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Abstract

In the last twenty years, the advances in sequencing capabilities and data analysis have allowed
microbiologists to transcend cultivation based techniques, giving rise to the field of metagenomics.
Metagenomics nowadays includes a diverse array of techniques that make it possible to gather
knowledge regarding many different aspects of microbial life, but there are many grey areas which
deserve attention and improvement. This thesis takes a tour into some of these areas, with a main
focus on viruses, key players in the global ecology and evolution of every lifeform.
Viruses are currently recognized as one of the most important hubs of genetic evolution, as well as
active components of biogeochemical cycles. They also pose numerous challenges to scholars, due to
their small genomes and their extreme genetic variability, making the knowledge about viruses
severely lag behind compared to cellular organisms. Reconstructing their evolution, for instance,
presents singular difficulties, as their genomes frequently follow a mosaic evolution model, in which
different genes follow different evolutionary trajectories, and may get integrated in the genome or lost
with ease. The first work hereby presented deals with this issue in the regards of a peculiar taxon of
bacteriophages, the order Crassvirales, revealing the genes that are most representative of the
evolution of the taxon as a whole.
An environment in which knowledge about viruses is particularly lacking is anaerobic digestion.
Anaerobic digestion is a metabolic pathway that converts organic material into simple compounds,
mainly carbon dioxide and methane. Its use by humans is and will be growing in importance in the
near future as the climate change crisis pushes humanity to abandon fossil fuels and shift to a circular,
green economy. This metabolic process is carried out by a complex community of microorganisms,
which are well known thanks to whole shotgun sequencing and metagenomic techniques. The viral
community which inhabits this environment, on the other hand, has received much less attention by
scholars, in spite of the potential impact it has on the microbiome. The second work presented in this
thesis deals with the characterization of the viral and prokaryotic community of anaerobic digestion
under different conditions, and how the relation between temperate viruses and their hosts changes
when a much wider database is taken into account. Improving the production of methane via
anaerobic digestion can be attained by manipulating the microbial community, and viruses are a
promising tool to accomplish this.
Another aspect of metagenomics that pushes researchers is the annotation of genes. The assignment of
functionalities to novel gene or protein sequences is far from being trivial, and many new sequences
remain uncharacterized. This problem is conceptually related to the lack of knowledge about viral
sequences: as annotation methods mainly rely on databases of previously characterized sequences,
genes of unknown function remain uncharacterized, perpetuating the outcome. At genome level,
metabolic pathways may remain incomplete either because of either the missed gene annotation or the
incompleteness of the reconstructed genome. This thesis includes the publication of KEMET, a
software which assesses the completeness of metabolic pathways in genomes. Besides providing an
understanding of the metabolism of the chosen genomes, KEMET allows for the improvement of the
annotation of the genome, as the user is allowed to identify missing genes by means of a Hidden
Markov Model search.
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Acronyms
AD - Anaerobic Digestion
BC - Baltimore Class
CRISPR - Clustered Regularly Interspaced Short Palindromic Repeats
dsDNA - double-stranded DNA
dsRNA - double-stranded RNA
HGT - Horizontal Gene Transfer
HMM - Hidden Markov Model
ICTV - International Committee on Taxonomy of Viruses
KEGG - Kyoto Encyclopedia of Genes and Genomes
MAG - Metagenome-Assembled Genome
MGE - Mobile Genetic Element
NGS - Next Generation Sequencing
OTU - Operational Taxonomic Unit
VFA - Volatile Fatty Acids
vOTU - viral Operational Taxonomic Unit
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Introduction

The era of metagenomics
The advances of computing systems that began last century have irreversibly changed the ways of
science. The development of tools with more and more computational power have allowed scientists
to gather, manipulate, store and visualize more data than ever before.
This applies to microbiology as well. DNA sequencing became commonplace in the eighties, with
Sanger sequencing, but in the early 2000s the development of Next Generation Sequencing (NGS)
made it possible to produce orders of magnitude more data than the previous techniques. The
computing power needed to manipulate the short reads also became available at that time. These
advancements made it much easier to gather data from uncultured media, paving the way for the study
of environmental sequences.
When the term “metagenomics” first appeared in 1998 [1], the only technique used to read
environmental DNA was Sanger sequencing, but with the invention and more and more widespread
usage of NGS sequencing the number of sequences produced grew exponentially. The International
Nucleotide Sequence Database Collaboration (INSDC), which unifies the three sequence databases
GenBank, ENA and DDBJ, doubles its content approximately every 18 months.
Traditionally, the description of new microbial species relied on the isolation of microorganisms, with
classical microbiological techniques such as in vitro cultures. Since most bacterial or archaeal species
are either extremely difficult or downright impossible to cultivate, the isolation approach excludes
many taxa from description via traditional means. The introduction of NGS techniques thus brought to
the discovery of many taxonomic groups among prokaryotes, such as DPANN and Asgard archaea
and the CPR bacterial phyla [2–4].
A newer revolution in sequencing is ongoing: long read sequencing technologies have entered the
scene in the last decade. These technologies allow the sequencing of reads thousands of base pairs
long, reducing the uncertainty that originates from the fragmentation of DNA into short reads and the
subsequent assembly [5]. They make it possible, in fact, to obtain complete sequences of entities with
short genomes, such as viruses and plasmids [6].
Long read sequencing technologies, despite getting cheaper and more widespread every year, are still
far from being a routine tool of microbiologists, and the vast majority of metagenomic analyses are
carried out with short read sequencing.

Standard metagenomic analysis

There are two main types of metagenomic analysis, both carried out with short and long read
sequencing: amplicon and shotgun. Amplicon sequencing is the amplification of a single DNA region
via PCR and the usage of specific adapters for the generation of sequencing libraries; when choosing a
region which is present across a broad range of species, it allows to retrieve a snapshot of the whole
community. The gene codifying for the 16S ribosomal RNA has proven to be an excellent candidate
for this purpose. It is found in every prokaryotic organism, both bacteria and archaea, and it contains
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both conserved and hypervariable regions. The alternation of conserved and variable regions make it
possible to design universal primers, which sit on conserved regions, that amplify hypervariable
regions, which provide enough variation to distinguish among low-level taxa. For these reasons, 16S
ribosomal DNA (commonly abbreviated as 16S) sequencing is routinely used to characterize the
species composition of environmental samples in an easy and relatively cheap fashion. Amplicon
sequencing, though, is not a definitive tool, and leaves out many details. As it targets only one
genomic region, an amplicon sequencing does not further the knowledge of the intra-genomic variety,
and forces the researchers who employ it to rely on literature or previous data regarding, for instance,
the functional composition of the community. Furthermore, the taxonomic resolution of 16S
sequencing is limited: the lowest taxonomic rank that can be assessed is either species or genus,
according to the region that has been chosen for amplification [7]. In this contest, the amplification of
the whole 16S gene yields the most precise results [7], but it requires either low-throughput or long
reads sequencing. The insight at strain-level resolution is increasingly revealed as crucial, since
different strains of the same species may feature a great variety in accessory genomes, resulting in
very different functional properties. Plus, 16S sequencing does not allow the detection of
extra-genomic material, such as viral particles and plasmids. Integrated viral genomes too are
invisible to amplicon sequencing, leaving the viral community neglected once more.
Shotgun sequencing is carried out with random primers and amplifies sequences from any source,
indiscriminately. The presence in the dataset of reads coming from any part of any genome, though,
opens the way to several problems, which relate with how to manage the data so far gathered. Short
reads are incredibly numerous, in the order of magnitude of 106 - 107, but only 150-200 bp long, while
a single prokaryotic genome easily exceeds one million base pairs. This problem is compounded by
the presence, in a single sample, of several species, whose reads are, on a first glance,
indistinguishable from each other. The first step to reconstruct the original genomes is the assembly of
single reads into longer sequences, called “contigs” or “scaffolds”. There are two main approaches to
the assembly of reads, both of which formalize the process of assembly as a graph problem. The first
assembly algorithm to be conceived was the Overlap Layout Consensus, in which reads are aligned
pairwise; the alignments are then used to build a graph that is traversed in order to find a Hamiltonian
path, i.e., a path where the nodes are visited only once [8]. A final step, typically a multiple sequence
alignment, is used to close the assembly [8]. A more recent approach, less costly in terms of memory
and speed, is the De Brujin graphs assembly, in which reads are fragmented into sequences of a given
length k, named k-mers. K-mers are then interpreted as edges that link k-1 mers, generating the graph.
The graph is then traversed in order to find the longest non-redundant path, similarly to the previous
technique [8,9]. Depending on the assembling program, paths may be Hamiltonian or Eulerian, i.e.,
paths in which edges, and not nodes, are visited only once [9].
The techniques discussed so now are referred to as de-novo assembly, as they do not require
pre-existing data to be performed. It is also possible to use template genomes to assemble new
genomes, a technique dubbed “reference-based assembly”. Reference-based assembly is a rarely used
approach in metagenomics, as the collection of complete genomes does not reflect the actual variety
of species present in environments and would introduce even more severe biases in the outcome.
The assembly step produces far from complete genomes; only a fraction of the contigs or scaffolds
usually gets close to the length of actual genomes. Since original genomes are thus represented by
fragments, the solution to obtain nearly-complete genomes is to group the contigs into collections, a
process called “binning”. This is accomplished by gathering one or more statistics, the most
commonly used of which is read coverage. Contigs that are part of the same genome are assumed to
show similar coverage profiles across different samples; these coverage statistics are obtained by
mapping reads from several samples on the assembled sequences, and the more samples are used the
more accurate the binning process is. Other statistics that can be used are GC content and
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tetranucleotide composition [10,11]. Neural network approaches have also been used to develop
binning tools [12]. It is possible to estimate the quality of the recovered bins as genomes with tools
like CheckM and CheckM2 [13,14], which estimate completeness and contamination of genomic bins.
Bins that correspond to are commonly referred to as Metagenome-Assembled Genomes (MAGs). For
more accurate results, it is possible to run multiple binning tools and then pick the highest quality ones
for each species, a process called dereplication.
MAGs are thus typically used as the starting point for subsequent analyses. These may include
taxonomic assignment, gene prediction and annotation.

Functional Annotation
The huge data-retrieval capabilities offered by next-generation sequencing techniques provide
researchers with far more data than it can be analyzed with standard wet-lab techniques. Since in vivo
and in vitro techniques are nowadays the bottleneck in microbiological knowledge, the fastest way to
gather new data is via in silico analyses. Functional annotation, i.e., assigning a more or less specific
function to a sequence, is one of the problems to which this approach can be applied. All the
knowledge about protein function ultimately originates from wet-lab studies, but for those sequences
that have not been analyzed this way - as in the vast majority of metagenomic studies - functional
annotation is carried out via homology searches with genes or proteins of known function. Every type
of homology is applied to in silico functional annotation, from basic sequence alignment to Hidden
Markov Model (HMM) searches, to structural homology and neural network-based annotation.
Despite the best intent in annotating every predicted ORF, the utmost majority remains
uncharacterized. One more reason contributing to the difficulty of in silico annotation is that genomes
recovered via metagenomics approaches are often fragmented, lacking several genes useful to frame
the species’s metabolic properties. Furthermore, recognizing a genome as incomplete isn’t
straightforward, and genomes belonging to poorly-known taxa are the most difficult to characterize as
such. Similar difficulties arise when trying to assess the level of contamination of a MAG, i.e., the
quantity of extraneous sequences included in the same metagenomic bin. Approaches based on neural
networks seem to be improving in this regard, but any other useful approach is welcome. It is also
possible to hypothesize the presence of certain genes in a certain organism based on the presence of
genes in specific pathways, as is routinely done in Genome Scale Metabolic Modeling.
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Viruses
Viruses are a type of Mobile Genetic Element (MGE) characterized by a high selfishness and mobility
[15], able to reproduce only by taking advantage of the metabolic system of the host. They are
universally reported as being the most abundant biological entities on Earth, and yet their status as
living beings is uncertain, and hangs on the definition itself of life, which they stretch. Viruses, in fact,
are not made up of cells, do not have an independent metabolism, nor are they capable of reproduction
on their own, but for every biochemical activity they have to rely on the enzymatic machinery of their
host. An attempt to solve this conundrum is the definition of virocell, in which the host cell in the
altered state of infection is considered as a separate organism than the non-infected cell, which
reproduces via the production of viral particles [16]. No matter the semantics, viruses are of massive
importance for the evolution of life on earth, for a whole range of reasons. Virtually every branch of
the tree of life is host to viral parasites, and play a fundamental role in shaping biogeochemical cycles
by freeing the matter used by their hosts. They also shape the evolution of their hosts both by being a
source of selective pressure and by enacting Horizontal Gene Transfer (HGT) across hosts.
Most viruses subscribe to one of two types of life cycles: virulent or temperate. Virulent viruses
immediately hijack the replication machinery of the host cell after the infection, leading to the
production of new viral particles and the eventual destruction of the host, in a process called lytic
cycle. Temperate viruses have the capability to perform what’s known as lysogenic cycle, in which the
infection of a host is followed by the integration of the viral genetic material into the host’s own
genome. The lysogenic cycle allows the virus to hitchhike the reproductive success of the host, and
temperate viruses feature different mechanism that lead the virus to enter the lytic cycle under certain
conditions where it is more evolutionarily advantageous for the virus to sacrifice their host and
reproduce via the production of viral particles instead. These two lifestyles are not the only ones
present in viruses; some species, e.g. haloarchaeal viruses, keep the host cell alive while continuously
producing new viral particles, at a rate that does not impede the life of the host [17]; other do not even
produce viral particles, relying only on vertical transmission or cellular anastomosis to spread to other
hosts [18,19].
The interaction between a virus and its host must not be mandatorily seen as a one-way parasitic
relation, in which the virus is the only recipient. It is well known, especially in temperate species, that
the virus also benefits the host, a phenomenon understood as an evolutionary advantage for the virus.
Viruses may provide new functionalities for the host in the guise of genes; this is especially
recognized in virulent bacterial strains that acquire their virulence via HGT from the bacteriophages
that infect them, as attested in Vibrio cholera, Escherichia coli and other species [20,21]. Another
remarkable case is the presence of mechanisms that prevent the same cell from being targeted by
additional viruses, either from the same or different viral species. In this context, viral genomes may
carry CRISPR-Cas loci targeting viruses, an adaptation that peaks in huge bacteriophages, some of
which carry up to 95 spacers that target 32 viral species[22]. These mechanisms secure the host to a
single virus while providing advantageous features to the host as well. It’s a perfect example of the
“guns for hire” model, where defense systems, which are costly for the host, acquire MGE-like
characteristics to ensure their own survival and MGEs acquire defense genes in order to provide an
advantage for themselves when they infect a host [15].

Metaviromics: novelties and challenges
Metagenomics is also applied to the study of viruses, thus dubbed metaviromics. Just as in the study
of prokaryotes, metagenomics has brought invaluable knowledge to the field of virology too. The
most famous example is the case of crAssphage, a tailed bacteriophage which lives in the human gut.
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Unknown until 2014, crAssphage was recognized as the most abundant virus of the human gut, where
it covers up to 90% of the viral reads [23]. It was discovered thanks to the cross-assembly program
crAss – hence the name – which builds a depth profile for each contig generated in a co-assembly of
different samples, a then novel technique [24]. Further studies recognized a whole clade of similar
bacteriophages, now classified as the order Crassvirales in the Caudoviricetes class [25,26]. More
broadly speaking, the vast majority of viral sequences recovered nowadays is metagenomic in origin ,
so much so that the International Committee on Taxonomy of Viruses (ICTV) has taken the decision
to allow for viral taxa to be defined on the basis of metagenomic data alone [27]. Dedicated databases
of viral sequences derived from metagenomic analyses are commonplace; the largest database of
environmental viral sequences, IMG/VR, has had its third release in 2021 with 2,332,702 viral
genomes, grouped into 935,362 viral Operational Taxonomic Units (vOTUs) [28].
A large part of the metagenomic data cannot be taxonomically assigned nor functionally annotated,
and for this reason it bears the moniker “dark matter”. The fraction of unclassified viral sequences is
much higher than prokaryotic sequences. This is due to some noteworthy challenges posed by the
nature itself of viruses. Most viruses have relatively small genomes; whereas the largest viral genomes
might reach hundreds of kilobases, plenty of viral families have genomes as short as a few kilobases.
A short genome means that, even when correctly assembled, the viral genome in question could be
discarded due to a threshold on the length of contigs. Lowering the threshold would increase the
amount of noise present in the dataset, and incomplete genomes belonging to these taxa would be
even more difficult to spot, as they would be even smaller and more difficult to detect than complete
genomes. This is compounded by the bias of viral sequence databases towards tailed bacteriophages,
which have larger genomes; such a bias makes it more difficult to detect marker genes for the
completeness of virus belonging to underrepresented taxa.
Viruses have short generation times and large effective population size, and are thus characterized by
very fast evolutionary rates in which selective pressure, not genetic drift, is the main driver of
genomic evolution. Many viral polymerases also have no proofreading activity, thus enhancing the
rate of mutation accumulation in viruses. Another factor that explains viruses’ evolutionary velocity is
their ease of access to recombination, leading to a mosaic evolution of the genome. This is even more
pronounced in segmented viruses, whose genome is divided into several nucleotide strands, and
multipartite viruses, whose genome is contained in different viral particles. These viruses can
additionally undergo a phenomenon named “reassortment”, in which entire strands of genetic material
are exchanged inter- or intra- individuals [29–31].
Differently from Bacteria, Archaea, and Eukaryotes, “viruses” is not a monophyletic taxon, but a
descriptive category. Their diversity even reaches their genetic material, which has been used since
1971 to divide viruses into six “Baltimore Classes” (BCs), named after their ideator, David Baltimore
[32]. Baltimore Classes I and II comprise double strand DNA (dsDNA) and single-strand DNA
(ssDNA) viruses respectively; BCs III to V represent double-strand RNA, positive-, and
negative-sense RNA viruses (dsRNA, (+)RNA, and (-)RNA); finally, BCs VI and VII are dedicated to
RNA and DNA retroviruses (RNA-RT and DNA-RT). Their origin is debated: two models for the
origin of the viruses describe them as either primitive organisms or intracellular replicators that
gradually developed until they acquired genes, such as capsid genes, that allowed them to produce
viral particles. Any trace of monophyly, as improbable as it is, has been erased by evolution, as there
is no universally conserved sequence among viruses. The most recent attempts to model the evolution
of all viruses focus on the phylogenetic tree of “superviral hallmark genes” (“super-VHGs”), i.e.,
extremely widespread gene families, whose distributions even cross the borders of different BCs. The
phylogenies of super-VHGs are combined with gene-sharing networks, providing a scaffold for the
organization of the viral diversity at a global level [33].
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Traditional virology depended on culture growth of the host, and as such featured the same problems
of the former - as most bacteria and archaea cannot be cultivated, neither can their viruses. Traditional
virology thus focused on a few viral species of a few selected hosts, focusing on coliphages such as
lambda and T4. This started the enduring bias in favor of tailed bacteriophages and archaeal viruses
(class Caudoviricetes) which are still today, the most represented in databases. This bias has
repercussions in every type of analysis dedicated to prokaryotic viruses, from the annotation of genes
to the identification of the viral genomes themselves.

