
Abstract
Soil erosion is one of the main environmental threats to sus-

tainability and crop productivity in the agricultural sector. In agri-
cultural fields, no-till management is considered a key approach
for mitigating soil erosion. The measurement of soil erosion is par-
ticularly challenging, especially when surficial morphological
changes are relatively small. Conventional experiments are com-
monly time-consuming and labour-intensive in terms of both field
surveys and laboratory methods. On the other hand, the structure
from motion (SfM) photogrammetry technique has enhanced the
experimental activities by enabling the temporal evolution of soil
erosion to be assessed through detailed micro-topography. This
work presents a multitemporal quantification of soil erosion, using
SfM through uncrewed aerial vehicles (UAV) survey for under-
standing the evolution of no-till (NT) and conventional tillage
(CT) in experimental plots. Considering that morphological

changes at the plot scale had millimetre orders of magnitude, it
was necessary to minimise SfM errors (e.g., co-registration and
interpolation) in volumetric estimates to reduce noise as much as
possible. Therefore, a methodological workflow was developed to
analyse and identify the effectiveness of multi-temporal SfM-
derived products, e.g., the conventional difference of digital ter-
rain models (DoDs) and the less used differences of meshes
(DoMs), for soil volume computations. We validated the erosion
volumetric changes calculated from the SfM outputs with the
amount of soil directly collected through conventional runoff and
sediment measurements in the field. In this way, we recognised the
most suitable estimation method. This study presents a novel
approach for using DoMs instead of DoDs to describe the micro-
topography changes and sediment dynamics accurately. Another
key and innovative aspect of this work often overlooked in soil
erosion studies, was identifying the contributing sediment surface
by delineating the channels potentially routing runoff directly to
water collectors. The sediment paths and connected areas inside
the plots were identified using a multi-temporal analysis of the
sediment connectivity index for achieving the volumetric esti-
mates, using DoMs (e.g., 2213 cm3 for no-till management system
- NT and 38155 cm3 for conventional tillage regime - CT during
September 2018-June 2020) that showed mild overestimation
respect to field measurements results (e.g., 2359 cm3 for NT and
4525 cm3 for CT in the same period). This difference was
attributable to other factors (e.g., the soil compaction processes) or
variables rather than to photogrammetric or geometric ones. The
developed workflow enabled low cos quantification of soil ero-
sion dynamics for assessing the mitigation effects of no-till man-
agement that can also be extended in the future to different scales,
based on SfM and UAV technologies.

Introduction
Soil erosion induced by water is one of the main environmen-

tal threats leading to the degradation of agricultural land world-
wide (Morgan, 2009). The soil surface continuously evolves dur-
ing erosion events. Therefore, erosion processes can cause consid-
erable morphological variations that can profoundly affect agri-
cultural practices depending on the volume of soil removed from
the soil surface. Therefore, the accurate measurement of soil ero-
sion rates is becoming a key factor in promoting efficient recovery
management types. 

Soil erosion in agricultural landscapes occurs primarily due to
interrill and rill erosion (Hänsel et al., 2016; Di Stefano et al.,
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2017). Overland flow triggers the formation of small channels,
rills, which can evolve into gullies. Instead, dispersed flow pro-
duces diffuse erosion and leaves little trace after an erosion event
(in the literature, it is referred to as sheet or interrill erosion).
Diffuse erosion is a complex mixture of shallow non-incised con-
centrated, and dispersed flows and occurs neither in sheets nor
between rills (Cândido et al., 2020). In many regions, the diffuse
forms of erosion (interrill erosion, tillage erosion, harvest erosion)
represent significant contributions to soil sedimentation. 

The no-till (NT) management system is considered a key
approach for reducing soil erosion in agricultural fields (Schuller
et al., 2007). No-till minimises the mechanical soil disturbance and
includes managing crop residues, which are left on the field after
crop harvesting, maintaining the soil surface partially covered with
stubble and straw. A significant reduction of soil erosion and runoff
in NT systems compared to tilled soils has been reported by several
studies, both under simulated and measured rainfall, even during
the transition period from conventional to a no-till system (Carretta
et al., 2021). 

