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Abstract: Many results from cyclic triaxial experiments indicate that porous media, such as clays,
exhibit various long-term behaviours under different cyclic stress ratios (CSRs). These can be classified
into three main categories, namely, cyclic shakedown, cyclic stable and cyclic failure. Modelling
these soil deformation responses, along with pore pressure and other fundamental cyclic aspects,
such as closed hysteresis cycles and degradation, is still an open challenge, and research to date is
limited. In order to properly describe and capture these characteristics, an enhanced plasticity model,
based on the bounding surface and stress distance concepts, is developed here. In detail, a new
uniform interpolation function of the plastic modulus, suitable for all loading stages, is proposed,
and a new damage factor associated with the plastic shear strain and the deformation type parameter,
is also incorporated into the plastic modulus. Accordingly, cyclic shakedown and cyclic failure
can be distinguished, and degradation is achieved. Closed hysteresis loops, typical of clays, are
obtained through a radial mapping rule along with a moving projection centre, located by the stress
reversal points. Comparisons between the obtained numerical results and the experimental ones from
literature confirm the suitability of the constitutive approach, which is capable of correctly capturing
and reproducing the key aspects of clays’ cyclic behaviour.

Keywords: clays; cyclic loading; hysteresis loops; bounding surface plasticity; hardening modulus;
damage factor

1. Introduction

Civil structures such as marine wind towers, embedded offshore structures and
highway foundations are often exposed to cyclic loads from wind, ocean waves and traffic
loads. Therefore, evaluating the cyclic response of the soil foundation is of relevance, as it
influences the long-term behaviour of the supporting structures.

Cyclic triaxial tests conducted on clays have shown that cyclic deformation of soil
is characterised by elasto-plastic unloading, closed hysteresis loops and strain accumu-
lation [1–5]. In detail, when the repeated load or cyclic stress ratio (CSR) is lower than a
threshold value (“shakedown load”), clay, after several cyclic loads, will reach the shake-
down state, exhibiting purely elastic behaviour and no longer producing any accumulation
of plastic deformation. On the other hand, when the repeated load is significantly higher
than the shakedown load, soil will produce more and more plastic strain with each cyclic
load and, after several cycles, it will finally fail. Another case is when the repeated load
is slightly higher than the threshold value load; in this case, the soil will produce plastic
strain at a constant rate along with each cyclic load, and the permanent strain will grow at
a constant rate as well. These features are depicted in Figure 1, for different CSRs. These
characteristic deformation aspects are rarely modeled and should be considered as essential
elements whenever constitutive models, for the cyclic behaviour of soil, are developed.
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Figure 1. Influence of CSR on clay cyclic stress–strain behaviour [6].

Compared to monotonic loading, soil deformation behaviour under cyclic loading is
more complex, and it has attracted the interest of many researchers. Gu et al. [6] investi-
gated the one-way cyclic behaviour of remoulded saturated clay samples via a true triaxial
apparatus, which allows control over the CSR, the cyclic intermediate principal stress
and the over-consolidation ratio (OCR) factors. Guo et al. [7] performed a series of cyclic
triaxial tests to analyze the long-term cyclic behaviour of saturated soft clays considering
different drainage conditions. Chiaro et al. [8] studied the undrained cyclic deformation
behaviour of loose saturated sands under different static shear stresses. Kong et al. [9]
conducted cyclic triaxial tests on Zipingpu gravel and successfully employed the discrete
element method to study the stress–dilatancy relationship of gravelly soils, whereas Sze
and Yang [10] investigated the influence of the specimen preparation on the deformation
behaviour of saturated sands under cyclic loading. Zhuang et al. [11] studied the effects of
the initial deviatoric stress state and principal stress orientation on the strain components
and shear strength of soft marine clay. Yang et al. [12] reported a comprehensive experimen-
tal investigation of the undrained cyclic behaviour of saturated loose sand with static shear,
under triaxial compression and extension conditions. Similarly, Wang et al. [13] conducted
dynamic triaxial tests, with different initial static shear stresses and overconsolidated ratios,
to study the cyclic behaviour of marine clay.

However, despite the amount of experiments performed, research on constitutive
modelling of soil cyclic behaviour is relatively limited.

Conventional elastoplastic geomechanical models, such as the Cam Clay (CC) [14]
model, fail to capture the typical behaviour described above, as it is not possible to consider
the reversed plastic deformations from a single expanding yield surface. To tackle this
difficulty, Mroz [15–17] proposed the idea of a multi-surface along with kinematic hard-
ening model: an outer surface, corresponding to the maximum loading stress, together
with a group of overlapping but disjointed and geometrically similar yield surfaces, are
defined to model the plastic deformation by moving the yield surfaces within the outer
surface during the entire loading process. Although the multi-surface models can capture
the cyclic behaviour of soil, they require a considerable computational effort and result in
discontinuous stress–strain curves due to the abrupt change when a stress point crosses
two different surfaces.