Virus-oriented metagenomic techniques
The peculiarities of viruses require the use of alternative techniques for their reconstruction and
characterization. It is possible to recover viral sequences both from regular metagenomic datasets and
from samples enriched in viral sequences. In order to enrich environmental samples in viral
sequences, the most apt technique is filtration through 0.22 μm pores, typically with a tangential flow
filtration system. Despite its effectiveness, this technique introduces a few biases in the final
composition of the sample, mainly by excluding the larger viruses, such as the amoeba-infecting giant
viruses (Nucleocytoviricota) and huge bacteriophages. Furthermore, samples obtained by filtration of
viral particles do not take into account temperate viruses integrated in their host’s genome. Another
technique, far less popular, for the enrichment of viral particles, is iron chloride flocculation [34],
which consists in the addition of iron chloride (FeCl3) to the medium. Viral proteins bind to FeCl3,
which makes them precipitate and easy to recover. Other common steps for enriching samples in viral
particles are centrifugation and freeze-drying.
Whereas amplicon sequencing may be used to characterize specific taxa [35–38], is not fit to
characterize an entire viral community, due to the lack of common marker genes, and the most
common approach is shotgun sequencing. Reads are assembled with the same software used for
samples which are not enriched in viruses, even though specialized assemblers for viral genomes have
been published [39–41]. Binning of assembled contigs/scaffolds is typically not considered a
necessary step for the reconstruction of viral genomes, but dedicated pieces of software have been
developed for this purpose and have brought forward promising results [42–44].
It is desirable, when a viral genome has been recovered, to assess its quality, as it is the case for the
genomes of living organisms. The main tool aimed at computing completeness and contamination of
viral genomes is the CheckM-inspired CheckV[45]. CheckV, while generally reliable, suffers from the
same biases of other tools dedicated to the analysis of viral sequences, as it is biased towards the best
known taxa: tailed bacteriophages. Finally, viruses too can be dereplicated into viral Operational
Taxonomic Units (vOTUs). Like in the MAG dereplication mentioned above, this process involves
the clustering of genomes into groups meant to represent single species; the best quality genomes are
then picked as representative of the entire species. The advised threshold is 95% average nucleotide
identity over 85% alignment fraction, relative to the shorter sequence [46]. Software like RedRed and
vConTACT 2 are dedicated to clustering viral genomes [47,48].
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Anaerobic Digestion
Anaerobic Digestion (AD) is a complex metabolic process that leads to the breakdown of organic
substrates into simple compounds, in absence of oxygen. It is carried out by a complex community of
bacteria and archaea, which has been thoroughly characterized thanks to metagenomic techniques.
The functional analysis of the community has brought to the reconstruction of the network of
reactions, which is commonly depicted as a funnel, where the more complex compounds enter at the
top and which lets the final electron acceptor - methane - exit at the bottom. The reactions are
commonly grouped in four steps: hydrolysis, acetogenesis, acidogenesis, and methanogenesis. Each
one of these steps is carried out by a specific guild of microorganisms, with a few generalist species
being able to play multiple roles at once. In the step of hydrolysis the more complex molecules such
as carbohydrates, proteins, and lipids are digested into simpler compounds. The microbial guild that
carries out this step is the largest and most diverse. In the step of acidogenesis the single monomers
produced via hydrolysis are metabolized into molecules such as Volatile Fatty Acids (VFA). These
compounds are then used by acetogenic microbes, which produce acetate, carbon dioxide and
molecular hydrogen. Finally, the guild of methanogens, composed exclusively of archaeal species,
employs these molecules as substrates, producing methane. Methanogenesis is not a unique pathway,
but up to four main types of methanogenesis can be differentiated, according to the substrate. The two
main methanogenesis pathways are acetoclastic and hydrogenotrophic methanogenesis, which operate
on acetate and CO2 respectively. A pathway of lesser importance is methylotrophic methanogenesis,
which uses substances such as methanol and methylamines as substrates. An additional pathway was
only recently described, in which methane is produced from aromatic compounds. Up to now, only a
species has been described as having this metabolic capability [49].
Many natural environments harbor microbial communities that carry out AD, whose main
prerequisites are an abundance of organic matter and the absence of oxygen. For this reason, AD is
common in bogs, swamps, and the gut of herbivore animals, from ruminants to termites. The main
research done on AD, though, relates to its usage by humans in industrial-scale settings. AD reactors
are mainly used to dispose of organic waste, e.g. of urban or agricultural origin, while producing
biogas and a solid or liquid component known as digestate. The digestate has many industrial uses,
such as fertilizer, bedding for livestock, and even components of bioplastics. The production of
biogas, i.e., a gaseous mixture primarily composed of methane and CO2, is particularly relevant as it
allows to reduce the dependency of humanity on fossil fuels and the creation of a circular economy,
reducing the production of greenhouse gases. Given the importance of AD in the fight against climate
change, understanding and optimizing the process is worthy of attention. The optimization of the AD
process is, nowadays, mainly based on the manipulation of physicochemical parameters. Some ways
to improve the process are the balancing of temperature and a limited exposure to atmospheric oxygen
[50–53]. The addition of conductive materials, such as magnetite or biochar, to reactors is a common
way to improve the production of methane, as it improves the electron transfer among microorganisms
[54,55]. Finally, a series of techniques can convert residual CO2 into CH4, a process called “biogas
upgrading” [56]. Biogas upgrading can be achieved through physico-chemical processes, as well as
biologically, by injecting H2 into the reactor and thus boosting methanogenesis [57,58].

Viruses in anaerobic digestion
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Whereas the microbial community, as mentioned earlier, is well known today thanks to modern
sequencing techniques and metagenomic data analysis approaches, the viral community that
accompanies this microbiome is severely understudied. As in every environment, viruses have a
potentially great importance on the dynamics of AD. For these reasons, they could be used as tools for
manipulating the community, by targeting unwanted microbial species or by using them as vectors to
confer new metabolic characteristics to key microorganisms in AD.
Until now, the number of published studies regarding the virome of AD is low [59–61]. There are a
few reasons for this: first, AD is mainly studied from an engineering point of view, by engineering
research groups; second, the complexity of the medium makes it difficult to apply proper techniques
to enrich the samples in viral particles, such as filtration; third, because of the aforementioned
problems that are always found when studying viruses. Nevertheless, a few metaviromic studies have
been published on AD over the last decade. These unanimously paint the viral community as being
composed for the most part by tailed bacteriophages (class Caudoviricetes, formerly order
Caudovirales), accompanied by a small number of viral genomes belonging to less known families,
such as Inoviridae[59] and Tectiviridae [59].
One study did not limit to the analysis of DNA viruses, but studied RNA viruses as well [60],
recording an overwhelming presence of plant viruses. These plant viruses have, presumably, no
impact on the AD process, as they are associated with the medium. The same study also reported the
presence of amoeba-infecting giant viruses (Mimiviridae), which are also thought to be associated
with the medium, i.e., human feces. Similar results were obtained with a metaproteomics approach:
tailed bacteriophages make up the largest part of the virome, and traces of plant- and animal-infecting
viruses were retrieved [61].

Anaerobic digestion database
The AD database is a collection of metagenomics AD studies, developed in the Genomics and
Bioinformatics unit of the University of Padova. In its latest iteration, it includes samples from 18
studies. The assembly and binning of these studies, followed by a dereplication step, allowed the
recovery of 1635 non-redundant MAGs. A project during my PhD career was the expansion of the
database with new studies and extending the analysis to the viral community. The results are too
preliminary to be gathered in a preprint article; for this reason they are presented here as part of the
body of the thesis.

Materials and Methods
I have gathered shotgun sequencing data from 12 more AD studies, downloaded with fastq-dump
v2.10.8[62].
Following the procedures of the previous iteration of the database, raw reads were trimmed with
Trimmomatic v0.39 and adapters were removed with BBDuk v38.86[63]. Assembly was performed
independently for all the samples of each single experiment with MEGAHIT v1.2.9[64], and the
statistics of each assembly were calculated with QUAST v5.0.2[65]. Every assembly was binned with
MetaBAT2 v2.12.1[66] and MaxBin v2.2.7[67]. In the previous version of the database only
MetaBAT2 was used for binning; those assemblies were rebinned with MaxBin.
Completeness and contamination of each MAG was calculated with CheckM v1.1.2[13]
The search for viral sequences was performed by scanning every assembled contig with three software
for the detection of viral sequences: CheckV v0.7.0, VIBRANT v1.2.0, and PPR-Meta v1.1
[45,68,69]. A contig was assigned as viral if the prediction was independently assigned by at least two
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of these programs. A length threshold of 5 kbp was also applied to viral sequences, in order to reduce
the noise.

Results
The binning process allowed the recovery of more than 11,000 MAGs in total, which were reduced to
4568 after clustering those belonging to the same species according to ANI calculation. 2,217 MAGs
(48.5%) were of high quality (completeness >= 90%; contamination <= 10%), while 2,351 (51.5%)
were of medium quality (50% <= completeness >= 90%; contamination <= 10%). Those having lower
completeness or higher contamination were discarded.
Taxonomic investigation revealed that the prokaryotic community is, as described in previous works,
dominated by members of Firmicutes, which comprise 1750 MAGs, i.e., 38% of the database,
followed by Proteobacteria (554 MAGs, 12%) and Bacteroidetes (466 MAGs, 10%).
Archaea are represented by 198 species, mainly belonging to the Euryarchaeota phylum (151 species,
76.3%). While Archaeal MAGs are dominated by Euryarchaeota, Candidatus Bathyarchaeota and
Candidatus Diapherotrites are represented by 13 and 12 members respectively. One MAG
taxonomically assigned to the Candidatus Lokiarchaeota was also recovered, and could present an
acetoclastic or methylotrophic metabolism.
Analysis of the MAGs relative abundance in all the samples under examination allowed us to
determine the distribution of microbial species in the database. The calculation of the fraction of
samples in which each MAG had abundance greater than 1% showed that some phyla, including
Euryarchaeota, Synergistetes and Candidatus Cloacimonetes species, tend to be more widespread,
while others, such as Fibrobacteres, Ignavibacteriae, Planctomycetes and many Candidatus phyla
have a more scattered distribution.
The detection of viral sequences allowed the recovery of 26,513 viral sequences. Around half of these
sequences (13,437, 50.7%) belong to the Caudoviricetes class of tailed bacteriophages, but a vast
variety of other taxa, such as Inoviridae and Rudiviridae, was also found.

Future perspectives
The AD database will be further developed by delving into the associations among its components.
One of the current aims of the project is determining the correlations between physicochemical
parameters and the composition of both the microbial and viral communities, by mapping the sample
reads onto the genomes and determining the relative abundance. The interactions between viruses and
their hosts will be made clearer by identifying the CRISPR spacers in microbial genomes and using
them in a strict similarity sequence search against viral genomes. These results, in conjunction with
functional prediction, will help in determining the presence of virus-mediated HGT in AD
communities. In conclusion, this database hopes to shape a perspective of how viruses impact the AD
microbial community and, consequently, the production of biogas.
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Overview on the selected manuscripts and
conclusions
These studies were selected thanks to their relevance in my academic path, as well as their insights
into relevant metagenomics topics: viral metagenomics and functional annotation.

Paper I is the published version of my Master’s Degree thesis. It is an investigation on the evolution
of single genes in Crassvirales viruses (then named crass-like viruses), which includes the
reconstruction of the phylogenetic tree of each gene, followed by a pairwise comparison of the
phylogenetic trees with the mirrortree method. The results show a mosaic evolution of crAss-like
viruses’ genes, with a core genome formed by genes coevolving with each other, and accessory genes
which do not follow the same evolutionary path as the rest of the genome. The “core” genome is
fundamentally formed by capsid, replication and structural genes; more specifically, the capsid genes
are revealed as the most widespread across crAss-like genomes, as well as the most diverse in terms
of sequence identity. These characteristics consolidate the capsid proteins as the most appropriate to
represent the evolution of the clade as a whole - as shown in the ICTV proposal for the establishment
of the Crassvirales order, in which the taxonomy of the order is based on the concatenated alignment
of the major capsid protein, large terminase subunit, and DNA primase. This article was included in
the paper collection as new analyses were implemented in my first year of Ph.D., which then provided
a foundation for the following studies.

Paper II presents a software that faces the problems related to functional annotation, based on the
reconstruction of functional pathways present in a single genome. KEMET uses the functional
annotation of genes provided by eggNOG-mapper, KofamKOALA, and KAAS. It attests the
completeness of functional pathways formalized as KEGG modules, allowing to hypothesize the
functional capabilities of the organism. Furthermore, when a pathway is characterized as incomplete,
KEMET allows the user to attempt to recover a homologous sequence in the genome by downloading
the reference sequences from the KEGG GENES database and running an HMM search. I contributed
to the coding part, especially regarding the function that attests the completeness of a module, as well
as polishing the code of the entire program.

Paper III is a study about the viral and prokaryotic community of AD and is, to my knowledge, the
first study to examine the variation of these communities in relation to different environmental
conditions. A set of AD batches was created starting from the same inoculum, and were then inflicted
with different conditions which were deemed both stressful for the prokaryotic species living in it and
likely to cause induction in temperate viruses. The results show that the change in abundance of
different viral genomes can be neatly divided into groups which feature group-exclusive genes. It’s
also possible to appreciate a widespread presence of tail-associated sialidases in viruses, hypothesized
to be used during the infection. Sixty-four out of 120 prokaryotic genomes were found to be hosting
integrated proviruses; the reads from the AD database were mapped onto these virus-host couples, in
order to gather insight about their behavior in a much wider range of physical and chemical
conditions. It can be attested that temperature is the main driver of the abundance ratio between
viruses and their hosts - but, even more strikingly, that simplified medium cultures show an unusually
high amount of viruses 10 times or more abundant than their hosts, which we hypothesize is due to the
stress that a simplified medium, with little variety of nutrients, brings to the bacteria.
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Abstract: crAss-like viruses are a putative family of bacteriophages recently discovered. The eponym
of the clade, crAssphage, is an enteric bacteriophage estimated to be present in at least half of
the human population and it constitutes up to 90% of the sequences in some human fecal viral
metagenomic datasets. We focused on the evolutionary dynamics of the genes encoded on the
crAssphage genome. By investigating the conservation of the genes, a consistent variation in the
evolutionary rates across the di�erent functional groups was found. Gene duplications in crAss-like
genomes were detected. By exploring the di�erences among the functional categories of the genes,
we confrmed that the genes encoding capsid proteins were the most ubiquitous, despite their overall
low sequence conservation. It was possible to identify a core of proteins whose evolutionary trees
strongly correlate with each other, suggesting their genetic interaction. This group includes the capsid
proteins, which are thus established as extremely suitable for rebuilding the phylogenetic tree of
this viral clade. A negative correlation between the ubiquity and the conservation of viral protein
sequences was shown. Together, this study provides an in-depth picture of the evolution of di�erent
genes in crAss-like viruses.

Keywords: metaviromics; gene evolution; crAssphage; mirrortree; human gut

1. Introduction

Metagenomics, i.e., the discipline focused on studying genomic sequences from environmental
samples, is a relatively new feld. The frst occurrence of the word itself in the literature dates to 1998 [1];
over the last two decades metagenomics, fueled by the rise in computing power and the development
of high-throughput sequencing techniques, has become a major force behind the development of
microbiology and environmental biology [2,3]. This revolution is happening for viruses too, whereas
the discovery and isolation of new viruses was traditionally linked to the infection of cultivated bacteria,
nowadays novel viral sequences are routinely discovered via analysis of environmental samples [4,5].
Thanks to these approaches, the understanding of phage biodiversity has been widely enlarged,
with new clades of human- and animal-associated jumbophages and megaphages and novel viruses
(without known isolates) being recently described [6,7]. The bulk of the newly discovered viral species
is such that the International Committee for the Taxonomy of Viruses (ICTV) has proposed to allow for
the classifcation of new species on the basis of sequence data alone [8]. In summary, metagenomics
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has given the possibility to look at the microbiological world from a perspective which transcends the
bias associated with the methods previously used. These fndings led also to a more-comprehensive
analysis of the microbial communities and to a more detailed evaluation of the diversity, prevalence,
and ecosystem distribution of phages.

One of the most exciting discoveries from metaviromics is the existence of the crAssphage
bacteriophage, found in about half of the human population and being the reference for up to 90%
of the viral reads in human gut metagenomes [9,10]. It has subsequently been found, in association
with human feces, in every part of the world [11]. This viral species, despite its ubiquity, has been
discovered only recently, this is due to the divergence of the crAssphage genomic sequence from
other viral genomes and the di�culty of growing its host, a species of the Bacteroides genus, in vitro.
A method based on single assembly from more than one metagenome, named cross-Assembly (hence
the phage’s name) was used for this purpose [12]. An additional study proved that crAssphage is
a member of an entirely new viral clade [13]. The putative crAss-like family has been divided into
four subfamilies and ten candidate genera [14]; it includes viruses from diverse ecological niches
such as termite gut and marine sediments, as well as another known member of the human gut,
the immunodefciency-associated stool virus (IAS). Given the importance of the microbial communities
with regards to human health, it makes sense to investigate every aspect of the most abundant virus of
one of the most abundant bacteria residing in the human gut. Furthermore, crAssphage’s association
with humans is not recent: members of the same viral family, even from the same putative subfamily,
are present in non-human primate guts [11]. This suggests that crAss-like viruses are long-time
companions of the human lineage. Among the many reasons to study phages, the fact that they
can kill specifc microbes and can transfer antibiotic resistance or pathogenicity and, consequently,
alter host metabolism is one of the most relevant [15,16]. In particular, the impact of variations in
the gut microbiome, and potentially of the associated virome as well, on human health is becoming
evident [17–19]. Although microbial correlations with human pathologies have been observed, no
signifcant association of crAssphage genomic features with health or disease was found [11]. However,
as major components of the human gut, crAss-like viruses deserve more attention, and the dynamics
among dominant and rare populations recently described shall be further investigated [11]. In this
respect, understanding the overall crAssphage genome evolution and the evolutionary relationships
between its individual genes may provide new information.

