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Abstract
The �

1
-ball is a nicely structured feasible set that is widely used in many fields (e.g., 

machine learning, statistics and signal analysis) to enforce some sparsity in the 
model solutions. In this paper, we devise an active-set strategy for efficiently dealing 
with minimization problems over the �

1
-ball and embed it into a tailored algorith-

mic scheme that makes use of a non-monotone first-order approach to explore the 
given subspace at each iteration. We prove global convergence to stationary points. 
Finally, we report numerical experiments, on two different classes of instances, 
showing the effectiveness of the algorithm.
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1 Introduction

In this paper, we focus on the following problem:

where � ∶ ℝ
n
→ ℝ is a function whose gradient is Lipschitz continuous with con-

stant L > 0 , ‖x‖1 denotes the �1-norm of the vector x and � is a suitably chosen posi-
tive parameter.

Problem (1) includes, as a special case, the so called LASSO problem, obtained 
when

with A and b being a m × n matrix and a m-dimensional vector, respectively. Here 
and in the following, ‖ ⋅ ‖ denotes the Euclidean norm. Loosely speaking, in LASSO 
problems the �1-norm constraint is able to induce sparsity in the final solution, and 
then these problems are widely used in statistics to build regression models with a 
small number of non-zero coefficients [17, 32].

Standard optimization algorithms (like, e.g., interior-point methods), besides 
being very expensive when the number of variables increases, do no properly exploit 
the main features and structure of the considered problem. This is the reason why, in 
the last decade, a number of first-order methods have been considered in the litera-
ture to deal with problem (1). Those methods can be divided into two main classes: 
projection-based approaches, like, e.g., gradient-projection methods [15, 31] and 
limited-memory projected quasi-Newton methods [30], which efficiently handle the 
problem by making use of tailored projection strategies [8, 16], and projection-free 
methods, like, e.g., Frank–Wolfe variants [5, 6, 25, 26], that embed a cheap linear 
minimization oracle.

As highlighted before, the main goal when using the �1 ball is to get very sparse 
solutions (i.e., solutions with many zero components). In this context, it hence 
makes sense to devise strategies that allow to quickly identify the set of zero com-
ponents in the optimal solution. This would indeed guarantee a significant speed-up 
of the optimization process. A number of active-set strategies for structured feasible 
sets is available in the literature (see, e.g., [3, 4, 7, 9, 10, 13, 18, 19, 22–24, 28] and 
references therein), but none of those directly handles the �1 ball.

In this paper, inspired by the work carried out in [10], we propose a tailored 
active-set strategy for problem (1) and embed it into a first-order projection-based 
algorithm. At each iteration, the method first sets to zero the variables that are 
guessed to be zero at the final solution. This is done by means of the tailored active-
set estimate, which aims at identifying the manifold where the solutions of problem 
(1) lie, while guaranteeing, thanks to a descent property, a reduction of the objective 
function at each iteration. Then, the remaining variables, i.e., those variables esti-
mated to be non-zero at the final solution, are suitably modified by means of a non-
monotone gradient-projection step.

(1)
min �(x)

‖x‖1 ≤ �,

�(x) = ‖Ax − b‖2,
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The paper is organized as follows. In Sect. 2, we describe the active-set strategy 
and analyze the descent property connected to it. We then devise, in Sect. 3, our 
first-order optimization algorithm and carry out a global convergence analysis. We 
further report a numerical comparison with some well-known first order methods 
using two different classes of �1-constrained problems (that is, LASSO and con-
strained sparse logistic regression) in Sect. 4. Finally, we draw some conclusions in 
Sect. 5.

2  The active‑set estimate

Since the feasible set of problem (1) is convex and can be written as convex combi-
nation of the vectors ±�ei , i = 1,… , n , we can characterize the stationary points as 
follows.

Definition 1 A feasible point x∗ of problem (1) is stationary if and only if

In the next proposition, we state some “complementarity-type” conditions for sta-
tionary points of problem (1).

Proposition 1 Let x∗ be a stationary point of problem (1). Then

 (i) x∗
i
> 0 ⇒ ∇𝜑(x∗)T (𝜏ei − x∗) = 0,

 (ii) x∗
i
< 0 ⇒ ∇𝜑(x∗)T (−𝜏ei − x∗) = 0.

Proof If |x∗
i
| = � , then x∗ = � sgn (x∗

i
) ei and the result trivially holds. To prove 

point (i), now let 0 < x∗
i
< 𝜏 . Taking into account (2), by contradiction we assume 

that

Let d+ ∈ ℝ
n be defined as follows:

We have

(2)
∇�(x∗)T (�ei − x∗) ≥ 0, i = 1,… , n,

∇�(x∗)T (−�ei − x∗) ≥ 0, i = 1,… , n.

(3)∇𝜑(x∗)T (𝜏ei − x∗) > 0.

d+ =
x∗
i

� − x∗
i

(x∗ − �ei).

(4)

‖x∗ + d+‖1 =
�
1 +

x∗
i

� − x∗
i

��
j≠i

�x∗
j
�+����x

∗
i
+

x∗
i

� − x∗
i

(x∗
i
− �)

����

≤

�
1 +

x∗
i

� − x∗
i

�
(� − �x∗

i
�) = �,
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so that d+ is a feasible direction in x∗ . Therefore, (3) and (4) imply that d+ is a fea-
sible descent direction for �(⋅) in x∗ . This contradicts the fact that x∗ is a stationary 
point of problem (1) and point (i) is proved. To prove point (ii), we can use the same 
arguments as above, considering −𝜏 < x∗

i
< 0 and, assuming by contradiction that 

∇𝜑(x∗)T (−𝜏ei − x∗) > 0 , we obtain that

is such that ‖x∗ + d−‖1 ≤ � , that is, d− is a feasible and descent direction for �(⋅) in 
x∗ , leading to a contradiction.   ◻

With little abuse of standard terminology, given a stationary point x∗ we say 
that a variable x∗

i
 is active if x∗

i
= 0 , whereas a variable x∗

i
 is said to be non-active 

if x∗
i
≠ 0 . We can thus define the active set Ā�1

(x∗) and the non-active set N̄�1
(x∗) 

as follows:

Now, we show how we estimate these sets starting from any feasible point x of prob-
lem (1). In order to obtain such an estimate we first need to suitably reformulate our 
problem (1) by introducing a dummy variable z. Let �̄�(x, z) ∶ ℝ

n+1
→ ℝ be the func-

tion defined as �̄�(x, z) = 𝜑(x) for all (x, z). Problem (1) can then be rewritten as

Every feasible point of problem  (5) can be expressed as convex combination of 
{±𝜏e1,… ,±𝜏en, 𝜏en+1} ⊂ ℝ

n+1 . Therefore, we can define the following matrix, 
where I denotes the n × n identity matrix:

and we obtain the following reformulation of (1) as a minimization problem over the 
unit simplex:

Note that, given any feasible point x of problem (1), we can compute a feasible point 
y of problem (6) such that

d− =
|x∗

i
|

� + x∗
i

(x∗ + �ei)

Ā�1
(x∗) = {i ∶ x∗

i
= 0}, N̄�1

(x∗) = {1,… , n} ⧵ Ā�1
(x∗).