To overcome the complexity of models with multiple yield surfaces, Dafalias [18,19]
proposed the bounding surface model that defines only the initial loading surface and the
bounding surface. The function of overlapping yield surfaces is replaced by a suitable
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interpolating function between the stress point and a image stress point on the bounding
surface. Another difference between the bounding surface model and the classical elasto-
plastic and multisurface models lies in the fact that the plastic modulus h also relies on
the distance between the stress point and the bounding surface, thus ensuring a smooth
transition from the elastic to the plastic condition and reducing the computational efforts.
Additionally, Dafalias and Hemnann [20] degenerated the loading surface into a loading
point, and the two-surfaces model was transformed into a single-surface model. Recently,
Seidalinov [21] extended the well-known SANICLAY [22] model by employing the concept
of bounding surface for modelling the response of clay under cyclic loading. Zhao [23] also
incorporated salt contents and confining pressures into this anisotropic bounding surface
model to study the dynamic characteristics of frozen saline soils. Zymnis [24] adopted
the Tsinghua ThermoSoil model [25] to study the thermo-mechanical response of clays
under long-term heating and cooling cycles in fully drained conditions. Chen [26] took
the stress distance concept and presented a two-surface plasticity model to describe some
important characteristics of saturated clay under cyclic loading, such as closed hysteresis
loops, cyclic shakedown and degradation. Li [27] developed a new type of anisotropic
kinematic hardening rule of the loading surface along with the stress distance concept, to
predict the undrained behaviour of saturated cohesive soils subjected to cyclic load. The
above, and many other works, such as [28–31], confirm how the idea of stress distance and
bounding surface is and has been widely used to model the behaviour of soils under cyclic
loading conditions.

Instead of developing a constitutive model exclusively for clay, Yu [32,33] proposed
a unified bounding surface model to simulate the cyclic behaviour of both clay and sand,
and developed three different hardening modulus interpolation functions for the virgin
loading, unloading and reloading processes, respectively. The accumulated plastic strain
was correctly captured, but not the closed hysteresis, since the projection center remains
the same for the unloading and reloading stages. Khalili and Kan [34–36] adopted the same
form of bounding surface and introduced the second segment of CSL to account for the
particle crushing effect of granular materials under a high level of shear stress; using the
two different CSL slopes, the model’s ability to predict the deformation behaviour of sand
under large shear stresses is greatly improved. In addition, Zhou [37] successfully used the
same bounding surface shape to model the thermomechanical behaviour of clays under
small and large strains and Ma [38] incorporated rotational and distortional hardening
rules to model the monotonic behaviour of anisotropic consolidated clays. Moghadam [39]
adopted a similar yield/bounding surface and developed a new dilatancy relation to
simulate, in a unified framework, the monotonic and cyclic behaviour of clays and sands.

Although the aforementioned models can satisfactorily predict the initial or short-term
cyclic behaviour of soils, they ignore a fundamental characteristic of cyclic loading on soil
foundations; namely that repeated loading, such as ocean wave or transportation loading,
should last for a long period. The long-term loading condition would, in the end, result
in the three deformation characters described previously. Thus, the capability to model
these behaviours is needed when dealing with the long-term cyclic behaviour of soils and
to date, due to the limited research on this aspect, this is still a challenge.

In the present paper, the cyclic behaviour of soil is thus classified into three categories:
shakedown, stable, and failure. A similar yield surface, such as that of the CASM [33], is
adopted to investigate these three types of clay deformation behaviour. Specifically, a
novel uniform interpolation function of the plastic modulus is proposed, which is suitable
for all the loading phases and, to distinguish cyclic shakedown and cyclic failure, a new
damage factor associated with the plastic shear strain and the deformation type parameter
is incorporated into the model. Closed hysteresis loops are here achieved through the
adoption of a radial mapping rule which passes through stress reversal points, allowing us
to model the non-linear stress–strain behaviour under unloading and reloading. The model
is finally validated against several triaxial cyclic tests taken from literature, thus confirming
its ability to satisfactorily simulate the deformation behaviour of clays under cyclic loading.
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This paper is organised as follows. Section 2 describes the proposed constitutive
model. Special attention is paid to the newly introduced hardening modulus function
and to the method for modelling the three different cyclic behaviours of clay. Section 3
presents the implementation of the model in the commercial FEM software ABAQUS. The
two-step explicit integration with the auto-error control method is given in detail. Section 4
validates the model against undrained cyclic triaxial tests from the literature and confirms
its ability to successfully capture the different cyclic responses. Finally, Section 5 gives the
conclusions and future research perspectives.