The crAssphage genome is composed of a dsDNA 97 kbp long circular sequence, divided in two
sections in which genes have di�erent functions: replication-related genes are found in the forward
strand, while all the other genes are encoded in the reverse strand [9,13]. Similarly, transcription and
capsid-related proteins are found in single-purpose blocks of the genome. This organization is common
among viruses, and particularly bacteriophages; in fact, this tendency is used in order to identify
prophages amidst bacterial sca�olds [20]. Not all genes ft in this model, though. Despite all the e�orts,
the gene functions in a vast part of the genome remain unknown. Thus, evaluating the coevolution
between interacting protein families could provide additional insights on their putative biological
function. Specifcally, host–parasite interactions are known to be deeply infuenced by coevolution, as
well as it is known to infuence conspecifc populations that may diverge or co-adapt under di�erent
circumstances [21,22]. Evaluation of the similarity between proteins evolutionary histories has been
successfully achieved by correlating mutations using multiple sequence alignments [23]. In this
respect, while the previous studies mainly focused on the crAss-like genome as a whole, in the current
work we performed a gene-centric analysis of crAssphage evolution. In particular, we examined the
conservation degree of protein sequences and the degree of coevolution among them, as well as the
relation to their functional roles. The overall aim of our study is to measure the frequency and ubiquity
of crAssphage proteins divided by function in order to defne a global vector of conservation.
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2. Materials and Methods

2.1. Sequences Selection, Retrieval, and Data Preparation

A database of 805 crAss-like assembled sequences was created (Supplementary Materials Table S1),
retrieved from previous works [11,13]. The reference crAssphage genome was included in the database.
Redundant copies of the same sequences were removed with custom software developed using
the Python programming language version 3.6.3 [24] and the Biopython package [25]. PRODIGAL
v.2.6.3 [26] was used to predict the genes for all the crAss-like contigs in the database, using the
meta-procedure appropriate for viruses and small plasmids. Afterwards, the proteins predicted from
the reference crAssphage genome were used to recover the homologous proteins from all the crAss-like
contigs (Table S2). For this step, each protein was used as a PSI-BLAST [27] query against the whole
crAss-like contig database, with maximum e-value of 0.001 and minimum query coverage of 80% to
minimize potential domain walking artifacts. In order to validate the robustness of the PSI-BLAST
homology detection, the search was repeated with the query coverage percentages of 50% and 95%.
The PSI-BLAST searches were run until convergence. The annotation and function of crAssphage
reference genes were retrieved from a previous study [13]. The ORFs of the previous and current
studies were compared by BLASTp [28] search considering 90% of query coverage as lower threshold.

The protein functions were loosely grouped into six functional modules, following the spatial
division along the reference crAssphage genome, as previously proposed [13]. The functional groups
are “Uncharacterized”, in which all the proteins with unknown function are grouped, “Replication”,
“Transcription”, “Tail and structural”, “Capsid”, and “Other”, which comprises four proteins whose
function has been identifed but do not fall into any of the previous categories. The amino-acid
sequences were grouped into clusters for each reference protein they matched in the PSI-BLAST search,
resulting in 92 clusters, one for each reference crAssphage ORF as predicted by PRODIGAL. Only
contigs which included two or more ORFs were included in the database, and this fltering lowered
the number used in this study from 805 to 370. Protein sequences that were duplicated or had introns
in the reference genome were treated separately. Three di�erent clusters were created for the two RepL
genes: one cluster comprises all the genes that hit only the Reference_crAssphage.1_45 reference ORF,
another comprises all the genes that hit the Reference_crAssphage.1_91 ORF and the last one includes
both groups. The clusters were aligned using MAFFT v7.271 [29] with standard parameters and the
L-INS-I algorithm.

2.2. Phylogenetic Tree Reconstruction and Comparison

For every homologous group of proteins a ML tree was built with IQ-TREE v1.6.1 [30] with standard
settings and 1000 replicates ultrafast bootstrap [31]. For this analysis, the dUTPase homologous group
was manually split into two halves, using AliView v1.19 [32]. Despite the di�erence in length among
the sequences in the RepL homologous group, the alignment did not need manual trimming, as it does
not present badly aligned regions which would impair the phylogenetic reconstruction. Furthermore,
the phylogenetic tree reconstruction software treats gaps as not containing information, and as such
the presence of a well-aligned subset of longer sequences does not have an impact on the overall
quality of the reconstruction. The ML matrices generated by IQ-TREE were used for the comparison
of phylogenetic trees. Matrices were compared pairwise with the Mirrortree method [33]. In each
comparison, rows and columns were trimmed in order to keep only the nodes coming from the same
contigs; the matrices were then converted into vectors and compared using Pearson correlation. Pairs of
homologous groups which shared less than 5 sequences coming from the same genome were discarded,
in order to avoid biases due to low sample size. These operations were performed via custom scripts
in Python, using the Scipy package [34].
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2.3. Quantifying Sequence Conservation

The conservation of the amino acid sequences was measured as the average Shannon information
content across the entire alignment of sequences, as defned by Shannon [35], via custom Python scripts.
As a comparison, all Prokaryotic Viral Orthologous Groups (pVOGs), which include proteins coming
from viruses belonging to the Podoviridae family, were retrieved in May 2020 [36]. The annotation
was retrieved and used to classify the proteins according to their functional categories, using a custom
Perl script and based on crAssphage categorization [13]. They were aligned as described above and
the Shannon information content was calculated using the same scripts. Linear correlation (R and
p-values) between Shannon information content and log10 value of the number of genes in the group
was calculated independently per each functional class and plotted using ggpubr R package.

2.4. Function Prediction and Distant Similarity Searches

To further characterize the proteins assigned to the “Uncharacterized” group, recent and best
performing algorithms for protein function prediction were applied; these include the sequence-based
Argot2.5 server [37] and 3D structure-based I-TASSER [38]. Both methods have been chosen according
to their recent best performance in community-wide challenges of prediction methods CAFA3 [39] and
CASP13 [40].

2.5. Data Visualization and Availability

All the data visualization was performed using the Matplotlib package for Python [41], embedded
in various in-house developed scripts. Phylogenetic trees were displayed via the iTOL v4.42 website [42].
All the in-house developed scripts, as well as the complete dataset including all proteins, annotations,
and homologous groups are publicly available on a GitHub repository https://github.com/Ale-Rossi/
crAssphage-gene-evolution.

3. Results

3.1. Protein Identifcation and Clustering

Whereas the length of the crAssphage reference genome is 97 kbp, only 5% of the contigs
(41) lie in the 80–100 kbp range; thus, most of them do not represent complete genome sequences.
Eighty-one percent of the contigs used in this study (302) are shorter than 40 kbp and the average
length is 26 kbp (Figure S1). While the high number of shorter contigs is probably due to incompletely
assembled genomes, we were still able to use these sequences to quantify the co-evolutionary signal
between protein families that are encoded on the same unit. Moreover, some long contigs share
relatively few ORFs with the crAssphage reference genome, representing distantly related crAss-like
bacteriophages [13,14].

A total of 92 ORFs were identifed in the reference crAssphage genome and, using similarity search
against ORFs identifed in all other crAss-like genome sequences, 92 protein clusters were produced.
Most proteins were assigned to a single cluster, with two notable exceptions as described in the Methods
section and further analyzed below. Although the Prodigal software is not optimized for viral genomes,
it identifed the same genes as previous studies that used Glimmer and MetaGeneMark [9,13]. More
specifcally, the frst study identifed 80 protein-encoding genes; the latter identifed 90 protein-encoding
genes. We further classifed the proteins into functional groups: the replication and structural modules
are the largest, featuring 24 and 17 genes, respectively; the capsid, replication and “other” groups
are very small, with only 3, 2, and 4 genes respectively. No annotation was available for 42 genes
representing the “Uncharacterized” group. The predictions of this group and a tentative consensus
between Argot2.5 and I-TASSER showed an improvement in annotation and partial agreement between
the two tools for 4 out of 42 proteins (Table S3).

Each protein cluster comprises from 8 to 174 sequences, not equally distributed across the
functional categories. In fact, some clusters have a less variable number of sequences, partly due to the

https://github.com/Ale-Rossi/crAssphage-gene-evolution
https://github.com/Ale-Rossi/crAssphage-gene-evolution
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linkage of genes closely located on the genome. Nonetheless, all the functional groups have a median
of more than 50 sequences per cluster. Additionally, most of the proteins with a low cluster size are
uncharacterized (Figure 1). The capsid proteins stand out as the most ubiquitous ones, with the major
capsid protein (MCP) being the most widespread gene, and present in 174 contigs.
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Several proteins presented exceptions to the standard clustering applied in this work. The gene
encoding RepL is found in two copies in the crAssphage reference genome. The paralogs arose
through an ancient gene duplication, as supported by the RepL phylogenetic tree, which shows a
distinct separation between the two ORFs (Figure S2a). In addition, a total of three gene duplications
have been newly detected in the collection of crAss-like phage contigs, including duplications
of Reference_crAssphage.1_44, Reference_crAssphage.1_73, and Reference_crAssphage.1_74. In
particular, Reference_crAssphage.1_73 encodes for a tail sheath protein that, following the reference
genome structure, is included in the short module composed of tail and structural proteins. Six
contigs contain duplications of the Reference_crAssphage.1_74 sequence (i.e., Gut.14, Gut.03, Gut.07,
Gut.05, Activated_sludge.3, and Gut.06). In the phylogenetic tree of the protein, these sequences are
very closely related (Figure S2b). No annotation is available for this ORF, but the genomic context
and the presence in close proximity of genes encoding capsid proteins are suggestive of a structural
role. Additional evidence comes from the iVIREONS structural protein score (0.62) [9], and putative
structural homology to a kinase (max TM-score: 0.62, max C-score: −3.71) according to I-TASSER [38]
(Table S3). RepL proteins, which were frst found in Staphylococcus aureus plasmids, are known to
increase the number of copies of the plasmids they are found in [43]; this prompts us to speculate
that the duplication could have given the virus an evolutionary advantage relative to a heightened
reproductive ability. In-depth studies are needed to confrm this. There is not enough data to allow
for speculation regarding the other instances of gene duplication, as most events are found in single
genomes, and it is then not possible to predict how the duplications play a role in the phage life cycle.

Additionally, another protein cluster contains two ORFs encoded on the crAssphage reference
genome recognized as two distinct regions of a dUTPase gene that are split by the insertion of an
intron-encoded endonuclease belonging to the HNH protein family, Reference_crAssphage.1_35.
The intron insertion is relatively recent and was found in nine contigs, all of which were assembled
from shotgun reads collected from gut samples of the twin sisters of a single family [44]. This can
also be seen in the phylogenetic tree where the sequences having the insertion form a single clade
(Figure S2c).
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3.2. Protein Conservation

In order to improve interpretation of the fndings in the crAss-like family, all the prokaryotic viral
orthologous groups (pVOGs) were analyzed and trends in the distribution of the conservation degree
were identifed. In pVOGs, there is a negative correlation between the number of sequences in the
alignment and the Shannon information content (Figure 2). The relation between the two variables
can be described with a logarithmic regression with the correlation coe�cient ranging from −0.6 to
−0.81 according to the functional category (p < 0.05 for all categories). The pVOGs as a whole show a
correlation coe�cient of−0.67 (p < 2.2× 10−16). A similar trend, albeit not as pronounced, can be seen in
crAss-like protein homologous groups too. Both the structural, the uncharacterized and the replication
proteins have a negative correlation coe�cient, but the p-value calculated for the latter category was
not signifcant (R = −0.41, p = 0.0073; R = −0.65, p = 0.0049; R =−0.29, p = 0.19). The remaining
functional categories, having a very small size, were ignored. crAss-like proteins, as a whole, show this
correlation as well (R = −0.39, p = 1 × 10−4). The most likely explanation for this negative correlation is
a sampling e�ect where many, widespread sequences may contain more diversity than few sequences
with a narrow occurrence distribution. The stronger correlation coe�cients of pVOGs relative to the
homologous groups of proteins in crAss-like viruses that were built in this study is likely due to other
factors. Firstly, pVOGs are built from proteins found across all the prokaryotic viruses and include
several homologous groups with a wide distribution that strongly contribute to the low correlation
coe�cient (note the di�erence in scale of the X-axes in Figure 2). Conversely, the homologous groups of
proteins built in this study only include sequences from the relatively closely related group of crAss-like
viruses, which have been proposed to represent a single viral family. Thus, no homologous groups are
observed with more than a few hundred sequences and the correlation coe�cient is less extreme than
for the pVOGs. Secondly, the high threshold of 80% query coverage used in the BLASTp has raised the
degree of conservation between the detected homologous proteins that formed the crAss-like clusters.
For this same reason, the average Shannon information content of crAss-like proteins is rather high;
both the mean and the median lie between 3.0 and 3.5 bits, compared to a maximum of about 4.32 bits.
The variation in information content in proteins is consistent across almost all the di�erent protein
functions (Figure S3). In all the six groups of proteins we found both highly conserved and divergent
sequences, the exception being the capsid proteins. The capsid proteins are unusually low in Shannon
information content, as their average value is just 1.95 bits. As with other widely spread genes, it is
possible that their ubiquity has led to a great divergence, and that there is less negative evolutionary
pressure on them.
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classes having more than four genes are reported.

3.3. Tree Comparison: Consistency of Evolutionary Signal

In order to measure to what extent the encoded proteins followed a similar evolutionary history,
we ran a Mirrortree algorithm among pairs of homologous groups of proteins, which consists of the
correlation between the distance matrices derived from each pair of phylogenetic trees. The distribution
of the 4186 pairwise Pearson coe�cients follows a two-peaks distribution: the higher peak ranges
from around 0.7 to 1 and consists of 357 pairwise correlations, while the lower peak is from −0.1 to
0.4, including 1409 pairs (Figure 3). It can be seen that there are regionally defned groups of highly
correlating genes distributed in the genome (Figure 3). The frst of these regions (gene position 12–28)
encompasses part of the replication module, including the DNA polymerase, a helicase, a primase,
and a DNA ligase, i.e., the core of the DNA replication machinery, as well as enzymes involved in the
protection of DNA, such as an uracil-DNA glycosylase and a thymidylate synthase. The second large
region (gene position 72–88) including high-correlation genes ranges from the end of the structural to
the “other” functional module, encompassing all the capsid encoding genes. Other, narrower regions
include transcription and structural proteins (gene positions 31, 33, 47–48, 51–54, and 58–59). These
results suggest the presence of a subset of genes evolving coherently with each other while others
undergo a di�erent evolutionary history, a possible cause of which is genomic mosaicism, which is
common in bacteriophages. Overall, the distributions of average correlation coe�cients across the
functional groups is relatively even (Figure S4); all the functional categories feature highly correlating
genes, and the three most abundant groups (uncharacterized, replication, and structural) all feature
low-correlating genes (Figure S4). The capsid proteins, though, stand out as the group with the highest
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correlations, since none of their average mirrortree coe�cients are lower than 0.6 (p = 0.0039, one-tailed
Mann–Whitney U test).Viruses 2020, 12, x FOR PEER REVIEW 8 of 13 
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the distribution of the pairwise Pearson’s r coe�cients. A great number of genes appear to be coevolving.
Heatmap of the Pearson correlation coe�cient of each protein with any other. Along the x and y axis
the 92 ORFs identifed in the reference crAssphage genome are represented. The interactions between
clusters sharing less than fve sequences were colored in white, in order to avoid confusion due to a
low size. Histogram representing the average correlation coe�cient of every protein represented in
their position on the reference genome. The di�erent colors represent the six functional groups.

4. Discussion

Genomes exhibiting mosaicism are composed of parts with di�erent evolutionary origins and
history. This phenomenon is particularly evident in viral genomes, due to evolutionary processes such
as horizontal gene transfer and recombination both with the host and other viral species. In fact, their
evolutionary model has been described as the accretion and exchange of various genetic modules [45].
We propose that mosaicism is a prominent feature of crAss-like viruses as well. The heatmap
representing the pairwise correlation coe�cients (Figure 3) bears witness to this observation: the
presence in the genome of regions with a high degree of coevolution, detected with the mirrortree
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coe�cients that were calculated from pairs of phylogenies of homologous groups of proteins, can
be interpreted as a result of these evolutionary mechanisms, with the low-correlating genes being
accessories to a core genome.

Furthermore, the protein prediction and clustering steps reveal the existence of crAss-like viruses
sharing only a small fraction of genes with the reference genome, these genes belonging mostly to the
capsid and structural functional modules.

Our approach and the cuto�s used for detecting homologs were rather strict, as nearly full-length
homology was required (50%, 80%, and 95% of the query length). Based on these cuto�s and the
dataset used, the capsid proteins were found to be the most widespread proteins in the crAss-like
viruses. They have been used as phylogenetic markers by Yutin and colleagues because of this very
reason [13]. In fact, they are among the genes typically used as signature genes for the identifcation
of viral sequences in metagenomic samples and phylogenetic trees reconstruction. Other genes
frequently used as such are portal proteins, tail sheath proteins and polymerases, and specifc metabolic
genes [46]. Their sequence conservation is below average; although surprising, this could refect
the variety of crAss-like phage species they are found in. After all, an inverse correlation between
sequence conservation and spread seems to be the norm, as seen in crAss-like genomes and pVOGs
alike. Whereas all the categories feature proteins with high average correlation coe�cients, the capsid
proteins are by far the group with the highest statistic; this observation highlights how crucial these
genes are in phage evolution. From both observations it emerges that capsid proteins in crAss-like
phages are confrmed to be one of the most important protein families when it comes to reconstructing
their evolutionary history [47]. In summary, whereas other proteins could be regarded as either less
plastic/adaptable than capsid proteins, or having too much variability, capsid proteins show themselves
as among the most malleable of the crAss-like phage proteins. Indeed, these proteins may be able to
refect the evolution of crAssphage and to develop variation without losing functionality.