(5)
min �̄�(x, z)

‖x‖1 + z ≤ 𝜏,

z ≥ 0.

M̄ = 𝜏

⎡⎢⎢⎢⎣

I − I

0

⋮

0

0 … 0 0 … 0 1

⎤⎥⎥⎥⎦
∈ ℝ

(n+1)×(2n+1),

(6)
min f (y) = �̄�(M̄y)

eTy = 1,

y ≥ 0.
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The rationale behind our approach is sketched in the three following points: 

 (i) For any feasible point x of problem (1), by (7) we can compute a feasible point 
y of problem (6) such that 

 (ii) According to (8), for every feasible point x of problem (1) we have that 

 Thus, it is natural to estimate a variable xi as active at x∗ if both yi and yn+i 
are estimated to be zero at the point corresponding to x∗ in the y space. To 
estimate the zero variables among y1,… , y2n+1 we use the active-set estimate 
described in [10], specifically devised for minimization problems over the 
unit simplex.

 (iii) Then, we are able to go back in the original x space to obtain an active-set esti-
mate of problem (1) without explicitly considering the variables y1,… , y2n+1 
of the reformulated problem.

Remark 1 The introduction of the dummy variable z is needed in order to get a refor-
mulation of problem (1) as a minimization problem over the unit simplex satisfy-
ing  (8). Since every feasible point x of problem (1) can be expressed as a convex 
combination of the vertices of the polyhedron {x ∈ ℝ

n ∶ ‖x‖1 ≤ �} , a straightfor-
ward reformulation of problem (1) would then be the following:

with M = �
[
I −I

]
 . However, this reformulation does not work for our purposes, 

as there exist feasible points x of problem (1) for which no y feasible for problem 
(10) satisfying  (8) can be found. In particular, if x is in the interior of the �1-ball 
(e.g., the origin), we cannot find any y feasible for problem (10) such that (8) holds.

Considering problem (6) and using the active-set estimate proposed in [10] for 
minimization problems over the unit simplex, given any feasible point y of prob-
lem (6) we define:

(7)

yi =
1

�
max{0, xi}, i = 1,… , n,

yn+i =
1

�
max{0,−xi}, i = 1,… , n,

y2n+1 =
� − ‖x‖1

�
.

(8)yi = 0 ⇔ xi ≤ 0 and yn+i = 0 ⇔ xi ≥ 0, i = 1,… , n.

(9)xi = 0 ⇔ yi = yn+i = 0, i = 1,… , n.

(10)min{�(My) ∶ eTy = 1, y ≥ 0},

(11)A(y) ={i ∶ yi ≤ �∇f (y)T (ei − y)},
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where � is a positive parameter. A(y) contains the indices of the variables that are 
estimated to be zero at a certain stationary point and N(y) contains the indices of 
the variables that are estimated to be positive at the same stationary point (see [10] 
for details of how these formulas are obtained). As mentioned above, taking into 
account (9), we estimate a variable xi as active for problem (1) if both yi and yn+1 are 
estimated to be zero. Namely, 

Now we show how A�1
(x) and N�1

(x) can be expressed without explicitly con-
sidering the variables y and the objective function f(y) of the reformulated problem. 
This allows us to work in the original x space, avoiding to double the number of 
variables in practice.

To obtain the desired relations, first observe that

and

Let us distinguish two cases: 

 (i) xi ≥ 0 . Recalling (11)–(12), we have that i ∈ A(y) if and only if 

 and (n + i) ∈ A(y) if and only if 

 (ii) xi < 0 . Similarly to the previous case, we have that i ∈ A(y) if and only if 

 and (n + i) ∈ A(y) if and only if 

(12)N(y) ={i ∶ yi > 𝜖∇f (y)T (ei − y)},

(13a)A�1
(x) =

{
i ∈ {1,… , n} ∶ i ∈ A(y) and (n + i) ∈ A(y)

}
,

(13b)N�1
(x) =

{
i ∈ {1,… , n} ∶ i ∈ N(y) or (n + i) ∈ N(y)

}
.

(14)∇f (y) = M̄T∇�̄�(x) = 𝜏

⎡⎢⎢⎣

∇𝜑(x)

−∇𝜑(x)

0

⎤⎥⎥⎦

T

,

∇f (y)Ty = ∇�̄�(x)TM̄y =
[
∇𝜑(x)T 0

]
M̄y = ∇𝜑(x)Tx.

(15)
0 ≤

1

�
xi = yi ≤ �∇f (y)T (ei − y) = �(∇if (y) − ∇f (y)Ty)

= �(�∇i�(x) − ∇�(x)Tx) = �∇�(x)T (�ei − x)

(16)
−
1

�
xi ≤ 0 = yn+i ≤ �∇f (y)T (en+i − y) = �(∇n+if (y) − ∇f (y)Ty)

= �(−�∇i�(x) − ∇�(x)Tx) = −�∇�(x)T (�ei + x).

(17)
1

𝜏
xi < 0 = yi ≤ 𝜖∇f (y)T (ei − y) = 𝜖(∇if (y) − ∇f (y)Ty)

= 𝜖(𝜏∇i𝜑(x) − ∇𝜑(x)Tx) = 𝜖∇𝜑(x)T (𝜏ei − x)
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From (15), (16), (17) and (18), we thus obtain

Let us highlight again that A�1
(x) and N�1

(x) do not depend on the variables y and on 
the objective function f(y) of the reformulated problem, so no variable transforma-
tion is needed in practice to estimate the active set of problem (1). In the following, 
we prove that under specific assumptions, Ā�1

(x∗) is detected by our active-set esti-
mate, when evaluated in points sufficiently close to a stationary point x∗.

