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Exposure to actual or simulated microgravity results in alterations of renal function, fluid
redistribution, and bone loss, which is coupled to a rise of urinary calcium excretion. We
provided evidence that high calcium delivery to the collecting duct reduces local Aquaporin
2 (AQP2)-mediated water reabsorption under vasopressin action, thus limiting themaximal
urinary concentration to reduce calcium saturation. To investigate early renal adaptation
into simulated microgravity, we investigated the effects of 10 days of strict bedrest in 10
healthy volunteers. We report here that 10 days of inactivity are associated with a transient,
significant decrease (day 5) in vasopressin (copeptin) paralleled by a decrease in AQP2
excretion, consistent with an increased central volume to the heart, resulting in reduced
water reabsorption. Moreover, bedrest caused a significant increase in calciuria secondary
to bone demineralization paralleled by a decrease in PTH. Urinary osteopontin, a
glycoprotein exerting a protective effect on stone formation, was significantly reduced
during bedrest. Moreover, a significant increase in adrenomedullin (day 5), a peptide with
vasodepressor properties, was observed at day 5, which may contribute to the known
reduced orthostatic capacity post-bedrest. We conclude that renal function is altered in
simulated microgravity and is associated with an early increase in the risk of stone
formation and reduced orthostatic capacity post-bedrest within a few days of inactivity.
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INTRODUCTION

It is well established that during space flight, weightlessness causes muscle loss, a significant increase
of serum calcium, mostly released by bones, a decrease in intestinal calcium reabsorption, and
relevant hypercalciuria (Iwamoto et al., 2005; Smith et al., 2015). Moreover, fluid redistribution and
abnormal renal functions also occur. Hypercalciuria is a determinant factor associated with an
increased risk for the development of kidney stones, nephrocalcinosis, and osteoporosis (Figueres
et al., 2020). Importantly, hypercalciuric patients display a reduced urinary concentrating ability
because the physiological response to the action of the antidiuretic hormone vasopressin is
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depressed. This impairment is associated with a significant
reduction of the AQP2 excretion, known to be proportional to
its expression in the collecting duct lumen (Pisitkun et al., 2004;
Tamma et al., 2014). Low body negative pressure (LBNP) and
bedrest are established models of simulating gravitational
changes. In a previous study of 35 days of continuous bedrest,
we found a progressive decrease in AQP2 excretion that reached
the lowest value at day 14 (Tamma et al., 2014). Interestingly, the
transient reduction of urinary AQP2 was paralleled by a transient
increase in the calciuria revealing an inverse correlation between
AQP2 excretion and urinary calcium level (Tamma et al., 2014).
At the moment, however, early biomarkers associated with
microgravity or simulated microgravity remain still unknown
and need to be identified and characterized.

Calcium homeostasis is tightly modulated by several
hormones. Parathyroid hormone (PTH) plays a pivotal role
in controlling serum calcium concentration. Specifically, the
calcium-sensing receptor (CaSR) which is highly expressed in
the parathyroid glands, can sense tiny alterations in serum
Ca2+ levels. Physiologically, low serum Ca2+ concentration
stimulates PTH release that results in calcium uptake from the
intestine, kidney, and bone (Riccardi and Valenti, 2016). At
the renal level, PTH stimulates the production of the active
form of Vitamin D which exerts numerous activities in the
bone and promotes calcium reabsorption from the intestine.
At the systemic level, the procalcemic actions of PTH are
antagonized by specific antagonists including calcitonin. At a
local level, osteopontin (OPN) counteracts the actions of
PTH. Osteopontin is a multifunctional phospho-
glycoprotein expressed in osteoblasts where it blocks the
synthesis of the hydroxyapatite crystal and bone
mineralization (Kitahara et al., 2003; Ono et al., 2008). In a
model of simulated microgravity, horizontal rotation of
osteoblasts for 24, 48, and 72 h results in a significant drop
in the expression of OPN (Wan et al., 2005). Interestingly, in
the kidney, reduction of OPN decreases the risk of renal stone
formation (Hamamoto et al., 2010; Tsuji et al., 2014). The
hydration state condition can reduce kidney crystal formation
by modulating the intrarenal OPN expression (Lee et al.,
2016).

