
UNIVERSITY OF PADOVA

DEPARTMENT OF INFORMATION ENGINEERING
Ph.D. Course on Information Engineering

Curriculum: Bioengineering

Series: XXXV

Prediction of blood glucose concentrations and

hypoglycemic events in Type 1 Diabetes by linear

and nonlinear algorithms

Course director:
Andrea Neviani

Advisor:
Andrea Facchinetti

Co-advisor:
Simone Del Favero

Ph.D. candidate:
Francesco Prendin

A thesis submitted

for the degree of

PhilosophiæDoctor (Ph.D.)





Abstract

Type 1 diabetes (T1D) is a metabolic disease which impairs insulin produc-
tion, and it results in altered glucose homeostasis. As a consequence, subjects
must frequently self-administer exogenous insulin, consume corrective/fast-
acting carbohydrates, follow dietary measures and exercise routines to main-
tain glycemia into a desired range (usually [70-180] mg/dL) along the day.
Indeed, limiting blood glucose (BG) excursions reduces the risk of mortal-
ity, as well as, the long/short-term consequences of hyperglycemia (i.e., BG
> 180 mg/dL) and hypoglycemia (i.e., BG<70 mg/dL). Minimally invasive
continuous glucose monitoring (CGM) sensors have become a widely used
tool by T1D individuals to keep track, and eventually correct, their BG lev-
els. These devices provide frequent BG measurements (commonly one every
5 minutes) for several days, and embed visual and acoustic alerts when the
hypo-/hyperglycemic thresholds are crossed, thus helping patients in taking
corrective actions like hypotreatments and corrective insulin boluses. How-
ever, timely preventive alerts coupled with targeted corrective strategies would
be even more helpful to avoid or mitigate the onset of impending, adverse
events. For this reason, the real-time forecasting of BG levels has a key role
in the development of i) advanced decision support systems (DSS), which are
software for helping patients in the decision-making process, and ii) artificial
pancreas systems (APS), which are devices for automatizing insulin delivery.
The large plethora of data provided by CGM devices (but also insulin pumps,
wearable devices, electronic diaries and dedicated mobile applications), cou-
pled with the technological advancements in artificial intelligence, have driven
the diabetes technology community to intensively focus on developing glu-
cose predictive algorithms, exploiting methodologies already employed in the
fields of time series forecasting, system identification, machine and deep learn-
ing. Among the possible approaches for glucose prediction, two main cate-
gories can be identified: algorithms fed only by the past history of the CGM
signal or fed by CGM data plus additional information such as insulin, carbo-
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hydrates or physical exercise. One main open issue is that none of the literature
studies have systematically investigated how and/or how much different in-
put information as well as complex algorithms contribute to improve glucose
prediction on datasets recorded in daily-life conditions.

To address this gap, this PhD thesis presents the development and applica-
tion of several linear and nonlinear algorithms for the forecasting of BG levels
and hypoglycemic events, and investigates how and how much different input
information and model complexity play a role in the prediction.

The thesis is organized as follows: a brief introduction on T1D complica-
tions, management, technologies and a picture of the main state-of-art predic-
tive algorithms is presented in Chapter 1.

Chapter 2 proposes a head-to-head comparison between linear and non-
linear state-of-art models employing only CGM data as input. In such a sce-
nario, we demonstrate that the best performance is achieved by individualized
models, particularly by Autoregressive Integrated Moving Average (ARIMA)
models and feed forward neural networks (NN), evidencing the key role of
model parameter individualization. However, one of the main limitations of
all the CGM-based predictive algorithms is that any metabolic disturbance,
e.g., a meal, would deteriorate the accuracy of the predicted BG concentrations.
Therefore, the use of additional sources of information should be considered
to improve the accuracy of prediction algorithms.

Thus, in Chapter 3 we investigate how much adding information on meal
time and seasonality to CGM data can improve prediction performance. This is
achieved by exploiting a novel methodology based on clustering and seasonal
stochastic local models. The novel approach is able to outperform CGM-only
algorithms and to achieve similar performance to other linear and nonlinear
methods, but fed with more information (i.e., CGM, meal and insulin data).
However, despite achieving a satisfactory performance in forecasting the fu-
ture value of BG concentration all over the glycemic range, the prediction of
hypoglycemic events, which involves the comparison of predicted versus mea-
sured BG values and requires the creation of a classification-like framework, is
still a task that poses a challenge to all the algorithms.

For this reason, in Chapter 4 we focus on improving hypoglycemia forecast-
ing by employing Autoregressive Integrated Moving-Average with eXogenous
input (ARIMAX) models identified using a glucose specific metric, which al-
lows to better weight hypoglycemia, and equipped with a prediction-funnel
alarm strategy. Results show that this approach significantly improve the pre-
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diction of impending hypoglycemic events.
So far, we mainly focused on black-box approaches, Chapter 5 investigates

whether the use of a physiological white box model identified from easily ac-
cessible patient recorded data (i.e., CGM, meal and insulin) and embedded
within a particle filter can improve the predictive performance. Unfortunately,
in this case the results do not support the hypothesis since advanced nonpara-
metric and deep learning black-box methods turned out to significantly out-
perform the proposed physiological model.

Finally, we tackle one of the key problems when using black-box machine-
and deep-learning approaches: the interpretability of the outcome. Whilst ma-
chine and deep-learning models can grant accurate performance, their results
can be difficult for users to explain, thus limiting their usability in real-life
application. In addition, when two predictive models present a similar perfor-
mance, the model selected to be used in practice should be the one providing
the easiest and most straightforward interpretation. Chapter 6 addresses this
issue by: i) introducing a novel tool able to describe the output of each models’
prediction and ii) developing a case-of-study in which interpretability should
be preferred over prediction accuracy in the choice of the model.

Chapter 7 provides a description of the main findings, and a discussion on
possible applications and rooms for improvement.

v





Sommario

Il diabete di tipo 1 (T1D) è una malattia metabolica caratterizzata da una man-
canza di produzione di insulina che provoca un’alterazione dei livelli di gluco-
sio nel sangue (BG). Di conseguenza, per mantenere la glicemia in un adeguato
range fisiologico (generalmente [70-180] mg/dL) durante la giornata, i soggetti
diabetici devono somministrarsi insulina esogena, assumere carboidrati ad
azione rapida, seguire una dieta equilibrata ed eseguire attività fisica. Infatti,
limitare le escursioni della glicemia consente di ridurre il rischio di mortal-
ità e le conseguenze, a lungo e breve termine, causate da eventi iperglicemici
(BG > 180 mg/dL) e ipoglicemici (BG < 70 mg/dL). I sensori minimamente
invasivi per il monitoraggio in continua della glicemia (CGM) sono ampia-
mente utilizzati dai soggetti diabetici per monitorare, ed eventualmente, cor-
reggere i loro livelli glicemici. Generalmente, questi dispositivi forniscono una
misurazione della glicemia ogni 5 minuti, per diversi giorni, e integrano al-
larmi acustici o visivi quando i livelli di glucosio nel sangue oltrepassano le
soglie di ipo/iperglicemia. Questi allarmi consentono ai pazienti di prendere
delle azioni correttive, come assunzioni di carboidrati, in caso di ipoglicemia,
o boli insulinici, in caso di iperglicemia. Tuttavia, l’utilizzo di allarmi preven-
tivi, generati con un adeguato anticipo temporale, assieme all’uso di speci-
fiche strategie correttive consentirebbe di evitare, o almeno mitigare, il ver-
ificarsi di futuri eventi critici. Per questo motivo, la predizione in real-time
dei livelli glicemici svolge un ruolo chiave nello sviluppo di: i) sistemi avan-
zati per il supporto alla decisione (DSS), i.e., software che forniscono assis-
tenza ai pazienti durante il processo terapeutico-decisionale, e ii) sistemi di
pancreas artificiale (APS), i.e., dispositivi che automatizzano l’infusione di in-
sulina. La grande disponibilità di dati fornita dai dispositivi CGM (così come
dalle pompe insuliniche, dai dispositivi indossabili, dai diari elettronici e da
app dedicate), assieme all’avanzamento tecnologico nel campo dell’intelligenza
artificiale, ha guidato la comunità tecnologica del diabete a concentrarsi inten-
sivamente sullo sviluppo di algoritmi predittivi sfruttando tecniche già utiliz-
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zate nei campi della predizione delle serie temporali, dell’identificazione dei
sistemi, machine e deep learning. In generale, fra tutti i possibili approcci pred-
ittivi, possiamo distinguere due categorie principali: algoritmi che utilizzano
solo la storia passata del segnale CGM o algoritmi che utilizzano, assieme ai
dati CGM, anche altre informazioni aggiuntive come insulina, carboidrati o
attività fisica. Una questione aperta, che nessuno degli studi di letteratura
ha sistematicamente investigato, è come e/o quanto i diversi input e gli al-
goritmi, più o meno complessi, contribuiscono a migliorare la predizione dei
livelli glicemici, sfruttando dati acquisiti in condizioni di vita quotidiana.

Per affrontare tale gap, questo lavoro di tesi presenta lo sviluppo e appli-
cazione di diversi algoritmi, lineari e non lineari, per la predizione dei livelli
glicemici e di eventi ipoglicemici, inoltre valuta il ruolo che diversi input, e la
complessità del modello in esame, svolgono nella predizione.

La presente tesi è organizzata come segue: una breve introduzione sulle
complicanze, la gestione, le tecnologie del diabete di tipo 1 e un quadro gen-
erale degli algoritmi predittivi presenti in letteratura vengono riportati nel
Capitolo 1.

Il Capitolo 2 propone un confronto esaustivi tra tecniche lineari e nonlin-
eari allo stato dell’arte, che utilizzano solo dati CGM come input. In questo
scenario, le migliori performance sono ottenute da modelli individualizzati, in
particolare da modelli Autoregressive Integrated Moving Average (ARIMA) e da
feed forward neural network (NN), evidenziando il ruolo chiave della personal-
izzazione dei parametri del modello. Tuttavia, una delle limitazioni principali
di tutti gli algoritmi basati su dati CGM è che qualsiasi disturbo metabolico,
ad esempio un pasto, potrebbe deteriorare l’accuratezza della predizione dei
livelli glicemici. Quindi, l’utilizzo di informazioni aggiuntive dovrebbe essere
considerato per migliorare l’accuratezza degli algoritmi predittivi.

Perciò, nel Capitolo 3 si valuta quanto le informazioni relative al tempo
del pasto e alla seasonality, in aggiunta ai dati CGM, contribuiscono a miglio-
rare le performance di predizione. Questo è possibile grazie all’utilizzo di una
nuova metodologia basata su clustering e su modelli stocastici locali. Il nuovo
approccio è in grado di fornire delle performance migliori rispetto agli algo-
ritmi che utilizzano solo dati CGM e risultati comparabili ad altri metodi (lin-
eari e non lineari) che utilizzano una maggiore quantità di informazione in
input (CGM, pasti e insulina). Tuttavia, nonstante le performance ottenute
relative alla predizione dei livelli glicemici siano soddisfacenti lungo tutto il
range glicemico, la predizione di eventi ipoglicemici, che prevede il confronto
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tra il glucosio predetto vs misurato e la creazione di un framework di classifi-
cazione, resta un obiettivo che pone una prova difficile a tutti gli algoritmi.

Per questo motivo, nel Capitolo 4 ci siamo focalizzati sul migliorare la
predizione delle ipoglicemie utilizzando modelli Autoregressive Integrated Mov-
ing Average eXogenous input (ARIMAX), identificati con una metrica specifica
per la glicemia, che consente di pesare in maniera migliore le ipoglicemie, e for-
niti di una nuova strategia di allarme basata sul funnel di predizione. Questo
approccio migliora significativamente la predizione degli eventi ipoglicemici.

Fin qui sono stati analizzati approcci black-box, per questo il Capitolo 5 stu-
dia se l’utilizzo di un modello fisiologico white-box fisiologico, identificato uti-
lizzando dati facilmente accessibili del paziente (CGM, pasti e insulina), e inte-
grato in un particle filter può migliorare le performance predittive. Sfortunate-
mente, in questo caso, i risultati non supportano l’ipotesi dato che sia i modelli
non parametrici che i metodi di deep learning testati risultano migliorare sig-
nificativamente le performance fornite dal modello fisiologico proposto.

Infine, viene affrontato uno dei problemi principali legato all’utilizzo di ap-
procci black-box di machine e deep learning: l’interpretabilità dell’outcome. In-
fatti, mentre questi modelli sono in grado di fornire delle buone performance,
i loro risultati possono essere difficilmente interpretabili per gli utenti, limi-
tandone così la loro utilizzabilità nelle applicazioni reali. Inoltre, quando due
modelli predittivi presentano una performance simile, il modello da utilizzare
in pratica dovrebbe essere quello più semplice e con la più diretta intepre-
tazione. Il Capitolo 6, affronta questa tematica: i) introducendo un nuovo stru-
mento per descrivere l’output di ogni predizione di modello e ii) proponendo
un caso di studio in cui, per la scelta del modello, l’interpretabilità dovrebbe
essere preferita rispetto ai risultati di predizione.

Il Capitolo 7 fornisce una descrizione dei risultati principali e una discus-
sione su possibili applicazioni e margini di miglioramento.
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(green dot) is below the hypoglycemic threshold. . . . . . . . . . 74

4.3 Recall vs FP/day analysis: each curve is obtained using differ-
ent values of Npred, each point is obtained for different values of
m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Subcutaneous insulin absorption subsystem scheme. . . . . . . 88

5.2 Oral glucose absorption subsystem scheme. . . . . . . . . . . . . 89

5.3 Glucose-insulin kinetics subsystem scheme. . . . . . . . . . . . . 90

5.4 Schematic representation of BG forecasting as a sequence pre-
diction task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Representative subject (ID:570) of the OhioT1DM dataset. The
upper panel shows CGM data (grey dashed line) and the 30-min
ahead prediction obtained by: PHY (blue line), NP approach
(yellow line) and LSTM (red line). Middle panel shows the CHO
content of the meal, expressed as g/min. Bottom panel shows
injected insulin boluses, expressed as U/min . . . . . . . . . . . 101

xx



5.6 Representative subject (ID:552) of the OhioT1DM dataset. The
upper panel shows CGM data (grey dashed line) and the 30-min
ahead prediction obtained by: PHY (blue line), NP approach
(yellow line) and LSTM (red line). Middle panel shows the CHO
content of the meal, expressed as g/min. Bottom panel shows
injected insulin boluses, expressed as U/min . . . . . . . . . . . 103

6.1 Schematic overview of np-LSTM (a) and p-LSTM (b). The only
difference between the two structures is the preprocessing layer
in (b), which is used to enforce a physiological interpretation in
the LSTM from insulin and CHO. . . . . . . . . . . . . . . . . . . 113

6.2 Summary plots of np-LSTM and p-LSTM for different PH. . . . 118
6.3 p-LSTM raises two corrective boluses that reduce the time spent

in hyperglycemia, while np-LSTM does not suggest any correc-
tive action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 Results achieved by the main methodologies explored in this
thesis on the OhioT1DM dataset. Performance are expressed as
median RMSE (dashed lines) and [25th-75th percentiles] (shaded
areas) for different prediction horizon. . . . . . . . . . . . . . . 126

B.1 Diagram of the Residual Block . . . . . . . . . . . . . . . . . . . 139

xxi





List of Tables

1.1 A review of different contributions dealing with BG forecast-
ing. Notation: RMSE (root mean square error), AR (autoregres-
sive), ARMA (autoregressive moving average), ARIMA (autore-
gressive integrated moving average), KRLS-ALD (approximate
linear dependency kernel recursive least squares), VARX (vec-
tor autoregressive integrated with exogenous input), NP (non-
parametric), NN (feed forward neural network), LSTM (long-
short term memory neural network), PHY (physiological model),
SVR (support vector regression), regRF (regression random for-
est), CNN (convolutional neural network); + indicates data are
filtered; N.A. not available. . . . . . . . . . . . . . . . . . . . . . 13

2.1 Nonlinear models hyperparameters . . . . . . . . . . . . . . . . 26
2.2 Performance of linear algorithms on a representative dataset par-

titioning (30-min PH). The asterisks indicate p-values<0.05 . . . 36
2.3 Performance of nonlinear algorithms of a representative training-

test partitioning (30-min PH) . . . . . . . . . . . . . . . . . . . . 37
2.4 Performance of linear and nonlinear algorithms on 100 Monte

Carlo iterations (30-min PH) . . . . . . . . . . . . . . . . . . . . . 38

3.1 Background information for OhioT1DM dataset. Numerical val-
ues are rounded to the nearest integer. . . . . . . . . . . . . . . . 46

3.2 Background information for CTR3 dataset. Numerical values
are rounded to the nearest integer. . . . . . . . . . . . . . . . . . 47

3.3 Comparison of the performance of the C-SARIMA against indi-
vidualized ARIMA and ARIMAX model, NN and NN-X on the
OhioT1DM dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Comparison of the performance of the C-SARIMA against indi-
vidualized ARIMA and ARIMAX model, NN and NN-X on the
CTR3 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xxiii



3.5 Table Comparison of performance between C-SARIMA vs. in-
dividualized ARIMAX + mealtime and NN + mealtime model
fed by CGM and meal time on OhioT1DM data set. . . . . . . . 56

3.6 Table Comparison of performance between C-SARIMA vs. in-
dividualized ARIMAX + mealtime and NN + mealtime model
fed by CGM and meal time on CTR3 dataset. . . . . . . . . . . . 57

3.7 post-prandial hypoglycemia performance for OhioT1DM dataset
(24 hypoglycemic episodes), PH = 30 minutes . . . . . . . . . . . 61

3.8 post-prandial hypoglycemia performance for CTR3 dataset (37
hypoglycemic episodes), PH = 30 minutes . . . . . . . . . . . . . 61

4.1 Comparison of hypoglycemia prediction performance. The in-
dividualized ARIMAX models, identified using different cost
functions, are exploited both by applying the single-PH alarm
strategy for different PH and the prediction-funnel. Results are
reported in terms of precision (P), recall (R), F1-score (F1), False
Positive per day (FP/day) and Time Gain (TG), reported as mean
(standard deviation). . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 A Priori Information on Model Parameters . . . . . . . . . . . . 93
5.2 Comparison between performance metrics (median [25t̂h-75t̂h])

obtained using the proposed physiological model (PHY), LSTM,
GRU, TCN and NP models in the OhioT1DM dataset for PH =
30, 45, 60 min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Mean (± standard deviation) of MAE and RMSE, computed
over 10 different initialization and evaluated on the test set for
np-LSTM and p-LSTM with PH of 30 and 60 minutes. . . . . . . 116

6.2 Results obtained without decision support (No DS) and with
two CIB algorithms: one based on np-LSTM (np-LSTM DSS),
the other based p-LSTM (p-LSTM DSS). Results are reported for
a PH of 30 and 60 minutes. The results refer to the data windows
satisfying the requirements described in Section 2.3, which are
simulated using ReplayBG to perform this retrospective analy-
sis. Results are reported as median [25th-75th percentiles] com-
puted over these time windows. . . . . . . . . . . . . . . . . . . 120

xxiv



Chapter 1

Type 1 diabetes: blood glucose
forecasting and thesis aim

Type 1 diabetes (T1D) is a chronic disease characterized by a lack of insulin
production due to the autoimmune destruction of the pancreatic β-cells, re-
sulting in blood glucose (BG) levels that exceed the normal glucose range,
usually defined between 70 and 180 mg/dL. As a consequence, individuals
affected by T1D frequently need to counteract with various corrective mea-
sures, such as insulin injections and fast acting carbohydrates to keep blood
glucose levels within a safe range. In the recent years, the use of continuous
glucose monitoring (CGM) devices, insulin pumps and dedicated mobile ap-
plications has significantly improved T1D management. However, knowing
in advance when BG is approaching critical levels has the potential to further
revolutionize diabetes care, thus promoting patient well-being. This chapter
describes the main complications related to T1D, the widely used technologies
and the main literature contributions that has addressed the challenging task
of BG forecasting.

1.1 Type 1 diabetes (T1D): description of the dis-

ease and its therapy

Type 1 diabetes (T1D) is a life-long disease that cannot be prevented or cured
and it is caused by an autoimmune reaction in which the body’s immune sys-
tem attacks the pancreatic β-cells responsible for the endogenous insulin pro-
duction [2, 3]. In healthy individuals, insulin has the crucial role of accurately
regulating blood glucose (BG) homeostasis by promoting the transport of glu-
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cose from the bloodstream to muscles, fat and liver cells. So, the absence of
endogenous insulin in patient affected by T1D results in elevated BG concen-
trations. The first line treatment to lower BG levels consists in multiple daily
injections of exogenous insulin. Unfortunately, excessive insulin dosing could
lead patients to experience very low BG concentrations, which is dangerous
even in the short-term since it could cause fainting, light-headiness, coma and
even death. So, to keep BG within the desired physiological range of 70-180
mg/dL (named normoglycemia/euglycemia), T1D patients face a variety of
burdensome tasks, such as: frequent monitoring of BG concentrations, self-
administration of corrective insulin boluses, estimation of the correct amount
of carbohydrate (CHO) at each meal, intake of fast-acting corrective CHO, etc.
As a matter of fact, maintaining BG within this narrow physiological range,
allows reducing the risk of death and the long- and short-term consequences
of hyperglycemia (i.e., BG concentrations greater than 180 mg/dL) and hypo-
glycemia (i.e., BG concentrations lower than 70 mg/dL).

Hyperglycemia

Hyperglycemic episodes occur multiple times a day when glucose remains in
the bloodstream instead of being used as energy. Among the main contribut-
ing factors there are: food and physical activity choices (aerobic vs anaerobic),
illness, drugs, skipping or not injecting the correct insulin dose. Furthermore,
several hormones that are released by the body in the early morning hours,
can cause high blood sugar. This is known as the dawn phenomenon [4]. If hy-
perglycemia is not treated it can develop into ketoacidosis, where toxic acids
build up in the blood. This condition can lead to long-term complications like
neuropathy, retinopathy, kidney and micro-/macrovascular heart diseases. To
lower BG, prolonged hyperglycemic events [5] can be treated by injecting ex-
ogenous insulin boluses which take into account the current BG level, the CHO
content of the meal, body weight (BW) and other parameters set by physician,
such as carbohydrate-to-insulin (CR) [6] and correction factor (CF) [7] which
describe how many grams of CHO are covered by a unit of insulin and how
much BG is lowered by each unit of insulin, respectively.

Hypoglycemia

Depending on multiple factors such as skipped meal, intensive physical exer-
cise, alcohol, or excessive insulin treatment [8], hypoglycemic events can be
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very disabling. In fact, low BG levels lead to short-term complications such as
mental confusion, nausea, headaches, blurred vision. If not promptly treated,
e.g., by having fast-acting rescue CHO, hypoglycemic events can become se-
vere and lead to acute cognitive dysfunction, seizure, coma and even death
[9]. Moreover, frequent hypoglycemic episodes cause a cascade of physio-
logic effects and may induce cardiac arrhythmias [10], contribute to sudden
cardiac death and cause ischemic cerebral damage [11]. To raise low BG levels,
the American Diabetes Association (ADA) suggests the so-called 15-15 rule [5]
which requires to have 15 grams of carbohydrate and check BG after 15 min-
utes. If it is still below 70 mg/dL, patients have to repeat these steps until BG
is back into euglycemia. It is worth underling that several studies [12, 13] in-
dicate in the hypoglycemia and the fear of its complications the main limiting
factor in achieving optimal glucose control.

1.2 Wearable devices and systems for T1D manage-

ment

Over the past 15 years, technological advances in T1D management have grown
rapidly [14]. As a matter of fact, individuals with T1D have begun to replace
traditional glucometers with continuous or flash glucose monitoring devices,
manual insulin injections with improved insulin delivery systems, and the
manual calculation of insulin dosing with dedicated mobile applications that
assist patient during the decision making process [14]. It is worth noting that
the development of new technologies in diabetes care is rapidly moving to-
ward personalized and user-independent devices that promise to further re-
duce the burden of the disease. This section reviews glucose monitoring tech-
nologies, insulin delivery systems, and applications such as artificial pancreas
and decision support systems that integrate new technologies.

1.2.1 Self-monitoring of blood glucose (SMBG)

For a long time, self-monitoring of blood glucose (SMBG) was the only sys-
tem patients could use to measure their BG concentrations [15]. Briefly, these
measurements involve placing a small drop of blood (usually collected from
fingertips) on a reagent test-strip, which is then inserted into a measurement
device. Typically, these finger-stick measurements were taken 4-5 times per
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Figure 1.1: Representative glucose monitoring data: SMBG (red dots) and CGM (blue
line). Data are extracted from the Dexcom G6 pivotal study (NC:02880267).

day: before meals, snacks and physical exercise, when a critical event was sus-
pected and before/after a treatment to improve glucose control. Whilst SMBG
provides very accurate information about BG levels [16], the limited number
of samples is not sufficient to describe all the glycemic variability that occurs
along the day.

As shown in Figure 1.1, most of the SMBG measurements (red dots) fall
within the range and only a few of them evidence critical episodes. How-
ever, the glycemic profile (blue line) shows two hypoglycemic and three hy-
perglycemic episodes that are not detected by SMBG.

The inability to provide complete information of glucose dynamics, led to
the development of new devices that allow to measure BG concentrations al-
most continuously, the so-called Continuous Glucose Monitoring systems.

1.2.2 Continuous glucose monitoring (CGM)

Today, BG monitoring is performed using continuous glucose monitoring (CGM)
sensors, which allow collecting and visualizing glucose concentrations almost
continuously (e.g., every 5 min) for several days [17, 18]. All commercial CGM
devices are labeled as minimally invasive since they require either a micronee-
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Figure 1.2: Example of CGM device. Dexcom G7 CGM System (Dexcom
Inc., San Diego, USA). On the right the CGM sensor and transmitter, and com-
patible smart devices equipped with Dexcom G7 (mobile app or smartwatch).
https://www.dexcom.com

dle or a small capsule to be inserted in the subcutis, and they represent an
important innovation in T1D management because they allow reducing the
burden of performing multiple daily invasive self-monitoring tests of BG con-
centrations. Figure 1.2 shows a novel CGM systems, which is composed by
three main elements:

• a needle-based sensor, placed in the subcutis it measures the electrical
signal which is proportional to BG concentration in the interstitial fluid;

• a transmitter, applied over the sensor aiming to send data to the receiver;

• a receiver, that converts the electrical signal into glucose concentration
and displays it on a monitor or on a smartphone equipped with a dedi-
cated app.

CGM devices are currently accepted as standard tools for glucose monitor-
ing and they have proved to improve both insulin therapy and, as a conse-
quence, T1D management [19, 20, 21]. In fact, most of these devices usually
provide alerts that warn the subject when the CGM values exceed the normal
glucose range. Also, some systems have allowed patients to customize these
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alerts by setting high and low limits for different times along the day [22]. It
is worth noting that the technological improvement has led to the regulatory
approval of CGM used alone (the so-called non-adjunctive use) [23]. In this
context, CGM is allowed to be used to make treatment decision without the
need of confirmatory fingersticks. The safety of this treatment has been proven
by computer simulations [24] and several randomized clinical trials [25, 26].
Finally, the use of CGM enables short-term prediction of future glucose levels
and/or hypo-/hyperglycemic episodes. Therefore, targeted preventive mea-
sures -such as preemptive hypotreatment (rapid-acting carbohydrate consump-
tion [27]) or corrective insulin boluses [28]- could be taken based on future
rather than current blood glucose levels to reduce the occurrence and impact
of critical episodes.

1.2.3 Insulin pumps and smart pens

Portable subcutaneous continuous insulin infusion (CSII) pumps are devices
that continuously delivers insulin through a small catheter placed into the sub-
cutis [29]. Generally, insulin is delivered in two ways: a continuous infusion
of rapid-acting insulin throughout the day and night (called basal insulin) and
a discrete infusion, i.e., one-time doses of rapid-acting insulin administered by
the user at mealtimes or to correct a high blood glucose level (insulin bolus).
Basal insulin delivery replaces the use of the longer-acting exogenous insulin
formulations used in multi daily injections (MDI) set ups [30]. Despite several
studies demonstrate the benefits of CSII systems in improving glucose con-
trol and reducing the risk of hypoglycemia [31, 32], approximately the 60%
of patients affected by T1D in the US and 5-15% in Europe currently use in-
sulin pumps [33, 34]. Considering the large number of patients following the
MDI therapy, smart insulin pen technology has largely evolved over the last
ten years. In fact, smart pens are similar to traditional insulin pens: the user
has to prime a needle, set the insulin dose and use the depressing device for
insulin delivery. In addition, smart insulin pens can communicate to other
devices via Bluetooth connectivity, record and store data of meal and insulin
injections (time and amount), as well as calculate the insulin bolus and trigger
some reminder alerts [35].
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1.2.4 Artificial pancreas and decision support systems

Combining insulin pumps and CGM devices allows T1D patients to manu-
ally modify the infusion rate according to their BG levels, this is known as
sensor augmented pump (SAP) therapy [36]. However, automatizing and op-
timizing insulin administration is made possible by Artificial Pancreas (AP)
systems, emerging technologies that combine: CGM devices, infusion insulin
pumps and a closed-loop control algorithm, usually fed by CGM readings, in-
sulin and meal information [37, 38]. In the recent years, a greater emphasis
has been given to model predictive control (MPC) algorithms which is based
on a mathematical model describing glucose-insulin dynamics. Therefore, the
control performances are largely influenced by the quality of the model. Ide-
ally, a personalized whole-body physiologically based model would enable a
successful closed-loop algorithm, however a large scale model can be hardly
identifiable on a single individual without the use of invasive measurements
[39]. Although several literature contributions deal with linear approximation
of patient-tailored models, the individualization still represent one of the main
challenges to achieve optimal glucose control [40].
Besides AP systems, a recent report on artificial intelligence (AI) applications
for diabetes management [41] pointed out that the combined use of CGM de-
vices, insulin pumps and dedicated mobile applications [42] has increased the
development of advanced AI-enabled decision support systems (DSS). These
composite tools implement multiple software to support the patient in the
decision-making process. In particular, a DSS can comprise several modules
that allow to reduce the daily burden and challenging routine of T1D man-
agement, by: i) computing the optimal insulin dose at meal-time by exploiting
machine learning models [43] or by suggesting insulin adjustments from a set
of predefined treatments exploiting supervised classifiers as in [44]; ii) count-
ing the correct amount of CHO at meal by exploiting computer vision tech-
niques [45] and deep learning approaches based on historical CGM measures,
meals and insulin [46] or detecting an unannounced meal [47]; iii) warning
patients via preventive alerts about upcoming impending critical events in or-
der to avoid or mitigate the onset of hyper-/hypoglycemic episodes [44, 48].
This last point, as well as the forecasting of BG levels is a relative mature field
that has received vast attention in the scientific community for its potential to
revolutionize diabetes care as witnessed by the large number of proposed al-
gorithms and published reviews [49, 50, 51]. The next section provides a brief
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description of the main approaches for BG forecasting and hypoglycemia pre-
diction.