2. Constitutive Model
2.1. Incremental Relations

Small strains and additive decomposition are assumed, hence

ε̇εε = ε̇εεe + ε̇εεp (1)

and stress rate within the elastic field is

σ̇σσ′ = De : ε̇εεe (2)

where De is the elasticity tensor and defined by the bulk modulus K and the shear modu-
lus G:

K =
(1 + e)

κ
p′ =

vp′

κ

G =
3(1− 2µ)K

2(1 + µ)
=

3(1− 2µ)

2(1 + µ)

vp′

κ

(3)

where µ is the Poisson’s ratio, v = (1 + e) is the specific volume, and κ is the slope of the
loading–unloading line in the e− lnp′ plane.

The plastic strain rate is defined as

ε̇εεp =
1
h

m⊗ ñ : σ̇σσ′ (4)

where ñ and m are the unit normal vectors to the bounding surface and plastic potential at
σσσ′, respectively, and h is the hardening modulus.

By combining Equations (1), (2) and (4), the following incremental elasto-plastic stress–
strain relationship can be obtained:

σ̇σσ′ = Dep : ε̇εε =

(
De − De : m⊗ ñ : De

h + ñ : De : m

)
: ε̇εε (5)

2.2. Bounding Surface Plasticity

The main components of the proposed model are briefly recalled here:

1. a bounding surface, that serves as the outer bound of the stress state in the stress space;
2. a linear mapping rule with a moving projection centre locating the image stress on

the bounding surface;
3. a plastic potential defining the direction of the plastic flow;
4. a uniform interpolation function of the plastic modulus for all the loading phases;
5. a damage factor, associated with the plastic shear stress, incorporated into the plas-

tic modulus to obtain a degradation to distinguish between cyclic shakedown and
cyclic failure.

Following previous studies [40,41], the model adopts the critical state theory to define
the ultimate condition that the soil reaches with an increasing deviatoric shear strain. In the



Materials 2022, 15, 7609 5 of 21

p′ − q plane, with p′ and q being the mean and deviatoric stresses, respectively, the slope of
the critical state line (CSL) can be expressed as a function of the drained friction angle φ′ as:

Mcs =

(
q
p′

)
cs
=

6 sin φ′

3− sin φ′
(6)

In the e − lnp′ plane, where e is the void ratio, the CSL is parallel to the isotropic
compression line (ICL) and it can be defined by the critical void ratio, ecs, as:

ecs = Γo − λ ln
(

p′
)
= Γo − λ ln

(
p′c/r

)
(7)

where: Γo is specific volume at p′ = 1, λ is the ICL slope, p′c is the preconsolidation pressure
and r is the spatial ratio that determines the vertical distance between the CSL and the
normal consolidation line (NCL) in the e− lnp′ plane [32].

The bounding surface can be expressed, in the p′ − q space, as:

F =

(
q̄

Mcs p̄′

)n
+

ln( p̄′/ p̄c)

lnr
(8)

The image stress point (p̄′, q̄) is obtained by an appropriate mapping rule projecting
the true stress point (p′, q) onto the bounding surface. The spacing ratio r, introduced in
Equation (7), defines in the p′ − q plane the intersection point of the critical state line with
the bounding surface [32]. The model parameter n defines the curvature of the surface,
while the hardening internal variable p̄c controls its size and is a function of the volumetric
plastic strain.

Equation (8) has been extensively used in previous works to define the bounding
surface, since it allows different forms of bounding surface to be obtained through a single
formulation. For example, the original CC surface is fully retrieved by choosing n = 1 and
r = 2.718 while, when n = 1.6 and r = 2, the wet side of the Modified Cam Clay (MCC)
model can also be accurately matched by the bounding surface, as shown in Figure 2. For
details about the influence of n and r on the bounding surface, readers are referred to
Zhou [37].
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Figure 2. Influence of (a) parameter r and (b) parameter n on the bounding surface.

A non-associated flow rule is assumed here and the plastic potential, in agreement
with [34], is expressed as

g = q̄ + Mcs p̄′ln
(

p̄′

p̄c

)
(9)
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2.3. Mapping Rule

In the context of bounding surface plasticity, plastic strains occur when σσσ′ moves
within the bounding surface or lies on it. This is accomplished by defining the hardening
modulus h as a decreasing function of the distance between the true and the ‘image’ stress
points, σσσ′ and σ̄σσ′, on the bounding surface.

In the traditional bounding surface model, σ̄σσ′ is obtained through a radial mapping
rule in which the coordinate origin or the initial stress point is adopted as the projection
center and is kept unchanged during all loading phases. This mapping rule is successfully
applied under monotonic loading conditions, but it is unable to deal with the typical
hysteresis or soil degradation phenomena under cyclic loading conditions. The reason is
that either unloading is treated as elastic, or the hardening modulus cannot capture the
plastic behaviour of the soil once the stress reversal occurs.

According to Masing’s rule, unloading can be considered as a reverse loading process
corresponding to the previous loading, and thus the reverse stress point can be regarded as
the starting point of the reverse loading. Therefore, here, it is assumed that the projection
centre immediately moves to the stress reverse point when the loading direction changes.
More precisely, during the unloading phase the last point of the previous loading is taken as
the mapping origin, as shown in Figure 3a, while for the subsequent reloading, the mapping
origin immediately moves to the starting point of this phase, as shown in Figure 3b.

