIF K1. 

Therefore, many authors in the Literature [46–52] have shown it is possible to write an 

engineering formula giving the SIF KI of a crack propagating from a V-notch once the intensity 

of stress field ahead the V-notch tip without the crack is known, i.e. the NSIF K1 is known: 

 

1 0.5
1I NSIFK a K

  − =           (3.19) 

 

Where βNSIF is a constant which value depends on the V-notch opening angle 2α, a is the 

length of the propagating crack measured from the V-notch tip (see Figure 3.29), λ1 is the 

Williams’ coefficient [43,44] and ΔK1 is the NSIF quantifying the intensity of the asymptotic 

stress distribution ahead the sharp V-notch tip evaluated without the crack. 

The geometric factor βNSIF can be evaluated using FE simulations or using some analytical 

expressions available in the Literature, the latter being valid in case of a through the thickness 

w

σθθ

r (θ = 0°)
2α

a

ρ = 0
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planar crack propagating along the bisector line of a sharp (or rounded) V-notch [46–52]. For 

example, Carpinteri et al. [49] proposed the following expression: 

 

1 1 1

1 1 1 1
( ) , ( ) 1, ( ) 2,

2 2 2NSIF f B g B h B w  w  w 

      = + + + +            

  (3.20) 

 

Where, ω = π – α (see Figure 3.29), while 𝑓(𝜔), �̃�(𝜔), ℎ̃(𝜔) and B (the latter being called 

Beta function, also known as the Euler integral of the first kind) are defined as follow: 

 

1
1 1

0
( , ) (1 )x yB x y t t dt− −= −         (3.21) 

 

2 2

2 sin 2
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2 sin
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 w ww
w w

+
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+
        (3.22) 

 

1( ) 1 3 ( ) ( )g f fw w w= − − +        (3.23) 

 

1( ) 2 2 ( ) ( )h f fw w w= + −         (3.24) 

 

Wherein: 

 

2 3

1 3/2

6.142 2.040 0.1290
( )f

w ww
w

+ −
=       (3.25) 

 

At this point, the cyclic R-curve analysis has been applied according to the hypotheses 

introduced here above for a fixed V-notch opening angle. Having known both the initial crack 

size ai and the cyclic R-curve, the driving force at the fatigue limit ΔKI,Δσg,th has been the output 

of the cyclic R-curve analysis. The driving force has been evaluated thanks to Eq. (3.19), the 

NSIF at threshold ΔK1,th being the scaling parameter to be found with the cyclic R-curve 

analysis. Noteworthy, the fatigue limit expressed in terms of a threshold NSIF ΔK1,th is only 

function of the V-notch opening angle 2α, the material and the load ratio R. At the same time, 
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its value is completely independent on the specimen geometry or the constrain and loading 

conditions (e.g. axial o bending, provided that only mode I stresses are considered). 

In this work, the case of weld toe failure of a stress relieved welded joint made of S355J2+N 

structural steel under pure mode I fully reversed (R = -1) cyclic loading has been considered 

and the opening angle has been fixed equal to 2α = 135° (λ1 = 0.674 [43,44]). The resulting 

cyclic R-curve analysis have been reported in Figure 3.30. The outcome of this analysis was a 

threshold NSIF equal to ΔK1,th, 2α=135°,R=-1 = 32,0 MPam0.326. The obtained parameter represents 

a threshold value against which the applied NSIF ΔK1 can be compared to investigate if the 

welded joint will exhibit fatigue failure or not when subjected to CA loadings. More in detail, 

if ΔK1 > ΔK1,th,2α=135°,R=-1 the applied stress is higher than the fatigue limit of the structure (i.e. 

the driving force will never meet the resistance curve), otherwise if ΔK1 ≤ ΔK1,th,2α=135°,R=-1, 

then the applied stress is lower, or at most equal to the component's fatigue limit. 

 

 

 

Figure 3.30. Cyclic R-curve analysis: driving force relevant to the case of a planar crack propagating along the 

bisector line of a sharp V-notch (ρ = 0) having opening angle 2α = 135° (weld toe). 
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3.5.2. The Peak Stress Method: equivalent peak stress at threshold 

 

As argued above, the NSIF based approach allows to a rapid and effective design of welded 

structures against fatigue, without the need of complex and time-consuming fracture 

mechanics-based calculations. Its most significant advantage lies in the fact that it allows to 

estimate the fatigue strength of complex structures using the NSIF ΔK1 range, which 

summarizes all information on geometry, dimensions and applied loadings and boundary 

conditions into a single design parameter. On the other hand, in chapter 1 it has been 

demonstrated that evaluating the NSIF according to its definition by using FEA can be very 

time-consuming and resulting in FE mesh patterns having extremely fine meshes at the V-notch 

tip. In chapter 1 it also been intensively discussed about the advantages given by the Peak Stress 

Method and by the use of the equivalent peak stress Δσeq,peak, whose definition is here reported 

for the sake of clarity (Eq. (3.26)), as a fatigue damage parameter [24,25]: 

 

11

* 1
, 1 , 0,2

0

2

1
eq peak w FE peak

e d
c K

R



  


−

=

 
 =     −  

    (3.26) 

 

Where cw1 is a coefficient accounting for the mean stress sensitivity; K*
FE is a calibrated non-

dimensional constant; e1 is a constant of integration depending on the opening angle 2α; ν is the 

Poisson’s coeffient (ν = 0.3); d is the average size of the finite elements is a calibrated constant; 

R0 is the material-structural volume with size according to the averaged SED criterion (R0 = 

0.28 mm for structural streel welded joints) and Δσθθ,θ=0,peak is the mode I peak stress range 

evaluated at the V-notch tip by means of linear elastic FEA according to the PSM. The reader 

is referred to chapter 1 and to the relevant Literature [24,25] for more details on the application 

of the PSM and of the equivalent peak stress concept. 

Going back to the threshold conditions, the concept of equivalent peak stress Δσeq,peak can be 

adopted to rapidly and efficiently estimate the CAFL of weld toe failure observing that in case 

of pure mode I loading it is possible to write the following relationship: 
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     (3.27) 

 

Which can be easily obtained by entering the relation ΔK1,th = K*
FE Δσθθ,θ=0,peak d1-λ1 into Eq. 

(3.26). In paragraph 3.5.1, the case of weld toe failure (2α = 135°) has been considered. In this 

case e1 = 0.117, while cw1 = 0.5 if fully reversed loads (R = -1) are applied to stress relieved 

welded joints, which threshold NSIF is equal to ΔK1,th, 2α =135 ,R=-1 = 32,0 MPam0.326. By entering 

those values into Eq. (3.27), a threshold value Δσeq,peak,th = 165 MPa has been found for a 

survival probability PS = 50% (see Figure 3.31), this parameter being valid in case of weld toe 

failure (2α = 135°) of a stress relieved welded joint made of S355J2+N structural steel under 

pure mode I fully reversed (R = -1) cyclic loading. The CAFL expressed in terms of the 

equivalent peak stress at threshold has been compared to the PSM-based fatigue design scatter 

bands for steel welded joints relevant to λ = 0 which has an endurable stress range Δσeq,peak,A,50% 

= 214 MPa, an inverse slope k = 3 and a scatter index referred to survival probabilities of 2.3%-

97.7%, i.e. the mean value ± two standard deviations, Tσ = 1.90 (see Figure 3.31). As shown in 

Figure 3.31, the CAFL correspond to a number to cycles to failure equal to Nth ≈ 4.4 106 cycles, 

this value being quite close to that proposed by the Eurocode3 (5 106 cycles) [1]. 

 

Figure 3.31. PSM design scatter band updated with the introduction of the CAFL relevant to weld toe failure under 

fully reversed loading. 
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3.5.3. Validation with data taken from the Literature 

 

The validity of the obtained fatigue limit, expressed in terms of an equivalent peak stress at 

threshold, has been checked against some experimental data taken from the Literaure [53]. 

Sonsino et al. [53] fatigue tested under fully reversed (R = -1) pure axial CA loading 

longitudinal fillet welded stiffeners (Figure 3.32) having two different plate thicknesses (t = 12 

or 20 mm) and made of St 52-3 (old nomenclature relevant to the DIN17100 for the S355J2+N 

EN10025-2 [20]). The authors reported the fatigue crack initiation always occurred at the weld 

toe at the main plate side. The complete separation of the joint was adopted as failure criterion. 

The experimental fatigue results have been here reported in Figure 3.33 expressed in terms of 

the number of cycles to failure Nf versus the applied nominal stress range Δσ (calculated with 

reference to the main plate according Eq. (3.3)). 

 

Figure 3.32. Specimens’ geometry and corresponding FE model according to the PSM guidelines. 
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Figure 3.33. Fatigue test results expressed in terms of applied nominal stress range. Data taken from Sonsino et 

al. [53]. 

 

A 3D free FE mesh pattern of 10-node tetrahedral elements (SOLID 187 of Ansys® element 

library) has been defined to calculate the mode I peak stresses at the weld toe, mode II being 

not singular there. Only one quarter of FE model, instead of one eighth, have been generated 

taking advantage of the YZ and ZX double symmetry. According to the PSM guidelines,  a 

minimum mesh density ratio a/d = 1 is necessary to analyse the weld toe (2α = 135 ) under 

mode I loading using TETRA-10 finite elements [25] (see also chapter 1), the characteristic 

size being a = t/2 = 6 mm (this means only one element in the half thickness of the main plate, 

see Figure 3.32). A quarter of the specimen instead of exploiting the triple symmetry has been 

modelled to avoid the need of a mesh refinement at weld toe. In fact, an element size d = 6/1 ≈ 

6 mm would have meant only a single finite element through the thickness of the longitudinal 

stiffener, and this would not have allowed applying the PSM at the crack initiation point, the 

nearest node from a free surface where the average peak stress can be evaluated being the third 

vertex node according to the PSM based on 10-node tetrahedral elements (see chapter 1). Then 

the symmetry boundary conditions have been applied to the YZ and ZX symmetry planes and 

a uniform tensile stress of 1 MPa has been applied to the main plate (see Figure 3.32). 
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After solution, the maximum principal stress Δσ11,peak has been evaluated at FE nodes located 

along the weld toe line, then the average peak stress ∆σ̅11,peak (see chapter 1), by taking 

advantage of the approximate e uivalence Δσθθ,θ=0,peak ≈ Δσ11,peak. Eventually the equivalent 

peak stress range has been computed from Eq. (3.26), by assuming cw1 = 0.5 since all joints 

have been tested in the stress-relieved conditions. The maximum value of the equivalent peak 

stress was found at the weld toe where fatigue cracks experimentally initiated and corresponded 

to Δσeq,peak,1Mpa = 2.09 MPa and Δσeq,peak,1Mpa = 2.23 MPa for the joints having t = 12 mm and t 

= 20 mm, respectively, when applying 1 MPa nominal stress range at the main plate. The local 

stress state at the critical location being of pure mode I, the local biaxiality ratio is λ = 0 (see 

chapter 1). Finally, the experimental data originally expressed in terms of range of nominal 

stress have been re-converted in terms of range of the equivalent peak stress (Eq. (3.26)) 

evaluated at the crack initiation location and compared to the PSM-based fatigue design scatter 

bands for steel welded joints relevant to λ = 0 (not fitted on the experimental data) including 

the threshold equivalent peak stress  Δσeq,peak,th = 165 MPa (see Figure 3.34).  

 

 

Figure 3.34. Validation with experimental data from the Literature. Comparison with the PSM design scatter band 

relevant to pure mode I loading (λ=0) and the corresponding CAFL for weld toe failure under fully reversed 

loading (R = -1). 

 

10

100

1000

1E+4 1E+5 1E+6 1E+7 1E+8

Δσ
eq

,p
ea

k
[M

P
a]

Nf [cycles]

Estimated CAFL - 2α = 135 
Sonsino 1987 - SR t = 20mm, W = 50mm
Sonsino 1987 - SR t = 12mm, W = 60mm

5000

Crack initiation

296

156
214

NA

Filled = Broken
Empty = Run-out

Run-out retested (broken) S355J2+N
Stress-relieved

R = -1
Weld toe failure

Δσeq,peak,th = 165 MPa

Estimated CAFL

ΔσA,50% = 214 MPa
NA = 2 ∙106 cycles
Scatter Index (2.3%-97.7%):
Tσ =  296/156 = 1.90
Slope k = 3.0

PSM design scatter band 
for steel joints, λ = 0

(NOT FITTED)

2.E+8



CHAPTER 3: Cyclic R curve and fatigue limit  

 

 

204 

 

It is interesting to note that the experimental data are quite well described both in the finite 

life region and at the fatigue limit, the broken specimens (filled markers in Figure 3.34) and the 

run-out ones (empty markers in Figure 3.34) being divided with good agreement by the 

threshold value of the equivalent peak stress Δσeq,peak,th (horizontal solid red line in Figure 3.34) 

 

 

3.6. Conclusions 

 

In the context of fatigue design of welded structures, the fatigue limit represents a 

fundamental concept around which there still is lack of knowledge. International standards and 

recommendations, basing their considerations on the nominal stress approach, supply a value 

for this parameter, which is engineering defined as that stress level corresponding to a fixed 

number of cycles (typically 5∙106 or 107 cycles) on the stress-life (S-N) curve of the 

corresponding reference detail. The main problem is related to its application in case of more 

complex joint geometries, for which the proper reference design category does not exist.  

Starting from the experimental observation that the first stage of the fatigue failure are the 

crack initiation and the early short crack growth, in this work, a damage tolerant criterion based 

on the linear elastic fracture mechanics and on the cyclic R-curve, i.e. the crack size dependence 

of the fatigue crack propagation threshold in the physically short crack regime, has been 

considered to investigate the concept of fatigue limit. Similar to the well-established monotonic 

R-curve analysis, the cyclic R-curve analysis consists in comparing for a propagating crack its 

driving force (i.e. the applied SIF - Stress Intensity Factor range ΔKI), which depends on the 

geometry, the material and the external loads, with the cyclic R-curve, a material property.  The 

crack propagation is promoted whenever the crack driving force assumes higher values than the 

resistance ones, while the crack is arrested in the opposite case. Therefore, the fatigue limit is 

given by that stress level at which the crack driving force curve is tangent to the crack resistance. 