1.3 Blood glucose forecasting in T1D

BG concentrations are influenced by multiple metabolic factors caused by daily
activities such as eating, injecting insulin, exercising, driving, etc. [52]. In addi-
tion, because of the large inter- and intra-individual variability, the effect over
time of these factors on BG may be different. As a consequence, an accurate
prediction of future glucose levels faces several challenges.

(a) patient ID: 544

(b) patient ID: 575

Figure 1.3: Postprandial responses for similar amount of CHO and insulin, patient ID
544 (a) patient ID 575 (b). CGM trace (blue dotted line, upper panel), SMBG (red dots,
upper panel), CHO content of meals (black diamonds, middle panel) insulin boluses
(orange squares, bottom panel). Data are extracted from the Ohio Type 1 Diabetes
Mellitus dataset [1].

8



1.3 Blood glucose forecasting in T1D

To better highlight some of these issues, Figure 1.3 shows postprandial
glycemic profiles (blue dotted line) along with SMBG (red dots), ingested CHO
during meals (black diamonds, middle panel) and injected insulin boluses (or-
ange squares, bottom panel) of two individuals with T1D, patient ID: 544 in
Figure 1.3a and patient ID: 575 in Figure 1.3b. The euglycemic range is de-
limited by the grey dashed lines. It is worth noting that two hours before the
selected meals BG was stable and patients did not ingest CHO or inject insulin.

Although the initial conditions and the total amount of CHO and insulin
are similar, the postprandial responses in Figure 1.3a and Figure 1.3b, are dif-
ferent. Specifically, Figure 1.3a shows a smooth increase in glucose concentra-
tion of approximately 85 mg/dL two hours after the meal, with a peak value
of 208 mg/dL. In contrast, in Figure 1.3b, BG rises very sharply: the postpran-
dial peak occurs about an hour and a half after meal intake, with a glucose
excursion of 160 mg/dL and a peak of 310 mg/dL. In this case, the patient
experiences a prolonged hyperglycemic event even if an insulin bolus was in-
jected just after mealtime to counterbalance the effect of CHO on BG levels.
Figure 1.3a and Figure 1.3b seem to suggest that BG predictive algorithms
should, in principle, use individualized models fed by various information:
certainly the past history of glucose concentrations measured by the CGM sen-
sor, but also ingested CHO and injected insulin may play a major role. How-
ever, accounting for all these inputs, formalizing in mathematical terms, and
extracting useful signals from them is not a trivial task.
Facing these challenges, in the last 20 years, several research groups have de-
veloped methodologies for the prediction of future BG concentrations. In par-
ticular, literature contributions can be classified according to:

• the model under consideration: physiological vs. black-box, the former
using white-box models to describe glucose-insulin dynamics, the latter
using techniques from the fields of time-series forecasting, system iden-
tification, machine learning, and deep learning;

• the data employed as input: CGM data only vs CGM data plus additional
exogenous information.

In the following section we provide a brief overview about the main contribu-
tions in the field. Table 1.1 provides a summary of the contributions evidencing
the model type, the input data, the number of patients and the performance in
terms of root mean square error (RMSE) for several prediction horizon (PH =
30, 45 and 60 minutes). For detailed reviews, we refer the reader to [49, 50, 51].
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1.3.1 Black-box models

Time series approaches

Time-series modeling approaches based on autoregressive (AR), autoregres-
sive moving average (ARMA) models represent the first and common strate-
gies employed in literature to forecast BG values. These techniques assume
that future BG concentration can be computed as a linear combination of pre-
vious CGM readings. Sparacino et al. [53], assessed the possibility of predict-
ing glucose ahead in time by using a first-order AR model which parameter
was recursively updated to describe the rapidly changes in glucose dynamics.
Reifman et al. [54] developed a regularized AR model of fixed order, which pa-
rameters are personalized to patient data. On the contrary, Gani et al. [55], de-
veloped a time invariant AR model of order 30, which shows the feasibility of
developing a single model that can be used for all subjects. Eren-Oruklu et al.
[56], proposed an adaptive univariate ARMA model with fixed model orders,
chosen according the Akaike Information Criterion (AIC), that can be used not
only to predict BG levels but also to forecast hypoglycemic and hyperglycemic
events. In Otoom et al. [57], an online estimation algorithm based on autore-
gressive integrated moving average (ARIMA) model is found to be the best
model for predicting BG levels. Finally, in Yang et al. [58], an ARIMA model
with adaptive order selection shows outperforming results both in terms of BG
levels predictions and early hypoglycemic alarms.

Models commonly used in system identification

While time series models are fed only with CGM data, this paragraph de-
scribes the use of their variants with eXogenous input (ARX, ARMAX and
ARIMAX) for the prediction of future glucose concentrations. One of the first
attempt in this field was made by Finan et al. [59], where both a time invariant
and time variant ARX model based on glucose, insulin and CHO information
were assessed on two datasets. Also, the use of multivariate ARMAX models
has been considered as in Eren-Oruklu et al. [56]. Of note, a branch of linear
model identification has moved towards the use of personalized and recursive
approaches (i.e., models’ parameters are updated each time a new sample ar-
rives), while the other branch has focused intensively on the study of novel
identification strategies. In particular, glucose-insulin model identification us-
ing kernel-based and nonparametric methods, as in Georga et al. [60] and
in Del Favero et al. [61], has been shown to significantly improve predictive
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performance compared with state-of-art parametric strategies, as reported in
Faccioli et al. [62]. As a final remark, these models are mainly fed by past his-
tory of CGM, meal and insulin information. However, as described in Hobbs
et al. [63] and Faccioli et al. [64] linear models can be successfully exploited
also for taking into account physical exercise data.

Machine and deep learning strategies

As noted in Oviedo et al. [50] and Woldaregay et al. [51], last years have seen
an increasing trend in the use of machine and deep learning techniques. The
most used techniques for BG prediction are based on shallow feed-forward
neural network (NN) as in Perez-Gandìa et al. [65], Zecchin et al. [66], and
Kushner et al. [67]. Also shallow recurrent neural network (RNN) represents
a valid tool when referring to its success in temporal sequence processing and
regression. In fact, its modified version, the long-short term memory (LSTM)
is one of the most used method for BG forecasting as reported in Xie et al.
[68], Aliberti et al. [69], and Sun et al. [70]. It is worth noting that a large
number of literature works, see for instance Bunescu et al., Mirshekarian et
al., Bertachi et al. [71, 72, 73], combined physiological models with machine
learning algorithms in order to improve prediction accuracy (support vector
regression, SVR; NN and LSTM, respectively). According to Woldaregay et al.
[51], less popular strategies are the one based on genetic programming tech-
niques, Contador et al., [74], autoregressive neural network (NAR), Aliberti
et al. [69], regression random forest (regRF), Georga et al. [75] and ensemble
techniques combining multiple single learners, Wadghiri et al. [76]. Consider-
ing the complexity of BG dynamics, deep learning techniques may represent
a suitable option due to their ability to automatically learn feature from input
data, as reported in Schmidhuber et al. [77], Zhu et al. [78]. Among others,
multilayer convolutional neural networks (CNN) have been recently devel-
oped and tested in simulated framework showing outperforming results, Li
et al. [79], Daniels et al. [80]. However, a common challenge in the machine
learning, especially in deep learning field, is the large amount of data required
to accurately train subject-specific models. To overcome this issue, some ap-
proaches focused on transfer learning strategies. This learning paradigm lever-
ages knowledge from previous training examples to improve the learning for
a specific task, as in Daniels et al. [80], and De Bois et al. [81].
As a final comment, more than half of the machine/deep learning algorithms
used one or two additional input information, usually insulin doses or CHO or
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both, as reported in Woldaregay et al. [51]. Also in this case, the use of physical
activity as input is substantially less investigated, as reported in Zarkogianni
et al. [82] and in van Doorn et al. [83].

1.3.2 Physiological models

While all the literature works presented so far has considered black-box mod-
els that focus on the input-output relationship, only a few papers in the litera-
ture have dealt with white-box models that take into account the physiological
information about the underlying system. There are two main types of physi-
ological models: i) minimal models, such as the Bergman et al. model [84], that
proposed a simplified descriptions of the physiology with a few differential
equations and parameters (to capture the essential glucose-insulin dynamics)
and ii) maximal models, such as the Hovorka et al. [85] and the Dalla Man et
al. [86] model, comprising several differential equations and parameters to
provide a more detailed description of the glucose-insulin system. Of note,
maximal models are commonly used for computer simulation rather than for
prediction purposes. A first attempt to predict BG using a physiological model
was proposed by De Pereda et al. [87]. A limitation of these approaches con-
cerns the identification of subject-specific parameters capable of describing the
large intra-patient variability in blood glucose levels. For this reason, several
contributions investigated different identification strategies as in Laguna-Sanz
et al. [88], and Visentin et al., [89]. One of the latest works employing phys-
iological model was proposed by Liu et al. [90], where authors employed a
model of glucose regulation composed by the minimal model (i.e., Bergman et
al. model, [84]) and by the insulin and CHO absorption models proposed by
Hovorka et al. [85] to increase the accuracy in long-term prediction.
As a final remark, the main aim of this brief overview was to show that several
predictive algorithms have been developed in the last 15 years and there has
been a recent increase in the use of machine and deep learning techniques for
BG forecasting, thanks to the large amount of data made available by the im-
proved technologies for diabetes care. As a result of this scientific effort, simple
algorithms (mainly based on linear CGM trend extrapolation) have been in-
corporated into CGM devices (e.g., predictive glucose alert in Dexcom G6/G7
devices) and into commercial SAP systems, as in Zhong et al. [91], Forlenza et
al. [92] which have been proven to reduce hypoglycemia by using predictive
glucose alerts and a predictive low-glucose insulin suspension system.
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1 Type 1 diabetes: blood glucose forecasting and thesis aim

1.4 Aim and structure of the thesis

As described in the previous sections, BG forecasting in T1D is a relatively ma-
ture field. However, despite the scientific community has made great efforts
in developing predictive algorithms, there are still some open issues. First,
it is not completely clear what are the most important signals that should be
used as input information to improve the forecasting accuracy. As an exam-
ple, adding insulin and CHO data to CGM is expected to enhance predictive
performance. This has been demonstrated in several clinical trials where pa-
tients were selected for their ability to count a correct amount of CHO. How-
ever, in daily-life setting, the meal information are burdensome for the users
to record and prone to error, thus potentially leading to inaccurate predictions.
Another understudied point concerns the most appropriate approach for BG
forecasting: linear, nonlinear machine/deep learning, black-box or physiologi-
cal models. As a matter of fact, nonlinear methodologies are likely to be poten-
tially more accurate than linear models because of their ability to learn com-
plex dynamics, but they usually require a large amount of data for training,
thus limiting predictive performance if this step is not performed correctly.

To address these gaps, this thesis aims to understand the role of differ-
ent input information and the contribution of simple vs complex strategies
for the prediction of future BG concentrations. An additional aspect that will
be addressed is to find the most suitable strategy to exploit the so-obtained BG
predictions to forecast an upcoming hypoglycemic event. To reach the aim,
our analysis has been performed by resorting to datasets recorded in real-
life conditions. In particular, data derive from: the Dexcom (Dexcom Inc.,
San Diego, CA, USA) pivotal study for the assessment of the G6 CGM sen-
sor (NCT02880267); the Ohio Type 1 Diabetes Mellitus dataset [1] and from
the outpatient control-to-range pilot study (CTR3): a closed-loop 5-month trial
[94].

Chapter 2 is dedicated to a head-to-head investigation of linear and non-
linear state-of-art approaches that employ only CGM data as input. It will be
shown that individualized linear models are more effective than population
ones, while no significant advantages seem to emerge when employing non-
linear methodologies.

Chapter 3 investigates how much adding meal timing and seasonality in-
formation to CGM data can improve predictive performance. This is possible
thanks to the use of a novel methodology based on clustering and stochastic
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1.4 Aim and structure of the thesis

seasonal local models. It will be shown that this approach outperforms CGM-
only-based predictors and it provides comparable performance to other more
complex (linear and nonlinear) prediction methods fed with more information
(i.e., CGM, timing and dosing of insulin and CHO). Despite satisfactory perfor-
mance in predicting future BG values over the glycemic range, the prediction
of hypoglycemic events (which involves a comparison of predicted and mea-
sured BG values and a classification-like framework) remains a challenge for
all algorithms.

Chapter 4 describes the development of a novel algorithm to improve the
prediction of hypoglycemic events. In particular, by employing one the most
performing model found in Chapter 3, two main innovations are introduced:
the use of a cost function to take into account the clinical impact of the predic-
tion error and the use of confidence intervals for multiple prediction horizons.
This approach outperforms conventional methods for hypoglycemia forecast-
ing and, with adequate adjustments can be translated also to machine and
deep learning methodologies.

So far, previous chapters have focused on black-box approaches. For this
reason, Chapter 5 aims to investigate whether the use of a white-box model
taking into account the physiological information of the glucose-insulin sys-
tem can improve predictive performance. In detail, the proposed physiological
white-box model is identified from patient data (i.e., CGM, meal, and insulin)
and used within the particle filter framework to predict BG ahead in time. Un-
fortunately, the results do not support our hypothesis since data-driven tech-
niques significantly outperform the physiological white-box model.

Despite black-box models can grant accurate performance, their results can
be difficult for the users to explain. In addition, when competing models
achieve similar performance, the model to be used in practice should provide
the most straightforward physiological interpretation. For these reasons, Chap-
ter 6 addresses one of the main issues when using black-box models: the lack
of interpretability of the outcome. This can be done by: i) resorting to Shapley
addictive explanations: a novel game-theoretic approach to explain the output
of any machine learning model and ii) developing a case-of-study in which the
interpretation should be preferred over prediction accuracy when choosing be-
tween two data-driven models achieving similar predictive performance.

Chapter 7 summarizes the main findings, draws some concluding remarks
about the research carried out in the present thesis, discusses the limitations of
the studies and proposes some future works.
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Chapter 2

Forecasting of glucose levels and
hypoglycemic events employing
CGM data only

1 The accurate forecast of blood glucose levels and/or hypoglycemic episodes
can play a key role in improving T1D management by triggering proactive
therapeutic actions to mitigate or to avoid impending critical events. At the
present time, predictive algorithms based on CGM data only remain a very
valuable option, as the acquisition and synchronization of datastreams from
other data sources (e.g., meal and insulin information, physical activity, etc.) is
not always straightforward in a real-time setting. Several contributions in the
literature have tackled this problem, but comparing their findings is not triv-
ial due to different data collection conditions (highly controlled set-ups, such
as inpatient trials, as opposed to real-life recordings), preprocessing methods,
and evaluation metrics.

This chapter offers a head-to-head comparison by systematically compar-
ing several linear and nonlinear prediction algorithms and examining a num-
ber of degrees of freedom in their design on a same dataset, acquired in daily
life conditions with one of the latest CGM sensors available on the market.

1This chapter contains material published in Prendin et al., Sensors, 2021, [95].
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2 Forecasting of glucose levels and hypoglycemic events employing CGM
data only

2.1 Chapter introduction and content

2.1.1 Rationale for the investigation of predictive algorithms

fed only by CGM data

As described in the previous chapter, CGM devices have proved to be use-
ful in improving insulin therapy and, in general, T1D management [19, 20, 21],
and they are currently accepted as standard tools for glucose monitoring. Most
of these devices usually provide alerts that warn the subject when the CGM
values exceed the normal glucose range. Furthermore, the employment of
CGM to provide short-term predictions of future glucose values or to forecast
forthcoming hypo-/hyperglycemic episodes could lead to a further improve-
ment, since targeted preventive measures -such as preventive hypotreatments
(fast-acting carbohydrate consumption [27]) or correction insulin boluses [28]-
could be taken to reduce the occurrence and impact of these critical episodes.
Therefore, the availability of an effective BG predictive algorithm becomes of
primary importance for present and future standard therapies.

In the last two decades, several algorithms for the short-term prediction of
future glucose levels have been developed, using both CGM data only (to men-
tion but a few representative examples, see [58, 70, 96, 97, 98]) and CGM data
plus other available information such as the amount of ingested CHO, injected
insulin, and physical activity (see, for example [50, 79, 99, 100, 101]). While the
use of these additional datastreams is expected to enhance prediction perfor-
mance compared to algorithms based on CGM data only [101], a nonnegligible
drawback is that their application in real-world scenarios requires supplemen-
tary wearable devices (e.g., insulin pumps, mobile applications, and physical
activity trackers) and actions (e.g., the safe and reliable exchange of informa-
tion from one device to the other, and interactions with the user). Indeed,
at present, these systems are not extensively used by individuals with dia-
betes [102, 103]. Consequently, the possibility of efficiently performing the
real-time prediction of future glucose levels with CGM data only remains,
at the present time, a practically valuable option. This is the reason why in-
vestigating the performance of predictive algorithms fed by CGM data only is
of primary importance.
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2.1 Chapter introduction and content

2.1.2 Chapter contribution

In the last 15 years, many real-time predictive algorithms based on CGM data
only have been proposed in the literature [55, 82, 104, 105, 106, 107]. How-
ever, it is very difficult to establish which of them is the best performing one.
Indeed, the mere comparison of performance indices extracted from differ-
ent published papers could be unfair or misleading, because differences in
datasets, implementation, preprocessing, and evaluation can make it difficult
to claim that one prediction method is the most effective. The attempts to com-
pare state-of-the-art methods and literature contributions on the same dataset
are, to the best of our knowledge, very limited. A systematic review of glucose
prediction methods has been proposed by Oviedo et al., in 2017 [50]. Nonethe-
less, the focus of [50] is on a methodological review rather than on performing
a head-to-head comparison on the same dataset. A recent comparison of differ-
ent prediction algorithms on the same dataset has been proposed by McShin-
sky et al. in [108]. A difference with the present contribution is that McShinsky
et al. includes both CGM-only prediction methods and algorithms relying on
other signals and involves a small population (12 subjects).

To fill this gap and to offer a performance baseline for future work, in this
chapter, we present a head-to-head comparison of thirty different real-time
glucose prediction algorithms fed by CGM data only on the same dataset,
which consists of 124 CGM traces of 10-day duration collected with the Dex-
com G6 CGM sensor. Notably, this sensor is one of the most recently marketed,
and its employment allow us to also assess if some previous literature findings
still hold with more modern, accurate CGM sensors. Specifically, we test linear
black-box models (i.e., AR, ARMA, and ARIMA), nonlinear machine-learning
(ML) methods (i.e., SVR, regRF, and NN), and a deep-learning (DL) model
(i.e., LSTM). For the linear and ML methods, we consider both population and
individualized algorithms. The former are one-fits-all algorithms, designed
to work on the entire population; the latter are algorithms customized for each
single patient based on their previously collected data, in order to deal with the
large variability in glucose profiles among individuals with diabetes. More-
over, given the different nature of glucose fluctuations during the day and
night (larger in the former case due to meal ingestion and less pronounced
in the latter case) [58, 101], we design specific versions for these two time pe-
riods. With regard to model training, we opportunely divide the dataset into
training and test sets, also performing a Monte Carlo simulation to avoid the
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2 Forecasting of glucose levels and hypoglycemic events employing CGM
data only

possibility of the numerical results being related to a specific training-test par-
titioning. The performance of all the algorithms are evaluated on a 30 min
prediction horizon (PH) focusing on both prediction accuracy and the capabil-
ity of detecting hypoglycemic events.

2.1.3 Chapter outline

This chapter describes the different modeling strategies (Section 2.2) that have
been considered to develop linear black-box models (Section 2.3), nonlinear
ML methods, and the DL model (Section 2.4). With regard to model assess-
ment, we opportunely split the dataset into training and test sets, also per-
forming a Monte Carlo simulation (Section 2.6) to avoid the possibility of the
numerical results being related to a specific training-test partitioning. The re-
sults (Section 2.7) show that, in terms of BG prediction, the best-performing
linear and nonlinear methods are comparable, while the first slightly outper-
forms the second in terms of hypoglycemic prediction. In addition, the results
support the importance of individualization of the model, while no significant
advantages emerge when employing nonlinear strategies.

2.2 Modeling strategies for developing predictive

algorithms

Several options for creating the different variants of the considered classes
of prediction algorithms are investigated. In order of increasing complexity,
the first option is to consider a population algorithm that computes the predic-
tion of the future CGM value by using the same model (i.e., structure and/or
order) and the same parameters for all the individuals, i.e., without any per-
sonalization. This has the practical advantage that the model training can be
performed only once, e.g., when the algorithm is designed, and the model
learning procedure can leverage large datasets of CGM traces. The downside
of this approach is that the prediction algorithm is not customized according
to individual data [55]. Another option, with complexity higher than that of
the previous one, is to develop subject-specific algorithms, which allows tak-
ing into account the large interindividual variability characterizing T1D indi-
viduals. The drawback of this approach is that the model training must be
repeated for each individual in order to enable personalized glucose predic-
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2.3 Linear black-box models

tions. A further level of complexity is to consider multiple models for each
individual, e.g., one for day time and one for night time. The key idea behind
this choice is that the “day-time” model should be able to learn the glucose
dynamics perturbed by all the external events (e.g., meals, insulin injections,
and physical activity), whereas the “night-time” model should be able to learn
the smoother dynamics present at night time [101]. Since no information on
sleep time is available in our dataset, we decide to define day time as the in-
terval from 6:00 up to 23:00 and night time as that from 23:05 up to 5:55. Ac-
cording to the rationale discussed above, the resulting categories of prediction
algorithms tested in this work are summarized in the tree diagram reported in
Figure 2.1. For each category, several different model classes are considered,
for a total of 30 different prediction algorithms. A detailed description of the
prediction algorithms tested is provided in the following two subsections.

Figure 2.1: Schematic tree diagram of the main approaches tested in this chapter.

2.3 Linear black-box models

Linear predictive algorithms are based on a model of the CGM time series.
Such a model is derived by applying the standard pipeline described in [109].
The first three steps, i.e., the choice of the model class, model complexity,
and parameter estimation, are related to model learning. The last step is model
prediction, which deals with the computation of the predicted value, employ-
ing the model and the past CGM data. These steps are described below.

21



2 Forecasting of glucose levels and hypoglycemic events employing CGM
data only

2.3.1 Choice of the model class

Three linear model classes are considered: autoregressive (AR), autoregres-
sive moving average (ARMA), and autoregressive integrated moving aver-
age (ARIMA) models. In the following sections, we use the notation AR(p),
ARMA(p,m), and ARIMA(p,m,d), indicating with p, m, and d the order for
the AR, MA, and integrated (I) part, respectively.

2.3.2 Model complexity

Once the model class is fixed, the model complexity, i.e., the number of pa-
rameters to be estimated, has to be chosen. Common techniques used for this
purpose are the Akaike information criterion (AIC), the Bayesian information
criterion (BIC), and cross validation (CV) [109, 110]. The model orders p and
m are, respectively, searched in the sets P = 1,2,. . . ,30 and M = 0,1,. . . ,15. Af-
ter a preliminary analysis, showing that no significant differences can be seen
between these methods (not shown), the BIC is chosen as the method for se-
lecting the best model orders. Concerning the individualized linear models,
we investigated a partial personalization: the model complexity of the popula-
tion algorithms is maintained, but the parameter values are subject-specific (a
model with individualized parameters and population orders). Then, a com-
plete personalization is achieved by learning both the model complexity and
the parameter values from patient data (a model with individualized parame-
ters and individualized orders).

2.3.3 Parameter estimation

The first approach we use to estimate model parameters is the state-of-the-art
prediction error method (PEM) [109], based on the minimization of the one-
step prediction error. Furthermore, since we focus on 30-min-ahead predic-
tion, we also consider the possibility of identifying the model parameters that
minimize the 30-min-ahead prediction error (30 min-specific) rather than the
5-min-ahead error as prescribed by the standard pipeline.

With these estimation techniques, CGM time series are described by models
with fixed structures and time-invariant parameters. To better follow intrap-
atient variability, we also investigate recursive least-squares (RLS) parameter
estimation [53], which is applied, without any loss of generality, only to the
AR(1) model, since previous work demonstrated the effectiveness of the AR-
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RLS(1) configuration [111]. Note that the RLS estimation requires setting an
additional parameter, the forgetting factor, which represents a memory term
for past input data [112]. This AR-RLS(1) falls into the category of a model with
a fixed structure but time-varying parameters. Another option we consider, is
the regularized PEM approach, which considers AR models of elevated order
(e.g., p = 100) and adds to the standard PEM cost function a regularization
term representing a suitable prior on the unknown coefficients, which allows
avoiding overfitting [110]. A suitable prior, known as stable spline kernel, is
adopted in this work [61]. To avoid unstable models are used for the forecast-
ing, the choice of the model complexity and the parameter-estimation steps are
repeated until a stable model is identified.

2.3.4 Model prediction

Once a linear model is available from the previous steps, the k-step-ahead pre-
diction can be derived for any value of k. This is performed by applying a
standard Kalman filter framework [109]. We use this approach to derive the 30-
min (k = 6)-ahead prediction. We decided to focus on PH = 30 min only for two
main reasons. First, the literature work [27, 104], and [113] has shown that ef-
ficient corrective actions (e.g., hypotreatments or pump suspension [104, 113])
triggered 20–30 min before hypoglycemia are effective in avoiding/mitigating
the episodes. Second, it has been shown that PH = 30 min is a good trade-
off between limiting the error of the prediction outcome (the higher the PH,
the higher the error) and the effectiveness of the prediction [48].

2.4 Nonlinear black-box models

A learning pipeline similar to that adopted for the linear models is employed
for ML and DL predictive algorithms. The main steps in the learning phase
are the choice of the model class, the tuning of hyperparameters (the counter-
part of the model complexity), and model training (i.e., parameter estimation).
The last step consists of computing the 30-min-ahead glucose prediction once
the nonlinear model is obtained.
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2.4.1 Choice of the model class

Three ML models, successfully used in a wide range of regression problems,
are considered: support vector regression (SVR) [71, 114], regression random
forest (RegRF) [115], and feed forward neural network (NN) [65]. In addition,
we considered a DL model, namely, long short-term memory (LSTM) network,
which has shown promising results in glucose prediction [69, 116]. The key
idea of the SVR model is to map the CGM data into a higher-dimensional fea-
ture space via a nonlinear mapping and, then, to perform a linear regression
in such space [117]. The goal of SVR is to find a function that has, at most, ϵ

deviation from the target in the training data. Moreover, the use of adequate
kernels allows dealing with linearities and nonlinearities in data [118].

RegRF is an ensemble learning method based on aggregated regression
trees. A regression tree is built by recursively top–down-partitioning the fea-
ture space (composed of CGM values) into smaller sets until a stopping crite-
rion is met. For each terminal node of the tree, a simple model (e.g., a constant
model) is fitted [119]. The prediction of RegRF is obtained by combining the
output of each tree.

The NN model allows learning complex nonlinear relationships between
input and output values [120]. It is composed of a set of neurons organized in
layers (input, hidden, and output layers). Each neuron is characterized by a
nonlinear function, e.g., sigmoid, which provides the input for the next layer,
and by weights and biases. These parameters are learned from the data and are
determined in order to achieve the minimum value of the cost function during
the training phase. The output layer is a linear combination of the output of
the previous layers.

LSTM is a useful model when maintaining long-term information over time
is relevant to learn dependency and dynamics from data [121]. The key ele-
ment of the LSTM model is the memory cell composed of four gates (forget,
input, control, and output gates) that decide whether the information must be
kept or removed from this cell at each time step. Note that, given the large
number of parameters needed by LSTM and the relatively short CGM time se-
ries available for each subject in the dataset, in this work, it was not possible
to apply the individualized approach for LSTM. Thus, for the LSTM model,
we limited the analysis to the population approach only. In addition, since the
focus of the paper is on a predictive algorithm fed by CGM data, the LSTM
features were lagged CGM samples only. Further details on LSTM are avail-
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able in Appendix B. A detailed review of these methods is beyond the scope of
this work, and we defer the interested reader to the original work or to [122].

2.4.2 Input size and hyperparameter tuning

For each ML model, the optimal input size (i.e., the number of consecutive
CGM readings) and other model-specific hyperparameters are chosen by us-
ing a grid search approach combined with hold-out-set CV [109] to avoid over-
fitting. A list of the model-specific hyperparameters and their values are re-
ported in Table 2.1.

Concerning LSTM, given the dimensions of our dataset and the elevated
number of hyperparameters to be tuned, we decided to manually set some
of them, such as the number of layers, learning rate, and decay factor, on the
basis of literature studies to avoid the risk of overfitting [93, 116]. This ap-
proach proved to be efficient in reducing such a risk in even more complex and
deep neural networks [70, 79, 98]. Moreover, to further strengthen the learning
phase, we added a dropout layer to the LSTM, which randomly ignored neu-
rons during the training. Finally, based on the results of the hold-out-set CV,
we found that the optimal LSTM structure consisted of a network composed
of a single LSTM layer, 30 hidden nodes, and 10 lagged CGM values as input.

As for the individualized linear models, we also investigated a partial per-
sonalization for nonlinear ones: the hyperparameters and optimal input size of
the population algorithms are maintained, but the parameter values are sub-
ject specific (a model with individualized parameters and population hyper-
parameters). Then, a complete personalization is achieved by determining the
model-specific hyperparameters, the optimal input size, and the parameters
based on individual data (a model with individualized parameters and indi-
vidual hyperparameters).

2.4.3 Model training

Independently of the modeling strategy considered (i.e., population, individ-
ualized, or day/night specific), the CGM data are standardized using z-score
standardization [122]. Then, parameter estimation is performed by minimiz-
ing the model-specific loss function by using specific optimized versions of the
stochastic gradient descent algorithm.
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Table 2.1: Nonlinear models hyperparameters

Model Hyperparameter Range
SVR error penalty term, kernel scale factor [10−3-103] (logarithmic

scaled)

RegRF number of trees [10-500]
number of leaves, max number of splits [1-max(2,training sam-

ples)] (logarithmic
scaled)

NN

number of layers [1-3]
number of neurons [5-20]
activation function Hyperbolic tangent, sig-

moidal
max training epochs [500-1500]

LSTM
number of hidden units [20-100]
max training epochs [50-1000]
dropout rate [0.01-0.7]

2.4.4 Model prediction

The three previous phases allow learning a model that can directly produce
the 30-min-ahead-in-time prediction, once fed by a sequence of standardized
CGM data.

2.5 Criteria and metrics for the assessment of the

algorithms

The algorithms are compared considering both the accuracy of the glucose
value prediction and the hypoglycemia event detection capability.