Beyond the effects on muscles, bones, kidneys, the endocrine
and immune systems, exposure to microgravity or simulated
microgravity (SMG) modifies vascular contractility often
resulting in hypotension. Rats subjected to hindlimb
unweighting, another model of simulated microgravity,
showed a high level of adrenomedullin (ADM) (Neri et al.,
2002). ADM is a 52-amino acid peptide playing a key role in
controlling blood pressure in the short term. In this respect, we
have recently found an increase in ADM in response to central
hypovolemia in male volunteers subjected to LBNP (Goswami
et al., 2019). Here, a study of 10 days of strict bedrest was
undertaken to identify early biomarkers associated with altered
renal physiology. In particular, copeptin was detected and used as
a stable marker of the hormone vasopressin which is involved in
controlling the fluid balance. Moreover, urinary AQP2, calciuria,
OPN, cystatin C as a marker of GFR and KIM1 as a marker of
oxidative stress were evaluated as well.

MATERIALS AND METHODS

Experimental Protocol
This study was supported by the Italian Space Agency (ASI)
project “MARS-PRE Bed Rest SBI 2019”, approved by the
National Ethical Committee of the Slovenian Ministry of
Health (Ref. number: 0120-304/2019/9) and performed
following the standard set by the Declaration of Helsinki. All
participants were informed about the aims, procedures, and
potential risks of the investigations before written consents
were obtained.

Ten young healthy, recreationally active males (age, 23 ±
5 years; height, 1.81 ± 0.04 m; body mass (BM), 77.5 ± 10.0 kg;
body mass index (BMI), 23.5 ± 2.5 kg m–2) were enrolled in this
study. Female were excluded from the study to avoid confounding
physiological conditions related to the menstrual cycle.
Participants’ body mass and body mass index estimated in pre
and post bed rest conditions in a parallel study revealed a slight
but significant decrease (Zuccarelli et al., 2021).

Subjects underwent a medical screening before the study.
Exclusion criteria were: regular smoking, habitual use of drugs,
blood clotting defects, history of deep vein thrombosis,
neuromuscular, metabolic, and cardiovascular disease
conditions, previous history of embolism, inflammatory
diseases, psychiatric disorders, epilepsy, and presence of
ferromagnetic implants.

Each subject was evaluated before and after 10 days of strict
horizontal bedrest and during bedrest no deviations from the
lying position, muscle stretching, or static contraction were
allowed. Participants were constantly controlled using
continuous closed-circuit television surveillance with
supervision by researchers and medical staff. Subjects arrived
at the hospital three days before bedrest for pre-bedrest
measurements. Post-bedrest measurements were carried out
immediately after day 10 of bedrest for two days. During the
two days post-bedrest subjects stayed in a wheelchair or in bed
between the measurements performed. Subjects consumed an
individually controlled, standardized diet and were allowed to
drink water ad libitum. Diet was generally controlled on the level
of macronutrients (60% carbohydrates, 25% fats and 15%
proteins). Blood draw was taken every day before the breakfast
at 7 in the morning. Blood pressure was monitored continuously
by Task Force Monitor (TFM, CNSystems, Graz, Austria).
Orthostatic blood pressure was measured during supine to
stand test immediately after waking up after 10 days of bedrest.

Urinary AQP2 Measurements by ELISA
(Enzyme-Linked Immunosorbent Assay)
For each subject, spot urine samples were taken every day in the
morning fasting, between 7.00 and 7.15. Collected urine samples
were immediately frozen and stored at −20°C. Urinary excretion
of AQP2 was measured in the urine specimens by ELISA as
previously described (Goswami et al., 2019). It is known that
AQP2 is excreted in the urine through the endocytosis-multiple
vesicular body (MVB)-exosome pathway (Pisitkun et al., 2004)
representing a useful biomarker for the renal response to
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vasopressin (Valenti et al., 2000). Approximately 3% of AQP2 in
the kidney is excreted daily and is proportional to the AQP2
reaching the apical plasma membrane in response to vasopressin
(Rai et al., 1997). Urine samples were added with protease
inhibitors (1 mM PMSF, 2 mg/ml leupeptin, 2 mg/ml pepstatin
A) and cellular debris were removed spinning at 3,000 rpm for
10 min at 4°C. 5 µL of urine sample were diluted to 50 µL in PBS
containing 0.01% SDS, placed in a MaxiSorp 96-well microplate
and incubated overnight at 4°C. In parallel wells, decreasing
concentrations (1,000, 500, 400, 300, 200, 100, and 50 pg/
50 µL) of a synthetic peptide reproducing the last 15 amino
acids of the C-terminal region of human AQP2 were
incubated as internal standard. Each sample was analyzed in
triplicate. Wells were then washed with washing buffer (PBS-0.1%
Tween20) and incubated with blocking solution (PBS−3% BSA)
at 37°C for 1 h. 10 µg of affinity-purified anti-AQP2 antibodies
were diluted in blocking solution (final antibody dilution 1:1,500)
and 50 µL of the solution was added to each well and incubated
for 2 h at 37°C. Wells were then washed four times with washing
solution and incubated with secondary goat anti-rabbit
antibodies conjugated to horseradish peroxidase for 1 h at
37°C. After five washes, 50 µL of the substrate solution [2,29-
azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] was added to
each well and incubated for 30 min in the dark at room
temperature. Absorbance was measured with a microplate
reader (model iMark, Bio-Rad Laboratories, Milan, Italy) at
415 nm. Urinary AQP2 excretion was expressed as fmol/mg
urine creatinine.

