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ASYMPTOTIC ANALYSIS OF PERTURBED ROBIN PROBLEMS

IN A PLANAR DOMAIN

PAOLO MUSOLINO, MARTIN DUTKO, GENNADY MISHURIS

Abstract. We consider a perforated domain Ω(ε) of R2 with a small hole of

size ε and we study the behavior of the solution of a mixed Neumann-Robin
problem in Ω(ε) as the size ε of the small hole tends to 0. In addition to

the geometric degeneracy of the problem, the nonlinear ε-dependent Robin

condition may degenerate into a Neumann condition for ε = 0 and the Robin
datum may diverge to infinity. Our goal is to analyze the asymptotic behavior

of the solutions to the problem as ε tends to 0 and to understand how the

boundary condition affects the behavior of the solutions when ε is close to 0.
The present paper extends to the planar case the results of [36] dealing with

the case of dimension n ≥ 3.

1. Introduction

In this article we continue the analysis of [36], where we have studied the as-
ymptotic behavior of the solutions of a boundary value problem for the Laplace
equation in a perforated domain in Rn, n ≥ 3, with a nonlinear Robin boundary
condition degenerating into a Neumann condition on the boundary of the small
hole.

The problem considered in [36] was degenerating under three aspects: in the
limit case the Robin boundary condition may degenerate into a Neumann boundary
condition, the Robin datum may tend to infinity, and, finally, the size ε of the small
hole where we consider the Robin condition tends to 0. The analysis of [36] was
confined to the case of dimension n ≥ 3, since the two-dimensional case requires a
different treatment. Indeed the technique of [36] is based on potential theory, and
as it happens often with such method, the case of dimension n = 2 and the one of
dimension n ≥ 3 need to be treated separately because of the different aspect of
the fundamental solution of the Laplacian.

Boundary value problems with degenerating or perturbed boundary conditions
have been analyzed by many authors. Here we mention, for example, Wendland,
Stephan, and Hsiao [43], Kirsch [18], Costabel and Dauge [4], Ammari and Nédélec
[2], Schmidt and Hiptmair [40], and [35, 36].

As already mentioned, another feature of the problem considered in the present
paper and in [36] is the fact that the degenerating boundary condition is posed on
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the boundary of a small hole. Boundary value problems in domain with small holes
have been studied by many authors. Asymptotic analysis techniques have been used
for example in the works of Ammari and Kang [1], Il’in [17], Maz’ya, Movchan, and
Nieves [24, 25, 26, 27, 28], Maz’ya, Nazarov, and Plamenevskij [29, 30], Nieves
[38], Nieves and Movchan [37], Novotny and Soko lowski [39]. We also note that
in Grossi and Luo [15] boundary value problems in domains with small holes have
been studied with the goal of analyzing critical points of solutions.

The method of the present paper is instead, as in [36], the Functional Analytic
Approach proposed by Lanza de Cristoforis in [19] for the analysis of singular
perturbation problems in perforated domains. The purpose of the method is to
represent the solution of a pertubed problem in terms of real analytic maps and
known functions of the perturbation parameters. In particular, we observe that
such method has been successfully used for example in Dalla Riva and Lanza de
Cristoforis [5, 6, 7, 8] and Lanza de Cristoforis [20], for the analysis of nonlinear
boundary value problems.

In scientific and engineering practice, Robin boundary condition has an impor-
tant role in many applications. Perhaps the most common use are the transport
PDEs utilized in the systems such as convective-dispersive solute transport (van
Genuchten and Alves [42]), heat transfer (e.g. temperature dependent boundary
conditions in forming of the glass containers ass seen at [12]), and convective-
diffusive mass transfer of different species. Here, the ability to define arbitrary
size of the internal perturbation with Robin boundary condition is important when
assessing processes at different scales – for example when analyzing sand fines mi-
gration from or into the well during oil or gas production the size of the perturbation
δ (wellbore diameter) will be finite at the wellbore scale assessment but δ → 0 for
field scale analysis (see e.g. [13] for various Oil and Gas applications). In [35, 36]
and in the present paper, we have considered a Robin problem as simplified model
for the transmission problem for a composite domain with imperfect conditions
along the joint boundary. Such nonlinear transmission conditions frequently ap-
pear in practical applications for various nonlinear multiphysics problems (e.g.,
[32, 33, 34]).

We begin by introducing the geometry of our problem. Therefore, we fix a
regularity parameter α ∈]0, 1[ and we take two subsets, one representing the un-
perturbed domain Ωo and another representing the shape of the hole ωi. The sets
Ωo and ωi satisfy the assumption

ωi and Ωo are bounded open connected subsets of R2 of class C1,α

such that 0 ∈ Ωo ∩ ωi and that R2 \ ωi and R2 \Ωo are connected.

We refer to Gilbarg and Trudinger [14] for the definition of sets and functions of
the Schauder class Ck,α (k ∈ N). We set

ε0 ≡ sup{θ ∈ ]0,+∞[ : εωi ⊆ Ωo, ∀ε ∈ ]−θ, θ[} .

If ε ∈]0, ε0[, then the set εωi is contained in Ωo. We think of εωi as a hole and
we remove it from the unperturbed domain. Hence, we introduce the perforated
domain Ω(ε) by setting

Ω(ε) ≡ Ωo \ εωi ∀ε ∈ ]0, ε0[ .

As the parameter ε tends to 0, the perforated set Ω(ε) degenerates to the punctured
domain Ωo \ {0}.
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As we have done in [36], for each ε ∈]0, ε0[ we study a nonlinear boundary value
problem for the Laplace operator: we consider a Neumann condition on ∂Ωo and a
nonlinear Robin condition on ε∂ωi. In order to define the boundary value problem
in the set Ω(ε), we fix two functions

go ∈ C0,α(∂Ωo) , gi ∈ C0,α(∂ωi) .

Next we take a family {Fε}ε∈]0,ε0[ of functions from R to R, and two functions δ(·)
and ρ(·) from ]0, ε0[ to ]0,+∞[.

Now for each ε ∈]0, ε0[ we consider the following boundary value problem:

∆u(x) = 0 ∀x ∈ Ω(ε) ,

∂

∂νΩo

u(x) = go(x) ∀x ∈ ∂Ωo ,

∂

∂νεωi

u(x) = δ(ε)Fε(u(x)) +
gi(x/ε)

ρ(ε)
∀x ∈ ε∂ωi ,

(1.1)

where νΩo and νεωi denote the outward unit normal to ∂Ωo and to ∂(εωi), respec-
tively.