The stress reverse point is identified by the loading index L ≤ 0, calculated by
imposing the consistency condition on the bounding surface as

L = [(∂F/∂ p̄′) ṗ′ + (∂F/∂q̄) q̇]/h (10)

A linear mapping rule is adopted to locate the image stress

p̄′ =
ρ̄

ρ
(p′ − op) + op (11)

q̄ =
ρ̄

ρ
(q− oq) + oq (12)

where ρ̄ is the Euclidean distance between (op, oq) and (p̄′, q̄) and ρ between (op, oq) and
(p′, q).

(a) (b)

Figure 3. Mapping rule and projection centre at different loading stages: (a) unloading and (b) reloading.

2.4. Plastic Modulus

In the context of bounding surface plasticity, the plastic modulus h at the actual stress
point (p′, q) is related to that, hb, at the image stress point ( p̄′, q̄) by the Euclidean distance
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between these two points. Therefore, the plastic state is not restricted only to that lying on
F = 0, as in classical plasticity, and this is the major benefit of the bounding surface concept.

The hardening modulus is here defined as

h = hb + h f (13)

where hb is the hardening modulus of σ̄σσ′ on the bounding surface and h f is a function of the
distance from the stress point to the bounding surface. This is a new damage state variable
d that will be discussed later.

The volumetric plastic strain rate, ε̇
p
v, can be expressed through the flow rule

ε̇
p
v = Λ̇ mp (14)

mp =
(
∂g/∂ p̄′

)
/
∥∥∂g/∂σ̄′

∥∥ (15)

where Λ is the plastic multiplier.
By forcing the image stress to remain on the bounding surface, the consistency condi-

tion can be expressed as

Ḟ =

(
∂F
∂σ̄σσ′

)
: ˙̄σσσ′ +

(
∂F
∂ p̄c

∂ p̄c

∂ε
p
v

)
ε̇

p
v = 0 (16)

By replacing the derivative of the bounding surface with the vector

ñ = (∂F/∂σ′)/
∥∥∂F/∂σ′

∥∥ (17)

and introducing Equation (14), Equation (16) becomes

ñ : ˙̄σ̄σ̄σ′− Λ̇ hb = 0 (18)

in which hb is equal to

hb = − ∂F
∂ p̄c

∂ p̄c

∂ε
p
v

mp∥∥∂F/∂σ′
∥∥ (19)

with
∂F
∂ p̄c

= − 1
p̄cln(r)

(20)

The bounding surface undergoes isotropic hardening when the image stress moves on
the surface; in this case, the hardening law takes the form:

dp̄c =
vp̄c

(λ− κ)
dε

p
v (21)

Therefore, by substituting Equations (15), (20), (21) into Equation (19), the hardening
modulus at the bounding surface can be written as:

hb =
v

(λ− κ)ln(r)
mp

||∂F/∂σ̄σσ′|| (22)

Here, a novel h f is proposed, such that it results equal to zero on the bounding surface
and infinite when stress reversion occurs

h f =
v

(λ− κ)ln(r)
cot
(

π

2
γ

)
k f

t (23)

where γ = ρ/ρ̄ is the distance ratio and the deformation type parameter t is used to
distinguish between cyclic shakedown (t < 0), cyclic failure (t > 0) and cyclic stable
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(t = 0) character. The detailed explanation of how t distinguishes these three phases is
discussed below.

k f is a new hardening parameter controlling the plastic modulus in order to properly
simulate the continuous evolution of the closed hysteresis curve and the degradation
during cyclic loading, proposed as a decaying function of the deviatoric plastic strain, ε

p
d

k f = [1− k1 (1− exp(d))]k0 (24)

ḋ = k2 |ε̇
p
d| (25)

where k0 is the initial value of k f and k1, k2, d are new model state variables that can assume
different values for the reloading and unloading processes, in order to better model the
cyclic behaviour of soil. Furthermore, from Equation (25) it can be noted that the damage
factor d remains either unchanged or increases linearly during the loading process with the
module of ε

p
d.

Figure 4 illustrates the evolution of k f along with |εp
d|. It can be observed that, with

the accumulation of the absolute deviatoric plastic strain, the hardening parameter k f
decreases, and in turn leads to decreasing h f and the achievement of stiffness degradation.
Additionally, it can also be noticed that parameter k2 controls the decrease rate of k f , while
k1 controls the decrease magnitude.
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(b)

Figure 4. Influence of k1, k2 on k f . (a) Influence of k2 on k f , (b) Influence of k1 on k f .

