
Rate Adaptation by Reinforcement Learning for
Wi-Fi Industrial Networks

Giovanni Peserico∗, Tommaso Fedullo†, Alberto Morato‡, Stefano Vitturi§, Federico Tramarin¶
∗Autec s.r.l.

and Dept. of Information Engineering
University of Padova, Italy

giovanni.peserico@phd.unipd.it

†Dept. of Management and Engineering
University of Padova, Italy

tommaso.fedullo@phd.unipd.it

‡CMZ Sistemi Elettronici s.r.l.
and Dept. of Information Engineering

University of Padova, Italy
alberto.morato.3@phd.unipd.it

§National Research Council of Italy
CNR–IEIIT

stefano.vitturi@ieiit.cnr.it

¶ Dept. of Engineering “Enzo Ferrari”
University of Modena and Reggio Emilia, Italy

federico.tramarin@unimore.it

Abstract—Wireless technologies play a key role in the Indus-
trial Internet of Things (IIoT) scenario, for the development of
increasingly flexible and interconnected factory systems. Wi-Fi
remains particularly attracting due to its pervasiveness and high
achievable data rates. Furthermore, its Rate Adaptation (RA)
capabilities make it suitable to the harsh industrial environments,
provided that specifically designed RA algorithms are deployed.
To this aim, this paper proposes to exploit Reinforcement Learn-
ing (RL) techniques to design an industry-specific RA algorithm.
The RL is spreading in many fields since it allows to design
intelligent systems by means of a stochastic discrete–time system
based approach. In this work we propose to enhance the Robust
Rate Adaptation Algorithm (RRAA) by means of a RL approach.
The preliminary assessment of the designed RA algorithm is
carried out through meaningful OMNeT++ simulations, that
allow to recognize the beneficial impact of the introduction of RL
with respect to several industry-specific performance indicators.

Index Terms—Factory Automation, Wi–Fi, Rate Adaptation,
Reinforcement Learning, SARSA

I. Introduction

In the industrial and factory automation scenarios, the rising
interest for the Industry 4.0 and the Industrial Internet of
Things (IIoT) has fostered the attention towards the deploy-
ment of flexible high-performance wireless communication
systems at all the levels of the automation pyramid [1]. The
IEEE 802.11 standard, which defines the pervasive Wi-Fi
networks, has already proven its suitability for industrial au-
tomation applications [2], [3], although its actual adaptability
to real–time and deterministic communications is still chal-
lenging. A fundamental feature of Wi-Fi systems is represented
by the Rate Adaptation (RA) capability, which allows a node to
adapt the transmission speed to the underlying channel status.
Such a feature, actually, revealed beneficial in harsh industrial
environments to increase the timeliness and reliability of Wi-
Fi networks [4]–[6]. In the aforementioned context, this paper
aims at proposing a preliminary design of new RA algorithm
for Wi-Fi industrial networks, exploiting the features of Rein-
forcement Learning (RL). Indeed, following the RL concept,
the goal is to make an agent learn how to effectively perform

RA under some industrial typical constraints. To the best of
the authors’ knowledge, currently the usage of RL within
the RA context has been poorly addressed in literature, and
mainly applied to different application scenarios. This paper
considers the Robust Rate Adaptation Algorithm (RRAA) as
a starting point for the introduction of RL techniques. Then,
the proposed RA algorithm is preliminary assessed by means
of a simulation campaign that addresses some meaningful
performance indicators.

II. Background
A. Robust Rate Adaptation Algorithm

The behavior of RRAA [7] is based on the concepts of Short
Term Window (STW) and of loss ratio ';>BB. Particularly, a
specific rate A8 is initially chosen and kept constant for a fixed
number of frames, to obtain a (), 8 , whose length depends on
the rate A8 . At the end of a STW, two pre–defined thresholds for
rate A8 , namely Maximum Tolerable Loss threshold (%8

<C;
) and

Opportunistic Rate Increase threshold (%8
>A8

), are compared
with the loss ratio to define the subsequent rate. The loss rate
for a specific STW is simply calculated by Eq. (1).

';>BB =
#!>BC�A0<4B

#)A0=B<8CC43�A0<4B
(1)

The RRAA algorithm initially starts selecting the highest
rate and defining the corresponding STW size. The packet
loss is then compared with both %8

>A8
and %8

<C;
. The rate is

decreased to the immediately lower rate A8−1 if ';>BB > %8
<C;

to decrease the loss probability. Instead, it is increased to the
following higher rate A8+1 if ';>BB < %8

>A8
since it is supposed

that in good conditions the throughput can be increased.
Finally, if %8

<C;
≤ ';>BB ≤ %8

>A8
, the current rate A8 is

maintained.