Biomarkers Measurement
Biomarkers were measured from serum. Blood samples were
collected into chilled plastic tubes with disodium-EDTA and
aprotinin. The tubes were placed on ice before centrifugation
at 1,600 × g for 15 min at 4°C to collect the serum and stored at
− 80°C immediately until further processing. Copeptin (CPP)
levels were quantified by an ELISA kit (Cusabiotechnology
LLC) which provides a sensitivity lower than 19.5 pg/ml. KIM-
1, Osteopontin (OPN) were measured by ELISA kit (R&D
Systems), following the manufacturer’s instructions. The
minimum detectable dose for KIM-1, and OPN ranged from
0.003–0.046 ng/ml, 0.030–0.227 ng/ml and 0.006–0.024 ng/ml,
respectively. Adrenomedullin (ADM) quantification was
performed using an ELISA kit (MyBioSource) with a
sensitivity as low as 10.4 pg/ml. All the ELISA assays
performed are commercially available.

Urinary Calcium, Sodium, Potassium and
Serum Parathyroid Hormone Determination
Urinary Calcium, Sodium and Potassium, and Serum PTH,
calcium, sodium, potassium, phosphorus and 25-OH Vitamin
D were measured by Service Laboratory using an automated
system.

Statistical Analysis
All values are reported as means ± S.E.M. Statistical analysis was
performed using Ordinary one-way ANOVA followed by

Dunnett’s multiple comparisons test with p < 0.05 considered
statistically different. For Serum Copeptin and Adrenomedullin
was used One sample t-test with p < 0.05 considered statistically
different.

RESULTS

Effect of Bedrest on Fluid Regulating
Hormones, Aquaporin-2, and electrolytes
The major aim of the study was the identification of early
biomarkers of altered renal function and orthostatic
intolerance in simulated microgravity on the ground. To
this end, 10 healthy males (age, 23 ± 5 years) participated in
the experiment in the Hospital of Ankaran (Slovenia). The
biomarkers for renal function were tested either in the urine
or in the blood collected daily during the bedrest.
Immobilization or exposure to microgravity induces
several alterations of renal function including fluid
redistribution (Drummer et al., 2002; Gaspare De Santo
et al., 2005). It is known that vasopressin is the key hormone
regulating water homeostasis. Vasopressin was measured as
copeptin, a stable surrogate marker of vasopressin
(Shrabani, 2015).

FIGURE 1 | (A) Serum Copeptin (% variation versus BDC1) during 10-day
bedrest. Data are expressed asmean ± S.E.M. Statistical analysis was done using
One Sample t test (*p < 0.05 for BR5 vs. BDC1); (B) urinary AQP2 excretion
normalized to Creatinuria (fmol/mg) during 10-day bedrest. Data are
expressed asmean ±S.E.M. Statistical analysis was done usingOrdinary one-way
Anova test (*p < 0.05 for BR5 and BR7 vs. BDC1; **p < 0.01 for BR8 vs. BDC1).
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Copeptin was found significantly decreased at day 5
(Figure 1A). This data correlated with the significant
reduction in urinary AQP2, considered a biomarker for
collecting duct responsiveness to vasopressin, also observed at
day 5 (Figure 1B). Except day 6, AQP2 excretion was significantly
reduced also at day 7 and 8 in agreement with data obtained in a
previous 35-day bedrest study performed in the same facility,
showing a significant decrease in AQP2 excretion (measured in
24 h urine samples) starting from around day 6–7 until day 14
(Tamma et al., 2014). The reason why we don’t see a parallel
significant decrease in copeptin after day 5 despite a significant
reduction in AQP2 excretion may be due to the fact that,
physiologically, vasopressin action in the collecting duct is
counteracted by Calcium Sensing Receptor signaling activated
by high urinary calcium concentrations (Riccardi and Valenti,
2016; Ranieri et al., 2018; Ranieri, 2019). Therefore, despite
vasopressin (copeptin) levels returned normal after day 5,