When the CSR is much higher than the shakedown load, the soil will tend to fail after
a certain number of loading cycles, as shown in Figure 5. In detail, it can be seen that the
permanent deformation accumulated at each loading cycle increases significantly after the
first several cyclic loads; this is due to the evident stiffness deterioration (E1

d > E2
d > E3

d)
that the soil presents at each subsequent reloading phase. In order to model such behaviour
under a high CSR, the parameter t is introduced to control the stiffness degradation
at reloading.

Figure 6 illustrates the influence of the sign of parameter t on the deformation proper-
ties of the soil subjected to cyclic loading. Particularly, in Figure 6c, it can be appreciated
that the accumulation strain increases rapidly as the number of loading cycles increases
when the sign of t is positive, while it increases at a stable rate when the sign of t is negative.

Parameter t works in such a way that, since k f is a decaying function along with the
development of the plastic shear strain (see Equation (24)), when the sign of t is positive
during the reloading stage, the plastic modulus will also decrease and leads to stiffness
degradation. Therefore, the soil exhibits more plastic behaviour and the corresponding
permanent strain at each loading cycle increases, as shown in Figure 6a,b.
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Figure 6. Influence of parameter t. (a) t = +1, (b) t = −1, (c) Deformation velocity at variable t.



Materials 2022, 15, 7609 10 of 21

Figure 7 shows the influence of k1 on the soil cyclic behaviour and strain accumulation.
In particular, from Figure 7a, it can be observed that, for higher values of k1, the soil reaches
the shakedown state faster and smaller permanent strains are produced as it is recovered
during the unloading phase, as depicted in Figure 7b. From Figure 4 and Equation (24), it
can be observed that k f is smaller for larger values of k1, which in turn leads to a smaller
plastic modulus and results in stiffness degradation. Thus k1 plays the role of controlling
whether or not the soil will reach the shakedown state.
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Figure 7. Influence of parameter k1 on the cyclic stress-strain response (a) and on the permanent soil
strain under cyclic loading (b).

Similarly, Figure 8 shows the influence of k2 on soil behaviour: at a CSR slightly higher
than the shakedown load, the soil will not reach a shakedown state and will continuously
produce plastic strains at each load cycle. Parameter k2 is therefore used to control the
evolution of the cyclic stress–strain behaviour under the above conditions. With smaller
k2 values, the closed hysteresis curve moves forward faster, as shown in Figure 8a. As
a result, k f will decrease more slowly (see Figure 4 and Equation (24)) and so will the
plastic modulus, which results in a slower decrease in the stiffness degradation and less
strain recovery during the unloading stage. This is also evident in Figure 8b, where the
development of accumulated strain increases more quickly with a smaller k2.
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Figure 8. Influence of parameter k2 on the cyclic stress-strain relationship (a) and on the permanent
strain under cyclic loading (b).

Figure 9 shows the influence of the newly introduced damage factor on the cyclic
stress–strain behaviour. It can be seen that, when there is no damage factor (t = 0), the
accumulation strain increases linearly with load cycles.

With the introduction of the damage factor d, and of h f , the capability of the model is
improved, and it is made capable of simulating the hysteresis curve well for different cyclic
behaviours. Unlike other bounding surface constitutive models [23,32], which treat the
initial, unloading, and reloading phases separately—which results in a different form of h f
for each loading stage—the h f proposed here has a uniform equation (see Equation (23))
for the entire cyclic process.
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Figure 9. Influence of damage factor d. (a) with damage factor, (b) without damage factor, (c) influence
of damage factor on the permanent soil strain under cyclic loading.

2.5. Model Parameters

Two sets of constitutive parameters are employed for the updated bounding surface
model proposed here: the isotropic parameters (κ, µ, λ, Mcs, p̄c, r, n) and the cyclic plasticity
(k0, k1, k2, t) parameters.

In detail, and along with the considerations for the newly introduced cyclic plasticity
parameters given in the previous section:

1. The isotropic bounding surface parameters κ, µ, λ, Mcs and p̄c are the traditional
parameters used in the MCC model. The elastic swelling slope, κ, and Poisson’s ratio,
µ, used to model the elastic behaviour, can be obtained from isotropic compression
tests. λ is the slope of the normal consolidation line, in the e− lnp′ plane, and Mcs is
the critical stress ratio. They can be calibrated by drained or undrained triaxial tests. p̄c
is the preconsolidation pressure, which defines the initial size of the bounding surface.

2. n and r define the shape of the bounding surface. They can be better obtained by
adjusting the bounding surface to the response of the material under undrained
conditions during the initial loading.

3. t is the deformation type parameter used to distinguish between cyclic shakedown
(t < 0), cyclic failure (t > 0) and cyclic stable (t = 0) characters.
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4. k0 defines the initial value of the new hardening parameter k f . It affects the nonlinear
behaviour during the cyclic loading; for bigger values, the soil exhibits a more elastic
trend at unloading.

