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Abstract
1.	 Heatwaves are occurring at an increasing frequency and intensity under ongo-

ing climate change. As many reproductive traits—including mating behaviour and 
gamete traits—are sensitive even to small temperature changes, the impact of 
heatwaves on reproduction and sexual selection processes is likely to be vast. 
Also, evaluating whether the sexes respond differently to these extreme events is 
crucial to understand the impact on fecundity and the consequences at the popu-
lation level. Nonetheless, our knowledge of the effects of heatwaves on these key 
aspects of animal life is still limited.

2.	 Here, we expose recently mated male and female guppies Poecilia reticulata to 
an experimental heatwave (32°C, 6°C above the control, for 5 days) to determine 
its effects on several traits, including sexual behaviour, condition, ornamentation 
and fertility. Using this design, in contrast to alternative experimental setups, we 
had the possibility to attribute the effects of the heatwave to males' and females' 
reproductive traits independently.

3.	 Overall, our results indicate that heatwaves can drastically affect key reproduc-
tive traits and unravel sex-specific responses. In males, there was no effect of 
the heatwave on survival, but both pre- and postcopulatory reproductive traits 
were affected. After the heatwave, we detected a decrease in orange colouration 
(the most important ornament on which female choice is based) and the overall 
level of sexual activity, and a shift in the preferred mating tactic towards forced 
copulation attempts. The latter suggests implications in sexual conflict dynam-
ics, as forced copulations override female mate choice. Also, after the heatwave, 
males had more sperm but of lower quality, and, in addition, an increased variance 
in sperm number. Overall, heatwaves may thus result in a compromised ability to 
secure matings and fertilizations. In females, the heatwave significantly affected 
survival, with increased mortality in the short term, and impaired fecundity, with 
many females from the heatwave treatment not reproducing at all.

4.	 The negative effects of heatwaves on key reproductive traits unravelled by our 
study could have major implications for population dynamics and persistence. It 
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1  |  INTRODUC TION

Climate change has resulted in vast changes in the global thermal 
environment, including an increased frequency and severity of heat-
waves (Ummenhofer & Meehl, 2017), affecting the distribution and 
abundance of species (Buckley & Huey,  2016). Heatwaves are ex-
treme climatic events, characterized as a period of abnormally hot 
weather (IPCC, 2021). Even though we still lack of an official, world-
wide accepted definition of a heatwave, a commonly used one defines 
heatwaves as a period of 5–7°C higher than the usual temperature 
for at least 5 days (Sales et al., 2018). Heatwaves are quick and un-
predictable in their onset and represent unusually high thermal con-
ditions that can exceed the natural range of temperatures normally 
experienced by populations (van de Pol et al., 2017). The impact of 
heatwaves is deemed larger than that of gradual warming over a 
longer time (Easterling et al., 2000; Jentsch et al., 2007; Sheldon & 
Dillon, 2016), as organisms do not have the possibility to acclimate to 
such a short and sudden increase in temperature. Therefore, they are 
expected to have far-reaching impacts on biodiversity mediated by 
effects on, for example, movement (or migration), behaviour, physiol-
ogy, and survival (Stillman, 2019). While a limited, but rising, number 
of studies investigate the biological impacts of heatwaves, indicat-
ing both lethal (Mouthon & Daufresne, 2006; Strydom et al., 2020; 
Wild et al., 2019) and sublethal impacts (Danner et al., 2021; Huber 
et al.,  2010), only a few studies have focussed on how heatwaves 
affect reproduction (Hurley et al., 2018; Martinet et al., 2021; Sales 
et al.,  2021; Wild et al.,  2019). Yet, the limits that heatwaves, and 
temperature in general, pose to reproduction may better explain 
population declines than the limits they pose to survival (Martinet 
et al., 2021; Parratt et al., 2021; Wild et al., 2019).

Temperature may directly or indirectly affect reproduction, for 
example by directly jeopardizing gamete production, and hence fer-
tility, or by influencing sexually selected traits associated with pre- 
and post-mating episodes of sexual selection, including ornaments 
used in mate choice and mating behaviour (García-Roa et al., 2020; 
Leith et al.,  2021). Regarding the direct effects, high temperatures 
have already been linked to decreased gamete quantity (e.g. Nguyen 
et al.,  2013; Paxton et al.,  2016; Pérez-Crespo et al.,  2008; Roux 
et al., 2010). In fact, the temperature threshold at which fertility de-
teriorates is often below an organism's lethal thermal limit and pop-
ulations may face an increased risk of decline, that is a lower rate of 
offspring production, driven by sub-optimal fertility or complete in-
fertility (of otherwise viable individuals) at high temperatures (Parratt 
et al., 2021; Walsh et al., 2019). Here, it is important to highlight that 
male and female reproductive traits may respond very differently to 

thermal stress, since the sexes often differ in their thermosensitivity 
on fertility (Iossa, 2019). Male gametes are often more sensitive to 
thermal stress than female gametes, in endothermic as well as ecto-
thermic animals (Iossa, 2019). Sperm may be especially thermosen-
sitive due to their intrinsic characteristics, such as a limited repair 
machinery, that make them particularly susceptible to oxidative stress 
(Bisht et al., 2017; Reinhardt et al., 2015). Even small changes in tem-
perature have been reported to decrease both the number and quality 
of sperm (e.g. Binet & Doyle, 2013; Breckels & Neff, 2013; Gasparini 
et al., 2018; Mehlis & Bakker, 2014). Also, female reproduction can 
be strongly impacted by heat stress, and negative effects have been 
observed in the number and quality of oocytes (e.g. Hansen, 2009; 
Paxton et al.,  2016). In general, however, the relatively higher re-
silience in female fertility to heat stress has been suggested to po-
tentially buffer population persistence under rising temperatures 
(Iossa, 2019). However, it is worth considering that the effects on re-
production have often been assessed using the number of offspring 
produced by females after the heat stress, with no possibility to disen-
tangle the effects on females from those on males.