As in in [36], our aim is to analyze the behavior of the solutions to problem
(1.1) as ε→ 0 and to understand how the size of the hole and the functions δ and
ρ that intervene in the nonlinear Robin condition affect the asymptotic behavior
of solutions to problem (1.1). We will adapt the techniques of [36] for the case of
dimension n ≥ 3 to the planar perforated domain of the present paper.

The article is organized as follows. In Section 2 we analyze a toy problem in an
annular domain. In Section 3 we transform problem (1.1) into an equivalent system
of integral equations. In Section 4, we analyze such system and we prove our main
results on the asymptotic behavior of a family of solutions and of the corresponding
energy integrals. Finally, Section 5 contains some remarks on the linear case and
Section 6 some conclusions.

2. A toy problem

As we have done in [35, 36], we consider problem (1.1) in the annular domain

Ω(ε) ≡ B2(0, 1) \ B2(0, ε) ,

where, for r > 0, the symbol B2(0, r) denotes the open ball in R2 of center 0 and
radius r. In other words, we take Ωo ≡ B2(0, 1) and ωi ≡ B2(0, 1).

We set ε0 = 1, Fε(τ) = τ for all τ ∈ R and for all ε ∈]0, ε0[, go = a, and gi = b,
where a, b ∈ R. In addition, we take two functions δ, ρ : ]0, 1[7→]0,+∞[ and for each
ε ∈]0, 1[ we consider the problem

∆u(x) = 0 ∀x ∈ B2(0, 1) \ B2(0, ε) ,

∂

∂νB2(0,1)
u(x) = a ∀x ∈ ∂B2(0, 1) ,

∂

∂νB2(0,ε)
u(x) = δ(ε)u(x) +

b

ρ(ε)
∀x ∈ ∂B2(0, ε) .

(2.1)

It is well known that for each ε ∈]0, 1[ problem (2.1) has a unique solution in

C1,α(Ω(ε)). We denote such a solution by uε.
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On the other hand, in the unperturbed domain B2(0, 1) the Neumann problem

∆u(x) = 0 ∀x ∈ B2(0, 1) ,

∂

∂νB2(0,1)
u(x) = a ∀x ∈ ∂B2(0, 1)

(2.2)

is subject to compatibility conditions on the Neumann datum on ∂B2(0, 1). In
particular, in this specific case of constant Neumann datum, problem (2.2) has a
solution if and only if

a = 0 . (2.3)

For a = 0, the Neumann problem (2.2) has the one-dimensional space of constant

functions in B2(0, 1) as the space of solutions, whereas if instead we have that a 6= 0,
then problem (2.2) does not have any solution.

As a consequence, if the compatibility condition (2.3) does not hold, the unique
solution uε of problem (2.1) clearly cannot converge to a solution of (2.2) as ε→ 0
(since problem (2.2) has no solutions). Also, as we shall see, the solutions may
diverge as ε→ 0 even if a = 0, because of the terms δ(ε) and ρ(ε). Here we wish to
investigate how the Robin condition on the region ε∂ωi influences the asymptotic
behavior of the solution as ε→ 0.

Now, our goal is to explicitly construct the solution uε of our toy problem (2.1)
and then analyze the behavior of uε as ε→ 0. We search for the solution uε in the
form

uε(x) ≡ Aε log |x|+Bε ∀x ∈ Ω(ε) ,

and we need to determine the constants Aε and Bε so that the boundary conditions
of problem (2.1) hold.

Since

∇uε(x) = Aε
x

|x|2
,

to satisfy the Neumann condition on ∂B2(0, 1), we must have

Aε = a .

On the other hand, to satisfy the Robin condition on ∂B2(0, ε), we need to determine
Bε so that

x

|x|
· a x

|x|2
= δ(ε)(a log |x|+Bε) +

b

ρ(ε)
∀x ∈ ∂B2(0, ε) , (2.4)

i.e.,
a

ε
= δ(ε)(a log ε+Bε) +

b

ρ(ε)
∀x ∈ ∂B2(0, ε) .

Therefore,

Bε =
1

δ(ε)

(a
ε
− b

ρ(ε)

)
− a log ε ,

and, as a consequence, also

uε(x) ≡ a log |x|+ 1

δ(ε)

(a
ε
− b

ρ(ε)

)
− a log ε ∀x ∈ Ω(ε) . (2.5)

We can rewrite (2.5) as

uε(x) ≡ a log |x|+ 1

εδ(ε)

(
a− b ε

ρ(ε)
− aεδ(ε) log ε

)
∀x ∈ Ω(ε) .
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This, for example, implies that if

l0 ≡ lim
ε→0

εδ(ε) log ε ∈ R , r0 ≡ lim
ε→0

ε

ρ(ε)
∈ R ,

and

a− br0 − al0 6= 0 ,

then the value of the solution uε(x) is asymptotic to (a − br0 − al0)/(εδ(ε)) as ε
tends to 0 for all fixed x ∈ Ω \ {0}.

This means that, under suitable assumptions on the behavior of δ(ε) and ρ(ε)
as ε → 0, the value of the solution uε(x) at a fixed point x ∈ Ω \ {0} behaves like
(a− br0 − al0)/(εδ(ε)). If instead for each ε positive and small enough, we take x̃ε
such that |x̃ε| = ε, then

uε(x̃ε) = a log ε+
1

εδ(ε)

(
a− b ε

ρ(ε)
− aεδ(ε) log ε

)
=

1

εδ(ε)

(
aεδ(ε) log ε+ a− b ε

ρ(ε)
− aεδ(ε) log ε

)
=

1

εδ(ε)

(
a− b ε

ρ(ε)

)
.

In particular, if

a− br0 6= 0 ,

then the value uε(x̃ε) of the solution at x̃ε is asymptotic to (a − br0)/(εδ(ε)) as
ε→ 0.

We now consider the energy integral of uε. A direct computation shows that∫
Ω(ε)

|∇uε(x)|2 dx =

∫
Ω(ε)

|∇
(
a log |x|

)
|2 dx

=

∫
Ω(ε)

a2 1

|x|2
dx

= a22π

∫ 1

ε

1

r
dr = a22π

(
− log ε

)
.

We note that equation (2.5) provides a solution of the linear toy problem (2.1)
also if δ(ε) < 0. In case δ(ε) < 0, uniqueness for the solution of problem (2.1)
may fail since indeed σ = −δ(ε) could be a mixed Steklov-Neumann eigenvalue of
problem

∆u = 0 in Ω(ε) ,

∂

∂νΩ(ε)
u = 0 on ∂B2(0, 1) ,

∂

∂νΩ(ε)
u = σu on ∂B2(0, ε) .