Measuring soil erosion is quite burdensome and unfeasible for
large-scale applications stemming from time-consuming field sur-
veys and financial efforts. The measurement of diffuse and sheet
erosion provides a grand challenge because it is difficult to monitor
in the field due to its shallow depth and distributed nature, consid-
ering the small changes in soil elevation (Pineux et al., 2017).

Several methods have been used to estimate soil erosion with
plot-scale modelling (Parsons, 2019). However, in most cases, they
are difficult to implement on a wide scale. Traditionally, these fre-
quent measurements are carried out using reference stakes or with
profile meters (Pineux et al., 2017) through surveying with terres-
trial laser scanner (TLS; Kaiser et al., 2018).

In this framework, cost-effective measurement techniques sup-
ported by new-generation technology achieve relevance and inter-
est results with respect to conventional approaches. Among the
most widely used new technologies, the structure from motion
(SfM) photogrammetry technique paired with multi-view stereo
(MVS) algorithms (hereinafter jointly referred to as SfM;
Carrivick et al., 2016), is very useful to carry out frequent and
detailed topographic surveys (De Marco et al., 2021) for soil ero-
sion monitoring (Eltner et al., 2015; Hänsel et al., 2016; Di Stefano
et al., 2019; Cândido et al., 2020). The combination of SfM and
widespread uncrewed aerial vehicles (UAVs) offers the opportuni-
ty to carry out rapid and cost-effective surveys compared to time-
consuming and expensive field measurements based on conven-
tional approaches. Various studies compared the UAV results with
those from TLS for soil erosion surveys (Eltner et al., 2015) and
demonstrated that the advances in photogrammetric technique
enhance data quality and spatial resolution compared to laser scan-
ners and conventional photogrammetry. Indeed, the SfM technique
easily adapts to the millimetre scale resolution required to describe
diffuse and sheet erosion processes (Balaguer-Puig et al., 2018).
Promising results were obtained in field surveys based on the SfM
technique to detect changes in soil erosion plots (Di Stefano et al.,
2017; Pineux et al., 2017; Balaguer-Puig et al., 2017; Cândido et
al., 2020). These authors exploited multi-temporal SfM surveys to
obtain high-resolution and detailed digital terrain models (DTMs)
by describing the soil erosion evolution. Indeed, DTMs of differ-
ences (DoDs) can usually be calculated to detect spatial changes in
the soil surface topography over time and quantify the volumes of
sediments lost or gained (Mauri et al., 2021). 

Since morphological changes at the plot scale are millimetre
orders of magnitude, it is necessary to minimise errors in volumet-
ric estimates from topographic surveys to distinguish actual ero-

sion processes from noise due to uncertainties. Systematic error
(e.g., the survey accuracy of the equipment and registration errors),
the density and distribution of data points used to represent the sur-
face, the missing data due to shadowing effects from vegetation or
other obstructions, and interpolation methods to derive DTMs
from the SfM data, can contribute to spatially distributed errors in
the datasets (Nourbakhshbeidokhti et al., 2019). If some problems
inherent to the measurement technique or instrumentation cannot
be reduced, the errors of the raw data (i.e., the point clouds) could
be analysed. For example, the uncertainty due to the transforma-
tion of the point cloud into a continuous elevation surface (e.g.,
mesh), and the subsequent gridding (i.e., DTMs generation), could
be decreased by using the 3D information for volume calculations
(i.e., the comparison between multi-temporal meshes). Indeed, the
application of the DoDs is a 2.5D environment, where DTMs have
an assigned mean elevation at the centre of each pixel, and a topo-
graphic data reduction occurs when point cloud data are trans-
formed from 3D to 2.5D (Barnhart and Crosby, 2013). However,
this method introduces grid elevation uncertainty or artefacts in
three-dimensional environments and overhanging areas.
Therefore, considering only the transformation of the point clouds
into continuous elevation surfaces (i.e., data interpolation), it could
be possible to realise multi-temporal differences of meshes
(DoMs) and obtain very accurate soil erosion volumes as it has
never been achieved before. Additionally, it is essential to consider
the errors and their spatial distribution for each point cloud in
assessing the actual topographic changes between different SfM
surveys and directly propagate this information on DoMs. These
aspects have been poorly analysed in the body of literature.

