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Abstract:We investigate the Kazdan–Warner equation on a network. In this case, the differential equation is
defined on each edge, while appropriate transition conditions of Kirchhoff type are prescribed at the vertices.
We show that the whole Kazdan–Warner theory, both for the noncritical and the critical case, extends to the
present setting.
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1 Introduction
The Kazdan–Warner equation

∆u = c − heu , (1.1)

where c is a constant and h a given function, was introduced in [15] in connection with the problem of pre-
scribing the Gaussian curvature of a compact manifoldM. The resolvability of (1.1) depends on the sign of c.
Let h̄ denote the average of h on M. In [15], it is shown that,
(i) if c = 0 and h ̸≡ 0, then (1.1) is solvable if and only if h changes sign and h̄ < 0;
(ii) if c > 0, then (1.1) is solvable if and only if the set {h > 0} is not empty;
(iii) if c < 0, if (1.1) is solvable, then h̄ < 0. For h̄ < 0, there exists a constant −∞ ≤ c(h) < 0 such that (1.1) is

solvable for any c ∈ (c(h), 0) and not solvable for any c < c(h). Moreover, c(h) = −∞ if and only if h ≤ 0
in M.

If c < 0, c = c(h) is not included in the previous cases and deserves particular attention. It has been shown
in [8] that, if c(h) > −∞, then (1.1) can be also solved for c = c(h).

The previous theory has been recently extended in [13, 14] to the case of a combinatorial graph. Here
the Laplacian is replaced by a finite difference operator, the so-called graph Laplacian, andmost of the effort
is to reproduce in a finite-dimensional setting some crucial properties as the maximum principle and the
Moser–Trudinger inequality.

An intermediate situation between a compact manifold and a combinatorial graph is given by a net-
work (or metric graph) Γ, which is given by a finite collection of vertices connected by continuous non-self-
intersecting edges (see Section2 for theprecise definition). Onanetwork, differential equation (1.1) is defined
on each edge, while appropriate transition conditions of Kirchhoff type are prescribed at the vertices. In this
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paper,we obtain the same conclusions of themanifold and the graph cases, showing that theKazdan–Warner
theory remains unchanged for different classes ofmanifolds, also non-regular such as in the case of networks.
To prove these results, we shall adapt the method by Kazdan and Warner [15, Theorem 5.3] (see also [14,
Theorem 2]) and, for the critical case, some techniques of [8, 13] with some specific arguments for networks.

The study of the theory of differential equations on networks is motivated by two features: the networks
provide simplified mathematical models for physics, chemistry and engineering where one can investigate
phenomena in a “quasi-one-dimensional” environment. Moreover, being encompassed in the larger family of
non-regular manifold, they are a first step toward the approach to more general manifolds. The recent study
of differential equations on networks steamed mainly in the framework of hyperbolic systems and spectral
theory (we refer the reader to the monographs [3, 5, 18] and references therein). A general theory for linear
and semilinear differential equations has been developed mainly employing the variational structure of the
problem, and in this framework, the natural transition conditions at the vertices are the Kirchhoff conditions
(for instance, see [17–19]; see also [10, 11] for a stochastic interpretation). The theory has been also extended
to some nonlinear problem such as traffic flows [12], optimal control problems through the corresponding
Hamilton–Jacobi equations [4, 16] and mean field games [1, 7, 16], nonlinear Schrödinger equations [2, 9].
For nonlinear problems, different transition conditions at the vertices can arise.

The paper is organized as follows. In Section 2, we introduce some notation and preliminary results. In
Sections 3, 4 and 5, we study respectively the cases c = 0, c > 0 and c < 0. In Section 5, we also discuss the
critical case c = c(h).

2 Notation, definitions and preliminary results
Anetwork Γ = (V, E) is a finite collection of points V := {vi}i∈I inℝn connected by continuous edges E := {ej}j∈J,
where each edge does not intersect itself and any two edges can only have intersection at a vertex. For i ∈ I,
we set

Inci := {j ∈ J : ej is incident to vi}.

A coordinate πj : [0, lj]→ ℝn, with lj > 0, is chosen to parametrize ej, i.e. ej := πj((0, lj)). We assume that Γ
is compact and connected, and we denote by |Γ| the sum of the lengths of the edges ej, j ∈ J.

For a function u : Γ → ℝ, we denote by uj : [0, lj]→ ℝ the restriction of u to ej, i.e. u(x) = uj(y) for x ∈ ej,
y = π−1j (x) ∈ (0, lj). Given vi ∈ V, we denote by ∂ju(vi) the oriented derivative at vi along the arc ej defined by

∂ju(vi) = lim
x∈ej , x→vi

uj(π−1j (x)) − uj(π
−1
j (vi))

|π−1j (x) − π
−1
j (vi)|

if the limit exists, where πj is the parametrization of arc ej. For a function ϕ : Γ → ℝ and A ⊂ Γ, we set

∫
A

ϕ(x) dx :=∑
j
∫

(0,lj)∩π−1j (A)

ϕ(r) dr.

A function u is said to be continuous on Γ if it is continuous with respect to the subspace topology of Γ, i.e.
uj ∈ C([0, lj]) for any j ∈ J and uj(π−1j (vi)) = uk(π

−1
k (vi)) for any i ∈ I, j, k ∈ Inci.