Thermal effects on reproductive traits may not only change re-
productive success at the individual level but could also alter sexual 
selection dynamics (Candolin, 2019; García-Roa et al., 2020; Rosenthal 
& Elias,  2019). Changes in sperm quality are likely to impair sperm 
competitiveness (Van Lieshout et al., 2013; Vasudeva et al., 2014) and 
thus the outcome of sperm competition (where sperm from different 
males compete to fertilize the same set of eggs; Parker, 1979), and the 
opportunity for sexual selection at the postmating level. At the same 
time, temperature can affect premating sexual selection dynamics by 
changing the expression of sexually selected traits used in mate attrac-
tion and mate choice, such as body size, ornamentation, and mating be-
haviour and interactions (Candolin, 2019; Moore et al., 2021; Rosenthal 
& Elias, 2019). For example, temperature can affect female choice by 
disrupting pheromonal communication and thereby the female's abil-
ity to assess and choose an appropriate partner (Boullis et al., 2016). 
It can also alter sexual behaviour maladaptively, for example, when 
thermal stress—by diverting energy normally dedicated to sexual be-
haviour to repair or maintenance processes—translates into decreased 
sexual activity or a shift in mating tactics (e.g. towards sneaky mating), 
which can in turn increase the intensity of sexual conflict (Candolin & 
Wong, 2012). On the other hand, adaptive behavioural plasticity may 
allow organisms to buffer reproductive success under thermal stress 
and may thus provide resilience to populations and facilitate adap-
tation to temperature changes (Gómez-Llano et al.,  2021; Moritz & 
Agudo, 2013). For instance, in species with parental care, an increased 
provisioning rate could allow parents to protect their offspring from 

highlights the need for further studies on how these extreme events affect repro-
duction, to improve our understanding of the impacts of climate change.

K E Y W O R D S
climate change, colour ornaments, extreme heat events, fecundity, sexual behaviour, sperm 
traits
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some heat-related costs (Fragueira et al.,  2021). By increasing their 
remating rates, females could protect themselves from compromised 
male fertility (Sutter et al., 2019; Vasudeva et al., 2021). Altogether, 
studying the effects of heatwaves on traits related to fertility and sex-
ual selection, and the ability of species to eventually adjust behaviour 
to counteract the effects on these traits, is crucial to better understand 
and predict the impacts of climate change on populations.

Here, we study whether and to what extent heatwaves affect 
reproduction, using a freshwater ectotherm, the guppy Poecilia 
reticulata, as model species. As ectotherms—which are more di-
rectly influenced by changes in their thermal environment than 
endotherms (Angilletta, 2009; Paaijmans et al., 2013)—that live in 
freshwater ecosystems, where conditions can fluctuate severely 
under extreme climatic events (Ledger & Milner, 2015; Woodward 
et al., 2016), guppies may be especially sensitive to heatwaves. In 
our study, we exposed adult fish to a 5-day experimental heat-
wave of 6°C—following the definition from Sales et al. (2018)—to 
comprehensively assess the effects on reproductive traits, includ-
ing mating behaviour, ornamentation and fertility, and on survival 
and condition. The guppy is an internal fertilizer, that has become 
a model species in reproductive and sexual selection studies. 
Females are highly polyandrous (Hain & Neff, 2007; Liley, 1966), 
making post-mating selection, through sperm competition and 
cryptic female choice, an important source of variability in the re-
productive success of individuals, with both sperm number and 
quality having an impact on sperm competitiveness (Boschetto 
et al., 2011; Devigili, Evans, et al., 2015). An important feature that 
makes the guppy well suited to study reproductive behaviour is the 
fact that such behaviour can be assessed both qualitatively, that is, 
in terms of which of two alternative tactics (with different energy 
requirements and fitness returns) males adopt to obtain a mating, 
and quantitatively, for example, as the number of sexual attempts 
or the time devoted to sexual activities. Specifically, males can 
either choose to attempt a mating through courtship (more ener-
getically demanding) or through a sneaky mating attempt (less de-
manding in terms of energy but on average less successful; Devigili 
et al., 2013; Pilastro & Bisazza, 1999). Finally, the guppy is a rele-
vant model for testing heatwaves, as in the original habitat of the 
species, small rivers and creeks in Central America, heatwaves are 
an ecologically relevant problem (Angeles-Malaspina et al., 2018; 
Stephenson et al.,  2014). Moreover, high temperature has been 
previously shown to affect both pre- and postmating reproductive 
traits (Breckels & Neff, 2013; Reeve et al., 2014) and reproductive 
success (Dzikowski et al., 2001) of guppies. Thus, it is likely that 
also heatwaves may have an impact on reproductive traits.

2  |  MATERIAL S AND METHODS

2.1  |  Fish maintenance

The subjects used in this experiment were descendants of wild gup-
pies from a high predation site of the Tacarigua River in Trinidad. 
Since 2013, fish are maintained in seminatural conditions in a large 

pond at the Botanical Garden of the University of Padova. New-born 
fish were captured from the pond and reared to sexual maturity in 
the laboratory, under standardized conditions. Water temperature 
was maintained at 26 ± 1°C and illumination was provided with a 12 
L: 12 D cycle. All fish were fed twice a day with a mix of brine shrimp 
(Artemia salina nauplii) and commercial dry food (Duplarin). Upon 
sexual differentiation, females were separated from males and kept 
in female-only tanks to ensure the use of virgins for the experiment 
(necessary to avoid females storing sperm from previous mating; 
Gasparini & Evans, 2018).

2.2  |  Overview of the experimental design

The overall aim was to look at the effects of a heatwave on traits 
related to reproduction and sexual selection. Specifically, we wanted 
to examine heatwave effects on sexual behaviour and fertility of 
adult males and females. To do so, we randomly assigned males and 
virgin females to either one of the two treatments: heatwave (HT) 
or control (C). We tested male traits before and after the treatment 
(sexual behaviour, sperm traits, condition and ornamentation; see 
below), and female traits (fecundity and sexual interest) only after. 
A total of 60 males and 60 females were used, at 7 months old. The 
experimental design consisted of mating males and females and then 
applying the treatment (heatwave or control) while they were physi-
cally separated (see below). This was done to disentangle the effect 
of the heatwave on the two sexes, and to standardize social and mat-
ing history that could affect some traits (e.g. sperm production in 
males) directly or indirectly, and to avoid any effect of male–female 
interactions during the heatwave on measured parameters.