A detailed discussion on how to extends the results also to the case δ(ε) < 0 and
the analysis of the behavior of Steklov-Neumann eigenvalues may be the subject of
future investigations.

It is also interesting to look at a nonlinear toy problem with arbitrary functions
Fε(·). Then repeating the same line of reasoning, the only difference appears in the
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equation (2.4), that will take the form

x

|x|
· a x

|x|2
= δ(ε)Fε(a log |x|+Bε) +

b

ρ(ε)
∀x ∈ ∂B2(0, ε) . (2.6)

If we additionally assume that the functions Fε : R→ R are invertible then by (2.6)
for each ε ∈]0, 1[ the constant Bε can be uniquely found,

Bε = F−1
ε

(aρ(ε)− εb
ερ(ε)δ(ε)

)
− a log ε ,

and the analysis can be performed in a similar way as we have previously done.
However, if the functions Fε are not bijections, then the analysis of the existence
(and possibly uniqueness) of the solution becomes more complex. For example,
a solutions can be derived under specific conditions on the parameters if suitable
rescaling of the functions Fε are locally invertible. This shows how rich the problem
is even in the simple situation of a circular annular domain. On the other hand,
many of the features mentioned here are preserved for the general 2D case. Below,
we provide an accurate analysis of the general problem formulated above, making,
where appropriate, a reference to the similar feature highlighted here for the toy
problem.

3. Integral equation formulation of the boundary value problem

As in [35, 36], we use the Functional Analytic Approach, introduced by Lanza
de Cristoforis in [19], to analyze problem (1.1) when the parameter ε is close to 0.
We refer to [9] for a detailed presentation of the method. In order to apply such
approach, we need to define classical objects of potential theory. We first denote
by S2 the fundamental solution of the Laplace operator, i.e. the function from
R2 \ {0} to R defined by

S2(x) ≡ 1

2π
log |x| ∀x ∈ R2 \ {0} .

By means of S2, we construct the single layer potentials, that we use to represent
the solutions of problem (1.1). So let Ω be a bounded open connected subset of R2

of class C1,α. We introduce the single layer potential by

v[∂Ω, µ](x) ≡
∫
∂Ω

S2(x− y)µ(y) dσy ∀x ∈ R2 ,

for all µ ∈ C0(∂Ω). If µ ∈ C0(∂Ω), then v[∂Ω, µ] is continuous in R2. Moreover,
if µ ∈ C0,α(∂Ω), then the function v+[∂Ω, µ] ≡ v[∂Ω, µ]|Ω belongs to C1,α(Ω),

and the function v−[∂Ω, µ] ≡ v[∂Ω, µ]|R2\Ω belongs to C1,α
loc (R2 \ Ω). The normal

derivative of the single layer potential on ∂Ω, instead, presents a jump. To describe
such jump, we set

W ∗[∂Ω, µ](x) ≡
∫
∂Ω

νΩ(x) · ∇S2(x− y)µ(y) dσy ∀x ∈ ∂Ω ,

where νΩ denotes the outward unit normal to ∂Ω. If µ ∈ C0,α(∂Ω), the function
W ∗[∂Ω, µ] belongs to C0,α(∂Ω) and we have

∂

∂νΩ
v±[∂Ω, µ] = ∓1

2
µ+W ∗[∂Ω, µ] on ∂Ω .
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We will use density functions with zero integral mean and thus we find it conve-
nient to set

C0,α(∂Ωo)0 ≡
{
f ∈ C0,α(∂Ωo) :

∫
∂Ωo

f dσ = 0
}
.

By arguing as in [36, §3], we are ready to establish in Proposition 3.1 a corre-
spondence between the solutions of problem (1.1) and those of a (nonlinear) system
of integral equations.

Proposition 3.1. Let ε ∈]0, ε0[. Then the map from the set of triples (µo, µi, ξ) ∈
C0,α(∂Ωo)0 × C0,α(∂ωi)× R such that

− 1

2
µo(x) +

∫
∂Ωo

νΩo(x) · ∇S2(x− y)µo(y) dσy

+

∫
∂ωi

νΩo(x) · ∇S2(x− εs)µi(s) dσs = go(x) ∀x ∈ ∂Ωo ,

(3.1)

1

2
µi(t) + ε

∫
∂Ωo

νωi(t) · ∇S2(εt− y)µo(y) dσy +

∫
∂ωi

νωi(t) · ∇S2(t− s)µi(s) dσs

= εδ(ε)Fε

(∫
∂Ωo

S2(εt− y)µo(y) dσy +

∫
∂ωi

S2(t− s)µi(s) dσs

+
log ε

2π

∫
∂ωi

µi dσ +
ξ

δ(ε)ε

)
+ gi(t)

ε

ρ(ε)
∀t ∈ ∂ωi ,

(3.2)

to the set of those functions u ∈ C1,α(Ω(ε)) which solve problem (1.1), which takes
a triple (µo, µi, ξ) to the function∫

∂Ωo

S2(x− y)µo(y) dσy +

∫
∂ωi

S2(x− εs)µi(s) dσs +
ξ

δ(ε)ε
∀x ∈ Ω(ε)

is a bijection.

By Proposition 3.1 we can study the behavior of the solutions of boundary value
problem (1.1) by analyzing those of the system of integral equations (3.1)-(3.2) as
ε → 0. As we have done in [36], we make some structural assumptions on the
nonlinearity and we assume that

there exist ε1 ∈]0, ε0[, m ∈ N, a real analytic function F̃ from Rm+1 to R,

and a function η(·) from ]0, ε1[ to Rm such that η0 ≡ lim
ε→0

η(ε) ∈ Rm and that

εδ(ε)Fε

( 1

εδ(ε)
τ
)

= F̃ (τ, η(ε)) for all (τ, ε) ∈ R×]0, ε1[.