B. Reinforcement Learning
RL is based on the definition of states, that should be

able to effectively describe each possible system condition,
actions, representing all the possible transitions among states,

and rewards, that need to be designed accurately to properly
evaluate the goodness of an action. An interesting review on
RL can be found in [8]. Fig. 1 represents the relationships
between these elements, for a simple RL model: specifically,
an agent is trained observing the reaction of the environment.
Given the initial state (C and the chosen action �C , the training
consists in a reward 'C+1 and a new state (C+1.

Figure 1. RL basic elements.

Within RL, a probability % is associated with the execution of
a specific action starting from a specific state. In this way,
we can define the tuples {(, �, %, '}, whose elements are
states, actions, probabilities and rewards, that finally allows
to define a Markov Decision Process (MDP). The best pol-
icy c, consisting in an ordered sequence of pairs (BC0C48 ,
14BC�2C8>=�>A(C0C48), can be found exploiting several differ-
ent algorithms. The evaluation of a specific policy c is carried
out either with a value function + c (B) = �c{'C |(C = B}, or
with an action–value function & c (B, 0) = �c{'C |(C = B, �C =
0}, representing the expected cumulative reward associated
with policy c. Either model–based or model–free techniques
can be used to this extent. In the latter case, the evaluation of
the value function is made by means of experimental events,
observed as the result of an agent’s action. For example, Monte
Carlo or Time Difference methods can be used if, respectively,
the evaluation is made once the reward has been produced or
by means of a prediction. The latter ones often are called
bootstrapping algorithms. Clearly this breadth of possibilities
represents, on the one side, a significant asset of RL while, on
the other one, it increases the difficulty to choose and define
the best model.

III. Rate Adaptation Learning by Reinforcement

A. MDP model design
In this Section we will provide a description of the proposed

RL-based rate adaptation. It draws inspiration by RRAA, and
defines an action in such a way that it becomes better as
the related packet loss (Eq. (1)) decreases. In addition, the
transmission speed is taken into account, such as the reward
derived from a trade–off between the minimization of the
packet loss and the maximization of the rate. Differently from
RRAA, this proposal aims at identifying the “best” rate under
any circumstance, removing the constraint of rate changes
of only one step, i.e. from A8 to A8−1 or from A8 to A8+1,
thus allowing to move through all the different rates. The
algorithm starts from the the highest rate and with initial
loss rate ';>BB equals to zero. For simplicity and without
loss of generality, in the following the basic IEEE 802.11g

amendment is considered. Indeed this choice does not affect
the consistency of the design, since the proposed algorithm is
general and not specifically tied to the Wi-Fi version at hand.
IEEE 802.11g includes 8 different rates, from 6 Mbps up to
54 Mbps. Table I presents the association between each rate
and the specific action, defined in order to allow moving from
each state to that specific rate.

Table I
Actions Table

Rate 6Mbps 9Mbps 12Mbps 18Mbps
Action �C = 0 �C = 1 �C = 2 �C = 3
Rate 24Mbps 36Mbps 48Mbps 54Mbps
Action �C = 4 �C = 5 �C = 6 �C = 7

For each rate A8 , a set of ten ';>BB intervals is defined.
The states are hence designed to fully characterize the system
status: 80 states are identified, defined by the transmitting rate
A8 and ';>BB. The following Table II provides their description.
Furthermore, given the action �C that allows to select the
specific A8 , each state (C is uniquely identified from ';>BB and
A8 by the following Eq. (2).

(C = b(';>BB · 100)/10c + 10 ∗ �C (2)

Table II
States table

A8

';>BB < 10% > 10%
< 20% . . .

> 80%
< 90% > 90%

6Mbps (C = 0 (C = 1 . . . (C = 8 (C = 9
9Mbps (C = 10 (C = 11 . . . (C = 18 (C = 19
.

54Mbps (C = 70 (C = 71 . . . (C = 78 (C = 79

The assignment of rewards is a critical point of RL. In the
proposed algorithm, rewards are calculated by Eq. (3), where
the more ';>BB is reduced and '0C4 is increased, the higher the
reward. The factor V is introduced as a weighting benchmark.
Different values of V were tested, and V = 0.45 was chosen,
since it has proved to be the best trade-off between the loss
rate minimization and the throughput maximization.