We introduce some functional spaces for functions defined on the network. The space Lp(Γ), p ≥ 1, con-
sists of the functions that are measurable and p-integrable on each edge ej, j ∈ J. We set

‖f ‖Lp := (∑
j∈J
‖fj‖

p
Lp(ej))

1
p
.

The space L∞(Γ) consists of the functions that are measurable and bounded on each edge ej, j ∈ J. We set

‖f ‖L∞ := sup
j∈J
‖fj‖L∞(ej).
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The Sobolev spaceWk,p(Γ), k ∈ ℕ and p ≥ 1, consists of all continuous functions on Γ that belong toWk,p(ej)
for each j ∈ J. We set

‖f ‖Wk,p := (
k
∑
l=0
‖∂l f ‖pLp)

1
p

.

As usual, we set Hk(Γ) := Wk,2(Γ), k ∈ ℕ. The space Ck(Γ) for k ∈ ℕ consists of all continuous functions on Γ
that belong to Ck(ej) for j ∈ J. The space Ck(Γ) is a Banach space with the norm

‖f ‖Ck = max
β≤k
‖∂β f ‖L∞ .

The following lemma gives a Poincaré inequality for compact networks.

Lemma 2.1. For every function f ∈ H1(Γ) with ∫Γ f(x) dx = 0, there hold
(i) |f(x)| ≤ √|Γ|‖∂f ‖L2 ,
(ii) ∫Γ f

2(x) dx ≤ |Γ|2 ∫Γ|∂f(x)|
2 dx.

Proof. By definition of H1, the function f is continuous on Γ; hence there exists a point x0 ∈ Γ such that
f(x0) = 0. Since Γ is connected, for any point x ∈ Γ, there exists a path γ : (0, r)→ Γ on the network such that
γ(0) = x0, γ(r) = x, |γ(s)| = 1 and r ≤ |Γ|. Hence we have

|f(x)| =

f(x0) +

r

∫
0

(f ∘ γ)(s) ds

≤

r

∫
0

|∂f(γ(s))| ds ≤ √r‖∂f ‖L2(γ) ≤ √|Γ|‖∂f ‖L2 .

We deduce that
∫
Γ

f 2(x) dx ≤ ∫
Γ

|Γ|‖∂f ‖2L2 dx = |Γ|
2‖∂f ‖2L2 .

We also give an analogue of the Trudinger–Moser inequality for compact networks.

Lemma 2.2. For any β, δ ∈ ℝ with δ > 0, there exists a constant C (depending only on β, δ and the network)
such that, for all functions f ∈ H1(Γ) with ∫Γ|∂f |

2 ≤ δ and ∫Γ f = 0, there holds

∫
Γ

eβf 2(x) dx ≤ C.

Proof. We adapt the argument of [14, Lemma 7]. The case β ≤ 0 is obvious because Γ has a bounded total
length. Fix β > 0, and consider a function f as in the statement. By Lemma (2.1) (i) and the assumption
‖∂f ‖2L2 ≤ δ, we have

∫
Γ

eβf 2(x) dx ≤ ∫
Γ

eβ|Γ|‖∂f ‖
2
L2 dx ≤ eβ|Γ|δ|Γ|.

We consider the Kazdan–Warner equation on the network Γ,

{{{{{
{{{{{
{

∂2u = c − heu , x ∈ ej , j ∈ J,
uj(vi) = uk(vi), j, k ∈ Inci , vi ∈ V,

∑
j∈Inci

∂ju(vi) = 0, vi ∈ V,
(2.1)

where c is a given constant and h is a continuous function on Γ. Note that the Kazdan–Warner equation
is defined on each edge, while, at the vertices, we impose the continuity of u and the Kirchhoff condition,
a classical condition for differential equations defined on networks (see [18, 20]).

Definition 2.1. We introduce the notion of solution to problem (2.1).
(a) A strong solution to problem (2.1) is a function u ∈ C2(Γ) which satisfies (2.1) in a pointwise manner.
(b) A weak solution to problem (2.1) is a function u ∈ H1(Γ) such that

∫
Γ

∂u∂ϕ dx = −c∫
Γ

ϕ dx + ∫
Γ

heuϕ dx for all ϕ ∈ H1(Γ). (2.2)
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Remark 2.1. One can easily check that, if u ∈ C2(Γ) is aweak solution of (2.1), then it is also a strong solution.
Moreover, anyweak solution of (2.1) is also a strong solution. Actually, aweak solution u fulfils ∂2u = c − heu
in distributional sense inside each edge ej. The right-hand side of this equality is continuous; hence, by
standard theory, u ∈ C2(ej) for every j ∈ J. Being a weak solution, u also belongs to H1(Γ); hence, u belongs
to C2(Γ) and is a classical solution of the differential equation in (2.1) inside each edge. By these last prop-
erties, integrating by parts (2.2), we obtain that u also fulfils the Kirchhoff condition in (2.1). In conclusion,
u is a strong solution to (2.1).

In the next three sections, we discuss the solvability of (2.1) in the cases c = 0, c > 0 and c < 0.