Proposition 2 If x∗ is a stationary point of problem (1), then there exists an open 
ball B(x∗, �) with center x∗ and radius 𝜌 > 0 such that, for all x ∈ B(x∗, �) , we have

Furthermore, if the following “strict-complementarity-type” assumption holds:

then, for all x ∈ B(x∗, �) , we have

Proof Let i ∈ N�1
(x∗) , then |x∗

i
| > 0 . Proposition 1 implies that either

or

Then, the continuity of ∇� and the definition of N�1
(x) imply that there exists an 

open ball B(x∗, �) with center x∗ and radius 𝜌 > 0 such that, for all x ∈ B(x∗, �) , we 
have that i ∈ N�1

(x) . This proves (22) and, consequently, also (21). If (23) holds, the 
definition of N�1

(x) and the continuity of ∇� ensures that Ā�1
(x∗) ⊆ A�1

(x) for all 
x ∈ B(x∗, �) , implying that (24) and (25) hold.   ◻

(18)
0 < −

1

𝜏
xi = yn+i ≤ 𝜖∇f (y)T (en+i − y) = 𝜖(∇n+if (y) − ∇f (y)Ty)

= 𝜖(−𝜏∇i𝜑(x) − ∇𝜑(x)Tx) = −𝜖∇𝜑(x)T (𝜏ei + x).

(19)
A�1

(x) = {i ∶ � �∇�(x)T (�ei + x) ≤ 0 ≤ xi ≤ � �∇�(x)T (�ei − x) or

� �∇�(x)T (�ei + x) ≤ xi ≤ 0 ≤ � �∇�(x)T (�ei − x)},

(20)N�1
(x) = {1,… , n} ⧵ A�1

(x).

(21)A�1
(x) ⊆ Ā�1

(x∗),

(22)N̄�1
(x∗) ⊆ N�1

(x).

(23)x∗
i
= 0 ⇒ ∇𝜑(x∗)T (𝜏ei − x∗) > 0 ∧ ∇𝜑(x∗)T (𝜏ei + x∗) < 0,

(24)A�1
(x) =Ā�1

(x∗),

(25)N̄�1
(x∗) =N�1

(x).

∇𝜑(x∗)T (𝜏ei − x∗) = 0 if x∗
i
> 0,

∇𝜑(x∗)T (−𝜏ei − x∗) = 0 if x∗
i
< 0.
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2.1  Descent property

So far, we have obtained the active and non-active set estimates (19)–(20) passing 
through a variable transformation which allowed us to adapt the active and non-
active set estimates proposed in [10] to our problem (1).

In [10], the active and non-active set estimates, designed for minimization 
problems over the unit simplex, guarantee a decrease in the objective function 
when setting (some of) the estimated active variables to zero and moving a suit-
able estimated non-active variable (in order to maintain feasibility).

In the following, we show that the same property holds for problem (1) using 
the active and non-active set estimates (19)–(20). To this aim, in the next proposi-
tion we first introduce the index set J�1

(x) and relate it with N�1
(x).

Proposition 3 Let x ∈ ℝ
n be a feasible non-stationary point of problem  (1) and 

define

Then, J�1
(x) ⊆ N�1

(x).

Proof Let y be the point given by (7) and consider the reformulated problem (6). Let 
A(y) and N(y) be the index sets given in (11)–(12), that is, the active and non-active 
set estimates for problem (6), respectively.

From the expression of ∇f (y) given in (14), and exploiting the hypothesis that x is 
non-stationary (implying that ∇�(x) ≠ 0) , it follows that

Since ∇2n+1f (y) = 0 (again from (14)), it follows that

From Proposition 1 in [10], there exists � ∈ {1,… , 2n} such that

In particular, we can rewrite (27) as

Taking into account (26), we obtain

Now, let j ∈ {1,… , n} be the following index:

J�1
(x) =

{
j ∶ j ∈ Argmax i=1,…,n

{|∇i�(x)|
}}

.

(26)min
i=1,…,2n+1

{∇if (y)} < 0.

(2n + 1) ∉ Argmin i=1,…,2n+1{∇if (y)}.

(27)� ∈ Argmin i=1,…,2n{∇if (y)},

(28)� ∈ N(y).

∇� f (y) = � min
i=1,…,n

{∇1�(x),… ,∇n�(x),−∇1�(x),… ,−∇n�(x)}.

(29)−|∇� f (y)| ≤ −�|∇i�(x)|, ∀i = 1,… , n.
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Using again (14), we get |∇� f (y)| = |∇jf (y)| = �|∇j�(x)| . This, combined with (29), 
implies that

Finally, using (28) and (30), it follows that at least one index between j and (n + j) 
belongs to N(y). Therefore, from (13b) we have that j ∈ N�1

(x) and the assertion is 
proved.   ◻

Now, we need an assumption on the parameter � appearing in (19)–(20). It will 
allow us to prove the subsequent proposition, stating that �(x) decreases if we set the 
variables in A�1

(x) to zero and suitably move a variable in J�1
(x).

Assumption 1 Assume that the parameter � appearing in the estimates  (19)–(20) 
satisfies the following conditions:

where C > 0 is a given constant.

Proposition 4 Let Assumption 1 hold. Given a feasible non-stationary point x of 
problem  (1), let j ∈ J�1

(x) and I = {1,… , n} ⧵ {j} . Let Â�1
(x) be a set of indices 

such that Â�1
(x) ⊆ A�1

(x) . Let x̃ be the feasible point defined as follows:

Then,

where C > 0 is the constant appearing in Assumption 1.

Proof Define

Since ∇� is Lipschitz continuous with constant L, from known results (see, e.g., 
[29]) we can write

(30)j =

{
�, if � ∈ {1,… , n},

� − n, if � ∈ {n + 1,… , 2n}.

j ∈ Argmax i=1,…,n

{|∇i�(x)|
}
.

0 < 𝜖 ≤
1

𝜏2nL(2C + 1)
,

x̃Â�1
(x) = 0; x̃I⧵Â�1

(x) = xI⧵Â�1
(x); x̃j = xj − sgn (∇j𝜑(x))

∑
h∈Â�1

(x)

|xh|.

𝜑(x̃) − 𝜑(x) ≤ −CL‖x̃ − x‖2,

(31)Â+ = Â�1
(x) ∩ {i ∶ xi ≠ 0}.

𝜑(x̃) ≤ 𝜑(x) + ∇𝜑(x)T (x̃ − x) +
L

2
‖x̃ − x‖2

= 𝜑(x) + ∇𝜑(x)T (x̃ − x) +
L(2C + 1)

2
‖x̃ − x‖2 − CL‖x̃ − x‖2
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and then, in order to prove the proposition, what we have to show is that

From the definition of x̃ , we have that

Furthermore,

Since j ∈ J�1
(x) , from the definition of J�1

(x) it follows that −|∇i�(x)| ≥ −|∇j�(x)| 
for all i ∈ {1,… , n} . Therefore, we can write

Using (19) and (35), for all i ∈ Â+ we have that

and then,

Combining this inequality with (33), we obtain

From  (34) and  (36), it follows that the left-hand side term of  (32) is less than or 
equal to

(32)∇𝜑(x)T (x̃ − x) +
L(2C + 1)

2
‖x̃ − x‖2 ≤ 0.