One of the most critical aspects in applying this criterion is that being a fracture mechanics-

based approach, it requires the definition of an initial crack size from which starting the 

calculations. According to the Literature, one way to calibrate this parameter is the crack arrest 

analysis, which consists in evaluating the driving force at the fatigue limit and shifting the 

resistance curve, i.e. the cyclic R-curve, along the abscissa until the tangency condition with 
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the driving force is reached. In this work an accurate experimental calibration has been 

performed by comparing the driving force at the fatigue limit for nlc fillet welded double 

transverse attachments made of S355 structural steel and the corresponding resistance curve. 

The cyclic R curve has been experimentally determined by fatigue testing Single Edge Notch 

in Bending (SENB) on resonant testing machines making use of a new experimental procedure 

which allows for the determination of the crack propagation threshold from short to long crack 

regime by means of a single experimental test. The characterization has been carried out for a 

S355J2+N material and further for the same material but in Heat Affected Zone (HAZ) 

condition. The specimens in the HAZ condition were obtained from a transverse loaded butt 

weld ground flush to plate which residual stresses has been removed as much as possible by 

applying a proper stress relieving thermal treatment. 

Once performed the calibration of the initial crack size, its application to the estimation of 

the fatigue limit of a welded structure has been discussed with different degrees of accuracy 

depending on the available information. In particular, under certain simplifying assumptions it 

was possible to combine the cyclic R-curve analysis with the Peak Stress Method obtaining a 

new procedure that allows to a rapid and effective design of weld toe failures in the infinite life 

region, without the need of complex and time-consuming fracture mechanics-based 

calculations. The proposed method has been successfully checked against experimental data 

from the Literature and in the future its application will be extended to different material, 

opening angles (e.g. weld root failures), load ratio and to multiaxial loading conditions. 
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List of symbols 

 

a   Crack depth 

a/D   Normalized crack depth 

2c    Major axis of the elliptical crack 

c/a   Crack aspect ratio 

D   Specimen net-section diameter 

E   Young’s modulus 

F   Axial load 

I   Electrical current 

KI   Mode 1 Stress Intensity Factor (SIF) 

ΔνPD  Potential drop geometrical factor of the active channel 

θI   Angular position of the current probes 

θPD   Angular position of the active channel potential probes  

θT   Angular position of the potential probes for temperature compensation 

ρ   Electrical resistivity 

S   Curvilinear coordinate along the semi-elliptical crack tip profile 

ΔVPD  Potential drop of the active channel 

ΔVT   Potential drop of the reference channel for temperature compensation 

YI   Distance of the current probe from crack plane 

YPD   Distance of the active channel potential probe from crack plane 

YT   Distance of the reference channel potential probe from crack plane 
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4.1. Introduction  

 

As deeply discussed in the previous chapter, the material's resistance to crack propagation is 

typically expressed by the fatigue crack propagation threshold, when dealing with the threshold 

condition, or the Paris’s curve concerning the crack growth rate under continuous propagation 

[1]. However, it has also been observed that small fatigue cracks could be of great interest in 

structural reliability since they can grow at rates that are faster than long cracks when loaded 

with the same crack driving force. In particular, it has been intensely examined that, if compared 

with long cracks, they exhibit a much lower fatigue crack propagation threshold due to the 

gradual build-up of the crack closure phenomena [2–4], the latter being completely described 

by the cyclic R-curve concept [3–10]. Noteworthily, all contributions present in the Literature 

suggest evaluating the cyclic R curve, i.e. the crack size dependence of the fatigue crack 

propagation threshold in the physically/mechanically short crack regime, by means of 

experimental fracture mechanics fatigue tests using flat specimens like the compact tension 

(CT), the centre cracked tension (CCT), single edge notch tension (SENT) and the single edge 

notch bend (SENB) [3–10].  

On the other hand, the ASTM E647 [11] recommend employing such specimens geometries 

for fatigue long crack testing, while it advise using a different specimens’ geometry, such as 

the rectangular surface-crack, the corner-crack, and single-edge-crack round bars, when dealing 

with fracture mechanics fatigue tests of small cracks. At the same time, there is the need to 

evaluate the cyclic R-curve on such specimen’s geometries in order to better understand the 

effect of a different specimen geometry, and the consequent differences in loading and 

constraint conditions, on the build-up of the crack closure phenomena.  

The problem is that performing fracture mechanics tests to obtain the cyclic R-curve requires 

the crack size to be measured during the tests, this aspect being very difficult when dealing with 

those specimens’ geometry. Indeed, it is worth noting that standard specimens for fatigue long 

crack tests are all characterised by a through the thickness crack which allows to adopt several 

methods for crack size measurement, e.g. visual or non-visual techniques. On the other contrary, 

all specimens for fatigue small crack tests include a surface crack whose size can be measured 
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by visual techniques only on the specimen surface, while the crack depth inside the material 

can be measured only by non-visual techniques. Among non-visual and non-destructive 

evaluation (NDE) techniques, International standards [12] suggest the compliance method and 

the electric potential difference (or Potential Drop method). 

Certainly, the Potential Drop (PD) method represents one of the most used non-visual 

techniques for real-time in-situ non-destructive evaluation (NDE) of the crack size in cracked 

components. This approach is widely cited and suggested by numerous standards in the field of 

fracture mechanics, both for static [13,14] and fatigue tests [11,12]. In few words, the potential 

drop is an indirect measurement technique relying upon the passage of a constant electrical 

current flow through the tested specimen and the subsequent measurement of the voltage 

between two points located over and under the cracked area of the specimen itself (Figure 4.1). 

The potential drop method is available in two different versions, depending on the used power 

supply, the latter being either a small (~1A) alternating electrical current flow in case of the 

Alternate Current Potential Drop (ACPD) method or a large (~30A or even larger values) direct 

electrical current flow for the Direct Current Potential Drop (DCPD) method. The resulting 

change in voltage comes from the increase in resistance (for DCPD) or impedance (for ACPD) 

of the specimen under test as a consequence of the crack length increment. To put it simply, 

electrons are "forced" through the uncracked cross-sectional area, which is smaller than the 

gross one, therefore, the specimen being subjected to a constant electrical current flow, the 

increase of the electrical resistance translates in an increase of the potential drop. The resulting 

change in voltage is used to calculate the crack length by entering in a proper calibration curve 

(Figure 4.1) which can be derived on experimental, analytical, or numerical basis [15]. 

However, among all available calibration techniques, the numerical way has the advantage to 

be easier as well as less time-consuming, giving also the opportunity to investigate the effects 

of many parameters, e.g. complex specimen geometries, crack shape, and the location of the 

potential and current probes, on the calibration curves [16]. 

 



4.1 Introduction 

 

 

215 

 

 

Figure 4.1. Schematic representation of the working principle of a DCPD system. 

 

In DCPD, the current flow is forced through the bulk specimen, while in ACPD, due to the 

so called “skin effect”, it mainly flows near the specimen surface. As a result, in principle, 

ACPD could be more sensitive to surface cracks, whereas DCPD, even though it is still 

employed mainly in this role, has the potential capability to detect also subsurface cracks. 

DCPD has also the advantage of a relatively inexpensive and easy-to-use setup compared to the 

one required for ACPD.   

As a result of its operating principle, the DCPD is an integral method that gives as an output 

the estimate of the cracked area [11], but not of the actual crack shape, path and location. For 

this reason, the DCPD represents one of the most robust and widespread method in the 

Literature [15,17–19] for standard fracture mechanics fatigue tests for long cracks, but not for 

complex specimen’s geometries. Indeed, the crack location as well as the crack path and shape 

are usually known a priori in the case of standard fracture mechanics fatigue tests for long 

cracks (CT, CCT, SENT or SENB specimens), for which a resolution in the order of tens of 

microns in crack length can be normally obtained [11]. Noteworthy, a resolution in the order of 

at least ten microns is required when the cyclic R-curve has to be determined. 

In contrast, its application can be extremely difficult in case of specimens having complex 

geometries (e.g. that suggested by ASTM E647 for small crack testing [11]) or real components, 

the crack location, path, and shape being not known in advance. For the sake of completeness, 

it must be reminded that in the literature there are solutions that allow to partially overcome 

some of these limitations. For example, a multi-probe DPCD method [16,19–22] can be 

employed in place of a single probe system to get over this limitation. Precisely, the more 
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potential probes used, the more accurate the crack location is going to be. Moreover, in the case 

of real components having large size [23–27], a reduced sensitivity is typically observed, 

because for a fixed input current, the current density is lower [15]. In real components, crack 

growth resolution is typically on the order of hundreds of microns or even millimetres [23–27]. 

So far as short cracks are concerned, some applications of the DCPD method to monitor the 

propagation of short cracks have been performed by Cerny et al. [28–30] and by Funk and Bär 

[20], who obtained a sensitivity of approximately 0.1 mm in specimens having constant 

rectangular cross section by locating the potential probes at a distance between 2 and 5 mm 

from the crack plane and the current probes on the specimen’s ends. A similar resolution was 

obtained by Saka et al. [31] who proposed locating the potential probes and the current probes 

at a distance of 2.5 mm and 3 mm, respectively, from the crack plane (Closely Coupled Probes 

Potential Drop - CCPPD).  

Unfortunately, in the Literature there exist few example of applications to the specimen’s 

geometries suggested by ASTM E647 [11] for fracture mechanics tests of small fatigue cracks 

under axial fatigue loading. Some authors have applied the DCPD to cylindrical plain or 

notched bars under fatigue axial loadings [16,19,32–35], but none of them has never tried 

understand in which way the performances of the DCPD measurement could have been 

improved to reach higher resolutions (e.g. that required for determining the cyclic R-curve) in 

terms of crack size. Accordingly, the present chapter addresses the DPCD applications to 

laboratory fatigue specimens for investigating the material cracking behaviour and, in 

particular, for calibrating the method in fatigue crack growth monitoring of single-edge-crack 

round bar specimens, this specimen’s geometry being suggested by ASTM E647 [11] for 

fracture mechanics tests of small fatigue cracks under axial fatigue loading. In more detail, the 

purpose of this chapter is to improve the technical performances of the DCPD method by 

identifying the most influencing parameter and the best way to arrange both the current and 

potential probes on such specimen’s geometry. In particular, the purpose is to improve the 

technical performances of the DCPD method by a proper arrangement of current and potential 

probes. Therefore, 3-dimensional finite element electrical analyses have been performed owing 

to their versatility in evaluating the effects of different geometrical, operational and 

environmental parameters [16]. Eventually, the accuracy of the numerical analyses’ results has 

been checked against new generated experimental data. 
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4.2. Performances of a DCPD measurement 

 

Previous research [15] focused heavily on applying the DCPD to standard specimens for 

fatigue long crack testing (e.g. CT, SENB, ...), by examining ways to enhance the measurements 

on such specimens. Four factors (Table 4.1) were proposed by Aronson et Ritchie [36] to fully 

characterize the technical performances of a DCPD measurement: 

 

1. Measurability, which represent the ability to measure the output voltage signal. The 

measurability of a DCPD signal has to be always maximized and this can be achieved 

increasing the output voltage signal's absolute magnitude, |Δ𝑉𝑃𝐷| (see Figure 4.2a). 

 

2. Sensitivity, which is related to the lowest increase in crack size that can be detected 

by the measurement system. This parameter can be mathematically represented by 

derivative of the potential drop with respect to the crack size, which value has to be 

always maximized (see Figure 4.2b). 

 

3. Reproducibility, representing the reliability of the DCPD measurements when 

repeated and somehow its insensitivity to minimal inaccuracies in the placement of 

the probes, the latter being one of the most significant sources of error. One way to 

mathematically describe this parameter is the derivative of the potential drop with 

respect to the probes' positions, which must be minimized in order to maximize the 

reproducibility of the measurements (see Figure 4.2c). 

 

4. Accuracy, which describes how closely measured crack size and shape correspond 

to actual value (see Figure 4.2d). 

 

There are essentially two approaches to increase the DCPD performances. One option is to 

improve the quality of the employed experimental DCPD device, the other instead consist in 

altering the experimental setup, e.g by carefully selecting the current and potential probe 
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positions, so as to have a different calibration curve. For example, as the enhancing in the 

sensitivity of the measure is considered (see Figure 4.2b), it is possible either by acquire an 

experimental DCPD device with a greater resolution in terms of the smallest observable 

potential drop change or by choosing the position of the potential probes so as to detect smaller 

crack size increments for the same change in the potential drop signal. Again, the second 

approach can also be useful to find a position of the potential probes in a region where the 

potential drop value is high (increasing the measurability, see Figure 4.2a) and where little 

errors in their placement might result in negligible inaccuracies in the recorded potential drop 

value (maximizing this way the reproducibility, see Figure 4.2d). 

 

Table 4.1. Summary of optimization parameters according to Aronson et Ritchie [36]. 

Parameter Limiting consideration Mathematical statement 

Measurability Magnitude of output voltage signal Maximize |ΔV| 
Sensitivity Slope of calibration curve Maximize dΔV/da 

Reproducibility Ability to locate potential probes Minimize dΔV/dx 

Accuracy Accuracy of calibration curve - 

 

 

 

 

Figure 4.2. Performances of a DCPD setup: a) measurability (4.1), b) sensitivity (4.2), c) reproducibility (4.3), 

and d) accuracy. Example of comparison between two different DCPD arrangements. 
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It is handy to write Ohm's law and highlight the factors influencing the potential drop in 

order to illustrate and better describe the four qualities mentioned above: 

 

 

PD PDV I  =           (4.1) 

 

Eq. (4.1) makes it clear that, generally speaking, the electrical resistivity ρ, the magnitude of 

the input electrical current I, and a geometrical factor that contains all the details of the electrical 

current density vector field ΔνPD are the three parameters affecting the potential drop value 
PDV

. The first mentioned parameter, the electrical resistivity (or specific electrical resistance) ρ, is 

a fundamental material property that measures how strongly it resists to the passage of an 

electric current. Standard applications of the DCPD technique are relevant to specimens made 

of conductive material, e.g. metals, which electrical resistivity at room temperature ranges from 

10-5 to 10-3 Ω∙mm. Nevertheless, it must be mentioned that in the literature can be found some 

non-conventional applications making use of the DCPD method also with composite materials 

[37,38] or even non-conductive materials [39]. Other variables that affect this parameter include 

temperature [35], which effect will be discussed later in this chapter, large deformations, and 

plasticity at the crack tip [40–45].  