3 The Kazdan–Warner equation with case c = 0
Theorem 3.1. Assume c = 0 and h ̸≡ 0. Then problem (2.1) has a solution u if and only if h changes sign and
∫Γ h < 0.

Proof. Assume that u is a solution to problem (2.1)with c = 0.We note that the hypothesis h ̸≡ 0 prevents u to
be constant. Letting ϕ ≡ 1 in (2.2), we get ∫Γ he

u dx = 0, which implies that h must change sign. Integrating
e−u∂2u = −h by parts on Γ, we get

∫
Γ

(∂u)2e−u dx +∑
i∈I
∑
j∈Inci

e−u(vi)∂ju(vi) = −∫
Γ

h dx.

Taking advantage of the Kirchhoff condition and of the continuity of u at each vertex, we obtain

∫
Γ

(∂u)2e−u dx = −∫
Γ

h dx.

Since u cannot be constant, we deduce ∫Γ h dx < 0.
Conversely, we prove that, for any h which changes sign and satisfies ∫Γ h < 0, there exists a solution

to (2.1). We define the set
B := {v ∈ H1(Γ)

 ∫
Γ

hev dx = 0,∫
Γ

v dx = 0}.

We claim that B is not empty. Since h changes sign, there exists a point x0 ∈ Γ such that h(x0) > 0. By the
continuity of h, without any loss of generality, we can assume x0 ∈ e ̄ȷ for some ̄ȷ ∈ J; namely, there exist
̄ȷ ∈ J and y0 ∈ (0, l ̄ȷ) such that h ̄ȷ(y0) > 0. Moreover, still by the continuity of h, there exists ε > 0 such that
(y0 − ε, y0 + ε) ⊂ (0, l ̄ȷ) and h ̄ȷ(y) > h ̄ȷ(y0)

2 for all y ∈ (y0 − ε, y0 + ε). Consider a function w ∈ C2(Γ) such that
w ̄ȷ(y) = 1 if y ∈ (y0 − ε2 , y0 +

ε
2 ), w ̄ȷ(y) = 0 if y ∉ (y0 − ε, y0 + ε) and wj ≡ 0 if j ∈ J \ { ̄ȷ}. For ℓ > 0, the function

wℓ( ⋅ ) := ℓw( ⋅ ) fulfils

∫
Γ

hewℓ dx = ∫
e ̄ȷ

hewℓ dx + ∑
j∈J\{ ̄ȷ}
∫
ej

hewℓ dx ≥
y0+ ε2

∫
y0− ε2

h(y)ewℓ(y) dy − ∫
Γ

|h| dx ≥
εh ̄ȷ(y0)eℓ

2 − ∫
Γ

|h| dx > 0 (3.1)

provided that ℓ is sufficiently large. On the other hand, for ℓ = 0, we have w0(x) ≡ 0 and, by assumptions,

∫
Γ

hew0(x) dx = ∫
Γ

h dx < 0.

Therefore, there exists ℓ0 > 0 such that ∫Γ he
wℓ0 = 0. Hence the function ŵ( ⋅ ) := wℓ0 ( ⋅ ) − ∫Γ wℓ0/|Γ| belongs

to B, and the claim is proved.
Consider the functional

J(v) := 12 ∫
Γ

|∂v|2 dx for all v ∈ B.
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Let {vn}n∈ℕ be aminimizing sequence for J over B, i.e. limn→+∞ J(vn) = infB J. By Lemma2.1 (ii), we have that
the functions vn are uniformly bounded in H1(Γ). We deduce that, possibly passing to a subsequence, there
exists ̄u ∈ H1(Γ) such that, as n → +∞, vn ⇀ ̄uweakly in H1(Γ) and vn → ̄u uniformly on Γ. In particular, we
get that ̄u belongs to B, and it is a minimizer of J on B.

We claim that ̄u is a strong solution to problem (2.1). Actually, by standard Lagrangianmultiplier theory,
there exist λ, μ ∈ ℝ such that

0 = d
dt(

J( ̄u + tϕ) − λ∫
Γ

he ̄u+tϕ dx − μ∫
Γ

( ̄u + tϕ) dx)
t=0
= ∫

Γ

∂ ̄u∂ϕ dx − λ∫
Γ

he ̄uϕ dx − μ∫
Γ

ϕ dx

for everyϕ ∈ H1(Γ). Choosingϕ ≡ 1, since ̄u ∈ B, we get μ = 0. Arguing as in Remark 2.1, inside each edge ej,
there holds ∂2 ̄u + λhe ̄u = 0 in distributional sense. By the continuity of ̄u, we infer that ̄u ∈ C2(ej) and, since
̄u ∈ H1(Γ), also that ̄u ∈ C2(Γ). Moreover, ̄u is a strong solution to

{{{
{{{
{

∂2 ̄u = −λhe ̄u , x ∈ ej , j ∈ J,
∑
j∈Inci

∂j ̄u(vi) = 0, vi ∈ V,
̄uj(vi) = ̄uk(vi), j, k ∈ Inci , vi ∈ V.