(33)
‖x̃ − x‖2 = �

i∈Â+

x2
i
+

� �
i∈Â+

�xi�
�2

≤
�
i∈Â+

x2
i
+ �Â+� �

i∈Â+

x2
i

= (�Â+� + 1)
�
i∈Â+

x2
i
.

(34)

∇𝜑(x)T (x̃ − x) = −
∑
i∈Â+

∇i𝜑(x)xi − |∇j𝜑(x)|
∑
i∈Â+

|xi|

=
∑
i∈Â+

|xi|(−∇i𝜑(x) sgn (xi) − |∇j𝜑(x)|).

(35)
∇�(x)Tx =

n�
i=1

∇i�(x) sgn (xi) �xi� ≥
n�
i=1

−�∇j�(x)� �xi�

= −�∇j�(x)� ‖x‖1 ≥ −�∇j�(x)� �.

xi ≤ ��(∇i�(x)� − ∇�(x)Tx) ≤ ��2(∇i�(x) + |∇j�(x)|),
−xi ≤ −��(∇i�(x)� + ∇�(x)Tx) ≤ ��2(−∇i�(x) + |∇j�(x)|),

|xi| = sgn (xi) xi ≤ 𝜖𝜏2(∇i𝜑(x) sgn (xi) + |∇j𝜑(x)|), ∀i ∈ Â+.

(36)‖x̃ − x‖2 ≤ 𝜖𝜏2(�Â+� + 1)
�
i∈Â+

�xi�(∇i𝜑(x) sgn (xi) + �∇j𝜑(x)�)

(
𝜖𝜏2

L(2C + 1)

2
(|Â+| + 1) − 1

) ∑
i∈Â+

|xi|(∇i𝜑(x) sgn (xi) + |∇j𝜑(x)|)
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The desired result is hence obtained, since inequality (32) follows from the assump-
tion we made on � , using the fact that |Â+| ≤ n − 1 (as a consequence of Proposi-
tion 3) and 

∑
i∈Â+ �xi�(∇i𝜑(x) sgn (xi) + �∇j𝜑(x)�) ≥ 0 (as a consequence of (36)).  

 ◻

We would like to highlight that the parameter � depends on n by Assumption 1. 
However, from the proof of the above proposition, it is clear that n could be replaced 
by |Â+| + 1 , with Â+ defined as in (31). Note that |Â+| might be much smaller than n.

3  The algorithm

Based on the active and non-active set estimates described above, we design a suitable 
active-set algorithm for solving problem (1), exploiting the property of our estimates and 
using an appropriate projected-gradient direction. At the beginning of each iteration k, 
we have a feasible point xk and we compute A�1

(xk) and N�1
(xk) , which, for ease of nota-

tion, we will refer to as Ak
�1

 and Nk
�1

 , respectively. Then, we perform two main steps:

• First, we produce the point x̃k as explained in Proposition 4, obtaining a decrease 
in the objective function (if xk ≠ x̃k);

• Afterward, we move all the variables in Nk
�1

 by computing a projected-gradient 
direction dk over the given non-active manifold and using a non-monotone Arm-
ijo line search. In particular, the reference value �̄� for the line search is defined as 
the maximum among the last nm function evaluations, with nm being a positive 
parameter.

In Algorithm 1, we report the scheme of the proposed algorithm, named Active-
Set algorithm for minimization over the �1-ball (AS- �1).
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The search direction dk at x̃k (see line 7 of Algorithm 1) is made of two subvec-
tors: dk

Ak
�1

 and dk
Nk
�1

 . Since we do not want to move the variables in Ak
�1

 , we simply set 

dk
Ak
�1

= 0 . For dk
Nk
�1

 , we compute a projected gradient direction in a properly defined 

manifold. In particular, let BNk
�1

 be the set defined as

and let P(⋅)B
Nk
𝓁1

 denote the projection onto the BNk
�1

 . We also define

where 0 < m ≤ mk ≤ m < ∞ and with m , m being two constants. Then, dk
Nk
�1

 is 

defined as

In the practical implementation of AS- �1 , we compute the coefficient mk so that the 
resulting search direction is a spectral (or Barzilai–Borwein) gradient direction. This 
choice will be described in Sect. 4.

3.1  Global convergence analysis

In order to prove global convergence of AS- �1 to stationary points, we need some 
intermediate results. We first point out a property of our search directions, using 
standard results on projected directions.

Lemma 1 Let Assumption 1 hold and let {xk} be the sequence of points produced 
by AS- �1 . At every iteration k, we have that

(37)BNk
�1

= {x ∈ ℝ
n ∶ ‖x‖1 ≤ �, xi = 0, ∀i ∉ Nk

�1
}

(38)x̂k = P
(
x̃k − mk∇𝜑(x̃k)

)
B
Nk
�1

,

(39)dk
Nk
�1

= x̂k − x̃k.
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and {dk} is a bounded sequence.

Proof Using the properties of the projection, at very iteration k we have

with BNk
�1

 and x̂k being defined as in (37) and (38), respectively. Choosing x = x̃k in 
the above inequality and recalling the definition of dk given in (39), we get

Since mk ≤ m , for all k we obtain (40).
Furthermore, from the property of the projection we have that

Since mk ≤ m and {∇𝜑(x̃k)} is bounded, it follows that {dk} is bounded.   ◻

We now prove that the sequence {�̄�k} converges.

Lemma 2 Let Assumption 1 hold and let {xk} be the sequence of points produced 
by AS- �1 . Then, the sequence {�̄�k} is non-increasing and converges to a value �̄�.

Proof First note that the definition of �̄�k ensures �̄�k ≤ 𝜑(x̃0) and hence 𝜑(x̃k) ≤ 𝜑(x̃0) 
for all k. Moreover, we have that

Since 𝜑(x̃k+1) ≤ �̄�k by the definition of the line search, we derive �̄�k+1 ≤ �̄�k , which 
proves that the sequence {�̄�k} is non-increasing. This sequence is bounded from 
below by the minimum of � over the unit simplex and hence converges.   ◻

The next intermediate result shows that the distance between {xk} and {x̃k} con-
verges to zero and that the sequences {�(xk)} and {𝜑(x̃k)} converge to the same 
point, using similar arguments as in [20].

Proposition 5 Let Assumption 1 hold and let {xk} be the sequence of points pro-
duced by AS- �1 . Then,

(40)∇𝜑(x̃k)Tdk ≤ −
1

m
‖dk‖2

(x̃k − mk∇𝜑(x̃k) − x̂k)T (x − x̂k) ≤ 0, ∀x ∈ BNk
�1

,

∇𝜑(x̃k)Tdk ≤ −
1

mk
‖dk‖2.