It would be easy to speculate that the genes which make up the most phylogenetically consistent
part of a viral genome are well conserved, but this is not the case. For each protein cluster the mirrortree
statistics done in comparison with every other cluster was averaged. In none of the functional
groups was it possible to fnd a correlation between the average mirrortree statistics and the Shannon
information content of a homologous group of proteins. Nonetheless, there can be a discrepancy
between the species tree and the gene trees: overall the capsid proteins are probably the best way to
retrieve the species tree [47]. Nevertheless, they have been confrmed to be the most ubiquitous among
all genes, being present in 174, 155, and 143 crAss-like contigs each. The only homologous groups
featuring a similar number of sequences, i.e., 160 and 164, belong to uncharacterized proteins whose
genes are close to the capsid-encoding genes in the reference genome. Despite being not characterized,
they had already been theorized as capsid proteins [13]. This fnding invigorates this hypothesis.
The capsid proteins are actually an excellent example of how genes can have a very consistent evolution
with other genes while keeping a low level of sequence conservation: this could be due to a similarity
in tree topology, with branch lengths varying proportionately. Moreover, it is possible that the higher
variability and high average correlation coe�cient of these proteins are due to the larger number of
homologs; the high correlation statistic would emerge from the subtrees being consistent with the trees
of other proteins. On the one hand, it would be assumed that genes which lie on the same genome
show similar evolutionary patterns; on the other hand, the mirrortree method was developed in order
to identify interacting proteins, not necessarily from the same organism. Nevertheless, many of the
proteins within an organism do interact reciprocally: structural proteins interlock with each other
in order to form the virion’s structure, and proteins that build complexes similarly do. However,
di�erent evolutionary pressures acting on di�erent genes (and di�erent regions on the same gene),
and phenomena such as recombination, transposition, horizontal gene transfer, and gene duplications
often lead to di�erent genes of the same genome having trees with di�erent topologies [48–50]. In light
of this, such a high degree of coevolution is defnitely remarkable in the evolution of crAss-like viruses.
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No functional prediction is currently available for almost half of the genes in the reference genome.
There is good reason to believe that many of these genes are of great interest, when studying the
biology of crAss-like viruses: some uncharacterized genes are ubiquitous in the viral contigs. Another
important fnding to point out is that, among the proteins which have a high mirrortree coe�cient with
other proteins, all the functional groups are represented. These protein categories only loosely share a
function, so, with some hindsight, it is not surprising to attest how much they diverge. It is worth
noticing, though, that even among the top-scoring proteins the uncharacterized category is represented,
but including also highly conserved proteins. This is the same for every group, with the exception of
the capsid proteins. This means that many genes are highly conserved and strictly co-evolving with
other genes, thus potentially interacting with other genes and important in the virus biology, have an
unknown function. The uncharacterized functional group in the crAssphage genome is by far the most
numerous among the six categories, boasting 42 genes, whereas the second most abundant one only
has 24.

The di�culty of annotating genomes is a huge problem when trying to decipher viruses’ biology.
In this study, we attempted to annotate these proteins with available top-performing function prediction
tools. Unfortunately, all the proteins revealed to be di�cult targets and only for a small portion of them
it was possible to extract functional predictions from Argot2.5 and I-TASSER. In spite of the scores not
being very high, results provided potential function for four proteins, i.e., Reference_crAssphage.1_12,
Reference_crAssphage.1_13, Reference_crAssphage.1_50, and Reference_crAssphage.1_62 (Table S3).
This may be, indeed, due to many factors such as the short length of some proteins submitted for the
prediction that could be artifacts of the gene prediction step. One brute-force approach to deal with the
lack of annotation could just be ignoring all the uncharacterized proteins and focus our attention only
on the already annotated ones. In fact, the 89 ORFs previously reported [13] are only slightly di�erent
from the 92 genes identifed in the present study. The additional sequences are very short and are not
matched by other viral genes in the BLAST search. In fact, many of the homologous groups of proteins
with the lowest sequence count belong to the “Uncharacterized” functional group (Figure 1).

One of our fndings is that crAss-like family phages follow the trend of prokaryotic viruses in
which more widespread genes appear to be less conserved, with the capsid proteins being the utmost
representatives of this situation. crAssphage’s genes are clearly consistent in their evolution: there is a
bulk of genes showing a high coe�cient of coevolution. The capsid proteins are confrmed to be a
good choice when building a viral phylogenetic tree. They seem to coevolve consistently with many
other genes and are thus ft to represent the evolution of the genome as a whole.

Gene duplications are common across all biological entities, and crAss-like viruses are no exception.
While some are recent and found in a small number of genomes, a few are ancient and widespread,
suggesting relevance in the evolutionary success of the virus lineage. More specifcally, it can be easily
speculated that the duplication event involving RepL possibly lends to a reproductive advantage, since
such gene is known to increase the number of copies of the plasmid it is found in [43]. Still, in-depth
studies are needed to confrm this. Another duplication event found in more than one genome is the
one concerning the Reference_crAssphage.1_74 ORF, found in six closely related genomes. This protein
has not been characterized and our functional prediction has not been able to unequivocally predict a
putative function, though a weak hypothesis has emerged that this could be a structural protein with a
trans-membrane region, and potentially kinase-like activity. Transposing elements too are ubiquitous,
and one, a HNH endonuclease, has made its way into a crAssphage lineage. It is likely too early to
have an idea about its impact on the bacteriophage biology, as this insertion appears to be very recent
and specifcally localized into a few individuals.

Metaviromics has allowed to investigate more in detail the ecosystem distribution of phages
transcending the biases of classical isolation-based studies. The fast technological development of
the high-throughput sequencing will allow to overcome the limitations encountered in the study
of crAss-like viruses and other metagenomic data: new sequencing techniques can reduce—or
eliminate—the need of computationally intensive assembly programs. For example, the application of
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long read-producing sequencing methods, such as Oxford nanopore [51], would greatly improve the
quality of the assembly. While annotation issues are more di�cult to address, more investigations,
such as 3D structure analysis, are becoming possible. Furthermore, the newly found possibility to
grow crAssphage in vitro might open the door to experimental annotation of its proteins [51].

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/12/9/1035/s1,
Figure S1: Contig length distribution, Figure S2: Phylogenetic trees of relevant evolutionary events, Figure S3:
Distribution of average Shannon information, Figure S4: Distribution of average Pearson coe�cients, Table
S1: Starting dataset of the project with 805 crAss-like contigs, Table S2: Homologous groups of proteins and
corresponding statistics, and Table S3: Results of the 3D function prediction.
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a b s t r a c t

Background: The rapid accumulation of sequencing data from metagenomic studies is enabling the gen-
eration of huge collections of microbial genomes, with new challenges for mapping their functional
potential. In particular, metagenome-assembled genomes are typically incomplete and harbor partial
gene sequences that can limit their annotation from traditional tools. New scalable solutions are thus
needed to facilitate the evaluation of functional potential in microbial genomes.
Methods: To resolve annotation gaps in microbial genomes, we developed KEMET, an open-source Python
library devised for the analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) functional units.
KEMET focuses on the in-depth analysis of metabolic reaction networks to identify missing orthologs
through hidden Markov model profles.
Results: We evaluate the potential of KEMET for expanding functional annotations by simulating the
effect of assembly issues on real gene sequences and showing that our approach can identify missing
KEGG orthologs. Additionally, we show that recovered gene annotations can sensibly increase the quality
of draft genome-scale metabolic models obtained from metagenome-assembled genomes, in some cases
reaching the accuracy of models generated from complete genomes.
Conclusions: KEMET therefore allows expanding genome annotations by targeted searches for ortholo-
gous sequences, enabling a better qualitative and quantitative assessment of metabolic capabilities in
novel microbial organisms.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Metagenomics investigates environmental, engineered, and
host-associated microbiomes, stimulating new fast-growing appli-
cations in biomedicine and biotechnology [1,2]. The shift towards a
holistic approach in microbiome studies can uncover biological
activities emerging from synergistic cooperation of microorgan-
isms [3]. Many environments are now being inspected to decipher
inhabiting microbial communities, with the aim of predicting their
functions and interactions. Thanks to recent improvements in
genome-resolved metagenomics, the recovery of metagenome-
assembled genomes (MAGs) of high quality is becoming accessible

and fast [4]. Functional analysis of genomes derived from metage-
nomic approaches allows estimating the metabolic potential of
species present in a given microbiota. Several dedicated databases,
such as the Kyoto Encyclopedia of Genes and Genomes (KEGG), are
used as knowledgebases for metabolic pathway inference and
reconstruction [5], while tools such as KEGG Mapper [6] and
eggNOG-Mapper [7] can assign open reading frames to their func-
tion and predict metabolic capabilities at the genome level. How-
ever, newly generated metagenomes contain a large number of
poorly characterized species, which can be hardly annotated
exhaustively with traditional tools [8].

Moreover, genome-scale metabolic models (GSMMs) are now
starting to be applied on a metagenome scale [3,9]. GSMM are
directly informed by annotation databases and can be automati-
cally reconstructed using tools like CarveMe [10] or gapseq [11].
Such models are useful to infer interactions among microbial spe-
cies, but the application to uncultured and non-model species can
be challenging. In fact, MAG-based GSMMs are especially prone to
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reconstruction errors due to the gapped nature of metagenomic
assemblies. Starting from GSMM reconstructions, several algo-
rithms for network gap-fll enable in silico growth simulation and
phenotype data ftting. Nevertheless, reactions added this way
are not always supported by genomic evidence [12], possibly
resulting in erroneous predictions.

To obtain a more exhaustive functional annotation of microbial
genomes and improve associated GSMMs, we present KEMET.
KEMET - KEgg Module Evaluation Tool - is a command-line,
open-source Python toolbox aiming at summarizing and expand-
ing KEGG annotation by comparing microbial sequences to ortho-
logs with curated annotations. With KEMET, annotation recovery
from trusted knowledgebases can strengthen the biological fdelity
and phenotype prediction in GSMMs and lower the manual refne-
ment effort.

2. Methods and implementation

Starting from genome sequences and associated KEGG annota-
tions, KEMET serves three main goals: functional annotation eval-
uation, HMM-driven ortholog search in the original sequence, and
integration of the corresponding metabolic reactions into GSMMs
(Fig. 1). KEMET is a system-independent tool and every depen-
dency is available to UNIX-based and Windows systems. KEMET
is freely available and can be downloaded from the GitHub page
https://github.com/Matteopaluh/KEMET, where all the procedures
to reproduce the results presented in this manuscript are available.

2.1. Module completeness evaluation

The evaluation of metabolic functions present in microbial gen-
omes of interest is performed according to KEGG Modules [5],
which consist of manually curated logical expressions of ortholog
genes defning the biochemical steps (blocks) of a given function.
Functional annotations deriving from different software can
directly serve as input data for the Module completeness evalua-
tion, allowing for a fexible downstream implementation of KEMET
on pre-existing pipelines. Examples of the supported input fles are
available in the ‘‘toy” folder of the dedicated GitHub repository. At
the present time, eggNOG-mapper [7], KofamKOALA [13], and
KAAS [14] annotations are supported, and they can be selected
through the -a parameter. Blocks having KEGG Ortholog (KO)
annotations can be identifed in target genomes by running
KEMET, which allows scaling up the analysis to hundreds of MAGs.
Present or missing ortholog blocks in the original annotation can
be identifed by querying fles with KO Module structures. This
analysis brings a considerable advantage with respect to the use
of KEGG tools alone, allowing to point out single missing orthologs,
thus aiding in targeted queries regarding metabolic capabilities of
input genomes. The output includes a human-readable tabular fle
and a fat fle indicating the sequential position of missing KOs.

To implement this feature, KEGG Module fles are downloaded
via the KEGG application-programming interface (API) and parsed
to generate intermediate fles (<module_id>.kk fles in the GitHub
repository) that are used as Module block structure templates
and queried during script usage. The logic behind the block struc-
ture in KEMET is devised so as to better identify missing orthologs
connected to a single biochemical step. Specifcally, the number of
blocks in a Module is given by the highest number of individual
KOs involved in any alternative reaction path. For example, in
Module M00308 the terminal glyceraldehyde-3-phosphate conver-
sion can either be performed via a mechanism involving two KO
genes, or via a single dehydrogenase ortholog. While in KEGGMap-
per these KOs belong to a single block, KEMET decomposes the
longer path into two blocks. These alternative algorithms lead to

the same results in terms of numbers of missing orthologs but
can give slightly different results when the Module completeness
is inspected, as shown in the Results and discussion Section.

2.2. Identification of missing KEGG orthologs

KOs missing from functional annotation can result in incom-
plete KEGG Modules. This phenomenon can be due to real biolog-
ical gaps in the species metabolic potential, gene truncation
resulting from gaps in the assembly, or limitations of the functional
annotation procedure. Missing genes can be sought more in-depth
in the genomic sequences, using nucleotidic hidden Markov mod-
els (HMM) automatically generated by KEMET, when the --
hmm_mode parameter is indicated. KEMET has different options
for HMM profle generation and for missing KO search. The set of
input sequences for the HMM profles can derive from KOs in an
input user-defned list (--hmm_mode kos) or from KOs in Modules
of interest, e.g. those pointing to specifc metabolic functions in the
input genomes (--hmm_mode modules). Alternatively, HMMs can
be built from the KOs of all Modules with one incomplete ortholog
block (--hmm_mode onebm).

When this analysis is performed, the following workfow is
employed with every KO of interest:

1. A taxonomically relevant subset of the KEGG GENES database is
downloaded via the KEGG API. This subset includes sequences
for every species included in a clade, defned by a C-level KEGG
BRITE taxonomical hierarchy (br08601). Such taxonomy is gen-
erally almost coincident to that on the phylum level, or to that
on the class level for a few specifc taxa (e.g. Euryarchaeota).

2. A fltering step is performed to obtain a non-redundant set of
sequences. A multiple sequence alignment is built up from
these sequences using MAFFT v7.475 [15]. The --auto parameter
is used here, to choose the appropriate strategy among the pos-
sible algorithms according to the size of the alignment dataset.

3. A HMM is generated from the aligned sequences using the
hmmbuild command from the HMMER suite v3.1b2 [16]. Only
the subset of KOs indicated in the --hmm_mode argument is
utilized.

4. The obtained profles are searched in the genome of interest
with the nhmmer program from HMMER version 3.1b2 [16].

The default threshold value depends on the nhmmer score
divided by the length of the profle HMM. Preliminary tests were
performed to fne-tune this value, comparing translated BLASTp
hits against the NCBI nr dataset (performed in March 2021), which
were manually checked for two different MAG datasets. The
threshold identifed the highest number of hits with sequence
names matching the correct KEGG ortholog gene descriptors, while
pointing to the lowest number of false positives. Values obtained
from the aforementioned tests resulted in 4.6–7.5% of the hits,
depending on the input dataset. Stringency of the scoring for sig-
nifcant hits can be modulated with the --threshold_value
parameter.

2.3. Integration of recovered biochemical reactions into genome-scale
metabolic models

In automated draft GSMM reconstruction, metabolic reactions
are collected based on genome or protein sequence alignment
scores. Using KEMET, the HMM best scoring hits can be selected,
providing new insights into the metabolic network obtained from
the initial gene calling process. One option is the generation of a
novel GSMM with newly identifed orthologs. Alternatively, the
HMM prioritization process determines a different set of reactions
to be included in an existing GSMM. KEMET implements the --
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gsmm_mode parameter to include the newly predicted biochemical
functions obtained from genomic evidence into the GSMMs.

KEMET links HMM-identifed KOs to their corresponding bio-
chemical reactions present in reference databases for GSMM,
namely BiGG [17] and ModelSEED [18]. Their namespaces are
adopted by popular GSMM reconstruction tools, such as CarveMe
[10] and gapseq [11]. The retrieved reactions can then be incorpo-
rated in input GSMMs. As a second option, the translated HMM KO
hits can be directly added to the input sequences used for de novo
genome-scale model generation.

3. Results and discussion

To validate KEMET, we frst compared its KEGG Module parti-
tioning with those performed by KEGG Mapper and METABOLIC
v4.0 [19] across all the KEGG Modules present at the time of the
tests. As shown by Fig. 2A, the three tools interpret the Module
block structure in a largely consistent way. However, KEMET is
able to capture more Modules in the evaluation and has a block
structure that more closely resembles that of KEGG as compared
to METABOLIC.

Next, we validated KEMET annotation expansion by two differ-
ent approaches: (a) an annotation removal strategy to test its abil-
ity to identify known KO annotations, and (b) a draft GSMM
reconstruction strategy to verify that newly identifed annotations
produce more sound quantitative models of microbial metabolism,
and thus refect correctly identifed functions.

Strategy (a) was used to test kemet.py --hmm_mode capability to
retrieve the proper annotated sequences when either the original
annotation was removed or the sequence was truncated. The ratio-
nale was to simulate misassembly-derived gene disruptions and

other problems impairing functional prediction in MAGs. KEMET
was tested on 12 MAGs derived from a contig-level assembly
resulting from a previous work [20] as well as 5 complete genomes
downloaded from NCBI (details in Supplementary Data). In terms
of taxonomic ‘‘novelty”, the MAGs were highly different and
included species assigned at different levels (spanning from class
to species) using GTDB-tk v1.5.0 [21]. The gene calling was per-
formed using Prodigal v2.6.3 [22] with default options. Functional
annotations of predicted genes were performed using eggNOG-
mapper v2 [7] with default parameters. While in principle alterna-
tive gene predictions can impact the subsequent functional anno-
tation, previous empirical investigations found negligible
performance variation among different tools [23,24]. For this rea-
son, our tests focused on benchmarking functional annotation pre-
diction by using a single state-of-the-art gene prediction tool.

The test consisted in the removal of three KO annotations from
the input set of each genome (i.e. from eggNOG results) before run-
ning KEMET with the --hmm_mode onebm option. The selected KOs
were annotated once per genome, only on a single gene. Moreover,
removed KOs were chosen from different Modules marked ‘‘Com-
plete” by KEMET, among the mandatory orthologs for a given bio-
chemical step. In this way, removing them would result in the
change of Module completeness to ‘‘1 block missing”. Altogether,
20/36 and 8/12 KO mock removals (55% and 67% true positive rate)
resulted in the correct gene and annotation recovery for MAGs and
complete genomes, respectively (Fig. 2B and Supplementary Data).