urinary AQP2 levels and in turn the rate of water
reabsorption can remain reduced, reflecting attenuation of
vasopressin effect.

These data suggest that adaptation to a supine posture causes
an increase in venous return and in central volume inducing
higher renal water excretion to reduce volume, a process
mediated by a reduction in vasopressin release and then in
AQP2-mediated water reabsorption. Besides vasopressin,
another hormone, the atrial natriuretic peptide (ANP) can also
respond to increased central volume as previously shown in a
bedrest study (Moro et al., 2007) and in a head-out water
immersion study (Valenti et al., 2006). In addition to water,
sodium regulation in humans is sensitive to posture change in
gravitational stress (Norsk, 1992). Urinary excretion of sodium
and potassium during bedrest was measured daily (Figures
2A,B). Urinary sodium excretion significantly increased early
during bedrest reaching the maximal value at day 2 followed by a
progressive decline and return to pre-bedrest levels after the
recovery (Figure 2A). Potassium excretion also showed a
transient significant increase reaching the maximal value at
day 6 before returning to normal pre-bedrest values during
the recovery phase (Figure 2B).

Effect of Bedrest on Urinary Calcium
and PTH
Analysis of urinary calcium excretion revealed an early
increase in calciuria during immobilization consistent with
some previous bedrest studies (Baecker et al., 2003; Watanabe
et al., 2004; Armbrecht et al., 2010; Bilancio et al., 2013;
Tamma et al., 2014). As previously described, the increase
in calciuria during bedrest is paralleled by an increase in
calcemia which peaked at day 7, then decreased to below-
baseline values (Bilancio et al., 2013). Calciuria had a clear
tendency to raise since day 1, reaching a statistically significant
value on days 4- and 5 (Figure 3). In parallel with the observed
hypercalciuria, parathyroid hormone (PTH) progressively and
significantly declined during bedrest reaching a significantly
lower value already at day 3 compared to pre-bedrest and did
not recover in the two post bedrest days (Figure 4). The
sustained downregulation of the PTH during
immobilization supports the view that bone resorption
accounts for increases in urinary calcium excretion.

Plasma Levels of Calcium, Sodium,
Potassium, Phosphorus and 25-OH Vitamin
D During Bedrest
Table 1 shows plasma levels of calcium, sodium, potassium,
phosphorus and 25-OH Vitamin D during bedrest before
(PRE), during (BR) and after (POST) bed rest. Calcemia
significantly increased during bedrest and then decreased to
levels not significantly different from pre-bedrest, in line with
the described time course of calciuria. Electrolytes potassium,
sodium and phosphorus also significantly increased during
bedrest and then decreased to levels not significantly different
from pre-bedrest. In contrast, 25-OH Vitamin D levels

FIGURE 2 | (A) Urinary Sodium excretion normalized to Creatinuria
(mmol/mg) during 10-day bedrest. Data are expressed as mean ± S.E.M.
Statistical analysis was done using Ordinary one-way Anova test (*p < 0.05 for
BR2 vs. BDC1); (B) urinary Potassium excretion normalized to
Creatinuria (mmol/mg) during 10-day bedrest. Data are expressed as mean ±
S.E.M. Statistical analysis was done using Ordinary one-way Anova test (*p <
0.05 for BR2 vs. BDC1; **p < 0.01 for BR6 vs. BDC1).
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progressively and strongly decreased during bedrest and
remained significantly low after bed rest. The changes in
plasma phosphorus and Vitamin D axis during
immobilization can be secondary to the observed sustained
downregulation of the PTH.