2.5.1 Glucose value prediction

The predicted glucose profiles are evaluated with three commonly used met-
rics. First, we considered the root mean square error (RMSE) between the pre-
dicted glucose values and measured CGM data:

RMSE =
1√
N
||(y(t)− ŷ(t|t− PH))||2 =

√√√√ 1
N

N

∑
t=1

(y(t)− ŷ(t|t− PH))2 (2.1)
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where PH is the prediction horizon, N is the length of the subject CGM data
portion in the test set, y(t) is the current CGM value, and ŷ(t|t − PH) is its
PH-step-ahead prediction. By ||x(t)||2, we denote the Euclidean norm of the

signal x(t), namely: ||x(t)||2 =
√

∑N
t=1(x(t))2.

RMSE takes positive values, with RMSE = 0 corresponding to the perfect
prediction, and increasing RMSE values corresponding to larger prediction er-
rors.

Furthermore, we also considered the coefficient of determination (COD):

COD = 100 · (1− ||(y(t)− ŷ(t|t− PH))||22
||(y(t)− ȳ(t))||22

) (2.2)

where ȳ is the mean of the CGM data. The COD presents the maximum value
(i.e., 100%) if the predicted profile exactly matches the target CGM signal. If the
variance of the prediction error is equal to the variance of the signal or, equiva-
lently, if the prediction is equal to the mean of the signal, the COD is 0%. There
is no lower bound for COD values (they may also be negative).

Finally, the delay existing between the CGM signal and the predicted pro-
file is defined as the temporal shift that minimizes the square of the mean
quadratic error between the target and the prediction:

delay = arg min
j∈[0,PH]

[ 1
N

N−PH

∑
t=1

(ŷ((t|t− PH) + j)− y(t))2
]

(2.3)

Of course, the lower the delay, the prompter and more useful the prediction.
A delay equal to the PH means that the model prediction is not better than
looking at the current glucose level. Finally, in order to investigate if signifi-
cant differences exist among the compared algorithms, a one-way analysis of
variance (ANOVA) is used to compare the RMSE values. A significance level
of 5% (p-value < 0.05) is considered in all cases. The adjustment for multiple
comparisons is performed by using the Bonferroni correction.

2.5.2 Hypoglycemia prediction framework

Concerning the assessment of the ability to predict hypoglycemic events, fol-
lowing [48], we defined the occurrence of a new hypoglycemic event when a
CGM value below 70 mg/dL is observed and the previous six CGM readings
are above 70 mg/dl. An example of a hypoglycemic event is shown in Fig-
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ure 2.2. Hypoglycemic alarms are defined for the predicted CGM signal with
exactly the same criteria used for hypoglycemic event definition.

Figure 2.2: Example of hypoglycemic event onset, CGM data (blue dotted line).

Hypoglycemia prediction metrics

Considering a PH = 30 min and detection window (DW) of 40 min, we assign:

• True positive (TP): if an alarm is raised at least 5 min before the hypo-
glycemic event and at most DW+5 min before that episode, as shown
in Figure 2.3 (top left panel). According to this definition, alarms raised
with a time anticipation larger than DW+5 min are not counted as TPs,
because it is difficult to claim a match between the alarm and the hypo-
glycemic event;

• False positive (FP): if an alarm is raised, but no event occurred in the
following DW minutes, as shown Figure 2.3 (top-right panel);

• False negative (FN): if no alarm is raised at least 5 min before the event
and at most DW+5 min before the event, as shown in Figure 2.3 (bottom-
left panel);

Finally, we define as late alarms the alarms raised within DW minutes after
the hypoglycemic event, as shown in Figure 2.3 (bottom-right panel). Late
alarms are considered neither TPs nor FPs, i.e., the events corresponding to
late alarms are not counted (NC) in the computation of the event prediction
metrics. The calculation of true negatives (TNs) is of limited interest [123],
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since we are dealing with an unbalanced dataset (only a few hypoglycemic
events in 10 days of monitoring).

Figure 2.3: Examples of true positive (top-left corner), false positive (top-right cor-
ner), false negative (bottom-left corner), and not countable (bottom-right corner).

Once the TPs, FPs, and FNs are found, the following metrics are used to
evaluate the different models:

precision =
TP

TP + FP
(2.4)

recall =
TP

TP + FN
(2.5)

F1− score = 2 · precision · recall
precision + recall

(2.6)

The precision (2.4) is the fraction of the correct alarms over the total number
of alarms generated. The recall (2.5), also called the sensitivity, is the fraction
of correctly detected events over the total number of events. The F1-score (2.6)
is the harmonic mean of the two previous metrics. Since the dataset is strongly
unbalanced, we also evaluated the daily number of FPs generated by the algo-
rithm (FPs per day). We also evaluated the time gain (TG) of the hypoglycemic
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alert as the time between the alert and the real hypoglycemic event.
Unlike the glucose prediction metrics, for which a different metric value

is calculated for each subject, the values of the hypoglycemia prediction met-
rics are obtained by considering all the hypoglycemic events of the different
subjects, as they belong to a unique time series.

2.6 The dataset and its partitioning

The data are kindly provided by Dexcom (Dexcom Inc., San Diego, CA, USA)
and taken from the pivotal study of one of their last commercial sensor (Dex-
com G6 CGM sensor), described at ClinicalTrials.gov (NCT02880267). This
was a multicenter study, involving 11 centers. Each center obtained approval
from the local IRB/ethical committee, as reported in the main publication as-
sociated with the study [124]. The original dataset included 177 CGM traces
collected in 141 T1D adults (aged 18+) by the Dexcom G6 sensor (36 subjects
wore two sensors in parallel). For the purposes of this work, we selected
124 CGM traces, keeping only one CGM datastream for each subject and dis-
carding subjects who wore the CGM devices for less than 10 consecutive days.
The sampling time was 5 min. In summary, the dataset grant us 1240 days
of CGM data, ~350000 samples and more than 19200 CGM samples below 70
mg/dL (i.e., 5.4% of the total samples), with ~1600 hypoglycemic episodes.
It should be noted that, even though hypoglycemia is rather rare in the real
data, the large dataset adopted and the consequent abundant number of hy-
poglycemic episodes allows a solid assessment of the algorithm’s ability to pre-
dict a hypoglycemic episode. Moreover, the number of hypoglycemic episodes
present in our dataset is significantly larger than those of other papers having
the same aim [58, 125].

2.6.1 Training and test set

A comparison of the proposed prediction algorithms is obtained by evaluat-
ing the performance of each method on a same test set. A total of 20% of all
the CGM traces (i.e., 25 CGM time series) are randomly chosen from the orig-
inal dataset and are candidates as a test set for evaluating all the predictive
algorithms. The remaining time series (i.e., 99 CGM traces) are used to train
the population algorithms. Concerning the training of the individualized al-
gorithms, the 25 CGM time series, the candidates as a test set, are split into
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training and test sets. In a preliminary examination, we found that the dimen-
sion of the training set should be approximately 7 days for nonlinear models.
However, the linear algorithms require 33 h of CGM data for the training phase
only. Therefore, the test set, identical for all the algorithms, is composed of the
last 3 days (out of 10 days) of the 25 CGM time series initially chosen. By doing
so, the CGM data of the training and test set are completely independent.

Since during data acquisition, failures and missed data may occur, the CGM
traces, in the training set only, are preprocessed as follows: first, they are re-
aligned to a uniform temporal grid, and if there is a data gap and it is smaller
than 15 min, missed values are imputed via third-order spline interpolation.
If the gap is longer than 15 min, the CGM trace is split into different segments.

2.6.2 Monte Carlo simulations

Splitting the dataset as described in the foregoing subsection has the advan-
tage of providing a test set that is the same for all the algorithms but has the
issue that the test set is small (about 75 days over the total 1240), thus con-
taining a limited number of hypoglycemic episodes (~90 over about 1600 total
hypoglycemic events). Both the glucose and hypoglycemic prediction perfor-
mance are randomly affected by the choice of the test set. In fact, one test set
extraction might turn out to be particular advantageous for algorithm A and
penalizing for algorithm B, while another can result in the opposite. This is-
sue can be overcome by performing a Monte Carlo simulation: the procedure
of randomly splitting the dataset into training and test sets is iterated several
times (in this chapter we employed 100 runs). For each iteration, a new train-
ing and test set is obtained, and then, the glucose prediction analysis described
in this work is performed.
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2.7 Results

2.7.1 Illustration of a representative training-test partitioning

example

Glucose prediction and hypoglycemic event detection performance of a rep-
resentative training–test partition, chosen among the 100 Monte Carlo simula-
tions, are shown in Table 2.2 for linear models and in Table 2.3 for nonlinear
models. In particular, in Table 2.2 and Table 2.3, the glucose prediction metrics
are reported as median value [interquartile range] over the 25 CGM time series
used as the test set. Finally, statistical analysis of the test set of this representa-
tive training–test set extraction is performed.

Linear black-box models

The population algorithms underestimate in hyperglycemia and overestimate
in hypoglycemia, as illustrated for a representative subject in Figure 2.4. In par-
ticular, the CGM data (blue line) show a hypoglycemic episode before 18:00,
an elevated blood glucose peak (210 mg/dL) at 22:00, and another hypoglycemic
event before 00:00.
In these three situations, the population ARMA(4,1) model (green dash-dotted
line), for example, provides glucose prediction values quite distant from the
target CGM data. In fact, the RMSE achieved by the population ARMA and
ARIMA are, respectively, about 23.75 and 23.78 mg/dL. The early detection
of hypoglycemic episodes is unsatisfactory even for the population ARIMA
algorithm, the best performing among the population approaches: both the
precision and recall are low, respectively, at around 63% and 48%. The median
TG is only 5 min.

Looking at the results in Table 2.2, we can note that the individualized mod-
els outperform the population ones: the RMSE provided by the population AR
and by the individualized AR are, respectively, around 23.63 and 22.76 mg/dL.
The detection of hypoglycemic events is also increased with the AR individual-
ized models. Indeed, the recall and precision are around 40% and 58%, respec-
tively, with the individualized models and around 48% and 46%, respectively,
with the population models. The median TG improved from 5 min with the
population AR to 10 min with the individualized AR. In particular, individu-
alized ARIMA models allow mitigating the impact of slow changes in glucose
mean concentrations. Thus, the corresponding predicted profiles turn out to
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Figure 2.4: CGM data (blue line), 30-min-ahead prediction obtained with population
ARMA(4,1) (green dash-dotted line) and individualized neural network (red dashed
line), hypoglycemic threshold (black dashed line).

be more adherent to the target signal, as visible in the representative subject
of Figure 2.5 (individualized ARIMA(2,1,1), whose prediction is reported by
the red dash-dotted line, provided accurate predictions when the CGM data
fall below the hypoglycemic threshold, i.e., from 8:00 to 10:00). These fea-
tures make individualized ARIMA the best-performing linear algorithm both
for glucose value prediction, granting a median RMSE of 22.15 mg/dL, and for
hypoglycemic event prediction, with a recall of 82% and precision of 64%. One
might expect that the model derived by minimizing the 30-min-ahead predic-
tion error would achieve better performance than the model obtained follow-
ing the standard PEM pipeline, i.e., by minimizing the 5-min prediction error
and then deriving the predictor.
However, this is not the case, and it can be seen that the 30-min AR model
provides similar performance (RMSE: 22.79 mg/dL, COD: 83.89%, recall: 21%,
and precision: 42%) to the individual models identified with the standard PEM
approach (RMSE: 22.76 mg/dL, COD: 84.53%, recall: 40%, and precision: 58%).
This is in line with the theory in [109, 110].

The day-and-night-specific algorithms provide higher RMSE (24.22, 24.37,
and 23.1 mg/dL for AR, ARMA, and ARIMA, respectively) than the algo-
rithms described previously. The hypoglycemic detection is comparable to
that of individualized models. The extra complexity of the day-and-night-
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specific models does not appear to be justified by better performance. The reg-
ularized models perform very similarly to the individualized models (RMSE:
23.23 mg/dL, while the recall and precision are, respectively, 50% and 60%)
but require a more complicated identification procedure. Finally, concerning
AR-RLS(1), it allows to rapidly track the changes in glucose trends (Figure 2.5,
black dash-dotted line), but it can be very sensitive to noisy CGM readings,
and the resulting RMSE is higher than those for the other algorithms inves-
tigated (27.43 mg/dL). This feature is also reflected in an increased number
of false alarms generated (about one/day). However, both the recall and pre-
cision are high: 86% and 55%, respectively. The median TG is 15 min. In
summary, the best linear model was given by individualized ARIMA. Finally,
statistically significant differences between the RMSE results obtained with the
population algorithm and the results obtained by the individualized algorithm
are indicated in Table 2.2 by asterisks.

Nonlinear black-box models

Considering the population models, the best ML method for the detection of
hypoglycemic events is a SVR fed by 50 min of CGM data with a Gaussian
kernel, which present TG = 10 min, recall = 69%, precision = 63%, and one
false alarm every 2 days. Despite the good results in terms of event detec-
tion, it should be noted that the RMSE is around 22.85 mg/dL. The RegRF
achieves the highest RMSE among the population nonlinear models consid-
ered: 23.42 mg/dL. Furthermore, by visual inspection, we observed that the
predicted profiles obtained by RegRF suffer from large delays, especially when
the target signal shows an upward trend. Moreover, RegRF tends to overesti-
mate in hypoglycemia, generating a recall around 20% and a precision of 36%
only.

The minimum RMSE is achieved by an NN fed by 50 min of CGM data,
composed of two hidden layers, each of them with 10 neurons, similar to what
is described in [65]. Despite the RMSE is the lowest among the nonlinear pop-
ulation methods (21.81 mg/dL), all the hypoglycemic detection metrics are
not satisfactory: the recall is 27%, the precision is 39%, and the TG is 5 min.
The LSTM-predicted profile (the green dash-dotted line in Figure 2.5) is simi-
lar to the one obtained by a NN: it exhibited a RMSE around 23 mg/dL, recall
around 26%, and precision around 46%. Generally, the individualization of
the model hyperparameters allows reducing the RMSE, e.g., the individual-
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ized SVR and NN with individual hyperparameters achieves median RMSE
of 22.16 and 21.52 mg/dL, respectively. In addition, the result obtained by
the individualized NN outperforms all the 30 algorithms tested in this work.
However, the slight improvement in terms of the prediction of glucose val-
ues does not imply an important improvement in hypoglycemic event predic-
tion. In fact, the best individualized ML model for hypoglycemia forecasting
is the individualized SVR, whose performance is similar to that of the popu-
lation SVR model: the recall is about 59% vs. 63%, the precision is 72% vs.
69%, and the median TG is 10 min in both cases (individualized vs. pop-
ulation, respectively). The individual NN provides a predicted profile that
tends to underestimate in hyperglycemia and overestimate in hypoglycemia
as shown in Figure 2.4 (the prediction of the NN with individual hyperpa-
rameters, the red dashed line, is more adherent to the target when the CGM
is inside the range 80–120 mg/dL). Individualized RegRF provides the worst
performance in terms of both glucose and hypoglycemic event prediction: the
RMSE is 26.16 mg/dL, the recall is 39%, and the precision is 60%. The indi-
vidualized day-and-night-specific ML algorithms provides, in general, RMSE
higher (around 30 mg/dL) than those of the algorithms described previously.
The ability to detect hypoglycemic events is lower than that of the individual-
ized ML models.

It is interesting to note that all these nonlinear methods do not provide sat-
isfactory results in terms of hypoglycemia detection. It is worth noting that no
statistically significant differences between the RMSE results obtained with the
individualized nonlinear algorithms with individual hyperparameters (SVR
and fNN) and the individual linear ones with individual orders (AR, ARMA,
and ARIMA) can be observed.

2.7.2 Monte Carlo analysis

The results for the glucose prediction and hypoglycemic event detection per-
formance of the 100 Monte Carlo simulations are shown in Table 2.4. For each
metric, we report the mean and standard deviation of all the simulations. It
is worth noting that the numerical results described in the foregoing subsec-
tion are confirmed by this further analysis. Finally, the statistical analysis per-
formed for the Monte Carlo iterations shows that no significant differences
between the RMSE results obtained with the best-performing nonlinear and
the best-performing linear algorithms can be observed.
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2.8 Summary of the main findings

Figure 2.5: CGM data (blue line) and 30-min-ahead prediction obtained by AR-
RLS(1) (black dash-dotted line), individualized ARIMA(2,1,1) (red dash-dotted line),
and LSTM model (green dash-dotted line). Hypoglycemic threshold (light blue
dashed line).

2.7.3 Exploratory analysis for different PH

All the algorithms described in this work focus on short-term prediction (i.e.,
30 min), which enables patients to take proactive/corrective measures to miti-
gate or to avoid critical events. As a further exploratory analysis, we evaluate
the prediction performance of the best linear and nonlinear algorithms for sev-
eral PHs. As shown in Figure 2.6, the prediction error considerably increases
for long-term prediction for both the linear and nonlinear algorithms. This is
expected: the larger the temporal distance, the larger the number of factors
that can influence blood glucose concentration. This result further strength-
ens our motivation to limit the head-to-head comparison of glucose predictive
algorithms fed by CGM data to only a 30 min prediction horizon.

2.8 Summary of the main findings

Among the 30 glucose predictive algorithms tested in this head-to-head com-
parison, the linear algorithm granting the best future glucose prediction is the
individualized ARIMA (median RMSE of 22.15 mg/dL). The best nonlinear
algorithm is individualized NN (median RMSE of 21.52 mg/dL). While the
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Figure 2.6: RMSE (left) and COD (right) for the 3 best-performing algorithms out
of the 30 tested in this work. The black lines are the median RMSE and COD (left
and right, respectively) obtained using individual ARIMA with different prediction
horizons. Blue triangles and green squares indicate the same metrics for PH = 30, 60,
120, and 240 min for population SVR and individualized NN, respectively.

median RMSE of the individualized NN is slightly smaller than the median
RMSE obtained using an individualized ARIMA, the difference among the two
is not found to be statistically significant. When hypoglycemic event detection
is considered, individualized ARIMA achieves the best F1-score (72%), out-
performing SVR (F1-score = 65%), the best nonlinear method based on this
metric. All the algorithms exhibit TG (i.e., the temporal distances between the
hypoglycemic events and the predictive alarms) that span from 5 up to 15 min,
with the best results for individualized ARIMA and SVR. The generation of
preventive hypoglycemic alerts 5–15 min before the event could be clinically
relevant. In fact, in the best-case scenario in which a preventive hypotreatment
is ingested 15 min before the hypoglycemic episode, the rescue CHO will likely
reach the blood before the hypoglycemic event, preventing or drastically mit-
igating it. Even a 5-min anticipation, while probably insufficient to prevent
hypoglycemia, would still contribute to reducing both its duration and its am-
plitude. The practical benefit of taking preventive actions before hypoglycemia
with TG similar to those reported here has been shown in [104].

Two main findings are worth being highlighted. First, the individualized
methods slightly outperform their population counterparts, confirming the
positive impact of model parameter individualization, which allows customiz-
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2.8 Summary of the main findings

ing models for each single patient and dealing with the large variability in glu-
cose profiles among individuals with diabetes. Second, the use of advanced
nonlinear techniques, substantially more complex than their linear counter-
parts, does not majorly benefit the prediction performance. Clearly, this last
finding does not exclude that other nonlinear ML or DL techniques can change
the picture (an exhaustive exploration of nonlinear techniques is practically
impossible, also considering the number of new contributions constantly pro-
posed in these fields), but proves that linear methods are still highly valuable
options that offer a good trade-off between complexity and performance. It is
worth noting that both the numerical and statistical findings of this analysis
seem to be in line with most of the literature [48, 53, 58, 65, 70, 93, 98, 115].
Nonetheless, we report a clear contrast with the findings in some other con-
tributions [69, 126]. As a final observation, Figure 2.3 and Figure 2.4 show
that all the predictive algorithms exhibit a large prediction error when, after
a meal, glucose is rapidly increasing. This suggests that the use of CGM-only
algorithms has an intrinsic drawback: these models are not able to describe
changing in dynamics due to external factors.

41





Chapter 3

Incorporating meal timing
information in predictive
algorithms

1 As discussed in Chapter 2, one of the main limitations of all the predictive
algorithms (linear and nonlinear) employing only CGM data as input is that
any metabolic disturbance, e.g. a meal, would deteriorate the accuracy of the
predicted BG levels by increasing the delay between the target and the pre-
dicted profile. Therefore, the use of additional sources of information should
be considered to improve the accuracy of prediction algorithms. However,
recording accurate exogenous information has nonegligible drawbacks. For
example, getting accurate meal information can be burdensome and prone to
errors in long-term management: indeed, the individual with T1D has to man-
ually input (using an electronic diary or a dedicated mobile application) a cor-
rect estimate of the amount of CHO ingested for each meal.
To overcome this issue, this chapter assesses a novel BG forecasting method-
ology that combines CGM data and meal timing. Unlike conventional ap-
proaches that require both timing and dosing of CHO and insulin, the pro-
posed method has the practical advantage of requiring minimal input data:
CGM readings, which are automatically recorded by the CGM sensor, and
mealtime, that can easily forwarded to the prediction algorithm by e.g., smart
insulin pens or CSII. For such a scope, the dataset exploited for the first anal-
ysis (Chapter 2) cannot be used here, as it contains only CGM traces and no
meal information. Consequently, the validation of the methodology has been

1This chapter contains material published in Prendin et al., Sensors, 2022, [127]

43



3 Incorporating meal timing information in predictive algorithms

performed on two datasets acquired under free-living conditions monitored
either in open-loop or closed-loop control, in which the information on meal
timing has been accurately recorded.

3.1 Stochastic seasonal local models for glucose pre-

diction

3.1.1 Chapter contribution

Many time series, especially in the financial and economic fields, exhibit sea-
sonal behavior, i.e., regular patterns of changes and fluctuations that periodi-
cally repeat [128]. However, seasonality is not a priori characteristic of glucose
data, but can be artificially induced by developing appropriate strategies that
link the postprandial response to periodic meal consumption. In this context,
the standard regression models evaluated in Chapter 2 are not flexible enough
to accurately capture these patterns in the data, and new models have to be
introduced.

To this end, this chapter assesses a novel methodology for glucose forecast-
ing based on the combined use of seasonal stochastic local models and fuzzy
C-means clustering. In particular, seasonal models are introduced for the first
time in [129], and the combined use of seasonal models along with clustering
techniques was presented in [130] and [131]. In these works, the methodol-
ogy was developed and validated only in well controlled datasets: the first
[130] was recorded during in-hospital clinical trials, while the second [131] was
obtained by exploiting the educational version of the Uva/Padova simulator
[132]. In both cases, the results were encouraging since the proposed approach
based on seasonal models and clustering outperformed all the state-of-art tech-
niques for BG prediction. However, a real-time assessment on data recorded
under free-living conditions has not been performed yet. In fact, dealing with
real data poses some problems about the completeness and reliability of stored
information that can degrade the ability of algorithms to accurately forecast BG
levels [51, 62]. Moreover, glucose dynamics recorded in free-living conditions
can be much more complex to describe than those obtained by simulations or
others recorded during in-hospital trial sessions, since in the first case the pa-
tient is exposed to substantially larger disturbances to glucose homeostasis. In
this chapter we fill this gap by assessing the clustering and seasonal local mod-
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3.2 The new datasets

eling methodology for glucose prediction proposed in [130] [131] on two real
datasets of different size (11 and 13 subjects monitored for 8 weeks and about
5 months, respectively) and obtained with different insulin dosing strategies
(manual open-loop and closed-loop control).

3.1.2 Chapter outline

This chapter describes the new datasets exploited for this work (Section 3.2),
the main steps of the proposed methodology (Section 3.3). Also, we considered
several approaches (Section 3.4): an individualized ARIMA model and a NN
based on CGM data only; an individualized ARIMA with exogenous inputs
(ARIMAX) model and a variant of NN, namely NN-X, fed by CGM, insulin
and CHO information (timing and amount). Of note, in the previous chapter
we have shown that ARIMA and NN are the best performing linear algorithm
for blood glucose forecasting using CGM data only. As extensively studied by
our research team, see [62], ARIMAX is one of the most suitable options when
additional information, such as insulin and CHO information, are available. It
is worth noting that, both ARIMA and ARIMAX models allow achieving ac-
curate prediction performance even if compared to other nonlinear and more
complex algorithms [62, 68, 95]. Predictive performance (see Section 3.5) are
evaluated for different prediction horizons (PH) and the results on both dataset
are consistent: for PH > 45 minutes, the proposed approach based on cluster-
ing and seasonal local models outperforms individualized ARIMA models and
NN for PH > 60 minutes. Remarkably, there is no statistically significant differ-
ence when compared to individualized ARIMAX with the practical advantage
of the minimal input information needed (i.e. meal timing). Furthermore, we
perform a preliminary investigation about the hypoglycemic predictive capa-
bilities of these algorithms (see 3.5.4).

3.2 The new datasets

The first dataset used in this study is the Ohio Type 1 Diabetes Mellitus dataset
[1], from now on referred as the OhioT1DM. The OhioT1DM dataset was up-
dated on the 2020 release and it comprises 12 subjects with T1D monitored for
8 weeks. The subjects wore a Medtronic Enlite CGM device (sampling time
is 5 minutes) along with an insulin pump (Medtronic 530G or 630G) and a
wearable system (Basis Peak fitness or Empatica Embrace) to measure phys-
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3 Incorporating meal timing information in predictive algorithms

iological variables, for instance: skin temperature, skin conduction and heart
rate. Moreover, the dataset provides subjects self-reported information about
meals: timing, amount and type (i.e. breakfast, lunch, dinner, snack, hypo-
glycemia treatment). Since self-reported mealtime is a crucial information for
the real-time validation purposes of this work, subject ID 567 which did not
record any meal during the last 10 days of monitoring was discarded.

Subj ID Missing
values (%)

CV(%) TIR(%) TAR(%) TBR(%)

540 8 41 72 22 6
544 15 36 70 29 1
552 23 37 80 18 3
559 11 42 61 36 4
563 7 33 73 25 2
570 5 33 43 56 2
575 7 42 70 23 7
584 8 35 53 46 1
588 3 30 63 37 1
591 12 37 68 28 4
596 18 34 78 20 2

Mean(SD) 11 (6) 36.4 (4) 66.4 (11) 31 (12) 3 (2)
Table 3.1: Background information for OhioT1DM dataset. Numerical values are
rounded to the nearest integer.

Each subject comprising the OhioT1DM dataset was split into training set
(about the 82% of the entire monitoring period) consisting of the initial 6 weeks
of monitoring, and into a test set (about the 18%) composed by the last 10 days.
The second dataset was collected in a multicenter clinical trial (NCT02137512)
aimed at assessing the long-term use of a hybrid closed loop insulin delivery
system developed at the University of Virginia [94]. From now on, it will be re-
ferred as CTR3 dataset. The CTR3 dataset comprises 14 individuals with T1D
monitored for about 4-5 months using the Dexcom G4 sensor, which sampling
time is 5 minutes. Basal insulin was automatically recorded by the insulin
pump (Roche Accu-Check Spirit Combo). Meal amount and timing were man-
ually inputted in the system for all the meals. Based on this information the
system computed a suitable bolus of insulin. The data of each subject is split
in a test set (about the 10% of the dataset), consisting of the last 10 monitor-
ing days while the remaining part is used as training set (about the remaining
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3.2 The new datasets

90%). In this dataset an individual was discarded since more than the 50% of
the CGM trace was composed by missing values.

Table 3.1 and Table 3.2 report, for the OhioT1DM and CTR3 dataset respec-
tively, the percentage of missing values, the percentage of time spent in hy-
poglycemia (TBR), in target (TIR), in hyperglycemia (TAR), and the glycemic
variability index [133] computed as CV = 100 · σ

µ where, CV is the coefficient
of variation, σ is the standard deviation and µ is the mean of glucose levels.

Original
dataset

Missing
value (%)

CV(%) TIR(%) TAR(%) TBR(%)

1 4 29 80 19 1
2 23 32 79 20 1
3 3 30 80 18 2
4 8 39 75 22 3
5 18 35 78 20 2
6 21 31 84 15 1
7 25 32 70 30 1
8 12 31 83 15 2
9 35 36 83 16 1
10 25 38 70 27 3
11 15 31 85 13 2
12 22 37 72 26 2
13 19 33 80 19 1

Mean(SD) 17.6 (9) 33.3 (3.4) 78.4 (5.1) 20 (5) 1.6 (0.8)
Table 3.2: Background information for CTR3 dataset. Numerical values are rounded
to the nearest integer.

Both datasets are acquired in free-living conditions, and they show a real-
life scenario characterized by complex glucose dynamics, making the predic-
tion of future glucose levels a challenging task. In the training set of both
datasets, CGM gaps smaller than 30 minutes were filled using linear interpo-
lation, while no imputation was performed on the test set. Looking at Table
3.1 and Table 3.2, a main difference among the two analyzed datasets can be
found in the mean TIR: 66.4% vs 78.4%, and in the mean TAR: 31% vs 20% for
the OhioT1DM and the CTR3, respectively. This was partially expected since
the CTR3 dataset is a closed-loop dataset, however the mean CV, which is used
to quantify the glycemic variability, is quite similar: 36.4% vs 33%. In the fol-
lowing sections, the main steps of the proposed approach are described. Of
note, C-SARIMA, as described in [131], is designed to be tailored to individu-
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3 Incorporating meal timing information in predictive algorithms

als. Consequently, the following steps are computed for each individual of the
dataset.

3.3 The fuzzy clustering and local modeling method-

ology

3.3.1 Time series segmentation

The first step of the methodology requires to partition CGM time series into a
set of periods. To do so, exploiting the mealtime information, the post-prandial
period (PP) is defined as the CGM measurements:

• from mealtime up to 4 hours after meal intake, or

• from mealtime up to the following meal intake (if this happens before 4
hours).

PPs containing more than one hour and a half (18 CGM samples) of missing
glucose concentrations are discarded.

Partitioning CGM time series in such a way, leads to PPs having different
lengths. To deal with this issue, PPs smaller than 4 hours of monitoring data,
are expanded with blank values, i.e. NaN (Not-a-Number) values, to reach
the maximum length. As a result, each CGM time series in segments had the
same length. This is crucial for enforcing the seasonality and applying the
methodology. After the NaN-padding step, a large number of PPs show blank
values in the final positions and that should be adequately treated as missing
data in the following steps.

3.3.2 Time series clustering

This step aims to group PPs which show a similar glycemic pattern. Follow-
ing previous works, the Partial Distance Strategy Fuzzy C-Means Clustering
(PDSFCM) was applied, since it can handle missing data, thus proving ade-
quate for dealing with NaN-padded PPs and with uncomplete data acquisi-
tions. This clustering method is a modified version of Fuzzy C-Means (FCM)
[134] which allows each PP to be included into several clusters with different
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degrees of membership. In particular, wij denotes the degrees of membership
to the i− th cluster of the j− th PP. The degree of membership is a number in
range [0,1] and the sum of the degrees of membership of each PP is 1:

0 ≤ wij ≤ 1 and
nC

∑
i=1

wij = 1∀j (3.1)

PDSFCM finds the degree of membership for each PP in the clusters [134]
by minimizing the following objective function:

nC

∑
i=1

N

∑
j=1

wm
ij d2 (xj, vi

)
(3.2)

where x1, x2, . . . , xN denotes the vector of the PPs glucose profiles; N is the
total number of PPs; nC is the number of clusters (nC > 1); m is the fuzzy expo-
nent, i.e. a real number greater than 1; v1, v2, . . . , vnC are the cluster centroids
defined as:

vi =
∑N

j=1 wm
ij xj

∑N
j=1 wm

ij

, 1 ≤ i ≤ nC (3.3)

From now on, the center of the cluster (or cluster centroid) will be referred
as cluster prototype.