We claim that λ > 0. The function ̄u also solves e− ̄u∂2 ̄u = −λh; integrating this relation, by Kirchhoff and
continuity conditions, we get

∫
Γ

(∂ ̄u)2e− ̄u dx = −λ∫
Γ

h dx.

Let us first prove that the left-hand side of this equality is positive. We proceed by contradiction assuming
∫Γ(∂ ̄u)

2e− ̄u = 0. Hence ∂ ̄u ≡ 0, and in particular, ̄u is constant. Since ̄u ∈ B, we get e ̄u ∫Γ h = 0 contradict-
ing the assumption ∫Γ h < 0. Therefore, the left-hand side in the last equality is positive; again by virtue
of ∫Γ h < 0, the constant λ must be positive. Finally, the function u( ⋅ ) := ̄u( ⋅ ) + log(λ) is a strong solution
to (2.1).

4 The Kazdan–Warner equation with case c > 0
Theorem 4.1. Assume c > 0. Then problem (2.1) has a solution u if and only if h is positive somewhere.

Proof. Assume that u is a solution of (2.1); choosing ϕ ≡ 1 as test function in (2.2), we get ∫Γ he
u = c|Γ| > 0.

Hence {x ∈ Γ | h(x) > 0} ̸= 0.
Conversely, for any h ∈ C0(Γ) with {h > 0} ̸= 0, we prove that problem (2.1) admits at least one solution.

To this end, it is expedient to introduce the set

B := {v ∈ H1(Γ)
 ∫
Γ

hev dx = c|Γ|}.

We claim that B is not empty. For ℓ ≥ 0, we introduce the function wℓ as in the proof of Theorem 3.1, while
for ℓ ≤ 0, we set w̄ℓ ≡ ℓ. Since w0 ≡ w̄0, the function

g(ℓ) :=
{
{
{

∫Γ he
wℓ dx if ℓ ≥ 0,

∫Γ he
w̄ℓ dx if ℓ < 0

is well defined and continuous, it fulfils limℓ→+∞ g(ℓ) = +∞ (by virtue of estimate (3.1)) and

lim
ℓ→−∞

g(ℓ) = lim
ℓ→−∞

eℓ ∫
Γ

h = 0.

Hence there exists ̄ℓ ∈ ℝ such that g( ̄ℓ) = c|Γ|, namely, B ̸= 0.
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We consider the functional

J(u) := 12 ∫
Γ

|∂u|2 dx + c∫
Γ

u dx for all u ∈ B.

As a first step, let us prove that J is bounded from below in B. To this end, for any u ∈ B, we set ̄u := ∫Γ u/|Γ|
and v := u − ̄u. Note ∫Γ v = 0 and ∂v ≡ ∂u. Since u ∈ B, it holds ∫Γ he

v dx = c|Γ|e− ̄u, which implies

̄u = log(c|Γ|) − log(∫
Γ

hev dx);

replacing this equality in the definition of J, we get

J(u) = 12 ‖∂u‖
2
L2 + c|Γ| log(c|Γ|) − c|Γ| log(∫

Γ

hev dx). (4.1)

Let us now estimate ∫Γ he
v; if v is constant, then, by ∫Γ v = 0, it must be v ≡ 0 and, in particular ∫Γ he

v = ∫Γ h.
For v non-constant, it is expedient to introduce the function ̃v := v/‖∂v‖L2 which verifies ̃v ∈ H1(Γ), ∫Γ ̃v = 0
and ‖∂ ̃v‖L2 = 1. Lemma 2.1 (ii) and Lemma 2.2 guarantee that, for any β ∈ ℝ, there exists a constant Kβ
(depending only on β) such that

‖ ̃v‖L2 ≤ |Γ|, ∫
Γ

eβ ̃v2(x) dx ≤ Kβ .

For every ε positive, for βε := 1
4ε , there holds

∫
Γ

hev dx ≤ ‖h‖L∞ ∫
Γ

eε‖∂v‖
2
L2+

v2
4ε‖∂v‖2L2 dx ≤ ‖h‖L∞e

ε‖∂v‖2L2Kβε .

Replacing this estimate in (4.1), we obtain

J(u) ≥ 12 ‖∂u‖
2
L2 + c|Γ|[log(c|Γ|) − ε‖∂u‖

2
L2 − log(‖h‖∞Kβε )]

and, in particular, for ε0 := 1
4c|Γ| ,

J(u) ≥ 14 ‖∂u‖
2
L2 + c|Γ|[log(c|Γ|) − log(‖h‖L∞Kβε0 )]. (4.2)

Hence the proof that J is bounded in B from below is accomplished.
Let {un}n∈ℕ be a minimizing sequence for J in B; set ̄un := ∫Γ un/|Γ| and vn := un − ̄un; hence ∂un ≡ ∂vn,

and by estimate (4.2), ∂vn is bounded in L2(Γ), uniformly in n. By Lemma 2.1 (ii), also vn is uniformly
bounded in L2(Γ), and therefore the functions vn are uniformly bounded in H1(Γ). Moreover, by the defini-
tion of J, we get that ∫Γ un are uniformly bounded, and consequently also ̄un are uniformly bounded. Being
un = vn + ̄un, also the functions un are uniformly bounded in H1(Γ). Possibly passing to a subsequence, there
exists u ∈ H1(Γ) such that, as n → +∞, un ⇀ u in the weak topology of H1(Γ), un → u uniformly, u ∈ B and
J(u) = minB J.