The study presented in this paper aimed at estimating plot-
scale microtopographic changes due to erosive processes, using
different multi-temporal UAV-SfM-derived products: the conven-
tional DoDs and the DoMs. We validated the erosion volumetric
changes calculated using direct runoff and sediment measurements
from the two approaches. This allows us to identify the best esti-
mation method. The workflow was tested in six experimental plots
at the Padova University Experimental Farm, three in a conven-
tionally tilled (CT) field and three in a non-tilled field. Multi-tem-
poral SfM surveys were carried out to measure soil erosion under
conventional tillage and no-till management through grids and
meshes volume information. The SfM point cloud uncertainties
were assessed through the generation of precision estimates based
on a Monte Carlo approach (James et al., 2017b), operating direct-
ly on raw data to distinguish actual erosion processes from spatial-
ly variable noise in triangulation (i.e., DoMs) and gridding (i.e.,
DoDs) outputs. Moreover, since agricultural operations influence
the micro-topography that modifies the soil surface roughness, and
process dynamics, a sediment connectivity analysis was performed
to identify portions of soil surface that were more connected to
runoff water collectors and prone to erosion in the experimental
plot (Prosdocimi et al., 2017). This innovative aspect often over-
looked in soil erosion studies, allowed the identification of the con-
tributing sediment surface to obtain volumetric estimates that were
more comparable with field measurements. 

The developed workflow can provide helpful information for
optimising the monitoring of erosion processes and understanding
the sediment dynamics in no-till and conventional tillage systems.
Furthermore, these analyses can be extended in the future to differ-
ent spatial scales with low costs by exploiting SfM and UAV tech-
nologies.
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Figure 1. General workflow of the analysis developed in this study (see the text for more details).
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Workflow 
A workflow (Figure 1) is designed to apply a detailed and stan-

dard procedure to multi-temporal SfM surveys and identify soil
erosion volumes in the CT and NT experimental plots.

High-resolution topographic survey 

Data acquisition
Mission planning is a key aspect, especially to survey micro-

topography. A wide range of image acquisition platforms is avail-
able, but an integrated approach combining ground-based and aeri-
al images benefits from data acquisition from two different obser-
vation directions (i.e., nadir for UAV images and oblique for ter-
restrial images; Cucchiaro et al., 2018). Aerial and terrestrial
images (i. in Figure 1) should be collected using the same camera
with the same focal length to minimize the integration problems in
the photogrammetric models and with sufficient overlap between
photos to find homologous points within several images (optimal
overlap is 80% in flight direction and a flight strip overlap of 60%;
Eltner et al., 2016). An additional aspect to consider is the number,
location, and distribution of the ground control points (GCPs) and
check-points (CPs; i. in Figure 1), based on the features of the stud-
ied area, extension, and desired resolution. They should be uni-
formly distributed, not aligned or clustered, and not neglect the
margins. GCPs are used in the georeferencing and registration pro-
cesses to improve the quality of the 3D reconstruction of the terrain
surface, while CPs for results validation.

Data processing
The SfM datasets are processed to extract the 3D point clouds

and orthomosaics (ii. in Figure 1) from the images through pho-
togrammetric software like Agisoft Metashape Pro v 1.6.2 based
on SfM and MVS algorithms (James et al., 2017a). The first step
in SfM processing workflow is the camera pre-calibration using
Agisoft Lens, a starting point for the parameter refinement in the
following process, i.e., the SfM phase, where ground-based and
UAV photos should be processed together in Metashape to avoid
subsequent data fusion problems at the point-cloud level
(Cucchiaro et al., 2018). In the next step, georeferencing of the 3D
sparse point clouds is carried out using the traditional solution of
the GCP coordinates (ii. in Figure 1). In light of this georeferenc-
ing data, the SfM solutions are being improved through a bundle
adjustment step algorithm (least-squares network optimisation;
Carrivick et al., 2016; ii. in Figure 1), through appropriate weigh-
ing of tie and control point image observations to enhance a real
error characterisation (James et al., 2017a). This is followed by the
processing of high-density point clouds and orthomosaics, which
involves using an MVS image-matching algorithm. Finally, the
georeferenced SfM point clouds are imported into the
CloudCompare software (Omnia Version 2.12.2;
http://www.danielgm.net) to be filtered through different steps (iii.
in Figure 1): manual filtering, a ‘distance filter procedure’, and the
‘SOR filter tool’. The SOR filter is used to remove outliers by
computing the average distance of each point to its neighbours.
The manual filter and a ‘distance filter procedure’ helps to delete
unwanted objects in the point cloud (e.g., blades of grass, crop
residues, and metal partition boards of sub-plots) as illustrated in
Cucchiaro et al. (2020a), differentiating the ground from the other
points. 