Eq. (4.1) easily clarifies that the measurability increases with increasing electrical resistance 

ρ. The same conclusion may be drawn regarding the magnitude of the electrical current I 

although its value should be restricted to prevent overheating brought on by the Joule effect. Its 

value is commonly chosen between 0.5 A and 50 A, even if in some cases much higher values 

have been adopted [26,46]. Instead, the geometrical factor ΔνPD, which includes all geometrical 

information, depends on a number of variables, including the full specimen geometry, the crack 

shape, morphology and location, and the entire DCPD setup, including the placement of the 

current and potential probes as well as geometrical changes generated by mechanical straining 

of the specimen [36,42,43,45]. Moreover, it can be noted that for a given specimen geometry 

and a fixed crack size a and shape c/a, this parameter depends only on the position of both 

current and potential probes if the effect of mechanical straining of the specimen is neglected. 
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To analyse the sensitivity of the measure, it is convenient to compute the derivative of Eq. 

(4.1)  with respect to the crack size a. To do this, a couple of simplifying hypotheses are 

necessary, i.e. that both the resistivity ρ and the current I do not change as the crack length a 

changes during propagation. It is important to say that while the condition on the electric current 

I is always satisfied, this is not necessarily always true for the assumption made on the electric 

resistivity ρ, the latter being sensitive to changes in crack tip plasticity as mentioned above. 

Nevertheless, assuming these conditions are satisfied, it is possible to write the following 

expression: 

 

PD PDd V d
I

da da

 
=         (4.2) 

 

Eq. (4.2) clearly states that high resistivity and electrical current help to increase the 

measure's sensitivity. More complex is the dependency on the rate of change of geometrical 

factor with crack size /PDd da  which requires to be adequately investigated, e.g. by means 

of FE analyses. 

Finally, the derivative of Eq. (4.1) with respect to the location of the potential probes can be 

used to analyse the repeatability of the measurement: 

 

PD PD

PD PD

d V d
I

dX dX

 
=         (4.3) 

 

wherein the generalized coordinate XPD designates the location of the potential probes. This 

parameter must be as little as feasible, in contrast to measurability and sensitivity [36]. 

Concluding, it is crucial to identify the current and potential probe locations for a given 

specimen shape in order to maximize measurability, sensitivity, and repeatability. Accordingly, 

as declared above, the purpose of this work was to improve the technical performances of the 

DCPD method by a proper arrangement of current and potential probes when applied to single-

edge-crack round bar specimens under fatigue axial loadings.  
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4.3. Numerical investigation 

 

The whole geometry of the cracked component, including the specimen geometry and the 

evolution of the crack shape during propagation, is required for the numerical calculations 

intended to derive the DCPD calibration curves. 

 

4.3.1. Structural FE analyses: iso-KI criterion 

 

The iso-KI criterion, firstly formulated in [47,48], postulates that the crack shape changes 

during the propagation so that constant distribution of the stress intensity factor KI is provided 

along the crack front. A single-edge-crack round bar under axial fatigue loading made of steel 

having elastic modulus equal to 206000 MPa and Poisson’s ratio equal to 0.3 has been 

considered (Figure 4.3). It is a widespread assumption in the Literature to schematize the crack 

front as a semi-elliptical arch having the centre laying on the specimen surface, one axis 

corresponding to the crack's depth a, and the other described by the aspect ratio c/a.  

 

Figure 4.3. Geometry of the single-edge semi-elliptical cracked specimen used in the numerical analyses 

(dimensions are in millimetres). 

 

By using structural linear elastic FE models, the aspect ratio c/a matching the iso-KI criterion 

was determined. In particular, KI was estimated throughout the whole crack front for various 

combinations of the normalized crack depth a/D and the aspect ratio c/a (Figure 4.3 and Table 
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4.2) by means of the Peak Stress Method [49,50]. See Chapter 1 for more details on the 

application and the conditions of the applicability of the PSM. 

Only one quarter of the specimen in Figure 4.4 was modelled by exploiting the XY and ZX 

symmetry planes (Figure 4.4). The crack has been introduced with a normalized depth a/D 

ranging from 0.1 and 0.5 stepped by 0.1 and with the aspect ratio c/a in the range 1.0 - 2.5.  

 

 

Figure 4.4. 3D structural FE model for evaluating the mode I SIF at the crack tip by means of the PSM based on 

10-node tetra elements. 

 

A 3D free FE mesh pattern of 10-node tetrahedral elements (SOLID 187 in the ANSYS® 

Mechanical APDL element library) has been defined to calculate the mode I stress intensity 

factor at the crack front line. According to the PSM guidelines for Tetra-10 elements [51,52], 

the average element size must be d ≤ a/3, a being the crack length, to properly estimate the 

stress intensity factor KI of a crack under pure mode I loading. This turns out in a maximum 

element size dmax = 2.36/3 ≈ 0.78 mm for the analysed crack having the minimum depth, i.e. 

the most critical case (a = 2.36 mm). However, such a coarse element size would have resulted 

in a coarse description of the SIF along the crack front. Therefore, a more refined mesh pattern 

having element size d ≈ 0.2 mm has been generated by successive local refinements of the free 

mesh pattern having global element size dG =1.5 mm.  

For the gripped region of the specimen, two sets of boundary conditions have been taken 

into consideration to investigate the effect of different constrains on the SIF: (1) "free" 

condition, in which the specimen ends were allowed to freely rotate and translate when axially 

loaded; (2) "sliding clamp" for emulating machine grips having infinite stiffness, in which the 
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nodes of the gripped cylindrical surface were constrained in such a manner that only their axial 

displacements were allowed. Finally, a tensile normal stress of 1 MPa has been applied to the 

specimen's gross section to simulate the axial load. An overview of the FE analyses performed 

is presented in Table 4.2. 

 

Table 4.2. Summary of the structural FE analyses carried out to derive the iso-KI crack propagation pattern. 

a/D 
[-] 

D  
[mm] 

c/a 
[-] 

Boundary conditions 

0.1 23.6 1.0, 1.1, …, 1.5 Free, Sliding clamp 

0.2  1.0, 1.1, …, 2.0  

0.3  1.5, 1.6, …, 2.5  

0.4  1.5, 1.6, …, 2.5  

0.5  1.5, 1.6, …, 2.5  

 

 

After solution, the opening peak stress, σYY,peak stress distributions have been evaluated at 

FE nodes located along the crack front, then the average peak stresses Δ𝜎𝑌𝑌,𝑝𝑒𝑎𝑘 have been 

calculated for computing KI
 (see Chapter 1 for more details on the application of the PSM with 

10-node tetra elements). The results are reported in Figure 4.5, which depicts the SIF 

distribution as a function of the normalized curvilinear coordinate running along the crack front 

line, S/Smax, and parametrically with respect to both the normalized crack depth, a/D, and the 

aspect ratio, c/a. The KI-distributions for the "free" boundary condition are reported in Figure 

4.5a, whereas those for the "sliding clamp" boundary condition are reported in Figure 4.5b. 

As expected, results demonstrate that, for a constant crack depth a, the maximum value of 

KI and its position along the crack front rely on both the constraint conditions and the aspect 

ratio c/a. According to Shin et Cai [53], when considering the influence of the constraint 

condition while keeping fixed the aspect ratio c/a, the "free" condition always results in higher 

values of KI than the "sliding clamp" one, this difference being greater as the crack depth 

increases. Regarding the effect of the aspect ratio c/a, Figure 4.5 demonstrates that, regardless 

of the constraint condition, the position of the maximum KI corresponds to the center of the 

specimen (point A in Figure 4.5) if c/a assumes relatively high values. In this case, the KI 

distribution is monotonically decreasing with S/Smax. On the contrary, its position is located at 

the intersection between the crack front and the specimen's external cylindrical surface (point 

B in Figure 4.5) and the KI distribution is monotonically increasing with S/Smax for low values 

of c/a. This observation made it possible to identify the values of aspect ratio c/a leading to an 
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almost constant KI distribution along the crack front, i.e. the aspect ratios c/a according to the 

iso-KI criterion (Figure 4.6). 

 

 

Figure 4.5. Results of the 3D structural FE analysis: mode I SIF profiles as a function of the position along the 

crack tip (S/Smax), the crack depth (a/D), and the aspect ratio (c/a) for the (a) ‘free’ and (b) ‘sliding clamp’ 
constraint conditions. 

 

 

Figure 4.6 reports the obtained iso-KI aspect ratios (c/a)iso-KI as a function of the normalized 

crack depth a/D ranging between 0.1 and 0.5. Interestingly, while the constraint conditions 

significantly affect the KI values, on the other hand, they do not have any considerable effect 

on the crack shape evolution. Furthermore, a linear interpolation of the data appeared to be a 

reasonable characterization of the dependency of (c/a)iso-KI on the normalized crack depth a/D: 
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Figure 4.6.Elliptical crack aspect ratio (c/a) according to the iso-KI criterion as a function of the normalised 

crack depth (a/D). The figure includes also error bars reporting the range of aspect ratio for which mode I SIF 

values are approximately constant along the crack front. 

 

 

 

4.3.1. Electrical FE analyses: Effect of current and potential probe location 

 

 

Previously it has been shown that, the electrical resistivity ρ, electrical current I, and 

geometrical factor 
PD  are the three basic parameters that determine the DCPD calibration 

curves. It is important to note that this work only addresses the pure electrical problem, as the 

effect of mechanical straining is not taken into account. Accordingly, it is clear that the for a 

given specimen geometry and a fixed crack size a and shape c/a, the latter depends only on the 

positions of both current and potential probes if the effect of mechanical straining of the 

specimen is neglected. Knowing the whole geometry of the cracked component in Figure 4.3, 

including the specimen geometry and the evolution of the crack shape during propagation, it 

was possible to evaluate the DCPD calibration curves for that specimen. The calibration curves 

have been obtained employing 3D electrical FE analyses in view of their great flexibility in 

analysing different configurations with relatively little effort. In these analyses, the normalised 
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crack depth a/D ranged between 0.1 and 0.5 and the aspect ratio c/a has been assumed in 

accordance with the iso-KI criterion (Figure 4.6 and Eq. (4.4)) for all crack depths. 

A cylindrical coordinate system centred on the axis of the specimen has been used to identify 

the positions of the current and potential probes (see Figure 4.7, Figure 4.8, Figure 4.9, and 

Figure 4.10). Accordingly, the position of the current probe was identified by the (θI, YI), i.e. 

the angular and axial coordinate respectively, while the location of the potential probe was 

represented by the coordinates (θPD, YPD). Four different current injection locations were taken 

into consideration in order to examine the impact of the current probe position on the DCPD 

sensitivity in cylindrical specimens: 

 

1)   “remote” current input to generate a uniform current density vector field on the gross 

section of the specimen far away from the crack plane has been simulated by locating the 

current probe on the specimen’s ends (YI→∞) (Figure 4.7). 

 

 

Figure 4.7. 3D electrical FE model: remote current input (YI = ∞). 

 

 

2)   “local” current input to generate an increased current density close to the crack plane, as 

suggested by Saka et al. [31] or by Ritchie et al. [54] in case of flat specimens, has been 

analysed by modelling the current probe on the XY symmetry plane (θI = 0°) at an axial 

coordinate YI = 11.5 mm (Figure 4.8). 
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Figure 4.8. 3D electrical FE model: local current input (YI = 11.5 mm, θI = 0°). 

 

 

3)   “local” current input on the XY symmetry plane (θI = 0°) with a reduced axial distance 

of the current probe from the crack plane (YI = 4 mm) (Figure 4.9). 

 

 

Figure 4.9. 3D electrical FE model: local current input (YI = 4 mm, θI = 0°). 

 

 

4)   “local” current input configuration having the current probe located at the same axial 

distance as in case 2) (YI = 11.5 mm), but at a different angular position (θI = 50°) which 

roughly corresponds to the angular coordinate of the intersection between the crack tip and 

the external cylindrical surface of the specimen when the crack is approximately at half the 

analysed crack depth range (a/D ~ 0.3) (Figure 4.10). 
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Figure 4.10. 3D electrical FE model: local current input (YI = 11.5 mm, θI = 50°). 
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carbon steel (electrical resistivity ρ = 20∙10-5 Ωmm, i.e. the same material of the specimen) 

perfectly in touch with the specimen itself, thus assuming no contact resistance between them. 

Moreover, the position of both the current and potential probes were symmetrically placed in 

relation to the crack plane (ZX in Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10). Finally, 

the cylindrical surface between the crack plane and the gripped region was divided into sub-

areas, stepped by 0.5 mm in the axial direction and by 5° in the angular direction, in order to 

evaluate the influence of the position of the potential probes, the latter being assumed to be 

point-like (see Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10). The models have been 

generated by taking advantage of all available symmetry planes whenever it was possible: in 

configurations 1, 2, and 3 only one-quarter of the specimen was modelled by exploiting both 

the ZX anti-symmetry plane and the XY symmetry plane (see Figure 4.7, Figure 4.8, and Figure 

4.9). While only the ZX anti-symmetry plane has been used in configuration 4, the latter 

showing no more symmetry with respect to the XY plane (see Figure 4.10). 