To model MAG construction issues more closely, the removal
strategy was repeated two more times by simulating the deletion
of tested KO-annotated gene sequences, either by 30% or 70% of
their original length. This was done to mimic the typical scenario
of a highly fragmented assembly where gene sequences can be

Fig. 1. Workfow of KEMET reporting the input fles, outputs, and main parameters for all the tasks that can be executed: KEGG Module evaluation, identifcation of missing
KOs, and integration of identifed KOs in GSMMs. On the right side, the rationale of each task is visually outlined.
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split between two different contigs, resulting in a missed gene pre-
diction or improper functional annotation. These additional tests
resulted in a decreased performance using both the complete gen-
omes and the MAGs dataset, as expected, but nonetheless gave a
signifcant annotation recovery rate for gene truncations shorter
than 50%. Specifcally, an annotation recovery between 20% and
33% was achieved when accounting for the impact of sequence
truncation on the gene prediction step, whereas a recovery rate
of 42% was obtained assuming an unbiased gene prediction. This
interval therefore captures KEMET performance in the presence
of minor gene deletions. Similarly, for 70% gene truncations the
annotation recovery rate further decreases, more clearly for the
MAG dataset, as it is sensible with most of the gene sequence lack-
ing. Hence, these results provide a proof-of-principle of KEMET
annotation recovery in the occurrence of gene sequence disruption.

Detailed results are included in the GitHub page at https://github.-
com/Matteopaluh/KEMET/blob/main/tests/README.md.

Strategy (b) was implemented to assess the impact of recover-
ing missing KO annotation on downstream metabolic analyses,
i.e. via GSMM reconstruction. Specifcally, we compared microbial
phenotypes recovered from the literature (indicated in Supple-
mentary Data) in terms of metabolite production or consumption
capabilities, to their corresponding in silico model predictions. This
analysis was performed starting from MAGs and their correspond-
ing complete genomes recovered from the NCBI or from the PATRIC
database (as pointed by https://github.com/snayfach/IGGdb), by
selecting species collected from the anaerobic digestion micro-
biome [20]. MAG quality metadata were recovered and included
genome completeness and contamination. If more than one MAG
per species was present in the database, those with � 90% com-

Fig. 2. Results of KEMET quality tests. (A) Comparison between KEMET and METABOLIC in terms of KEGG Module block structure with respect to the original KEGG Modules
obtained through KEGG Mapper. The plot shows the intersections among the Module datasets for the three tools, together with the total number of Modules evaluated by
each of them. (B) True positive rate for gene sequence identifcation by HMMs. Results for both isolated genomes (red) and MAGs (blue) are reported. Gene deletions of
different extents were performed prior to running KEMET. When deletions were performed, gene annotation recovery was evaluated both with the gene prediction resulting
from the original sequences and from those truncated, in order to account for the impact of deletions on gene prediction. (C) Fraction of correct metabolic phenotypes
predicted by GSMMs reconstructed from microbial MAGs (green), the same MAGs with an expanded annotation through KEMET (orange), and the corresponding genomes
from isolates (purple), based on the literature. The lines track the performance of individual GSMMs corresponding to the same strain. For readability purposes, only lines
between points having performance differences across the datasets were drawn. (For interpretation of the references to colour in this fgure legend, the reader is referred to
the web version of this article.)
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pleteness and � 5% contamination were considered for the subse-
quent analysis. Both MAGs and the complete genomes of isolates
were used to check the Module completeness. MAGs were also
used to search for missing KOs by using kemet.py --hmm_mode
onebm. GSMMs were reconstructed from complete genomes and
MAGs using CarveMe v1.4.1 [10] with the options --fbc2 -u, using
as input both the MAG original gene calling and this same data
added with the translated nucleotide sequences identifed with
the HMM via KEMET using the --gsmm_mode denovo parameter.
Moreover, KEMET performance times were monitored and are
included in Supplementary Data.

To benchmark how the addition of newly identifed sequences
affects GSMM ability to describe in silico microbial physiology,
metabolic capabilities retrieved from the literature were compared
with predictions obtained starting from three types of input for
GSMM reconstruction: MAG annotation, MAG annotation
expanded with KEMET, and complete genome annotation. Flux
variability analysis (FVA) was performed on the obtained GSMMs
for assessing such metabolic capabilities, as follows. For each
metabolite export reaction, it was determined whether the range
of possible fuxes was directed towards metabolite consumption
or production (respectively, having fux ranges consisting only of
negative or positive values), while maintaining a fxed maximal
growth rate. FVA results showing blocked reactions or fux ranging
both positive and negative values were considered as incorrect
predictions. The results show a nearly 10% improvement in the
ability of MAG-derived GSMMs to produce and consume metabo-
lites predicted from wet lab experiments, with an acquired accu-
racy comparable with the accuracy of GSMMs reconstructed from
the genomes of isolates (both around 33%, Fig. 2B and Supplemen-
tary Data). On the annotation level, HMMs used on MAGs resulted
in 84.76% hits in common with the respective reference isolate
genome selected; 7.62% hits were present solely in the MAG data-
set (false positives), and 7.62% hits were present in the complete
genome dataset alone (false negatives). According to the selected
dataset, KEMET HMM predictions therefore display a 91.75% preci-
sion and 91.75% sensitivity (Supplementary Data). Despite the
addition of a limited number of protein sequences, the resulting
models can thus be sensibly more accurate, leading to more precise
inferences based on metabolic capabilities. For example, Selenomo-
nas ruminantium MAG-derived GSMM (PATRIC genome id: 971.16)
phenotype predictions were improved after KEMET usage. The
original GSMM could not predict any known metabolic capability
of S. ruminantium, while the modifed GSMM could correctly repro-
duce metabolic exchanges involving cellobiose, salicin, mannitol,
xylose, arabinose, fructose, maltose, lactose, and sucrose. In con-
trast, the GSMM based on the full genome annotation captured
the correct exchanges for glycerol, cellobiose, salicin, mannitol,
xylose, and arabinose.

These results demonstrate that KEMET effciently tackles the
summarization of (meta)genomic potential in a user-friendly and
scalable way. Other bioinformatics tools allow the evaluation of
microbial genome annotation completeness (e.g. METABOLIC
[19]). However, to date and up to our knowledge, this is the only
tool able to selectively fll the gaps in the annotation, and seam-
lessly add newly gathered information into GSMMs. At the
moment, KEMET relies on KEGG given its structure allowing a sys-
tematic pathway completeness evaluation. Further development
could include support towards other knowledgebases, such as
MetaCyc [25], to further expand the tool compatibility and predic-
tive power. While other published programs, such as DRAM and
Anvi’o [26,27] rely on specifc KEGG releases, KEGG databases are
constantly updated due to newly added sequences, or newly
defned KO classifcations. In contrast, KEMET allows users to
update the downloaded KEGG GENES database through the KEGG
API, in order to use the most up-to-date version of KEGG database

without relying on fxed versions. The download of such a database
represents the only limiting computational factor in KEMET (Sup-
plementary Data), being a mandatory step to comply with the
KEGG license. More effcient communication with KEGG servers
could be obtained via license, while better solutions will be
explored and implemented in future versions of KEMET. Neverthe-
less, this step is required only once at each database update, which
can be decided by the user. Further, KEMET is based on HMMs
given their broad applicability in the genomics and metagenomics
felds. Other probabilistic graphical models, such as conditional
random felds or Bayesian networks could be implemented in
future versions of the software.

Altogether, our experiments show that focusing on Module
completeness down to single orthologs can aid in identifying miss-
ing annotations and enable their correction, not only supporting
qualitative evaluation of microbial functions but also improving
quantitative models of microbial metabolism. This enables a better
mechanistic investigation of microbial ecological roles, allowing us
to gather insights without relying necessarily on cultivation or in-
depth characterization, which is impractical for most metagenomic
studies.
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Abstract 

Background: The viral community has the potential to influence the structure of the microbiome and thus the 
yield of the anaerobic digestion process. However, the virome composition in anaerobic digestion is still under-
investigated. A viral induction experiment was conducted on separate batches undergoing a series of DNA-damaging 
stresses, in order to coerce temperate viruses to enter the lytic cycle.

Results: The sequencing of the metagenome revealed a viral community almost entirely composed of tailed bac-
teriophages of the order Caudovirales. Following a binning procedure 1,092 viral and 120 prokaryotic genomes were 
reconstructed, 64 of which included an integrated prophage in their sequence.

Clustering of coverage profiles revealed the presence of species, both viral and microbial, sharing similar reactions 
to shocks. A group of viral genomes, which increase under organic overload and decrease under basic pH, uniquely 
encode the yopX gene, which is involved in the induction of temperate prophages. Moreover, the in-silico functional 
analysis revealed an enrichment of sialidases in viral genomes. These genes are associated with tail proteins and, 
as such, are hypothesised to be involved in the interaction with the host. Archaea registered the most pronounced 
changes in relation to shocks and featured behaviours not shared with other species. Subsequently, data from 123 dif-
ferent samples of the global anaerobic digestion database was used to determine coverage profiles of host and viral 
genomes on a broader scale.

Conclusions: Viruses are key components in anaerobic digestion environments, shaping the microbial guilds which 
drive the methanogenesis process. In turn, environmental conditions are pivotal in shaping the viral community and 
the rate of induction of temperate viruses. This study provides an initial insight into the complexity of the anaerobic 
digestion virome and its relation with the microbial community and the diverse environmental parameters.
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Background
Anaerobic digestion (AD) is a functional process car-
ried out by microbial communities composed of Bacte-
ria and Archaea which degrade organic matter in anoxic 
conditions. AD occurs in natural environments such as 
aquatic sediments, wetlands, and animal gut, but it is also 
widely employed in industrial processes. It is particularly 
valuable as a way to produce methane while disposing of 
organic waste, playing an important role in the reduction 
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of the dependence from fossil fuels and the development 
of a circular economy approach [1].

The composition of AD microbiomes is extremely vari-
able, and it reflects the wide variety of substrates and 
physicochemical conditions under which this degrada-
tion process occurs, both in natural and technical envi-
ronments [2]. In AD, polymers are first broken down into 
simple molecules, which are then converted into Vola-
tile Fatty Acids (VFA), then into acetate and finally into 
methane in the four steps of hydrolysis, acidogenesis, 
acetogenesis and methanogenesis. The first three steps 
are conducted by the bacterial community which, despite 
the great variation across different conditions, is domi-
nated by the phylum Firmicutes, usually followed by Bac-
teroidetes and Proteobacteria. Archaeal species, mostly 
belonging to the phylum Euryarchaeota, are involved in 
the conversion of simple molecules to methane and usu-
ally account for a much smaller part of the community 
[3]. The microbial species present and their balance are 
crucial for optimisation of biogas production, and they 
have been extensively studied in the last two decades [4]. 
Among the numerous factors concurring to shape micro-
bial communities, the importance of viruses, in particular 
bacteriophages, is increasingly recognised [5]. Viral con-
centration in samples from wastewater treatment plants 
(WWTPs) has been estimated to be greater in compari-
son to aquatic environments by one to three orders of 
magnitude [6, 7]. Furthermore, it has been observed that 
bacteriophages have a strong correlation with prokary-
otic species across time in wastewater-treating biore-
actors [8]. Despite the importance of this, most of the 
existing articles regarding the AD virome are limited to 
characterisations of the community and do not assess the 
impact of viruses on the microbial community [9–11]. 
Zhang and colleagues showed that there is a correlation 
between the viral community composition and the pro-
duction of methane in anaerobic digesters of WWTPs 
and argued that the viral shunt has a positive impact on 
the production of methane [12], but such conclusions 
are drawn on a broad scale analysis, leaving many of the 
actual dynamics unaddressed.

The transition of a temperate phage from lysogenic 
to lytic cycle is known as induction. Temperate viruses 
spontaneously undergo induction at a low rate, but in 
several species of bacteriophages and archaeal viruses, 
this phenomenon is known to increase with DNA-dam-
aging stresses [13]. For example, in a study targeting 
the response to different types of anaerobic stresses in 
Nitrosospira multiformis 25196, it was observed how N. 
multiformis cells reacted to a wide range of environmen-
tal stresses through prophage induction [14].

A prime example of the importance of bacteriophages 
in engineered systems is the dairy industry, which is 

threatened by bacteriophages attacking Streptococcus 
thermophilus strains [15]. Moreover, viruses are known 
to be players in the regulation of global carbon and nitro-
gen cycles in natural ecosystems [12], e.g. aquifer sedi-
ments [16], and in phytoplankton dynamics and diversity 
[17].

As parasites, viruses apply strong selective pressures 
on their hosts. It has been estimated that in marine eco-
systems, viruses kill about 20% of the microbial biomass 
daily [18]. The recycling of organic matter from lysed 
microbes, called viral shunt, plays a relevant role in the 
regulation of global carbon and nitrogen cycles. In biogas 
plants, phage-induced bacterial cell lysis can decrease 
biogas production when the key species associated with 
biogas production are affected. At the same time, auxo-
trophic microorganisms are benefitted as lysis serves as 
a source of cofactors, vitamins and amino acids [11]. Fur-
thermore, as mobile genetic elements, viruses enact hori-
zontal gene transfer (HGT) across microbes at different 
taxonomic ranks, from species to phyla. This potentially 
endows hosts with beneficial functions, increases the 
genetic diversity of the population, and plays a role in the 
complex co-evolutionary dynamics between viruses and 
hosts [19]. However, both HGT and viral lysis rates in 
engineered systems are still overlooked.

Despite the elucidation of virus-mediated mecha-
nisms, most of the viral diversity remains unknown [20]. 
However, the advent of metagenomics has brought large 
advances in the description of microbial environmen-
tal communities. The introduction of binning meth-
ods in standard metagenomic data analysis pipelines 
has allowed for the recovery of many uncultivable AD 
microbial species [2] and the detailed description of key 
organisms of the microbiome. The exponential increase 
of available sequences from both bulk metagenomes and 
metaviromes has led to the creation of numerous data-
bases of viral sequences [21, 22], paralleled by the devel-
opment of predictors able to effectively find new phages 
[23–26]. All viral prediction algorithms depend to some 
extent on the previous knowledge associated with taxo-
nomically assigned genomes reported in public data-
bases. This applies to all the software, whether they are 
based on homology search, like CheckV and PHASTER, 
or leverage k-mer usage like VirFinder, or analyse 
sequence features within machine learning frameworks, 
like VIBRANT, VirSorter2 and PPR-Meta [23–28]. How-
ever, their application has proven effective in discover-
ing novel viral clades, the most emblematic case being 
the crAss-like phage family [29–31]. In the light of the 
relevant results obtained from metaviromics the Interna-
tional Committee on Taxonomy of Viruses proposed the 
establishment of new classification methods based solely 
on genomic features [32].
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Unravelling the “dark matter” of novel viral diversity 
is a daunting task, and the aforementioned exploratory 
studies conducted on the AD virome showed the poten-
tial that phages have in shaping the prokaryotic com-
munity [9, 11, 12]. The DNA virome of AD has been 
described as dominated by tailed bacteriophages of the 
Siphoviridae, Podoviridae and Myoviridae families, with 
a minor presence of Tectiviridae, Inoviridae and other 
families. The AD microbiome is extremely complex and 
composed of species involved in different functional 
tasks, including the hydrolysis of organic matter and the 
conversion of the derived by-products in simple organic 
molecules (e.g. volatile fatty acids and methane). How-
ever, little is known on which prokaryotic species can 
be potentially affected by phages and, therefore, which 
are the functional processes potentially influenced by 
lytic cycles. Heyer and colleagues [11] reported that spe-
cies belonging to Bacillaceae, Enterobacteriaceae, and 
Clostridiaceae are among the favourite targets of bacte-
riophages, but these findings are not conclusive to deter-
mine whether specific parts of the AD funnel are more 
impacted by viruses. Identifying and characterising the 
viruses and their hosts in this system can lead not only 
to a better comprehension of AD microbial dynamics but 
also to applications such as phage-mediated treatment 
of the reactors in order to increase process performance. 
Bacteriophages are already used as tools for manipulating 
microbial communities in different fields, such as phage 
therapy and pathogen control in food and water, and have 
been used as control for biomass bulking in wastewater 
treatment [33–36]. An increased attention towards the 
AD viral community could lead to the development of 
similar techniques for the improvement of the AD pro-
cess as well. This could be achieved by removing species 
like the sulphate reducers which compete with key play-
ers in pivotal steps of methanogenesis, or leveraging bac-
teriophage-mediated HGT in order to confer desirable 
metabolic characteristics to microbial species of inter-
est. In this experiment, we attempted to use induction to 
explore the effect of diverse conditions potentially affect-
ing the AD process on both the microbial and viral com-
munity. We then assessed the presence of the retrieved 
genomes in other AD metagenomes from the Biogas 
Microbiome collection [2, 37] (micro bial- genom es. org).

Materials and methods
Inoculum and feedstock
Active inoculum was obtained from a lab-scale Continu-
ous Stirred Tank Reactor (CSTR) (Waste Management 
and Bioprocessing Lab, Thessaloniki, Greece), treat-
ing cattle manure at mesophilic conditions (37 ± 1 °C). 
Cattle manure was collected from a full-scale biogas 
plant located in northern Greece (Biogas Lagada S.A., 

Thessaloniki, Greece). The raw substrate was sieved 
using a separating net with a 2 mm opening to remove 
large particles and stored until usage at −20 °C to prevent 
alterations in its composition.

Batch assays experimental setup
In order to test for perturbations of the AD process, 21 
anaerobic batch experiments were performed aiming to 
define the microbial and viral composition in reactors 
under different conditions. These included addition of 
mitomycin, temperature shifts, high salt concentration, 
oxidative stress, pH shifts, and organic overload (details 
regarding the application of each condition are listed in 
Additional file  1). Four of these assays involved a com-
bination of temperature change with salt or oxidation 
stresses. Finally, a control assay was conducted by incu-
bating the inoculum without imposing any stressing con-
dition. All the experiments were performed in triplicate 
using 300 mL serum glass bottles with a working volume 
of 50 mL and an organic load of 2 g VS/L, for a total of 
66 batches. In addition to the batch experiments, an ali-
quot of inoculum was saved by storing it at −20 °C imme-
diately after sampling. Prior to incubation, bottles were 
flushed with nitrogen to achieve anaerobic conditions. 
Thereafter, the bottles were hermetically closed with 
butyl rubber stoppers and screw caps. The batch reac-
tors were maintained at 37 °C in a temperature-controlled 
incubator (BINDER BD260, Tuttlingen, Germany) for 
24 h.