The filtered SfM point clouds must be co-registered (iii. in
Figure 1) to minimise residual inaccuracies of the georeferencing

process and to guarantee the coherence among multi-temporal sur-
veys, minimising, on stable areas, the distance between corre-
sponding points acquired at a different time (Cucchiaro et al.,
2020b). The iterative closest point (ICP) automatic algorithm
implemented in CloudCompare is used to co-register multi-tempo-
ral SfM point clouds and check the manual identification of mark-
ers in the images, which could produce inaccurate georeferencing
and could lead to an unreal shift or rotation between 3D models.
Therefore, the combined use of ICP and GCPs allows a ‘double
registration process’ to increase the quality of the point clouds. The
ICP should be used on a subset of the point clouds located in stable
areas (e.g., metal boards; ditches crossing structures) where no
change occurred between the SfM acquisitions, and then the
obtained rigid transformation (matrix) should be applied to the
whole-original point clouds. The co-registered point clouds were
converted in meshes through CloudCompare software (v. in Figure
1). 

The point clouds are decimated through the geostatistical
Topography Point Cloud Analysis Toolkit (ToPCAT). This tool,
successfully used in several studies, reduces the point cloud into a
set of non-overlapping grid-cells and is manageable by geographic
information system (GIS) software, calculating the statistics for the
observations in each grid. Next, the decimated point clouds are
used to calculate a triangular irregular network (TIN) in Esri
ArcGIS software and converted to raster through a natural neigh-
bour interpolator, resulting in one DTM for each SfM survey (v. in
Figure 1).

Error analysis
Different analyses are carried out at different steps to evaluate

the accuracy and precision of the obtained point clouds and DTMs.
Firstly, a bootstrapping resampling (1000 times) approach
(Marteau et al., 2017) is chosen to estimate the output accuracy
and precision of the SfM clouds (ii. in Figure 1). One-third of the
GCPs are randomly selected as CPs to provide an independent
measure of uncertainty for each point (i.e., the residuals or the dif-
ference between the real coordinates of this point and the modelled
values; Cucchiaro et al., 2018). Then, after completing all itera-
tions, during which the bundle adjustment step is reset, the accura-
cy and precision are obtained for each point when used as GCP or
CP. Moreover, following the numerical method proposed in James
et al. (2017b), the precision maps of SfM surveys are performed to
evaluate the spatial variability of the whole point cloud precision
(ii. in Figure 1), which is influenced by photogrammetric and geo-
referencing conditions. This method consists of repeated bundle
adjustments in Agisoft Metashape through Python script, in which
different pseudo-random offsets are applied to the image observa-
tions and to the control measurements to simulate observation
measurement precision. The Monte Carlo approach enables the tie
point error distribution to be quantified for a specific SfM survey
and the integration of this information into confidence-bounded
change detection (see next Section: Multi-temporal analysis for
soil erosion computations). Precision estimates for each optimised
model parameter are then imported into the ‘sfm_georef’ software
(James and Robson, 2012). The software post-processed the Monte
Carlo outputs files (i.e., sparse point clouds) to characterise point
coordinate precision estimates, variance-covariance, and other
metrics from a large number of adjustments, obtaining a precision
point cloud for each multi-temporal SfM survey. Then, the vertical
standard deviation for each point derived by the precision clouds
(σz) is used to calculate a TIN in Esri ArcGIS software and con-
verted to raster through a natural neighbour interpolator to realise
the precision maps grids of each DTM.
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The transformation of the point cloud into a continuous eleva-
tion surface (i.e., data interpolation), and the subsequent gridding,
introduced several uncertainties or artefacts, especially in the ver-
tical component. Therefore, the accuracy and precision evaluation
of the geospatial products are also calculated through a statistical
comparison between Z values of CPs (surveyed in the field by
GNSS) and the equivalent Z measurements extracted from DTMs
(vii. in Figure 1). First, following the approach of Höhle and Höhle
(2009), the outliers are removed by applying a threshold (i.e., 2
times the root mean square error (RMSE), chosen considering the
distribution of errors in the different surveys, keeping an approach
that is as precautionary as possible) selected from an initial calcu-
lation of the error measures. Then, RMSE, standard deviation
(SDE), mean error (ME), and the normalized median absolute
deviation (NMAD), a robust estimator for the SDE more resilient
to outliers in the dataset (Cucchiaro et al., 2020a), are calculated.