We claim that u is a solution to (2.1). By standard Lagrangian theory, there exists λ ∈ ℝ such that, for
every ϕ ∈ H1(Γ),

0 = d
dt(∫

Γ

∂(u + tϕ)2

2 dx + c∫
Γ

(u + tϕ) dx − λ(c|Γ| − ∫
Γ

heu+tϕ dx))
t=0

= ∫
Γ

∂u∂ϕ dx + c∫
Γ

ϕ dx − λ∫
Γ

heuϕ dx. (4.3)

Choosing ϕ ≡ 1, we get c|Γ| = λ ∫Γ he
u; since u ∈ B, we get λ = 1. In conclusion, relation (4.3) with λ = 1 is

equivalent to the definition of weak solution to (2.1).
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5 The Kazdan–Warner equation with case c < 0
Theorem 5.1. Assume c < 0.
(i) If (2.1) has a solution, then ∫Γ h < 0.
(ii) If ∫Γ h < 0, then there exists a constant c(h) ∈ [−∞, 0) such that (2.1) has a solution for any c(h) < c < 0

and no solution for c < c(h).
(iii) For ∫Γ h < 0, let c(h) be defined as in (ii). Then c(h) = −∞ if and only if h ≤ 0 in Γ.

We introduce the definition of upper and lower solution to (2.1).

Definition 5.1. A function u ∈ C2(Γ) is said to be a lower (respectively, an upper) solution of (2.1) if

{{
{{
{

∂2u − c + heu ≥ 0, x ∈ ej , j ∈ J,
∑
j∈Inci

∂ju(vi) ≥ 0, vi ∈ V, (resp.,
{{
{{
{

∂2u − c + heu ≤ 0, x ∈ ej , j ∈ J,
∑
j∈Inci

∂ju(vi) ≤ 0, vi ∈ V. )

In order to prove Theorem 5.1, we need some preliminary results.

Lemma 5.1. If there exist a lower solution u− and an upper solution u+ of (2.1) such that u− ≤ u+, then there
exists a solution u of (2.1) such that u− ≤ u ≤ u+.

Proof. Set k1(x) = max{1, −h(x)} and k(x) = k1(x)eu+(x), and consider the sequence of functions {un}n∈ℕ
defined inductively as u0 = u+ and un+1 ∈ C2(Γ) the solution of

{{
{{
{

Lun+1 = f(x, un) − kun , x ∈ ej , j ∈ J,
∑
j∈Inci

∂jun+1(vi) = 0, vi ∈ V, (5.1)

where Lu = ∂2u − ku and f(x, u) = c − h(x)eu. We first observe that the sequence {un}n∈ℕ is well defined.
Indeed, since k(x) ≥ e−‖u+‖L∞ =: λ > 0, the differential equation in (5.1) can be written as

−∂2un+1 + H(x, un+1) + λun+1 = 0

with H(x, r) := (k(x) − λ)r + f(x, r) − k(x)un(x); hence the result in [7, Proposition 10] ensures the existence
of a solution to (5.1). Moreover, by the linearity of (5.1), the maximum principle in [7, Proposition 12] guar-
antees the uniqueness of this solution. We claim that

u− ≤ un+1 ≤ un ≤ u+ for any n ∈ ℕ. (5.2)

Since
{{
{{
{

L(u1 − u0) = f(x, u0) − ku0 − ∂2u0 + ku0 ≥ 0, x ∈ ej , j ∈ J,
∑
j∈Inci

∂j(u1 − u0)(vi) ≥ 0, vi ∈ V,

the inequality u1 ≤ u0 = u+ on Γ follows immediately by the maximum principle (see [7, Proposition 12]).
Assuming inductively that un ≤ un−1, we have

L(un+1 − un) = k(x)(un−1 − un) + h(x)(eun−1 − eun )
≥ k1(x)eu+(x)(un−1 − un) − k1(x)(eun−1 − eun )
≥ k1(x)(eu+(x) − eξ(x))(un−1 − un) for x ∈ ej , j ∈ J,

where ξ(x) ∈ [un(x), un−1(x)]. By induction, we have u+ ≥ un−1, and recalling the condition at the vertices,
we get

{{
{{
{

L(un+1 − un) ≥ 0, x ∈ ej , j ∈ J,
∑
j∈Inci

∂j(un+1 − un)(vi) ≥ 0, vi ∈ V.
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We conclude again by the maximum principle that un+1 ≤ un in Γ. We finally observe that, arguing as before,
we have

{{
{{
{

L(u− − un+1) ≥ k(x)(un − u−) + h(x)(eun − eu− ) ≥ 0, x ∈ ej , j ∈ J,
∑
j∈Inci

∂j(u− − un+1)(vi) ≥ 0, vi ∈ V,

and therefore u− ≤ un+1 on Γ for all n. Hence the claim (5.2) is proved.
By [7, Proposition 10], there exists a positive constant C (independent of n) such that ‖un‖H1 ≤ C and,

in particular, ‖un‖L∞ ≤ C for every n ∈ ℕ. Replacing the bounds (5.2) in the differential equation of (5.1), we
obtain that ‖∂2un‖L∞ are uniformly bounded; this property and again the bounds (5.2) ensure ‖un‖H2 ≤ C.
The Ascoli–Arzela theorem yields that, up to passing to a subsequence, {un} converges in H1(Γ) to a func-
tion u ∈ H1(Γ) which is a weak solution to (2.1) with u− ≤ u ≤ u+. Finally, by Remark 2.1, u is a classical
solution to (2.1).