2.3  |  Timeline

On day 1, five males (7 months old) were randomly selected and 
introduced in the experimental tank (18 L) and left to acclimatize 
for 5 days (Figure S.1.1). On day 6, five non-experimental ‘compan-
ion’ females were released for 10 days in each tank to allow males 
to have a normal sexual activity. On day 16, the nonexperimental 
females were confined within the experimental tank in perforated 
transparent cylinders for 7 successive days. This period of male vis-
ual and olfactory, but not physical, contact with the females, was 
necessary to standardize recent sexual history, to properly assess 
reproductive traits that can be influenced by recent mating (such 
as sperm production or sexual behaviour; Bozynski & Liley, 2003; 
Devigili, Doldán-Martelli, et al., 2015; Gasparini et al., 2009). Males 
were tested for reproductive behaviour and swimming performance 
(day 23), and the day after, for sperm production and sperm qual-
ity, body condition, and coloration (day 24; see next section for the 
details). Thereafter, the males were returned to their original experi-
mental tank and left to recover for 2 days before repeating this time-
line (as for day 6 to day 24), this time with the experimental females 
(7-month-old virgins) and the heatwave (or control) treatment (see 
below). When the temperature treatment was started (day 37) the 
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females were confined into transparent cylinders. After 7 days the 
treatment (heatwave or control temperature) ended and males were 
measured again in the same way as before, for behaviour and swim-
ming performance (day 44), sperm production and sperm quality, 
body condition, and coloration (day 45). On day 44 females were 
moved to individual tanks and monitored for fecundity. Once the 
females gave birth they were tested for sexual interest (assessing 
their propensity to school with conspecific females versus showing 
interest in males). However, due to the low number of females pro-
ducing broods in the heatwave group (only 4 out of 30, see results), 
postpartum female behaviour could not be compared meaningfully 
among the two treatments, and we therefore do not describe meth-
ods for this assay or show any results on that part. Similarly, we also 
planned to test transgenerational fitness effects by measuring off-
spring survival and swimming ability, but due to the low number of 
broods—and hence offspring—in the heatwave treatment we have 
not reported the methods or results of this part (see Section 3).

2.4  |  Heatwave treatment

In the heatwave treatment, we raised the temperature by 6°C and 
maintained it for 5 days, following the heatwave definition used in 
(Sales et al., 2018). The water temperature of the tank was gradually 
raised from 26 to 32°C on the first day (day 37), using an aquarium 
heater (100 W, NEWA Therm Pro), left at 32°C for the following 
5 days, and gradually lowered back to room temperature (26°C) on 
the last day (day 43). Tanks of the control treatment were maintained 
with the same heater at room temperature (26°C). Water tempera-
ture in the tanks was checked with a standard aquarium thermom-
eter and a temperature logger (EnvLogger v2.4, ElectricBlueCRL).

2.5  |  Measurements

2.5.1  |  Male assays

Before and after the temperature treatment, males were tested first 
for sexual behaviour and swimming performance and the following 
day for sperm production and sperm quality, body condition, and 
coloration.

2.5.1.1 | Sexual behaviour
Male's sexual behaviour was assessed in the morning following 
standard protocol for the species (e.g. Cattelan et al., 2016). One 
male was placed in an observation tank (29 × 39 × 32 cm) in which 
an unreceptive female (randomly chosen from a stock tank) was 
already present. After a 5-min acclimation period, the male's be-
haviour was observed for 15 min. The following behaviours were 
recorded: the total time a male spent following the female (ob-
served when a male was within two body lengths from the female 
and oriented towards her), as a proxy for sexual interest. The total 
number of courtship displays performed by the male (when a male 

bends its body, opens the fins and shows himself to the female), 
and the number of gonopodial thrusts, that is, sneaky mating at-
tempts. We calculated each male's sexual activity, defined as the 
sum of courtship displays and gonopodial thrusts performed by the 
male. We also determined the male's preferred tactic, calculated as 
the ratio of gonopodial thrusts to courtship displays scaled around 
zero. A value of 0 indicates that a male performed each tactic at the 
same frequency, a positive value indicates it performed more go-
nopodial thrusts, and a negative value indicates a relatively higher 
rate of courtship displays.

2.5.1.2 | Swimming performance
The swimming performance of males was estimated by measur-
ing its critical swimming speed in a flow chamber, using a previously 
established protocol (Nicoletto, 1991). Each fish was placed into a 
swimming chamber (a 50 cm long transparent PVC pipe, 1.5 cm in 
diameter), through which water was pumped at a steady linear flow 
using an aquarium pump. The water velocity was initially 7 cm s−1 and 
was increased by 3 cm s−1 every minute, until the fish fell from the 
outflow end of the chamber into a water tank below. The total swim-
ming time, the highest water velocity and the time the fish spent 
swimming at the highest velocity were recorded, from which its criti-
cal swimming speed was calculated after Brett (1964). Critical swim-
ming speed is defined as the maximum speed that a fish can sustain 
for a set period (Brett, 1964), that is, how fast a fish can swim, and is 
a proxy for endurance (Gordon et al., 2015). Swimming performance 
tests were conducted in the afternoon.