'C+1 = V · (−';>BBC+1 + ';>BBC)

+ (1 − V) · '0C4C+1 − '0C4C
'0C4C+1 + '0C4C

− 1;
(3)

An additional special management of the boundary rates
is foreseen, choosing the minimum rate when the loss does
not decrease and it is bigger than 50%, and rewarding the
maximum rate when the loss does not increase and it is smaller
than 50%.

B. RL Algorithm
Each episode � is defined as a sequence of windows
{F0, F1, . . . F=} where = is a fixed and pre–determined value.
In our case, it is not possible to guarantee an exploration of all

the defined states within each episode, as the loss rate relies on
many uncontrollable factors, such as the noise. Furthermore,
every episode should be different from the others. For these
reasons a bootstrapping algorithm is chosen, to make the agent
learn from experience. In particular, since the policy is updated
by means of an online procedure, then the State Action Reward
State Action (SARSA) algorithm [9] is chosen to this extent.
This technique is realized performing the evaluation of the
action–value function expressed by Eq. (4), whose value is
then stored in the Q State Table (QST).

&() [(C] [�C] = &() [(C] [�C]+
+ U ∗ (' + W ∗&() [(C+1] [�C+1] −&() [(C] [�C]) (4)

Indeed, SARSA foresees, at each iteration, to update the
Q value proportionally to the observed reward and to the
difference between the next (i.e. calculated for the subsequent
state and action) and the current Q values. U and W need to
be properly tuned by a trial and error mechanism, good values
are U = 0.1 and W = 0.7. Moreover, in order to make the
agent learn by reinforcement, a good exploration of all the
pairs ((C , �C) has to be guaranteed. To this aim, the choice
of the subsequent action is performed, with probability n ,
in a random way, while in any other case the greedy one
is chosen, namely n–Greedy algorithm. In practice, �C+1 is
selected randomly the 10% of times to perform exploration,
while the best action is exploited the other 90% of times. The
RL algorithm is presented in Algorithm 1, where the boundary
situations are not represented for simplicity.

Algorithm 1: RL algorithm
cR, pR ← maxRate //current and previous Rate
cS ← 70 //current State
while True do

starts counter
sends frame using cR
while not(counter == 0) do

';>BB ← update(';>BB)
R ← Equation 3
�C−1 ← �C
�C+1 ← n–Greedy((C+1)
QST[(C][�C] ← Equation 4
�C , (C ← �C+1, (C+1

After a training of 200 episodes with = = 1000, where each
window F8 is a sequence of 40 consecutive messages, the
“best” policy for a specific situation or location is identified.
An attractive computational advantage consists in the possibil-
ity to store the best policies in memory, to be properly used
when needed.

IV. Simulation Outcomes
OMNeT++ is used to simulate a simple Wi–Fi-based

WLAN composed by two devices. In the experiments, the two
devices move within the environment with different speeds,
continuously varying their relative packet loss. A further atten-
uation is generate introducing a simulated obstacle between the

elements of the network. The IEEE 802.11 Nist error model,
already implemented in OMNeT++, is used to introduce a
stochastic error model, allowing to explore every possible state.
Finally, the Two Ray Interference model [10] is used for the
path loss. The simulations carried out lasted 100 s. In this
scenario, a node sends packets to the other with a period of
) = 1 ms. A first result, reported in Fig. 2, is relevant to the
behavior of RRAA. It appears evident that the RA activity
strongly depends on the loss rate evaluation (Eq. (1)). Indeed,
when ';>BB is low (that is, when the throughput is high), the
algorithm choose higher rates, and vice–versa.

Figure 2. Throughput and rates selection for RRAA.

The RL algorithm is tested at first when exploration is still
being performed, choosing the 10% of times a random rate,
namely "RL with training". Secondly, the previous training
activity is capitalized obtaining a best policy, whose behaviour
is presented in Fig. 3. Here, it is possible to appreciate the
correct behaviour of the proposed RL RA algorithm in relation
with the throughput. In particular, only when the throughput
is low the algorithm chooses low rates.

Figure 3. Throughput and rate selection for policy–based RL.

A comparison of the aforementioned three situations is
carried out in Fig. 4, by means of the mean throughput.
We can notice that, when the loss is high (and the throughput
is consequently low) the rate selection activity is unstable

Figure 4. Throughput comparison.