‖dk‖ = ‖P(x̃k − mk∇𝜑(x̃k)) − x̃k‖ ≤ mk‖∇𝜑(x̃k)‖.

�̄�k+1 = max
0≤i≤min{nm,k+1}

𝜑(x̃k+1−i) ≤ max{�̄�k,𝜑(x̃k+1)}.

(41)lim
k→∞

‖x̃k − xk‖ = 0,

(42)lim
k→∞

𝜑(x̃k) = lim
k→∞

𝜑(xk) = �̄�.
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Proof For each k ∈ ℕ , choose l(k) ∈ {k −min(k, nm),… , k} such that �̄�k = 𝜑(x̃l(k)) . 
From Proposition 4 we can write

Furthermore, from the instructions of the line search and the fact that the sequence 
{𝜑(x̃l(k))} is non-increasing, for all k ≥ 1 we have

and then,

Since {𝜑(x̃l(k))} converges to �̄� , we have that (43) and (44) imply

Furthermore, from Lemma 1 we have

and then the following limit holds:

Considering that xl(k) = x̃l(k)−1 + 𝛼l(k)−1dl(k)−1 , (46) implies

Furthermore, from the triangle inequality, we can write

Then,

and in particular, from the uniform continuity of � over {x ∈ ℝ
n ∶ ‖x‖1 ≤ �} , we 

have

Let

We show by induction that, for any given j ≥ 1,

(43)𝜑(x̃l(k)) ≤ 𝜑(xl(k)) − CL‖x̃l(k) − xl(k)‖2.

𝜑(xl(k)) ≤ 𝜑(x̃l(k−1)) + 𝛾𝛼l(k)−1∇𝜑(x̃l(k)−1)Tdl(k)−1,

(44)𝜑(x̃l(k)) ≤ 𝜑(x̃l(k−1)) + 𝛾𝛼l(k)−1∇𝜑(x̃l(k)−1)Tdl(k)−1 − CL‖x̃l(k) − xl(k)‖2.

(45)
lim
k→∞

‖x̃l(k) − xl(k)‖ = 0,

lim
k→∞

𝛼l(k)−1∇𝜑(x̃l(k)−1)Tdl(k)−1 = 0.

∇𝜑(x̃l(k)−1)Tdl(k)−1 ≤ −
1

m
‖dl(k)−1‖2,

(46)lim
k→∞

�l(k)−1‖dl(k)−1‖ = 0.

lim
k→∞

‖x̃l(k)−1 − xl(k)‖ = 0.

‖x̃l(k)−1 − x̃l(k)‖ ≤ ‖x̃l(k)−1 − xl(k)‖ + ‖xl(k) − x̃l(k).‖

(47)lim
k→∞

‖x̃l(k)−1 − x̃l(k)‖ = 0

(48)lim
k→∞

𝜑(x̃l(k)−1) = lim
k→∞

𝜑(x̃l(k)) = �̄�.

l̂(k) = l(k + nm + 2).
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If j = 1 , since {l̂(k)} ⊂ {l(k)} we have that (49), (50) and (51) follow from (45), (47) 
and (48), respectively.

Assume now that (49), (50) and (51) hold for a given j. Then, reasoning as in the 
beginning of the proof, from the instructions of the line search and considering that 
{𝜑(x̃l(k))} is non-increasing, we can write

and

Therefore we get

so that

The limit in  (53) implies  (49) for j + 1 . The properties of the direction stated in 
Lemma 1, combined with (52), ensure that

Furthermore, since xl̂(k)−j = x̃l̂(k)−(j+1) + 𝛼 l̂(k)−(j+1)dl̂(k)−(j+1) , we have that (54) implies

Using the triangle inequality, we can write

Then,

(49)lim
k→∞

‖xl̂(k)−(j−1) − x̃l̂(k)−(j−1)‖ = 0,

(50)lim
k→∞

‖x̃l̂(k)−(j−1) − x̃l̂(k)−j‖ = 0,

(51)lim
k→∞

𝜑(x̃l̂(k)−j) = lim
k→∞

𝜑(x̃l(k)).

𝜑(x̃l̂(k)−j) ≤ 𝜑(xl̂(k)−j) − CL‖x̃l̂(k)−j − xl̂(k)−j‖2

𝜑(xl̂(k)−j) ≤ 𝜑(x̃l̂(k−(j+1))) + 𝛾𝛼 l̂(k)−(j+1)∇𝜑(x̃l̂(k)−(j+1))⊤dl̂(k)−(j+1).

𝜑(x̃l̂(k)−j) ≤𝜑(x̃l̂(k−(j+1))) + 𝛾𝛼 l̂(k)−(j+1)∇𝜑(x̃l̂(k)−(j+1))Tdl̂(k)−(j+1)+

− CL‖x̃l(k)−j − xl(k)−j‖2,

(52)lim
k→∞

𝛼 l̂(k)−(j+1)∇𝜑(x̃l̂(k)−(j+1))Tdl̂(k)−(j+1) = 0,

(53)lim
k→∞

‖x̃l(k)−j − xl(k)−j‖ = 0.

(54)lim
k→∞

𝛼 l̂(k)−(j+1)‖dl̂(k)−(j+1)‖ = 0.

lim
k→∞

‖x̃l̂(k)−(j+1) − xl̂(k)−j‖ = 0.

‖x̃l̂(k)−(j+1) − x̃l̂(k)−j‖ ≤ ‖x̃l̂(k)−(j+1) − xl̂(k)−j‖ + ‖xl̂(k)−j − x̃l̂(k)−j‖.
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and in particular, from the uniform continuity of � over {x ∈ ℝ
n ∶ ‖x‖1 ≤ �} , we 

can write

Thus we conclude that (50) and (51) hold for any given j ≥ 1.
Recalling that

we have that (50) implies

Furthermore, since

from (55) and (49) we have

Since {𝜑(x̃l̂(k))} has a limit, from the uniform continuity of � over 
{x ∈ ℝ

n ∶ ‖x‖1 ≤ �} , (56) and (55) it follows that

and

proving (42). From the instructions of the algorithm and Proposition 4, we can write

and then from (42) we have that (41) holds.   ◻

The following proposition states that the directional derivative ∇𝜑(x̃k)Tdk tends 
to zero.

Proposition 6 Let Assumption 1 hold and let {xk} be the sequence of points pro-
duced by AS- �1 . Then,

lim
k→∞

‖x̃l̂(k)−(j+1) − x̃l̂(k)−j‖ = 0

lim
k→∞

𝜑(x̃l̂(k)−(j+1)) = lim
k→∞

𝜑(x̃l̂(k)−j) = �̄�.

l̂(k) − (k + 1) = l(k + nm + 2) − (k + 1) ≤ nm + 1,

‖x̃k+1 − x̃l̂(k)‖ ≤

l̂(k)−1�
j=k+1

‖x̃j+1 − x̃j‖,

(55)lim
k→∞

‖x̃k+1 − x̃l̂(k)‖ = 0.