Finally, d(xj, vi) is the partial distance (i.e., a modified version of the Eu-
clidean distance for dealing with missing values [135]) between any PP, (xj)
and the cluster prototype i, (vi).

Given a set of centroids, wij is computed using the following equation:

wij =
1

∑nC
k=1

(
d2(xj,vi)

d2(xj,vk)

) 1
m−1

, 1 ≤ i ≤ nC, 1 ≤ j ≤ N (3.4)

To compute the wij minimizing (3.2), the centroid definition (3.3) and the
membership equation (3.4) are iteratively updated until no further improve-
ment in the cost function is achieved [134].

Finding the right number of clusters is a critical task: a small number may
result in clusters that are not completely separated, on the contrary a large
number may deteriorate the compactness of one or more clusters. For such a
scope, many validation criteria have been proposed [134]. In this work, the
optimal number of clusters nC as well as the fuzzy exponent m have been
automatically chosen by minimizing the Fukuyama-Sugeno index [134, 136] on
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3 Incorporating meal timing information in predictive algorithms

the training set using an exhaustive grid search approach (ranges for nC = {2,
. . ., 30} and for m = {1, . . ., 3}). Such an index measures both the compactness
and the separation between each cluster and the prototypes.

3.3.3 Model identification

Once the clustering step has been performed, several sets of "similar" glycemic
profiles, having the same length, have been obtained. Then, for each cluster,
PPs are concatenated to obtain an artificial glucose time series which shows an
artificially induced seasonal pattern associated to the periodic meal consump-
tion. By doing so, the seasonality, which is not originally present in raw CGM
time series, is now enforced.

Capturing the dynamics and the seasonality of the artificial concatenated
time series, can be done by identifying a Seasonal Autoregressive Integrated
Moving-average (SARIMA) model for each cluster. A SARIMA model is a gen-
eralization of an Autoregressive Integrated Moving-average (ARIMA) model
which is able to take into account for the seasonality.

In fact, an ARIMA model can be described as follows:

y (t) = α + ω (t) (3.5)

ϕp

(
z−1
)
▽dω (t) = θq

(
z−1
)

ϵ (t) (3.6)

where, y (t) is the CGM value at time t, α is the intercept, ω(t) is the dis-
turbance series, ▽ is the backward differencing operator such that ▽ω (t) =

ω (t) − ω (t− 1) and d is the order of the differencing step. ϵ(t) is a white
noise process driving the model, and ϕp(z−1) and θq(z−1) are the polynomials
of order p and q for the autoregressive and moving-average part of the model.

Similarly, a SARIMA model can be described by adding the seasonal terms
to Equation 3.6:

y (t) = α + ω (t) (3.7)

ϕp

(
z−1
)

ΦP

(
z−S
)
▽D

s ▽
dω (t) = θq

(
z−1
)

ΘQ

(
z−S
)

ϵ (t) (3.8)

where, S indicates the seasonality, ▽Sω (t) = ω (t)−ω (t− S), and D is the
order of the seasonal differencing step. ΦP(z−S) and ΘQ(z−S) are the polyno-
mials of order P and Q for the seasonal autoregressive and seasonal moving-
average part of the model.
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Figure 3.1: Schematic overview of the real time prediction process

The SARIMA degrees of freedom, i.e. the order of the Autoregressive (AR),
Moving-average (MA), Integrated (I) seasonal and nonseasonal parts are cho-
sen by minimizing the Bayesian Information Criterion (BIC) using an exhaus-
tive grid search approach. In particular, the ranges for p = {1, . . . , 4}, q =

{0, . . . , 4} , d = {0, 1} , P = {1, . . . , 3} , Q = {0, . . . , 3}, and D = {0, 1} were
considered. Following [131], the seasonality term (S) equals to 53 samples: 48
samples which are the length of the PP plus 5 CGM samples which preceded
mealtime, the so-called pre-samples, introduced for a proper model initializa-
tion.

3.3.4 Real-time glucose forecasting

Finally, once SARIMA models are identified for each cluster, glucose can be
predicted ahead in time by weighting the predictions of all SARIMA models.
Figure 3.1 provides an overview of the forecasting process. As depicted in
Figure 3.1, let suppose that:

• the optimal number of clusters found in the training set is four (hence:
four prototypes and four SARIMA models are available);

• it is mealtime (tmeal in Figure 3.1, indicated by a green vertical arrow).
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The real time glucose forecasting procedure is triggered at mealtime. The out-
put is the predicted glucose level, indicated in Figure 3.1 as ŷ(t + PH|t), and it
can be computed by applying the following pipeline:

1. wait for collecting 3 CGM samples (i.e., wait for 15 minutes, if the sam-
pling time is 5 minutes);

2. compute the membership values, i.e. the weights (w1, w2, w3, w4), be-
tween the collected CGM samples and the clusters prototypes using equa-
tion 3.4;

3. compute the glucose predictions exploiting the four identified SARIMA
models (i.e., ŷ1 (t + PH|t) , ŷ2 (t + PH|t) , ŷ3 (t + PH|t) , ŷ4 (t + PH|t));

4. compute the output ŷ(t + PH|t) as the weighted sum of computed pre-
dictions in step 3 using weights computed in step 2;

5. repeat steps from 2 to 4 each time a new sample is recorded.

Remark. To calculate the membership values (Step 2) during the real-time
prediction process, equation (3.4) was modified to compute the distances be-
tween the collected CGM samples and the corresponding segment of the clus-
ter prototypes. In fact, each time a new CGM sample is recorded, the mem-
bership is calculated with an increased number of samples (i.e., CGM data are
accumulated until the maximum length of the postprandial period is reached).

3.3.5 Computational effort

The computationally demanding parts of C-SARIMA are related to the cluster-
ing optimization procedure (i.e., determining the number of clusters and the
fuzzy exponent) and to the local models identification process (i.e., SARIMA
model order selection and parameters identification). However, these steps
are computed only once and offline, leveraging training data. On the contrary,
the online steps (described in Figure 3.1) are computationally cheap. In fact,
each time a new CGM sample is recorded, the average time required to com-
pute the PH-step ahead prediction is about 0.38 seconds. In details: 32 µsec
for membership computation, 0.37 sec for SARIMA models forecasting and 9
µsec for the weighted sum. The computation time has been evaluated on an
ASUS laptop equipped with an Intel(R) Core(TM) i7-8565U CPU @1.80GHz
1.99 GHz.
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3.4 Benchmark glucose predictive algorithms

Based on previous chapter, the effectiveness of the proposed approach based
on clustering and SARIMA modeling is assessed by comparing the predicted
PPs with those obtained by an individualized ARIMA model based on CGM
data only and an individualized ARIMAX model fed by CGM, insulin and
CHO information. For each subject, an ARIMA and an ARIMAX model is
identified. Similarly to SARIMA models, the order of AR, MA, I and exoge-
nous (X) parts of the model are fixed for all subjects and chosen by minimizing
BIC (among all the individuals) using an exhaustive grid search approach. In
particular, the grid of explored order for AR = {1, . . . ,20}, MA = {0, . . . ,20},
I = {0,1}, X = {1, . . . ,20}. Note that, while the model complexity is fixed, the
model is individualized by estimating subject-specific models’ parameters.

Finally, it could be of interest to investigate whether nonlinear models grant
different performances as compared to the proposed methodology. For such a
scope, two feed forward neural networks are considered as comparators. The
first the network (NN) [65] employs CGM measurements up to 25 min before
the current time as input information. The second network (NN-X) employs
as input: CGM readings, insulin and CHO information up to 25 min before
the current time. In both cases, the output is the glucose prediction PH minute
ahead in time. In details, NN and NN-X are composed by two hidden layers
equipped with 10 and 5 neurons (with sigmoidal transfer function) and an
output layer equipped with a single neuron (with linear transfer function).

For what it concerns parameters learning (weights and bias), they are ran-
domly initialized and updated according to a standard backpropagation train-
ing algorithm (Levenberg-Marquardt) which is applied in a batch mode: weights
and biases are updated when all the inputs and targets are presented. It is
worth remarking that the training process must be performed for each PH.

3.5 Predictive performance on post-prandial peri-

ods

In this section the performance of the proposed approach is presented. The
accuracy of the predicted PPs is evaluated for different PH, i.e. PH = {30, 45,
60, 75} minutes. The RMSE (2.1) between the predicted and the target CGM
PP has been considered as metric for the assessment. The novel approach is
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3 Incorporating meal timing information in predictive algorithms

indicated as C-SARIMA in Table 3.3 and Table 3.4, with respect to the bench-
mark algorithms. All the algorithms are evaluated both on the OhioT1DM and
CTR3 dataset.

Table 3.3, shows the results for the OhioT1DM. Statistical significance is de-
termined using a paired t-test if normality is accepted, a Wilcoxon signed-rank
test if normality is rejected. The cross (+) indicates that there is statistically sig-
nificant difference (ssd) between the C-SARIMA and ARIMA. The asterisk (∗)
indicates that there is ssd between C-SARIMA and ARIMAX. The circumflex
(ˆ) indicates that there is ssd between C-SARIMA and NN. The (") indicates
that there is ssd between C-SARIMA and NN-X.

models RMSE [mg/dL]
PH = 30 min PH = 45 min PH = 60 min PH = 75 min

ARIMA 19.64 26.91 33.67 38.82
[18.42-20.54] [23.86-28.59] [29.82-35.11] [32.48-41.59]

NN 20.11 26.41 32.11 35.18
[17.58-20.99] [25.10-28.31] [30.94-33.26] [32.55-37.74]

C-SARIMA 20.13(*,") 27.23(") 31.96(+) 33.91(+,ˆ)
[18.63-21.38] [24.63-28.74] [29.55-33.95] [31.97-37.29]

ARIMAX 18.73 26.46 30.82 34.73
[17.31-20.06] [22.96-27.03] [29.30-31.92] [31.31-39.09]

NN-X 17.78 25.68 30.67 34.06
[16.79-21.04] [24.85-27.62] [28.98-34.93] [32.71-35.54]

Table 3.3: Comparison of the performance of the C-SARIMA against individualized
ARIMA and ARIMAX model, NN and NN-X on the OhioT1DM dataset

At the short-term prediction horizon (i.e., PH ≤ 45 minutes), the proposed
approach achieves similar performance to the individualized ARIMA model:
there is no statistically significant difference among the two techniques. In
particular, the RMSE provided by the proposed methodology is slightly higher
(20.13 mg/dL vs 19.64 mg/dL and 27.23 mg/dL vs 26.91 mg/dL, for PH = 30,
45, respectively). However, for the long-term prediction horizon (i.e., PH ≥
60 minutes), the performance of the C-SARIMA outperforms ARIMA models
(RMSE= 31.96 mg/dL vs 33.67 mg/dL and 38.82 mg/dL vs 33.91 mg/dL). In
particular, for PH = 60 and 75 minutes, the difference is found to be statistically
significant (p-values < 0.05).

The NN performed similarly to C-SARIMA (median RMSE of 20.11 mg/dL,
26.41 mg/dL and 32.11 mg/dL) and no statistically significant difference in the
RMSE is found for PH≤ 60 minutes. On the contrary, C-SARIMA outperforms
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the NN for PH=75 minutes by granting RMSE = 33.91 mg/dL vs 35.18 mg/dL
(p-value<0.05).

Comparing the C-SARIMA with individualized ARIMAX models, it can be
found that for PH ≤ 45 min, the best results are obtained by individualized
ARIMAX models (RMSE 18.73 mg/dL vs 20.13 mg/dL and 26.46 mg/dL vs
27.23 mg/dL). However, for PH = 60, 75 minutes the C-SARIMA models pro-
vides results that do not differ in a statistically significant manner to ARIMAX.

Finally, NN-X provides the better results with respect to C-SARIMA for
PH≤ 60 minutes: RMSE is 17.78 mg/dL, 25.68 mg/dL and 30.67 mg/dL, while
no significant improvement is found for PH = 75 minutes (RMSE = 33.91
mg/dL vs 34.06 mg/dL).

models RMSE [mg/dL]
PH = 30 min PH = 45 min PH = 60 min PH = 75 min

ARIMA 21.02 29.42 35.38 44.01
[20.03-24.86] [27.40-33.24] [34.63-40.48] [39.50-45.86]

NN 21.78 30.64 34.21 42.60
[19.35-24.23] [26.88-34.11] [29.92-38.68] [35.97-44.42]

C-SARIMA 21.63 29.67(") 33.47(+) 40.18(+,ˆ,")
[20.00-25.90] [25.83-34.07] [29.59-39.62] [32.92-42.42]

ARIMAX 20.83 28.13 33.57 39.99
[17.80-23.40] [24.22-32.65] [28.54-40.44] [31.36-43.40]

NN-X 21.12 27.98 33.37 38.41
[17.49-23.89] [23.52-34.63] [27.36-34.63] [30.38-41.71]

Table 3.4: Comparison of the performance of the C-SARIMA against individualized
ARIMA and ARIMAX model, NN and NN-X on the CTR3 dataset

Table 3.4 shows the results for the CTR3 dataset. As for the OhioT1DM, for
short-term PH the C-SARIMA provides similar performance to an individu-
alized ARIMA, i.e. there is no significant improvement if compared to an in-
dividualized ARIMA models: median RMSE is 21.63 mg/dL vs 21.02 mg/dL
and 29.67 mg/dL vs 29.42 mg/dL, for PH = 30 and PH = 45 minutes. How-
ever, for PH = 60 minutes and PH = 75 minutes the proposed methodology
outperforms the competitor providing a statistically significant difference (me-
dian RMSE = 33.47 mg/dL vs 35.38 mg/dL and 40.18 mg/dL vs 44.01 mg/dL,
respectively).

NN grants performance comparable to C-SARIMA for all the PH≤ 60 (me-
dian RMSE of 21.78 mg/dL, 30.64 mg/dL, 34.21 mg/dL) and inferior predic-
tion for PH = 75 minutes (42.60 mg/dL vs 40.18, p-value<0.05). Similarly,
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when comparing SARIMA with respect to ARIMAX, one can see that for PH
≤ 45 min, the best results are obtained by ARIMAX model (RMSE = 20.83
mg/dL and 28.13 mg/dL). However, the two results are similar for all the PH
considered: there is no statistically significant difference. Median RMSE pro-
duced by NN-X is inferior to the one of C-SARIMA for PH = 45, 60 and 75
minutes (RMSE = 27.98 mg/dL, 33.37 mg/dL and 38.41 mg/dL) but statisti-
cally significant difference is found only for PH = 45 and 75 minutes.

3.5.1 Algorithms employing the same amount of information

It could be interesting to investigate the performance of predictive models that
employs same information of C-SARIMA. For such a scope, we proposed ARI-
MAX+mealtime and NN+mealtime: two variants of ARIMAX and NN-X fed
by CGM and mealtime information only. Results are reported in Table 3.5 and
Table 3.6, for OhioT1DM and CTR3 dataset, respectively. The asterisk (∗) in-
dicates if ssd is found between C-SARIMA and ARIMAX+mealtime, (+) indi-
cates if ssd is found between C-SARIMA and NN+mealtime.

models RMSE [mg/dL]
PH = 30 min PH = 45 min PH = 60 min PH = 75 min

ARIMAX+mealtime 18.93 27.88 34.28 38.39
[17.42-20.52] [22.90-28.93] [28.26-35.78] [32.47-41.68]

NN+mealtime 20.16 26.53 32.78 34.22
[18.04-21.88] [23.06-28.28] [30.55-33.88] [31.36-37.81]

C-SARIMA 20.13 27.23 31.96(*,+) 33.91(*,+)
[18.63-21.38] [24.63-28.74] [29.55-33.95] [31.97-37.29]

Table 3.5: Table Comparison of performance between C-SARIMA vs. individual-
ized ARIMAX + mealtime and NN + mealtime model fed by CGM and meal time on
OhioT1DM data set.

Numerical results are consistent between the two datasets: for PH = 30
minutes, the best results are achieved by ARIMAX+mealtime (the median im-
provement is about 1 mg/dL in the OhioT1DM dataset and about 0.5 mg/dL
in the CTR3 dataset with respect to C-SARIMA). For PH = 45 minutes, the
three methods achieved similar performance (about 27 mg/dL and 29 mg/dL,
on the OhioT1DM and CTR3 dataset, respectively). As shown in Table 3.5 and
Table 3.6, for PH > 45 minutes the best results are achieved by C-SARIMA
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models RMSE [mg/dL]
PH = 30 min PH = 45 min PH = 60 min PH = 75 min

ARIMAX+mealtime 20.97 29.40 36.75 42.95
[17.83-24.63] [23.36-33.36] [29.90-41.74] [36.35-44.44]

NN+mealtime 21.57 29.24 34.55 41.29
[18.13-24.50] [24.37-33.55] [29.43-38.28] [32.79-42.47]

C-SARIMA 21.63 29.67 33.47(*,+) 40.18(*,+)
[20.00-25.90] [25.83-34.07] [29.59-39.62] [32.92-42.42]

Table 3.6: Table Comparison of performance between C-SARIMA vs. individualized
ARIMAX + mealtime and NN + mealtime model fed by CGM and meal time on CTR3
dataset.

which outperforms its comparators (the improvement is statistically signif-
icant, p-value < 0.05). In fact, as detailed in Table 3.5, compared to ARI-
MAX+mealtime and NN+mealtime, C-SARIMA grants RMSE = 31.96 mg/dL
vs 34.28 mg/dL vs 32.78 mg/dL, for PH = 60 minutes. And RMSE = 33.91
mg/dL vs 38.39 mg/dL vs 34.22 mg/dL, for PH = 75 minutes. Similarly, as
shown in Table 3.6, compared to ARIMAX+mealtime and NN+mealtime, C-
SARIMA grants RMSE = 33.47 mg/dL vs 36.75 mg/dL vs 34.55 mg/dL, for
PH = 60 minutes. And RMSE = 40.18 mg/dL vs 42.95 mg/dL vs 41.29 mg/dL,
for PH = 75 minutes.

3.5.2 Discussion of the results

The results among the two datasets are consistent: the proposed methodology
based on clustering and SARIMA models has comparable or superior perfor-
mance with respect to one of the most performing linear algorithms based on
CGM data only, i.e. individualized ARIMA model. In particular, C-SARIMA
outperforms ARIMA for PH = 60 and 75 minutes. Furthermore, results show
that C-SARIMA is able to provide similar performance or slightly superior to
a state-of-the-art nonlinear method for glucose prediction (NN). In particular,
such a difference is found to be statistically significant for PH = 75 minutes.

The second linear comparator is an individualized ARIMAX model, which
is expected to enhance prediction performance due to the use of additional
information carried by insulin and CHO. In this comparison, the proposed
approach provides performance that are not significantly different from ARI-
MAX for PH = 45, 60 and 75 minutes. This is remarkable since the SARIMA
and clustering-based approach use less information, CGM and mealtime only,
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Figure 3.2: Illustration of an accurate forecasting of BG levels, PH = 30 minutes.
OhioT1DM dataset.

while ARIMAX also requires information about the CHO ingested and on the
amount of insulin administered, which represents a non-negligible drawback,
since the estimation of the correct amount of CHO and insulin is critical for
subjects with T1D [137]. In the OhioT1DM dataset a similar finding seems
to hold also for the nonlinear comparator with inputs (NN-X). In the CTR3
dataset, no significant difference is found for PH= 60 minutes, whereas a sig-
nificant (albeit hardly practically relevant) improvement is achieved by NN-X
with respect to C-SARIMA for PH = 45 and 75 minutes. However, it is worth
noting that on the OhioT1DM dataset such an improvement is usually larger
for short-term PH, but it becomes minor for long-term predictions. When deal-
ing with real data acquired in free-living conditions, the glucose response after
meal intakes exhibits a wide range of variability. This variability forced the
clustering step to use an increased number of clusters if compared to the re-
sults obtained on simulated datasets [131]. In fact, after the cluster optimiza-
tion procedure the mean number of clusters per subject was 16 while in [131]
it was about 10. Being the first step of the pipeline, a successful clustering of
the PPs is crucial for the success of the entire proposed methodology. In fact,
if it provides several sets of "similar" glycemic response, the resulting artificial
seasonal CGM time series will show regular patterns periodically repeated. If
this condition is satisfied, this leads to a better identification of SARIMA mod-
els and to an increased prediction accuracy.
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Another critical aspect linked to the clustering step is about the computation
of the weights during the real-time glucose forecasting. Such computation is
crucial for obtaining accurate predicted profiles: in Figure 3.2 and Figure 3.3
prediction results for a representative subject of the OhioT1DM dataset are
shown, (ID:544) and it can be seen how weights computation can lead to good
and poor accuracy in the prediction of the PPs.

Figure 3.3: Illustration of real-time forecasting of BG, PH = 30 minutes. OhioT1DM
dataset.

Figure 3.2 shows on the top panel the PP trace (black line) and the final
prediction (red bold line). For a better visualization 6 out of 12 predicted pro-
files (colored lines) were discarded since their weights (visible in the bottom
panel) were almost equal to zero. In addition, in the top panel are reported the
5 CGM samples (black thin line) before the meal (in this case there is a break-
fast at 8.55) and the 3 CGM samples (indicated as burn-in in the legend) after
the meal intake which are used to compute the initial weights as described in
the schematic overview of the forecasting process in Figure 3.1. In Figure 3.2,
the computed weights grant an accurate final prediction, since they assign the
CGM data points to the most similar cluster, in this case cluster 3. On the con-
trary in Figure 3.3, which shows the CGM periods after dinner, the weights
computation leads to an incorrect assignment. Looking at the predicted pro-
files, it seems that the most accurate predicted profile is the one obtained with
the SARIMA model identified on cluster 5 or on cluster 6 (blue and violet line,
respectively). However, the highest weight is related to cluster 4 which accu-
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rately forecasts the initial samples (from 19.55 to 20.05) but then it is not able to
follow the target signal. Likely, the incorrect computation of weights could be
due to the fact that the prototypes in the training set are not completely able to
describe the current PP, thus suggesting that a larger training set is required.
Unfortunately, as shown in Table 3.4, similar results can be found even if a
larger dataset, like the CTR3, is considered.

3.5.3 Comparison with previous works

Although the comparison with literature contributions is not straightforward
due to the fact that in this chapter only PPs (and not the whole CGM traces)
are considered, the numerical results seem to be in line with the results re-
ported in [62, 79, 80, 98, 108]. Furthermore, the proposed methodology pro-
vides a performance similar to that obtained by more complex deep learning
methodologies exploiting additional information, as described in [70]. More-
over, comparing the main findings with respect to previous works about this
methodology shows quite different results in terms of performance metrics.
In [130], the forecasting accuracy of the proposed methodology is measured
by computing the RMSE for several PH. In [130], the proposed methodology
grants a RMSE = 9.99 mg/dL, 15.70 mg/dL and 19.29 mg/dL for PH = 30, 45
and 60 minutes. However, the authors focused on evaluating how successfully
the predicted trajectory fits actual CGM data, which is different from evaluat-
ing the accuracy of the predicted glucose levels at a certain PH ahead in time
as described in [131], and in this work. Another limitation of [130] is related
to the dataset. In [130] data are acquired during a clinical trial that comprises
18 closed loop experiments of 60 hours based on scheduled meal intakes and
exercise sessions. Due to the limited dataset, the reported results are related
only to the validation set. In the last work, [131], the RMSE is computed as de-
scribed in Equation 2.1, making a fair comparison between this work and [131]
possible. In particular, the RMSE achieved by predicting postprandial peri-
ods is approximately 15 mg/dL and 25 mg/dL for PH = 30 and 60 minutes,
respectively. In this work, as shown in Table 3.3 and Table 3.4, the RMSE for
PH = 30 and PH = 60 is about 21 mg/dL and 32 mg/dL. The main difference
among these results can be found in the dataset: in [131] authors exploited sim-
ulated datasets. These in-silico simulations have been performed by exploit-
ing a modified set-up of the educational version of the UVA/Padova simulator
[132]. In simulated datasets, glucose responses are quite similar and well de-
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3.5 Predictive performance on post-prandial periods

fined: after meal intake, BG increases and it returns to the euglycemic range
within 2.5 hours after meal.

3.5.4 Exploratory analysis on hypoglycemia prediction perfor-

mance

As described in the previous chapter, focusing on event prediction is a slightly
different task than BG levels forecasting. However, connecting these two dif-
ferent problems is possible by designing a methodology that can be used in
cascade to the BG prediction algorithm in order to convert predicted BG val-
ues into hypoglycemic alerts. For such a scope, we investigated hypoglycemia
prediction performance of the algorithms tested in this chapter by using a
standard (and simple) hypo-alert approach, based on a threshold crossing ap-
proach, that is, the algorithm raises a hypoglycemic alert if the predicted BG
level is below the hypoglycemia threshold.

Precision (%) Recall (%) F1-score (%) Time Gain (min)

C-SARIMA 52 67 59 10 [5-25]
ARIMA 55 69 61 10 [6.25-20]

ARIMAX 59 81 68 15 [10-25]
NN 44 78 56 10 [5-15]

NN-X 56 69 62 15[5-20]
Table 3.7: post-prandial hypoglycemia performance for OhioT1DM dataset (24 hy-
poglycemic episodes), PH = 30 minutes

Precision (%) Recall (%) F1-score (%) Time Gain (min)

C-SARIMA 45 65 54 12.5 [5-27.5]
ARIMA 41 73 53 10 [5-20]

ARIMAX 47 85 61 15 [5-25]
NN 30 68 42 10 [5-15]

NN-X 32 64 42 5 [5-25]
Table 3.8: post-prandial hypoglycemia performance for CTR3 dataset (37 hypo-
glycemic episodes), PH = 30 minutes
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3 Incorporating meal timing information in predictive algorithms

Following the framework proposed in Chapter 2, and in [48, 95], we evaluated
precision, recall and F-score as well as the time gain for a PH = 30 minutes.
In both datasets, the best results are achieved by individualized ARIMAX (F1-
score = 68% and F1-score=61%, for OhioT1DM and CTR3 respectively) while
C-SARIMA grants F1-score=59% and F1-score=54% for OhioT1DM and CTR3,
respectively. Considering the overall performance detailed in Table 3.7 and
Table 3.8, it seems that an effective prediction of hypoglycemia poses a difficult
challenge to C-SARIMA as well as to any other competitor methods (ARIMA
or ARIMAX, but also the nonlinear prediction algorithms).

3.6 Summary of the main findings

Summarizing, this chapter has shown:

• the combined use of CGM data and mealtime events to develop an artifi-
cially induced seasonal pattern associated with periodic meal consump-
tion;

• the assessment of a novel methodology (C-SARIMA) based on fuzzy
clustering and seasonal stochastic local models for the forecasting of BG
based on CGM and mealtime information;

• the performance of linear (ARIMAX) and nonlinear (NN-X) BG forecast-
ing techniques that employ as input: CGM, CHO intakes, and insulin
injections (time and dosing information).

In previous proof-of-concept works, C-SARIMA was shown to outperform
other literature methodologies, especially if long-term PH are considered. How-
ever, the assessment of the methodology was limited to well-controlled or sim-
ulated datasets and a more robust validation on real and challenging dataset
acquired in free-living condition was needed. For such a scope, the valida-
tion of the methodology has been done by exploiting two datasets to take
into account a different size of the datasets (i.e., the number of available mon-
itoring weeks/months) and insulin administration regiments (manual control
versus hybrid closed loop). The results found on both datasets are consistent
each other: the proposed C-SARIMA methodology outperforms individual-
ized ARIMA model for PH>45 minutes and NN for PH>60 minutes. Remark-
ably, there is no statistically significant difference between the results provided
by C-SARIMA and the ones provided by individualized ARIMAX model fed
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3.6 Summary of the main findings

by the CGM, CHO, and insulin information.
It is also interesting to note that individual ARIMAX models represent a viable
alternative to the more complex nonlinear methodologies tested in this chap-
ter, as also demonstrated in [62, 68]. In addition, it has been pointed out that
the prediction of hypoglycemia is a critical task for all the algorithms presented
in this chapter and requires the development of novel dedicated approaches.
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Chapter 4

Designing a predictive algorithm to
forecast hypoglycemic events

1 In Chapter 3, we focused on assessing a methodology based on clustering
and stochastic seasonal local models, which employs minimal input informa-
tion. For longer PH, C-SARIMA outperforms predictive algorithms fed by
CGM data only, but it is not able to provide a statistical significant improve-
ment with respect to individual ARIMAX or NN-X models fed by CGM, CHO
and insulin. These results suggest that the use of both timing and dosing infor-
mation for CHO and insulin is required to achieve better accuracy in predict-
ing BG levels. Also, we showed that an effective prediction of hypoglycemia
poses a difficult challenge to C-SARIMA as well as to any other comparator
method. For this reason, the purpose of this chapter is to improve real-time
prediction of impending hypoglycemic events using individualized ARIMAX
models that have been shown to be effective in BG prediction [62] and able
to capture the essential dynamics of glucose-insulin [56, 58, 139, 140, 141, 142].
More specifically, this chapter aims to show that the conventional approach for
real-time hypoglycemia forecasting can be improved by leveraging: a glucose-
specific cost function (named gMSE) in model parameters identification, and
a "prediction funnel", that is, confidence intervals (CI) for multiple PH, within
the hypo-alarm raising strategy. To this end, we employed a subset of the
CTR3 dataset (11 T1D individuals, 2 monitoring weeks) characterized by reli-
able meal and insulin dosing information which was already used in a previ-
ously published work [62].

1This chapter contains material published in Faccioli S.*, Prendin F.*, et al., Journal of Diabetes
Science and Technology, 2022, [138].
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4 Designing a predictive algorithm to forecast hypoglycemic events

4.1 Regression-based approaches for hypoglycemia

prediction in T1D

4.1.1 Chapter contribution

As pointed out in a recent report on AI applications for diabetes management
[41], the combined use of CGM devices, insulin pumps and dedicated mobile
applications [42] brought the possibility of recording different type of informa-
tion, for instance, CGM data, insulin, meal, physical activity, and self-reported
life events. This enables the development of advanced AI-enabled DSS, which
are composite tools that implement multiple software modules to support the
patient in the decision-making process. One of the key elements that can be
embedded in an advanced DSS is the prediction module. In fact, knowing
ahead in time, e.g., with 20 minutes of time anticipation, if blood glucose (BG)
is getting close to possibly harmful values allows patients to take proactive ac-
tions to mitigate or avoid critical episodes like hypoglycemia (i.e., BG below 70
mg/dL), considerably improving T1D management [19, 20, 27, 143, 144, 145].