In the next lemma, we show that (2.1) admits a lower solution u− for any c < 0.

Lemma 5.2. If c < 0, then there exists a lower solution u− of (2.1).

Proof. Set u− ≡ −A for some constant A > 0. Then the function u− fulfils the Kirchhoff condition in (2.1) and
also

∂2u−(x) − c + h(x)eu−(x) = −c + h(x)e−A ≥ 0, x ∈ ej , j ∈ J,

for A sufficiently large. Hence u− is a lower solution to (2.1).

Proof of Theorem 5.1. Assume that there exists a solution u of (2.1). Then, integrating (2.1) on Γ, we get

−∫
Γ

h(x) dx = ∫
Γ

(∂u(x))2e−u(x) dx − c∫
Γ

e−u(x) dx > 0

and therefore (i).
We now assume that ∫Γ h(x) dx < 0. Recall that, by Lemma 5.1 and Lemma 5.2, problem (2.1) has a solu-

tion if andonly if there exists anupper solution u+.Moreover, it is easy to see that, if u+ is anupper solution for
a given ̄c < 0, then it is also an upper solution for any c such that ̄c ≤ c < 0. Hence it follows that there exists
a constant c(h)with −∞ ≤ c(h) ≤ 0 such that (2.1) admits a solution for c > c(h) and no solution for c < c(h).

We show that c(h) < 0. Let m ∈ C2(Γ) be a solution of

{{{{
{{{{
{

∂2m(x) = ∫
Γ

h(x) dx − h(x), x ∈ ej , j ∈ J,

∑
j∈Inci

∂jm(vi) = 0, vi ∈ V
(5.3)

(existence of a weak solution to (5.3) is proved in [7, Proposition 13], while the regularity follows by
Remark 2.1), and let a be a positive constant such that

max
x∈Γ
|eam(x) − 1| ≤

−∫Γ h(x) dx
2‖h(x)‖L∞

.

We define b = ln(a), c = 1
2a ∫Γ h(x) dx and u+(x) = am(x) + b. Then c < 0 and

∂2u+(x) − c + h(x)eu+(x) = ah(x)(eam(x) − 1) +
a ∫Γ h(x) dx

2 ≤ a‖h(x)‖L∞ |eam(x) − 1| +
a ∫Γ h(x) dx

2 ≤ 0.

Moreover, by (5.3), u+ is continuous and verifies the Kirchhoff condition because m enjoys the same proper-
ties. Hence u+ is an upper solution, and therefore we conclude that

c(h) ≤ a2 ∫
Γ

h(x) dx < 0.

We finally prove (iii). Note that ∫ h < 0 ensures h ̸≡ 0.
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Wefirst show that, if h ≤ 0 in Γ, then (2.1) is solvable for any c < 0, and therefore c(h) = −∞. Fixed c < 0,
let m be a solution of (5.3), and choose two constants a, b such that a ∫Γ h(x) dx < c and e

am(x)+b − a > 0
for x ∈ Γ. We show that the function u+(x) = am(x) + b is an upper solution of (2.1). Indeed, there holds

∂2u+(x) − c + h(x)eu+(x) = a∫
Γ

h(x) dx − ah(x) − c + h(x)eam(x)+b ≤ h(x)(eam(x)+b − a) ≤ 0,

while the continuity and the Kirchhoff conditions for u+ come again from those of m. Hence u+ is an upper
solution to (2.1), and therefore, for any c < 0, there exists a solution to (2.1).

Conversely, let us prove that c(h) = −∞ implies h ≤ 0 in Γ. To this end, as in [13, Theorem 2.3], we argue
by contradiction assuming that {h > 0} is not empty. For any c < 0, let u be a solution to (2.1) (whose existence
is ensured by c(h) = −∞), and let ϕc ∈ C2(Γ) be a solution to the problem

{{
{{
{

∂2ϕc + cϕc = h, x ∈ ej , j ∈ J,
∑
j∈Inci

∂jϕc(vi) = 0, vi ∈ V (5.4)

(whose existence is ensured by [7, Proposition 10]). We claim

ϕc(x) ≥ e−u(x) > 0 for all x ∈ Γ.