‖xk+1 − x̃l̂(k)‖ ≤ ‖xk+1 − x̃k+1‖ + ‖x̃k+1 − x̃l̂(k)‖,

(56)lim
k→∞

‖xk+1 − x̃l̂(k)‖ = 0.

lim
k→∞

𝜑(xk+1) = lim
k→∞

𝜑(xk) = lim
k→∞

𝜑(x̃l̂(k)) = �̄�

lim
k→∞

𝜑(x̃k+1) = lim
k→∞

𝜑(x̃k) = lim
k→∞

𝜑(x̃l̂(k)) = �̄�,

𝜑(x̃k) ≤ 𝜑(xk) − CL‖x̃k − xk‖2,
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Proof To prove (57), assume by contradiction that it does not hold. Lemma 1 implies 
that the sequence {∇𝜑(x̃k)Tdk} is bounded, so that there must exist an infinite set 
K ⊆ ℕ such that

for some real number 𝜂 > 0 . Taking into account (41) and the fact that the feasible 
set is compact, without loss of generality we can assume that both {xk}K and {x̃k}K 
converge to a feasible point x∗ (passing into a further subsequence if necessary). 
Namely,

Moreover, since the number of possible different choices of Ak and Nk is finite, with-
out loss of generality we can also assume that

and, using the fact that {dk} is a bounded sequence, that

(passing again into a further subsequence if necessary). From (59), (60), (61) and 
the continuity of ∇� , we can write

Taking into account (58), from the instructions of AS- �1 we have that, at every iter-
ation k ∈ K , a non-monotone Armijo line search is carried out (see line 2 in Algo-
rithm 2) and a value �k ∈ (0, 1] is computed such that

or equivalently,

From
(42), the left-hand side of the above inequality converges to zero for k → ∞ , 

hence

(57)lim
k→∞

∇𝜑(x̃k)Tdk = 0.

(58)∇𝜑(x̃k)Tdk < 0, ∀k ∈ K,

(59)lim
k→∞, k∈K

∇𝜑(x̃k)Tdk = −𝜂 < 0,

(60)lim
k→∞, k∈K

xk = lim
k→∞, k∈K

x̃k = x∗.

Ak = Â, Nk = N̂, ∀k ∈ K,

(61)lim
k→∞, k∈K

dk = d̄

(62)∇𝜑(x∗)T d̄ = −𝜂 < 0.

𝜑(xk+1) ≤ 𝜑(x̃l(k)) + 𝛾 𝛼k ∇𝜑(x̃k)Tdk,

𝜑(x̃l(k)) − 𝜑(xk+1) ≥ 𝛾 𝛼k |∇𝜑(x̃k)Tdk|.

lim
k→∞, k∈K

𝛼k |∇𝜑(x̃k)Tdk| = 0.
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Using  (59), we obtain that lim
k→∞, k∈K

�k = 0 . It follows that there exists k̄ ∈ K such 
that

From the instructions of the line search procedure, this means that ∀k ≥ k̄, k ∈ K

Using the mean value theorem, �k ∈ (0, 1) exists such that

In view of (63) and (64), we can write

From  (60), and exploiting the fact that {�k}K , {�k}K and {dk}K are bounded 
sequences, we get

Therefore, taking the limits in (65) we obtain that ∇𝜑(x∗)T d̄ ≥ 𝛾 ∇𝜑(x∗)T d̄ , or equiv-
alently, (1 − 𝛾)∇𝜑(x∗)T d̄ ≥ 0 . Since � ∈ (0, 1) , we get a contradiction with (62).   ◻

We are finally able to state the main convergence result.

Theorem 1 Let Assumption 1 hold and let {xk} be the sequence of points produced 
by AS- �1 . Then, every limit point x∗ of {xk} is a stationary point of problem (1).

Proof From Definition  1, we can characterize stationarity using condition (2). In 
particular, we can define the following continuous functions Ψi(x) to measure the 
stationarity violation at a feasible point x:

so that a feasible point x is stationary if and only if Ψi(x) = 0 , i = 1,… , n.
Now, let x∗ be a limit point of {xk} and let {xk}K , K ⊆ ℕ , be a subsequence con-

verging to x∗ . Namely,

Note that x∗ exists, as {xk} remains in the compact set {x ∈ ℝ
n�‖x‖1 ≤ �} . Since the 

number of possible different choices of Ak and Nk is finite, without loss of generality 
we can assume that

𝛼k < 1, ∀k ≥ k̄, k ∈ K.

(63)𝜑

(
x̃k +

𝛼k

𝛿
dk
)
> 𝜑(x̃l(k)) + 𝛾

𝛼k

𝛿
∇𝜑(x̃k)Tdk ≥ 𝜑(x̃k) + 𝛾

𝛼k

𝛿
∇𝜑(x̃k)Tdk.

(64)𝜑

(
x̃k +

𝛼k

𝛿
dk
)
= 𝜑(x̃l(k)) +

𝛼k

𝛿
∇𝜑

(
x̃k + 𝜉k

𝛼k

𝛿
dk
)T

dk, ∀k ≥ k̄, k ∈ K.

(65)∇𝜑
(
x̃k + 𝜉k

𝛼k

𝛿
dk
)T

dk > 𝛾 ∇𝜑(x̃k)Tdk, ∀k ≥ k̄, k ∈ K.

lim
k→∞, k∈K

x̃k + 𝜉k
𝛼k

𝛿
dk = lim

k→∞, k∈K
x̃k = x∗.

Ψi(x) = max{0,−∇�(x)T (� ei − x),−∇�(x)T (−� ei − x)}, i = 1,… , n,

(66)lim
k→∞, k∈K

xk = x∗.
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(passing into a further subsequence if necessary).
By contradiction, assume that x∗ is non-stationary, that is, an index � ∈ {1,… , n} 

exists such that

First, suppose that 𝜈 ∈ Â . Then, from the expressions (19), we can write

so that Ψ�(x
k) = 0 , for all k ∈ K̄ . Therefore, from (66), the continuity of ∇� and the 

continuity of the functions Ψi , we get Ψ�(x
∗) = 0 , contradicting (67).

Then, � necessarily belongs to N̂ . Namely, x∗ is non-stationary over BNk
�1

 , with 
BNk

�1

 defined as in (37). This means that

Using Proposition 6 and Lemma 1, we have that limk→∞, k∈K ‖dk‖ = 0 , that is, recall-
ing the definition of dk given in (38)–(39),

From the properties of the projection we have that

so that the following holds

Using (66), the continuity of the projection and taking into account (41) in Proposi-
tion 6, we obtain

This contradicts (68), leading to the desired result.   ◻

Ak = Â, Nk = N̂, ∀k ∈ K

(67)Ψ𝜈(x
∗) > 0.