Sediment connectivity analysis
Since agricultural operations influence the micro-topography

that modifies the soil surface roughness and sediment connectivity,
especially at fine spatial scales as highlighted in Tarolli et al.
(2019), this aspect must be considered in the sediment delivery
processes estimations (Di Stefano and Ferro, 2017; Pineux et al.,
2017). The concept of connectivity and the geomorphometric
indices developed for this aspect are exploited to analyse the sedi-
ment dynamic in the experimental plots. Sediment connectivity
represents sediment transfer in a system from a source to a sink
(e.g., runoff collection system) through sediment detachment and
transport per defined unit time. The index of connectivity (IC) pro-
posed in Cavalli et al. (2013) allows the identification of the poten-
tial sediment paths and the effect of sediment connectivity within
each plot. This index primarily analyses the influence of topogra-
phy on sediment connectivity. It considers the characteristics of the
drainage area (upslope component, Dup) and the flow path length
that a particle must travel to reach the nearest sink or the target of
the analysis (downslope component, Ddn). The IC is computed as
follows (Eq. 1):

IC = log10 (Dup / Ddn)                                                               (1)

Moreover, the differences of IC (DoIC) are calculated by sub-
tracting the IC map at time 1 from the IC map at time 2 for each
plot to investigate the sediment dynamics changes during the time
and identify the modification in the connected areas in each sub-
plot for different SfM surveys. Then, DoIC maps for each plot are
classified into three classes of connectivity: ‘increase’ (i.e., values
of DoIC >0), ‘no change’ (i.e., values of DoIC =0), and ‘decrease’
(i.e., values of DoIC <0) because i) each plot could have different
patterns of sediment connectivity, which vary in time whether or
not consecutive rainstorms occur, and ii) not all the soil within the
plots could be connected to the outlet. Therefore, the portions of
soil that are more connected to the outlet and increased sediment
connectivity are reasonably those that will be more prone to ero-
sion once the rainstorm occurs. Consequently, the surface changes
maps related to two successive SfM surveys (see next Section:
Multi-temporal analysis for soil erosion computations) are masked
on the ‘Increase’ class of DoIC identified for the corresponding
data (vi. in Figure 1).

Multi-temporal analysis for soil erosion computations
Using topographic data in the experimental plots, the estima-

tion of soil erosion is realised in different ways: at mesh and grid

level. Therefore, the difference in eroded sediment estimates over
time are assessed directly at the raw data level (i.e., mesh; vii. in
Figure 1) and using the rasterised products (i.e., DTMs; viii. in
Figure 1). Then, the soil erosion estimates through the topographic
survey must be compared (ix. in Figure 1) with sediment erosion
measurements directly conducted under natural rainfall conditions
in the field (i. in Figure 1).

Point cloud and mesh estimations 
In the first case, the co-registered and filtered point clouds of

the different SfM surveys are used as inputs in the multiple model
to model cloud comparison (M3C2) tool of CloudCompare (Lague
et al., 2013) and integrated with the “precision maps” (M3C2-PM;
iv. in Figure 1) variant of James et al. (2017b). M3C2-PM is par-
ticularly suited to point clouds generated by photogrammetric pro-
cessing and calculated a local normal cloud-to-cloud distance for
each selected point in the reference clouds (identified by consider-
ing the clouds with greater precision and density of points), incor-
porating 3-D precision estimates from an associated point cloud as
calculated in Section: Error analysis. First, precision values (in X,
Y, and Z directions) are ascertained directly from the maps for each
point pair (i1 and i2). Then, based on established error analysis
(Lane et al., 2003), the position uncertainty for each pair of points
derived from precision estimates is used to determine a confidence
interval (or minimum level of detection; minLoD; iv. in Figure 1)
for this distance measurement. The confidence interval for the dis-
tance measured in the normal direction, N, is then determined
using the components of precision in that direction, σN1 and σN2,
according to Equation 2:

                                              
(2)

Where t is the Student’s t-score (a value of t =1.96 is used for a
conservative approach, corresponding to a confidential interval of
0.95, i.e., minLoD95%). The output from M3C2-PM thus represents
3-D change between SfM point clouds along with the normal local
directions, assessing whether that change exceeds the local LoD95%
values (changes above minLoD were considered ‘significant’),
derived from the 3-D spatially variable photogrammetric and georef-
erencing precision. The M3C2-PM information in terms of signifi-
cant or non-significant change associated at each point cloud is used
to realize shapefiles (i.e., polygons) that defined the valuable areas
to be considered in soil erosion volumetric calculations (vii. in
Figure 1). Therefore, the meshes realized from co-registered and fil-
tered point clouds (see Section: Data processing; v. in Figure 1) are
cut out by considering only the areas with significant changes (iv. in
Figure 1) between two different surveys. In addition, the areas where
the sediment connectivity did not increase over time (i.e., negative
values of DoIC, identified in Section: Sediment connectivity analy-
sis; vi. in Figure 1) between two different surveys are further
removed on the mesh patches with significant changes. The meshes
restricted in terms of significant changes and positive DoIC values
are imported into the JRC 3D Reconstructor Gexcel software, where
the ‘Cut and fill’ tool is used to realise the difference between two
meshes (difference of meshes; DoMs) and calculate erosion and
deposition soil volumes in consecutive surveys (vii. in Figure 1).
Given two meshes representing the same object (e.g., the same sub-
plot) at different times, the cut volume is the volume that the object
lost between time 1 and 2 (i.e., erosion process), whereas the fill vol-
ume is the volume that the object gained between the two SfM sur-
veys (i.e., deposition process). The tool considers two surfaces, S1
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and S2, and a plane P, and assuming that the projections of S1 and S2
on P share a support C in common, a third surface, Smin, can be
defined. Since each point in C is the projection on P of (at least) one
point of S1 and one of S2, the closest point to P is defined as belong-
ing to Smin. Let V1 be the integral of S1 on C, V2 the integral of S2 on
C, and Vmin the integral of Smin on C. Then the soil erosion volume
Vcut is given by V1 - Vmin and the soil deposition volume Vfill is V2 -
Vmin (Reconstructor Gexcel, 2021). This allows the estimation of soil
erosion and deposition volumes in time directly at mesh level (vii. in
Figure 1) without the need to go through the rasterization process.. 

Grids estimations
In the second case, the difference between a DTM (obtained as

described in Section: Data processing) and the previous one (i.e.,
DTM of differences; DoDs) enabled the calculation of the total
volumes of erosion, deposition, and net change during the time.
DTM uncertainty and error propagation (viii. in Figure 1) are con-
sidered in the analysis to obtain reliable DoDs and to discriminate
between the actual difference in surface elevation and background
noise. The significance of DoD difference is the thresholded by
applying a minLoD as in Section: Point cloud and mesh estima-
tions. Changes above minLoD are considered real, but when the
changes were below the minLoD, these are classified as uncertain
and not used in the final computation (Lane et al., 2003). The
uncertainty level of each DTM is assessed through the precision
maps (see Sections: Error analysis and Point cloud and mesh esti-
mations; James et al., 2017b). The precision maps grids (realised
as described in Section: Error analysis) are used as error surface
estimates for each DTM and propagated into the DoDs as spatially
variable vertical uncertainties. A minLoD of significant elevation
change is calculated for each DoDs cell, according to Equation 3:

                                               
(3)