(3.3)

4. Analytic representation formulas for the solution of the
boundary value problem

Under the additional assumption (3.3), we can rewrite the set of equations (3.1)-
(3.2) as

− 1

2
µo(x) +

∫
∂Ωo

νΩo(x) · ∇S2(x− y)µo(y) dσy

+

∫
∂ωi

νΩo(x) · ∇S2(x− εs)µi(s) dσs = go(x) ∀x ∈ ∂Ωo ,

(4.1)
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1

2
µi(t) + ε

∫
∂Ωo

νωi(t) · ∇S2(εt− y)µo(y) dσy +

∫
∂ωi

νωi(t) · ∇S2(t− s)µi(s) dσs

= F̃
(
εδ(ε)

∫
∂Ωo

S2(εt− y)µo(y) dσy + εδ(ε)

∫
∂ωi

S2(t− s)µi(s) dσs

+
εδ(ε) log ε

2π

∫
∂ωi

µi dσ + ξ, η(ε)
)

+ gi(t)
ε

ρ(ε)
∀t ∈ ∂ωi ,

(4.2)

for all ε ∈]0, ε1[. In order to pass to the limit as ε → 0 in equations (4.1)-(4.2),
we need to know the asymptotic behavior for ε close to 0 of the quantities εδ(ε),
εδ(ε) log ε, and ε

ρ(ε) which appear in (4.2). As a consequence, we now assume that

l0 ≡ lim
ε→0

εδ(ε) log ε ∈ R , r0 ≡ lim
ε→0

ε

ρ(ε)
∈ R . (4.3)

Condition (4.3) implies also limε→0 εδ(ε) = 0.
In (4.1)-(4.2), we replace the quantities

εδ(ε) , εδ(ε) log ε , η(ε) ,
ε

ρ(ε)
,

by the auxiliary variables γ1, γ2, γ3, and γ4,respectively, and we introduce the
operator Λ ≡ (Λo,Λi) from ] − ε1, ε1[×Rm+3 × C0,α(∂Ωo)0 × C0,α(∂ωi) × R to
C0,α(∂Ωo)× C0,α(∂ωi) by setting

Λo[ε, γ1, γ2, γ3, γ4, µ
o, µi, ξ](x)

≡ −1

2
µo(x) +

∫
∂Ωo

νΩo(x) · ∇S2(x− y)µo(y) dσy

+

∫
∂ωi

νΩo(x) · ∇S2(x− εs)µi(s) dσs − go(x) ∀x ∈ ∂Ωo ,

(4.4)

Λi[ε, γ1, γ2, γ3, γ4, µ
o, µi, ξ](t)

≡ 1

2
µi(t) + ε

∫
∂Ωo

νωi(t) · ∇S2(εt− y)µo(y) dσy

+

∫
∂ωi

νωi(t) · ∇S2(t− s)µi(s) dσs

− F̃
(
γ1

∫
∂Ωo

S2(εt− y)µo(y) dσy + γ1

∫
∂ωi

S2(t− s)µi(s) dσs

+
γ2

2π

∫
∂ωi

µi dσ + ξ, γ3

)
− gi(t)γ4 ∀t ∈ ∂ωi ,

(4.5)

for all (ε, γ1, γ2, γ3, γ4, µ
o, µi, ξ) ∈] − ε1, ε1[×Rm+3 × C0,α(∂Ωo)0 × C0,α(∂ωi) × R.

By definitions (4.4)-(4.5), for ε ∈]0, ε1[ the system of equations

Λo[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
, µo, µi, ξ](x) = 0 ∀x ∈ ∂Ωo , (4.6)

Λi[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
, µo, µi, ξ](t) = 0 ∀t ∈ ∂ωi (4.7)
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is equivalent to the system of integral equations (4.1)-(4.2). Letting ε → 0 in
(4.6)-(4.7), we obtain the equations

− 1

2
µo(x) +

∫
∂Ωo

νΩo(x) · ∇S2(x− y)µo(y) dσy

+ νΩo(x) · ∇S2(x)

∫
∂ωi

µi(s) dσs = go(x) ∀x ∈ ∂Ωo ,

(4.8)

1

2
µi(t) +

∫
∂ωi

νωi(t) · ∇S2(t− s)µi(s) dσs

= F̃
( l0

2π

∫
∂ωi

µi dσ + ξ, η0

)
+ gi(t)r0 ∀t ∈ ∂ωi .

(4.9)

For ε ∈]0, ε1[ small enough, we would like to prove the existence of solutions
(µo, µi, ξ) to (4.6)-(4.7) around a solution of the limiting system (4.8)-(4.9). There-
fore, we further assume that

System (4.8)-(4.9) in the unknown (µo, µi, ξ) admits a solution

(µ̃o, µ̃i, ξ̃) in C0,α(∂Ωo)0 × C0,α(∂ωi)× R.
(4.10)

We now note that if (µ̃o, µ̃i, ξ̃) is a solution of the system (4.8)-(4.9), by integrating
(4.8) on ∂Ωo and by the equalities∫

∂Ωo

∫
∂Ωo

νΩo(x) · ∇S2(x− y)µ̃o(y) dσy dσx =
1

2

∫
∂Ωo

µ̃o(y) dσy

(cf. [9, Lemma 6.11]) and ∫
∂Ωo

νΩo(x) · ∇S2(x) dσx = 1

(cf. [9, Corollary 4.6]), we must have∫
∂ωi

µ̃i(s) dσs =

∫
∂Ωo

go(x) dσx .

This implies that the triple (µ̃o, µ̃i, ξ̃) in C0,α(∂Ωo)0 × C0,α(∂ωi)× R is a solution
of system (4.11)–(4.13) below

− 1

2
µo(x) +

∫
∂Ωo

νΩo(x) · ∇S2(x− y)µo(y) dσy

= go(x)− νΩo(x) · ∇S2(x)

∫
∂Ωo

go(y) dσy ∀x ∈ ∂Ωo ,

(4.11)

1

2
µi(t) +

∫
∂ωi

νωi(t) · ∇S2(t− s)µi(s) dσs

= F̃
( l0

2π

∫
∂Ωo

go dσ + ξ, η0

)
+ gi(t)r0 ∀t ∈ ∂ωi ,

(4.12)

∫
∂ωi

µi(s) dσs =

∫
∂Ωo

go(x) dσx . (4.13)

By [9, Theorem 6.25], we deduce that there exists a unique solution µ̃o in

C0,α(∂Ωo)0 of (4.11). In other words, if there exists a solution (µ̃o, µ̃i, ξ̃) of the
system (4.8)-(4.9), then µ̃o is determined as the unique solution in C0,α(∂Ωo)0 of
(4.11).
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To have a pair (µ̃i, ξ̃) in C0,α(∂ωi)× R solving (4.12)-(4.13), we observe that if

there exists ξ̃ ∈ R such that∫
∂Ωo

go(x) dσx = |∂ωi|1F̃
( l0

2π

∫
∂Ωo

go dσ + ξ̃, η0

)
+

∫
∂ωi

gi(t) dσtr0 (4.14)

then [9, Corollary 6.15] implies the existence of a unique solution µ̃i in C0,α(∂ωi)
of

1

2
µi(t) +

∫
∂ωi

νωi(t) · ∇S2(t− s)µi(s) dσs

= F̃
( l0

2π

∫
∂Ωo

go dσ + ξ̃, η0

)
+ gi(t)r0 ∀t ∈ ∂ωi ,

and such solution satisfies also∫
∂ωi

µ̃i(s) dσs =

∫
∂Ωo

go(x) dσx .