A large number of literature studies focused on the challenge of forecast-
ing hypoglycemic episodes in the short-term [146]. More specifically, hypo-
glycemia prediction was addressed by either classification-based or regression-
based approaches. Classification-based approaches consist in developing a
binary classifier [147], i.e., an algorithm producing only two types of possi-
ble output, "impending hypoglycemia" or "no hypoglycemia predicted". On
the contrary, regression-based approaches are two-steps procedures that (as
a first step) predict the future glucose concentration after a certain predic-
tion horizon (usually chosen in the range 30-60 min), and then (as second
step) raise an alarm if the predicted value falls below a suitable threshold
(usually, but not necessarily, 70 mg/dL). Predicted glucose levels in the first
step can be obtained by using either linear [56, 58, 139, 140] or non-linear
methodologies [48, 114, 125, 126, 148, 149, 150]. The purpose of this chapter
is to improve the real-time forecasting of impending hypoglycemic events in
T1D when CGM data, injected insulin and meal intake information are avail-
able. For such a purpose, this chapter exploits individualized ARIMAX mod-
els which, as already mentioned, were shown to be effective in BG prediction
[62] and capable of capturing the essential dynamics of glucose-insulin regula-
tion [56, 58, 139, 140, 141, 142]. Moreover, they present two important charac-
teristics: a) the model parameters individualization (a key aspect to deal with
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4.1 Regression-based approaches for hypoglycemia prediction in T1D

the large inter- and intra-subject variability of glucose-insulin dynamics) has
been deeply studied and powerful convergence results as well as statistical
properties analysis are available in the literature [109]; b) BG prediction can be
computed using well-established and computationally convenient algorithms,
such as those tracing back to Kalman filtering [151].

Specifically, this chapter demonstrates that there are two margins of im-
provement within conventional approaches employed in the literature for the
real-time forecasting of hypoglycemic events. The first one is about the model
identification procedure. In particular, instead of using the classical Mean
Square Error cost function, we consider a glucose specific cost function, named
glucose Mean Square Error (gMSE) proposed in [152]. This cost function, that
applies an extra penalty to overestimation of low BG and to underestimation
of high BG, enables the identification of more effective subject-tailored mod-
els for predicting hypoglycemic episodes. The second margin of improvement
regards the alarm-raising strategy. Instead of focusing on a single PH (as con-
ventionally done in the literature), we consider the "prediction funnel", i.e.,
confidence intervals for simultaneously multiple PH, in order to take into ac-
count the expected decrease of accuracy in the prediction as the PH increases.

4.1.2 Chapter outline

In Section 4.2 we described the dataset reduction and the preprocessing steps
required to deal with data of different nature, then we introduced the conven-
tional regression-based approach to forecasting hypoglycemic events (Section
4.3). Finally, we detailed the new approach that focuses on: the use of the glu-
cose specific cost function for models’ parameters identification and the use of
the prediction-funnel for the hypoglycemic alarm strategy (Section 4.4). Also,
we designed two different hyperparameters tuning strategies to further im-
prove the forecasting capabilities of the algorithm. Finally, a systematic evalu-
ation of the contribution given by the proposed novelties is assessed by mea-
suring precision, recall, F1-score, false-positive per day and time gain (Section
4.5). Sections 4.6 and 4.7 present the main results and preliminary conclusions
of the analysis conducted so far.
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4 Designing a predictive algorithm to forecast hypoglycemic events

4.2 Dataset and preprocessing steps

As for the previous chapter, data were taken from a previously published pa-
per [94], to which we refer the reader for any protocol detail. Briefly, a group
of 14 T1D individuals participated in the 5-month test of the 24/7 use of a
hybrid closed-loop insulin delivery system. Among the collected data, those
of interest for the purpose of this work are: CGM readings, recorded using a
Dexcom G4 sensor (Dexcom, Inc., San Diego, CA, USA) with a sampling pe-
riod time of 5 min; time-course of the insulin infusion delivered by the Roche
Accu-Check Spirit Combo device (Roche Diabetes Care, Inc., Indianapolis, IN,
USA); amounts of carbohydrates ingested at meals (CHO), as estimated and
manually annotated by the participants.

Dealing with experimental data of different nature (CGM, insulin informa-
tion and CHO intake) poses some technical issues related to: a) device synchro-
nization; b) completeness of stored data. These problems are faced as follows:

• all signals were aligned to the same time grid uniformly sampled at TS =

5 min;

• if one or more signals presented gaps longer than 30 minutes, the entire
data portion was discarded, as data off-line inference is deemed unreli-
able.

Then, for each patient, two consecutive portions of 7 days without dis-
carded data were selected. The two portions contained only a few hours of
missing CGM values due to sensor replacement. The so selected 14-day long
dataset was then split in training-set (first 7 days) and test-set (last 7 days).
Finally, the remaining short data gaps were reconstructed. The reconstruction
strategy depends on whether the gap occurs in the training or in the test set.
Since the training-set is entirely available during the model training phase,
non-causal techniques can be used to reconstruct missing training data. In this
case, we adopted a third-order spline interpolation. On the contrary, on the
test-set glucose prediction has to be performed in real-time, so missing data
(about 1% on average per subject) was filled by exploiting the last few avail-
able CGM samples. In particular, a first order polynomial is fitted by exploiting
the last 15 minutes of recorded CGM data and then, such a model is used to in-
fer missing data. Notably, 3 out of 14 subjects lacked a sufficiently long portion
of consecutive data.
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4.3 Conventional regression-based approach to the prediction of impending
hypoglycemic events

In summary, the analysis is conducted on data of 11 subjects. For each sub-
ject 7 days of training data and 7 days of test are available. In this population,
39 hypoglycemic episodes were observed in the training set and 42 episodes
occurred in the test set. This amount to an average of 1 hypoglycemic episode
in every 2 days per patient.

4.3 Conventional regression-based approach to the

prediction of impending hypoglycemic events

In this chapter we considered, as baseline for the assessment, a regression-
based hypoglycemia prediction algorithm which consists of two steps: 1) iden-
tification of a model suited to predict future glucose levels in real-time using
CGM, insulin and CHO information; 2) threshold-crossing alarm-raising strat-
egy.

For step 1, based on previous findings [62, 95], we employ an ARIMAX
model that can be described by the following equation:

A (q) y (t) = Bins (q) ins (t− nkins) + Bcho (q) cho (t− nkcho) +
C (q)

(1− q)−1 e(t)

(4.1)
where y (t) is the current CGM reading, ins (t) and cho (t) are the model

inputs: insulin and carbohydrates intake, respectively and e (t) is the noise
term assumed to be identically, independently distributed (i.i.d). Finally, q is
the backward shift operator such that q−1u (t) = u(t− 1).

A (q) = 1 + a1q−1 + . . . + ana q−na (4.2)

Bins (q) = b1ins + b2insq−1 + . . . + bnb_ins q
−nb_ins+1 (4.3)

Bcho (q) = b1cho + b2choq−1 + . . . + bnb_cho q−nb_cho+1 (4.4)

C (q) = 1 + c1q−1 + . . . + cnc q
−nc (4.5)

The order of the autoregressive part (i.e. the number of past CGM readings
required by the model) is defined by na, nb_ins and nb_cho indicates the order of
the inputs (insulin and cho, respectively). nc is the order of the moving average
part of the model. The inputs’ delays are indicated by nkins and nkcho.

na, nb_ins, nb_cho and nc represent the degrees of freedom of the model and
they are selected by using the bayesian information criterion (BIC).
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To estimate the unknown model parameters

θ = [a1, . . . , ana | b1ins, . . . , bnbins
|b1cho, . . . , bnbcho

|c1, . . . , cnc ], the classic predic-
tion error method (PEM) approach of minimizing the standard mean square
error (MSE) cost function:

θ̂ = argminθ MSE (g(k), ĝ(k|k− 1, θ)) , (4.6)

is considered, with

MSE (g(k), ĝ(k|k− 1, θ)) = 1
N ∑N

1 (g(k)− ĝ(k|k− 1, θ))2 (4.7)

where N is the number of available data samples, g(k) is the CGM-measured
glucose at time k, and ĝ(k|k− 1, θ) is the 1-step ahead prediction, i.e., the glu-
cose value at k predicted at time k− 1 by the model (and thus dependent also
on the model parameters θ). Once the model parameters are identified, the
model can be used to predict the future glucose level ahead in time at a certain
PH, a quantity denoted as ĝ(k + PH|k, θ).

For step 2, a hypoglycemic alarm is raised if ĝ(k + PH|k, θ) is below the
hypoglycemic threshold of 70 mg/dL.

Note that using this method, from now on called single-PH approach, at
each step k only one prediction is considered. Hence, PH is a key tuning pa-
rameter of this strategy. A typical PH value is 30 min. A schematic representa-
tion of the conventional approach is reported in Figure 4.1 (upper panel).

4.4 Proposed novel approach to the prediction of

impending hypoglycemic events

As previously described, an innovation is introduced for each of the two steps
of the conventional approach described in the previous section. In step 1, the
ARIMAX model is identified, at the individual subject level, using a glucose-
specific cost function which takes into account the clinical impact of the pre-
diction error. In step 2 the alarm strategy is based on a prediction–funnel ap-
proach, which exploits the possibility of handling the ARIMAX model within
a Kalman filtering framework. A schematic representation of the proposed ap-
proach is reported in Figure 4.1 (bottom panel). Details of the innovations are
described below.
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Figure 4.1: Schematic representation of the conventional approach (upper
panel: MSE+single-PH alarm strategy) and the proposed approach (bottom panel:
gMSE+prediction-funnel alarm strategy).

4.4.1 Glucose specific model identification

In step 1, the parameter estimation strategy relies on the minimization of an
ad-hoc cost function, called glucose-specific mean square error (gMSE), [152].
This metric, inspired by the well-known Clarke error grid (CEG) [153], modi-
fies MSE to account for the clinical impact of the prediction error. This is done
by increasing MSE values up to 250% in case of glucose over-estimation dur-
ing hypoglycemia and up to 200% in case of glucose under-estimation in hy-
perglycemia. By doing so, over-estimation in hypoglycemia is penalized more
than under-estimation in the same region. In fact, the first situation is clinically
more dangerous: it could prevent the detection of an hypoglycemic episode or
induce an optimistic evaluation of its severity, leading to inadequate treatment.
A symmetric reasoning holds for the case of hyperglycemia but, since hypo-
glycemia is deemed more dangerous than hyperglycemia, in the first case MSE
is increased more (up to 250%) than in the second case (only up to 200%). The
MSE is increased so that gMSE retains two fundamental mathematical prop-
erties of the original metric, smoothness and convexity, as they simplify the
optimization involved in the parameter estimation. The estimated model pa-
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rameters θ̂ were obtained as follows:

θ̂ = argminθgMSE (g(k), ĝ(k|k− 1, θ)) . (4.8)

By doing so, the identified model provides more accurate and clinically
relevant prediction in the hyper- and hypoglycemic range than in the normal
range, thus permitting more effective hypoglycemia prediction.

4.4.2 Derivation of the Kalman predictor

Once the model is identified (step 1), the PH-step ahead prediction can be de-
rived from that model for any value of PH. This is done by applying a standard
Kalman predictor framework [109, 151].

Let us define a discrete state-space model in innovation form as in [109]:

x(k + 1) = Ax(k) + Bu(k) + Ke(k)
g(k) = Cx(k) + e(k).

(4.9)

x(k) is the n× 1 state vector; u(k) is the p× 1 vector of input (in our case
p = 2, u(k) = [i(k), m(k)]T, where i(k) is the insulin-related time series, while
m(k) accounts for CHO assumptions); g(k) is the CGM concentration; e(k) is
the innovation noise (white zero-mean noise with variance σ2

e ). Its value can
be estimated from the data using the 1-step ahead prediction residual; A is the
n× n state matrix, B is the n× p input matrix, K the n× 1 noise-state vector,
and C is the 1× n output vector. A, B, C, and K, as well as σ2

e , are obtained by
first identifying an ARIMAX model on the patient data and transforming the
obtained model in state-space form [109].

The Kalman predictor [151] associated to the identified model is:

x̂(k + 1|k) = Ax̂(k|k− 1) + Bu(k) + K(g(k)− ĝ(k|k− 1))

ĝ(k|k− 1) = Cx̂(k|k− 1),
(4.10)

where x̂(k + 1|k) and ĝ(k|k − 1) are the 1-step ahead predicted states and
glucose, respectively.

It can be shown that the PH-step ahead prediction can be obtained as [151]:

ĝ(k + PH|k) = CAPH−1x̂(k + 1|k)+
+C ∑PH−1

i=1 APH−1−iBu(k + i)
(4.11)

starting from x̂(k + 1|k), i.e., the prediction provided by the Kalman pre-
dictor.
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The Kalman predictor just described also provides an estimate of the vari-
ance of the state prediction error, Σ(k|k− 1), and of the variance of the glucose
prediction error:

σ2(k|k− 1) = CΣ(k|k− 1)CT + σ2
e . (4.12)

If we consider a PH-step ahead prediction (equation ), it is possible to com-
pute the variance of the state prediction error [109, 151] , Σ(k + PH|k), and
thus the variance of the glucose prediction:

σ2(k + PH|k) = CΣ(k + PH|k)CT + σ2
e . (4.13)

Please note that the model identification phase estimates both the deter-
ministic and the stochastic model describing the system. No further tuning of
the Kalman predictor is then requested.

4.4.3 Prediction-funnel alarm strategy

In step 2, the novelty consists in the use of the prediction-funnel within the
alarm raising strategy. In devising the new strategy, the starting point was
noting that several approaches proposed in literature focused on one single
prediction and they seldom account for prediction accuracy in detecting the
crossing of the hypoglycemic threshold [56, 58]. So, the proposed alarm strat-
egy considers simultaneously multiple predictions at different PH, account-
ing also for their uncertainty. As previously discussed, when employing the
Kalman predictor, it is now possible to obtain multiple predictions in a com-
putationally efficient manner:

ĝ(k + 1|k), ĝ(k + 2|k), . . . , ĝ(k + PH|k), (4.14)

and the corresponding variance of the prediction error, for each PH:

σ2(k + 1|k), σ2(k + 2|k), . . . , σ2(k + PH|k). (4.15)

This information is used to equip each prediction with a confidence inter-
val,

ĝ(k + i|k)±mσ(k + i|k), for i = 1, . . . , PHmax (4.16)

thus, obtaining a prediction–funnel, shown in Figure 4.2.
The parameter m is a tuning parameter that increases or decreases the width
of the funnel.
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Figure 4.2: Illustration of the prediction-funnel and the role of α(m). The blue dot
is the current BG values (g(k)) the grey dots are the predicted glucose levels ĝ(k +
1|k), ĝ(k + 2|k), . . . , ĝ(k + PHmax|k), the dashed lines are the confidence intervals. In
this illustrative example, the orange area, α(m) is the probability that ĝ(k+4|k) (green
dot) is below the hypoglycemic threshold.

Once the prediction–funnel is obtained, the upper bound of the prediction’s
confidence intervals is monitored to detect if it goes below the hypoglycemic
threshold trh = 70 mg/dL for some of the considered prediction horizons. In
other words, it is checked if

ĝ(k + PH|k) + mσ(k + PH|k) ≤ trh = 70 mg/dL (4.17)

for any PH = 1, . . . , PHmax.

An alarm is then raised if this happens for at least Npred samples of the
considered prediction horizons.

For instance, if Npred = 1, to raise an alarm it is required that one sample of
the prediction-funnel falls below the hypoglycemic threshold. On the contrary,
if Npred = PHmax, an alarm is raised if the entire prediction-funnel is found to
be below the hypoglycemic threshold. A preliminary investigation to tune
Npred, reported in the following section, shows that the best performances are
achieved with Npred = 1 and PHmax = 60 minutes.

The tuning of the remaining degree of freedom, the parameter m, will be
briefly described in the following, proposing two different strategies. In fact,
as described in equation 4.17, increasing m will make the alarm more conserva-
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tive. To gain a more intuitive feeling on the role of this parameter, it might be
useful to interpret m as the tuning knob associated with the probability α(m)

that the predicted BG level falls below 70 mg/dL, see Figure 4.2. While the
exact relationship between m and the probability α(m) depends on the true
distribution of the prediction error, a common approximation is to assume it
as a normal distribution. The accuracy of this approximation is not of criti-
cal important since the only purpose of α(m) is interpretability and the actual
value of this probability is not used with the algorithm, based only on m.

Figure 4.3: Recall vs FP/day analysis: each curve is obtained using different values
of Npred, each point is obtained for different values of m.

4.4.4 Hyperparameters tuning

The prediction-funnel alarm strategy requires to accurately tune two parame-
ters: m and Npred. As a first step, we investigated population parameters, that
is, same parameters’ values for all the individuals. To do so, the performance
of the proposed approach are computed for each couple [m, Npred] and they are
reported as a point in the space [R, FP/day]. Grid ranges for m = {0.01, . . ., 4}
and Npred= {1,. . .,12}. Each curve of Figure 4.3 is obtained for different values
of Npred and colored depending on it, while different points of the same curve
are obtained using different values of m. The ideal performance can be found
in the bottom right corner (i.e., R=100%, FP/day=0). As shown in Figure 4.3,
increasing Npred leads to performance deterioration: the larger the number of
consecutive samples satisfying equation 4.17, the lower the number of hypo-
glycemic alarms raised by the algorithm, thus leading to an increased number
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of FN. Considering m, the smaller its value, the more aggressive the algorithm,
thus leading to a better R but also to a large number of FP/day. Considering
Figure 4.3, m seems to be the most impacting parameter. Therefore, we de-
cided to keep Npred = 1 for all the subjects but to optimize m for each subject.
In particular, we explored two different personalized strategies to tune m by
using the training set. In tuning 1, m is set in order to provide a similar recall
as the one achieved by the state-of-art (in Table 4.1, MSE + single-PH, PH =

30 min). As a second alternative approach (named tuning 2), m was chosen to
maximize F1-score.

4.5 Assessment of the proposed algorithm

4.5.1 Criteria for the assessment

Following the definition proposed in the consensus paper [154], we say that an
hypoglycemic episode (HE) has occurred at time k∗ if CGM is below 70 mg/dL
for a period of at least 15 minutes. Then, similarly to Chapter 2 but with some
modifications to take into account for the use of multiple PH, we define:

• True Positive (TP) if an HE occurred at time k∗ and an alarm is activated
before the event, precisely in a window from 60 and 5 minutes before k∗.
Remark: According to this definition, only the alarms which are relatively
close to the HE are considered correct, while alarms too far apart in the
past are not counted as TP;

• False Positive (FP) if an alarm is raised at time k̄ but no hypoglycemia
occurred in the following 60 minutes;

• False Negative (FN) if an HE occurred at time k∗ but no alarms are trig-
gered by the algorithm in the previous 60 minutes.

Finally, special attention is given to late alarms, defined as alarms at time k∗

or up to 15 minutes after. Clearly, these episodes are not counted as TP, as
they were not timely triggered. On the contrary, they increase the count of FN.
However, they cannot be considered as erroneous, so they do not increase the
count of FP.

Once the events were labeled as TP, FP, and FN, we computed Precision,
Recall and F1-score to evaluate the state-of-art and the proposed approaches.
As already discussed, precision (P) is the fraction of the correct alarms over
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the total number of raised alarms. Recall (R), also known as sensitivity, is the
fraction of correctly detected hypoglycemic events over the total number of
events. F1-score (F1) is the harmonic mean of the two previous metrics.

Since the dataset is strongly unbalanced, we also evaluated the average
number of FPs generated by the algorithm in one day (FP/day). Finally, we
calculated the time gain (TG) of the hypoglycemic alarms as the time between
when the alarm was raised by the algorithm and the start of the HE. According
to the definition of TP, the maximum achievable TG is 60 min, while the lowest
is 5 min.

We reported only the overall recall on the population (fraction of detected
hypoglycemic episodes with respect to all the events occurred in the popu-
lation) and the overall precision, as well as the overall F1-score. To assess
the statistical significance of the differences observed in recall and precision
a chi-square test of independence with 1 degree of freedom was applied, as
suggested in [155]. Moreover, the TG that is reported as mean and standard
deviation (SD) of the time gain of every detection (regardless the patient in
which the detection occurred).

Whilst the overall test set (7 monitoring days for each subject) includes 42
hypoglycemic episodes, single patient data presents only a small number of
hypoglycemic episodes (on average, 1 every 2 day for each subject) and thus
single-patient level analysis is omitted. In fact, single patient recall would be
strongly quantized: for instance, in a patient with 2 hypoglycemic episodes,
recall can take only three values: 100%, 50% or 0%.

4.5.2 Hypoglycemia forecasting performance

Table 4.1 shows the hypoglycemia prediction performances of several config-
urations of the described prediction algorithms. In particular, the first row,
highlighted with grey background, reports the baseline performance achieved
by the conventional algorithm using individualized models, identified mini-
mizing MSE, and considering only one prediction horizon, PH = 30 min. The
last row of the table, also highlighted with grey background, reports the per-
formance achieved by the new algorithm proposed in this work that includes
both the improvements induced (the use of gMSE for model identification and
the prediction–funnel-based strategy). To elucidate the contribution of each
proposed innovations to the final performance, Table 4.1 reports also the per-
formance achieved with inclusion of one modification at the time (gMSE +
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4.5 Assessment of the proposed algorithm

single-PH and MSE + prediction–funnel). Moreover, different values of the
hyper-parameters are investigated.

Focusing first on the single-PH strategy, we investigated the impact of PH
on the prediction performance of the state-of-art approach, by evaluating three
possible PH: PH = 30, 45, and 60 minutes. The best results are achieved with
the PH = 30 min, that is in fact commonly adopted in literature. In particular,
the larger the PH, the higher the TG, but at the expenses of a worse P, R, and
FP/day. For instance, comparing the state-of-art approach with PH = 30 min
and with PH = 60 min we can see that TG increases from 15 to 20 minutes
(mean values), but P falls from 43% to 36% and R from 95% to 76%, while
FP/day increases from 0.77 to 0.82.

The introduction of the gMSE in place of the MSE, improves both the preci-
sion and the recall with respect to the state-of-art approach. This holds true for
all considered values of PH. Considering for instance PH = 30 min, with the
use of gMSE, P increases from 43% to 44%, R from 95% to 100%, while FP/day
and TG are almost the same.

We then investigated the impact of the improved alarm strategy (predic-
tion–funnel instead of using a single-PH). In particular, two different approaches
to the tuning of the parameter m were considered. In both cases, we considered
a patient-specific m, but in the first approach m was set in order to get a similar
recall as the one achieved by the state-of-art (MSE + single-PH, PH = 30 min).
As a second alternative approach m was chosen in each patient to maximize
the F1 in the training-set of that patient. The first approach is presented in
Table 4.1 as tuning 1, whereas the second is denoted tuning 2.

The improvement granted by the prediction–funnel is clearly visible with
tuning 1, that offers higher precision, higher F1 and less FP/day with respect to
the state-of-art: P increase from 43% to 51%, F1 from 59% to 65%, and FP/day
decreased from 0.77 to 0.59. This improvement is achieved while retaining
similar recall (R from 95% to 91%). The performances of tuning 2 are more
difficult to interpret, since it selects a different trade-off between precision and
recall. Specifically, it renounces to some recall in favor of a better precision and
less FP/day, leading to an overall improvement in the F1-score.

Finally, combining the two improvements, the algorithm proposed in this
work outperforms the state-of-art. Once again, this is clearly visible with tun-
ing 1, that grants similar recall and TG of the state-of-art (above 95%) but with
higher precision, F1-score, and less false positives: P from 43% to 51%, F1 from
59% to 69%, and false positives-per-day decreased from 0.77 to 0.59. By adopt-
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ing a slightly more conservative approach, proposed in tuning 2, precision and
false positives can be further improved (P = 65%, FP/day = 0.29, i.e., about
one every 3 days), at the expenses of a deterioration of the recall (R = 88%).
This new trade-off offers a better F1-score that reaches 75%. The chi-square test
proposed in [155] shows that the proposed approach has statistically signifi-
cant better precision and FP/day, with respect to the conventional approach
(p-value< 0.01 and <0.0001, respectively). No significant difference is found
on in the recall (p-value= 0.22).

Remark. According to HE definition formulated in [154], an event in which
CGM data fall below the hypoglycemic threshold only for one- or two-time
samples should not be considered an hypoglycemia. However, if an alarm is
raised in these situations (that we will call in the following quasi-hypoglycemic
episodes, qHE), such an alarm will count as a FP. FP error caused by a qHE
could be considered less clinically relevant than other FPs, therefore we also
report how many FPs are of this kind. For the state-of-art method (MSE +
single-PH approach, PH = 30 min), 26% of the recorded FPs were associated
to qHE, while this percentage raises to 34% with the newly proposed algo-
rithm (gMSE + prediction–funnel), further supporting the superiority of the
proposed algorithm. Discarding these events from the FP count, as frequently
done in literature, would reduce the FP/day from 0.77 to 0.62 and increase the
precision from 43% to 54% for the state-of-art approach while, for the proposed
approach, would decrease FP/day from 0.29 to 0.21 and increase P from 65%
to 73%. Another consequence of the HE definition adopted, is that even a non-
predictive hypoglycemia detection algorithm, simply based on the CGM trace
crossing the 70 mg/dL threshold, may raise false positive alarms (FP/day =

0.2). In fact, according to our definition of TP, the CGM reading produces only
late hypo-alarms (events that will be detected exactly whenever they started:
TG = 0 min). As a consequence, TP count is bound to be 0, and both recall and
precision are necessarily 0, (i.e., P=R=0).

4.5.3 Comparison with state-of-art

While the presented results showed the benefit of including the two proposed
novelties in the conventional, regression-based, linear hypoglycemia predic-
tion algorithm, it might be of interest to investigate how the prediction per-
formance of the improved algorithm positions with respect to other contribu-
tions. To this aim, we propose a tentative comparison based on the results re-
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ported in the previously mentioned works [48, 58, 114, 125, 139, 145, 149, 150].
However, it is difficult to define a fair comparison: different definition of the
events might significantly impact on the final metrics, as shown by the previ-
ous section, where a seemingly minor modification in the definition of HE has
non-negligible impact on FP/day and precision. Moreover, different dataset
might be collected in very different conditions (highly controlled clinical trials
vs. real-life) introducing a further confounding factor. Authors in [48, 58, 149]
reached a recall, respectively, of about 93%, 93%, and 86%, comparable or
slightly superior to the recall of our algorithm, with R = 88%, at the expense
of lower precision: about 24%, 38%, and 62%, while the proposed approach
in this work achieved P = 65%. Similarly, [58, 125] achieved the remarkable
recall of R = 100%, but at the expense of a very high number of FPs (more than
1 FPs per day). Authors in [114, 139, 140] showed a similar recall to the one
obtained in this work (89%, 94%, and 94%) with a better precision (78%, 90%,
and 77%). However, the authors adopted a more permissive HE definition. For
instance, [114] considered as TPs also alarms raised after the CGM crossed the
hypoglycemic threshold, whereas we consider them as FNs. In [139], perfor-
mance was assessed using controlled inpatient data. Authors in [150] showed
a slightly inferior recall (86%) and did not report any metrics related to false
alarms. So, to overcome the above-mentioned limitations in comparing litera-
ture contributions with the proposed algorithm, we provided the performance
granted by a baseline (we named conventional approach). Remarkably, such
a baseline is found to be a challenging competitor: its hypoglycemia predic-
tive performance are in line -or even outperform- some literature findings, for
instance [48, 58, 149]. However, the proposed solution largely improves the
conventional approach in terms of precision (65% vs 43%, p-value < 0.01) false
positive per day (0.29 vs 0.77, p-value <0.0001) and F1-score (75% vs 59%) at
the expenses of a slightly but not statistically significant (p-value = 0.22) dete-
rioration of the recall (88% vs 95%).

4.6 Summary of the main findings

In this chapter we explored a new approach to predict hypoglycemic events
that is based on an individualized ARIMAX models, identified by using a
cost function specifically designed to account for the clinical impact of pre-
diction error, and on a novel alarm strategy that considers the entire predic-
tion–funnel. The results show that models identified via gMSE minimization
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provide better hypoglycemia prediction performances than models based on
MSE. Furthermore, results show that the new alarm-raising strategy based on
the prediction–funnel improves hypoglycemia forecasting, thanks to the pos-
sibility of exploiting multiple PH. The adoption of both the proposed improve-
ments grants the best performances.

As a final remark, we focused on personalized models in order to deal with
the large inter-individual variability characterizing T1D population. The slow
changes in patient physiology occurring over the weeks (intra-patient variabil-
ity) are not evaluated as this contribution focuses on 1 week of data. A natural
option to deal with intra-patient variability is to resort to recursive model iden-
tification techniques, well-established methods for tracking the changes in pa-
tient dynamic by updating the model every time a new measurement becomes
available [59, 156, 157]. Nevertheless, given the relatively slow time scale of
intra-patient changes, daily or weekly updates of the model, simply obtained
by periodically repeating the proposed model identification procedure on the
most recent 7 days of data, are expected to be sufficient.

4.7 Preliminary conclusions on the use of different

input information and algorithms

The results presented in Chapters 2, 3 and 4, can define a preliminary picture
about the importance of different input information and algorithms for glu-
cose prediction and hypoglycemia forecasting. As a general trend, predictive
performance can be classified on the basis of the PH:

• for short-term prediction (PH≤30 min), CGM-only predictive algorithms
based on linear models (in particular, ARIMA-based predictors) repre-
sent a practically valuable option to achieve accurate BG predictions,
even if compared to their nonlinear counterpart (i.e., NN). However, an
intrinsic drawback of all these models (posing some issues about their
performance in long-term forecasting) is that any metabolic disturbance,
e.g., a meal, would deteriorate the accuracy of the predicted BG levels;

• for PH > 30 min, the addition of insulin and CHO data to CGM in pre-
diction models can improve the performance of algorithms. Also in this
scenario, the use of nonlinear techniques tested so far, substantially more
complex than their linear counterparts, does not seem to improve the
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prediction performance significantly. This suggests that linear methods
are still valuable options that offer a good trade-off between complexity
and performance. However, the real-world application of these methods
is limited to the use of supplementary portable devices and / or dedi-
cated mobile applications that, at present, are not widely used by most
individuals with diabetes;

• for PH>45 min, the use of CGM data and mealtime (to enforce an artif-
ical seasonality in glucose data) allows C-SARIMA to outperform CGM-
only models. This approach has the practical advantage of minimal in-
put information required (reducing patient’s burden in recording meal
information). However, this method does not provide a significant im-
provement with respect to algorithms that employ both CHO and insulin
(dosing and timing information).