2.5.1.3 | Sperm number and quality
The day after the behavioural assay, each male was anaesthetized 
to collect the ejaculate. Ejaculate collection followed standard 
procedure for the species (see, for example Gasparini et al., 2017). 
Briefly, while the male is sedated, a gentle pressure is applied to 
the male's abdomen, releasing the sperm. Sperm number (the total 
amount of sperm cells in the ejaculate) and viability (the propor-
tion of live and dead sperm), were assessed using an automated 
cell counter (LUNA Dual Fluorescence Cell Counter). Sperm motil-
ity was assessed using computer-assisted sperm analysis (CEROS 
Sperm Tracker, Hamilton Thorne Research, Beverly, MA, version 
12.3), following previously established protocols (e.g. Gasparini 
et al.,  2017). In both sperm viability and sperm motility assays, 
sperm number was diluted and equalized among males. The fol-
lowing parameters were recorded, based on an average (± SE) 
of 217 ± 6 sperm tracks per sample: average path velocity (VAP), 
straight line velocity (VSL), curvilinear velocity (VCL), amplitude 
of the lateral head (ALH), beat cross frequency (BCF), straightness 
(STR), and linearity (LIN).

2.5.1.4 | Body condition and colouration
While males were sedated for ejaculate collection, they were 
weighted (to the nearest mg) and photographed using a digital 
SLR camera (ESOS 450D) under standardized illumination. The 
photographs included a calibration scale and a colour standard 
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(GretagMacbeth ColorChecker®). Using ImageJ analysis software 
(https://imagej.nih.gov/ij/index.html) from those photographs, we 
measured male's body size (standard length, SL, in mm; distance 
from the snout to the base of the caudal fin). Body size was used with 
body weight to quantify a male's body condition (i.e. his fat stores 
or surplus energy) using Fulton's body condition index (Kotrschal 
et al., 2011). We also measured the area of orange-coloured spots 
(from here on orange body area) with ImageJ and the spectral prop-
erties of the orange spots using the software ColourWorker (ver-
sion 2.0, https://www.colou​rwork​er.com/ ). Each photograph was 
calibrated with the standard colour reference included in each image 
(for details see Gasparini et al., 2014).

2.5.2  |  Female assays

2.5.2.1 | Fecundity
After the treatment, females were moved to individual 3 L tanks in 
a recirculating water system (Tecniplast) and monitored every day 
until giving birth to offspring, which were counted. After produc-
ing their first brood, females were maintained individually isolated 
to record the total number of successive broods produced with the 
stored sperm. This was done to study the effect of the heatwave 
on sperm storage, but again, due to the low fecundity in the heat-
wave group (see below), there were not enough data for a meaning-
ful comparison between the treatments. Because females produce 
broods approximately every 30 days, when >70 days passed without 
any offspring produced, the female was considered to not have had 
more broods (i.e. emptied the sperm storage).

2.5.3  |  Male and female survival

Survival of the fish was assessed by daily monitoring the tanks for 
up to 45 days following the temperature treatment in males, and up 
to 6 months following the treatment in females. If a male died before 
the start of the treatment, it was immediately replaced with another 
male raised and kept under the same laboratory conditions. Males 
used as replacements (N = 10) have only one measure (after treat-
ment). Males that died during the treatment and females were not 
replaced.

2.6  |  Statistical analyses

All analyses were performed in R, version 1.4.1717. The significance 
of fixed effects in linear mixed models (LMER) was calculated from F 
statistics with the ‘lmerTest’ package and Satterthwaite's approxima-
tion to calculate the denominator degrees of freedom. The signifi-
cance of fixed effects in generalized linear mixed models (GLMER) 
was calculated from chi-square statistics, using Wald chi-square 
tests from the ‘car’ package. The distribution of residuals from the 
models was checked to ensure model assumptions were met and 
corrections for overdispersion were made when needed.

2.6.1  |  Males

Male traits were analysed using (G)LMER models including treat-
ment (heatwave or control), time (before or after the temperature 
treatment), and their interaction, as fixed factors. All models in-
cluded male identity (ID, 68 levels) as a random factor to account for 
repeated measures within the same male. The male's experimental 
tank (tank, 12 levels) was also tested as a random factor but removed 
when it explained no variance in the model.

We performed a principal component analysis (PCA), using the r 
package ‘prcomp’, on the seven recorded sperm velocity parameters. 
We obtained 2 principal components (PCs) with an eigenvalue greater 
than one (Table S.2.1), which explained 89% of the original variation. 
The first component (PC1sperm), which explained 60% of the variance, 
represents sperm velocity. The second component (PC2sperm), which 
explained 29% of the variance, represents sperm swimming path 
straightness. Hereafter, we will refer to these two PCs as sperm ve-
locity and sperm path straightness. A more detailed description of the 
components can be found in Supporting Information (Section S.2).

For analysing coloration of the orange spots we performed a PCA 
on the spectra obtained, where the reflectance values at each wave-
length point for each male (from 400 to 700 nm at a 5 nm step) were the 
original variables. We obtained 3 PCs with an eigenvalue greater than 
one (see Table S.3.1) which explained 98.8% of total variability. We de-
scribe in detail the PC meaning in Supporting Information (Section S.3). 
In short, the first component (PC1colour) represents the brightness of 
the spot (i.e. how much light is reflected irrespective of the colour). The 
second component (PC2colour) is loaded by wavelengths in the central 
part of the spectrum and—indirectly and inversely—represents the sat-
uration of the orange coloration of the carotenoid spot (the higher the 
PC score, the lower the relative orange intensity). The third (PC3colour) 
approximates the relative intensity of the ultraviolet (UV) compo-
nent of the spot. From here on, we will refer to PC1colour as brightness, 
PC2colour as saturation, and PC3colour as UV saturation.

LMER models were used for analysing the sexual interest, the 
male's preferred tactic, critical swimming speed, sperm number (sqrt 
transformed), sperm velocity, sperm path straightness, body condi-
tion, area of the orange spots, orange spot brightness, saturation, 
and UV saturation. GLMER models were used for analysing sexual 
activity (model family: Poisson) and sperm viability (family: binomial). 
The models for critical swimming speed, sperm number, and orange 
spot area were corrected for male body size by including the male's 
standard length as a fixed effect. For technical reasons, in three 
males critical swimming speed could not be estimated, and in three 
other males sperm quality could not be assessed.

Analysis of variance, to test whether the variance of traits dif-
fered between treatment groups or changed across time, was per-
formed using Bartlett's tests (Table S.4.1).