(Fig. 3), since this entails the selection of very different
subsequent rates. This behaviour is owed to the particular
definition of the rewards and the percentage of the exploration
activity done during the training phase. Indeed, the latter
extreme situation of Fig. 4 has been presented to underline
that the choice of selecting the rate at each step from the
whole set of rates may provide benefits in terms of throughput.
Clearly, a real implementation will need a more accurate
rewards tuning. Nevertheless, the aim of this preliminary
analysis is to prove the effectiveness of exploiting RL for RA.
From an industrial networks perspective, a further performance
evaluation needs to be carried out considering the transmission
delay experienced by the packets in the network. To this aim,
Table III reports the outcomes of this analysis, in terms of
both the mean and standard deviation values. In addition,
the Cumulative Distribution Function (CDF) of the delay is
presented in Fig. 5.

Table III
Simulation results (100.000 packets sent)

Received Delay [ms]
Algorithm packets ';>BB [%] Mean Std. Dev.

RRAA 71084 28.016 35.255 140.970
RL with training 76191 23.809 22.742 129.773
RL best policy 77401 22.599 16.122 123.917

Both Table III and Fig. 5 demonstrate that the RL tech-
niques performs better than the RRAA algorithm. Firstly, RL
techniques have an higher number of successful transmissions
stemming from the lower packet loss. Secondly, the intro-
duction of RL permits to decrease the End–to–End delay in
terms of mean and standard deviation. This reveals that RL–
based RA algorithms are able to converge to a better trade–
off between rate maximization and loss minimization. As a
final observation, the RL with training policy, characterized
by a randomised rate selection in the 10% of times, performs
slightly worse than the RL using the best policy.

Figure 5. End to End Delay CDF.

V. Conclusions and future research activities
Reinforcement Learning has proven to be promising for

improving the RA capabilities of Wi-Fi networks. The prelim-
inary simulation assessment presented in this paper showed
that RL introduces appreciable improvements over RRAA,
and a further algorithm tuning, with smoothed rewards might
allow even better results. Future directions of this research
will be focused on a more comprehensive implementation and
assessment of the presented RL–based RA algorithm, as well
as on the application of RL to other industrial specific RA
algorithms. For example, the usage of the SNR information
within an RL–based policy may considerably improve the
performance of the algorithm. Moreover, the implementation
of RL techniques for RA on larger networks, comprising more
nodes, and on an experimental testbed is foreseen, allowing to
consider other issues, such as required computational efforts.

References
[1] S. Vitturi, C. Zunino, and T. Sauter, “Industrial communication systems

and their future challenges: Next-generation ethernet, iiot, and 5g,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 944–961, 2019.

[2] F. Tramarin, A. K. Mok, and S. Han, “Real-time and reliable industrial
control over wireless lans: Algorithms, protocols, and future directions,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1027–1052, 2019.

[3] A. Aĳaz, “High-performance industrial wireless: Achieving reliable and
deterministic connectivity over ieee 802.11 wlans,” IEEE Open Journal
of the Industrial Electronics Society, vol. 1, pp. 28–37, 2020.

[4] F. Tramarin, S. Vitturi, and M. Luvisotto, “A dynamic rate selection
algorithm for ieee 802.11 industrial wireless lan,” IEEE Transactions on
Industrial Informatics, vol. 13, no. 2, pp. 846–855, 2017.

[5] M. A. Gawas and R. Tambi, “Data rate adaptation algorithms survey for
ieee 802.11 networks,” International Conference on Current Trends in
Computer, Electrical, Electronics and Communication (CTCEEC), 2017.

[6] M. Yofune, M. Suto, Y. Amezawa, and S. Sato, “Rate-adaptation scheme
for multiband wlan system,” in 2018 Advances in Wireless and Optical
Communications (RTUWO), 2018, pp. 72–77.

[7] S. H. Y. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate
adaptation for 802.11 wireless networks,” in Proceedings of the 12th
Annual International Conference on Mobile Computing and Networking,
ser. MobiCom ’06. New York, NY, USA: Association for Computing
Machinery, 2006, p. 146–157.

[8] R. Nian, J. Liu, and B. Huang, “A review on reinforcement learning:
Introduction and applications in industrial process control,” Computers
& Chemical Engineering, vol. 139, p. 106886, 2020.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: an introduction,
2nd ed. The MIT press, 2018.

[10] C. Sommer and F. Dressler, “Using the right two-ray model? a
measurement–based evaluation of phy models in vanets,” in MobiCom,
2011.