In other words this means that if there exists ξ̃ ∈ R such that equation (4.14) holds,
then there exists a unique pair (µ̃o, µ̃i) in C0,α(∂Ωo)0 × C0,α(∂ωi) such that the

triple (µ̃o, µ̃i, ξ̃) in C0,α(∂Ωo)0 × C0,α(∂ωi)× R solves system (4.8)-(4.9).
Furthermore, we note that equality (4.14) can be rewritten as

F̃
( l0

2π

∫
∂Ωo

go dσ + ξ̃, η0

)
=

1

|∂ωi|1

(
r0

∫
∂ωi

gi dσ −
∫
∂Ωo

go dσ
)
. (4.15)

Thus, in particular, if F̃ (·, η0) is not globally invertible, there can be multiple ξ̃ ∈ R
such that (4.15) holds.

In the following proposition, we study the solvability of the system of integral
equations (4.1)-(4.2), by applying the Implicit Function Theorem to Λ, under suit-

able assumptions on the partial derivative ∂τ F̃
(
l0
2π

∫
∂Ωo g

o dσ + ξ̃, η0

)
. The symbol

∂τ F̃ (τ, η) denotes the partial derivative of F̃ with respect to the first variable.

Proposition 4.1. Let assumptions (3.3) and (4.3) hold. Let (µ̃o, µ̃i, ξ̃) be as in
assumption (4.10). Assume that

∂τ F̃
( l0

2π

∫
∂Ωo

go dσ + ξ̃, η0

)
6= 0 .

Then there exist ε2 ∈]0, ε1[, an open neighborhood U of (0, l0, η0, r0) in Rm+3, an

open neighborhood V of (µ̃o, µ̃i, ξ̃) in C0,α(∂Ωo)0×C0,α(∂ωi)×R, and a real analytic
map (Mo,M i,Ξ) from ]− ε2, ε2[×U to V such that(

εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)

)
∈ U ∀ε ∈]0, ε2[ ,

and such that the set of zeros of Λ in ]− ε2, ε2[×U × V coincides with the graph of
(Mo,M i,Ξ). In particular,(

Mo[0, 0, l0, η0, r0],M i[0, 0, l0, η0, r0],Ξ[0, 0, l0, η0, r0]
)

= (µ̃o, µ̃i, ξ̃) .

Proof. Standard results of classical potential theory (see, e.g., [9], Miranda [31],
Lanza de Cristoforis and Rossi [22]), real analyticity results for integral operators
with real analytic kernel [21], assumption (3.3) and real analyticity results for the
composition operator ([3, p. 10], [16], and Valent [41, Thm. 5.2]) imply that Λ is
a real analytic operator from ] − ε1, ε1[×Rm+3 × C0,α(∂Ωo)0 × C0,α(∂ωi) × R to
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C0,α(∂Ωo) × C0,α(∂ωi). We verify that by standard calculus in Banach space the

partial differential ∂(µo,µi,ξ)Λ[0, 0, l0, η0, r0, µ̃
o, µ̃i, ξ̃] of Λ at (0, 0, l0, η0, r0, µ̃

o, µ̃i, ξ̃)

with respect to the variable (µo, µi, ξ) is delivered by

∂(µo,µi,ξ)Λ
o[0, 0, l0, η0, r0, µ̃

o, µ̃i, ξ̃](µo, µi, ξ)(x)

≡ −1

2
µo(x) +

∫
∂Ωo

νΩo(x) · ∇S2(x− y)µo(y) dσy

+ νΩo(x) · ∇S2(x)

∫
∂ωi

µi(s) dσs ∀x ∈ ∂Ωo ,

∂(µo,µi,ξ)Λ
i[0, 0, l0, η0, r0, µ̃

o, µ̃i, ξ̃](µo, µi, ξ)(t)

≡ 1

2
µi(t) +

∫
∂ωi

νωi(t) · ∇S2(t− s)µi(s) dσs

− ∂τ F̃
( l0

2π

∫
∂Ωo

go dσ + ξ̃, η0

)( l0
2π

∫
∂ωi

µi dσ + ξ
)
∀t ∈ ∂ωi ,

for all (µo, µi, ξ) ∈ C0,α(∂Ωo)0 × C0,α(∂ωi) × R. The next step is to prove that

the partial differential ∂(µo,µi,ξ)Λ[0, 0, l0, η0, r0, µ̃
o, µ̃i, ξ̃] is a homeomorphism from

C0,α(∂Ωo)0 × C0,α(∂ωi) × R onto C0,α(∂Ωo) × C0,α(∂ωi). We observe that the

partial differential ∂(µo,µi,ξ)Λ[0, 0, l0, η0, r0, µ̃
o, µ̃i, ξ̃] is a Fredholm operator of index

0: indeed it is the sum of an invertible operator and a compact operator. As
a consequence, to prove that the operator ∂(µo,µi,ξ)Λ[0, 0, l0, η0, r0, µ̃

o, µ̃i, ξ̃] is a
homeomorphism, it is enough to show that it is injective. Therefore, let us assume
that

∂(µo,µi,ξ)Λ[0, 0, l0, η0, r0, µ̃
o, µ̃i, ξ̃](µo, µi, ξ) = 0 .

We integrate the equality

∂(µo,µi,ξ)Λ
o[0, 0, l0, η0, r0, µ̃

o, µ̃i, ξ̃](µo, µi, ξ)(x) = 0 ∀x ∈ ∂Ωo ,

that together with the equalities∫
∂Ωo

∫
∂Ωo

νΩo(x) · ∇S2(x− y)µo(y) dσy dσx =
1

2

∫
∂Ωo

µo(y) dσy

(cf. [9, Lemma 6.11]) and ∫
∂Ωo

νΩo(x) · ∇S2(x) dσx = 1

(cf. [9, Corollary 4.6]), implies ∫
∂ωi

µi(s) dσs = 0 . (4.16)

Accordingly,

−1

2
µo(x) +

∫
∂Ωo

νΩo(x) · ∇S2(x− y)µo(y) dσy = 0 ∀x ∈ ∂Ωo .