Focusing on the prediction of hypoglycemia is a slightly different task from
the forecasting of glucose levels. However, as described in Chapter 2, con-
necting these two different problems is possible by using specific algorithms
or strategies that should be used in cascade to the punctual BG prediction to
raise hypoglycemic alerts. As shown in Chapters 2 and 3, this task is challeng-
ing for all algorithms (linear and nonlinear) and by using any combination of
the inputs considered (CGM only, CGM and meal time, CGM and CHO and
insulin). Therefore, we modified the standard approach by introducing two
innovations to improve the overall performance. Of note, the proposed novel
approach, with adequate adjustment, can be employed in any nonlinear BG
predictive models.

So far, we focused on intensively evaluating BG forecasting algorithms
based on traditional black-box methods, such as ARIMA, ARIMAX, NN and
other variants. Since the use of CGM, CHO and insulin data is found to be
the best input information, we move a step forward by investigating a white-
box physiological model within the particle filter to forecast BG levels, and by
proposing other more complex machine and deep learning methods for BG
forecasting.
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Chapter 5

White-box and advanced black-box
models for BG forecasting

1 So far, we have modeled the complex glucose-insulin system using black-box
models that aim to learn the input-output relationship from patient-recorded
data. We have shown that the best predictive performance can be achieved
by adding CHO and insulin (timing and dosing) information to CGM data in
predictive models. Moreover, we found that there are no large differences in
the forecasting accuracy among the evaluated linear and nonlinear state-of-art
algorithms once fed by same input information. Another option to describe
glucose dynamics is to resort to physiological white-box approaches: math-
ematical models characterized by a physiologically consistent mathematical
structure (usually defined by several differential equations) and a set of model
parameters. The development of a personalized algorithm based on a large
scale physiological model is a challenging task that requires advanced tools
for its identification and dedicated approaches to employ it for the prediction
of BG levels. In this chapter, we explore the potential of using a physiological
model by introducing: i) a reduced version of the Uva/Padova maximal model
of glucose-insulin dynamics; ii) a Markov Chain Monte Carlo (MCMC) identi-
fication strategy for model individualization, and iii) a particle filter frame-
work for the forecasting of BG levels. The derived physiological model is
compared to three deep learning algorithms and to an advanced linear non-
parametric approach that recently proved effective in glucose prediction [62].
Algorithms’ assessment has been performed on the OhioT1DM dataset.

1This chapter contains material to be submitted for publication as Cappon G.*, Prendin F.*, et
al., "Individualized Models for Glucose Prediction in Type 1 Diabetes: comparing black-box approaches
to a physiological white-box one", IEEE Transaction on Biomedical Engineering, 2022.
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5.1 Physiological-based and data-driven models

5.1.1 Chapter contribution

In the recent years, the large availability of data coupled with the technological
advancement in diabetes management have led the community to investigate
more complex and advanced methodologies for BG forecasting, such as novel
machine/deep learning strategies [41, 46, 80] and non-parametric models [62].
These data-driven models enable the description of complex, nonlinear in-
teractions between input and output data disregarding any prior knowledge
about the underlying physiological process and they do not need any detailed
description of the internal, metabolic dynamics of the glucose-insulin systems.
However, unknown disturbances, large inter-/intrapatient variability in glu-
cose physiology make accurate BG predictions a challenging and still open
problem. In this context, physiological white-box models represent an alterna-
tive to black-box approaches. In particular, among the nonlinear physiological
models available in the T1D literature, there are the so-called minimal mod-
els [158], that proposed simplified descriptions of the physiology with a few
equations and model parameters. This parsimonious parametrization grants
identifiability in pre-defined experimental conditions but, unfortunately, these
models have proved too rigid and simplistic to allow accurate prediction [50].
A possible white-box alternative are maximal models, commonly used in com-
puter simulations [85, 86, 159, 160]. They provide a more realistic physiologi-
cal description by using several equations with many parameters. A key chal-
lenge that prevented the use of these models for glucose prediction is that their
many parameters are hard to be estimated form easily accessible patient data
(i.e. CGM, meal and insulin data), making them hard to personalize and thus
limiting their predictive effectiveness. Moreover, they have a nonlinear struc-
ture, requiring sophisticated tools both for parameters estimation and for the
computation of glucose prediction.

In this chapter, we face the challenges mentioned above and explore the
potential of using a white-box maximal-model based methodology for glu-
cose prediction, comparing it to black-box alternatives. The adopted white-box
model is inspired by the Uva/Padova T1D Simulator (T1DS), [161], accepted
by the US Food and Drug Administration (FDA) as a replacement of animal
preclinical testing of closed-loop drug delivery systems. Also, T1DS provides
a population of 100 virtual adult subjects, each characterized by a different vec-
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tor of physiological parameters to capture the inter-/intra-subject variability of
T1D population. A Bayesian approach, implemented by Markov Chain Monte
Carlo (MCMC) [162], is used to estimate the large number of parameters in the
presence of complex nonlinear dynamics. The obtained personalized model
is then used within a nonlinear prediction scheme based on a particle filter
methodology [163]. For what it concerns the deep learning models, we de-
veloped two different recurrent neural network architectures that implement
feedback connections to learn the long and short-term dependencies in time se-
ries data: a multi input LSTM and a Gated Recurrent Unit (GRU). Also, we im-
plemented a Temporal Convolutional Network (TCN) that uses convolutional
operations to capture local and temporal information. Finally, predictive per-
formance are assessed on the OhioT1DM dataset. These open-loop data, which
are recorded under free-living conditions, represent a suitable choice for our
scope as: i) they comprise large disturbances to glucose homeostasis (making
the prediction of BG levels very challenging) and ii) they avoid the introduc-
tion of identification artifacts that usually occur when dealing with data from
complex dynamical systems under closed-loop conditions [109, 151, 164].

5.1.2 Chapter outline

This chapter is organized as follows. Section 5.2 describes the proposed nonlin-
ear physiological model of glucose-insulin regulation used for BG prediction
(as well as the a priori information available from the literature on its param-
eters). Section 5.2.4 presents its identification through a Markov Chain Monte
Carlo (MCMC) Bayesian estimator capable of personalizing model parameters.
Section 5.2.5 describes the particle filter framework to compute glucose predi-
tion ahead in time. Section 5.3 introduces the black-box deep learning models
and the advanced nonparametric approach. Finally, Section 5.5 illustrates the
predictive performance and Section 5.6 summarizes the main findings.
Of note, Appendix A provides a detailed description of the identification pro-
cedure of the physiological model and the particle filter framework to pre-
dict BG levels; Appendix B detailed the deep learning methodologies, and Ap-
pendix C illustrates the nonparametric approach.
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5.2 Physiological model-based algorithm

The maximal-physiological model of glucose-insulin dynamics described in
[161], consists of 18 differential equations and 39 parameters. In particular,
we can identify three main systems: the glucose, insulin and glucagon ones.
Briefly, the model relates the measured plasma concentrations (i.e., glucose,
insulin, and glucagon) with:

• the internal glucose fluxes (meal rate of appearance, endogenous produc-
tion, utilization, and renal extraction);

• the insulin fluxes (rate of appearance of subcutaneous insulin and degra-
dation);

• the glucagon fluxes (secretion and degradation).

Given the complexity of the model and the large number of parameters to be
estimated for individualization, we decided to use a simplified version of the
model composed by 9 differential equations and 10 unknown parameters, as
described in [165]. The proposed model comprises the subcutaneous insulin
absorption, the oral glucose absorption, and the glucose-insulin kinetics sub-
systems and it has two inputs: insulin infusion I(t), and carbohydrate intake
CHO(t), and one output, the interstitial glucose concentration IG(t).

5.2.1 Subcutaneous insulin absorption subsystem

Figure 5.1: Subcutaneous insulin absorption subsystem scheme.

The subcutaneous insulin absorption model is a slightly simplified version
of the one described in [166] and illustrated in Figure 5.1. The model is made
up of three compartments. Exogenous insulin (I) is infused into the first com-
partment, where it appears after a delay β. In the first compartment, represent-
ing insulin in a non-monomeric state, insulin is transformed in a monomeric
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state and then diffused to the plasma. The model equations are:
İsc1(t) = −kd · Isc1(t) + I(t− β)/VI

İsc2(t) = kd · Isc1(t)− ka2 · Isc2(t)

İp(t) = ka2 · Isc2 − ke · Ip(t)

(5.1)

where Isc1 (mU/kg) and Isc2 (mU/kg) represent the insulin in a non-monomeric
and monomeric state, respectively; Ip (mU/l) is the plasma insulin concentra-
tion; kd (min−1) is the rate constant of diffusion from the first to the second
compartment; ka2 (min−1) is the rate constant of subcutaneous insulin absorp-
tion from the second compartment to the plasma; ke (min−1) is the fractional
clearance rate; VI (l/kg) is the volume of insulin distribution; β (min) is the
delay in the appearance of insulin in the first compartment. The simplification
with respect to the maximal-model [166] consists in neglecting the fact that a
fraction of non-monomeric insulin can reach the plasma directly. This absorp-
tion route is depicted in gray in Fig. 5.1 and associated to the rate constant
ka1. The simplification is due to the fact that both the insulin fraction and the
number of patients where this happens is small [166]. A priori information on
model parameters, reported in Table 5.1, have been obtained from the litera-
ture [166]. Specifically, VI and β have been set to population values, i.e. 0.126
l/kg and 8 min, respectively. Furthermore, kd has been constrained to kd ≥ ka2

since the two combinations are interchangeable. Unknown model parameters
result θins = [ka2, kd].

5.2.2 Oral glucose absorption subsystem

Figure 5.2: Oral glucose absorption subsystem scheme.

The oral glucose absorption subsystem model, taken from [167], illustrated
in Figure 5.2, describes the gastro-intestinal tract as three-compartment sys-
tem: the first two compartments account for food in the stomach (solid and
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grinded state), while the third compartment models the upper small intestine
where CHO is absorbed. Model equations are:

Q̇sto1(t) = −kgri ·Qsto1(t) + CHO(t)

Q̇sto2(t) = kgri ·Qsto1(t)− kempt ·Qsto2(t)

Q̇gut(t) = kempt ·Qsto2(t)− kabs ·Qgut(t)

(5.2)

where Qsto1 (mg/kg) and Qsto2 (mg/kg) are the glucose amount in the stomach
in a solid and liquid state, respectively; Qgut (mg/kg) is the glucose concentra-
tion in the intestine; kgri (min−1) is the rate constant of grinding; kempt (min−1)
is the rate constant of gastric emptying; kabs (min−1) is the rate constant of
intestinal absorption; CHO (mg/kg/min) is the ingested carbohydrate rate.
Model (5.2) allows to estimate the rate of glucose appearance in plasma Ra
(mg/kg/min) as:

Ra(t) = f · kabs ·Qgut(t) (5.3)

where f (dimensionless) is the fraction of the intestinal content absorbed in the
plasma. The simplification consists in assuming a constant gastric emptying
rate, thus neglecting its dependence on stomach content (depicted in gray in
Fig. 5.2). A priori information on model (5.2) has been obtained from the
literature [167] and has been detailed in Table 5.1. In particular, we set f equal
to 0.9 and we constrained kgri = kempt. Furthermore, kabs has been constrained
to kabs ≤ kempt since the two combinations are interchangeable. As such, the
unknown model parameters are θoral = [kabs, kempt].

5.2.3 Glucose-insulin kinetics subsystem

Figure 5.3: Glucose-insulin kinetics subsystem scheme.
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This subsystem is based on a well-known two-compartment model that de-
scribes the impact of the plasmatic insulin action and glucose rate of appear-
ance in plasma glucose concentration introduced in [84]. The model is further
equipped with a third compartment to describe the transport of glucose from
plasma to the interstitium where it is measured by the sensor. The model is
illustrated in Fig. 5.3. Model equations are:

Ġ(t) = −[SG + ρ(G)X(t)] · G(t) + SG · Gb + Ra(t)/VG

Ẋ(t) = −p2 · [X(t)− SI · (Ip(t)− Ipb)]

˙IG(t) = − 1
α (IG(t)− G(t))

(5.4)

where G (mg/dL) is the plasma glucose concentration, X (min−1) is the in-
sulin action on glucose disposal and production; SG (min−1) is the glucose
effectiveness describing glucose ability, per se, to promote glucose disposal
and inhibit glucose production; Gb (mg/dL) is the basal glucose concentration
in the plasma; VG (dL/kg) is the volume of glucose distribution; p2 (min−1)
is the rate constant of insulin action dynamics; SI (mL/µU·min) is the insulin
sensitivity; Ipb (mU/L) is the basal insulin concentration in the plasma; IG
(mg/dL) is the interstitial glucose concentration; α (min) is the delay between
the plasmatic and interstitial glucose concentration compartments.

The above model, originally introduced in [84] with a constant unitary ρ,
ρ(G) ≡ 1 ∀G , is known to struggle in capturing hypoglycemia, likely due to
an inadequate description of insulin action, that was proved to increase when
glucose decreases below a certain threshold [168]. For this reason, following
the rationale proposed by Dalla Man et al. [132], we introduce in the above
model the term ρ(G):

ρ(G) =


1 if G ≥ Gb

1+10r1{[ln(G)]r2 − [ln(Gb)]
r2}2 if Gth < G < Gb

1+10r1{[ln(Gth)]
r2 − [ln(Gb)]

r2}2 if G ≤ Gth

(5.5)

where we have Gth < Gb, with Gth is the hypoglycemic threshold (set to 60
mg/dL), and r1 (dimensionless) and r2 (dimensionless) are two model param-
eters with no direct physiological interpretation.

To account for patient-specific intraday insulin sensitivity variability [169]
and to model the so-called dawn phenomenon, the parameters SI is considered
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time-varying over the day:

SI =


SIB if 4 AM < t ≤ 11 AM

SIL if 11 AM < t ≤ 5 PM

SID otherwise

(5.6)

Of note, these fixed time intervals are used in the Uva/Padova T1DS and
were defined according to [169]. We acknowledge that the choice of fixed time
intervals for all subjects may be considered as a limitation of the proposed
model. Future studies will address this issue by considering time intervals as
uniform random variables.
A priori information on parameter distributions, reported in detail in Table
5.1, has been obtained from the literature [170]. In detail, r1, r2, and VG have
been fixed to population values, i.e. 1.44, 0.81, and 1.45 dL/kg respectively.
Unknown model parameters of glucose-insulin subsystem are θglu = [SG, SIB,
SIL, SID, Gb, p2].

In summary, the overall physiological model is obtained combining the
three submodels introduced so far:ẋxxphy(t) = f phy(xxxphy, uuuphy, t, θphy)

y(t) = IG(t)
(5.7)

where xxxphy(t) is the state vector defined as

xxxphy(t) := [xins, | xoral, | xglu]
T

= [Isc1, Isc2, Ip, |Qsto1, Qsto2, Qgut, | G, X, IG]T;

uuuphy(t) := [I(t), CHO(t)] is the input vector;
f phy(·) is the state update function obtained combining (5.1)-(5.5).
f phy depends on the set of unknown parameters

θphy := [θins, θoral, θglu]

whose estimation will be discussed in the next section.

5.2.4 Identification of the proposed physiological model

Model personalization has been performed by identifying for each patient the
unknown model parameters θphy using the training data Y := {CGM(tk), tk =
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Table 5.1: A Priori Information on Model Parameters

Parameter Distribution Reference
SG LOGN(-3.8,0.5) [170]
SIB GAMMA(3.3,4.5e-4) [170]
SIL GAMMA(3.3,4.5e-4) [170]
SID GAMMA(3.3,4.5e-4) [170]
Gb N(120,5) [170]

sqrt(p2) N(0.11,0.004) [170]
ka2 LOGN(-4.29,0.43) and kd ≥ ka2 [166]
kd LOGN(-3.51,0.62) and kd ≥ ka2 [166]

kabs LOGN(-5.46,1.44) and kabs ≤ kempt [167]
kempt LOGN(-1.96,0.71) and kabs ≤ kempt [167]

2N(µ,σ) stands for a normal distribution of mean µ and standard deviation σ.
LOGN(µ,σ) stands for a log-normal distribution of mean µ and standard
deviation σ. GAMMA(a,b) stands for a gamma distribution with shape

parameter a and scale parameter b.

k · Ts, k = 1, . . . , D} and U := {uphy(tk), tk = k · Ts, k = 1, . . . , D} where D is
the number of data points available.

The identification has been performed by adopting a Bayesian approach,
implemented by MCMC [162], and specifically, in this work θphy is estimated
through its posterior mean defined as

θ̂phy = E[θphy|Y, U] =
∫

θ pθ|Y,U(θ|Y, U)dθ (5.8)

where the posterior mean is known to be the minimum-variance unbiased
estimator of θphy. The Bayes theorem allows to obtain the a posteriori density
function pθ|Y,U(θ|Y, U) as:

pθ|Y,U(θ|Y, U) =
pY|θ,U(Y|θ, U)pθ(θ)∫
pY|θ,U(Y|θ, U)pθ(θ)dθ

(5.9)

where pY|θ,U(Y|θ, U) is the likelihood function, i.e., the probability of observ-
ing a certain Y given the parameter vector θ and the input U.

Even using (5.9), the integral in (5.8) is analytically intractable, therefore it
has to be approximated by resorting to MCMC [162]. In particular, we generate
N samples θi, i = 1, . . . , N from the posterior distribution pθ|Y,U(θ|Y, U), by
creating a Markov Chain whose stationary distribution is exactly this posterior
(target distribution). Then, these samples θi are used to perform Monte Carlo
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integration to obtain a point estimate of θphy:

θ̂phy =
1
N

N

∑
i

θi. (5.10)

To build such a chain, the Single Component Metropolis-Hastings (SCMH)
algorithm has been used [162]. Implementation details are reported in Ap-
pendix A.

5.2.5 Physiological model-based prediction

Real-time glucose prediction can be performed by resorting to a sequential
algorithm that at each time tk, when a new measurement y(tk) = CGM(tk) be-
comes available, updates the current estimate of the model state x(tk) and uses
it to infer future glucose concentration. In particular, we employ the particle
filter (PF) [163], the state-of-the-art sequential Bayesian prediction technique
capable of handling the nonlinear structure of the model. PF is based on the
recursive update of the posterior probability function p(x(tk)|y(t1:k), u(t1:k))

where y(t1:k) is a shorthand for the variables y(t1), . . . , y(tk) and u(t1:k) indi-
cates u(t1), . . . , u(tk).

The recursive update of p(x(tk−1)|y(t1:k−1), u(t1:k−1)) is performed through
two fundamental steps, i.e., one step-ahead prediction and measurement up-
date.

The one step-ahead prediction step assumes that the posterior probability
p(x(tk−1)|y(t1:k−1), u(t1:k−1)) is available at time tk−1 and uses such a posterior
probability to infer

p(x(tk)|y(t1:k−1), u(t1:k))

Then, when at time tk a new measurement, y(tk), becomes available, in the
measurement update step such a measurement is used to compute the poste-
rior probability

p(x(tk)|y(t1:k), u(t1:k)).

The two steps are then repeated for each available measurement in the dataset.
PF performs these steps using a sampled approximation of the probability
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functions at play:

p(x(tk−1)|y(t1:k−1),u(t1:k−1)) ≈
P

∑
p=1

wp(tk−1)δ(x(tk−1)− xp(tk−1)).

where {xp(tk−1)}P
p=1 is a set of P points, called "particles", in the support of

p(x(tk−1)|y(t1:k−1), u(t1:k−1)).
Each particle is associated to a weight {wp(tk−1)}P

p=1, ∑p wp(tk−1) = 1, and

p(x(tk)|y(t1:k−1),u(t1:k)) ≈
P

∑
p=1

w∗p(tk)δ(x(tk)− xp(tk)).

where {xp(tk)}P
p=1 are the P particles representing p(x(tk)|y(t1:k−1), u(t1:k)),

each associated to a weight {w∗p(tk)}P
p=1, ∑p w∗p(tk) = 1.

Regarding the measurement update step, it is possible to demonstrate that
it holds

p(x(tk)|y(t1:k), u(t1:k)) ∝

p(y(tk)|x(tk), u(t1:k))p(x(tk)|y(t1:k−1), u(t1:k))

where p(y(tk)|x(tk), u(t1:k)) is the likelihood function that is fully specified by
(5.7).

As an additional result, the posterior probability p(x(tk)|y(t1:k), u(t1:k)) is
further used by the PF to compute the posterior probabilities

p(x(tk+i)|y(t1:k), u(t1:k+i)), ∀i = 1, . . . , PH

describing the state distribution predicted i steps-ahead in time up to PH steps
ahead.

Finally, a point estimate of future CGM values at time tk+i, i = 1, . . . , PH
can be derived using the expectation of the posterior:

ŷ(tk+i|tk) = E[p(y(tk+i)|x(tk+i))], ∀i = 1, . . . , PH.

Implementation details are reported in in Appendix A.
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5.3 Advanced black-box methodologies

5.3.1 Deep learning models

As discussed in Chapter 1, there are a growing number of deep learning ap-
plications in various research areas of T1D management. In particular, due to
their ability to handle time-series and sequential data, there is an increasing
trend to develop both recurrent and convolutional neural networks (RNN and
CNN, respectively) for BG forecasting. Unlike traditional feed-forward neural
networks in which the information moves from the input towards the output
layer, RNN are characterized by recurrent units with loops allowing the infor-
mation to propagate back to the same unit. So, each learning step takes into
account not only the current input, but also what was learnt from the previous
inputs [171]. Although CNN have been originally developed for image classifi-
cation, it has been demonstrated that these models can automatically discover
and extract deep features from time-series data by employing convolution and
pooling operations to input data [172].

Some literature contributions, such as [69, 173], have assessed that the use
of deep learning algorithms for the prediction of BG levels allows to achieve
better performance than traditional methods. However, in general, the im-
provement in terms of RMSE with respect to baseline methods is usually about
2-3 mg/dL over longer prediction horizons (see for instance, [48, 78, 80]). Given
this context, we investigated three multi-input deep learning models: LSTM,
GRU and TCN. As shown in Figure 5.4, all the deep learning algorithms con-
sidered are fed by three input channels (past history of glucose data, meal
intake, and insulin injections) and then directly output a sequence of 12 future
consecutive glucose samples as described in [174].

Figure 5.4: Schematic representation of BG forecasting as a sequence prediction task.
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LSTM

Thanks to the use of memory cells, this model is able to learn and maintain
the long and short term dependencies among the data and it overcomes the
vanishing-exploding gradient problem that typically affects traditional RNN
structures. The main difference between RNN and LSTM is related to the acti-
vation function used for computing the hidden state. In fact, RNN is composed
by repeating modules consisting of a single layer with a tangetial activation
function. On the contrary, the memory in LSTM is implemented as a cell in
which a gate function decide whether the information should be kept or re-
moved from memory at each time step [175]. Usually, this gate is a sigmoidal
activation function coupled with pointwise multipliers. Following [69], we
designed a network with a single LSTM layer composed by 30 LSTM nodes
and a single output layer, with a number of neurons equal to the future glu-
cose samples to be predicted. In this work the dense layer comprises 12 nodes,
corresponding to a PH = 60 minutes (sampling time is 5 minutes).

GRU

GRU is a variant of LSTM which is designed to capture dependencies of dif-
ferent time scales. GRU has two gates (named reset and update gates) that
control the flow of information without using the memory unit. In fact, the
information stored in the internal cell state in an LSTM unit is incorporated
into the hidden state of the GRU [176]. In particular, the update gate helps
the model to determine which is the important past information (from previ-
ous time steps) that needs to be passed. This is the analogous of the output
gate in an LSTM. The reset gate is then used to decide how much of the past
information to forget. This is the combination of the input and forget gate in
a LSTM. Finally, the current memory gate is incorporated into the reset gate,
reducing the effect that previous information has on current information that
is being passed into the future [176]. Summarizing, we can conclude that both
LSTM and GRU have a very similar workflow but the main difference is in the
internal working recurrent unit. Also for GRU, we designed a network with
a single layer composed by 30 GRU nodes and a single output layer, with a
number of neurons equal to the future glucose samples to be predicted, in this
case 12 nodes.
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TCN

CNN are commonly associated with image classification tasks. However, they
can also be exploited for sequence modeling and forecasting. It has been shown
that CNN can achieve better performance than RNN in many tasks while
avoiding common drawbacks of RNN, such as the exploding/vanishing gra-
dient problem. In particular, we focused on a TCN structure. A TCN is com-
posed of three main structures that include causal convolutions, dilated con-
volutions, and residual connections [177]. Unlike simple causal convolutions,
the dilated convolutions enable an exponentially large receptive field. In other
words, this is similar to pooling or stride convolutions: the filter is applied
over a region larger than its size by skipping input values with a given step.
Finally, TCN employs a residual module (residual connections) containing a
branch leading out to a series of transformations, whose output are added to
the input of the block [177].

A detailed description of these deep learning methods is reported in Ap-
pendix B.

5.3.2 Linear non-parametric models

Although the metabolic physiology is nonlinear, the linear models tested in
this work have demonstrated to achieve accurate performance in BG levels
forecasting. For this reason, our analysis moved toward the use of advanced
and innovative identification methods for linear models. A linear model of
glucose-insulin dynamics can be written as:

ĝ(k|k− 1, θ) =

h1 ∗ i(k) + h2 ∗m(k) + h3 ∗ g(k) ,
(5.11)

where ∗ represents the convolution between two signals, whereas h1, h2, and
h3 are impulse responses related to the insulin, meal, and glucose signal, re-
spectively. This is the equivalent formulation of the 1-step ahead predictor,
as shown in 4.4.2. In this chapter, we focus on the so-called Stable Spline
nonparametric (NP) identification approach which aims to estimate the un-
known impulse response related to insulin, meal and glucose, denoted as h1,
h2, and h3 in 5.11, from noisy measurements. Unlike the traditional approach
that constraints the unknown functions to a parametric structure, the non-
parametric approach searches the unknown impulse responses over a infinite-
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dimensional space given by a Reproducing Kernel Hilbert Space (RKHS). Such
a space is completely specified by the choice of the kernel which incorporates
prior knowledge, such as smoothness and stability of the predictor impulse
responses to be estimated.

A detailed description of the nonparametric identification method is re-
ported in Appendix C.

5.4 Dataset

As in chapter 3, the dataset used in this analysis is the OhioT1DM dataset
[1], which comprises 12 subjects with T1D monitored with a Medtronic Enlite
CGM system for 8 weeks. Participants wore an insulin pump (Medtronic 530G
or 630G) and a wearable system (Basis Peak fitness or Empatica Embrace). In
addition, subjects reported information on meals: timing, amount, and type
(i.e., breakfast, lunch, dinner, snack, hypoglycemia treatment). Each subject in
the OhioT1DM data set is split into a training set (about the intial 6 monitoring
weeks) and into a test set (roughly the last 10 days). Handling data recorded
under free-living conditions raises some technical issues. In particular, the
OhioT1DM dataset presents long portion of missing CGM readings and the
sampling time is not homogeneous. Therefore, all signals were aligned into
a uniform time grid with a sampling period of Ts = 5 minutes. Any CGM
gap in the training set shorter than 30 minutes was interpolated with a first
order polynomial while a simple and causal zero-order-hold imputation was
performed on the test set.

5.5 Predictive performance

Table 5.2 details the predictive performance for PH = 30, 45 and 60 minutes (in
terms of RMSE and TG) achieved by the white-box physiological model (here-
after labeled as PHY), the deep learning models (i.e., LSTM, GRU and TCN),
and the linear NP approach. As described in Chapter 4, statistical significant
differences (pvalue < 0.05) between model performances, has been assessed
by performing preliminary test for normality using the Lilliefors test, then by
using a paired t-test if normal-distributed data, or a Wilcoxon signed-rank test
when normality is rejected. From Table 5.2, three main outcomes can be ob-
served: i) black box algorithms outperform the PHY in terms of RMSE, for
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all prediction horizons, ii) all methodologies achieve similar TG, and iii) that
there are no large differences in terms of RMSE between the considered black-
box approaches. Particularly, comparing the RMSE results achieved by PHY
vs. the other competing methodologies, RMSE roughly increases by 5 mg/dL,
6 mg/dL, and 9 mg/dL for PH = 30, 45, and 60 min, respectively, indicating
that PHY appears to be a consistently worse candidate to be adopted for glu-
cose prediction. As long as deep learning approaches are considered, for PH
= 30 minutes, LSTM grants a median RMSE = 19.75 mg/dL similar to GRU
(median RMSE = 19.81 mg/dL) and slightly inferior to TCN which provides
a median RMSE = 20.11 mg/dL. Similar results also hold when evaluating
performance for longer PH: median RMSE is about 27 mg/dL for PH = 45
minutes, and about 32 mg/dL for PH = 60 minutes. Overall, the NP approach
allows to achieve the lowest RMSE results. In details, NP provides a median
RMSE = 18.99 mg/dL, RMSE = 25.72 mg/dL and RMSE = 31.60 mg/dL for PH
= 30, 45 and 60 minutes, respectively. Remarkably, the improvement in perfor-
mance is found to be statistically significant with respect to LSTM and GRU
(p-value = 0.04 and p-value = 0.03) for PH = 30 minutes, while no significant
difference is found for longer prediction horizons. Furthermore, NP model
showed to be significantly different to TCN, with p-value = 0.001, p-value =
0.006 and p-value = 0.009, for PH = 45 and PH = 60 minutes, respectively.
Also, the NP approach achieves the largest median improvement with respect
to PHY: 26.5%, 26.2% and 24.9%, for PH = 30, 45 and 60, respectively (p-values
< 10-4, for all the considered PH). The numerical results achieved by LSTM,
GRU and TCN are inline (or even slightly better) with what has been obtained
in other literature contributions dealing with the assessment of individualized
deep learning algorithms for BG forecasting in the OhioT1DM dataset as in
[68, 80, 178]. As a matter of fact, in [80] a recurrent convolutional network
granted a mean RMSE = 20.6 mg/dL, 26.8 mg/dL and 33.9 mg/dL for PH =
30, 45 and 60 minutes, respectively. Similarly, the TCN and the LSTM tested in
[178] achieved a mean RMSE = 20.23 mg/dL and RMSE = 20.11 mg/dL for PH
= 30 minutes and RMSE = 34.21 mg/dL and 33.10 mg/dL for PH = 60 minutes.
To better understand the reason of such a consistent difference between PHY
and black-box models, we analyzed in details their "behaviour" when predict-
ing the glucose time-course in two specific, but representative, one-day-long
time windows extracted from the dataset at hand.