A pattern of 10-node tetrahedral electric solid elements (SOLID232 of the Ansys element 

library) having a global element size of 1.5 mm has been adopted to build up the FE model. A 
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where the potential drop values had to be evaluated, while an element size of nearly 0.3 mm 

has been used in the proximity of the crack plane, where the gradient of the electric field is very 
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forced to nodes situated in the ligament area in order to guarantee the anti-symmetry constraint 

condition on the ZX plane (see Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10).  

 

 

4.3.2. Results of electrical FE analyses 

 

After the solution it was possible to extract the value of the electric potential VPD as a function 

of potential probe angular and the axial position (θPD, YPD), the crack depth a, and the current 

probe configuration (θI, YI). Having assumed a symmetrical position with respect to the crack 

plane (ZX in Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10) for both the current and 

potential probes, it was possible to compute the potential drop as ΔVPD = 2∙ VPD.  

These results let evaluate all the factors characterizing the technical performances of the 

DCPD measurement, i.e. measurability, sensitivity, and reproducibility (Table 4.1), as a 

function of the position of both the potential and the current probes.  

As a starting point, it is convenient to fix the crack size and evaluate how the position of the 

potential probes affects the measurability. Accordingly, Figure 4.11 reports the measurability, 

mathematically represented by the potential drop ΔVPD, relevant to a/D = 0.3 (on the left side) 

and a/D = 0.4 (on the right side), for all the analysed current input configurations, as a function 

of the potential probe location (θPD, YPD). The first thing to observe is that, in general, the 

potential drop, i.e. the measurability, increases with increasing potential probe distance YPD, 

regardless of the crack size or the current input. At the same time, the measurability is higher 

when the potential probes are close to the crack plane (ZX), i.e. small YPD, but at an angular 

position θB' ≤ θPD ≤ θB, i.e. within the cracked surface (see Figure 4.11). Moreover, by 

comparing the left and right side of Figure 4.11 it can be noted that an increase of the crack 

depth always results in an increase of the potential drop. Furthermore, using a local current 

input, instead of a remote one, substantially change the shape of the potential drop field by 

markedly increasing its values in the nearby of the current probe i.e. the black area in the contour 

plots. In particular, by comparing Figure 4.11b with Figure 4.11c it can be seen that the nearer 

the current probe to the crack plane the higher the measurability in the region within the cracked 

area (θB' ≤ θPD ≤ θB) and close to the crack plane (YPD → 0). In addition, by changing the angular 

position of the current probe, the electric potential field shows no more a symmetrical 
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distribution with respect to the XY symmetry plane and the region having an enhanced 

measurability turns out to be slightly shifted on the side of the current probe (compare Figure 

4.11b and Figure 4.11d). As a conclusion, the measurability can be maximized by locating both 

the current and the potential probe at an angular position underlying the cracked area, i.e. θB' ≤ 

θI, θPD ≤ θB, and as close as possible to the crack plane, i.e. YI → 0, YPD → 0. The choice of 

locating the potential probe close to the crack plane (YPD → 0) seems in contrast with what has 

been discussed above about the measurability, which values diminish as the axial distance of 

the probe gets smaller. The understand the reasons behind this choice, it must be considered 

that standard practical applications of the DCPD method guarantee a minimum distance 

between potential probes of roughly 1 mm, as a technical feasibility limit, which could 

correspond to a magnitude of the measured potential drop in the order of hundreds or thousands 

of microvolts, therefore easily measurable by a commercial DCPD device. Nevertheless, the 

magnitude the measurability must always be checked against the resolution of the experimental 

device used for measuring the potential drop signal, especially when testing low resistivity 

materials, i.e. copper or aluminum, or in the case of low input current, both the resistivity and 

the current being directly proportional to measurability (see Eq. (4.1)). 

The sensitivity of the measure dΔVPD/da has been evaluated by computing the derivative of 

the potential drop ΔVPD with respect to the crack depth a thanks to the forward difference 

method. Similar to the measurability, this parameter has been evaluated as a function of the 

potential probe angular and axial position (θPD, YPD) for all the analysed current input 

configurations and reported for the cases a/D = 0.3 (on the left side) and a/D = 0.4 (on the right 

side) in Figure 4.12.  

Interestingly, locating the potential probes at an angular position subtended by the cracked 

area (θB' ≤ θPD ≤ θB) results in the highest value of the sensitivity, independently of both the 

crack size a and the current probe position (θI, YI). Moreover, in the same region, the closer the 

potential probe to the crack plane (YPD → 0) the higher the sensitivity (Figure 4.12). On the 

contrary, by placing the potential probe at an angular position not subtended by the cracked 

area, i.e. θPD ≤ θB’ or θPD ≥ θB, there is a significant decrease in sensitivity, the latter less and 

less significant as the distance of the pins from the plane of the crack increases. 
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Figure 4.11. Results of the FE analyses: measurability. 
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Furthermore, similarly to what reported in [36,41,54] for the case of flat specimens, the 

maximum sensitivity is reached by locating the potential probe as close as possible to the crack 

tip but on the cracked area side, namely YPD → 0 and θPD → θB or θPD → θB’ with θB' ≤ θPD ≤ 

θB. This means that the point having maximum sensitivity is always changing with the crack 

length (compare left and right side of Figure 4.12).  

The effect of the current probe position can be understood by comparing Figure 4.12a, b, c, 

d. At first, the introduction of a local current input (Figure 4.12b) results in a general increase 

of the sensitivity, which means not only higher peak values but also a more extended region 

having on average a higher value of the sensitivity, if compared to the remote current input 

configuration (Figure 4.12a). The same conclusions can be drawn by comparing the local 

current input in Figure 4.12b with the one having the current probe closer to the crack plane 

(Figure 4.12c); the nearer the electrical current probe to the crack plane the higher the sensitivity 

and the larger the area having on average a higher value of the sensitivity.  

Finally, similarly to the measurability, locating the local current probe out of the crack 

symmetry plane (Figure 4.12d) results in a skewed distribution of the sensitivity over the 

analysed region if compared to the local current input having the current probe on the symmetry 

plane (Figure 4.12b). In this case, the maximum sensitivity can be reached by locating the 

potential probe close the crack tip closest to the current input probe (θPD → θI → θB). As a 

conclusion, in the same way as the measurability, the sensitivity can be maximized by locating 

both the current and the potential probes as close as possible to the crack tip, expressly, YI, YPD 

→ 0 and θI, θPD → θB. 

The measurement's reproducibility is the last parameter to be analysed. It should consider 

all the possible sources of error in the measurement, among all, that resulting from inaccuracies 

in the placement of the current and the potential probes. The effect of the potential probe 

position on reproducibility can be mathematically described by the magnitude of the derivative 

of the potential drop with respect to the position of the potential probe |dΔVPD/dXPD|. In this 

case, the probe position being investigated on a cylindrical surface, the derivative must be 

evaluated with respect of both the angular and the axial position of the probe, i.e. |dΔVPD/dθPD| 

and |dΔVPD/dYPD|, respectively. Figure 4.13 shows the results relevant to the derivative with 

respect to the angular position of the potential probe, while Figure 4.14 those relevant to their 

axial position.  
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Figure 4.12. Results of the FE analyses: sensitivity. 
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Starting from Figure 4.13a, it can be noted that the lowest reproducibility, i.e. the highest 

|dΔVPD/dθPD|, is obtained by locating the potential probe close to the crack tip (YPD → 0 and  θPD 

→ θB’, θB). Unfortunately, the lowest reproducibility is found in the same region that exhibits 

the maximum of the sensitivity (Figure 4.12). These conclusions, in good agreement with 

results shown in [36,41,54] for flat specimens, can be explained thinking about the electric 

potential gradient, which has quite a steep trend in those areas. Reproducibility also decreases 

as the crack length a increase (compare left and right side of Figure 4.13). Things get worse by 

introducing a local current input (Fig. XXb) and get even worse by placing the current probe 

closer to the crack plane (Figure 4.13c) or by aligning its angular position to the crack tip 

(Figure 4.13d). However, a high-reproducibility region is found by placing the potential probe 

as close as possible to the crack plane and close to the plane of symmetry (YPD → 0 and θPD → 

0°). This region being slightly shifted on the side of the current probe if the latter is positioned 

non-symmetrically with respect to the crack symmetry plane (Figure 4.13d). Also the region 

described from an angular position that does not subtend the cracked area, i.e. θPD ≤ θB’ or θPD 

≥ θB, shows very small |dΔVPD/dθPD|, but it is not of interest due to its quite small measurability 

(Figure 4.11) and sensitivity (Figure 4.12). 

Finally, the effect of the probe position on |dΔVPD/dYPD| is shown in Figure 4.14. The highest 

reproducibility is obtained by locating the probe as close as possible to the crack plane and 

close to the plane of symmetry (YPD → 0 and θPD → 0°). On the contrary, the reproducibility 

decreases if they are positioned in the region subtending the ligament, i.e. θPD ≤ θB’ or θPD ≥ θB 

(Figure 4.14). Similarly to what happens for the derivative with respect to the angular position 

of the probe |dΔVPD/dθPD|, also that relevant to their axial position |dΔVPD/dYPD| increase, i.e. 

the reproducibility gets worse, both increasing the crack length a (compare left and right side 

of Figure 4.14) and using a local current input (Figure 4.14b). The same result is obtained 

locating the current probe closer to the crack plane (Figure 4.14c). This time, if the current 

probe is located at angular position different from the crack symmetry plane (Figure 4.14d), the 

reproducibility lower in proximity of the crack tip closest to the current probe (θPD → θB in 

Figure 4.14d) and the region showing higher reproducibility moves toward the opposite crack 

tip (θB’ in Figure 4.14d). 
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Figure 4.13. Results of the FE analyses: reproducibility 1. 
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Figure 4.14. Results of the FE analyses: reproducibility 2. 
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Once qualitatively understood the effect of both the potential and current probe location, it 

was convenient to keep them fixed and analyse how the measurability, the sensitivity and the 

reproducibility evolved with the crack length a. Indeed, this is what happen in practical 

application of the DCPD method, were the probes are obviously kept fixed during the 

propagation. Thanks to the observation made on Figure 4.11, Figure 4.12, Figure 4.13, and 

Figure 4.14, it was possible to highlight two different interesting configurations. Both are 

obtained by placing the potential probe as close as feasible to the crack plane (YPD → 0), but 

one at an angular position corresponding to the crack symmetry plane (θPD = 0°) in order to 

maximize the reproducibility, while the other at the same angular position as the crack tip (θPD 

→ θB) to maximize the sensitivity of the measure.  

In this work, an axial coordinate YPD = 0.5 mm, corresponding to a spacing between the 

potential wires of 1 mm, is considered. About the angular position, it has been chosen to 

compare the configuration having θPD = 0° with one having θPD = 50°, which approximately 

coincides with the position of the crack tip when the crack length is equal to a/D = 0.3. In Figure 

4.15 are reported the measurability ΔVPD (Figure 4.15a), the sensitivity dΔVPD/da (Figure 

4.15b), and the reproducibility |dΔVPD/dXPD| (Figure 4.15c and d) as a function of the crack 

length for the chosen position of the potential probe, the most reproducible on the left and the 

most sensitive on the right, and for all the analysed current probe configurations (1, 2, 3, and 4 

in Figure 4.15). As expected, if the most reproducible configuration is considered (left side of 

Figure 4.15a), the measurability curves, i.e. the calibration curves (ΔVPD VS a), show that the 

order of magnitude of the potential drop is always between hundreds and thousands of 

microvolts, and its value is always monotonically increasing with the crack length a/D. This 

applies to all current probe positions analysed although, as discussed above, measurability 

increases as the current probe approaches the crack plane (YI → 0). On the other hand, in case 

of the most sensitive configuration (right side of Figure 4.15a), the same curves appear to be 

significantly different. They are still monotonically increasing with the crack length a/D, but 

this time the potential drop is much lower for a/D < 0.3, in the order of tens of microvolts, and 

rapidly increase up to hundreds of microvolts once the crack tip reaches the position of the 

probe (θB → θPD = 50°), i.e. a/D ~ 0.3.  
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Figure 4.15. Results of the FE analyses: a) measurability, b) sensitivity, and c), d) reproducibility as a function of 

the normalized crack depth a/D for two different fixed positions of the potential probes as a function of the four 

current input configurations. 
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The reasons behind this quick increase in the measurability can be better explained analysing 

the sensitivity curves (Figure 4.15b), which describe how the slope of the calibration curves 

dΔVPD/da evolves with the crack length a/D. Starting from the configuration having θPD = 0° 

(on the left), in case of current input configurations 1, 2, and 4, the sensitivity of the measure 

has roughly the same monotonically increasing trend and values ranging within  0 μV/mm to 

60 μV/mm. 

Differently, the current probe configuration 3 has much higher sensitivity when the crack is 

small (~250 μV/mm for a/D = 0.1). However, it suddenly decreases as the crack length 

increases asymptotically tending to the other current probe configurations. This aspect may be 

explained by noting that both the current and the potential probe are located extremely close to 

the crack tip for a small crack depth (a/D = 0.1). Accordingly, as was previously noted, the 

sensitivity rises as the current and the potential probe get closer to the crack tip, namely YI, YPD 

→ 0 and θI, θPD → θB. A similar behaviour is shown by the sensitivity curves in case of potential 

probe located at θPD = 50° (right side of Figure 4.15b), although some more considerations are 

required to analyse them. In this case, the sensitivity initially shows extremely low levels 

independently of the current probe position (less than 10 μV/mm for a/  < 0.2 , then 

immediately increases as the crack tip approaches the angular position of the potential probe 

(θB → θPD = 50°, a/D = 0.3), and finally tends asymptotically to the values corresponding to the 

most reproducible configuration, i.e.   0 μV/mm for case 1 and  0 μV/mm for case   (the one 

the left side of Figure 4.15b).  