Since
∫
∂Ωo µ

o dσ = 0, by [9, Theorem 6.25] we have µo = 0. Then we note that by
(4.16) equality

∂(µo,µi,ξ)Λ
i[0, 0, l0, η0, r0, µ̃

o, µ̃i, ξ̃](µo, µi, ξ)(t) = 0 ∀t ∈ ∂ωi

reads as
1

2
µi(t) +

∫
∂ωi

νωi(t) · ∇S2(t− s)µi(s) dσs − ∂τ F̃
( l0

2π

∫
∂Ωo

go dσ + ξ̃, η0

)
(4.17)
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for all t ∈ ∂ωi.
By equality (4.16), by∫

∂ωi

∫
∂ωi

νωi(t) · ∇S2(t− s)µi(s) dσs dσt =
1

2

∫
∂ωi

µi(s) dσs

(cf. [9, Lemma 6.11]), and by integrating (4.17) on ∂ωi, we deduce that ξ = 0.
Then [9, Corollary 6.15] implies that µi = 0. Hence, we have shown that the

operator ∂(µo,µi,ξ)Λ[0, 0, l0, η0, r0, µ̃
o, µ̃i, ξ̃] is injective, and as a consequence, being

a Fredholm operator of index 0, also a homeomorphism. Therefore, we can apply
the Implicit Function Theorem for real analytic maps in Banach spaces (cf. Deimling
[11, Thm. 15.3]) and deduce that there exist ε2 ∈]0, ε1[, an open neighborhood U
of (0, l0, η0, r0) in Rm+3, an open neighborhood V of (µ̃o, µ̃i, ξ̃) in C0,α(∂Ωo)0 ×
C0,α(∂ωi) × R, and a real analytic map (Mo,M i,Ξ) from ] − ε2, ε2[×U to V such
that (

εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)

)
∈ U ∀ε ∈]0, ε2[ ,

and such that the set of zeros of Λ in ]− ε2, ε2[×U × V coincides with the graph of
(Mo,M i,Ξ). In particular,(

Mo[0, 0, l0, η0, r0],M i[0, 0, l0, η0, r0],Ξ[0, 0, l0, η0, r0]
)

= (µ̃o, µ̃i, ξ̃) ,

and thus the proof is complete. �

By Proposition 4.1 we know that there exists a family of solutions to the system
of integral equations (4.1)-(4.2). Then we can exploit the representation formula
of Proposition 3.1 and introduce a family of solutions to (1.1). We do so in the
following Definition 4.2.

Definition 4.2. Let the assumptions of Proposition 4.1 hold. Then we set

u(ε, x) =

∫
∂Ωo

S2(x− y)Mo[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](y) dσy

+

∫
∂ωi

S2(x− εs)M i[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](s) dσs

+
Ξ[ε, εδ(ε), εδ(ε) log ε, η(ε), ε

ρ(ε) ]

δ(ε)ε

for all x ∈ Ω(ε) and all ε ∈]0, ε2[.

We are ready to exploit the representation formula of Proposition 3.1 and the
analyticity result of Proposition 4.1 concerning the solutions of the system of inte-
gral equations (4.1)-(4.2) in order to prove formulas for suitable restrictions of the
solutions u(ε, ·) and for the corresponding energy integral in terms of real analytic
maps. We start by considering the restriction of the solution u(ε, ·) to a set which
is “far” from the point where the hole degenerates.

Theorem 4.3. Let the assumptions of Proposition 4.1 hold. Let ΩM be a bounded
open subset of Ωo such that 0 6∈ ΩM . Then there exist εM ∈]0, ε2[ and a real analytic
map UM from ]− εM , εM [×U to C1,α(ΩM ) such that

ΩM ⊆ Ω(ε) ∀ε ∈]0, εM [ ,
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and that

u(ε, x)

= UM [ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](x) +

Ξ[ε, εδ(ε), εδ(ε) log ε, η(ε), ε
ρ(ε) ]

δ(ε)ε

(4.18)

for all x ∈ ΩM and al ε ∈]0, εM [. Moreover, if we set

ũM (x) ≡
∫
∂Ωo

S2(x− y)µ̃o(y) dσy ∀x ∈ Ωo ,

we have that UM [0, 0, l0, η0, r0] = ũM |ΩM
+ S2|ΩM

∫
∂Ωo g

o dσ, and ũM is a solution

of the Neumann problem

∆u(x) = 0 ∀x ∈ Ωo ,

∂

∂νΩo

u(x) = go(x)− ∂

∂νΩo

S2(x)

∫
∂Ωo

go dσ ∀x ∈ ∂Ωo .
(4.19)

Proof. We can take εM ∈]0, ε2[ small enough so that

ΩM ∩ εωi = ∅ ∀ε ∈]− εM , εM [ .

Recalling Definition 4.2, we set

UM [ε, γ1, γ2, γ3, γ4](x) ≡
∫
∂Ωo

S2(x− y)Mo[ε, γ1, γ2, γ3, γ4](y) dσy

+

∫
∂ωi

S2(x− εs)M i[ε, γ1, γ2, γ3, γ4](s) dσs ∀x ∈ ΩM ,

for all (ε, γ1, γ2, γ3, γ4) ∈]− εM , εM [×U . Then Proposition 4.1 and real analyticity
results for integral operators with real analytic kernel (cf. [21]) imply that UM is a
real analytic map from ]− εM , εM [×U to C1,α(ΩM ) and that equality (4.18) holds.
By Proposition 4.1, we also have UM [0, 0, l0, η0, r0] = ũM |ΩM

+ S2|ΩM

∫
∂Ωo g

o dσ,

Moreover, standard properties of the single layer potential (cf. [9, §4.4]) imply that
ũM is a solution of the Neumann problem (4.19). �

Then we consider the behavior of the rescaled solution u(ε, εt).

Theorem 4.4. Let the assumptions of Proposition 4.1 hold. Let Zm be the real
analytic map from ]− ε2, ε2[×U to R defined by

Zm[ε, γ1, γ2, γ3, γ4] ≡
∫
∂ωi

M i[ε, γ1, γ2, γ3, γ4](s) dσs ,

for all (ε, γ1, γ2, γ3, γ4) ∈]− ε2, ε2[×U . Let Ωm be a bounded open subset of R2 \ωi.
Then there exist εm ∈]0, ε2[ and a real analytic map Um from ] − εm, εm[×U to
C1,α(Ωm) such that

εΩm ⊆ Ω(ε) ∀ε ∈]0, εm[ ,

and that

u(ε, εt) = Um[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](t)

+
log ε

2π
Zm[ε, εδ(ε), εδ(ε) log ε, η(ε),

ε

ρ(ε)
] +

Ξ[ε, εδ(ε), εδ(ε) log ε, η(ε), ε
ρ(ε) ]

δ(ε)ε

∀t ∈ Ωm ,
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for all ε ∈]0, εm[. Moreover, if we set

ũm(t) ≡
∫
∂ωi

S2(t− s)µ̃i(s) dσs +

∫
∂Ωo

S2(y)µ̃o(y) dσy ∀t ∈ R2 \ ωi ,

we have that Um[0, 0, l0, η0, r0] = ũm|Ωm
, and ũm is a solution of the Neumann

problem

∆u(t) = 0 ∀t ∈ R2 \ ωi ,
∂

∂νωi

u(t) = F̃
( l0

2π

∫
∂Ωo

go dσ + ξ̃, η0

)
+ gi(t)r0 ∀t ∈ ∂ωi ,

(4.20)

and

Zm[0, 0, l0, η0, r0] =

∫
∂Ωo

go dσ .