Urinary Kidney Injury Molecule-1 (KIM-1) as
Potential Biomarkers of Renal Disfunction
We next explored additional urinary biomarkers known to be
associated with adverse kidney outcomes in other settings. KIM-1
is considered a urine biomarker of kidney tubular health

FIGURE 3 | Urinary Calcium excretion normalized to Creatinuria (mmol/mg) during 10-day bedrest. Data are expressed as mean ± S.E.M. Statistical analysis was
done using Ordinary one-way Anova test (*p < 0.05 for BR4 vs. BDC1; **p < 0.01 for BR5 vs. BDC1).

FIGURE 4 | Serum PTH (pg/ml) during 10-day bedrest. Data are
expressed as mean ± S.E.M. Statistical analysis was done using Ordinary
one-way Anova test (*p < 0.05 for BR3 vs. BDC1; **p < 0.01; for BR5, BR7,
BR9, R+1 and R+2 vs. BDC1).

TABLE 1 | Serum Electrolytes and 25OH-Vit D of participants before (PRE), during (BR) and after (POST) 10-day horizontal bed rest.

PRE BR POST p value

Ca2+ (mg/dl) 9.37 ± 0.216 10.54 ± 0.197*** 9.94 ± 0.120 0.0003
K+(mmol/L) 4.33 ± 0.096 4.84 ± 0.126** 4.68 ± 0.104 0.006
Na+(mmol/L) 137.0 ± 1.314 151.6 ± 1.707*** 150.9 ± 2.965### <0.0001
P (mg/dl) 3.23 ± 0.077 3.76 ± 0.107** 3.72 ± 0.104## *0.001; #0.003
25OH-Vit D (ng/ml) 66.14 ± 1.901 34.16 ± 2.173*** 33.53 ± 2.296### <0.0001

Values are means ± S.E.M.; p values different from PRE

FIGURE 5 | Urinary Osteopontin (OPN) excretion normalized to
Creatinuria (ng/mg) during 10-day bedrest. Data are expressed as mean ±
S.E.M. Statistical analysis was done using Ordinary one-way Anova test (*p <
0.05 for BR1 vs. BDC1; **p < 0.01 for BR5 vs. BDC1; ***p < 0.001 for
BR9 and R+2 vs. BDC1).
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(Greenberg et al., 2021). Urinary KIM-1 did not change
significantly during bedrest (data not shown).

Effect of Bedrest on Urinary Osteopontin
OPN is considered to be an inhibitor of biomineralization
(Franzen and Heinegard, 1985; Fisher et al., 2001).
Interestingly OPN is present in kidneys and secreted in the
urine (Kaleta, 2019). In the kidney, OPN has protective in
renal stone formation by inhibiting aggregation of calcium
oxalate crystals (Shiraga et al., 1992). Analysis of urinary OPN
revealed a strong early reduction in urinary OPN, highly
significant at day 5 until the end of the bedrest (Figure 5).
OPN remained reduced in the 2 days after recovery (Figure 5).

Bedrest and Orthostatic Intolerance
Orthostatic intolerance is a common consequence of bedrest
(Barbic et al., 2019). Moreover, post-flight hypovolemia has
been reported in conjunction with post-flight orthostatic
intolerance (Blomqvist et al., 1994). We have previously
reported that plasma concentrations of adrenomedullin
(ADM), a peptide with vasodepressor properties, rise
significantly during orthostatic challenge after 21-day bedrest
(O’shea et al., 2015). We show here that, compared to pre-bedrest
condition, ADM was statistically significantly higher at day 5,
with no apparent return to pre-bedrest value during recovery
(Figure 6). This is the first report showing an early increase in
ADM during bedrest indicating that bedrest appears to affect
ADM levels which may contribute to the reduced orthostatic
capacity post-bedrest within a few days of immobilization.

Of interest, orthostatic blood pressure measured during
supine to stand test immediately after 10 days of bedrest
showed that 30% of participants fainted during supine-to-
stand test, and the average time to faint was 63 ± 11 s. Others
maintained orthostatic tolerance for 5 min. Interestingly,
ADM values evaluated in subjects who to faint during
supine-to-stand test were about 50% higher at day 5 with
respect to the other subjects (167.5 ± 15.8% at peak vs. 117.6 ±
5.95%). Moreover, ADM values in these subjects remained
elevated during the recovery time. These data support the

indication that ADM can be a promising early biomarker of
orthostatic intolerance.