The maximum value of the sensitivity, i.e. the maximum slope in the measurability, is higher 

when the current probe is closer to the crack tip (YI → 0 and θI → θB) ranging from 100 μV/mm 

of case 1 to 210 μV/mm of case   (see right side of Figure 4.15b). Noteworthily, these values 

are almost doubled if compared to that relevant to the most reproducible configuration (θPD = 

50°) for the same crack length (compare left and right side of Figure 4.15b when a/D ~ 0.3) 

demonstrating how advantageous it can be to place both the potential and the current probe 

close to the crack tip (YI, YPD → 0 and θI, θPD → θB). 

Things go differently when analysing the reproducibility of the measurement, regardless of 

whether it is evaluated with respect to the angular coordinate |dΔVPD/dθPD| (Figure 4.15c) or the 

axial one |dΔVPD/dYPD| (Figure 4.15d). In general, injecting the current locally, close to the 

crack, always involves a worsening of the reproducibility which correspond to an increase in 
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the derivative either |dΔVPD/dθPD| or |dΔVPD/dYPD|. Starting from the sensitivity to the angular 

position of the potential probe |dΔVPD/dθPD|, it can be noted how the worst  

Finally, it can be concluded that for maximizing the measurability and the sensitivity it is 

convenient to locate both the current and the potential probes as close as possible to the crack 

plane (YI, YPD → 0) and within the crack angular extension (θB’ < θPD, θI < θB). More in detail, 

as the current probe is considered, it should be noted that as it approaches the crack plane (YI 

→ 0), on one hand the measurability and the sensitivity increase (see Figure 4.11, Figure 4.12, 

and  Figure 4.15), but on the other hand the reproducibility becomes smaller and therefore both 

current and potential probes must be positioned very accurately (see Figure 4.13, Figure 4.14, 

and Figure 4.15).  

Regarding the potential probes, provided that measurability requirements are met (i.e. the 

magnitude of the potential drop signal is high enough to be detected by the adopted DCPD 

device), while their axial distance should be always minimized, while their angular position is 

a matter of choice: by locating them in the crack symmetry plane (θPD = 0°) the measure would 

bewill be more reproducible but less sensitive, while locating them as close as possible to the 

crack tip (θPD → θB, θB’) the measure would be more sensitive but less reproducible. The latter 

configuration is promising for monitoring the initiation and early propagation of small cracks 

from the crack starter because it reduces let reducing the time consumption for determining a 

given crack growth rate or to reduce reducing the measurable crack growth rates. This latter 

configuration could be promising for monitoring the initiation and early propagation of small 

crack from the crack starter.  

 

 

4.4. Effect of the temperature 

 

As discussed above, the electrical resistivity is a material property whose value could vary 

due to many parameters. Of all these parameters, the temperature is certainly the most 

important. The relationship between resistivity and temperature is usually described by Eq. 

(4.5): 
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d
dT

 


=           (4.5) 

 

Where ρ represent the electrical resistivity, dρ is its variation originated by a temperature 

change dT, and α is another material property called temperature coefficient of resistance. 

Experimentally it is observed that the temperature dependence of resistivity in conductive 

material is very well described by a linear relation so that Eq. (4.5) can be simplified into Eq. 

(4.6): 

 

0 0(1 ( ))T T  =  + −         (4.6) 

 

Where ρ is the electrical resistivity at temperature T and ρ0 is the electrical resistivity 

measured at a reference temperature T0 (e.g. T0 = 0 °C or 20 °C). Generally, the unit of 

measurement of the temperature coefficient of resistance α is 1/°C, this parameter being the 

inverse of a temperature. 

A change in the resistivity of the specimen, originated from a change in its temperature, 

results in a shift in the measured potential drop ΔVPD even if no crack growth occurred. To 

understand how much the temperature can affect the measurement, it is useful to substitute Eq. 

(4.6) into Eq. (4.1) and derive it by the temperature: 

 

0
PD

PD PD

d V d
I I

dT dT

    
=  =          (4.7) 

 

Eq. (4.7) has been obtained assuming the effect of any change in geometry originated by 

temperature variations (e.g. expansions or contractions of the specimen) are negligible. 

Moreover, this relation clearly highlights how the temperature sensitivity of the signal 

dΔVPD/dT increases with the temperature coefficient α and with the measured potential drop at 

temperature T0, i.e. ΔVPD(T0) = ρ0IΔνPD. In other words, the higher the measurability ΔVPD the 

higher the signal variations due to temperature changes.  

It is worth remembering that the aim of a DCPD measure is that of indirectly evaluating the 

dimension of the crack size a by the measure of the potential drop ΔVPD. So, it is of more interest 

to evaluate the effect of a temperature change on the crack length a instead of the variation of 
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potential drop itself. This means that instead of analysing dΔVPD/dT it is better to evaluate the 

following parameter: 

 

0(1 ( )) ( / )

PDPD PD

PD

da d V d V

dT dadT T T d da

 
 

 
= =

+ −  
    (4.8) 

 

Eq. (4.8) gives information about the fictitious crack length increment caused by a change 

the specimen’s temperature and highlights the way in which it is possible to minimize the 

effects of temperature on a DCPD measurements. In particular, it can be noted that there is no 

more the dependence on the electrical resistivity and applied current, instead the geometrical 

factor ΔνPD, including the placement of the current and potential probes, plays the main role. In 

more detail, the effect of temperature on the estimate of the crack size can be minimized by 

choosing an arrangement of the potential and current probe which minimize the measurability 

(ΔνPD → 0) and maximize the sensitivity (dΔνPD/da → 0). The physical meaning of this is that, 

as shown by the parameter dΔVPD/dT, higher measurability (ΔVPD ∝ ΔνPD) results in a higher 

change of the measured potential drop for a certain fixed change in the specimen’s temperature. 

On the other hand, a higher measurement sensitivity (dΔVPD/da ∝ dΔνPD/da) means that for a 

fixed change in potential drop, the corresponding change in the estimated crack size is smaller, 

i.e. the DCPD arrangement has an higher resolution. To better understand in a quantitative way 

how important is the effect of temperature, the parameters dΔVPD/dT (Eq. (4.7)) and da/dT (Eq. 

(4.8)) have been computed for the configurations analysed in Figure 4.15 and reported in Figure 

4.16a and Figure 4.16b, respectively. As expected,  the parameter dΔVPD/dT has the same 

behaviour of the measurability ΔVPD, as it represents the measurability scaled by a factor α = 

0.003 °C-1 (compare Figure 4.15a with Figure 4.16a), the latter being the temperature 

coefficient of resistance α for a medium carbon steel. Figure 4.16a clearly explains that the 

measured potential drop would change its value of about ± 1 to 6 μV for a change of 1 °C in 

the specimen’s temperature, the particular value depending on the current input configuration, 

the potential probe location and the crack size (Figure 4.16Figure 4.15a). 

More interestingly, Figure 4.16b shows the evolution of the parameter da/dT (Eq. (4.8)) with 

the normalized crack length a/D. It is interesting to note the changes in potential drop estimated 

in Figure 4.16a would translate in fictitious crack length changes ranging from lower than 10 

μm up to more than 250 μm depending on the chosen configuration (Figure 4.16b). 
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Figure 4.16. Effect of temperature on a DCPD arrangement having no temperature compensation. a) dΔVPD/dT 

and b) da/dT as a function of the normalized crack depth a/D for the configurations analysed in Figure 4.15. 

 

 

These considerations, together with those related to the measurability, sensitivity and 

reproducibility can be helpful in case the experimental set up does not allow for any temperature 

compensation. Otherwise, it is fundamental to find a way to compensate for any signal 

variations originated by temperature fluctuations. Among all the possibilities there are: 

 

• Single channel technique with temperature sensor (Figure 4.17b). The compensation is 

made possible by calibrating the temperature coefficient of resistance α of the specimen and 

the measuring the specimen’s temperature T during the test. This way, it is possible to relate 

each measured potential drop with the corresponding temperature value and evaluate the 

following temperature compensated signal, referred to the initial temperature T0:  
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The advantage of this technique is that it requires no complex and expensive multi-probe 

DCPD acquisition system, only one single channel being required. On the other hand, it 

requires customized data acquisition systems capable of evaluating in real time the 

compensated signal by acquiring at the same time both the potential drop and temperature 

signal, usually coming from different sensors and having different control software. 

Otherwise, the temperature compensation can only be performed after the test. 

 

• Dual channel technique with a twin specimen (Figure 4.17c). In this configuration, the 

potential drop active channel ΔVPD, measured across the cracked section of the tested 

specimen, is compared to a reference channel ΔVT, measured on a twin specimen, having 

the same nominal geometry of the tested specimen but located outside the testing machine. 

The two specimens are connected in series and the electric current I is made to flow through 

them. Accordingly, the effect of environmental temperature fluctuations can be 

compensated normalizing the active channel ΔVPD with the refence channel ΔVT, i.e. 

evaluating the ratio: 

 

PD PD PD

T T T

V I

V I

  
  

  
= =

  
       (4.10) 

 

This relation shows how the ratio between the active and the reference channel become both 

material (resistivity) and current independent. Instead, it only depends on the geometry of 

the specimens and on the position of the current and potential probes. The advantage of this 

method is that the temperature compensation is made in real time, without the need of a 

customized DAQ system integrating both potential drop and temperature signal, however, 

it requires a multi-probe DCPD system. Another limitation is related to the possibility that 

the tested specimen can experience a different temperature evolution from the twin 

specimen. In particular, this technique perfectly compensates for drift of the potential drop 

signals coming from fluctuations of the environmental temperature (e.g. day and night 
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temperature differences) but it is not effective against temperature differences between the 

tested and the twin specimen. For example, the latter can be generated by plastic strain 

energy dissipation on the tested specimen or localized heat dissipation from the fatigue 

testing machine. 

 

• Four-probe dual channel technique (Figure 4.17d). Differently form the dual channel 

technique with a twin specimen, in this case the reference channel ΔVT is measured between 

two points of the tested specimen. This configuration surely overcome the problems related 

to the possibility of having different temperatures between the tested and the twin specimen. 

This technique can be adopted provided that the temperature is uniform within the specimen 

[43,55]. 

 

• Three-probe dual channel technique (Figure 4.17e). Similarly, to the four-probe 

configuration, the reference channel ΔVT is measured on the tested specimen but between 

one probe of the active potential channel and another probe located on the same specimen. 

This offers the possibility to reduce the number of wires required and of course the required 

space for performing the measurement with a dual channel technique. This application is 

useful in the case of very small specimens, or to limit the overall dimensions. Finally, it is 

worth to note that even if from a theoretical point of view any position on the specimen is 

suitable for positioning the third probe, some considerations deserve to be made. For 

example, the third probe should be located adequately far away from the current probe to 

prevent any effects of the local current distribution in the nearby of the contact region 

between the current probe and specimen itself. Furthermore, it should be sufficiently far 

from the active channel probe so as to have a relatively high measurability and located in a 

region having low sensitivity to probe positioning errors, i.e. high reproducibility. 
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Figure 4.17. Different configurations for temperature compensation. a) Single channel technique with no 

temperature compensation. b) Single channel technique with temperature sensor. c) Dual channel technique with 

a twin specimen. d) Four-probe dual channel technique. e) Three-probe dual channel technique. 

 

 

In this work, the three-probe dual channel technique has been considered. The third probe 

was positioned at an axial distance from the crack plane YT = 5 mm and at an angular coordinate 

equal to that of the potential probe (θT = θPD). This position has been chosen on the base of 

qualitative considerations on measurability and reproducibility without any quantitative 

analyses to establish the optimal position of the third probe. Starting from the results of previous 

electric FE analyses, the reference potential drop ΔVT has been calculated as the difference 

between the electrical potential measured at YPD = 5 mm (VPD,5mm) and that measured at YPD = 

0.5 mm (VPD,0.5mm) so that ΔVT = VPD,5mm - VPD,0.5mm. The results of this calculation have been 

reported in Figure 4.18b together with the calibration curves relevant to the active channel ΔVPD 

(Figure 4.18a) as a function of the normalized crack depth and parametric for all the analysed 

current input/output configurations. In the same figure are reported also the normalized 

calibration curves ΔVPD/ΔVT (Figure 4.18c) which depended only on the specimen geometry, 

the crack shape and size, and the current and potential probe locations. 
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Figure 4.18. Calibration curves for three-probe dual channel technique with potential and temperature probe 

located at YPD = 0.5 mm, YT = 5 mm and θPD = θT = 0° (on the left) or θPD = θT = 50° (on the right). a) calibration 

curves relative to the active channel (ΔVPD) and the reference channel (ΔVT); b) normalized calibration curves 

(ΔVPD/ΔVT). 
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4.5. Experimental Tests 

 

4.5.1. Procedure and experimental setup 

 

Some experimental fatigue tests were conducted in order to verify the applicability of the 

above-mentioned DCPD configurations as well as the accuracy of the electrical FE analyses, 

that is, their capacity to accurately describe the relationship between the electrical potential 

drop and the crack size (Figure 4.2). Accordingly, the validation of the electrical FE analyses 

being the aim, and not the validation of a structural FE simulation to predict the crack shape 

evolution and crack path, the real crack shapes measured post-mortem on fracture surfaces of 

the specimens were reproduced in FE electrical simulations. Therefore, the crack fronts 

involved in the simulation are not necessarily iso-KI and could not be so, the initial crack starter 

notch being straight and not elliptical, as it will be presented later on. Then, as summarized in  

Figure 4.19, the experimental procedure simply consisted in fatigue testing some single-edge 

crack round bars under fatigue axial loading while measuring at the same time the fatigue crack 

growth applying the DCPD method using one or more of the configurations discussed in the 

previous chapter.  

The tested specimens, whose geometry is reported in Figure 4.20, were made of medium 

carbon steel. i.e. C45. The crack starter notch was machined by hand saw cutting. Axial fatigue 

tests were performed by means of an MFL axial servo-hydraulic testing machine, with a load 

capacity of 250 kN and equipped with MTS TestStar IIm digital controller. The fatigue crack 

was propagated by a constant-amplitude sinusoidal load cycle under closed-loop load control 

with a nominal load ratio R = 0.05, load range, ΔF, between 60 kN and 80 kN, and a load 

frequency 18 Hz. The crack front was marked on the crack propagation plane every 24990 

cycles by beach marking consisting of 10 overload cycles with load ratio ROL = 0.6, load range 

ΔFOL = 50 kN and a load frequency 0.5 Hz (Figure 4.21).  