Where σZ1 and σZ2 are the vertical precision estimates for each
cell in the two DTMs and t is the Student’s t-distribution value
defined by a specific confidence level (this study 95%, giving t
=1.96). Thus, changes smaller than the minLoD can be disregard-
ed, and the GCD software for ArcGIS is used to generate the
minLoD-thresholded DoD maps. Thresholded DoDs provide a dif-
ference in elevation for each grid cell; thus, knowing the size of
each cell, the elevation changes were transformed to volumes (viii.
in Figure 1). Also, the thresholded DoDs and raw DoDs (i.e., DoD
where the DTM uncertainty and error propagation were not
applied) are restricted in terms of positive DoIC area (vi. in Figure

1) to identify soil erosion volumes connected to sediment collec-
tion tanks (viii. in Figure 1). 

A case study at the Experimental Farm of the
University of Padova in the Po Valley, north-east-
ern Italy

The study was conducted during the period September 2018-
June 2020 at the Experimental Farm of the University of Padova in
the Po Valley, north-eastern Italy (45°20’43’N, 11°56’58’E, alti-
tude 6 m a.s.l.; Figure 2A). The local climate is sub-humid with a
mean annual temperature of 13.6°C (value calculated as the aver-
age of the monthly mean temperatures from January 1994 to
December 2020). Annual rainfall was 853 mm with 89 rainy days
in 2018, 866 mm with 89 rainy days in 2019, and 702 mm with 74
rainy days in 2020. Six sub-plots (each 2.5×5 m; Figure 2A and B)
were established in spring 2017 (Carretta et al., 2021). Three plots
are located in a field managed under a conventional tillage regime
(CT plot), and the other three are in a field under no-till manage-
ment (NT plot). The fields measure 0.7 ha, and the slope was 2.7%
for both NT and CT fields. The two fields faced each other and
were separated by a ditch (Figure 2B). Each sub-plot is bounded on
three sides by metal boards inserted 15 cm below-ground, 15 cm-
protruding above the soil surface to prevent any splash effect or
runoff flowing either out of or into adjacent sub-plots. Each sub-
plot was initially equipped with a runoff water collection system
with a 55 L tank. However, in July 2018, the runoff collectors of
the CT plots were replaced with 100 L tanks because in a few cases
overflowing runoff volumes were collected after intense rainfall
events (Figure 2C).

Harrowing was performed on the CT field in April 2018.
Maize was sown at the end of April 2018, and it was harvested in
September 2018. The CT field was ploughed to a 25-30 cm depth
in October 2018, followed by harrowing. At the end of October
2018, both fields were sown with wheat, harvested at the end of
June 2019. In October 2019, the CT field was ploughed to a 25-30
cm depth and harrowed, and wheat was sown in both fields at the
end of October 2019. The wheat harvesting was carried out at the
end of June 2020 (Figure 2A). In NT, crop residues have always
been left on the field after the harvesting of each crop.

Data acquisition
Three photogrammetric surveys were conducted on NT and

CT plots, as summarised in Table 1. Previous crop residues were
temporarily removed from the NT plots to allow the execution of
the surveys and then placed again onto the plots. Aerial and terres-

                             Article

Table 1. Detail and main characteristics of structure from motion surveys.

                                           Date                             September 2018                   November 2019                                      June 2020
                                                    Area (m2)                                                 75                                                       75                                                                          75
                                              Field conditions                  8 days after maize harvesting    Seven days after wheat sowing                  Three days after wheat harvesting
                                            Number of targets                                    30 [10]                                              30 [10]                                                                30 [10]
GNSS survey        Positional accuracy (X, Y, Z) (m)                         <0.05                                              0.03-0.04                                                              0.03-0.04
                                            Reference system                     RDN2008/UTM zone 32N              RDN2008/UTM zone 32N                                 RDN2008/UTM zone 32N
                                                                                                             (EPSG: 6707)                                  (EPSG: 6707)                                                     (EPSG: 6707)
SfM survey                        Number of images                                        308                                                     337                                                                        333
                                             Flight height (m)                                           8                                                         8                                                                            8
                                  Ground sample distance (m)                            0.002                                                  0.002                                                                    0.002
GNSS, global navigation satellite system; SfM, structure from motion.