2.6.2  |  Females

The fecundity of females was analysed using GLMER models, in-
cluding treatment (heatwave or control) as a fixed effect and the 
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experimental tank (tank) as a random factor. Binomial family was 
used for the probability of producing at least one brood and Poisson 
family in the model for brood size. Due to a low number of heatwave 
females producing broods, analyses to compare the post-partum be-
haviour, and analyses to compare the offspring's traits and survival 
in relation to maternal treatment (for determining transgenerational 
effects), could not be performed.

2.6.3  |  Male and female survival

Survival was analysed using the package ‘survival’. To analyse how 
survival was affected by treatment (heatwave or control) we carried 
out survival analyses by fitting Kaplan–Meier survival curves to each 
of the two groups (estimating survival probability, based on the num-
ber of surviving individuals per day), and compared the curves for 
differences in survival between control and heatwave groups using a 
log-rank test. Significance of between-group differences in the sur-
vival probability until specific time points during the experimental 
timeline (e.g. survival until the end of the temperature treatment) 
was calculated from Z statistics.

3  |  RESULTS

3.1  |  Males

We obtained measures from 68 males (35 control and 33 heatwaves), 
40 of which with complete repeated measures. Specific sample sizes 
are reported for each male trait in Table 1. Mean and variance of raw 
data traits are reported in Table S.4.1 (part A). Analysis of variance 
are reported for all the traits in Table S.4.1, across time (part A) and 
across treatment (part B), and described in the results only when a 
significant treatment effect was found (Table S.4.1, part B AFTER).

3.1.1  |  Sexual behaviour

Sexual interest (time spent actively following the female, in min) was 
not significantly affected by treatment, time (i.e. before or after the 
treatment), or their interaction (Table 1, Figure 1a). Male sexual ac-
tivity (the sum of courtship displays and sneaky mating attempts) 
was significantly affected by the interaction between treatment 
and time (Table 1), with males decreasing their total sexual activity 
after the treatment in the heatwave but not in the control (Figure 1b, 
Table  S.4.1). Throughout all the observations of sexual behaviour, 
sneaky mating attempts were the overall preferred male tactic, 
consisting of 72% percent of the total observed sexual activities. 
The ratio of the two tactics used by each male (i.e. the preferred 
tactic) was significantly affected by the interaction between treat-
ment and time (Table 1). This interaction indicates the males in the 
heatwave group (where we found reduced overall sexual activity) 
decreased predominantly their courtship displays, resulting into a 

more pronounced use of sneaky mating attempts after the heat-
wave, while this was not the case in the control group (Figure 1c, 
Table S.4.1).

3.1.2  |  Swimming performance

Critical swimming speed was significantly affected by the interac-
tion between treatment and time (Table 1). The swimming perfor-
mance of fish increased after the treatment in control males, but not 
in heatwave males (Table S.4.1).

3.1.3  |  Sperm number and quality

Sperm number was significantly affected by treatment and the inter-
action between treatment and time (Table 1). After the treatment, 
sperm number was higher in the heatwave group than in the control 
group (Figure 2a, Table S.4.1), and also the variance was significantly 
larger in the heatwave group compared to the control group (24.21 
vs. 6.24, p = 0.001, see Table S.4.1 part B, Figure S.4.1). Sperm viabil-
ity was not significantly affected by treatment, time or their interac-
tion (Table 1, Figure 2b).

Sperm velocity was significantly affected by treatment and time 
(Table 1). Sperm velocity was lower in the heatwave treatment, and 
there was a decline in velocity from before to after the treatment 
(Figure  2c, Table  S.4.1). While the interaction was not significant, 
visual inspection of the data indicated a greater drop in velocity in 
the heatwave group (Figure 2c and Figure S.4.2, Table S.4.1), leading 
us to run two additional separate models for each time (before or 
after the treatment). These showed that sperm velocity was signifi-
cantly lower in the heatwave group than in the control group after 
the treatment (estimate ± SE = −1.262 ± 0.591, F = 5.56, p = 0.038), 
while no between-group difference was observed before the treat-
ment (−0.431 ± 0.457, F = 0.89, p = 0.350). Sperm path straightness 
was significantly affected by time (Table 1, Figure 2d, Table S.4.1), 
but not by the treatment nor the interaction. The straightness of 
the sperm trajectory increased from pre- to posttreatment (Table 1).

3.1.4  |  Body condition and colouration

Male body condition (Fulton's index) was not affected by treatment, 
time or their interaction (Table 1). There was no effect of treatment 
or time on the area of orange spots. Interestingly, there was a trend 
for the interaction between treatment and time (Table  1), with a 
decrease in orange spot area after the heatwave but not after the 
control (Table S.4.1).

The brightness and UV saturation of orange spots significantly 
increased with time (Table 1) in both control and heatwave groups 
(see Table S.3.2 and Figure S.3.3), but were not affected by treatment 
or the interaction. However, after the treatment, variance in UV sat-
uration was larger in the heatwave group compared to the control 
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group (9.48 vs 3.93, p = 0.034, see Table S.4.2, part B). Orange sat-
uration decreased in both treatments but significantly more in the 
heatwave males compared to the control males (Table S.3.2/S.4.1, 
Figure S.3.3 panel B).

3.2  |  Females

3.2.1  |  Fecundity

Four out of 30 (13.3%) heatwave females produced at least one brood, 
versus 25 out of 30 (83.3%) control females (Figure 3a). The probability 

of producing a brood was significantly reduced in the heatwave fe-
males (χ2 = 32.517, p < 0.001). When considering only those females 
that survived long enough to give birth to their first potential brood 
(survival >40 days since the first day of being released with males, 
N = 39), the probability of producing a brood was still significantly re-
duced in the heatwave females (χ2 = 16.25, p < 0.001). The average 
brood size for broods from heatwave females was 4.80 ± 1.02, versus 
an average of 6.68 ± 0.44 for the control females (Figure 3b), but this 
difference was not significant between treatment groups (χ2 = 2.693, 
p = 0.101). However, the number of females giving birth in the heat-
wave group was only n = 4, so the analysis on the number of offspring 
produced (brood size) needs to be interpreted with caution.