Analytical methods
At the end of each treatment, after 24 h of operation, 
biogas composition and VFA concentration were meas-
ured on all 21 assays plus the control bottles, with the aim 
of evaluating the effect of the different conditions in the 
digesters. To determine biogas composition, a gas chro-
matograph (Shimadzu GC-2014, Kyoto, Japan) equipped 
with a thermal conductivity detector (TCD) and a packed 
column (Molecular Sieve 5A, 1.8 m × 2 mm ID) was used. 
The VFA concentrations were defined with a gas chroma-
tograph (Shimadzu GC-2010 Pro, Kyoto, Japan) provided 
with a flame ionisation detector (FID) and equipped 
with fused silica capillary column (30 m × 0.53 mm ID, 
1 μm film thickness). The oven temperature was initially 
set at  50oC for 3.5 min, subsequently increased at a rate 
of 25 °C/min to 130 °C and, finally, increased at a rate of 
 10°C/min until reaching the final temperature of 210 °C, 
which was maintained stable for 2 min. The tempera-
ture in the injection port was 150 °C and in the detec-
tor 230 °C. Helium was used as carrier gas for the gas 
chromatograph.

http://microbial-genomes.org
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DNA extraction and sequencing
The most promising conditions according to the lit-
erature and methane yield variation were selected for 
DNA extraction, along with the control bottles and 
the inoculum. Specifically, conditions with a decrease 
in methane yield between 0 and 30% compared to the 
control were selected, under the assumption that they 
were affected enough to potentially observe phage 
induction, but not to the point of killing the major-
ity of cells (Fig. 1). For each bottle and the inoculum, 
pellet and supernatant samples were collected as 
described below for analysing the microbial and viral 
community, respectively. Centrifugation at high speed 
was used to separate the viral and bacterial fractions 
[38, 39]. For the microbial-enriched community (pel-
let) samples, before starting the extraction, 3 mL of the 
inoculum were centrifuged at 15000 rpm for 10 min 
in order to obtain the acquired quantity of 0.2–0.8 g 
pellet, while the supernatant was discarded. Here-
upon, the genomic DNA was extracted. For the viral-
enriched community (supernatant) samples, 45 mL of 
each bottle’s content (or of inoculum from the reac-
tor) were centrifuged (Thermo Scientific SL 16R, New 
York, USA) at 15,000×g for 10 min at 4 °C. In order 
to further enrich supernatant samples in viral con-
tent, an attempt was performed to filter the superna-
tant with 0.22 μm syringe filters [40]. However, due 
to the high content of suspended and dissolved solids 
of the substrate, filtering was only possible with 1 μm 
syringe filters (Millex-GP, Merck Millipore Ltd). With 
the intention of reducing the final volume while using 
the whole viral content, the filtered flowthroughs were 
frozen overnight and lyophilised using a freeze dryer 
(Christ Alpha 1–2, Martin Christ Gefriertrocknung-
sanlagen GmbH, Germany) coupled with a vacuum 
pump (rotary vane vacuum pump, Vacuumbrand RZ 
2.5, Vacuumbrand GmbH + CO KG, Germany) for 
48 h at 0.4 mbar. Before the extraction of the obtained 
enriched viral community, the lyophilised samples 
were resuspended in 3 mL PCR water. Subsequently, 
the samples underwent DNA extraction with DNeasy® 
PowerSoil® Kit (QIAGEN, Hilden, Germany) following 
the manufacturer’s protocol. Recovery of DNA from 
pellet and supernatant samples was ensured by quali-
tative and quantitative analyses on the samples, using 
NanoDrop Microvolume UV-Vis spectrophotometer 
(Thermo Fisher Scientific, USA) and Qubit Fluorome-
ter (Thermo Fisher Scientific, USA). Importantly, DNA 
yield was limiting for the supernatant samples. Indeed, 
among all samples, only four tested conditions and the 
inoculum yielded enough DNA for library preparation, 
but only upon pooling the replicates for the superna-
tant. To ensure a coherent comparison, replicates for 

pellet samples were also pooled before sequencing, 
and the four conditions and inoculum were further 
processed.

DNA samples underwent library preparation using 
the Nextera DNA Flex Library Prep Kit (Illumina Inc., 
San Diego CA) and were sequenced using the Illumina 
Novaseq platform at the CRIBI Biotechnology Center 
sequencing facility (University of Padova, Italy). The 
sequencing run yielded 6.3 million 150 bp reads on 
average per sample. Raw data have been deposited at 
NCBI, BioProject PRJNA767833.

Assembly and binning
Reads were filtered with Trimmomatic v0.39 [41] 
and cleaned with BBDuk v38.86. The reads of all pel-
let and supernatant samples were co-assembled using 
MEGAHIT v1.2.9 [42]. The quality of the co-assembly 
was assessed with QUAST v5.0.2 [43]. The filtered and 
cleaned reads were then mapped back on the assembly 
with Bowtie 2 v2.3.5.1 [44]. Details and parameters used 
for these programs are reported in Additional file 1. The 
assembled contigs were analysed with PPR-Meta v1.1, 
CheckV v0.7.0, VIBRANT v1.2.0 and the PHASTER 
web server [23, 24, 27, 28]. CheckV results were filtered 
excluding predictions with “not determined” quality and 
no viral genes detected. PPR-Meta predictions were fil-
tered for viral scores of 0.75 or higher. VIBRANT and 
PHASTER predictions were carried forward with no 
pre-filtering. A first list of contigs classified as viral 
was defined by considering predictions made by either 
PHASTER alone, or at least two of the other programs 
(Additional file 1: Figure 1).

A binning procedure was performed with MetaBAT2 
v2.12.1 [45, 46] using a minimum bin size of 10,000 bp. 
Here, we refer to the output of the binning algorithm 
as “bins” and to bins which have passed quality control 
and are thus considered representative of prokaryotic 
genomes as “MAGs”. The bins yielded by MetaBAT2 were 
evaluated and divided into Metagenome-Assembled 
Genomes (MAGs), viral MAGs and unclassified contigs, 
according to a procedure described in Additional file  1. 
For prokaryotes, bin quality, completeness and contami-
nation were measured with CheckM v1.1.2 [47]. Finally, 
CheckV was run again on the viral MAGs recovered 
from binning in order to calculate genome quality and 
completeness.

Coverage profiles
Relative abundance of prokaryotic and viral MAGs was 
calculated by performing genome count per million 
(CPM) normalisation, which takes into account genome 
length and sequencing depth, on read counts obtained 
from the reads mapped on the assembly. The values 
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obtained were highly similar with those obtained using 
CheckM software v1.1.2 (Additional file 1: Figure 2). For 
the 50 most abundant MAGs, the coefficient of variation, 
defined as the standard deviation divided by the mean, 

was calculated. The mean was calculated across pellet 
samples.

The effect of the different shocks was evaluated by cal-
culating the log ratio between the relative abundance of 

Fig. 1 Biochemical measurements of perturbation assays. A VFA measurements of bottles after 24 h of perturbation. Error bars represent the 
standard deviation of the total VFA concentration across triplicate bottles (Additional file 2). B Percent difference in methane yield of each 
perturbation compared to the control assay. The dashed line represents the -30% threshold used to choose which samples to process further
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genomes in each shock and the mean relative abundance 
across all the conditions considered. In this context, a 
positive log ratio refers to an abundance higher than aver-
age and vice versa. For an overall comparison of the con-
ditions, Spearman correlation was calculated between log 
ratio values in different samples. The calculation of the 
Spearman correlation coefficients and the corresponding 
P-values was carried out with SciPy v1.3.1 [48]. The same 
analysis was performed by using the control sample as a 
reference.

The 50 most abundant MAGs and viral genomes were 
clustered by computing the Euclidean distance from the 
log ratios under different conditions and using an aver-
age linkage method. Correlation values between MAGs 
were computed by using all eight treated samples (four 
pellet, four supernatant). The software SparCC (commit 
2ddc13f, February 2020) was used to calculate correlation 
coefficients while taking into account the compositional 
nature of the data [49]. The input was a matrix of mapped 
reads on each genome in the eight samples. Significance 
of the obtained correlation values was assessed by gener-
ating 1000 bootstraps and calculating two-sided pseudo 
P-values.

Taxonomic assignment and functional annotation
Prokaryotic MAGs were taxonomically assigned using 
GTDB-Tk v1.4.1 and converted to NCBI taxonomy 
with the script gtdb_to_ncbi_majority_vote.py [50]. 
Viral genomes were assigned via Hidden Markov Model 
against the Prokaryotic Virus Orthologous Groups 
(pVOGs) database using hmmsearch from the HMMER 
v3.3.2 suite [51, 52].

ORFs were predicted using Prodigal v2.6.3 [53]. Tax-
onomy was assigned on the basis of a consensus rule, 
as previously reported [21]. Taxonomy assignment is 
explained in detail in Additional file 1. Prodigal was also 
used to detect the presence of alternative stop codons in 
viral sequences, following the method used by Borges 
and colleagues [54].

Functional annotation was carried out on protein 
encoding genes predicted on prokaryotic and viral 
genomes using the eggnog-mapper server [55]. The com-
pleteness of KEGG modules in each microbial genome 
was calculated with KEMET [56]. Furthermore, ORFs 
annotated with KEGG orthologs belonging to putative 
alternatives to the Wood-Ljungdahl pathway (WLP) were 
counted in each MAG to identify potential syntrophic 
acetate oxidising  bacteria. Proteins involved in carbo-
hydrate hydrolysis were searched against the dbCAN 
database [57] using hmmsearch and annotated. Proteins 
were also analysed with gutSMASH [58], in order to find 
gene clusters related to VFA production and metabo-
lism. Fisher’s exact test, implemented in SciPy v1.3.1, was 

employed in order to assess whether the occurrence of 
the GH33 enzymatic family was significantly higher in 
viral genomes than in microbial genomes.

Detection of induction in integrated prophages
With the aim of evaluating the induction of putative inte-
grated phages, an analysis was carried out on the eight 
samples analysed in this work and extended to 110 sam-
ples of the AD database [2]. The aim of the analysis was 
to check whether prophages detected in the induction 
experiment reported in this study were also present (and, 
possibly, induced) in other, unrelated AD communities. 
MAGs featuring integrated viruses were split into viral 
and nonviral sequences by extracting the viral sequence 
predicted within MAGs. This approach resulted in a 
dataset of 64 prokaryotic MAGs and 64 correspond-
ing integrated viral sequences. Ten million reads were 
randomly extracted from fastq files and mapped on the 
database generated from the extracted prophages and 
MAGs using Bowtie 2. Genome coverage of MAGs and 
prophages in the different samples was calculated with 
CheckM coverage. One coverage value was obtained 
for each contig. Coverage values for each genome were 
obtained by averaging the values of individual contigs. 
The coverage threshold for a species to be considered was 
set to 0.01. The virus/MAG coverage ratios were calcu-
lated and the distributions of their values across samples 
and across genomes were inspected. Finally, log ratios 
were clustered with an average linkage algorithm based 
on Euclidean distance. Prophages were considered puta-
tively induced in a sample when the log ratio was greater 
than 10. This threshold was chosen to exclude values 
resulting from noise, based on the exponential-like dis-
tribution which reaches a plateau around the value of 10 
(Additional file 1).

Results
Anaerobic digestion perturbation assays
The current study investigated the effect of environ-
mental stresses on viral and microbial composition of 
AD communities present in laboratory-scale reactors. 
The experimental plan included 21 different environ-
mental perturbations known to affect the AD microbial 
community and to stimulate the induction of integrated 
prophages (Additional file 1) [14, 59–65]. Some of these 
conditions occur in biogas plants and negatively impact 
the reactor performance, but they do not completely dis-
rupt the microbial community, and methane production 
can be recovered if the conditions are removed. Overall, 
the highest decreases in methane yield were observed 
with low pH and temperature shifts to 55 °C or 60 °C 
(Fig. 1). Temperature shifts had a similarly strong effect 
if combined with high salt concentration and a much 
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stronger one when paired with oxidation. A moder-
ate temperature increase, on the other hand, registered 
positive effects on the production of methane, even when 
combined with other factors. Interestingly, the treatment 
with mitomycin did not result in a reduction of metha-
nogenesis. In fact, for both concentrations of mitomycin 
assessed, the methane yield increased. Importantly, the 
aim was to identify the perturbations where viral induc-
tion was more likely to be detectable. A condition for 
this was that the microbial community had to be per-
turbed, but not completely disrupted. The most promis-
ing batches, either according to data found in literature, 
or according to the variation in methane yield, were car-
ried over to DNA extraction and sequencing. DNA yields 
for the viral fraction were often exceptionally low, despite 
using all the available volume to perform the extraction. 
In several cases, including the control bottle, the insuffi-
cient yield of viral DNA made it impossible to generate 
sequencing libraries or provided raw reads of low qual-
ity that were discarded (data not shown). Ultimately, four 
conditions were successfully sequenced and analysed. All 
of them are characterised by a moderate decrease in the 
methane yield (up to −30%) with respect to the control 
bottle. These were organic overload of 8 g VS/L, exposure 
to atmospheric air at a concentration of 15 mL  O2/g VS, 
pH increase to the value of 8.5, and exposure to  H2O2 at 
a concentration of 3 mM. The fourth condition, which 
obviously does not occur in biogas plants, was set up in 
order to mimic a strong oxidative shock, possibly hap-
pening during a massive oxygen influx in the system.

Viral and microbial community
Metagenomic analysis allowed the recovery of 1,092 viral 
genomes (virMAGs). A parallel binning approach recov-
ered 120 microbial MAGs, 72 of them being of high qual-
ity according to MIMAG standards. It is reported in the 
literature that about half of known bacterial genomes 
feature integrated prophages in their sequence [66]; simi-
larly, 64 of the 120 MAGs identified in this study harbour 
prophages (Additional file 3).

The normalised relative abundance of the viral com-
ponent is very high, reaching almost 70% of the total 
community (viral + microbial) in some samples (Fig. 2). 
Viral MAGs and single-scaffolds viral genomes ranged in 
size from 1502 to 195,329 bp, covering the vast majority 
of the sequence lengths space occupied by prokaryotic 
viruses with the exclusion of jumbophages [67] (Addi-
tional file 3). This was done by design, as the three viral 
bins longer than 200 kpb were divided into single contigs 
(Additional file  1). Furthermore, CheckV showed that 
these bins featured a low completeness and high con-
tamination, justifying the approach taken in their regard. 
The combined approach of viral prediction and binning 

yielded a total of 16 high-quality and five complete viral 
MAGs according to MIUViG standards [68]. Other 
metaviromic studies report similar numbers of high qual-
ity viral genomes per dataset [9, 21, 69].

The DNA virome is largely dominated by Caudovirales 
phages belonging to the Myoviridae, Podoviridae and 
Siphoviridae families, confirming similar results observed 
in previous studies investigating AD viromes [9, 11]. A 
few small contigs (< 5 kb) were classified as Inoviridae or 
Microviridae. This is consistent with the fact that species 
within these taxa tend to have very small genomes, in 
the order of kilobases. As they are short and underrepre-
sented in databases, it is difficult both to detect them in 
metagenomes and to estimate completeness and contam-
ination. Among the viral sequences investigated (con-
sidering all viral MAGs and prophages integrated in the 
prokaryotic MAGs), 4.5% were unequivocally assigned at 
species level. Furthermore, the vast majority (88%) of the 
viral genomes were assigned at family level.

The distribution of relative abundances among viral 
genomes is very skewed, with a few prominent viruses 
(including Siphoviridae sp. 0304, Siphoviridae sp. 
0142, Virus sp. 0026, Siphoviridae sp. 0307; Additional 
file 1: Figure 3) and the majority having very low values. 
In particular, Siphoviridae sp. 0304 (Fig. 2B) is by far the 
most abundant, with a relative abundance of about 5.3% 
on average across samples.

Single-scaffold phage genome Siphoviridae sp. 0431, 
while not being as abundant as the virMAGs previously 
mentioned, is a prominent component of the viral 
community, with an average abundance of 5400 CPM 
(0.54%) across samples, which spikes at 13,009 CPM in 
the supernatant part of the sample subjected to alkaline 
condition.

The prokaryotic composition is consistent with the 
results of previous works describing anaerobic diges-
tion communities [70, 71]. Firmicutes was the most 
abundant bacterial phylum (25–30% in relative abun-
dance) followed by Candidatus Cloacimonetes (20%), 
Bacteroidetes (18%) and Proteobacteria (9.4%) (Addi-
tional file  3). Four of the 120 prokaryotic MAGs were 
classified as Archaea, accounting for 3 to 4% of the 
microbiome (Additional  file 3). This set is represented 
by: Methanoculleus sp. 0064, Methanothrix sp. 0024, 
Methanosarcina flavescens 0114 and Methanosarcina 
mazei 0049. Methanoculleus species perform hydrog-
enotrophic methanogenesis [72, 73], archaea of Meth-
anothrix genus perform aceticlastic methanogenesis, 
while the Methanosarcina are generalists [74]. The two 
Methanosarcina identified in this work harbour inte-
grated viral sequences, belonging to the Siphoviridae 
family. The two genomes Candidatus Cloacimonetes 
spp. 057 and 073 are highly abundant, accounting for 
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Fig. 2 Overview of the prokaryotic and viral community. A Relative abundance of prokaryotic phyla (left) and viral families (right), expressed in 
genome count per million of genomes (CPM) in each sample. The pie charts in the middle represent the overall CPM abundance of viruses (blue), 
prokaryotes (orange) and unclassified (green) contigs. The term “Candidatus” in the legend refers to the sum of all the candidate phyla. B Genome 
map of two significant viruses retrieved in this study. Annotated ORFs are depicted in orange; uncharacterised ORFs in blue
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a substantial percentage of the bacterial community, 
from 16% in the pH 8.5 supernatant sample up to 23% 
in the organic overload supernatant sample. Other 
examples of AD communities dominated by members 
of Candidatus Cloacimonetes, not included in the AD 
database, have been described in literature [75–77]. 
Members of this phylum have been suggested as glyco-
lytic in previous studies [78].