DISCUSSION

The purpose of this study was to identify early biomarkers of
altered renal function and orthostatic intolerance during 10-day
bedrest, an approach that may prove useful for the identification
of early biomarkers of renal abnormality and for the development
of appropriate countermeasures.

Bedrest represents a valuable experimental model to mimic the
effects of microgravity on Earth (Mukai and Ohshima, 2012;
Goswami and Valenti, 2020). However, few studies investigated
the human functional decline during 10-day bedrest and most of
these focused on skeletal muscle, peripheral nerve adaptations,
aerobic capacity, and bone alterations (Center et al., 2007; Mukai
and Ohshima, 2012; Manganotti et al., 2021).

Some alterations of renal function including fluid
redistribution, bone loss induced hypercalciuria, renal stone
risk, reduced plasma volume, secondary to immobilization or
bedrest have been described (Drummer et al., 2002; Gaspare De
Santo et al., 2005; Cavalier et al., 2013; Smith et al., 2015). More
specifically, in a previous study, we evaluated the effects of 35-day
bedrest on changes in urinary calcium, modulation of the
vasopressin-regulated water channel aquaporin-2, and blood
hematocrit the latter used as an index of changes in plasma
volume (Tamma et al., 2014). Thirty-five days of bedrest
represents a prolonged period of inactivity that may actually
mimic the chronic adaptations occurring in microgravity. Under
these conditions we observed bone demineralization and a
transient increase in urinary calcium followed by a transient
decrease in urinary AQP2 excretion, which can reduce the ability
to concentrate urine, causing plasma volume reduction (Tamma
et al., 2014). The present study, however, shows that alterations in
kidney handling of water and electrolytes occur already in the first
7–10 days of bedrest, underlining the importance of a careful
early evaluation of physiological renal adaptation to simulated
microgravity.

In this study, we investigated the effect of 10 days of strict
bedrest in 10 healthy volunteers. Themain results obtained can be
summarized as follows: 10 days of bedrest are associated with: a.
transient and a significant decrease (day 5) in vasopressin
(copeptin) paralleled by a decrease in AQP2 excretion; b.
significant increase in calciuria secondary to bone
demineralization paralleled by a decrease in PTH; c.
significantly reduction during bedrest in urinary osteopontin, a
glycoprotein exerting a protective effect on stone formation; d.
significant increase in adrenomedullin (day 5), a peptide with
vasodepressor properties, which may contribute to the known
reduced orthostatic capacity post-bedrest.

The adoption of a supine body position in bedrest can be
considered a typical hypervolemia model in human physiology. It
is known that this condition induces diuretic and natriuretic renal
response that can be ascribed to the shift of blood volume from
the legs to the upper part of the body (Drummer et al., 2000;
Winkelman, 2009). Consistent with an early renal counter-

FIGURE 6 | Serum Adrenomedullin (ADM) (% variation vs. BDC1) during
10-day bedrest. Data are expressed asmean ± S.E.M. Statistical analysis was
done using One Sample t test (*p < 0.05 for BR5 vs. BDC1).
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response to hypervolemia, our data show a significant reduction
in vasopressin (copeptin) at day 5 paralleled by a reduction of
urinary AQP2 excretion, considered a biomarker of the renal
response to vasopressin, as well as to significant early increase in
sodium excretion. All these alterations are expected to result in a
prompt physiological reaction to hypervolemic insult promoting
water and sodium excretion to reduce circulating volume. AQP2
excretion during 10 days appeared however rather variable,
possibly due to differences among the subjects participating to
the study. However our data are in agreement with data obtained
in our previous 35-day bedrest study showing a significant
decrease in AQP2 excretion starting from around day 7 until
day 14 (Tamma et al., 2014).

Bedrest also increases calcium excretion, and the source of
calcium is bone (Winslow, 1985; Cavalier et al., 2013; Tamma
et al., 2014). Due to increased calcium excretion, prolonged
bedrest is associated with a risk of renal stone formation,
primarily, stones of calcium oxalate and calcium phosphate
(Okada et al., 2008). In this study, we provide a novel
observation that bedrest causes a significant increase in
calciuria secondary to bone demineralization paralleled by a
decrease in PTH levels, which are significant already at days
3–5 of bedrest along with a decrease in 25-OH Vitamin D.
Although we did not measure bone resorption markers, a
previous work (Bilancio et al., 2013) confirmed that within the
first 10 days of bedrest a stable increase in urinary
deoxypyridoline, a marker of bone resorption was observed
supporting the view that bone resorption accounts for increase
in urinary calcium and a sustained PTH suppression.