F I G U R E  1  The relative change, 
expressed as a percentage (± the relative 
SE of the difference between the means), 
in sexual behaviour from before to after 
a temperature treatment (control or 
heatwave): (a) sexual interest (i.e. time 
following a female), (b) sexual activity 
(i.e. total number of gonopodial thrusts 
plus sigmoid displays) and (c) preferred 
tactic (i.e. the ratio of sneaky mating 
attempts over courtship displays). 
Asterisks indicate a significant interaction 
between treatment and time.
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F I G U R E  2  The change in male's 
sperm traits from before to after the 
temperature treatment in terms of (a) 
sperm number, (b) sperm viability, (c) sperm 
velocity and (d) sperm path straightness. 
(a) and (b) are expressed as a relative 
change (%), while (c) and (d) as the change 
in principal component score. A significant 
treatment by measurement interaction 
(indicated with an asterisk) existed in the 
analysis for sperm number (a).
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3.3  |  Male and female survival

3.3.1  |  Male survival

Male survival showed no consistent differences between the two 
treatments, as evidenced by the log rank test for differences in sur-
vival probability (n = 70, χ2 = 1.7, p = 0.2) as well as the crossing 
survival curves (Figure 4a). Also, performing survival analysis from 
the start until different time points throughout the experiment con-
firmed this result. No differences were found in survival until the 
day before the start of the temperature treatment (until day 36; 
Z = −1.316, p = 0.188), until the end of the temperature treatment 
(day 43; Z = 0.260, p = 0.795), and until the end of the week follow-
ing the temperature treatment (day 50; Z = 0.052, p = 0.958, see 
Figure 4a for the different time points).

3.3.2  |  Female survival

After 6 months since the start of the treatment there were 12/60 
females still alive (6 in the control and 6 in the heatwave group). 
On average, females in the control group had a longevity of 
305.1 ± 10.0 days, while the females in the heatwave group of 
277.5 ± 11.9 days (difference not significant). The ratio of surviving 
females (Figure 4b) throughout the entire monitoring period was not 
significantly different between the two groups (χ2 = 2.6, p = 0.100). 
However, important differences in survival throughout the course 
of the experiment emerged when considering survival until different 
time points within the experimental timeline. Specifically, we esti-
mated differences in survival from the beginning of the treatment 
until: (1) the end of the treatment (i.e. short-term survival; until day 
43 in the timeline, see Figure 4b), (2) 1 week after the treatment (day 
50), (3) 1 month after the treatment (day 73) and (4) the end of the 
experiment (day 103). The probability of survival for females that 

experienced a heatwave was significantly lower in the first cut-off 
(1) (Z = 2.450, p = 0.014), second cut-off (2) (Z = 4.157, p < 0.001), 
and third cut-off (3) (Z = 3.533, p < 0.001), but not in the last cut-off 
(4) (Z = 1.615, p = 0.106). This indicates that heatwave females died 
more likely during and shortly after the heatwave, but if they sur-
vived, longevity in the long term was not affected.

4  |  DISCUSSION

Our findings show detrimental and sex-specific effects of heatwaves 
on reproduction and survival. In males, the experimental heatwave 
had negative consequences on several reproductive traits, including 
sexual behaviour, ornamentation, and sperm traits, that translate into 
decreased mating and fertilization success. It had little to no impact 
on male survival. In females, the heatwave greatly impaired fecundity 
as well as survival, with surviving females mostly failing to produce 
a brood. Such strong effects on females indicate unpredicted high 
sensitivity to thermal stress in females, which were gravid during the 
heatwave in our experiment. Our study provides one of the few ex-
amples thus far of multiple sublethal reproductive costs imposed by 
heatwaves, as well as of intra-specific variation in thermal tolerance 
(i.e. depending on the sex or life-history stage of an animal). Through 
their effects on reproductive traits and reproductive success, heat-
waves can have strong implications for population demography, 
sexual conflict, and sexual selection, highlighting the need to further 
investigate the effects of heatwaves to predict evolutionary pathways 
and species vulnerability under rapid climate change.

4.1  |  Heatwaves at population level

Heatwaves had sex-specific effects on survival, fecundity, condi-
tion, and fertility. This provides evidence that extreme climatic 

F I G U R E  3  The number of females 
producing broods (from zero broods up to 
four broods) (a), and the number of broods 
produced at each brood size (b).

0

4

8

12

16

20

24

28

32

0 1 2 3 4
Number of broods

N
um

be
r o

f f
em

al
es

(a)

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Brood size

N
um

be
r o

f b
ro

od
s

Treatment
control
heatwave

(b)

 13652435, 2023, 4, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/1365-2435.14279 by C

ochraneItalia, W
iley O

nline L
ibrary on [05/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



998  |   Functional Ecology BREEDVELD et al.

events can have severe and sublethal consequences on individu-
als, potentially altering population dynamics. Females undergoing a 
heatwave showed reduced survival and lower fecundity—only 13% 
or heatwave females produced a brood compared to 83% of control 
females. This demonstrates that extreme heat events can impose 
not only survival costs but also large reproductive costs which can 
result in population decline, corroborating results from other taxa, 
including, for example, recent findings in a marine ectotherm (Siegle 
et al., 2022). Moreover, such detrimental effects can lead to events 
with strong potential effects on population structure such as bottle 
necks, founder events and genetic drift or modification in popula-
tion's age and sex ratio with temporal and spatial genetic changes in 
metapopulations (Coleman et al., 2020; Gurgel et al., 2020; Shama 
et al., 2011).