This is shown in Figure 5.5, where, in the top panel CGM data (grey dashed
line) of a subject of the OhioT1DM dataset (ID:570), is overposed to the 30-
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Figure 5.5: Representative subject (ID:570) of the OhioT1DM dataset. The upper
panel shows CGM data (grey dashed line) and the 30-min ahead prediction obtained
by: PHY (blue line), NP approach (yellow line) and LSTM (red line). Middle panel
shows the CHO content of the meal, expressed as g/min. Bottom panel shows injected
insulin boluses, expressed as U/min

minute ahead-in-time prediction of PHY, NP, and LSTM models, in blue, yel-
low and red, respectively. Middle and bottom panels show meal and insulin
data, respectively. Analyzing the extracted portion of data, there are two meals
with similar amount (30 g/min at 9:10, 35 g/min at 17:35) and two similar cor-
responding insulin boluses delivered with the so-called dual-wave mode [179],
that consists of "splitting" the total amount of insulin bolus necessary to con-
trol the postprandial glucose excursion in a combination of two components
(spike + square-wave). It is interesting to note that the two corresponding
postprandial responses are very different. In the first case, glucose increases
from 200 mg/dL to 300 mg/dL within an hour after the meal, whereas, in
the second case, glucose remains almost flat (about 20 mg/dL excursion) and
then decreases after an hour, reaching hypoglycemia. So, the first postprandial
excursion is aligned with the physiological expectation that a meal should be
followed by a glucose increase, while in the second postprandial excursion this
does not happen. The (unavoidably simplified) physiological model structure
has not the flexibility to cover both types of responses and the model imposes
a similar shape to the two predicted postprandial glucose excursions leading,
as a consequence, to an extremely large prediction error observed during the
second meal. On the contrary, the black-box approaches prove more flexible
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and are able to produce two different postprandial shapes despite the similar
inputs. In details, considering the prediction results obtained with NP and
LSTM during the first postprandial window (from 9:10 to 12:10), it can be ob-
served that there is a huge delay, almost equal to the considered PH, between
the predicted glucose traces and the target glucose data during the upward
trend. In contrast, during the downward trend, good predictions are obtained
for both methodologies considered. Instead, considering the second postpran-
dial period (from 17:35 to 20:35), good results are achieved in the first phase
(just after meal intake), while the predicted glucose traces result delayed, up
to PH minutes, in the second phase (during the downward trend).
The example reported in Figure 5.5 sheds light on what seems to be a limitation
of the proposed white-box methodology when used for glucose prediction: the
modeled input-output relationship, defined by the underneath glucose-insulin
description, largely constraints the impact of carbohydrate and insulin inputs
on the predicted trace. Roughly speaking, this means that it is very difficult
(or even impossible) for the physiological model to predict very different glu-
cose responses given similar input data, which can occur in real life due to
unmodeled phenomena, for example, stress, illness, or physical exercise. On
the other hand, the fact that black-box models are fully data-driven, thus not
necessarily representing the actual input-output physiological relationship be-
tween insulin/carbohydrate and glucose, allows them to be a more flexible
approach to handle unexpected, real-world dynamics.
Stressing this point even further from the perspective of data quality, having
missing/unannounced meals/boluses, or large carb-counting errors, would
potentially represent a further non-negligible problem for white-box predic-
tion approaches.

This is shown in Figure 5.6, representing subjects 552 of the OhioT1DM
dataset. As before, the grey dashed line in the top panel is the CGM trace. The
blue, yellow and red lines are the 30-minute ahead-in-time predictions of the
physiological, the nonparametric and the LSTM model, respectively. Finally,
middle and bottom panel show meal and insulin information, respectively.
Analyzing this portion of data, although there are three recorded insulin bo-
luses (at 8:45, 9:10, and 12:55), the subject did not report any information about
meals. As obvious, this issue constitutes a challenge for all the algorithms that
must rely on insulin data only in order to predict postprandial BG concentra-
tions. Considering the prediction results obtained with NP and LSTM, such a
missing information lead to a huge delay (almost equal to the considered PH)
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Figure 5.6: Representative subject (ID:552) of the OhioT1DM dataset. The upper
panel shows CGM data (grey dashed line) and the 30-min ahead prediction obtained
by: PHY (blue line), NP approach (yellow line) and LSTM (red line). Middle panel
shows the CHO content of the meal, expressed as g/min. Bottom panel shows injected
insulin boluses, expressed as U/min

between the predicted glucose traces and the target glucose data, which, as
expected, is more pronounced when meal information is presumably missing
and during the postprandial time window (from 9:00 to 11:00, and from 13:00
to 15:00). Observing the results obtained with PHY, as visible in Figure 5.6,
the predicted glucose trace deviates significantly both from the target glucose
data and from the other predicted traces in output of NP, and LSTM. In partic-
ular, it is clear how insulin inputs causes a drop in BG predicted levels, which
is not what really happened in the actual glucose concentration, that, on the
contrary, rose probably because of some carbohydrates have been ingested by
the subject in correspondence of the insulin boluses recorded in this portion of
data.
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5.6 Summary of the main findings

This chapter detailed a comparison between advanced black-box algorithms
and a white-box approach for BG forecasting, for different PH. To this end,
starting from the maximal nonlinear model of glucose-insulin dynamics im-
plemented in the Uva/Padova T1DS, we derived a novel simplified variant.
The proposed physiological model is handled in a Bayesian framework con-
sisting of two main phases. In the first phase, we use MCMC to identify
patient-specific parameters from past collected data (i.e., CGM, CHO and in-
sulin). Then, in the second phase, the personalized model is used within a
PF to predict BG levels. For what it concerns the black-box methods, we im-
plemented three promising deep learning approaches for time series forecast-
ing: LSTM, GRU and TCN. Also, we considered the use of advanced linear
NP models that have shown encouraging results in previous works. As for
the physiological models, the data-driven methodologies are fed by CGM,
CHO and insulin information. All the algorithms are trained and tested by
exploiting the OhioT1DM data, a challenging dataset recorded in free-living
conditions in an open-loop setup, where meal information is self-reported by
participants. Table 5.2 showed that the considered black-box methodologies
significantly outperform the representative white-box approach for all the PH
under study. Moreover, among the data-driven algorithms, the best perfor-
mance are achieved by the linear NP approach, by granting statistically sig-
nificance difference to LSTM and GRU for PH = 30 minutes, and to TCN for
all the considered PH. One possible reason for the differences in performance
between white-box and black-box models might reside in the fact that the first
are less flexible in accommodating the large variety of patterns observed in
the data and that might be caused by multiple unmodeled factors, including
variability in meal absorption, different meal compositions, stress, illnesses,
physical activity, inaccuracy in estimating carbohydrate content of a meal. Fu-
ture work will attempt to increase the flexibility of white-box models. This will
include considering time-varying model parameters estimated in real-time by
the PF, to track patient-specific intraday variability and meal-to-meal differ-
ences in CHO absorption in order to capture input-output relationships such
as the ones presented in Figure 5.5 and Figure 5.6. Furthermore, to better repre-
sent real-world data, we will explore the potential of expanding the proposed
model structure by integrating new subsystems describing the impact of carb-
counting error [137] and physical activity [180] on glucose concentrations.
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One of the most appealing application of predictive algorithms concerns
the possibility of integrating them into closed-loop algorithms to automate
insulin delivery and/or into decision support systems to suggest preventive
corrective actions. However, when handling black-box predictive models (as
the ones tested in this chapter), it is important to verify that they comply to
the underlying rules of glucose-insulin regulation to enable safe and reliable
therapeutic interventions. Indeed, verifying that such a requirement holds,
is necessary to guarantee that unwanted and potentially dangerous, control
actions are suggested to the patients due to "non-physiological" predicted glu-
cose responses. For this reason, the next chapter will focus on the crucial role
of interpretation in the usability of black-box predictive algorithms integrated
into decision support systems for preventive suggestions of corrective insulin
boluses.
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Chapter 6

The importance of interpretability
in BG prediction algorithms: an
analysis using Shapley addictive
explanation

1 In the previous chapter we detailed a comparison between a nonlinear phys-
iological model (obtained as a simplified version of the Uva/Padova glucose-
insulin model) and advanced black-box algorithms for BG prediction. Re-
sults have shown that: i) black-box models outperform the proposed white-
box models and ii) no large difference in performance can be noticed among
the deep learning models, especially if RNN are considered. Black-box mod-
els present a useful tool for learning the complex glucose-insulin dynamics
from input-output relationship, and are increasingly being considered as com-
ponents of advanced tools for T1D management such as DSS or closed loop
systems. However, in view of employing them to suggest safe therapeutic
actions (such as the administration of rescue carbs or insulin boluses), black-
box algorithms should be in line with the physiological laws that underlie the
glucose-insulin metabolism. As a matter of fact, imagine a model that under
some conditions predicts that insulin increases blood glucose levels: such a
model could result in a controller increasing insulin infusion when low BG
levels are predicted. Of course, this is potentially dangerous for the patient. In
this chapter, we introduce Shapley addictive explanations (SHAP), a new tool

1This chapter contains material to be submitted for publication as Prendin et al., "The im-
portance of interpretability in machine-learning models for the real-time prediction of future glucose
concentration in diabetes: an analysis using SHAP", Scientific Report.
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for interpreting black box models, and we design a case of study in which two
LSTM, one with a non-physiological and the other with a correct physiologi-
cal interpretation of the input, are used to suggest preventive insulin boluses.
SHAP reveals that only one of these algorithms is in line with the physiologi-
cal response of glucose-insulin interactions, leading to suggest safe therapeutic
actions. Of note, given the proof-of-concept nature of this work, we focused
on a single subject of the OhioT1DM dataset.

6.1 Rationale for the investigation of interpretable

black-box models for glucose prediction and chap-

ter content

6.1.1 Chapter contribution

As for application of black-box modeling, a key problem with the use of ma-
chine and deep learning approaches concerns the interpretability of the out-
come. Interpretability represents the degree to which humans can understand
the logic beneath a model decision [181]. Whilst machine/deep-learning mod-
els can grant accurate performance, as shown in previous chapters, their re-
sults can be difficult for users to explain and it is often impossible to unveil
hidden biases in the datasets or to identify model weaknesses without under-
standing the decision-making process [182, 183]. Moreover, the lack of trans-
parency in their inner logic may hamper the use of these models by arising
(legitimate) questions on their trustability and safety.

Modeling BG dynamics makes no exception. Most of the available datasets
collected on individuals with T1D present a strong collinearity between insulin
administration and carbohydrates intake. In fact, insulin boluses are com-
monly administered when meals are consumed (the so-called prandial insulin
boluses) and the dose of prandial insulin boluses is almost proportional to the
quantity of ingested CHO. As a result, the learning process may sometimes fail
and completely misunderstand the effect of these inputs on BG concentration.
In other words, the model is not able to discriminate the effect that insulin and
CHO have on glucose concentrations. In the worst case, a model could learn
that the effect of insulin is to increase BG levels, while the effect of CHO is
to decrease BG concentrations. If an incorrect model is then "actively" used
within closed-loop systems or DSS, it could suggest rescue carbs to lower high
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BG levels or insulin injections to higher low BG levels, by leading to poten-
tially harmful situations. In this context, it is important to check whether the
trained model is inline with the physiolgical glucose-insulin dynamics before
embedding into tools for T1D management.
In recent years, many tools have been developed for providing an interpreta-
tion to black-box models and possibly unveiling problems in the learning pro-
cess. Some examples are SHapley Additive exPlanation (SHAP) [184], Local
Interpretable Model-agnostic Explanation (LIME) [185], Deep Learning Impor-
tant FeaTures (DeepLIFT) [186], Model Agnostic Concept Extractor (MACE)
[187] and Generative Adversarial Network (GAN) based methods [188]. These
methodologies make the algorithms’ predictions individually comprehensible
by providing a description of how much each input contributed to the models’
output. Interestingly, despite the large number of contributions investigating
the use of machine learning and deep learning for BG prediction [50], [78],
only a few of them deal with the interpretability of the models [189, 190, 191]
and with their conformity to the physiological glucose-insulin response [67].
This work aims to demonstrate the crucial role of interpretation for the usabil-
ity of black-box models for BG prediction, especially when these models are
employed to suggest corrective actions to the user. In this study, model inter-
pretation will be provided by SHAP, a game theoretic approach to explain the
output of any machine learning model.
The case study we designed consists in training two LSTM models for BG pre-
diction, such that they: i) are fed by the same features; ii) are based on a similar
structure, and iii) provide similar prediction accuracy. By doing so, it is diffi-
cult to claim the superiority of one model with respect to the other and it is
not possible to understand whether or not an algorithm can provide safe sug-
gestions once embedded into a DSS. However, SHAP reveals that one of these
models is unable to discriminate the correct effect of insulin on BG levels, and
could potentially lead to unsafe or clinically harmful suggestions. Then, the
interpretation provided by SHAP is retrospectively validated using the two
LSTM within a simple DSS that suggests corrective insulin boluses. This fur-
ther assessment shows that only the model with a correct, physiological inter-
pretation of the features is able to suggest the adequate amount of corrective
insulin boluses. Such an insight can only be gained via tools like SHAP, which
can therefore guide researchers towards the choice of the best algorithm for
what it concerns therapy and safety.
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6.1.2 Chapter outline

This chapter is organized as follows. Section 6.2 illustrates the novel tool for
the interpretation of black box algorithms and it provides a practical example
by resorting to a simple linear model. Section 6.3 presents the core of this Chap-
ter: the case of study aiming at demonstrating the key role of interpretability
when using BG prediction algorithms to suggest corrective actions. Section
6.3.3 describes the DSS we developed to suggest preventive insulin boluses
based on LSTM predictions. Section 6.3.4, briefly describes the tool we used to
retrospectively assess our algorithms on real data. Finally, Section 6.4.1 details
the predictive performance of the two proposed LSTM, Section 6.4.2 illustrates
the interpretation provided by the two networks and Section 6.4.3 shows the
results in terms of glycemic control metrics obtained by using the two LSTM.

6.2 SHapley Addictive exPlanation (SHAP)

Because of their complexity, LSTM are not inherently interpretable. Never-
theless, several techniques are available for interpreting machine and deep
learning models. The interpretation tool we adopted in this work is SHap-
ley Additive exPlanation (SHAP), an approach based on Shapley values that
can potentially explain the output of any machine learning model [184].

The Shapley value method comes from the game theory field. It considers a
cooperative game with M players and assumes to have the contribution func-
tion v(S) that describes the total expected sum of payoff obtained by a subset
of players (S). Shapley values fairly distribute the total gain of the game be-
tween players. The amount of gain a player j receives is given by

ϕ(v)j = ϕj = ∑
S⊆M\j

|S|!(|M| − |S| − 1)!
|M|! [v(S ∪ j)− v(S)] (6.1)

where | · | is the cardinality of the set and the difference v(S ∪ j)− v(S) indi-
cates the additional contribution that player j gave to the subset S. Equation
6.1 defines the Shapley value ϕj assigned to player j as a weighted mean of
its additional contributions v(S ∪ j) − v(S) to each subset S not containing j
(S ⊆ M \ j).

This game theoretical concept can be translated into the context of glu-
cose prediction by understanding the parallelism between players/features
and outcome of a game/model prediction.
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For a better understanding, let us consider a trivial linear model for pre-
dicting blood glucose levels.

ĝ(k + PH) = f (g(k), i(k)) = β0 + β1g(k) + β2i(k) (6.2)

where f (g(k), i(k)) is the predictive model that outputs the predicted glucose
level -i.e. ĝ(k + PH)- at a certain PH ahead in time, once it is fed by CGM,
g(k), and insulin, i(k), at time k. As we are dealing with a linear model, β j,
with j = 0, 1, 2, represents the weight related to j− th feature (i.e. the model
coefficients).

In order to explain the model prediction f (x∗), when the model is fed by a
particular instance (denoted by ∗) of the feature vector x = x∗ = [g(k∗), i(k∗)],
we have to define a contribution function v(S), for all possible subset of fea-
ture. To quantify this, Lundberg & Lee suggest to use the conditional expecta-
tion of the predictive model given a set of feature, i.e E[ f (x)|xS = x∗S]. Follow-
ing [192], one can found that the contribution of glucose and insulin at time k
to the model f (g(k), i(k)) = ĝ(k + PH) is given by:

ϕ(g(k)) = β1g(k)− E[β1g] = β1g(k)− β1E[g] = β1(g(k)− E[g]) (6.3)

ϕ(i(k)) = β2i(k)− E[β2i] = β2i(k)− β2E[i] = β2(i(k)− E[i]) (6.4)

where E[g] and E[i] are the expected value of glucose and insulin. Consider-
ing this result, a Shapley value -for a given feature value- can be seen as the
deviation of the feature from its mean value, multiply by its weight.

SHAP is a model-agnostic tool and it can be applied to any machine and
deep learning method ranging from tree-based models to recurrent neural net-
works: SHAP unifies several different explanation methods (LIME and Shap-
ley values in the KernelSHAP, DeepLift and Shapley values in DeepSHAP)
[184].

In this work, we resort to SHAP values to obtain an insight about how (and
how much) each feature (i.e. CGM, insulin and CHO) contributes to the pre-
dicted glucose level. To compare the two model interpretations, SHAP values
are visualized through the summary plots which provide a global overview
of the explanations for a set of data, see for instance Figure 6.2. In particular,
a summary plot details the SHAP value of each individual feature for every
sample in the dataset. Each row represents a feature, and all the features of
the predictive models are ranked according to their importance on the y-axis.

111



6 The importance of interpretability in BG prediction algorithms: an analysis
using Shapley addictive explanation

The dots in each row represent the samples for a specific instance. The color
of the point represents the feature value, so it indicates whether that point is
associated with a high (red) or low (blues) value of the feature, with respect to
its mean value, i.e. how each feature contributes to model output. A positive
SHAP value indicates that the feature positively impacts in model output. Fi-
nally, for each feature, the width of the plot in a specific position of the x-axis
represents the density of the samples associated with that SHAP value.

6.3 The case of study: BG prediction algorithms to

preventive insulin boluses

The aim of this proof-of-concept study is to verify that, given two competitor
algorithms with similar performance, SHAP allows to correctly identify the
one with the physiological interpretation, that should be used for decision-
making and control aims. Therefore, in addition to SHAP, the following key
elements are required.

6.3.1 Dataset and preprocessing

This case-of-study is focused on a single subject (ID 588, female, age 40-60)
selected from the OhioT1DM dataset [1].

Patient data are split into a training set, consisting of the first 6 weeks of
data, and a test set, which includes the last 10 days of data. The training set is
used to train the two LSTM, while the test set is used to compute the prediction
accuracy of the models. As a final step, to retrospectively evaluate the insulin
corrective actions suggested by the model-based DSS, we selected a subset of
the test set consisting of 8-hour postprandial windows starting with a meal
consumption. Furthermore, only periods that met the following conditions
were selected: i) no other CHO were consumed in the following 8 hours after
meal intake; ii) no correction boluses were present in the original dataset in the
following 8 hours after the prandial insulin bolus.

6.3.2 The black-box predictive algorithms

As described in Chapter 4, LSTM represents a suitable choice for time series
prediction since they can learn and maintain long and short-term dependen-
cies from data. This kind of network falls within the category of RNN, but it
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(a) np-LSTM

(b) p-LSTM

Figure 6.1: Schematic overview of np-LSTM (a) and p-LSTM (b). The only difference
between the two structures is the preprocessing layer in (b), which is used to enforce
a physiological interpretation in the LSTM from insulin and CHO.

overcomes the issue of vanishing-exploding gradient which affects deep RNNs
during the training phase. Core elements of an LSTM are the gates (forget, in-
put and output) which compose the so called memory cell. At each time step,
these gates decide whether the incoming information is useful or if it must be
erased from the cell. Further details are available in Appendix B.

We designed two ad-hoc black-box glucose predictive algorithms based on
LSTM with the same structure (a single layer of 64 LSTM units). In the former,
called non-physiological LSTM (np-LSTM), features are straightforwardly fed
into the network. Hence, no specific measure is taken to enforce a physio-
logical interpretation of the inputs. In the latter, called physiological LSTM
(p-LSTM), a pre-processing layer is interposed between the input and LSTM
layer to help the model understanding the correct effect of insulin and CHO.
The features employed in the models are: current CGM measurements, CGM
(mg/dL); current insulin administration, total_insulin (U/min); and current
CHO consumption, CHO (g/min).

As shown in Figure 6.1, the main difference between the two algorithms is
represented by the preprocessing layer embedded within p-LSTM. This pre-

113



6 The importance of interpretability in BG prediction algorithms: an analysis
using Shapley addictive explanation

processing non-learnable layer, which is placed between the input and the
LSTM layer, consists of two filters applied to the total_insulin and CHO fea-
tures. These masks resemble the physiological absorption curves characteris-
tics of insulin and CHO, similarly to what described in [193], [194]. With these
filters, we aim at uncoupling the effects of total_insulin and CHO by shifting
their time-action profile on future BG.

The two models are trained to predict the BG levels ahead in time for two
different PH, i.e., 30 and 60 minutes. Once trained, these models are i) applied
on the test set to evaluate their prediction accuracy; ii) interpreted with SHAP
to assess whether or not they correctly explain the output; iii) embedded into
a DSS and tested in simulated decision-making scenario.

The performance of the prediction algorithms are evaluated by using two
standard metrics. The first is the mean absolute error (MAE), which is defined
as

MAE =
1
N

N

∑
t=1
|y(t + PH)− ŷ(t + PH|t)|, (6.5)

with N being the number of evaluated samples, y being the true output and
ŷ being the model prediction. The second metric we used is the RMSE. In
general, the smaller MAE and RMSE, the better the algorithms capabilities to
forecast glucose levels. To evaluate the quality of the LSTM-based DSS we con-
sidered the percentage of CGM samples in different glycemic ranges: within
the normoglycemic interval 70-180 mg/dl, called time-in-range (TIR); below 70
mg/dl, called time-below-range (TBR), above 180 mg/dl, called time-above-
range (TAR). While the TIR should be maximized, TBR and TAR should be
minimized to avoid short- and long-term consequences of T1D, respectively.
We also considered the amount of suggested boluses and their amount. We
would like to minimize these numbers in order to reduce the burden on pa-
tients and to avoid possibly risky insulin overload in the organism.

6.3.3 Preventive correction insulin boluses

As the core of the DSS, the model predictions are exploited to find the optimal
corrective insulin bolus. In details, the DSS reasoning works as follows. The
algorithm is triggered two hours after a meal intakes and suggests a corrective
insulin bolus if BG>180 mg/dL. The bolus dose is chosen as the in ∈ {i1, ..., iN}
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that minimizes the following cost function:

J = (ĝn(k + PH|k)− g0)
2 + 10 · i2

n (6.6)

where k is current time, ĝn(k+ PH|k) is the PH-step ahead prediction provided
by the LSTM model when fed by the CGM and CHO values at instant k and
by the insulin dose in; g0 is a target glucose value (set at 120 mg/dL). The first
term of (6.6) penalizes the distance of the predicted glucose value from its basal
value; the second term penalizes the amount of candidate insulin boluses. The
minimization problem is solved via grid search in the finite grid of solutions
{i1, ..., iN} ∈ Q.

6.3.4 Retrospective assessment on real data

To retrospectively evaluate the goodness of the corrective actions suggested by
the LSTM models, we resort to a novel in-silico methodology recently devel-
oped by our research team, named ReplayBG [165]. The in-silico framework is
based on the physiological model proposed in Chapter 5, here used for simula-
tion aims. Briefly, it consists of two main phases: in the first step, the nonlinear
physiological model of glucose-insulin dynamics is identified using a MCMC
approach for each selected portion of data, as described in Chapter 5 and in
Appendix A. Then, the identified model is used to simulate the postprandial
glucose concentration that would have been obtained by adopting the correc-
tive insulin boluses suggested by the predictive algorithms. As a remark, the
core of this simulation tool is the minimal model described by Bergman et al.
[84], which described the action of plasma insulin on plasma glucose. Such a
model has been generalized by adding a model of subcutaneous insulin infu-
sion (describing how exogenous insulin diffuses through plasma [195] ) and
a model of oral glucose assumption (describing how carbohydrates influence
BG [167]).

6.4 Results

The following sub-paragraphs describe point-to-point the results in terms of
predictive performance, interpretation and glycemic control.
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Table 6.1: Mean (± standard deviation) of MAE and RMSE, computed over 10 dif-
ferent initialization and evaluated on the test set for np-LSTM and p-LSTM with PH
of 30 and 60 minutes.

Model MAE (mg/dl) RMSE (mg/dl)
PH=30 min PH=60 min PH=30 min PH=60 min

np-LSTM 15.20 (±0.05) 23.68 (±0.02) 21.43 (±0.06) 33.16 (±0.06)
p-LSTM 15.44 (±0.1) 23.88 (±0.03) 21.67 (±0.1) 33.45 (±0.06)

6.4.1 Predictive performance

Table 6.1 reports the results obtained with the two LSTM-based models for PH
= 30 and 60 min. Because the random initialization of the two LSTM could
potentially affect the results, the metrics in Table 6.1 are reported as mean (±
standard deviation) computed over 10 different evaluation runs.

Considering the RMSE for a 30-minute prediction horizon, the two algo-
rithms provide similar performance, although a slight improvement in RMSE
is granted by the np-LSTM (21.43 mg/dL) with respect to the p-LSTM (21.67
mg/dL). Similarly, for PH = 60 minutes the np-LSTM performs slightly better
than p-LSTM (RMSE = 33.16 mg/dL and 33.45 mg/dL, respectively). In both
cases, the difference in the performance is less than 1 mg/dL. This was ex-
pected, as the only difference between the two architecture consists in the pre-
processing layer. Similar considerations can be drawn by looking at the MAE.
The np-LSTM provides the best results both for 30-minute and 60-minute PH,
even though the performance gap is still small. These metrics are in line with
the most of the literature works [68, 98, 196].

6.4.2 Interpretability of the models

Figure 6.2 shows the summary plots corresponding to np-LSTM and p-LSTM
with PH of 30 and 60 minutes. Figure 6.2a shows the summary plot for the
np-LSTM for 30-minute PH. Such graphical visualization of the SHAP val-
ues reveals that the most important feature is CGM. Moreover, it returns that
the total_insulin feature positively contributes to model prediction, even if
it is a weak contribution; indeed, most of its SHAP values are positive. Fi-
nally, the less important feature is CHO: some values positively affect and some
others negatively impact on model’s predictions. For what it concerns the 60-
minute np-LSTM (Figure 6.2c), the most important feature is CGM. Unlike the
30-minute np-LSTM the CHO feature is more important than total_insulin
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and its contribution to model’s output is completely positive, as well as that of
total_insulin feature. The interpretation of both np-LSTM suggests that BG
levels increase with insulin administration, which is the exact opposite of what
happens from a physiological point of view. On the other hand, p-LSTM shows
a correct, physiological interpretation of the model output, both for PH=30
(Figure 6.2b) and PH=60 min (Figure 6.2d). Again, the most important fea-
ture is found to be CGM. Both the summary plots then place CHO as the second
most important feature and total_insulin as the last one. For both PH, CHO
has mostly an increasing effect on the prediciton (i.e., SHAP values are posi-
tive). Most of SHAP values for total_insulin are negative, which means that
insulin action decreases future BG values.

6.4.3 Corrective insulin boluses

For a given PH, the two LSTM structures (p-LSTM and np-LSTM) achieve
similar prediction results. Therefore, one would expect these models to also
achieve very similar results when used in a decision-making application. On
the other hand, the interpretation provided by SHAP highlights significant dif-
ferences in the learning process.
In the np-LSTM, positive values of total_insulin are associated with an in-
crease of CGM levels. This behavior is non-physiological and, most likely, it
happens because the model learnt the combined effect of insulin and CHO, in-
stead of understanding their individual contribution.
The p-LSTM does instead learn the correct signs of these contributions: posi-
tive values of total_insulin lead to a decrease in CGM, whereas positive values
of CHO have the opposite effect.

Figure 6.3 reports the results obtained with the two DSS in one representa-
tive postprandial window. In the top panel, we can see that the original CGM
values (red dotted line) are outside the normoglycemic range (grey dashed
lines). In particular, the postprandial hyperglycemic episode lasts for 6 hours
at least. The blue and black dotted lines represent the simulated glucose profile
which would have been obtained if the patient had followed the corrective ac-
tions suggested by the DSS (red arrows in the other panels). In the middle and
bottom panel we can see in green the insulin bolus computed by the subject at
meal time and the basal insulin (black line). In red, the suggested corrective
insulin boluses. As we can see, there are no suggestions with the np-LSTM
DSS (middle panel), while the p-LSTM DSS suggests two corrective boluses,
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(a) np-LSTM, PH=30 min

(b) p-LSTM, PH=30 min

(c) np-LSTM, PH=60 min

(d) p-LSTM, PH=60 min

Figure 6.2: Summary plots of np-LSTM and p-LSTM for different PH.
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Figure 6.3: p-LSTM raises two corrective boluses that reduce the time spent in hyper-
glycemia, while np-LSTM does not suggest any corrective action.

one at 16:00 and one at 18:00 (bottom panel). This leads to different traces on
the top panel, black dotted line for the p-LSTM and blue dotted line for the np-
LSTM. Since no boluses are triggered by the np-LSTM, the blue dotted line is
overlapped to the CGM readings. Differently, the black dotted line shows that
the administration of the two corrective actions leads to a decreasing of the
time spent in hyperglycemia (4 hours vs 6 hours) and a better glycemic con-
trol: from 18:00 to 21:00, the black dotted line is completely inside the target
range while the blue line enters in the same region only after 20:00.

As shown in Table 6.2, the DSS based on np-LSTM does not suggest the
administration of any insulin bolus both for 30- and 60-min PH, thus resulting
in TBR, TIR and TAR equal to the ones obtained by the baseline (0%, 60.9% and
39.1%, respectively). Remarkably, the DSS based on p-LSTM suggests to the
patient some corrective actions (1 insulin bolus in median for both 30- and 60-
minute PH). All the evaluation metrics, for all the PH considered, benefit from
the adoption of the DSS based on p-LSTM. Indeed, considering a 30-minute
PH the TIR is increased (from 60.9% to 80.7%) and the TAR decreases (from
39.1% to 19.3%). Analogously, considering 60-minute PH, the TIR increases
(from 60.9% to 79.2%) and the TAR decreases (from 39.2% to 20.8%).
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6.5 Summary of the main findings

In this chapter we designed a case-of-study about the development of a DSS
that suggests corrective insulin boluses based on predicted BG levels. Specifi-
cally, we considered two predictive algorithms based on LSTM, np-LSTM and
p-LSTM, which rely on the same input features and the same structure. The
only difference between the two is a non-learnable, pre-processing layer in p-
LSTM, which is placed between the input layer and the hidden LSTM layer.
Commonly, the key parameter for choosing one among many competing pre-
dictive models is prediction accuracy. Therefore, as described in Table 6.1, we
evaluated the models ability to accurately forecast glucose ahead in time in
terms of RMSE and MAE. Considering these numbers, it is not completely
clear which model should be used in practice. Both networks provide sim-
ilar results in terms of RMSE and MAE, with np-LSTM performing slightly
better than p-LSTM. For this reason, we proposed an analysis with SHAP,
a novel tool for the interpretability of black-box models. SHAP highlighted
that only p-LSTM has learned a correct physiological explanation of the out-
put. In contrast, np-LSTM has learned an incorrect interpretation of insulin
and CHO as an effect of the collinearity between these two features. When
looking at the summary plots, it is clear that the two LSTM work differently,
even though they are fed by the same input features. In particular, in Figure
6.2, the total_insulin feature positively contributes to the model’s output in
np-LSTM, both for PH=30 min and PH=60 min. It means that np-LSTM will
forecast an increase in BG levels after any insulin bolus. On the contrary, for
the p-LSTM, both the CHO and total_insulin feature show a physiological
behaviour: after a CHO intakes, it will forecast an increase in BG levels and,
viceversa, after an insulin bolus the model will forecast a decrease in BG con-
centrations. In conclusion, by visual inspection of the summary plots, p-LSTM
seems to be the most suitable model for decision-making aims.