Effect of tested conditions on the metagenome
The effect of the different treatments on MAGs and 
viruses was evaluated by calculating the log ratio of the 
relative abundances with respect to the average value (see 
the “Materials and methods” section). The same analysis 
was performed by comparing the treated samples with 
the inoculum, the results of which are reported in Addi-
tional file  1: Figure  4  due to the marked differences in 
the microbial profiles existing between the control and 
the other conditions. A hierarchical clustering performed 
on the most abundant microorganisms and viruses high-
lighted groups of species with similar behaviours (Fig. 3). 
Correlation values between all genomes were calculated 
considering the compositional nature of the data and are 
reported in Additional file 3.

Groups of phages with very definite behaviours 
emerged from the hierarchical clustering (Fig.  3). These 
groups are heterogeneous in terms of viral taxonomies, 
yet certain genes are characteristic of each group. The 
50 most abundant viral genomes match against a total 
of 371 HMM profiles of the pVOG database. Of these, 
266 (72%) are cluster-specific. It is evident that basic pH 
and overload tend to have opposite effects on phages 
(Spearman’s ⍴ = − 0.28, p < 0.05), particularly in clusters 
“2” and “4”. The former is characterised by eight phages 
which decrease in relative abundance during overload 
treatment (log ratios between − 0.5 and − 1, see Addi-
tional file  3). Three of these genomes have an increase 
in relative abundance only when exposed to basic pH, 
with Siphoviridae sp. 0431 and Virus sp. 0283 almost 
doubling. It should be noted that increased abundance 
could have different biological explanations including 
phage induction and increased abundance of the host. 
In the latter cluster, the opposite effect can be seen, and 
in particular two genomes (Virus sp. 0026 and Virus sp. 
0212) are those most heavily affected by basic pH (log 
ratios − 0.68 and − 0.59, respectively) and overload (log 
ratio 0.64 and 0.66, respectively). Viruses of cluster “3”, 
similarly, increase in abundance during organic overload 
and decrease when exposed to basic pH, but less mark-
edly (average log ratios 0.20 and -0.31, respectively). This 
cluster includes Siphoviridae sp. 0307 and Siphoviridae 
sp. 0142, which are the second and third most abundant 
viruses present in the dataset. The Yersinia outer protein 

gene (yopX), which is likely to be involved in life cycle 
regulation in temperate bacteriophages [79], is only pre-
sent in genomes belonging to cluster “3”, chiefly Siphovir-
idae sp. 0142, contributing to the hypothesis that these 
viruses are temperate. The main dominant viral genome, 
Siphoviridae sp. 0304, is part of cluster “1”, entirely com-
posed of Siphoviridae and the only cluster of genomes 
whose relative abundance increases during microaeration 
(log ratios from 0.11 to 0.31). Cluster “1” is the only one 
where matches against pVOGs VOG3653, VOG3654, 
and VOG9328 were found, all of which are annotated 
as tail proteins. The ORFs matching against these HMM 
profiles are always found in a duo: one matches with 
VOG3653, the other both with VOG3654 and VOG9328 
(Fig. 2B). This result suggests that the proteins encoded 
by these two genes are complementary tail components. 
Overall, basic pH and overload affect phages the most. 
Basic pH is the condition with the most negative influ-
ence on the viruses considered, while overload is mostly 
associated with positive log ratio values. Unexpectedly, 
exposure to  H2O2 is not responsible for great variations 
in relative abundance of phages. Considering the 50 most 
abundant phages, most log ratio values under hydrogen 
peroxide exposition fall between − 0.1 and 0.1, and only 
a small set of viruses shows a mild increase, including the 
aforementioned Siphoviridae sp. 0096 and Siphoviridae 
sp. 0307.

Microaeration and exposure to hydrogen peroxide 
have strong effects on MAGs and seem to have opposite 
effects on the whole microbial community, displaying a 
slight anticorrelation (Spearman’s ⍴ = − 0.40, p < 0.005). 
Basic pH is another condition that predominantly 
affects the microbial community. Genomes in cluster 
“A” (Fig. 3), sharply increase in relative abundance under 
basic pH and decrease under microaeration. This clus-
ter shows a relative lack of integrated proviruses in the 
MAGs’ genomes: only two MAGs out of 14 include viral 
sequences (14%), whereas in the entire dataset, 64 MAGs 
out of 120 do (53%). Contrariwise, in cluster “B” 6 out of 
8 MAGs carry integrated prophages. However, the small 
number of genomes made it difficult to draw statistically 
sound conclusions regarding these differences.

The behaviour of the three archaeal MAGs included in 
the analysis is peculiar and, although they end up in dis-
tant places in the clustering (Fig. 3), they have common 
characteristics. First, they do not cluster with bacterial 
genomes, but rather exhibit a unique behaviour. Secondly, 
their relative abundance varies markedly (coefficients of 
variation between 0.34 and 0.46, higher than 40 MAGs 
out of the 50 included in the heatmap), evidencing a 
marked response to the changes in the experimental con-
ditions. For example, M. flavescens 114 and Methanothrix 
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sp. 24 show a marked increase under organic overload, 
with log ratios of 0.71 and 0.56, respectively.

Another common trend of archaeal MAG abundance in 
relation to shocks is a decrease in response to  H2O2 expo-
sure. This is coherent with biochemical measurements, 

as the sample is characterised by the highest concentra-
tion of acetate and VFA, and a substantially lower meth-
ane yield (Additional file 2,  Fig. 1). A kinetic imbalance 
between acid producers and consumers, reflected by low 
methane production, is revealed by VFA accumulation 

Fig. 3 Heatmaps displaying the log ratios of MAGs and virMAGs relative abundance in each condition over their mean relative abundance across 
samples. A The 50 most abundant viral MAGs are displayed, and the average abundance is calculated on the supernatant samples. Four clusters are 
highlighted: cluster “1” is exclusively composed of Siphoviridae phages undergoing a mild increase during microaeration; cluster “2” is characterised 
by a marked increase during overload as well as a decrease in pH; cluster “3” is similar to cluster “2”, but the variations are less evident; cluster “4” is 
composed of phages sharply decreasing during overload and increasing when exposed to basic pH. B The 50 most abundant prokaryotic MAGs 
are displayed, and the average relative abundance is calculated across pellet samples. Coherent behaviours in terms of response to conditions 
are depicted as clusters: cluster “A” comprises MAGs increasing in relative abundance when exposed to basic pH and negatively affected by 
microaeration; cluster “B” is composed of MAGs with slightly increased average relative abundance under microaeration; in cluster “C” and cluster 
“D”, respectively, a sharp decrease and increase during overload treatment are evidenced. C The summary table contains some functionally relevant 
species discussed in the main text
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[62, 80]. This sample shows the highest concentration 
of VFA, including acetate. This is coherent with the idea 
that a halt in the activity of acetoclastic archaea leads to 
an accumulation of acetate and a decrease in methane 
production.

Two isolated small clusters dubbed “C” and “D”, com-
prising two MAGs each, comprise species which display 
marked variations in relative abundance among different 
conditions. Cluster “C” comprises Thiopseudomonas sp. 
046 and Propionibacterium sp. 081, both decreasing with 
organic overload, but the former sharply increased with 
air. The Thiopseudomonas genus has been described as a 
facultative anaerobe, catalase- and oxidase-positive [81]. 
Furthermore, five ORFs in the two Thiopseudomonas 
MAGs are functionally related to oxidative stress (EC 
numbers 1.11.1.6, 1.11.1.15, and 1.8.1.9, Additional file 4), 
which could explain a possible air tolerance. Cluster “D” 
comprises Actinomyces oricola 091 and M. flavescens 114. 
The bacterium is negatively affected by basic pH, with 
its relative abundance almost halved with respect to the 
mean (mean abundance 6,631 CPM; abundance in basic 
pH 3541 CPM; log ratio − 0.90). Its relative abundance 
also suggests an increase during  H2O2 exposure.

Finally, Pseudomonas formosensis 084 and Thiopseu-
domonas sp. 083 display extreme variation between con-
ditions. Their relative abundance is exceptionally low 
under overload (log ratios -4.8 and -2.2 respectively) 
which is their most striking characteristic. Furthermore, 
both revealed a higher relative abundance under micro-
aeration, and a lower relative abundance with  H2O2 in 
comparison to the average value across conditions.

Functional categories of proteins encoded in MAGs 
and viral MAGs
The tested conditions appear to have an important effect 
in shaping the structure of both the viral and microbial 
communities. Functional annotation was employed to 
investigate the link between the variation in community 
composition and the tested conditions. The AD process 
is carried out by a multitude of microorganisms, each 
one playing a number of roles in the degradation and 
conversion of organic matter [82]. A starting point for the 
metabolic characterisation is the functional annotation 
of genes. Analysis of the functional categories was per-
formed on protein-coding genes identified in all predicted 
viruses and microbial genomes. Notably, 70% of the ORFs 
encoded by prokaryotic genomes registered a match in 
the KEGG Orthology database, while this percentage is 
as low as 30% in viral genomes. Viruses, although they do 
not perform metabolic activities in the community, can 
influence and modulate microbial functionality via infec-
tion, induction, and HGT. It was recently reported that, 
in the design of synthetic microbial communities, it is 

of utmost importance to determine the absence of inte-
grated, putative inducible prophages, to ensure the stabil-
ity of the process [83, 84]. According to this approach, the 
presence of prophages was verified, in order to determine 
the putative level of vulnerability of specific steps of the 
AD process. AD is divided into four main steps: hydroly-
sis, acidogenesis, acetogenesis, and methanogenesis [85]. 
In the hydrolysis step, complex organic molecules are 
broken down to their monomers, which are then con-
verted into VFAs by the guild of acidogenic bacteria. 
VFAs are then employed by the acetogenic species in the 
production of acetate, hydrogen and  CO2, upon which 
the methanogenic archaea feed, producing methane. In 
an attempt to categorise the MAGs according to their 
role in the AD process, particular attention was paid to 
gene categories that are important in each of these steps. 
These gene categories were grouped as follows: (I) genes 
involved in binding and degradation of polysaccharides, 
especially cellulosome-related protein families; (II) genes 
related to VFA production or metabolism; (III) genes per-
taining to the Wood-Ljungdahl pathway (WLP) or path-
ways proposed as alternatives and potentially involved in 
syntrophic acetate oxidation; and (IV) genes involved in 
methanogenesis (Additional file 4).

Viruses have a double role in the funnel-shaped web 
of interaction of the AD. On one hand, they may carry 
genes conferring additional enzymatic functions to their 
hosts; on the other hand, they represent a threat to the 
host, as their lifestyle often involves the hijacking of the 
host metabolism and its death. For this reason, genes of 
interest were searched in the prophages integrated in the 
aforementioned MAGs, both with a positive and a nega-
tive impact on the host metabolism. Free viral genomes 
were also investigated as they could represent temperate 
viruses.

The MAGs encoding the largest number of ORFs 
annotated with carbohydrate-binding functions (guild 
I) belong to the candidate phyla Cloacimonetes and 
Hydrogenedentes. The two Candidatus Cloacimonetes 
genomes are characterised by the occurrence of ORFs 
annotated as CBM56 by dbCAN (Fig.  4A). This enzy-
matic family is associated with a beta-1-3-glucan binding 
function; hence, it is probably involved in favouring the 
binding of Bacteria to cellulose substrates. A glycolytic 
role has been suggested for Candidatus Cloacimonetes 
bacteria in a previous study [78]. Moreover, Candida-
tus Hydrogenedentes sp. 010 and Candidatus Hydro-
genedentes sp. 026 feature, respectively, 13 and 27 genes 
annotated as dockerins, i.e., proteins that take part in the 
formation of cellulosomes.

Genes encoding enzymes related to carbohydrate syn-
thesis, degradation and binding were found in 18 out of 
64 integrated viral genomes. Three enzymatic families 
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largely outnumber the others: GH33, GT4 and GT2 are 
found in 42, 41 and 40 genomes respectively, with each 
single family representing more than 15% of the 262 
hydrolytic enzymes found in viral genomes.

GT4 and GT2 are glycosyl transferase families and are 
respectively the first and the third most frequent enzy-
matic families found in prokaryotic genomes, with 580 
and 514 matches out of a total of 7073. It is known that 

Fig. 4 Distribution of metabolic genes in the microbiome. A Tree map showing the number of ORFs annotated as CBM56, a family of 
cellulose-binding enzymes, in each genome. More than half of the CBM56 ORFs of the whole dataset are found in the two Candidatus 
Cloacimonetes MAGs. B Upset plot summarising the MAGs coding for VFA-related metabolic pathways. The horizontal bar plot indicates how many 
species carry out each process, the vertical bar plot shows how many and which pathway each species codes for. C The 20 most frequent families of 
carbohydrate-active enzymes of the CAZy database both in viral (top) and prokaryotic genomes (bottom)
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mobile genetic elements can provide novel metabolic 
functionalities to their hosts [86].

GH33, instead, is a family of sialidases and neuramini-
dases, and is represented by 161 ORFs among prokaryotic 
sequences, which ranks it as the twelfth most repre-
sented. It is thus more frequent in viruses than in prokar-
yotic sequences (p =  10−22, Fisher’s exact test), hinting at 
their importance in the viral physiology (Fig. 4C).

The presence of genes related to VFA metabolism 
and acetate formation (guild II) was evaluated by 
checking the completeness of the beta-oxidation mod-
ule and the presence of a selection of clusters of genes 
[58]. The beta-oxidation module (M00087) was com-
plete in five genomes (Additional file 4). Three of these 
genomes, as well as Ruminococcaceae sp. 120, encode 
enzymes involved in acetate, pyruvate and butyrate 
metabolism (Table 1). In particular, the genome of Del-
taproteobacteria sp. 006 features the complete M00087 
beta-oxidation module, genes belonging to the “Ace-
tate to butyrate” and “Acetyl-CoA pathway” metabo-
lisms and an integrated prophage of the Myoviridae 
family (Table 1).

Bacteria potentially involved in syntrophic acetate 
oxidation (guild III) were identified by evaluating the 
presence of genes belonging to the Wood-Ljungdahl 
pathway (WLP) or its putative alternatives, the glycine 
synthase-reductase pathway (GSRP), and the reductive 
glycine pathway (RGP). In this dataset, these alterna-
tive WLP modules seem to be exclusive of Firmicutes 
(Additional file  4). Eleven MAGs comprise genes 
belonging to oxidative pathways, ten of which belong 
to Firmicutes (e.g. Firmicutes sp. 0060 and Catabacter 
sp. 0112) and one to Chloroflexi (Anaerolineaceae sp. 
0082). Firmicutes bacteria have already been reported 
as capable of converting acetate to  CO2 through the 
reverse WL pathway [87, 88]. Furthermore, gene anno-
tations in previous works [89] have already identified 
bacteria from the Chloroflexi phylum as potential 

syntrophic acetate oxidising bacteria. In Firmicutes 
sp. 0060, both the glycine cleavage system and the 
GSRP were fully complete, while the RGP was 83% 
complete. A noteworthy viral genome recovered is 
Siphoviridae sp. 0243, which is an 84-kb phage with 
an estimated completeness between 80 and 100% and 
harbours a section of the glycine synthase-reductase 
pathway (GSRP). This suggests that this virus can 
confer additional enzymatic capabilities to its host, 
giving it an alternative to the Wood-Ljungdahl 
pathway.

Methanogenesis (guild IV) is exclusively carried out 
by methanogenic archaea. This guild is represented 
by a heterogeneous population of hydrogenotrophic 
(Methanoculleus sp. 0064), acetoclastic (Methano-
thrix sp. 0024) and generalist methanogens (M. flave-
scens 0114; M. mazei 49). The two MAGs assigned to 
Methanosarcina genus have integrated Siphoviridae 
proviruses.

Evaluation of selected prophages abundance in the AD 
database
Given the wide presence and importance of integrated 
proviruses across all metabolic guilds, the search was 
broadened by considering 123 additional shotgun 
sequencing experiments deposited in public AD data-
bases [2]. Many of these experiments investigated AD 
reactors operating under a variety of parameters includ-
ing temperatures ranging from 35 to 55 °C, different feed-
stocks and stressful conditions such as lipids overload 
[90] or high concentration of ammonia [91]. For each 
MAG featuring integrated proviruses, the viral/host ratio 
was defined as the ratio between the read coverage of 
the viral and the non-viral components. This proportion 
was calculated separately for each experiment, with the 
aim of showing whether a specific prophage increases in 
abundance with respect to the host under specific envi-
ronmental conditions.

Table 1 Bacteria related to VFA metabolism. The table reports the phylum of belonging, the family of integrated prophages, the 
completeness of the beta-oxidation KEGG module (M00087) and the presence of relevant metabolic gene clusters detected using the 
gutSMASH software

Genome ID Phylum Prophage M00087 Metabolic gene clusters

Deltaproteobacteria sp. 006 Proteobacteria Myoviridae Complete 3 acetate to butyrate; 1 acetyl-CoA pathway

Myxococcales sp. 007 Proteobacteria Absent Complete Absent

Pseudomonas formosensis 084 Proteobacteria Myoviridae Complete Absent

Paracandidimonas sp. 097 Proteobacteria Siphoviridae Complete 3 Acetate to butyrate

Bacillus ginsengihumi 031 Firmicutes Siphoviridae Complete 3 Acetate to butyrate

Ruminococcaceae sp. 120 Firmicutes Absent Incomplete 1 Pyruvate to acetate-formate; 3 acetate to butyrate
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Microbial and viral diversity across the AD database
In the samples from the present study, the average 
prophage/host ratio was equal to 1.1 and the maximum 
value was 13.3. Contrariwise, considering all experiments 
from the AD database, the average ratio rises to 12.0 and 
the maximum is over 4200 (Additional file 5). These data 
reflect the diversity of environmental conditions across 
the AD database and underline their importance in shap-
ing the microbial and viral community. The read cover-
age across the whole dataset shows that viruses and hosts 
are not always present in the same community. There are 
64 MAGs featuring integrated proviruses, on which reads 
from the additional experiments were mapped, resulting 
in 7872 values of coverage ratio. In 2722 cases (34.6%) the 
integrated virus was not found, despite the presence of the 
host (Additional file  5). The opposite is much rarer: only 
in 22 cases (0.3%) reads map only onto the viral part of the 
MAG. These cases may be explained by the ability of the 
viral species itself or related strains to infect a different host 
[92]. In most cases (1221 occurrences, 15.5%) where the 
host microbe is not present, the bacteriophage is not pre-
sent either.