In order to prove this relation, by the maximum principle [7, Proposition 12], it suffices to prove that e−u is
a lower solution to (5.4). Actually, there holds

∂2(e−u) + ce−u = e−u[−∂2u + |∂u|2 + c] = e−u[heu + |∂u|2] ≥ h;

moreover, e−u is continuous and satisfies theKirchhoff conditionbecause u does it. Hence our claim is proved.
Let us assume for the moment that there holds

lim
c→−∞

cϕc(x) = h for all x ∈ Γ; (5.5)

then this property would contradict ϕc ≥ 0 in {h > 0}, accomplishing the proof. Therefore, it remains to
prove (5.5); to this end,we observe that the operatorA := −∂2, coupledwithKirchhoff condition, is amaximal
monotone operator (for the precise definition and main properties, we refer the reader to the monograph [6,
p. 101]). Applying [6, Proposition VII.2 (c)] with λ equal to 1

c , we obtain limc→−∞ uc = h, where uc solves
(I + Ac )(uc) = h. By linearity, we get uc = cϕc, accomplishing the proof of (5.5).

5.1 The critical case c = c(h)

Proposition 5.1. For ∫Γ h < 0 and c(h) > −∞, problem (2.1) with c = c(h) admits a solution.

Proof. Note that Theorem 5.1 (iii) ensures that h changes sign (and obviously, h ̸≡ 0). Given a decreasing
sequence {ck}k∈ℕ with c(h) < ck < 0 converging to c(h) as k → +∞, we consider

{{
{{
{

∂2u = ck − heu , x ∈ ej , j ∈ J,
∑
j∈Inci

∂ju(vi) = 0, vi ∈ V. (5.6)

The idea is to show that a sequence of solutions uk of (5.6), appropriately chosen, converges for k →∞ to
a solution of (2.1) with c = c(h).

Lemma 5.3. For each k ∈ ℕ, there exist a lower solution ϕk ≡ −A ∈ ℝ and an upper solution ψk to (5.6) with
ψk > ϕk.

Proof. To show the existence of a lower solution, it suffices to argue as in Lemma 5.2 choosing A sufficiently
large so that

− ck + h(x)e−A ≥ −ck − ‖h‖L∞e−A =: δ > 0. (5.7)
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For the upper solution, we choose ψk as a solution to (2.1) with c replaced by any ̃ck ∈ (c(h), ck) (whose
existence is established in Theorem 5.1).

Finally, it remains to prove the inequality ψk > −A (see also [21, Claim 3] for a similar argument). Denot-
ing by ̃x a minimum point of ψk on Γ, we claim that ψk( ̃x) > −A.

Assume first that ̃x ∈ ej for some j ∈ J. The first equation in (2.1) yields

h( ̃x)eψk( ̃x) = ̃ck − ∂2ψk( ̃x) ≤ ̃ck < 0

and, in particular, h( ̃x) < 0. On the other hand, the function ϕk ≡ −A satisfies h( ̃x)e−A > ̃ck. The last three
relations give eψk( ̃x) − e−A > 0, which is equivalent to ψk( ̃x) > −A.

Assume now ̃x = vi for some i ∈ I and, for later contradiction, ψk(vi) ≤ −A. Observe that, for any j ∈ Inci,
the restriction of ψk to ej attains its minimum at vi, and consequently, ∂jψk(vi) ≥ 0. Taking into account
the Kirchhoff condition in (2.1), we deduce ∂jψk(vi) = 0 for all j ∈ Inci. On the other hand, by (5.7) and the
continuity of h, there exists η > 0 such that

̃ck + ‖h‖L∞e−A+η < −
δ
2 . (5.8)

Moreover, by the continuity of ψk and ψk(vi) ≤ −A, (5.8) ensures

∂2j ψk(x) = ̃ck − h(x)e
ψk(x) ≤ ̃ck + ‖h‖L∞e−A+η < −

δ
2 < 0

for any x ∈ ej sufficiently close to vi. In conclusion, near vi, the function ∂jψk is strictly decreasing with
∂jψk(vi) = 0, and therefore ψk is strictly decreasing. This fact contradicts that ψk attains its minimum at vi.

Lemma 5.4. Fix k ∈ ℕ. The minimum of the problem

inf{Ik(u) : u ∈ H1(Γ), −A ≤ u(x) ≤ ψk(x) for all x ∈ Γ}, (5.9)

where
Ik(u) :=

1
2 ∫

Γ

|∂u|2 dx + ck ∫
Γ

u dx − ∫
Γ

heu dx,

is attained by some function ̄u with
− A < ̄u < ψk . (5.10)

Moreover, ̄u is a solution of (5.6).

Proof. Let {vn}n be a minimizing sequence for Ik. Then there holds

Ik(vn) + o(1) ≤ Ik(−A) = ck(−A)|Γ| − e−A ∫
Γ

h ≤ C

for some constant C (independent of k). Moreover, we have

C + o(1) ≥ Ik(vn) =
1
2 ∫

Γ

|∂vn|2 dx + ck ∫
Γ

vn dx − ∫
Γ

hevn dx

≥
1
2 ∫

Γ

|∂vn|2 dx + ck ∫
Γ

ψk dx − ‖h‖L∞ ∫
Γ

eψk dx, (5.11)