The crack growth was monitored by using the DCPD method according to the experimental 

setup sketched in Figure 4.22a: based on the idea of Saka et al. [31], a prototype clip-on-gauge-

like (Figure 4.22d) device was designed and realized to both locally inject the current and 
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measure the potential drop. More in detail, the current probes were made by two 3-mm-diameter 

cylindrical copper electrodes, 118° cone head positioned at distance of 11.5 mm between each 

other. Concerning the potential probes, they were three needle point spring probes fixed on a 

JST VH connector. The use of such connector let being free to make small adjustments to the 

position of the needle point spring probes. The three-probe dual channel technique (Figure 

4.17e) has been adopted to compensate for temperature variations during the fatigue tests. Five 

micro-notches (two of 0.6 mm depth for the current probes, two of 0.1 mm depth for the 

potential probes, and another one of 0.1 mm depth for the temperature compensation probe) 

were milled on the specimen by means of a centre drill bit with a point angle of 118° to allow 

attachment of the clip-on gauge and to ensure the right positioning of the probes by fitting the 

probes' head into them. To examine the effect of the current and probe location, three different 

current input and potential drop measurement positions were investigated.  

 

 

 

Figure 4.19. Schematic of the experimental procedure used for the experimental aiming at the determination of 

the accuracy of the DCPD method. 
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Figure 4.20. Geometry of the single-edge-notch round bar specimen (dimensions are in millimiters). 

 

 

 

Figure 4.21. Schematic of the applied loads and overloads during the experimental tests. 
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Figure 4.22. Experimental setup: a) scheme of the adopted electrical potential drop arrangement, b), c), and d) 

MFL servo-hydraulic testing machine adopted for pure axial fatigue tests with details on the specimens and on the 

clip-on-gauge device for the local configuration of the DCPD method. 
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In all cases, the potential probes (and the corresponding micro-notches) were positioned 

symmetrically to the crack plane, precisely at an axial distance YI = 11.5 mm whilst the latter 

at YPD ~ 0.7 - 0.8 mm, while the temperature compensation probe was positioned at YT = 5mm. 

On the contrary, their angular position and the position of the current probe was changed as 

follow: 

 

• All micro-notches were nominally located at an angular position of θI = θPD = θT = 50° with 

the current probes located at an axial distance YI = 11.5 mm (Figure 4.23a). 

 

• All micro-notches were nominally located symmetrically with respect to the angular 

position of the notch θI = θPD = θT = 0° (Figure 4.20), with the current probes located at an 

axial distance YI = 11.5 mm (Figure 4.23b). 

 

• All micro-notches were nominally located symmetrically with respect to the angular 

position of the notch θI = θPD = θT = 0° (Figure 4.20), with the current probes located at the 

specimens’ ends (YI = 11.5 mm) to investigate the effect of a remote current input (Figure 

4.23c). 

 

 

 

Figure 4.23. The three different configurations investigated with the experimental tests. 

 

Eventually, the actual position of the micro-notches was measured by means of an optical 
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Table 4.3). The clip-on-gauge-like device was then attached mechanically to the specimen by 

using two springs. Eventually, it was connected to the measurement system Matelect® DCM-

2. A constant current of 50 A was flown through the specimen and the corresponding potential 

drop signals, ΔVPD and ΔVT, were measured at a sampling rate in the range of 0.08-1 Hz. 

 

 

 

4.5.2. Experimental results 

 

Fracture surfaces have been analysed by optical microscopy and it has been observed that 

multiple cracks were initiated at different points at the notch tip in all specimens. If the different 

cracks initiated at different locations were to be studied, then multi-probe DCPD configurations 

should be adopted [16,19–22].  However, subsequently the multiple cracks, coalesced assuming 

roughly an elliptical shape, as shown in Table 4.3, therefore the adopted single probe 

arrangement was appropriate. By image analysis, it was possible to relate the beach marked 

crack front to the corresponding overload (starting from the last overload before final brittle 

fracture of the specimen) and consequently to the measured potential drop signal (Figure 4.24).  

 

 

Figure 4.24. Correlation between overloads and the corresponding beach marked crack fronts visible on the 

fracture surface. 
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Each one of the beach marked cracks shown in Table 4.3 was approximated by an elliptical 

arc whose semi-axes were evaluated by means of the curve fitting tool available in MATLAB® 

according to Figure 4.25.  Table 4.3 gives a summary of the fracture surfaces and the geometric 

parameters of each specimen. 

 

 

Figure 4.25. Geometric schematization of the beach marked crack fronts. 

 

The corresponding approximated crack fronts are reported in Table 4.3. Accordingly, it was 

possible to report the following experimental results as a function of the normalized crack 

depth, a/D: the aspect ratio, c/a, the potential drop signal, ΔVPD, the temperature compensation 

signal, ΔVT, and the normalized potential drop signal, ΔVPD/ΔVT, as depicted in Figure 4.26 for 

results relevant to a local DCPD having θI = θPD = θT = 50°, in Figure 4.27 for results relevant 

to a local DCPD having θI = θPD = θT = 0°, or in Figure 4.28 for results relevant to a remote 

current input DCPD having θPD = θT = 0°.  

Table 4.4 gives a summary of all the obtained experimental results. 
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Figure 4.26. Experimental results for specimens tested using a DCPD setup having θI = θPD = θT =50°, YI = 11.5 

mm, YPD ~ 0.8 mm, YT = 5 mm: a) experimental aspect ratio c/a, b) active channel potential drop signal ΔVPD, c) 

reference potential drop signal ΔVT, and d) normalized potential drop signal ΔVPD/ΔVT as a function of the 

normalized crack depth a/D. 

 

Figure 4.27. Experimental results for specimens tested using a DCPD setup having θI = θPD = θT =0°, YI = 11.5 

mm, YPD ~ 0.8 mm, YT = 5 mm: a) experimental aspect ratio c/a, b) active channel potential drop signal ΔVPD, c) 

reference potential drop signal ΔVT, and d) normalized potential drop signal ΔVPD/ΔVT as a function of the 

normalized crack depth a/D. 
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Figure 4.28. Experimental results for specimens tested using a DCPD setup having θI = θPD = θT =0°, YI = ∞, YPD 

~ 0.8 mm, YT = 5 mm: a) experimental aspect ratio c/a, b) active channel potential drop signal ΔVPD, c) reference 

potential drop signal ΔVT, and d) normalized potential drop signal ΔVPD/ΔVT as a function of the normalized crack 

depth a/D. 
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been merged, while those corresponding to the cracked area have been left separate, just sharing 

the crack front line (Figure 4.30). 

 

 

Figure 4.29. Experimental results: comparison between all experimental data. 
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Figure 4.30. FE model reproducing the experimental configuration: example of a local current current input 

having θI = θI = θI =50° with details on the modelled current probes and the cracked section. The symmetry planes 

were not always exploitable due to slightly asymmetric angular and axial position of the probes (different for each 

specimen). 
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A pattern of 10-node tetrahedral electric solid elements (SOLID232 of the Ansys element 

library) having a global element size of 3 mm has been adopted to build up the FE model. A 

more refined mesh of approximately 0.9 mm has been employed in the region interested by the 

current probes, and an element size of nearly 0.2 mm and 0.1 mm has been used in the proximity 

of the notch and crack front, respectively (Figure 4.31). In all the analysed configurations, the 

magnitude of input current I = 50 A was given as an input to one current probe, together with 

an electric potential equal to 0 V at nodes located in the opposite current probe (Figure 4.31).  

After the solution it was possible to extract the value of the electric potentials VPD,1, VPD,2, 

and VT,1. Then, the corresponding potential drop have been calculated both for the active 

channel ΔVPD = VPD,1 – VPD,2, and for the reference channel ΔVT = VT,1 – VPD,1 (Figure 4.30). 

 

 

Figure 4.31. Example of FE mesh pattern generated from model reported in Figure 4.30. 
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exp.

exp.

% 100
FEAX X

Error
X

−
=         (4.11) 

 

Wherein X represent the potential drop active channel ΔVPD, or the potential drop reference 

channel ΔVT, or the normalized one ΔVPD/ΔVT. 

 In general, results showed a discrete agreement between experimental and numerical values, 

in general, the deviations being always approximately ±20% and ±40% for the potential drop 

signal ΔVPD (Figure 4.32a), and the normalized potential drop signal ΔVPD/ΔVT (Figure 4.32c), 

respectively. Although such deviations can seem very high, it must be highlighted that only 

slightly higher than those in previous works by other authors dealing with much easier 

specimens’ geometries and experimental setups, i.e. SENB, SENT, CT or CCT specimens 

[45,55–57] or circumferentially notched bars [16,34]. However, certain specimens exhibited 

larger deviations ranging from -40% and +70% for the potential drop signal ΔVPD (Figure 

4.32a), and from -40% and +100% for the normalized potential drop signal ΔVPD/ΔVT (Figure 

4.32c). Moreover, in general, slightly higher deviations are found for when the crack size is a/D 

> 0.3. Furthermore, it is interesting to note that if each single test is considered individually, all 

the evaluated errors, i.e. the difference between the experimental and FE data, seem like being 

bias errors as they always exhibited a certain trend (compare data having the same markers 

shape and colour in Figure 4.32). On the other hand, when specimens tested with the same 

DCPD configuration (i.e. for a fixed position of the current and potential probe) are considered, 

no clear trend can be defined for the errors, them being apparently random distributed from one 

specimen to another (compare data having the same colour in Figure 4.32). Interestingly, even 

if there are only few data available, it can be easily noted how the scatter between specimens 

tested with the same DCPD configuration (data having the same colour in Figure 4.32) is 

gradually reduced from the local current input with θI = θPD = θT = 50° (blue data in Figure 

4.32), to the local current input having θI = θPD = θT = 0° (green data in Figure 4.32) and finally 

to the remote current input (red data in Figure 4.32). The latter observation can be justified 

thinking about the different effects of the current and probe location on the sensitivity and 

reproducibility, the latter parameter being higher (consequently also the scatter between data 

should be higher) the closer to the crack tip the current is in injected and the potential drop is 

measured (Figure 4.12, Figure 4.13, Figure 4.14, and Figure 4.15). 
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Figure 4.32. Percentage errors between experimental results and FE estimation. 
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Table 4.3. Fracture surfaces of the tested specimens with main geometric and testing parameters. Real cracks on the left side and fitted cracks on the right side. 

Experimental cracks and fitted cracks Specimen’s parameters 

 

D25N5CG50_01 

anotch = 5.1 mm 

hnotch = 0.6 mm 

θI = θPD = θT = 51° 

YI,1 = + 11.5 mm 

YI,2 = - 11.5 mm 

YPD,1 = + 0.8 mm 

YPD,2 = - 0.8 mm 

YT = +5.4 mm 

ΔF =  80 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 72627 cycles 

 

D25N5CG50_02 

anotch = 5.0 mm 

hnotch = 0.7 mm 

θI = θPD = θT = 49° 

YI,1 = + 11.5 mm 

YI,2 = - 11.5 mm 

YPD,1 = + 0.8 mm 

YPD,2 = - 0.8 mm 

YT = + 5.1 mm 

ΔF =  60 – 70 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 383318 cycles 
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D25N5CG50_03 

anotch = 5.4 mm 

hnotch = 0.6 mm 

θI = θPD = θT = 50° 

YI,1 = + 11.5 mm 

YI,2 = - -11.5 mm 

YPD,1 = + 0.9 mm 

YPD,2 = - 0.9 mm 

YT = + 5.4 mm 

ΔF = 70 – 65 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 263584 cycles 

 

D25N5CG50_04 

anotch = 4.6 mm 

hnotch = 0.7 mm 

θI = θPD = θT = 48° 

YI,1 = + 11.5 mm 

YI,2 = - 11.5 mm 

YPD,1 = + 0.8 mm 

YPD,2 = - 0.8 mm 

YT = + 5.5 mm 

ΔF =  70 – 65 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 290224 cycles 
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D25N5CG50_05 

anotch = 4.34 mm 

hnotch = 0.67 mm 

θI = θPD = θT = 51° 

YI,1 = + 11.48 mm 

YI,2 = - 11.62 mm 

YPD,1 = + 0.74 mm 

YPD,2 = - 0.85 mm 

YT = + 5.09 mm 

ΔF =  70 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 216359 cycles 

 

 

D25N5CG50_06 

anotch = 4.97 mm 

hnotch = 0.69 mm 

θI = θPD = θT = 49° 

YI,1 = + 11.53 mm 

YI,2 = - 11.97 mm 

YPD,1 = + 0.95 mm 

YPD,2 = - 1.24 mm 

YT = + 4.73 mm 

ΔF = 70 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 253768 cycles 
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D25N5CG50_07 

anotch = 4.98 mm 

hnotch = 0.58 mm 

θI = θPD = θT = 51° 

YI,1 = + 11.88 mm 

YI,2 = - 10.97 mm 

YPD,1 = + 0.81 mm 

YPD,2 = - 0.58 mm 

YT = + 5.54 mm 

ΔF =  70 – 50 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 324992 cycles 

 

D25N5CG50_08 

anotch = 4.83 mm 

hnotch = 0.56 mm 

θI = θPD = θT = 51° 

YI,1 = + 11.35 mm 

YI,2 = - 11.66 mm 

YPD,1 = + 0.52 mm 

YPD,2 = - 0.81 mm 

YT = + 4.81 mm 

ΔF = 70 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 148808 cycles 
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D25N5CG50_09 

anotch = 4.85 mm 

hnotch = 0.61 mm 

θI = θPD = θT = 49° 

YI,1 = + 11.63 mm 

YI,2 = - 11.33 mm 

YPD,1 = + 0.87 mm 

YPD,2 = - 0.56 mm 

YT = + 5.14 mm 

ΔF = 70 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 194140 cycles 

 

D25N5CG0_11 

anotch = 4.44 mm 

hnotch = 0.96 mm 

θI = θPD = θT = 0° 

YI,1 = + 11.42 mm 

YI,2 = - 11.45 mm 

YPD,1 = + 0.96 mm 

YPD,2 = - 1.03 mm 

YT = + 4.93 mm 

ΔF =  70 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 254843 cycles 
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D25N5CG0_14 

anotch = 4.49 mm 

hnotch = 0.87 mm 

θI = θPD = θT = 0° 

YI,1 = + 11.48 mm 

YI,2 = - 11.41 mm 

YPD,1 = + 0.83 mm 

YPD,2 = - 1.16 mm 

YT = + 5.01 mm 

ΔF =  70 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 288997 cycles 

 

D25N5CG0_15 

anotch = 4.47 mm 

hnotch = 1.09 mm 

θI = θPD = θT = 0° 

YI,1 = + 11.51 mm 

YI,2 = - 11.48 mm 

YPD,1 = + 0.98 mm 

YPD,2 = - 1.07 mm 

YT = + 4.69 mm 

ΔF = 70 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 321154 cycles 
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D25N5CG0_16 

anotch = 4.51 mm 

hnotch = 0.95 mm 

θI = θPD = θT = 0° 

YI,1 = + ∞ 

YI,2 = - ∞ 

YPD,1 = + 1.43 mm 

YPD,2 = - 0.5 mm 

YT = + 5.09 mm 

ΔF = 70 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 306000 cycles 

 

D25N5CG0_17 

anotch = 4.57 mm 

hnotch = 0.89 mm 

θI = θPD = θT = 0° 

YI,1 = + ∞ 

YI,2 = - ∞ 

YPD,1 = + 0.81 mm 

YPD,2 = - 1.01 mm 

YT = + 4.85 mm 

ΔF = 70 kN 

R = 0.05 

ΔFOL = 50 kN 

ROL = 0.6 

Nf = 182000 cycles 
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Table 4.4.Summary of the experimental results. 