Effects of temperature
Temperature is the strongest driver of clustering: most 
of the mesophilic samples end up in four sub-clusters of 
respectively 29, 6, 9 and 8 sequencing experiments (Fig. 5). 
One large cluster is entirely composed of thermophilic 
samples. Here, 73-98% of MAGs are still present, although 
their coverage is often lower than those registered in our 
samples. However, only 26–53% of the respective phages 
are present and the prophage/host ratio is 7.74 on average.

In order to evaluate the impact of the temperature in the 
composition of the viral community, the coverage of each 
provirus in mesophilic samples was compared with the 
coverage in thermophilic samples with a Mann-Whitney 
U test. Out of 64 proviruses, 54 (84%) are more abundant 
in the mesophilic samples, and this finding is expected 
because this study was performed on mesophilic reactors. 
However, four outliers were found to be more prevalent 
in thermophilic groups (p-value threshold = 0.05, Table 2), 
and six do not show significant differences.

Impact of simplified feedstocks
A 26-sample cluster named “simplified medium” is char-
acterised by the predominance of samples in which the 

feedstocks have a controlled or restricted composition: 
out of 26 reactors, 10 use as feedstock BA medium mixed 
with simple components as carbon sources, such as acetate, 
glucose, avicel, and VFA mixtures; 6 samples were fed with 
cheese whey 6 with acetate as the major substrate (Fig. 5). 
The peculiarity of this cluster is that they have a low num-
ber of MAGs and phages in common with our samples. 
On average, half of the MAGs identified in this study are 
present in this cluster, with two samples having as few as 
6 and 9 MAGs. This is also due to the smaller number of 
taxa identified in the community present in these samples, 
which amplifies the difference with the samples investi-
gated in this study. The integrated prophages are detected 
on average for 10% of MAGs, with only one sample having 
more than 20%.

The most ubiquitous MAG-prophage couples are 
Clostridiales Family XIII Incertae Sedis sp. 013, Firmicutes 
sp. 043 and Bacteroidales sp. 047, with their respective 
prophages. These MAG-prophage couples are found in 
association in over 90% of the samples.

The three least frequent MAG-prophage couples are 
Bacillales sp. 117, Bacillales sp. 090 and Candidatus 
Cloacimonetes sp. 057, all of them predominantly present 
at mesophilic conditions. Despite the prevalence of Can-
didatus Cloacimonetes sp. 057 in the data gathered in this 
study as mentioned earlier, this MAG is exclusively found 
in studies belonging to the group “meso 1”, characterised 
by mesophilic temperatures and cattle manure as feedstock 
(Fig. 5).

Behaviour of proviruses
Putatively induced phages in the different AD metage-
nomes have been estimated by using as a proxy the ratio 
between the coverage of the provirus compared with the 
rest of the MAG. A provirus has been considered induced 
in a certain condition when the ratio was larger than 10, 
based on the cumulative distribution of the viral/host 
abundance ratios (Additional file 1: Figure 5). However, the 
rise in abundance of a virus with respect to its host could 
be explained by factors different from induction, such 
as the presence of an alternative host or a low number of 
reads mapped on both genomes, and this bias should be 
taken into account when discussing this aspect.

In the “simplified medium” cluster, 13 out of the 24 
MAG-virus couples have an average ratio indicating an 
induction. Most of the MAGs belong to the Bacteroidales 

(See figure on next page.)
Fig. 5 Coverage of the MAGs with integrated phages in the 8 samples from the present experiment and in 110 samples from the AD database. The 
colour scale of coverage is logarithmic. The sample names are reported in Additional file 5 in the order in which they appear in the heatmap. MAGs 
are identified by the same sequential numbers that appear in their complete name (e.g., “Firmicutes sp. 043” is here “43 M”). “M” denotes the 
prokaryotic fraction of the MAGs, while “V” indicates the integrated viral part. Feedstock and temperature range are displayed as coloured labels at 
the top of the heatmap. Samples are grouped into clusters based on Euclidean distance. Clusters that are relevant to our analysis are highlighted at 
the top of the image with pastel colours
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Fig. 5 (See legend on previous page.)
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and Clostridiales orders, with the exceptions of three mem-
bers of Firmicutes, Acholeplasmatales sp. 079 and Candi-
datus Hydrogenedentes sp. 066. The latter is hypothesised 
to play a role in the hydrolysis of cellulose, and, as such, it 
is found as induced in a sample fed with cellulose and straw 
(virus/host coverage ratio = 94).

Provirus Firmicutes sp. 043, which infects one of the most 
ubiquitous MAGs, has an average coverage ratio of 493 
in the “simplified medium” cluster and of 68 in the “meso 
4” cluster. Provirus Peptococcaceae sp. 118 has an average 
ratio of 165 and 368 in the “meso 3” and “meso 4” clus-
ters, respectively. Provirus Pseudomonas formosensis 084, 
whose host participates in the degradation of fatty acids via 
beta-oxidation, is detected as induced in the “meso 4” clus-
ter, where it is present in five out of eight samples, and its 
coverage ratios range from 27 to 2,779. This cluster is char-
acterised by mesophilic temperatures and most of the reac-
tors in it are fed with sewage sludge.

Provirus M. mazei 049 scores a read coverage more than 
10 times higher than its host in 9 samples belonging to the 
“thermo” cluster. In one sample, the virus has a coverage of 
37, whereas the host only has 0.05. This is most likely a case 
in which the virus itself is present but infecting a different 
host.

Overall, the variety of environmental conditions under 
which AD occurs provides a range of opportunities to 
explore the interactions between viruses and their hosts, 
revealing large-scale trends which would otherwise be 
difficult to detect.

Discussion
In this study, the virome of AD communities undergo-
ing several prophage-inducing stresses was investigated. 
As expected, much of the viral diversity hereby explored 
is novel, as shown by the challenges presented by func-
tional annotation and taxonomic assignment. The DNA 
viral community is dominated by tailed bacteriophages 
belonging to Siphoviridae, Podoviridae and Myoviridae 
families. Members of single-strand DNA families such 
as Microviridae and Inoviridae were retrieved, as well 
as Bicaudaviridae. These families are characterised by 
small genomes and are underrepresented in sequence 
databases, which makes them more challenging to 

detect [93]. This lack of representation means that the 
sequences retrieved in this study are going to contribute 
to the knowledge expansion about environmental viruses 
which has been going on for well over a decade, with no 
sign of decrease yet [22].

Viral particles have a different structure than organ-
isms, and lack a metabolism [94], whereas living beings 
can rely on homeostatic mechanisms to face changes in 
external factors such as pH changes and oxidative stress 
[95, 96]. Temperate viruses, furthermore, are induced 
and enter the lytic cycle as a reaction to some DNA-dam-
aging stresses. These factors are effective when looking at 
the reactions of both viruses and prokaryotes to the dif-
ferent conditions that were applied in the experimental 
setup. Viruses show a clear dichotomy between organic 
overload and basic pH (Spearman’s ⍴ = − 0.69, p < 0.001), 
while prokaryotes show the greatest differences between 
basic pH and microaeration (Spearman’s ⍴ = − 0.40, p 
< 0.005).

This said, there are characteristic responses to con-
ditions, as shown by the log ratio clustering (Fig.  3). 
Viruses show these trends very clearly, and these can be 
linked to the presence of specific genes in the clusters. 
For instance, cluster “3” comprises viral genomes which 
include the yopX gene. This gene is known to be involved 
in the regulation of the life cycle of temperate bacterio-
phages [79], thus suggesting that members of this group 
are temperate, and yopX is involved in their induction. 
Among the members of cluster “3” is Siphoviridae sp. 
0142, one of the most abundant viral genomes hereby 
retrieved, which encodes this gene.

The relative abundance of viruses is little affected by 
the action of  H2O2. The literature regarding the effect 
of  H2O2 on bacteriophages is scarce and focuses on the 
effects of  H2O2 vapour, but it appears that non-enveloped 
viruses, as tailed bacteriophages, are more resistant to 
oxidation than enveloped viruses. The same studies show 
that the presence of a complex medium, in this case cattle 
manure, is able to shield the viral particles from the effect 
of the peroxide, either by acting as a physical barrier or 
by reacting with the oxidative agent, thereby diminishing 
its concentration [97].

Microorganisms, as well, respond differently to atmos-
pheric air and  H2O2. Both conditions are supposed to put 
microorganisms in a state of oxidative stress; however, 
 H2O2 is a much stronger oxidising agent and, as con-
sequence, several species of  Bacteria  and Archaea are 
less able to face and survive the damage. Since Archaea 
are anaerobes and at best oxytolerant, they are heavily 
affected by strong oxidative stress (Additional file 3).

It can be striking to observe that archaeal species, 
which are so reactive to oxidative stresses, increase dur-
ing organic overload. Organic overload is associated with 

Table 2 Proviruses which score a higher read coverage in 
thermophilic samples, as confirmed by Mann-Whitney U tests

Provirus name Taxonomy p-value

provirus Firmicutes sp. 043 Siphoviridae sp. 1.5e−11

provirus Firmicutes sp. 060 Siphoviridae sp. 4.5e−2

provirus Bacteroidales sp. 074 Myoviridae sp. 2.9e−2

provirus Firmicutes sp. 080 Siphoviridae sp. 3.5e−05
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an accumulation of VFAs and, consequently, the decrease 
of pH. This leads to inhibition of methanogenesis; how-
ever, this process takes several days to unfold, and the 
brief time span of this experiment could not allow it. 
Measurements of methane yield and VFA, particularly 
acetate concentration, are consistent with this explana-
tion (Additional file 2,  Fig. 1).

Some bacterial species decrease steadily in the pres-
ence of atmospheric air, the majority of which do not 
feature integrated proviruses. Accordingly, it can be 
speculated that bacteria more resistant to oxidative stress 
caused by microaeration are more likely to have inte-
grated prophages. In fact, both T. denitrificans and the 
Pseudomonas genus are known as facultatively anaero-
bic [81, 98]: this clearly coincides with their ability to 
withstand a moderate oxidative stress as microaeration, 
but not a stronger one as the injection of  H2O2. Both 
genomes have integrated phages, belonging to the Myo-
viridae and Siphoviridae families, respectively.

While 70% of the prokaryotic genes were annotated, 
this proportion drops to 30% in viral genomes, a propor-
tion consistent with typical metaviromic studies [21, 69]. 
This striking discrepancy in terms of unclassified genes 
reiterates how vast the proportion of unknown genes 
in the viral world is. Yet, the annotated genes reveal the 
important role viruses play in shaping the microbial 
community of AD. Mobile Genetic Elements, viruses 
included, often contribute to the metabolic capability 
of their hosts by carrying genes conferring evolutionary 
advantage to the host [99], and the same can be observed 
in this community.

As mentioned before, viruses code for a considerable 
number of genes belonging to GT4 and GT2 families. 
These are enzymatic families of importance for biofilm 
synthesis, and it is known that in some bacterial species 
the lysogenic infection of a temperate phage increases 
the production of biofilm, benefitting both host and virus 
[100]. If such a phenomenon is confirmed to occur in AD 
environments, it will be reasonable to ponder the role of 
proviruses in the spreading of these genes.

The reductive acetyl-CoA pathway, also known as 
the Wood-Ljungdahl pathway, is a metabolic pathway 
characteristic of homoacetogenic bacteria and archaea. 
It allows the fixation of  CO2 and synthesis of acetate, 
which is then used by acetoclastic archaea to produce 
methane. Other species, known as syntrophic acetate 
oxidising bacteria, employ the reverse Wood-Ljungdahl 
pathway to digest acetate into  H2 and  CO2, both con-
sumed by hydrogenotrophic archaea. Biochemical evi-
dences regarding the activity of the WL pathway have 
been reported for a limited number of isolated species: 
the species dubbed as “acetate-oxidising, rod-shaped 
bacterium” (AOR) [97], Clostridium ultunense [101], 

Thermoacetogenium phaeum [102], Pseudothermo-
toga lettingae [103], Syntrophaceticus schinkii [104] and 
Tepidanaerobacter acetatoxydans [105]. Genes belong-
ing to these pathways were found in genomes retrieved 
in the present study, more specifically in 10 members of 
the Firmicutes phyla and one Chloroflexi. Members of 
both the Firmicutes and Chloroflexi phyla bacteria have 
been reported as either capable of converting acetate 
to  CO2 through the reverse WL pathway or as poten-
tial syntrophic acetate oxidising bacteria based on gene 
annotations [87–89]. However, alternative WL pathways 
mediated by the glycine cleavage system and tetrahydro-
folate pathway have been proposed in recent studies [2, 
106, 107]. Some genes belonging to these pathways are 
potentially involved in bacteriophage-mediated HGT: 
Siphoviridae sp. 0243 is particularly noteworthy, as its 
genome includes five genes of the GSRP pathway. The 
presence of these genes can derive from previous exci-
sion. The integration of Siphoviridae sp. 0243 in another 
bacterial genome can, in theory, confer to the host new 
metabolic capabilities. However, phage-mediated HGT of 
these genes has never been previously reported and can 
be targeted in future studies. The genome of Siphoviri-
dae sp. 0163, similarly, includes an enzyme of the CBM56 
family, involved in the degradation of polysaccharides, 
and thus could confer this metabolic function to its 
host via HGT. As a last example, five free viruses and six 
proviruses code for proteins annotated with the Gene 
Ontology term GO:0006979, which groups genes medi-
ating oxidative stress response, and thus might increase 
the host’s survivability to oxygen exposure. As a matter 
of fact, Clostridiales sp. 030 and Synergistaceae sp. 019, 
both of which include one of said proviruses, also show a 
positive log ratio under  O2 exposure.

The results also reveal some of the adaptations these 
parasites use against their hosts.

It is known that, in bacteriophages parasitizing E. coli, 
tail spikes present sialidases which degrade the host’s 
coat of polysialic acid, allowing the interaction between 
phage and host [108]. Other depolymerases are known 
to enact similar processes in other bacteriophages [109]. 
However, our results indicate not only a presence of 
sialidases/neuraminidases, but an overrepresentation 
thereof, with respect to prokaryotic genomes. Hence, it is 
possible that these enzymes have an important, hitherto 
overlooked role in the mechanism of infection. In fact, 
51% of the ORFs assigned to the GH33, GT2 and GT4 
families (47 out of 91) are annotated by eggNOG as tail 
proteins or tape measure proteins, supporting the idea 
that these enzymatic activities are especially relevant in 
phage/host interactions.

Two of the archaeal genomes retrieved in this study, 
M. mazei sp. 049 and M. flavescens sp. 114, incorporate 
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in their sequence integrated proviruses of the Siphoviri-
dae family. While most Siphoviridae are bacteriophages, 
there’s evidence that some members of the family infect 
Archaea, including the methanogenic species Metha-
noculleus bourgensis and Methanobacterium formicicum 
[110, 111]. These members of Siphoviridae are lytic, i.e., 
do not integrate in the host of the genome; the newly 
recovered genomes show the existence of lysogenic 
archaeal Siphoviridae as well.

In order to better understand the dynamics between 
viruses and hosts, the reads from a large number of AD 
experiments were mapped on integrated proviruses and 
host genomes retrieved in this analysis. These experi-
ments widened the exploration of prophage behaviour, 
allowing the identification of specific environmental con-
ditions favouring prophage induction. Additionally, they 
provide insights on the presence/absence of each inte-
grated prophage in the MAG across different conditions. 
The first observation is that, when host and virus are not 
both present, usually the virus is missing from the experi-
ment. This is consistent with the idea that viruses tend 
to co-exist with their hosts, and that different communi-
ties may consist of different viral species even in the case 
where the same host is present.

Simplified medium communities are characterised 
by high viral abundance, as well as low number of reads 
mapped on the genomes retrieved in the current experi-
ment. These characteristics are easily explained by the 
growth conditions: the specific nutrient source imposes a 
strong selection on the microbial species, e.g. the hydro-
lytic guild in the case of acetate-based media. It is fea-
sible to think that such stresses lead to the induction of 
integrated proviruses. However, possible biases should 
be taken into account. A small number of reads mapping 
both on the host and the provirus may skew the ratio due 
to stochasticity; another factor which can lead to a high 
virus/host coverage ratio is the presence of alternative 
hosts.

Conclusions
The shift to a circular economy and the reduction of 
greenhouse gas emissions is pressing and requires a 
massive effort in terms of technology adoption. In this 
context, AD is a widely used technology; nevertheless, 
a key component of the process, the virome, is still rela-
tively unknown. To our knowledge, this is the first time 
in which the viral community of the AD was inspected 
under a great variety of different conditions. This study 
reveals the pervasiveness of viruses in the AD microbi-
ome. The data retrieved in this work and the analyses 
hereby carried out lay the bases towards the understand-
ing of the complex role of the viral community in AD.

Viral genomes featuring genes of relevance in the AD 
process were retrieved, opening up the possibility that 
HGT is carried out by viruses. Shocks impacted viruses 
and microbes in different ways, highlighting four taxo-
nomically heterogeneous clusters of species.

Broadening the analysis to a wide array of AD stud-
ies enabled the consideration of the effect of more 
environmental parameters, such as temperature and 
medium composition, on the abundance of temper-
ate viruses and their hosts. It also reveals that the viral 
community is more mutable than the microbial one, 
as viruses are often not found despite the presence of 
their hosts, while the opposite is much rarer. More in-
depth studies on the microbiomes of samples of the AD 
database might elucidate if and how metabolic stresses 
and starvation placed on some microorganisms by the 
simplified feedstock affect phage induction. Although 
this study is limited to the analysis of DNA viruses, it 
can be expanded in the future to include the RNA viral 
community. In the next future, knowledge about the 
interactions between viruses and their host will have 
the potential to improve the efficiency of the AD pro-
cess and the production of biogas, as it is already done 
in different environments such as wastewater treat-
ment plants, food surfaces and even the human body. 
More studies with innovative approaches are needed 
to understand thoroughly the effects of conditions 
typical of AD on the lifestyle of the viruses that inhabit 
this engineered ecosystem. On a shorter timescale, the 
newly discovered viral genomes contribute to the ever-
growing diversity of environmental viruses which is 
shifting our understanding of these entities.
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