Proof. We take εm ∈]0, ε2[ small enough and we can assume that

εΩm ⊆ Ωo ∀ε ∈]− εm, εm[ .

If ε ∈]0, εm[ then

u(ε, εt) =

∫
∂Ωo

S2(εt− y)Mo[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](y) dσy

+

∫
∂ωi

S2(εt− εs)M i[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](s) dσs

+
Ξ[ε, εδ(ε), εδ(ε) log ε, η(ε), ε

ρ(ε) ]

δ(ε)ε

=

∫
∂Ωo

S2(εt− y)Mo[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](y) dσy

+

∫
∂ωi

S2(t− s)M i[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](s) dσs

+
log ε

2π

∫
∂ωi

M i[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](s) dσs

+
Ξ[ε, εδ(ε), εδ(ε) log ε, η(ε), ε

ρ(ε) ]

δ(ε)ε
∀t ∈ Ωm

(cf. Definition 4.2). Hence, we set

Um[ε, γ1, γ2, γ3, γ4](t) ≡
∫
∂Ωo

S2(εt− y)Mo[ε, γ1, γ2, γ3, γ4](y) dσy

+

∫
∂ωi

S2(t− s)M i[ε, γ1, γ2, γ3, γ4](s) dσs ∀t ∈ Ωm ,

for all (ε, γ1, γ2, γ3, γ4) ∈] − εm, εm[×U . By arguing as in the proof of Theo-
rem 4.3, we verify that Um and the map Zm of the statement are real analytic
from ] − εm, εm[×U to C1,α(Ωm) and to R, respectively, and that equality (4.18)
holds. By Proposition 4.1, we also deduce that Zm[0, 0, l0, η0, r0] =

∫
∂Ωo g

o dσ, that
Um[0, 0, l0, η0, r0] = ũm|Ωm

. Also by standard properties of the single layer potential

(cf. [9, §4.4]), we deduce that ũm is a solution of the Neumann problem (4.20). �

Remark 4.5. We note that if
∫
∂ωi µ̃

i dσ 6= 0 (i.e., if
∫
∂Ωo g

o dσ 6= 0), then the
function ũm of Theorem 4.4 is not harmonic at infinity (cf. [9, Definition 3.21 and
Theorem 4.23]).
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Finally, we study the behavior of the energy integral
∫

Ω(ε)
|∇u(ε, x)|2 dx as the

parameter ε approaches 0.

Theorem 4.6. Let the assumptions of Proposition 4.1 hold. Let ũM and ũm be as
in Theorem 4.3 and Theorem 4.4, respectively. Then there exist εe ∈]0, ε2[ and two
real analytic maps E1 and E2 from ]− εe, εe[×U to R such that∫

Ω(ε)

|∇u(ε, x)|2 dx = E1[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
]

+ (log ε)E2[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
] ,

(4.21)

for all ε ∈]0, εe[. Moreover,

E1[0, 0, l0, η0, r0]

=

∫
∂Ωo

(
ũM (x) + S2(x)

∫
∂Ωo

go dσ
)
νΩo(x) · ∇

(
ũM (x) + S2(x)

∫
∂Ωo

go dσ
)
dσx

−
∫
∂ωi

ũm(t)νωi(t) · ∇ũm(t) dσt

(4.22)
and

E2[0, 0, l0, η0, r0] = − 1

2π

(∫
∂Ωo

go dσ
)2

. (4.23)

Proof. We set

cε ≡
log ε

2π
Zm
[
ε, εδ(ε), εδ(ε) log ε, η(ε),

ε

ρ(ε)

]
+

Ξ[ε, εδ(ε), εδ(ε) log ε, η(ε), ε
ρ(ε) ]

δ(ε)ε
∀ε ∈]0, ε2[ .

The Divergence Theorem implies that∫
Ω(ε)

|∇u(ε, x)|2 dx

=

∫
Ω(ε)

|∇
(
u(ε, x)− cε

)
|2 dx

=

∫
∂Ωo

(
u(ε, x)− cε

) ∂

∂νΩo

(
u(ε, x)− cε

)
dσx

−
∫
∂εωi

(
u(ε, x)− cε

) ∂

∂νεωi

(
u(ε, x)− cε

)
dσx

=

∫
∂Ωo

(
u(ε, x)− cε

) ∂

∂νΩo

(
u(ε, x)− cε

)
dσx

−
∫
∂ωi

(
u(ε, εt)− cε

)
νωi(t) · ∇t

(
u(ε, εt)− cε

)
dσt ,

for all ε ∈]0, ε2[. Then we take UM and εM as in Theorem 4.3, with

ΩM ≡ Ωo \ B2(0, rM ) ,
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for some rM > 0 such that B2(0, rM ) ⊆ Ωo. We verify that if ε ∈]0, εM [, then∫
∂Ωo

(
u(ε, x)− cε

) ∂

∂νΩo

(
u(ε, x)− cε

)
dσx

=

∫
∂Ωo

UM [ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](x)

× νΩo(x) · ∇UM [ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](x) dσx

− log ε

2π
Zm[ε, εδ(ε), εδ(ε) log ε, η(ε),

ε

ρ(ε)
]

×
∫
∂Ωo

νΩo(x) · ∇UM [ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](x) dσx .

Similarly, if Um and εm are as in Theorem 4.4, with

Ωm ≡ B2(0, rm) \ ωi ,

for some rm > 0 such that B2(0, rm) ⊇ ωi, then if ε ∈]0, εm[,∫
∂ωi

(
u(ε, εt)− cε

)
νωi(t) · ∇t

(
u(ε, εt)− cε

)
dσt

=

∫
∂ωi

Um[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](t)

× νωi(t) · ∇Um[ε, εδ(ε), εδ(ε) log ε, η(ε),
ε

ρ(ε)
](t) dσt .