To validate such a thesis, thanks to a simulation tool (ReplayBG) we applied
both LSTM models to suggest corrective insulin boluses based on LSTM pre-
dictions. Table 6.2 confirms the conclusions drawn from the summary plots:
the most suitable model for a DSS is the one which is in line with the physio-
logical meaning, although the p-LSTM grants slightly lower prediction perfor-
mance than np-LSTM.
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Chapter 7

Conclusion and future work

Blood glucose forecasting is a relatively mature field that has received vast at-
tention in the last 20 years within T1D research community for its potential to
revolutionize diabetes care. In fact, the accurate forecasting of BG levels repre-
sents a key element for the development of next-generation tools for the man-
agement of T1D therapy, such as improved decision support and advanced
closed-loop control systems. However, none of the literature works published
so far have systematically studied how and/or how much different input in-
formation as well as simple and/or complex algorithms contribute to improve
the performance of predictive algorithms on datasets recorded in daily-life
conditions. From a practical perspective, understanding which signals posi-
tively (and how much) contribute to model performance can provide an in-
sight about the information needs to be stored/memorized into devices for
T1D management and which input is not necessary. In this work we faced the
above-mentioned literature limitations by exploring both several input com-
bination (CGM, CGM & seasonality/mealtime, CGM & meal & insulin) and
a broad spectrum of black-box approaches that ranges from linear techniques,
typically used in time-series analysis and system identification, to the non-
linear approaches commonly adopted in machine learning and deep learn-
ing techniques. In addition, we developed a dedicated approach to address
the problem of predicting hypoglycemic events. Moving from black-box to-
wards the white-box approach, we investigated whether the use of a personal-
ized physiological model can improve the predictive performance with respect
to black-box strategies. Finally, we addressed the problem of lack of trans-
parency in black-box algorithms, by introducing a state-of-art tool for model
interpretability and by developing a case-of-study where predictive black-box
models are used within a DSS to suggest preventive insulin boluses.
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7 Conclusion and future work

7.1 Summary of the thesis contributions

7.1.1 Chapter 2

Among the 30 glucose predictive algorithms tested in this chapter, the best
results in terms of RMSE are achieved by individualized ARIMA and NN,
no statistically significant differences are found. Of note, considering hypo-
glycemia prediction, individualized ARIMA achieved the best F1-score (72%).
Results indicated that:

• individualized methods slightly outperform their population counter-
parts, confirming the positive impact of model parameter individualiza-
tion, which allows customizing models for each single patient and deal-
ing with the large variability in glucose profiles among individuals;

• linear methods are valuable options that offer a trade-off between com-
plexity and performance, especially if PH ≤ 30 minutes are considered;

• the main limitations of all the CGM-only algorithms is that any metabolic
disturbance, e.g. a meal, would deteriorate the accuracy of the predicted
BG levels.

7.1.2 Chapter 3

In this chapter, we introduce the combined use of CGM and mealtime infor-
mation through the assessment of C-SARIMA, a novel methodology that com-
bines fuzzy C-Means clustering and seasonal local models. Results obtained
on two different datasets indicated that:

• C-SARIMA methodology outperforms individualized ARIMA model for
PH>45 minutes and NN for PH>60 minutes;

• no statistically significant difference between the results provided by C-
SARIMA and the ones provided by individualized ARIMAX model (fed
by CGM, CHO and insulin);

• the prediction of hypoglycemia poses a challenging task for all the algo-
rithms presented so far and requires the development of dedicated ap-
proaches.
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7.1.3 Chapter 4

In this chapter, exploiting an individualized ARIMAX model, we developed
a novel approach to address the problem of an accurate prediction of hypo-
glycemic events. To this end, we presented two improvements:

• the use of novel cost function for model identification (gMSE), specifi-
cally designed to account for the clinical impact of prediction error;

• a novel alarm strategy that simultaneously considers multiple PH with
their confidence intervals (prediction funnel).

The results showed that models identified through gMSE minimization
provide better hypoglycemia prediction performances than models based on
MSE. Furthermore, the new alarm strategy based on the prediction–funnel im-
proves hypoglycemia forecasting, thanks to the possibility of exploiting mul-
tiple PHs. The adoption of both the proposed improvements grants the best
performances.

7.1.4 Chapter 5

This chapter detailed a comparison between individualized black-box algo-
rithms and a white-box one for BG forecasting, for different PH. To this end,
starting from the maximal nonlinear model of glucose-insulin dynamics im-
plemented in the Uva/Padova T1DS, we derived a novel simplified variant.
For what it concerns the black-box methods, we implemented three promising
deep learning approaches for time series forecasting: LSTM, GRU and TCN.
Also, we considered the use of advanced linear nonparametric models that
have shown encouraging results in previous works. Results showed that:

• black-box methods significantly outperform the proposed physiological
model for all the PH;

• among the data-driven algorithms, the best performance is given by the
linear nonparametric approach (statistically significant difference is found
with respect to LSTM and GRU for PH = 30 minutes and with respect to
TCN for all PH).

7.1.5 Chapter 6

In this chapter we proposed an analysis with SHAP, a novel tool for the in-
terpretability of black-box models. We designed a case-of-study about the
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7 Conclusion and future work

development of a DSS that suggests corrective insulin boluses based on pre-
dicted BG levels. Specifically, we considered two predictive algorithms based
on LSTM, np-LSTM and p-LSTM, which rely on the same input features and
the same structure. SHAP reveals that np-LSTM is not able to discriminate the
correct effect of insulin and CHO, while p-LSTM is in line with the physiolog-
ical laws. As a matter of fact, once applied in simulations, only p-LSTM is able
to provide safe and reliable corrective actions that reduces the time spent in
hyperglycemia and increases the time spent in target.

7.2 Conclusion

Figure 7.1: Results achieved by the main methodologies explored in this thesis on the
OhioT1DM dataset. Performance are expressed as median RMSE (dashed lines) and
[25th-75th percentiles] (shaded areas) for different prediction horizon.

As a final contribution, we would like to present some concluding state-
ments about the role of different input information and the contribution brought
by models of increasing complexity that may be useful for those who will de-
velop algorithms for glucose prediction in T1D.
For such a scope, we have re-implemented the main algorithms presented
in this thesis and assessed them on the same dataset (OhioT1DM) aiming to
exclude possible confounding factors and to provide a fair and straightfor-
ward comparison. This is shown in Figure 7.1 which details the performance
of: i) the best linear CGM-only algorithm found in Chapter 2 (individualized
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ARIMA, cyan dotted line); ii) the novel methodology based on Fuzzy C-Means
clustering and SARIMA models proposed in Chapter 3 (C-SARIMA 1, black
dotted line); iii) the advanced linear non-parametric approach fed by CGM,
meal and insulin information proposed in Chapter 5 (NP, red dotted line), as
well as the deep learning network (GRU, green dotted line); finally, iv) the
physiological white-box model inspired by the Uva/Padova T1DS (PHY, vio-
let triangle line). Based on Figure 7.1, and supported by the main findings of
each chapter, we can conclude that:

• as expected, the larger the PH, the larger the prediction error provided
by all the algorithms;

• data-driven strategies outperform the proposed physiological white-box
model, for all the PH;

• for PH ≤ 30 minutes, CGM only information employed as input of lin-
ear strategies (like individualized ARIMA), represent a practical valuable
solution;

• the use of seasonality information (i.e., CGM + mealtime) improves sig-
nificantly the performance for PH > 45 minutes if compared to CGM only
algorithms;

• for PH ≥ 30 minutes, the use of meal and insulin information (timing
and dosing) is required to enhance the overall performance;

• employing deep learning strategies allows to improve the performance
with respect to state-of-art linear techniques, but it does not drastically
change the overall picture;

• advanced linear non-parametric approach provides the best results, by
demonstrating that linear assumption is a viable alternative to more com-
plex nonlinear models;

1As described in Chapter 3, the proposed C-SARIMA methodology has been developed to
predict only the postprandial periods. Therefore, for this conclusive analysis, which aims to
compare the main methodologies on the entire glucose traces, C-SARIMA has been modified
by adding to the seasonal local models an ARIMA predictor that forecasts glucose from the
"end" of a postprandial period to the "beginning" of the next period.
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7.3 Limitation of the study and future works

Among the limitations of this research, we can identify three main areas for
future improvements. Concerning the forecasting of BG levels, we acknowl-
edge that we have not addressed all the possible machine/deep learning ap-
proaches, but we mainly focused on the well-established nonlinear black-box
models. For this reason, future work will deal with the assessment of novel
powerful methodologies and with the exploration of the promising field of
transfer learning. As far as the physiological white box model is concerned, we
acknowledge that only a reduced version of the Uva/Padova T1DS has been
proposed in this thesis. Future work will deal with the assessment of the com-
plete physiological model integrated into the Uva/Padova T1DS. Regarding
the prediction of hypoglycemic events, we applied the two proposed novelties
only on linear ARIMAX models. Future work will deal with an investigation
of the proposed novelties on nonlinear strategies. For what it concerns the
different input data, we acknowledge that we are not taking into account the
physical activity data, but we mainly focused on meals and insulin infusions.
To this end, future work will deal with signals related to physical activity, such
as heart rate variability data, recorded by modern dedicated devices. Finally,
for what it concerns the black-box interpretability tools, we plan to extend our
analysis to other approaches to investigate their potential in explain black-box
model predictions.
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Appendix A

Physiological model
individualization and prediction

A.1 Bayesian identification approach: implementa-

tion details

We partitioned θphy into five sets θphy := [θ1, θ2, θ3, θ4, θ5], namely:
θ1 := [SG, SIB, Gbdawn

], θ2 := [SIL, Gbday
], θ3 := [SID], θ4 := [p2, ka2, kd], θ5 :=

[kempt, kabs].
This partitioning scheme has been chosen since it improves MC mixing and
allows to break the correlation between SI and p2, known to be critical from
the literature [197].

An iteration i of the algorithm consists of five steps p = 1, . . . , 5 and each
step updates the p-th partition of θphy, θp, by approval/rejection of a sample
ϕp extracted from the proposal density function qp(·|·). Specifically, as pre-
scribed by the SCMH procedure, approval occurs with probability α

α = min(1,
π(ϕp|θi,−p)qp(θi−1,p|ϕp, θi,−p)

π(θi−1,p|θi,−p)qp(ϕp|θi−1,p, θi,−p)
)

with π(θp|θi,−p) proportional to the posterior of θp given that the other com-
ponents θ−p assume the value θ−p = θi,−p:

π(θp|θi,−p) = pY|θ,U(Y|θp, θi,−p, U)pθ(θp|θi,−p, U)

θi,−p comprises all the other components of θphy except for θp. Precisely, θi,−p

contains the most updated version of each component as available at the cur-
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A Physiological model individualization and prediction

rent stage of the algorithm: θi,−p = [θi,1, . . . , θi,p−1, θi−1,p+1, θi−1,5]. Compo-
nents up to p− 1 have already been updated when processing the p-th com-
ponents at iteration i, while other components, from p + 1 to 5, have not been
updated yet, so their value computed in the previous iteration i− 1 is used.

For what it concerns the proposal distribution, we used a Gaussian centered
in the value assumed by θp in the previous chain iteraction

qp(·|·) = N(θi−1,p, Σp)

where Σp is a tuning parameter that regulates the acceptance rate of the
chain. We set Σp to a diagonal matrix whose components are an estimate of the
conditional standard deviation of each element of partition p, sd(θphyp |Y, U),
multiplied by a scaling factor 2.4/

√
d as suggested in [198]. This estimates is

computed by running two exploratory MCMCs for nIter = 600 iterations and
updated every 1500 iterations of the algorithm, thus implementing an adaptive
SCMH.

Finally, the convergence of the MCMC has been verified through the well-
known Raftery-Lewis criterion [162], which provides the number of iterations
necessary to ensure the Markov Chain to represent the target posterior distri-
bution.

The Adaptive Single Component Metropolis Hasting is summarized in Al-
gorithm 1.
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A.2 Particle filter for BG prediction: implementation details

i← 0;
initialize θphy0 , nIter;
repeat

for p← 1 to 5 do
set θphyi,−p = [θphyi,1 , . . . , θphyi,p−1

, θphyi−1,p+1
, θphyi−1,5

];
sample ϕp ∼ qp(·|·);
set

α = min(1,
π(ϕp|θi,−p)qp(θi−1,p|ϕp, θi,−p)

π(θi−1,p|θi,−p)qp(ϕp|θi−1,p, θi,−p)
)

sample U ∼ Uniform(0,1);
if U ≤ α then

set θphyi,p = ϕp;
else

set θphyi,p = θphyi−1,p ;
end

end
i← i + 1

until n < nIter;
Algorithm 1: Adaptive Single Component Metropolis Hastings

A.2 Particle filter for BG prediction: implementa-

tion details

In the following, we present the numerical scheme implemented by PF to per-
form the one step-ahead prediction, measurement update, and multiple step-
ahead prediction.

One step-ahead prediction step.
Recalling that, at time tk−1, p(x(tk−1)|y(t1:k−1), u(t1:k−1)) is available in a sam-
pled form defined by set of P particles {xp(tk−1)}P

p=1 with associated weights
{w(tk−1)

p}P
p=1, ∑p w(tk−1)

p = 1 such that

p(x(tk−1)|y(t1:k−1),u(t1:k−1)) ≈
P

∑
p=1

wp(tk−1)δ(x(tk−1)− xp(tk−1)),

PF performs the one step-ahead prediction step by drawing a new set of parti-
cles {xp(tk)}P

p=1 from p(x(tk)|x(tk−1)):

xp(tk) ∼ p(xp(tk)|xp(tk−1)). (A.1)
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A Physiological model individualization and prediction

This probability is specified by (5.7):

p(xp(tk)|xp(tk−1)) = N(f (xp(tk−1), uuu, tk−1, θ), Σv).

In view of this, to draw the new set of particles it is sufficient to let each particle
xp(tk−1) evolve according to model (5.7), and corrupt it with a realization of
the noise v.

Measurement update step. The PF algorithm sets the weight w∗p(tk) of each
p-th particle xp(tk) to the likelihood function evaluated on xp(tk)

w∗p(tk) = p(y(tk)|xp(tk), u(t1:k)). (A.2)

In particular, from equation (5.7) and the statistics of the stochastic modelling
error e, p(y(tk)|xp(tk), u(t1:k)) is defined as:

p(y(tk)|x(tk), u(t1:k)) = N(y(tk)− yp(tk), SDϵ). (A.3)

where yp(tk) is obtained using (5.7) and SDϵ is the constant standard deviation
of the error.

Weights are then normalized such that ∑p w∗p(tk) = 1.

This provides a sampled form representation of the posterior density

p(x(tk)|y(t1:k−1),u(t1:k)) ≈
P

∑
p=1

w∗p(tk)δ(x(tk)− xp(tk)).

Resampling step. To improve the accuracy of PF, the measurement update
step is completed by updating the set of particles. Specifically, {xp(tk)}P

p=1 are
substituted with a new set of P particles, {x∗p(tk)}P

p=1 generated from the sam-
pled representation of p(x(tk)|y(t1:k−1), u(t1:k)) such that Pr(x∗p(tk) = xp(tk))
= w∗p(tk). This step is performed by a well-established resampling algorithm
[199].

As a result, all new particles {xp(tk)}P
p=1 are associated to the same weight

w∗p(tk) = 1/P, thus the approximation of p(x(tk)|y(t1:k−1), u(t1:k)) simplifies
to

p(x(tk)|y(t1:k−1), u(t1:k)) ≈
1
P

P

∑
p=1

δ(x(tk)− xp(tk)).
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A.2 Particle filter for BG prediction: implementation details

Multiple steps-ahead prediction.
Multiple steps ahead predictions can be obtained as follows. First, the prob-
abilities p(x(tk+i)|y(t1:k), u(t1:k+i)), ∀, i = 1, . . . , PH are obtained in sampled
form starting from p(x(tk)|y(t1:k), u(t1:k)) and propagating the P particles
{xp(tk)}P

p=1 i steps ahead as we did in the one step-ahead prediction step.
Then, the set of particles {yp(tk+i|tk)}P

p=1 is computed and used to obtain
p(y(tk+i)|y(t1:k), u(t1:k+i))∀, i = 1, . . . , PH in sampled form.

Finally, a point estimate of glucose i steps-ahead, y(tk+i), is obtained as the
average computed over the sampled form of p(y(tk+i)|y(t1:k), u(t1:k+i)), i.e.:

ŷ(tk+i|tk) =
1
P

P

∑
p=1

yp(tk+i|tk), ∀i = 1, . . . , PH.

The implemented PF is summarized in Algorithm 2.

k← 1;
xt0 = N(xss, Σv));
repeat

Step 1: One step-ahead prediction;
for p← 1 to P do

sample xp(tk) from N(f (xp(tk−1), uuu, tk−1, θ), Σv));
end
Step 2: Measurement update;
for p← 1 to P do

compute w∗p(tk) = N(y(tk)− yp(tk), SDϵ);
end
normalize w∗p(tk) = w∗p(tk)/ ∑p w∗p(tk);
Step 3: Resampling;
sample {x∗p(tk)}P

p=1 s.t. Pr(x∗p(tk) = xp(tk)) = w∗p(tk);
set {xp(tk)}P

p=1 = {xp∗(tk)}P
p=1;

Step 4: Multiple steps-ahead prediction;
for p← 1 to P do

compute yp(tk+i|tk), ∀i = 1, . . . , PH;
end
compute ŷ(tk+i|tk) =

1
P ∑P

p=1 yp(tk+i|tk), ∀i = 1, . . . , PH;
k← k + 1

until k ≤ D;
Algorithm 2: Particle Filter
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Appendix B

Deep learning models

B.1 LSTM

Long short-term memory (LSTM) networks are a type of recurrent neural net-
work (RNN) capable of learning and maintaining time dependencies in se-
quence prediction problems [200]. At a high-level, LSTM consists of three
parts, each dedicated to a specific individual function. The first part is respon-
sible to decide whether the incoming information (from the previous times-
tamp) has to be remembered or it can be forgotten. In the second phase, the
cell learns new information from the input. Finally, the cell passes the up-
dated information from the current time step to the next time step. These three
phases of an LSTM cell are known as: the Forget gate, the Input gate, and the
Output gate.

As RNN, LSTM is equipped by a hidden state for previous and current times-
tamps, namely H(t− 1) and H(t), respectively. In addition to that, a cell state,
namely C(t− 1) and C(t) for previous and current time step respectively, are
available to the LSTM. Of note, the hidden state is known as Short-term mem-
ory and the cell state is known as Long-term memory. This state represents the
core of an LSTM. In fact, the cell state transfers relative information along the
sequence chain. This can be interpret as the memory of the network which can
carry on relevant information throughout the processing of the sequence. As
a result, even information about previous time steps can have an impact on
subsequent timestamps, reducing the effects on short-term memory. In such
a context, the information gets added or removed to the cell state through the
gates, which decide which information has to be translated to the cell state.

The gates of an LSTM contain sigmoid activations (σ), that flattens values

135



B Deep learning models

between 0 and 1. This helps the network to update or forget the data. In
fact, if the multiplication results in 0, the information is considered forgotten.
Similarly, the information is kept if the value is 1. By applying this strategy, the
LSTM learns which data is not important, therefore can be forgotten, or which
is important to be kept.

Forget gate, ft: it decides which information has to be kept and which can
be ignored. The information from the current input Xt and the previous hid-
den state Ht−1 are passed through the sigmoid function, that generates values
between 0 and 1. As already mentioned, values close to 0 will be forgotten,
values close to 1 will be kept. ft will be used later by the cell for point-wise
multiplication.

Input gate, it: it updates the cell status. First, the current state Xt and
previously hidden state Ht−1 are passed into a second sigmoid function. The
values are transformed between 0 (not-important) and 1 (important). Next, Xt

and Ht−1 will be passed through a tanh function. To regulate the network, the
tanh operator will create a vector (nt) with all the possible values between -1
and 1. The output values generated from the activation functions are ready for
point-by-point multiplication.

Now, the network has enough information form the forget gate and input gate.
The next step is to decide and store the information from the new state in the
cell state. The previous cell state Ct−1 is multiplied by the forget vector ft.
If the outcome is 0, then values will get dropped in the cell state. Next, the
network takes the output value of the input vector it and performs point-by-
point addition, which updates the cell state giving the network a new cell state
Ct.

Output gate, ot: it determines the value of the next hidden state. First, the
values of the current state Xt and previous hidden state Ht−1 are passed into
the third sigmoid function. Finally, the current hidden state Ht is obtained by
(point-wise) multiplication with the new cell state Ct, which is passed through
the tanh function, to the ot. It is worth noting that this hidden state Ht is used
for prediction.
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B.2 GRU

Finally, here below the equations related to an LSTM network:

ft = σ
(
U f · Xt + W f · Ht−1 + b f

)
,

it = σ (Ui · Xt + Wi · Ht−1 + bi) ,

nt = tanh (Un · Xt + Wn · Ht−1 + bn) ,

ot = σ (Uo · Xt + Wo · Ht−1 + bo) ,

Ct = ft
⊙

Ct−1 + it · nt ,

Ht = ot
⊙

tanh(Ct) .

(B.1)

where Xt is the input to current time step, and Ht−1 is the hidden state of the
previous time step; Uj and Wj are the weight associated with input and with
hidden state, respectively, and bj is a bias vector, for j ∈ { f , i, n, o}.

B.2 GRU

Gated recurrent unit (GRU) is a popular variant of LSTM network introduced
by [201]. It uses gating mechanisms to control and manage the flow of infor-
mation between cells in the network. Unlike LSTM, GRU has only two gates:
the Update and Reset gate.

Update gate, ut: it decides which information is to retain and which is the
new information to be added. As for the LSTM, the current input Xt and the
previous hidden state Ht−1 are passed into a sigmoid functions.

Reset gate, rt: it controls which is information that has to be passed to the
GRU in the next instance of time. As for the ut, the current input Xt and the
previous state Ht−1 are passed into the sigmoid function.

Once rt is available, the new information nt can be computed by passing
through the tanh, the sum of: the current input Xt, the point-wise multiplica-
tion between rt and the previous hidden state Ht−1. As a final step, the new
hidden state Ht is computed by pointwise multiplication of nt with the (1− ut)

and ut with Ht−1
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The equations related to a GRU network are reported here below:

ut = σ (Uu · Xt + Wu · Ht−1 + bu) ,

rt = σ (Ur · Xt + Wr · Ht−1 + br) ,

nt = tanh
(

Un · Xt + Wn ·
(

rt
⊙

Ht−1

)
+ bn

)
,

Ht = (1− ut)
⊙

nt + ut
⊙

Ht−1 .

(B.2)

where Xt is the input to current time step, and Ht−1 is the hidden state of the
previous time step; Uj and Wj are the weight associated with input and with
hidden state, respectively, and bj is a bias vector, for j ∈ {u, r, n}.

B.3 TCN

Temporal convolutional network (TCN) is inspired by recent convolutional ar-
chitectures for sequential data and combines simplicity, autoregressive pre-
diction, and very long memory [202]. The TCN is designed from two basic
principles:

1. the convolutions are causal, meaning that there is no information leakage
from future to past;

2. the architecture can take a sequence of any length and map it to an output
sequence of the same length.

To achieve the first point, TCN exploits causal convolutions, i.e., convolutions
leveraging data available up to time t. To accomplish the second point, the
TCN uses a one-dimensional (1D) fully-convolutional network architecture,
where each hidden layer is the same length as the input layer.

Dilated convolution: simple causal convolutions have the disadvantage
to only look back at history with size linear in the depth of the network, i.e.,
the receptive field grows linearly with every additional layer. To overcome
this point, the architecture of TCN employs dilated convolutions that enable
an exponentially large receptive field. More formally, for an input sequence
x ∈ RT and a filter h : {0, ..., k− 1} → R, the dilated convolution operation H
on element x of the sequence is defined as

H(x) = (x ∗ h)(x) =
k−1

∑
i=0

f (i)xs−d·i , (B.3)
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where d = 2ν is the dilation factor, with ν the level of the network, and k is
the filter size. The term s− d · i accounts for the direction of the past. Dilation
is equivalent to introducing a fixed step between every two adjacent filters.
Using larger dilation enables an output at the top level to represent a wider
range of inputs, thus effectively expanding the receptive field of a Convolu-
tional Neural Network. There are two ways to increase the receptive field of a
TCN: choosing lager filter sizes k and increasing the dilation factor d, since the
effective history of one layer is (k− 1)d.

Residual block: in place of a convolutional layer, TCN employs a generic
residual module. Each residual block contains a branch leading out to a series
of transformations F , whose outputs are added to the input x of the block,

o = Activation (x +F (x)) . (B.4)

A residual block comprises two layers of dilated causal convolutions and rec-
tified linear units (ReLU) as non-linearities as shown in Figure B.1.

Figure B.1: Diagram of the Residual Block

Weight normalization is applied to the convolutional filters and a spatial dropout
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is added after each dilated convolution for regularization, meaning that at each
training step a whole channel is zeroed out.

The TCN model is deliberately kept simple, combining some of the best
practices of modern convolutional architectures. TCNs can be build to have
very long effective history sizes, which means they have the ability to look
very far into the past to make a prediction. To this end, a combination of very
deep networks augmented with residual layers and dilated convolutions are
deployed. The TCN architecture contains the following properties:

• Parallelism: convolutions can be calculated in parallel because the same
filter is used in each layer. Therefore, in both training and evaluation, a
long input sequence can be processed as a whole, instead of sequentially
as done in RNNs.

• Flexible receptive field size: stacking more dilated convolutional layers, us-
ing larger dilation factors, or increasing the filter size allow to extend
the receptive field size. Thus, TCNs afford better control of the model’s
memory size, and are easy to adapt to different domains.

• Low memory requirement for training: the filters are shared across a layer,
with the back-propagation path depending only on the network depth.
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Appendix C

Non-parametric linear models

C.1 Non-parametric approach for model identifica-

tion

1

Let us now consider that the 1-step ahead predictor can be written as:

ĝ(k|k− 1, θ) =

h1 ∗ i(k) + h2 ∗m(k) + h3 ∗ g(k) ,
(C.1)

where ∗ represents the convolution between two signals, whereas h1, h2, and
h3 are impulse responses related to the insulin, meal, and glucose signal, re-
spectively.
These functions are unknown, and they have to be estimated from noisy mea-
surements. The estimation of these unknown responses can be performed by
solving an optimization problem in an infinite-dimensional functional space
given by a reproducing kernel Hilbert space (RKHS) [203, 204, 205]. The ker-
nel of the RKHS should reflect the properties of the functions to be estimated
and its choice is a key point in the non-parametric approaches. Indeed, it can
incorporate useful prior knowledge, e.g., smoothness; moreover, the trade-off
between data fit and regularity of the estimate can be properly handled by the
estimate of the kernel’s unknown parameters. In order to incorporate within
the kernel the stability of the predictor’s impulse responses, in this study it was
used the Stable-Spline kernel (SSK), proposed in [206]. Using this approach, a

1This appendix contains material published in Faccioli et al., IEEE Transaction on Biomedical
Engineering, 2021, [62]
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generic Stable-Spline impulse response fSSK is seen as a realization of a zero-
mean Gaussian random process, whose covariance specify the SSK kernel, and
can be written as

Cov( fSSK(k), fSSK(l)) = λ2K(k, l) =

λ2

(
e−β(k+l)e−βmax(k,l)

2
− e−3βmax(k,l)

6

)
,

(C.2)

where k, l = 1, 2, ..., ∞, β > 0, and λ > 0. Let now define Kh1 , Kh2 , and Kh3 as the
SSK of h1, h2, and h3 respectively, and let Hh1 , Hh2 , and Hh3 denote the RKHS
of deterministic functions onN associated with Kh1 , Kh2 , and Kh3 (with norms
denoted by ∥ · ∥Hh1

, ∥ · ∥Hh2
, and ∥ · ∥Hh3

), [207]. The Stable-Spline estimators
ĥ1, ĥ2, and ĥ3 are obtained from the solution of the following Tikhonov-type
problem:

(ĥ1, ĥ2, ĥ3) =

argmin
h1∈Hh1

,h2∈Hh2
,h3∈Hh3

{∥g+ − Ah1 − Bh2 − Ch3∥2+

+γh1∥h1∥2
Hh1

+ γh2∥h2∥2
Hh2

+ γh3∥h3∥2
Hh3
} ,

(C.3)

[A]kl = i(k− l) , [B]kl = m(k− l) , [C]kl = g(k− l) ,

k = 1, 2, ..., ∞ , l = 1, 2, ..., n ,

g+ = [g1 g2 ... gn]
T ,

where ∥ · ∥ is the Euclidian norm, γh1 = σ2/λ2
h1

, γh2 = σ2/λ2
h2

, γh3 = σ2/λ2
h3

,
and g+ is a vector containing n CGM data with n being the number of future
samples considered in the identification procedure. Note that, to make practi-
cally implementable the above strategy, the infinitely long impulse responses
are approximated by truncation after Np samples.
Note also that from (C.2) the covariances of the impulse responses h1, h2, and
h3 include the parameters βh1 , βh2 , and βh3 , respectively. It can be therefore de-
fined the hyperparameters of our problem (βh1 , βh2 , βh3 , λh1 , λh2 , λh3 , and σ),
that have to be properly tuned before to the solution of the Tikhonov problem
(C.3). By assuming known the hyperparameters, the solution of (C.3) is given
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by
ĥ1 = λ2

h1
Kh1 ATϕ ,

ĥ2 = λ2
h2

Kh2 BTϕ ,

ĥ3 = λ2
h3

Kh3CTϕ ,

ϕ = (λ2
h1

AKh1 AT + λ2
h2

BKh2 BT+

+λ2
h3

CKh3CT + σ2In)
−1g+ ,

(C.4)

where In is the n × n identity matrix.
Regarding the hyperparameters (denoted by ζ), they can be estimated via

maximum marginal likelihood [207]:

ζ̂ = argmin
ζ

(J(g+, ζ)) ,

J(g+, ζ) =
1
2

ln(det[2πV[g+]]) +
1
2
(g+)T(V[g+])−1g+ ,

V[g+] = λ2
h1

AKh1 AT + λ2
h2

BKh2 BT+

+λ2
h3

CKh3CT + σ2In ,

(C.5)

where J is the opposite log-marginal likelihood of g+. For further details,
please refer to [207].
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