Specimen 

[-] 

Nf 

[cycles] 

ΔF 

[kN] 

N° OL 

[-] 

N 

[103 cycles] 

a/D 

[-] 

c/a 

[-] 

ΔVPD 

 μV  
ΔVT 

 μV  
ΔVPD/ ΔVT 

[-] 

D25N5CG50_01 

 

 

72627 \ 

80 

 

\ 

1 

2 

0 

25 

50 

0.20 

0.26 

0.37 

\ 

2.86 

1.53 

134.9 

153.4 

306.7 

210.4 

212.9 

222.6 

0.64 

0.72 

1.38 

D25N5CG50_02 383318 \ 

≤ 65 

65 

 

70 

\ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

175 

200 

225 

250 

275 

300 

325 

350 

375 

0.20 

0.21 

0.22 

0.23 

0.24 

0.27 

0.31 

0.36 

0.43 

0.56 

\ 

3.09 

2.56 

2.37 

2.24 

1.86 

1.58 

1.34 

1.21 

1.26 

160.6 

161.7 

164.5 

167.9 

175.6 

188.7 

217.3 

280.6 

415.0 

768.8 

189.1 

185.9 

186.2 

186.6 

187.6 

187.2 

184.8 

175.8 

150.3 

103.7 

0.85 

0.87 

0.88 

0.90 

0.94 

1.01 

1.18 

1.60 

2.76 

7.41 

D25N5CG50_03 

 

 

 

 

 

 

 

 

 

 

263584 \ 

70 

 

 

 

 

 

65 

 

 

 

\ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

25 

50 

75 

100 

125 

150 

175 

200 

225 

250 

0.22 

0.23 

0.24 

0.25 

0.27 

0.29 

0.33 

0.37 

0.41 

0.47 

0.56 

\ 

7.16 

5.74 

3.76 

2.90 

2.14 

1.67 

1.46 

1.29 

1.15 

1.07 

194.0 

183.2 

185.4 

192.3 

202.3 

211.5 

260.3 

285.8 

354.4 

445.6 

664.5 

206.0 

199.1 

199.5 

201.2 

202.7 

201.9 

205.0 

195.2 

187.4 

170.1 

134.3 

0.94 

0.92 

0.93 

0.96 

1.00 

1.05 

1.27 

1.46 

1.89 

2.62 

4.95 

D25N5CG50_04 290224 \ 

70 

\ 

1 

0 

25 

0.18 

0.20 

\ 

5.25 

158.3 

173.2 

216.0 

235.2 

0.73 

0.74 
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65 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

50 

75 

100 

125 

150 

175 

200 

225 

250 

275 

0.23 

0.25 

0.27 

0.30 

0.32 

0.35 

0.38 

0.43 

0.48 

0.59 

3.91 

2.65 

2.10 

1.74 

1.56 

1.42 

1.28 

1.15 

1.02 

1.02 

182.1 

201.4 

181.9 

196.0 

205.9 

223.9 

254.7 

300.3 

419.7 

750.3 

235.6 

237.8 

240.6 

233.4 

223.7 

220.7 

215.5 

204.7 

191.5 

166.0 

0.77 

0.85 

0.76 

0.84 

0.92 

1.01 

1.18 

1.47 

2.19 

4.52 

D25N5CG50_05 216 359 70 \ 0 0.17 \ 123 219 0.559 

   1 25 0.19 4.07 125 220 0.568 

   2 50 0.20 2.75 129 220 0.587 

   3 75 0.22 2.18 135 221 0.611 

   4 100 0.25 1.87 146 221 0.659 

   5 125 0.28 1.59 166 220 0.754 

   6 150 0.33 1.36 207 215 0.963 

   7 175 0.39 1.18 301 192 1.568 

   8 200 0.48 1.11 565 136 4.154 

D25N5CG50_06 253 768 70 \ 0 0.19 \ 153 168 0.911 

   1 25 0.21 4.85 156 169 0.923 

   2 50 0.22 3.23 161 168 0.958 

   3 75 0.24 2.58 165 170 0.970 

   4 100 0.26 2.07 172 170 1.012 

   5 125 0.28 1.80 183 171 1.070 

   6 150 0.31 1.57 203 169 1.201 

   7 175 0.35 1.40 236 154 1.532 

   8 200 0.40 1.21 310 142 2.183 

   9 225 0.47 1.10 460 112 4.107 
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   10 250 0.66 1.27 980 72 13.611 

D25N5CG50_07 324 992 70 \ 0 0.19 \ 94 266 0.354 

   1 25 0.20 13.14 94 263 0.356 

   2 50 0.21 3.52 95 264 0.359 

   3 75 0.23 2.66 97 266 0.365 

   4 100 0.25 1.86 100 268 0.375 

   5 125 0.29 1.60 108 272 0.396 

   6 150 0.34 1.42 124 277 0.449 

   7 175 0.41 1.23 188 270 0.696 

   8 200 0.48 1.14 402 211 1.904 

  65 9 225 0.51 1.18 540 169 3.200 

  60 10 250 0.54 1.17 613 155 3.964 

   11 275 0.57 1.12 680 149 4.558 

   12 300 0.60 1.08 771 156 4.945 

   13 325 0.66 1.01 915 155 5.910 

D25N5CG50_08 148 808 70 \ 0 0.19 \ 122.8 219.5 0.559 

   1 25 0.21 5.99 124.9 219.8 0.568 

   2 50 0.23 2.88 129.5 220.4 0.587 

   3 75 0.28 1.95 135 221 0.611 

   4 100 0.34 1.51 146 221.5 0.659 

   5 125 0.43 1.28 166 220 0.754 

D25N5CG50_09 194 140 70 \ 0 0.19 \ 149 241 0.617 

   1 25 0.21 6.28 149 240 0.619 

   2 50 0.23 3.00 150 239 0.626 

   3 75 0.25 2.15 155 241 0.644 

   4 100 0.29 1.71 165 242 0.684 

   5 125 0.33 1.43 187 241 0.776 

   6 150 0.39 1.24 255 234 1.088 

   7 175 0.48 1.13 476 189 2.520 
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D25N5CG0_11 254 843 70 \ 0 0.17 \ 396 95 4.161 

   1 25 0.20 1.89 390 94 4.137 

   2 50 0.22 1.51 395 94 4.193 

   3 75 0.24 1.87 403 92 4.359 

   4 100 0.27 1.64 418 90 4.651 

   5 125 0.30 1.60 440 87 5.085 

   6 150 0.36 1.33 470 83 5.657 

   7 175 0.43 1.19 509 79 6.454 

   8 200 0.48 1.37 565 75 7.527 

   9 225 0.52 1.28 652 71 9.177 

   10 250 0.59 1.27 984 80 12.326 

D25N5CG0_14 288 997 70 \ 0 0.180 / 433 143 3.028 

   1 25 / / 447 143 3.118 

   2 50 0.19 1.85 452 143 3.164 

   3 75 0.20 1.53 460 143 3.215 

   4 100 0.22 1.15 470 143 3.289 

   5 125 0.23 1.36 485 142 3.410 

   6 150 0.25 1.37 505 141 3.588 

   7 175 0.27 1.44 534 140 3.828 

   8 200 0.30 1.43 572 136 4.201 

   9 225 0.34 1.31 627 135 4.660 

   10 250 0.40 1.24 708 133 5.307 

   11 275 0.49 1.26 846 132 6.402 

D25N5CG0_15 321 154 70 \ 0 0.18 / 436 96 4.560 

   1 25 / / 427 95 4.485 

   2 50 / / 429 95 4.505 

   3 75 / / 431 95 4.526 

   4 100 / / 435 95 4.565 

   5 125 0.21 1.39 442 95 4.666 
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   6 150 0.23 1.81 453 94 4.828 

   7 175 0.25 1.76 475 92 5.153 

   8 200 0.27 1.57 499 90 5.551 

   9 225 0.30 1.37 532 87 6.104 

   10 250 0.34 1.29 575 84 6.805 

   11 275 0.39 1.22 642 81 7.905 

   12 300 0.47 1.11 748 77 9.676 

D25N5CG0_16 306 000 70 \ 0 0.18 / 235 42 5.561 

   1 25 / / 239 43 5.524 

   2 50 0.20 2.45 243 43 5.667 

   3 75 0.22 2.31 241 42 5.694 

   4 100 0.24 1.65 249 42 5.887 

   5 125 0.26 1.66 253 42 6.069 

   6 150 0.28 1.44 260 41 6.411 

   7 175 0.32 1.31 271 39 6.928 

   8 200 0.36 1.20 289 37 7.775 

   9 225 0.43 1.11 312 35 8.930 

   10 250 0.46 1.20 347 33 10.661 

   11 275 0.52 1.18 407 29 13.892 

   12 300 0.58 1.18 631 23 27.063 

D25N5CG0_17 182 000 70 \ 0 0.18 / 225 39 5.694 

   1 25 0.24 2.09 230 41 5.654 

   2 50 0.27 1.72 236 40 5.865 

   3 75 0.29 1.61 249 39 6.469 

   4 100 0.33 1.57 273 36 7.545 

   5 125 0.40 1.35 311 33 9.483 

   6 150 0.48 1.33 371 29 12.842 

   7 175 0.55 1.28 566 23 24.754 
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4.6. Discussion 

 

4.6.1. Comparison between experimental data and numerical estimation 

 

Regarding the comparison between experimental results and electrical FE analyses, several 

aspects deserve further investigations. Firstly, the reconstruction of the actual specimen 

geometry is crucial for the resulting accuracy of the numerical simulations. More in detail, great 

attention has to be given to the real position of the probes when modelling the specimen's 

geometry. Indeed, the use of micro-notches on the specimen limited the positioning errors, 

although small errors in measuring their location could significantly affect the results, this latter 

aspect being enhanced when the probe is located in a region where the reproducibility is very 

low, i.e. where the potential drop is extremely sensitive to the probe position. Most of times, 

this was the case of the temperature compensation probe, which was in a region where the 

potential drop changes significantly with the probe position (see Figure 4.14). Secondly, while 

in the present paper pure electric FE analyses were carried out to calibrate the adopted DCPD 

setup, Tarnowski et al. [44,45] has recently argued that numerical DCPD calibration curves 

should be derived from coupled structural-electric FE analyses in order to include the effect of 

strain on the crack length estimations, especially when potential probes are located in highly 

strained regions, such as close to the crack tip. Indeed, the effect of strain can affect the 

estimation of the crack length providing errors up to 30% [44,45,56,57].  

Moreover, in the previous section the numerical DCPD calibration curves were validated 

against experimental results by comparing the potential drop values for fixed cracked 

configurations, i.e. those measured from specimens’ fracture surfaces. However, if the   P  

setup of Figure 4.22 is applied for crack growth monitoring in fracture mechanics testing, the 

accuracy of the numerical calibration curves should be checked against experimental results in 

terms of crack size estimation. Figure 4.33 allows to compare estimated and actual crack size 

for a fixed potential drop, i.e. that is experimentally measured at each overload. In most cases, 

the crack size estimated by the numerical calibration curve deviated from the actual one of less 

than 10%. However, for small crack sizes (a/D < 0.3), deviations were higher and approximately 
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±20% and ±30% when referring to calibration curves in terms of ΔVPD or ΔVPD/ΔVT, 

respectively. These results are related to the adopted specimen geometry and DCPD setup 

which translate into flat slopes of the calibration curves in Figure 4.29 for small crack sizes 

(a/D < 0.3) and result in high scatter of the estimated crack size within this region, i.e. small 

deviations in the potential drop value lead to increased deviations in the estimated crack size. 

Similar conclusions can be drawn analysing the other experimental results, not reported in 

Figure 4.33 for the sake of brevity. 