0 ≤ xk
�
≤ ��∇�(xk)T (�e� − xk) or 0 ≥ xk

�
≥ ��∇�(xk)T (�e� + xk),

(68)x∗ ≠ P
(
x∗ − m∇�(x∗)

)
B
Nk
�1

.

lim
k→∞, k∈K

‖‖‖‖‖
x̃k − P

(
x̃k − mk∇𝜑(x̃k)

)
B
Nk
�1

‖‖‖‖‖
= 0.

‖‖‖‖‖
x̃k − P

(
x̃k − mk∇𝜑(x̃k)

)
B
Nk
�1

‖‖‖‖‖
≥

‖‖‖‖‖
x̃k − P

(
x̃k − m∇𝜑(x̃k)

)
B
Nk
�1

,
‖‖‖‖‖

lim
k→∞, k∈K

‖‖‖‖‖
x̃k − P

(
x̃k − m∇𝜑(x̃k)

)
B
Nk
�1

‖‖‖‖‖
= 0.

‖‖‖‖‖
x∗ − P

(
x∗ − m∇�(x∗)

)
B
Nk
�1

‖‖‖‖‖
= 0.
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4  Numerical results

In this section, we show the practical performances of AS- �1 on two classes of prob-
lems frequently arising in data science and machine learning that can be formulated as 
problem (1):

• LASSO problems [32], where 

 for given matrix A ∈ ℝ
m×n and vector b ∈ ℝ

m;
• �1-constrained logistic regression problems, where 

 with given vectors ai and scalars yi ∈ {1,−1} , i = 1,… , l.
In our implementation of AS- �1 , we used a non-monotone line search with memory 
length nm = 10 (see Algorithm 2) and a spectral (or Barzilai–Borwein) gradient direc-
tion for the variables in Nk

�1

 . In particular, the coefficient mk appearing in (38) was set to 
1 for k = 0 and, for k ≥ 1 , we employed the following formula, adapting the strategy 
used in [2, 4, 11]:

where m = 10−10 , m = 1010 , mk
a
=

(sk−1)Tyk−1

‖sk−1‖2  , mk
b
=

‖yk−1‖2
(sk−1)Tyk−1

 , sk−1 = x̃k
Nk
�1

− x̃k−1
Nk
�1

 

and yk−1 = ∇Nk
�1

𝜑(x̃k) − ∇Nk
�1

𝜑(x̃k−1).
The � parameter appearing in the active-set estimate (19) should satisfy Assump-

tion 1 to guarantee the descent property established in Proposition 4 and the conver-
gence of the algorithm. Since the Lipschitz constant L is in general unknown, we 
approximate � following the same strategy as in [9, 10, 12], where similar estimates 
are used. Starting from � = 10−6 , we update its value along the iterations, reducing 
it whenever the expected decrease in the objective, stated in Proposition 4, is not 
obtained.

In our experiments, we implemented AS- �1 in Matlab and compared AS- �1 
with the two following first-order methods, implemented in Matlab as well:

• A spectral projected gradient method with non-monotone line search, which will 
be referred to as NM-SPG, downloaded from Mark Schmidt’s webpage https:// 
www. cs. ubc. ca/ ~schmi dtm/ Softw are/ minCo nf. html;

(69)�(x) = ‖Ax − b‖2,

(70)�(x) =

l∑
i=1

log(1 + exp(−yix
Tai)),

mk =

⎧
⎪⎪⎨⎪⎪⎩

max{m, mk
a
}, if 0 < mk

a
< m,

max
�
m, min{m, mk

b
}
�
, if mk

a
≥ m,

max

�
m, min

�
1,

‖∇Nk
�1

𝜑(x̃k)‖
‖x̃k

Nk
�1

‖
��

, if mk
a
≤ 0,

https://www.cs.ubc.ca/%7eschmidtm/Software/minConf.html
https://www.cs.ubc.ca/%7eschmidtm/Software/minConf.html
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• The away-step Frank–Wolfe method with Armijo line search [5, 6], which will be 
referred to as AFW1.

Finally, we report a comparison between AS- �1 and AS-PG, an active-set algo-
rithm devised in [10], showing the benefit of explicitly handling the �1-ball.

For every considered problem, we set the starting point equal to the origin and we 
first run AS- �1 , stopping when

where P(⋅)𝓁1
 denotes the projection onto the �1-ball. Then, the other methods were 

run with the same starting point and were stopped at the first iteration k such that

with f ∗ being the objective value found by AS- �1 . A time limit of 3600 s was also 
included in all the considered methods.

In NM-SPG, we used the default parameters (except for those concerning the 
stopping condition). Moreover, in AS- �1 and NM-SPG we employed the same pro-
jection algorithm [8], downloaded from Laurent Condat’s webpage https:// lcond at. 
github. io/ softw are. html.

In all codes, we made use of the Matlab sparse operator to compute �(x) and 
∇�(x) , in order to exploit the problem structure and save computational time. The 
experiments were run on an Intel Xeon(R) CPU E5-1650 v2 @ 3.50GHz with 12 
cores and 64 Gb RAM.

The AS- �1 software is available at https:// github. com/ acris tofari/ as- l1.

4.1  Comparison on LASSO instances

We considered 10 artificial instances of LASSO problems, where the objective 
function �(x) takes the form of (69). Each instance was created by first generating 
a matrix A ∈ ℝ

m×n with elements randomly drawn from a uniform distribution on 
the interval (0, 1), using n = 215 and m = n∕2 . Then, a vector x∗ was generated with 
all zeros, except for round(0.05m) components, which were randomly set to 1 or 
−1 . Finally, we set b = Ax∗ + 0.001v , where v is a vector with elements randomly 
drawn from the standard normal distribution, and the �1-sphere radius � was set to 
0.99‖x∗‖1.

The detailed comparison on the LASSO instances is reported in Table 1. For each 
instance and each algorithm, we report the final objective function value found, the 
CPU time needed to satisfy the stopping criterion and the percentage of zeros in the 
final solution, with a tolerance of 10−5 . In case an algorithm reached the time limit 

‖xk − P
�
xk − ∇�(xk)

�
�1

‖ ≤ 10−6,

�(xk) ≤ f ∗ + 10−6(1 + |f ∗|),

1 AFW was run by reformulating (1) as an optimization problem over the unit simplex, exploiting the fact 
that the feasible set is a convex combination of the vectors ±�e

i
 , i = 1,… , n.

https://lcondat.github.io/software.html
https://lcondat.github.io/software.html
https://github.com/acristofari/as-l1
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on an instance, we consider as final solution and final objective value those related 
to the last iteration performed. NM-SPG reached the time limit on all instances, 
being very far from f ∗ on 6 instances out of 10, with a difference of even two order 
of magnitude. AFW gets the same solutions as those obtained by AS- �1 , being how-
ever an order of magnitude slower than AS- �1.