where the inequality is due to the constraint −A ≤ vn ≤ ψk. We deduce that ‖∂vn‖L2 are uniformly bounded;
on the other hand, also ‖vn‖L∞ are uniformly bounded. Therefore, the sequence {vn}n is uniformly bounded
in H1(Γ). We infer that, possibly passing to a subsequence, there exists ̄u ∈ H1(Γ)with −A ≤ ̄u ≤ ψk such that
vn → ̄u uniformly and vn ⇀ ̄u weakly in H1. By the lower semicontinuity of Ik, we get Ik( ̄u) ≤ lim infn Ik(vn);
hence ̄u is a minimum point for (5.9). Let us assume for the moment that inequalities (5.10) hold true; then,
by standard Lagrange multipliers method, we have d

dt Ik( ̄u + tϕ)|t=0 = 0 for any ϕ ∈ H1(Γ), from which we
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get (2.2). Arguing as inRemark 2.1,we get that ̄u is a strong solution to (5.6). Therefore, it remains to prove the
inequalities in (5.10); since the proofs are similar, we shall only provide the one for the first relation. As a first
step, we claim that it cannot exist an interval [x1, x2] ⊂ ej (for some j ∈ J) such that ̄u = −A on [x1, x2]. Actu-
ally, for later contradiction, assume that there exists such an interval [x1, x2]. Without any loss of generality,
we can assume x1 = 0. We introduce the function

̂u(x) :=
{
{
{

−A + αmin{x, x2 − x} if x ∈ (0, x2),
̄u(x) otherwise,

where α > 0 is a constant so small that ̄u is admissible for (5.9) and to be suitably chosen later on. We have

Ik( ̄u) − Ik( ̂u) ≥ −
α2x2
2 −

αckx22
4 − ‖h‖L

∞

x2

∫
0

(e ̂u − e ̄u) dx.

By the Lagrange theorem, for every x ∈ (0, x22 ), there exists ξ ∈ (0, x) such that

e ̂u(x) − e ̄u(x) = αe−A+αξ x ≤ αe−A+α
x2
2
x2
2 ;

by symmetry, there holds also e ̂u(x) − e ̄u(x) ≤ αe−A+α
x2
2 x2

2 for every x ∈ ( x22 , x2). Replacing these two inequali-
ties in the previous one, we get

Ik( ̄u) − Ik( ̂u) ≥ −α2
x2
2 + α[−ck − 2‖h‖L

∞e−A+α
x2
2 ]
x22
4 .

For A sufficiently large and α sufficiently small, we get a contradiction. Finally, we claim that, if ̄u > −A
on some interval (x1, x2) ⊂ ej (for some j ∈ J), then ̄u > −A on ̄ej. Indeed, let us assume −A < ̄u < ψk on
some ( ̄x1, x2) and, by later contradiction, ̄u(x2) = −A. Then ϕ := ̄u + A attains aminimum at x2. Moreover, as
before, by the Lagrange multipliers method, ̄u solves (5.6) on ( ̄x1, x2). Then, for x → x−2, by (5.7), we have

∂2ϕ = ck − he ̄u = ck − he−A + o(1) < 0,

which provides a contradiction.

We can now conclude the proof of Proposition 5.1. Denote by uk, k ∈ ℕ, a solution of (5.6) given by
Lemma5.4.Assume for themoment that the sequence {uk}k is bounded inH1(Γ). Hence there exists u ∈ H1(Γ)
such that, as k → +∞, up to a subsequence, uk ⇀ u in the weak topology of H1(Γ) and uk → u uniformly.
Passing to the limit in the weak formulation of (5.6), we get that u is a weak, and therefore also a strong,
solution to (2.1) with c = c(h).

It remains to prove that {uk}k is bounded in H1. To this end, fix 0 < δ < maxΓ h, an interval D inside
some edge ej such that D ⊂ {h(x) ≥ δ} and a point ̄x ∈ D; by the same arguments as in [8, p. 743] (note that
we can use [8, Lemma 2.1] because any solution of the equation in D is also a solution in a 2-dimensional
domain), we get that the uk’s are uniformly bounded in D. Therefore, the functions wk(x) := uk(x) − uk( ̄x)
satisfy wk( ̄x) = 0, and there exists C1 > 0 such that |uk( ̄x)| ≤ C1 for any k. Arguing as in Lemma 2.1 (i), we get
‖wk‖L∞ ≤ |Γ|

1
2 ‖∂wk‖L2 = |Γ|

1
2 ‖∂uk‖L2 , and we deduce

‖uk‖L∞ ≤ |uk( ̄x)| + ‖wk‖L∞ ≤ C1 + |Γ|
1
2 ‖∂uk‖L2 . (5.12)

On the other hand, choosing ϕ ≡ 1 as test function in the weak formulation of (5.6), we get

∫
Γ

heuk dx = ck|Γ|. (5.13)

Since ck are negative, relations (5.11) with vn = uk and (5.13) entail

C ≥ 12 ∫
Γ

|∂uk|2 dx + ck ∫
Γ

uk dx − ∫
Γ

heuk dx ≥
‖∂uk‖2L2

2 + ck ∫
Γ

|uk| dx − ck|Γ|

≥
‖∂uk‖2L2

2 + ckC1|Γ| + ck|Γ|
3
2 ‖∂uk‖L2 − ck|Γ|,

where the last inequality is due to (5.12). Hence ∂uk are uniformly bounded in L2; by (5.12), the uk’s are
uniformly bounded in L∞ and consequently also in H1.
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