 

 

Figure 4.33. Example of comparison between experimental results (‘exp.’) and numerical simulations for the 
specimens D25N5CG50_01, D25N5CG50_02, D25N5CG50_03, D25N5CG50_04 tested using a local DCPD 

configuration with θI = θI = θI =50°.  
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4.6.2. Application to real components 

 

Finally, even if relatively high errors have been found in this investigation, the proposed 

procedure could be of great interest for future developments and applications of the DCPD 

method in the field of structural health monitoring [58,59]. For example, in welded structures, 

crack initiation can always occur at weld defects, but also at stress concentrators like the weld 

toe or root. All these situations are undesirable, but they cannot always be avoided. The so-

called damage tolerance approach assumes that crack initiation and growth are acceptable, but 

the occurrence of the failure must be prevented by periodic inspections using proper NDE 

techniques. Applying the DCPD method to a huge and complex welded structure is 

tremendously different from standard applications for fracture mechanics fatigue test, since 

crack location and shape are not known a priori in real components, a crack being not introduced 

on purpose. In this context, the PDM can be effectively applied to detect crack initiation only 

in components where potential crack initiation locations are present, such as stress 

concentration features, weldments or notches. As a matter of fact, current and potential probes 

can be located as close as possible to these critical locations and possibly a multi-probe PDM 

configuration [16,19–22] can be adopted to monitor multiple critical location of the real 

component at the same time. As an example, To et al. [23], Lecsek et al. [24] and Cerny [25,26] 

applied the PDM to monitor the crack initiation at the toe side of welded structures, while 

recently Meneghetti et al. [34] applied the PDM to monitor the crack initiation at the notch tip 

of round bars under multiaxial loading conditions, adopting also a multi-probe configuration to 

detect the crack initiation location [16] along the notch tip line. Accordingly, the proposed local 

DCPD configuration, making use of the clip-on-gauge device (Figure 4.22) represent a little 

advancement in this direction. 

Unfortunately, as discussed in the introduction, the estimation of the crack shape and 

location is not the only problem when applying the DCPD method to real components. In fact, 

most real engineering structures are characterized by having large size which translate into a 

reduced sensitivity of the PDM, due to the fact that for a fixed input current, the current density 

is lower [15] (see Eq. (4.2)). To overcome this issue, DCPD configurations require high 

currents, even greater than 100 A, this current level being not always achievable due to safety 

reasons or technological limitations. Again, a partial solution to this problem can be given by 
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adopting the local DCPD configuration and the corresponding clip-on-gauge device (Figure 

4.22) which allows for a very localized current input that helps keeping a high resolution even 

if a lower value of the input current is used. 

However, when a component without any preferential crack initiation location is 

investigated, the application of PDM to detect crack initiation becomes trickier. Only a rough 

assessment of crack existence from the qualitative viewpoint could be performed by adopting 

a PDM configuration having current and potential probes located in fixed positions far away 

from each other to cover a large portion of the component. Other solutions allow to obtain crack 

depth data in the field without the need to provide permanent contact or micro-notches into the 

component.  s an example, a commercial solution is ‘Mat-  handheld probe’ [60] from 

Matelect LTD, which is based on ACPD configuration and allows to locate current and potential 

probes as close as possible to each other in order to increase the sensitivity, at the expense of a 

very small investigated area which should be moved along the surface of the component until 

a crack initiation is detected. Unfortunately, these solutions allow to obtain crack growth 

resolutions on the order of millimetres [60], due to the poor contact between current/potential 

probes and the surface of the component.  

Concerning instead a real component where a crack has initiated and its location has been 

identified by a previous PDM-based rough estimation or the application of other NDE 

techniques, an optimised application of PDM is still applicable to monitor the crack propagation 

phase, since current and potential probes can be located as close as possible to the initiated 

crack and micro-notches or permanent connections can be arranged to improve the electric 

contact. As an example, Cerny [27] monitored the propagation of a crack initiated in a full scale 

railway axle loaded by rotating bending by locating the current and potential probes close to 

the initiated crack. 

 

 

4.6.3. Minimum detectable crack length increment 

 

In some practical applications of the DCPD method it could be of interest to have an estimate 

of the resolution of a certain DCPD setup. One possibility is to evaluate the minimum detectable 

crack increment damin for a given DCPD device resolution, the latter to be intended as the 

smallest appreciable potential drop change the DCPD device can detect.  
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For the sake of simplicity, consider an ideal single channel DCPD setup perfectly 

reproducible and completely insensitive to any measuring error. This way all reading errors 

(fluctuations in electrical resistivity originating from both temperature and plasticity, or ripple 

and noise in the electric current flux, or any incorrect positioning of the probes) are assumed to 

be zero. These hypotheses suggest that the minimum detectable crack size increment damin is 

only dependent on the sensitivity of the setup dΔVPD/da and on the resolution of the DCPD 

device in terms of minimum detectable potential drop change dΔVmin. Accordingly, the 

minimum detectable crack increment damin, i.e. that crack increment relevant to the resolution 

of the DCPD device, can be estimated by the following expression: 

 

min
min

/PD

d V
da

d V da


=


 

 

The minimum detectable potential drop change dΔVmin depends on the employed 

experimental DCPD device and on the measurement chain, therefore its value is potentially 

different from time to time. Nevertheless, in standard application of the DCPD method, a 

common value can be dΔVmin = 1 μV, the output voltage being usually at the microvolt level 

[11,36]. Figure 4.34 shows of an example relevant to the configuration with θPD = 0° and YPD = 

0.5 mm and the one with θPD = 50°, YPD = 0.5 mm of Figure 4.15. It can be observed that, an 

increment of 1μV of the measured potential drop signal would correspond to an increment of 

the crack depth on the order of tens of microns. Similar to what observed for the sensitivity on 

the right side of Figure 4.15, Figure 4.34b shows that this value significantly changes with the 

crack size: for small crack depth (a/D < 0.3), the measuring system is rather insensitive to crack 

growth, but it improves for increasing crack depths thanks to the rapid increase in the 

sensitivity, as soon as the crack surface tip reaches the probes angular position (a/D ~ 0.3). This 

means that by locating the potential probes at an angular coordinate θPD ≠ 0  can be 

advantageous if small crack size increments are to be measured close to the probes position θPD. 

In fact, supposing to measure crack propagation from a depth of a/D ~ 0.3, the minimum 

detectable crack size increment when the potential probes are located at the crack tip ranges 

from 5 to 10 microns (Figure 4.34b), which is half the value in the case θPD = 0° reported in 

Figure 4.34a. If the current probe position is concerned, it is always convenient to put the current 

probes as close as possible to the crack plane. Unfortunately, it has been shown that the closer 
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is the current probe to the crack plane, the lower is the reproducibility due to the high sensitivity 

to probes positioning errors. For this reason, adopting a local current input involves much more 

attention in positioning the probes correctly. 

 

 

 

Figure 4.34. Minimum detectable crack length increment damin: effect of the current and potential probes’ location. 

 

 

4.7. Conclusions 

 

In the present chapter in has been discussed the application of the Direct Current Potential 

Drop (DCPD) method to complex geometry and the way in which it is possible to optimize the 

experimental arrangement. In particular, the DCPD method has been applied to a single-edge-

crack round bars subject to axial fatigue.  

Firstly, 3D electrical FE analyses have been adopted to investigate the effect of the current 

and the potential probes position on the efficiency of the DCPD monitoring technique. To this 

aim elliptical-shaped crack fronts with aspect ratio and crack depth according to the iso-KI 
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criterion have been assumed. Then, almost 106 possible combinations grouped into 4 distinct 

current probe location, 96 crack depth, and 73 angular and 36 axial different position of the 

potential drop probes, have been considered in the electrical FE analyses. The efficiency of the 

DCPD setup has been evaluated in terms of measurability, sensitivity and reproducibility. 

From the FE results it was possible to conclude that the measurability and the sensitivity of 

the measure can be maximized by locating both the current and the potential probes as close to 

the crack plane as possible and within the crack angular extension. More in detail, as the current 

probes approach the crack plane, on one hand the measurability and the sensitivity increase, but 

on the other hand the reproducibility becomes smaller. Therefore, the current probes require to 

be positioned very accurately. Regarding the potential probes, provided that measurability 

requirements are met (i.e. the signal to noise ratio of the adopted DCPD device is acceptable), 

their axial distance should be always minimized and their position should be accurately 

assessed, similarly to the current probes. Their angular position is a matter of choice: by locating 

them in the crack symmetry plane the measure will be more reproducible but less sensitive, 

while locating them as close to the crack tip as possible the measure is more sensitive but less 

reproducible. The latter configuration is favourable for monitoring the initiation and early 

propagation of small cracks from the crack starter because it appreciates smaller crack growth 

rates. 

Secondly, experimental fatigue tests were conducted in order to verify the applicability of 

the above-mentioned DCPD configurations as well as the accuracy of the electrical FE analyses, 

that is, their capacity to accurately describe the relationship between the electrical potential 

drop and the crack size. The propagating fatigue crack has been monitored with the DCPD 

technique by means of a compact clip-on gauge device seating both current and potential probes 

that has been designed and manufactured specifically for the application of the DCPD according 

to the configurations investigated with the numerical analyses. Fracture surfaces were examined 

by optical microscopy and by image analysis it was possible to relate the beach marked crack 

fronts to the corresponding overload and consequently to the measured potential drop signal. 

All beach marked cracks were approximated by an elliptical arc and given as an input to 

dedicated electrical 3D FE analyses. Eventually, the resulting numerical values of the potential 

drop were checked against their corresponding experimental results, showing a quite good 

agreement, the deviation in most cases being similar to that observed in the previous literature 
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even for simpler specimens’ geometries and crack configurations, such as SENB specimens or 

circumferentially notched bars.  

The outcomes of this research will be the basis for future applications like the experimental 

determination of the cyclic R-curve on specimen’s geometries different from that one usually 

adopted in the Literature (SENB), or the introduction of the DCPD as a method for structural 

health monitoring in real engineering structures. 
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5.1. Conclusions 

 

In the context of fatigue design of welded structures, the Peak Stress Method (PSM) is a 

rapid technique to estimate the Notch Stress Intensity Factors (NSIFs) at the weld toe and weld 

root, which are idealised and modelled as sharp notches having null tip radius. Essentially, the 

PSM takes advantage of the singular, linear elastic, opening, sliding, and tearing peak stresses 

evaluated at the notch tip using coarse free mesh patterns to estimate the mode I, II, and III 

NSIF-terms, respectively. By adopting the averaged Strain Energy Density (SED) as a fatigue 

strength criterion, a PSM-based design stress, i.e. the so-called equivalent peak stress, can be 

defined as a function of the relevant peak stresses. The validity and efficacy of this method has 

been extensively verified in the Literature. 

 In the present work, the PSM has been extended for the first time to variable amplitude 

(VA) uniaxial as well as in-phase and out-of-phase multiaxial fatigue loadings applied to steel 

arc-welded joints. The extension to VA loading situations has been based on Palmgren-Miner’s 

linear damage rule (LDR) to account for cumulative damage. The proposed method has been 

validated against a large bulk of VA fatigue data taken from the literature proving the PSM as 

an extremely valid technique to design welded joints against CA or VA uniaxial as well as 

multiaxial fatigue local stresses. The proposed method has also been checked against new 

experimental results generated by testing non-load-carrying (nlc) fillet-welded double 

transverse or inclined attachments made of S355 structural steel under pure axial loading.  In 

this case different load spectra, both deterministic and stochastic, have been applied to 

investigate VA loading conditions. 

In the present manuscript, another extension of the PSM has been addressed to estimate the 

constant amplitude uniaxial fatigue limit of welded structures in the stress-relieved state. A 

fracture mechanics criterion based on the cyclic R-curve analysis has been considered. The 

application of the method required the definition of an initial crack size, which value has been 

accurately calibrated by means of dedicate experimental tests. Among these tests, the 

experimental determination of the cyclic R-curve was necessary. It has been done on a 

S355J2+N structural steel both in base metal and in the Heat Affected Zone conditions adopting 

a new experimental procedure, capable of completely describing the short to long crack regime 
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by means of a single experimental test. Once performed the calibration of the method, the 

fatigue limit of a welded structure was possible with different degrees of accuracy depending 

on the available information. Under certain simplifying assumptions it was possible formulating 

a new procedure which is substantially based on the definition of a threshold value for the Notch 

Stress Intensity Factor NSIF. By exploiting the advantages offered by the PSM, the proposed 

method allows to a rapid and effective design of weld toe failures in the infinite life region, 

without the need of complex and time-consuming fracture mechanics-based calculations.  

Finally, the proposed procedure has been successfully checked against experimental data from 

the Literature. 

Finally, the present work has given an insight on some critical aspects relevant to the 

experimental determination of the cyclic R-curve and, in general, on experimental fracture 

mechanics tests dealing with short cracks. In particular, the problem of performing real-time 

in-situ crack growth monitoring of short cracks has been extensively discussed, this aspect 

being undoubtedly the most crucial when performing fracture mechanic tests on short cracks. 

Accordingly, the application of the Direct Current Potential Drop (DCPD) method to a single-

edge-crack round bars subject to axial fatigue has been investigated. Firstly, 3D electrical FE 

analyses have been performed to investigate the effect of the current and the potential probes 

position on the performances of the DCPD method in terms of measurability, sensitivity and 

reproducibility. The increased sensitivity but decreased reproducibility obtained by injecting 

the current and by measuring the potential drop as close to the superficial crack tip as possible 

have been evaluated quantitatively. Secondly, the accuracy of the numerical analyses has been 

checked against experimental results obtained by fatigue testing round bar specimens with a 

straight-fronted crack starter notch. The propagating fatigue crack has been monitored with the 

DCPD technique with the local configuration of the current and potential probes, which were 

located at the superficial crack tip. To do so, a dedicated clip-on gauge device seating both 

current and potential probes has been designed and realized. Experimental crack fronts have 

been beach-marked, digitally acquired and modelled in the FE environment to run electric 

numerical analyses obtaining a quite good agreement between numerical and measured 

potential drop values. In the future, the obtained results will be used to perform the experimental 

determination of the cyclic R-curve on specimen’s geometries different from that one usually 

adopted in the Literature (SENB). 
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