5. k1 and k2 control the cyclic shakedown and the cyclic stable behaviours of soil during
load cycles. More specifically the value of k1, ranging from 0 to 1, decides whether or
not cyclic shakedown will occur; the larger k1 is, the greater the chance that the soil
will reach the shakedown state. k2, on the other hand, defines the degradation rate
and normally ranges from 0 to 100.

3. Numerical Implementation of the Constitutive Model

The proposed constitutive model is implemented within the user-defined material
subroutine UMAT, in ABAQUS [42] enviroment. The main purpose of UMAT is, for each Gauss
point, to return the continuum tangent operator (DDSDDE) and update the stresses (STRESS)
and solution-dependent state variables (STATEV, such as the projection center (op, oq) and
damage factor d), based on the incremental strain given by ABAQUS.

3.1. Two-Step Euler Integration Method

With the introduction of the distance between the true stress point and the image
stress point, it is difficult to analytically derive the continuum tangent operator, as well as
the second derivatives of the yield and plastic potential surfaces of the bounding surface
model. In this paper, the explicit two-step method is used to integrate the proposed
constitutive model.

For a given incremental strain ∆ε, we have

∆σ(1) = Dep
n : ∆ε; σ

(1)
n+1 = σn + ∆σ(1) = σn + Dep

n : ∆ε (26)

where σ
(1)
n+1 is the first estimate of σn+1, based on the given incremental strain, and Dep

n
denotes the continuum tangent operator at the beginning of the current increment that
is obtained via Equation (5) . Based on the first estimation σ

(1)
n+1, we can evaluate the

continuum tangent operator Dep
n+1 at the end of the current step and give

∆σ(2) = 1
2

[
Dep

n + Dep
n+1

]
: ∆ε;

σ
(2)
n+1 = σn + ∆σ(2) = σn +

1
2

[
Dep

n + Dep
n+1

]
: ∆ε

(27)

where ∆σ(2) is the second estimation of the incremental stress using the trapezoidal rule.

Then, the error E between the two stress approximations can be expressed as:

E =

√(
σ
(2)
n+1 − σ

(1)
n+1

)
:
(

σ
(2)
n+1 − σ

(1)
n+1

)
√

σ
(2)
n+1 : σ

(2)
n+1

(28)

When E meets a specified tolerance, the stress state and state variables can be updated
and the next step can be taken.

3.2. Stress Integration Scheme with Automatic Error Control

The accuracy of the explicit integration scheme is mainly affected by the size of the
strain increment ∆ε. With a small increment size, the explicit integration scheme can
achieve higher precision, but loses efficiency.

In order to increase the efficiency of the explicit method, Sloan [43] proposed improv-
ing the two-step integration method by subdividing the original incremental size with a
pseudo time sub-increment ∆Ti(0 < ∆Ti ≤ 1).
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The explicit two-step method, with an automated error check, can thus be described
mainly as follows (see details in Algorithm 1):

1. The incremental strain ∆ε is divided, by the pseudo time sub-increment ∆Ti, into
several sub-increments ∆εi = ∆Ti∆ε.

2. Given ∆εi, the stress is evaluated according to the Equations (26) and (27) and the
error E, between the two stress estimates, is calculated using Equation (28). If the
error meets a specified tolerance, the stress state and state variables are updated, and
it is possible to move on to the next sub-increment. The size of the next sub-increment
is then enlarged by a factor.

3. If the error is larger than the tolerance, the current sub-increment result is dropped.
The pseudo time ∆Ti has to be decreased to meet the tolerance; its size is adjusted
automatically as long as the error control criterion is satisfied.

Algorithm 1: Two-Step Explicit Integration Method with Error Control.
Init: σn, ∆ε, T = 0, ∆Ti = 1, STOL
while N ≤ 10000 do

if T ≤ 1 then
∆εi = ∆Ti∆ε;

σ
(1)
n+1 = σn + Dep

n : ∆ε;

∆σ(2) = 1
2

[
Dep

n + Dep
n+1

]
: ∆ε;

σ
(2)
n+1 = σn + ∆σ(2);

δσ = σ
(2)
n+1 − σ

(1)
n+1;

E = ||δσ||/||σ(2)
n+1||;

if E ≥ STOL then
β = max

{
0.8 2
√

STOL/E, 0.1
}

;
∆Ti = max{β∆Ti, 0.001};

else
β = min

{
0.8 2
√

STOL/E, 1.1
}

;
∆Ti+1 = β∆Ti;
T = T + ∆Ti+1;

end
else

∆Ti+1 = T − 1
end
N = N + 1

end

4. Experimental–Numerical Comparisons

In this section, the proposed constitutive model implemented in ABAQUS is validated
against several undrained cyclic triaxial experiments taken from the literature. Specifically,
through the tests conducted on New-field, soft marine and WenZhou clays, the cyclic
shakedown, failure and stable behaviours are investigated.