Of note, this is accompanied by a significant decrease in urinary
osteopontin starting from day 1 and remaining significantly lower
compared to pre-bedrest in the two days of recovery.

Osteopontin is a glycoprotein known to be involved in
biomineralization and remodeling (Franzen and Heinegard,
1985; Fisher et al., 2001). Osteopontin is also found in kidneys
(in the thick ascending limbs of the loop of Henle and distal
nephrons) and is secreted in the urine (Kaleta, 2019). Several
studies provided evidence for a protective role of osteopontin in
renal stone formation. Indeed, it has been shown that osteopontin
can inhibit the nucleation and aggregation of calcium oxalate
crystals in vitro (Shiraga et al., 1992; Worcester and Beshensky,
1995; Asplin et al., 1998). In line with these observations, patients
with kidney stones have lower urinary excretion of osteopontin
than healthy controls (Hoyer et al., 1995; Huang et al., 2003).

Interestingly, during the 10-day bedrest we observed a strong
early reduction in urinary osteopontin, significant at day 5 and
remained reduced up to the end of the bedrest and also during
recovery. It has been reported that osteopontin is under control of
PTH (Kaleta, 2019) which is also reduced during the 10-day
bedrest. These data suggest that bedrest is associated with an early
increased risk of stone formation. To our knowledge, this is the
first report investigating osteopontin as a possible early
biomarker of risk of renal stone formation under immobilization.

Another crucial aspect investigated in this study is orthostatic
intolerance. In a previous study, we evaluated the role of
adrenomedullin, a peptide with vasodepressor properties, in
reduced orthostatic tolerance following 21-day bedrest

immobilization (O’shea et al., 2015). Plasma adrenomedullin is
known to rise during the orthostatic challenge. Specifically,
measurements of baseline (supine), presyncope, and recovery
levels of adrenomedullin in 8 healthy men, before and after 21-
day of −6° head-down bedrest (HDBR), (O’shea et al., 2015)
demonstrated that mean orthostatic tolerance decreased from
22.17 min before HDBR to 13.81 min following HDBR. In
addition to the vasodilating effects that may contribute to
orthostatic intolerance, adrenomedullin has actions on fluid
and electrolyte homeostasis causing natriuresis and diuresis,
(Ebara et al., 1994; Taylor and Samson, 2002). Accordingly,
the kidney is thought to be a major producer of
adrenomedullin and causes natriuresis and diuresis (Jougasaki
and Burnett, 2000). Moreover, in isolated perfused tubules it has
been reported that adrenomedullin inhibits osmotic water
permeability associated with a decreased trafficking of AQP2
to the plasma membrane (Ma et al., 2020).

Of interest, we show here that, compared to pre-bedrest
condition, adrenomedullin had an early clear tendency to
increase since the first day of bedrest, reaching a peak on day
5, with no apparent return to pre-bedrest value during recovery.

Moreover, the observed increase in adrenomedullin, having
vasodilator properties, is very well paralleled by the significant
decrease in vasopressin having vasoconstrictor properties also at
day 5, two neuropeptides both acting on vascular system causing
a peripheral hypotensive effect. This is the first report showing an
early increase in adrenomedullin during bedrest, indicating that
bedrest appears to immediately affect adrenomedullin levels
which may contribute to the reduced orthostatic capacity post-
bedrest within a few days of immobilization.

Taken together our results indicate that 10 days of bedrest
affect body fluid regulation consistent with an increased central
volume to the heart associated with an early increase in the risk of
stone formation that may be monitored by calcium excretion and
osteopontin reduction. Moreover, we suggest a possible
additional role of adrenomedullin in reducing water
reabsorption contributing to the hypotensive and reduced
orthostatic capacity associated with immobilization.

This study demonstrates the utility of novel plasma and
urinary biomarkers of altered renal function and orthostatic
intolerance after 10-day bedrest. These results will help
prompt interventions to prevent or ameliorate the altered
renal function that occurs in patients subjected to forced
immobilization even for a few days.
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