The strong impact on survival and fecundity of females, which 
were subjected to the heatwave during pregnancy, point to an in-
creased sensitivity to heat stress of this sex, that can be exac-
erbated by the costs associated with pregnancy. In this species, 
females are almost always pregnant, as they reproduce constantly, 
passing from one reproductive cycle to the next one with no 
breaks, and have only a few days of receptivity after giving birth. 
In our experiment, females were at the beginning of pregnancy 
(roughly 1 week after fertilization) when subjected to the heat-
wave. It remains to be further investigated if the effects we found 
in this stage are also found during the rest of the pregnancy, and 
with what magnitude, but it is likely that a heatwave will impose 

even greater costs later in the pregnancy, based on recent studies 
on decreased thermal tolerance during pregnancy in this species 
(Auer et al.,  2021). Ectotherm females change thermal prefer-
ences during pregnancy and, under normal conditions, will select 
their optimum body temperature within the available thermal 
gradient through behavioural thermoregulation (e.g. Dayananda 
et al., 2017; Le Galliard et al., 2003; Mathies & Andrews, 1997). 
During heatwaves, extreme temperatures and a reduced thermal 
gradient could mean that the optimal temperature for embryogen-
esis (or for any other specific life-stage; Truebano et al., 2018) is 
no longer available, thus obstructing effective thermoregulation 
and the ability of an individual to avoid thermal stress. Under 
heat stress, energy production may be reduced and energy re-
serves normally available for reproduction may be unavailable or 
re-allocated to basal physiological functions or stress responses 
(Portner & Knust,  2007; Sokolova et al.,  2012; Somero,  2002). 
Even though the thermal limitations that heatwaves impose on 
effective behavioural thermoregulation (through which individu-
als may avoid thermal stress) could have been exacerbated under 
experimental conditions, we believe our results are relevant to 
natural scenarios, where heatwave intensity and duration are ex-
pected to be even higher (Angeles-Malaspina et al., 2018; Ledger 
& Milner, 2015).

A decreased tolerance to heatwaves during pregnancy could be 
widespread, also in endothermic organisms. Indeed, in several spe-
cies of mammals, including humans, exposure to gestational heat 

F I G U R E  4  Relative survival of (a) males and (b) females throughout the experiment. The red vertical bars indicate the period during 
which the fish were exposed to either treatment (control or heatwave) and the grey vertical bars indicate the days on which males were 
measured for condition and pre- and postcopulatory reproductive traits. Males were monitored for survival for up to 45 days following the 
temperature treatment. Females were introduced on day 27 and monitored for up to 6 months following the treatment. Dashed vertical lines 
indicate time points of 1 week (day 50), 1 month (day 73) and 2 months (day 103) following the temperature treatment (the cut-offs used in 
the survival analyses).
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adversely impacts pregnancy, by altering, among others, gestation 
length, birth weight and the rate of stillbirth (Boddicker et al., 2014; 
Dado-Senn et al., 2020; Kuehn & McCormick, 2017; Marco-Jiménez 
et al.,  2017), highlighting the sensitivity of this life stage to heat 
stress. Further studies are needed to understand the mechanisms 
underlying this sensitivity, as well as the (likely) cumulative costs of 
heatwaves on female fecundity when coupled with effects on male 
reproductive traits, like those found on sperm number and quality 
(see discussion below). Indeed, since our experiment was designed 
to disentangle effects on females and males (sexes were separated 
during the heatwave), we can safely attribute our findings of de-
creased fecundity solely to direct effects of heatwaves on already 
pregnant females, and not to indirect effects mediated by the ef-
fects on males, such as the shift in male mating strategies or detri-
mental effects on sperm.

In males, the experimental heatwave affected both pre- and 
postcopulatory reproductive traits. Among the precopulatory 
traits, the decrease in male mating attempts (sexual activity), the 
shift in the preferred mating tactic used, and the decrease in the or-
ange colouration were the most notable ones. In the guppy, female 
mate choice accounts for an important portion of the variation in 
paternity (Gasparini & Evans, 2018) and male orange colouration is 
one of the most important traits on which female choice is based 
(Houde, 1997; Magurran, 2005). Heatwave-induced reductions in 
the area and saturation of orange spots will thus translate in a de-
creased male attractiveness and will potentially affect male mat-
ing success through female mate choice (also see the next section). 
In addition, the decrease in total mating attempts made by males 
that experienced a heatwave, along with the shift in their pre-
ferred tactic, is likely to decrease their total reproductive success. 
Compared to sneaky copulations, consensual mating—obtained 
by male after courtship—results in a higher amount of sperm 
transferred to females and hence in males siring more offspring 
in a sperm competition scenario (Boschetto et al., 2011; Pilastro 
& Bisazza, 1999). Together, the findings on males' precopulatory 
traits indicate that heatwaves can impose serious costs on the re-
productive fitness of males. While we did not find an effect of 
the heatwave on the males' body condition index (a proxy for en-
ergy reserves), their swimming endurance was affected, indicating 
that heatwaves do decrease condition. This reduction in condition 
may explain the fact that males relied less on courtship displays, 
as these are energetically costly compared to the less demanding 
sneaky mating attempts (Houde, 1997).

Concerning postcopulatory traits of males, we found sublethal 
heatwave effects on sperm quantity and quality, in line with previ-
ous findings in insects (Sales et al., 2018, 2021). Strikingly, heatwave 
males showed an increase in sperm number after the treatment, 
which was not the case in control males. The increase in number 
of spermatozoa produced likely resulted from an elevated rate of 
metabolism and associated accelerated spermatogenesis under the 
higher temperature, as observed in some other fishes (Nóbrega 
et al., 2009; Postingel Quirino et al., 2021). However, the heatwave 
had negative effects on sperm quality, since sperm velocity was 