Numerical analyses are performed on a unit cubic element, properly restrained and
loaded as described in the following. As boundary conditions, the bottom surface of the
cube is fixed in the vertical direction while the two lateral surfaces, which share the origin
node with the bottom one, are fixed in the other two directions, respectively. As for the
initial and loading conditions, on the other hand, in the first stage, a confinement pressure
is applied to the other three unrestrained faces of the cube and, subsequently, a vertical
pressure is applied to the top.

The model parameters for the three tests are listed in Table 1.
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Table 1. Model parameters values.

Parameters
Newfield Clay Soft Clay WenZhou Clay

Sangrey et al. [44] Lei et al. [45] Cai et al. [46]

µ 0.17 0.3 0.3
λ 0.051 0.065 0.055
κ 0.011 0.035 0.025

Mcs 0.83 0.57 0.85
r 1.6 1.17 1.43
n 1.8 2 2
t −1 1 -

kun
0 5 19 20.5

kre
0 7 24 26

kun
1 0.13 - 0.355

kre
1 0.4 0.7 -

kun
2 20 - 18

kre
2 20 15 -

Note: The superscripts “re” and “un” of k0, k1 and k2 indicate reloading and unloading stage, respectively;
‘-’ stands for null value.

4.1. Cyclic Shakedown Behaviour

Sangrey et al. [44] performed undrained trixial tests to study the cyclic behaviour
of Newfield clay. The specimens had an initial void ratio e0 = 0.62; they were firstly
consolidated with p̄′c = 393 kPa and then loaded by a cyclic load of 180 kPa.

From Figure 10, it can be observed that the closed hysteresis curve of soil under cyclic
loading is correctly captured, even if a slightly softer behaviour is modelled; in particular,
the phenomenon of shakedown is properly represented after the same number of cyclic
loads, at which point the plastic strain level remains constant. The behaviour of the pore
pressure (Figure 11) is captured, with a rapid increase during the first three cycles and a
tendency to remain stable thereafter. This trend of stabilization can be also observed in the
predicted effective stress path of Figure 12.

Therefore, it can be concluded that the proposed model can successfully model the
shakedown behaviour when the cyclic load is below the shakedown threshold value.
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Figure 10. Experimental and numerical comparison of Newfield clay cyclic stress–strain behaviour.
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Figure 11. Experimental and numerical comparison of Newfield clay pore pressure–strain evolution
under cyclic loading.
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Figure 12. Predicted effective stress path under undrained cyclic loading.

4.2. Cyclic Failure Behaviour

Lei et al. [45] performed a series of cyclic triaxial tests on an ultrasoft type of clay from
Binhai, China. The initial conditions of the experiment were p̄c = 50 kPa and e0 = 1.297.

The deformation behaviour of this type of soil is different from others. When the
CSR is above a certain threshold value, the soft soil will produce plastic deformation at an
increasing rate of each loading cycle, and the soil will tend to fail quickly. Strain at failure
is between 0.99 and 1.6%.

Figure 13a illustrates the experimental–numerical comparison for the axial strain
ε1. In detail, it can be appreciated how ε1 increases rapidly after 80 loading cycles; this
is also caught by the proposed model, which successfully reproduces the cyclic failure
trend. Figure 13b, on the other hand, shows the experimental and numerical results for
the pore pressure. It can be appreciated that, in experimentation, this pressure increases
rapidly during the first 100 loading cycles and then tends to remain stable. Although what
is obtained numerically increases a little bit faster than the experimental data, the trend
and the final pore pressure value are realized. This discrepancy is expected because in
experiments, not enough time is given for the pore pressure in the soil to balance during
the initial phase of cyclic loading. In this case, the accumulation property of pore pressure,
especially for long term cycles, is hard to capture and has not been thoroughly studied in
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the current literature. This difference is also observed in Li’s [47] work on modelling the
cyclic behaviour of marine soil.
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Figure 13. Experimental–numerical comparison of (a) axial strain and (b) pore pressure evolutions
for soft marine clay.

The cyclic failure behaviour can be evaluated by the degradation index [48] defined
by the ratio of secant moduli of the first loading cycle, GS1, and the Nth, GSN :

δ =
GSN
GS1

=

σd
εcN
σd
εc1

=
εc1

εcN
(29)

where σd is the axial cyclic dynamic stress magnitude and εC1 and εCN are the cyclic axial
strains at cycles 1 and N, respectively.