Therefore, we set εe ≡ min{εM , εm} and

E1[ε, γ1, γ2, γ3, γ4]

≡
∫
∂Ωo

UM [ε, γ1, γ2, γ3, γ4](x)νΩo(x) · ∇UM [ε, γ1, γ2, γ3, γ4](x) dσx

−
∫
∂ωi

Um[ε, γ1, γ2, γ3, γ4](t)νωi(t) · ∇Um[ε, γ1, γ2, γ3, γ4](t) dσt

and

E2[ε, γ1, γ2, γ3, γ4]

≡ − 1

2π
Zm[ε, γ1, γ2, γ3, γ4]

∫
∂Ωo

νΩo(x) · ∇UM [ε, γ1, γ2, γ3, γ4](x) dσx

for all (ε, γ1, γ2, γ3, γ4) ∈]− εe, εe[×U . We verify that the maps E1 and E2 are real
analytic from ]− εe, εe[×U to R and that equality (4.21) holds. Moreover, we also
have

E1[0, 0, l0, η0, r0]

=

∫
∂Ωo

(
ũM (x) + S2(x)

∫
∂Ωo

go dσ
)
νΩo(x) · ∇

(
ũM (x) + S2(x)

∫
∂Ωo

go dσ
)
dσx

−
∫
∂ωi

ũm(t)νωi(t) · ∇ũm(t) dσt

and

E2[0, 0, l0, η0, r0]
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= − 1

2π

∫
∂Ωo

go dσ

∫
∂Ωo

νΩo(x) · ∇
(
ũM (x) + S2(x)

∫
∂Ωo

go dσ
)
dσx

= − 1

2π

(∫
∂Ωo

go dσ
)2

,

and accordingly equalities (4.22) and (4.23) hold. �

5. Remarks on the linear case

In this section, we make further considerations on the asymptotic behavior of
the solution in the linear case as the parameter ε tends to 0. Clearly, we can apply
the results of Section 3 to the linear case. In particular, if we have

Fε(τ) = τ ∀(τ, ε) ∈ R×]0, ε0[ ,

problem (1.1) reduces to the linear problem

∆u(x) = 0 ∀x ∈ Ω(ε) ,

∂

∂νΩo

u(x) = go(x) ∀x ∈ ∂Ωo ,

∂

∂νεωi

u(x) = δ(ε)u(x) +
gi(x/ε)

ρ(ε)
∀x ∈ ε∂ωi .

(5.1)

We also know that for each ε ∈]0, ε0[, problem (5.1) has a unique solution in

C1,α(Ω(ε)), which we denote by u[ε]. Clearly,

εδ(ε)Fε

( 1

εδ(ε)
τ
)

= τ ∀(τ, ε) ∈ R×]0, ε0[ ,

and thus we can take for example

η(ε) = 0 ∀ε ∈]0, ε0[ ,

F̃ (τ, η) = τ ∀(τ, η) ∈ R2 .

In particular,

η0 = 0 ,

∂τ F̃ (τ, η) = 1 ∀(τ, η) ∈ R2 .

All the assumptions in Sections 3 and 4 are satisfied. In particular, the solutions
of the corresponding limiting system exist and are unique (see assumption (4.10)).
In the linear case, equations (4.8)-(4.9) become

− 1

2
µo(x) +

∫
∂Ωo

νΩo(x) · ∇S2(x− y)µo(y) dσy

+ νΩo(x) · ∇S2(x)

∫
∂ωi

µi(s) dσs = go(x) ∀x ∈ ∂Ωo ,

(5.2)

1

2
µi(t) +

∫
∂ωi

νωi(t) · ∇S2(t− s)µi(s) dσs

=
l0
2π

∫
∂ωi

µi dσ + ξ + gi(t)r0 ∀t ∈ ∂ωi .
(5.3)
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By arguing as in the proof of Proposition 4.1, one can prove that the system (5.2)-

(5.3) in the unknown (µo, µi, ξ) admits a unique solution (µ̃o, µ̃i, ξ̃) in C0,α(∂Ωo)0×
C0,α(∂ωi)× R. In particular, by integrating (5.2), we recall that we obtain∫

∂ωi

µ̃i(s) dσs =

∫
∂Ωo

go(x) dσx .

By integrating (5.3), we deduce that∫
∂Ωo

go(x) dσx = |∂ωi|1
l0
2π

∫
∂Ωo

go(x) dσx + |∂ωi|1ξ̃ + r0

∫
∂ωi

gi(t) dσt ,

which implies

ξ̃ =
1

|∂ωi|1

((
1− |∂ωi|1

l0
2π

)∫
∂Ωo

go(x) dσx − r0

∫
∂ωi

gi(t) dσt

)
.

We note that in case Ωo = ωi = B2(0, 1) and

go(x) = a ∀x ∈ ∂B2(0, 1) , gi(t) = b ∀t ∈ ∂B2(0, 1) ,

we obtain

ξ̃ =
((

1− 2π
l0
2π

)
a− br0

)
=
(
a− al0 − br0

)
.

Therefore, we recover also the results of Section 2.

6. Conclusions

In this article, we have considered a perforated domain Ω(ε) of R2 with a small
hole of size ε and we have studied the behavior of the solution to a degenearing
mixed Neumann-Robin problem in Ω(ε) as the size ε of the small hole tends to 0.
In addition to the geometric degeneracy of the problem, the nonlinear ε-dependent
Robin condition may degenerate into a Neumann condition for ε = 0 and the Robin
datum may diverge to infinity. Our goal was to prove the existence of solutions
for ε small and positive and to study the corresponding asymptotic behavior as
ε→ 0. Instead of the more common methods of Asymptotic Analysis dealing with
asymptotic expansions, here we have employed the Functional Analytic Approach
proposed by Lanza de Cristoforis. Such method has the advantages to be applicable
to nonlinear boundary conditions as in the present paper and to provide rigorous
justifications to power series expansions. Moreover, such approach is quite versatile:
it has been applied to elliptic systems of partial differential equations (see Dalla
Riva and Lanza de Cristoforis [5, 6]) and currently some preliminary results have
been obtained also in order to consider parabolic equations (see Dalla Riva and
Luzzini [10] and Luzzini [23]).

Acknowledgements. The authors acknowledge the support from EU through the
H2020-MSCA-RISE-2020 project EffectFact, Grant agreement ID: 101008140. The
authors thank Dr. Luigi Provenzano for valuable discussions on Steklov eigenvalues
in relation to the toy problem of Section 2. P. Musolino also acknowledges the
support of the SPIN Project “DOMain perturbation problems and INteractions Of
scales - DOMINO” of the Ca’ Foscari University of Venice. Part of the work was
done while P. Musolino was visiting M. Dutko at Rockfield Software Limited. P.
Musolino wishes to thank M. Dutko and Rockfield Software Limited for the kind
hospitality. P. Musolino is a member of the Gruppo Nazionale per l’Analisi Matem-
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