lower in the heatwave males compared to the control males after 
the treatment. This suggests that the heatwave decreased the ve-
locity of sperm directly or, indirectly, through a potential trade-off 
between sperm production rate and sperm quality (Snook,  2005). 
While many studies and theoretical models point to sperm quantity 
(i.e. sperm number) as the ejaculate trait that best predicts male fer-
tilization success under sperm competition (sensu Parker, 1998), ev-
idence is growing that sperm qualitative traits, including swimming 
velocity and viability, also influence male fertilization success in 
many species (Gage et al., 2004; Gasparini et al., 2010; Gomendio & 
Roldan, 2004; Laskemoen et al., 2010; Pizzari, 2009; Snook, 2005), 
including the guppy (Boschetto et al., 2011; Cardozo et al., 2020). 
In addition, it is worth noting that an increase in sperm number 
does not necessarily translate into more sperm transferred to the 
female, as in this species it is the female that controls the number of 
sperm she receives from the male, independent of his sperm reserve 
(Pilastro et al.,  2007). Therefore, sperm quality may be as import-
ant as the relative quantity in determining the outcome of sperm 
competition (Boschetto et al., 2011; Cardozo et al., 2020). In addi-
tion, temperature-induced changes in sperm quality could have po-
tential cross-generational implications, that is, effects on offspring 
traits, mediated by paternal effects (Crean & Bonduriansky, 2014; 
Evans et al., 2019; Gasparini et al., 2018). While the magnitude of 
the consequences of heatwaves on male reproductive fitness needs 
further investigation, our results clearly show that heatwaves drive 
changes in male mating behaviour, male attractiveness, and sperm 
traits. This, together with the effects on female fecundity and sur-
vival, provides strong evidence that heatwaves have important con-
sequences for reproduction and population demography, and thus 
are an important component in shaping the impact of climate change 
at population level.

4.2 | Heatwaves, sexual conflict and sexual  
selection

In our study, we also considered whether heatwaves affect trait 
variance, as this can alter the relative differences in individual 
competitiveness or attractiveness and thereby influence sexual 
selection dynamics (Rosenthal & Elias, 2019). The variance of some 
of the males' reproductive traits changed. Males' sperm number 
increased in the heatwave but not in the control group, not only 
in terms of mean number but also in terms of variance, that is, in-
creasing the relative differences among males (Table S.4.1 part B,  
Figure  S.4.1, but note one outlier). On the other hand, sperm 
velocity, which decreased in both groups and to a greater ex-
tent in heatwave males, showed a lower degree of variance after 
the heatwave than after the control treatment, though this dif-
ference was not significant (Table  S.4.1 part B, Figure  S.4.2). 
Despite the heatwave induced reductions in mean orange 
saturation and sexual activity in males, the variance in neither 
of these traits was affected (Table  S.4.1 part B). We can addi-
tionally examine how variance changed over time (Table  S.4.1 
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part A). Over time (from before to after the treatment), all 
males' orange spots became brighter and increased in UV in-
tensity, independent of their treatment (Table 1). The increase 
in mean UV intensity was accompanied by an increase in vari-
ance in the heatwave, but not in the control group (Table S.4.1 
part A, Figure  S.3.3.C, but note one outlier). Instead, the in-
crease in mean orange brightness was accompanied by a signifi-
cant increase in brightness variation only in the control group 
(heatwave fish showed a non-significant increase in variation, 
Table S.4.1 part A, Figure S.3.3.A). By changing the variance in 
reproductive traits, heatwaves may thus alter the relative differ-
ences among males, for example in terms of attractiveness, and 
thereby change the opportunities for sexual selection. However, 
how environmental effects impact sexual selection via changes 
in trait variance needs to be further evaluated.

The effects of heatwaves on female survival and fecundity can 
also affect sexual selection dynamics, by leading to changes in pop-
ulation structure and the level of sexual conflict. For instance, ef-
fects on female survival could shape patterns of mate competition 
through density dependent processes (Kokko & Rankin, 2006) and 
by altering operational sex ratios (Weir et al.,  2011). Operational 
sex ratios could be further shifted, but cryptically, by the sublethal 
effects of heatwaves on female fecundity, especially in combina-
tion with sublethal effects on male fertility, that is, non-observable 
temperature-driven sex ratio shifts due to cryptic sterility (Walsh 
et al., 2021). Finally, shifts in population density and sex ratios can 
change the level of sexual conflict, which in turn can affect sexual 
selection (Rowe et al., 1994). Similarly, our finding that after a heat-
wave males rely more on sneaky matings compared to control males, 
a tactic that undermines female choice, indicates that there are 
more opportunities for sexual conflict under heat stress. Altogether, 
by affecting survival and traits underlying pre- and postcopulatory 
selection, heatwaves are likely to play an important role in the evo-
lutionary feedbacks between thermal ecology and sexual selection 
(Leith et al., 2022).

5  |  CONCLUSIONS

We found that heatwaves affect a range of fitness-related traits, im-
portant for reproduction and sexual selection and that responses 
were different in males and females. This confirms that accounting for 
sex-specific differences in thermosensitivity is crucial to model real-
istic scenarios for natural populations under heat stress (Iossa, 2019). 
Changes in individual reproductive traits and reproductive success, 
and hence individual fitness, could translate into demographic 
changes in populations as a whole and thereby alter population vi-
ability (Kokko & López-Sepulcre, 2007; Oppel et al., 2014). The find-
ings therefore support the notion that sublethal reproductive costs 
imposed by heatwaves could lead to changes in offspring produc-
tion and population demography (Siegle et al., 2022). Demographic 
changes could also have carry-over effects on ecosystems, by al-
tering community composition through cascading effects across the 

trophic levels, for example due to altered predator–prey densities 
and interactions (Woodward et al., 2016).

The effects of heatwaves on trait variance, especially in terms of 
male coloration and sperm production, could translate into altered 
dynamics of pre- and postcopulatory reproductive success among 
competing males, or lead to reduced opportunities for effective mate 
choice. Thereby, heatwave-driven changes in individual reproduc-
tive traits could lead to altered sexual selection dynamics. Changes 
in (natural and sexual) selection regime can alter the gene pool, for 
instance, through bottleneck effects resulting from restricted pools 
of reproducing animals (Dahlke et al., 2020).

In summary, heatwaves have important consequences for popula-
tions not only by affecting survival, but also through sublethal impacts 
on reproduction and mating system dynamics. The effects of heat-
waves on reproduction could be widespread across taxa (Andreasson 
et al., 2020; Leach et al., 2021; Sales et al., 2021; Siegle et al., 2022), 
and thus require further study to improve our ability to predict how 
populations will respond and evolve under rapid climate change.
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