From Figure 14, where the numerical–experimental comparison of the degradation
index is depicted, a faster decrease in the index during the first 30 cyclic loads can be
appreciated; soil stiffness then progressively decreases until it reaches a level that leads to
failure. The obtained numerical results match well with the experimentally observed trend;
therefore, the proposed damage parameter can efficiently simulate cyclic degradation.
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Figure 14. Experimental-numerical comparison of the degradation index evolution for soft marine clay.
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4.3. Cyclic Stable Behaviour

Cai et al. [46] performed long-term cyclic triaxial tests on remoulded saturated clay. All
the soil samples were firstly consolidated to the same confining pressure p̄c = 100 kPa; then,
a series of cyclic loads, with a different CSR from 0.303 to 0.157, were applied vertically to
each specimen. Here, experimental data for CSR = 0.208 are chosen for the model validation.
The void ratio e0 is 1.19

Figure 15a illustrates the evolution of the axial permanent strain along with the number
of loading cycles. Here, it can be appreciated how the strain increases rapidly during the
first 1000 cycles and then, for the subsequent cycles, increases at a very slow rate. The
soil exhibits a cyclic stable behaviour and the numerical model can simulate it pretty well.
Figure 15b, on the other hand, shows the evolution of the pore pressure under long-term
cyclic loading. It can be observed that the pore pressure also increases sharply during the
first 1000 cycles, since the permanent strain mainly accumulates during the beginning of
the cyclic loading and the effective stress reduced faster; even though the numerical results
of pore pressure increase faster than those from the experiment, the final pore pressure can
be well predicted.
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Figure 15. Experimental-numerical comparison of (a) axial strain and (b) pore pressure evolutions
for WenZhou clay.

5. Conclusions

In the present work a constitutive model based on the bounding surface and stress
distance concepts has been developed to properly simulate some important features of
cyclic soil behaviour. These include the closed hysteresis curve, degradation and most
importantly the three types of cyclic behaviour under various CSRs, i.e., shakedown, stable
and failure.

Unlike other bounding surface models, the proposed model adopts a new uniform
interpolation function of the plastic modulus for the whole loading process. In addition a
new damage factor, along with the deformation type parameter, is incorporated into the
hardening modulus, which allows it to vary flexibly with the accumulation of plastic shear
strain and thus achieve different cyclic deformation behaviours. The model also adopts
the concept of a “vanishing elastic domain”; hence, it does not require complex kinematic
hardening rules, and it only needs to record the stress reversal points, thus enabling the
modelling of soil hysteretic cycles.

Comparisons between the obtained numerical results and the experimental ones from
literature have been conducted, validating the proposed model and confirming its ability
to correctly capture and reproduce key aspects of the cyclic behaviour of clays.

Future work will be devoted to extending the model to account for anisotropy, as well
as gaining a deeper understanding of the fluid–mechanical interaction.



Materials 2022, 15, 7609 19 of 21

Author Contributions: Conceptualization, J.W., G.X. and V.S.; Methodology, J.W., G.X. and N.D.M.;
Software, J.W., G.X. and N.D.M.; Supervision, G.X. and V.S.; Validation, J.W. and N.D.M.; Writing—
original draft, J.W. and G.X. All authors have read and agreed to the published version of the manuscript.

Funding: Financial support from the Italian Ministry of University and Research(MUR), in the
framework of PRIN2017 Projects #20177TTP3S #2017HFPKZY and PRIN2020 Project #20209F3A37, is
gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

De, Dep Elasticity tensor and elasto-plastic tangent operator.
E Relative error norm of two estimated stresses.
e, ecs Void ratio and critical void ratio.
F, g Bounding surface and plastic potential surface.
GS1, GSN Secant moduli at loading cycles 1 and N.
hb, h f Plastic modulus at image stress and interpolation plastic modulus.
h Plastic modulus at true stress.
k0, k1, k2 Cyclic plasticity parameters.
K, G Bulk modulus and shear modulus.
k f , d Hardening parameter and damage parameter.
L Loading index.
Mcs Critical stress ratio.
mp Length of the normal vector to plastic potential.
n, r Bounding surface shape parameters.
ñ, m Normal vectors to the bounding surface and plastic potential.
(op, oq) Projection centre coordinates.
p′c, p̄c Preconsolidation pressure and hardening internal variable of bounding surface.
p̄′, q̄ Image stress on the bounding surface.
p′, q Mean effective stress and deviatoric stress.
t Parameter used to distinguish cyclic shakedown and failure.
T Pseudo time.
v Specific volume.
β Scaling factor of sub-increment size.
γ Distance ratio.
Γo Intersection point of the CSL and the void ratio axis at p′ = 1.
εv, εs Volumetric strain and shear strain
ε

p
d, ε

p
v Plastic deviatoric strain and plastic volumetric strain.

εc1, εcn Cyclic axial strains at cycles 1 and N.
ε1, ε3 Axial strain and lateral strain.
εεε, εεεe, εεεp Total strain tensor, elastic strain tensor and plastic strain tensor.
κ Elastic slope in e− lnp′ space.
λ Slope of the normal consolidation line.
Λ Plastic multiplier.
µ Poisson’s ratio.
ρ̄ Euclidean distance between image stress and projection centre.
ρ Euclidean distance between image stress and true stress.
σ′1, σ′3 Axial and lateral effective stresses.
σd Magnitude of axial cyclic stress.
σσσ′, σ̄̄σ̄σ′ Effective stress tensor and the corresponding stress on bounding surface.
φ Drained friction angle.
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