The same picture is given by Fig. 1, where we report the average optimization 
error f (xk) − fbest over the 10 instances, with fbest being the minimum objective 
value found by the algorithms. We can notice that AS- �1 clearly outperforms the 
other two methods.

0 900 1800 2700 3600
10-6

10-4

10-2

100

102

104

106

Fig. 1  Average optimization error over LASSO instances (y axis) vs CPU time in seconds (x axis). The y 
axis is in logarithmic scale

Table 1  Comparison on 10 LASSO instances. For each method, the first column (Obj) indicates the 
final objective value, the second column (CPU time) indicates the required time in seconds, where a star 
means that the time limit of 3600 s was reached, and the third column (%zeros) indicates the percentage 
of zeros in the final solution, with a tolerance of 10−5 . For each problem, the fastest algorithm is high-
lighted in bold

AS- �
1

NM-SPG AFW

Obj CPU time %zeros Obj CPU time %zeros Obj CPU time %zeros

54.20 315.85 97.49 54.20 * 97.49 54.20 2762.90 97.49
52.32 366.90 97.50 5823.87 * 80.69 52.32 3046.89 97.50
53.95 449.67 97.50 1040.99 * 85.12 53.95 3023.94 97.50
54.04 292.83 97.50 2215.88 * 83.45 54.04 3050.17 97.50
52.98 330.65 97.50 841.57 * 85.21 52.98 2798.97 97.50
53.54 387.79 97.50 53.56 * 97.50 53.54 3006.38 97.50
52.71 806.80 97.50 3927.10 * 82.23 52.71 2837.90 97.50
53.58 580.89 97.50 4108.25 * 81.93 53.58 2768.45 97.50
52.61 402.03 97.50 1750.54 * 83.37 52.61 2924.38 97.50
53.36 535.10 97.50 53.89 * 97.49 53.36 2948.41 97.50
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4.2  Comparison on logistic regression instances

For the comparison among AS- �1 , NM-SPG and AFW on �1-constrained logistic 
regression problems, where the objective function �(x) takes the form of  (70), we 
considered 11 datasets for binary classification from the literature, with a number 
of samples l between 100 and 25,000, and a number of attributes n between 500 and 
100,000. We report the complete list of datasets in Table 2.

For each dataset, we considered different values of the �1-sphere radius � , that is, 
0.01n, 0.03n and 0.05n. The final results are shown in Table 3. As before, for each 
instance and each algorithm, we report the final objective function value found, the 
CPU time needed to satisfy the stopping criterion and the percentage of zeros in the 
final solution, with a tolerance of 10−5 . In case an algorithm reached the time limit 
on an instance, we consider as final solution and final objective value those related 
to the last iteration performed. Excluding the instance obtained from the Rev1_train.
binary dataset with � = 0.05n , the three solvers get very similar solutions on all 
instances, with a difference of 0.02 at most in the final objective values. When con-
sidering � = 0.01n , AS- �1 is the fastest solver on 4 instances out of 11. Note that 
on the instance from the Farm-ads-vect dataset, AS- �1 is able to get the solution in 
a third of the CPU time needed by the other two solvers. On the other instances, the 
CPU time needed by AS- �1 is always comparable with the one needed by the fastest 
solver. Looking at the results for larger values of � , we can notice that the instances 
get more difficult and in general less sparse. For � = 0.03n and � = 0.05n , AS- �1 is 
the fastest solver on all the instances but two, those obtained from the Arcene and 
the Dorothea datasets, which are however addressed within 2 s. On other instances, 
such as those built from the Real-sim and the Rev1_train.binary datasets, AS- �1 is 
one or even two orders of magnitude faster with respect to NM-SPG and AFW.

In Fig.  2 we report the average optimization error f (xk) − fbest over the 11 
instances, for each value of � , with fbest being the minimum objective value found 
by the algorithms. We can notice that AFW is outperformed by the other two algo-
rithms, which have similar performance when considering the average optimization 

Table 2  Datasets used in the 
comparison on �

1
-constrained 

logistic regression problems, 
where l is the number of 
instances and n is the number of 
attributes

Dataset l n Reference

Arcene (training set) 100 10,000 [14, 21]
Dexter (training set) 300 19,999 [14, 21]
Dorothea (training set) 800 100,000 [14, 21]
Farm-ads-vect 4143 54,877 [14]
Gisette (training set) 6000 5000 [1, 14, 21]
Madelon (training set) 2000 500 [1, 14, 21]
Rcv1_train.binary (training set) 20,242 47,236 [1, 27]
Real-sim 72,309 20,958 [1]
Swarm (Aligned) 24,016 2400 [14]
Swarm (Flocking) 24,016 2400 [14]
Swarm (Grouped) 24,016 2400 [14]
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error above 10−2 . When considering the average optimization error below 10−2 , we 
see that AS- �1 outperforms NM-SPG too.

4.3  Comparison with AS-PG

We now compare AS- �1 with AS-PG, an active set algorithm that uses a projected 
gradient direction, presented in [10]. As for AFW, AS-PG was run by reformulat-
ing (1) as an optimization problem over the unit simplex. In Figs. 3 and 4, we report 
the comparison over LASSO and logistic regression instances, respectively. The 
considered LASSO instances are obtained as before with n = 212 and m = n∕2 . As 
we can easily see by taking a look at the plots, the proposed approach guarantees 
better performances.
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Fig. 2  Average optimization error over �
1
-constrained logistic regression instances (y axis) vs CPU time 

in seconds (x axis). The y axis is in logarithmic scale
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Fig. 3  Average optimization error over LASSO instances (y axis) vs CPU time in seconds (x axis). The y 
axis is in logarithmic scale
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5  Conclusions

In this paper, we focused on minimization problems over the �1-ball and described 
a tailored active-set algorithm. We developed a strategy to guess, along the itera-
tions of the algorithm, which variables should be zero at a solution. A reduction in 
terms of objective function value is guaranteed by simply fixing to zero those vari-
ables estimated to be active. The active-set estimate is used in combination with a 
projected spectral gradient direction and a non-monotone Armijo line search. We 
analyzed in depth the global convergence of the proposed algorithm. The numerical 
results show the efficiency of the method on LASSO and sparse logistic regression 
instances, in comparison with two widely-used first-order methods.
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