[page 20]                                             [Journal of Agricultural Engineering 2022; LIII:1279]                                                             

Non
-co

mmerc
ial

 us
e o

nly



trial images (i. in Figure 1) were collected with a Sony Alpha 5000
compact digital camera (20 Mpixels, focal length 20 mm, sensor
size 23.2×15.4 mm). For the aerial survey, the camera was mount-
ed on a professional 8-rotors UAV (Neutech Airvision NT-4C). A
manual flight mode was used with the camera’s time-lapse func-
tion that allowed to capture images (nadir and oblique) at 2 s inter-
vals, sufficient to guarantee the overlap in sequential photographs.
Indeed, test flights indicated that flying at 1 m/s ensured a suffi-
ciently large overlap (80% in flight direction and a flight strip
overlap of 60%) and a high image footprint (Table 1). For the
ground-based surveys, the photographs were taken by maintaining
an adequate average distance from the object; a mean baseline (0.5
m) between adjacent camera positions avoided large jumps in scale
and minimised the interval between the images to reduce the
effects of change in lighting conditions. Before acquiring the
images, GCP and CP were placed in the study area (Figure 1B),

avoiding the formation of clusters or preferential lines and main-
taining similar inter-distances to obtain a homogeneous distribu-
tion. The SfM targets comprised square orange cloth with a black
rhombus in the middle, an old compact disk (standard diameter of
120 mm) placed in the centre (i.e., CD-ROMs; see Figure 2A). The
targets were located around the study area, while old compact
disks were used as markers and placed inside the plot areas to
occupy less space. The CD-ROMs were chosen as targets because
they are small, the central hole is suitable for inserting the global
navigation satellite system (GNSS) pole with high precision, and
they were easily detectable in the photos. Therefore, CD-ROMs
represented a suitable and low-cost solution for measuring GCPs
and CPs. The spatial coordinates of targets were measured with a
GeoMax Zenith 40 GNSS in Relative Stop&Go post-processed
mode (i. in Figure 1) to have a more accurate solution and control
on raw GNSS data.

                             Article
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Figure 2. The study area. A) Panoramic overview of the whole agricultural landscape at the Padova University Experimental Farm where
the experimental plots are located. Three plots are in a field managed under a conventional tillage regime (CT plot), and the other three
in a field managed using no-tillage practice (NT plot); B) Schematic drawing of the experimental sub-plots and the locations of control
points (CPs) and ground control points (GCPs) during structure from motion surveys; C) Daily rainfall monitored from September
2018 to June 2020. Runoff events, soil samplings, photogrammetric surveys, tillage operations, and crops cultivated in the NT and CT
fields are indicated at the top.
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Data processing, error analysis, and sediment connectivity
The SfM surveys were processed as described in Section: Data

processing to obtain georeferenced, filtered, and co-registered. For
the co-registration process, the point cloud of November 2019 was
chosen as a reference because it presented a good precision and
accuracy in terms of CPs (see next Section: Structure from motion
data processing and error analysis and Table 2). The co-registered
point clouds were converted in meshes (v. in Figure 1) and deci-
mated through ToPCAT (see Section: Data processing) allowing
the selection of a grid cell of 0.02 m, considering the minimum ele-
vation within each grid cell. The same cell size of 0.02 m was used
to realise the precision maps grids of each DTM, following the
workflow in Section: Data processing.

The IC was applied to DTMs of each sub-plot using the stand-
alone application SedInConnect based on Python scripting with
bindings for processing geographical datasets (Crema and Cavalli,
2018). The runoff collection system of each sub-plot was used as a
sink in the IC computations to identify areas potentially connected
to each collection tank and therefore contributing to the volumes
measured in the field. 

Data validation using field measurements 
The soil erosion estimates through the topographic survey

were compared (ix. in Figure 1) with sediment erosion measure-
ments directly conducted under natural rainfall conditions in the
field (i. in Figure 1). The Regional Agency for Environmental
Protection (ARPAV) meteorological station on the experimental
farm, 30 m far from the plots, with a rain gauge recording every 5
min, was used to measure rainfall events (Figure 2C). The tech-
nique adopted for measuring soil erosion, already described in
Carretta et al. (2021), is rather simple and cost-effective. The total
runoff water volume collected in the tanks was measured for each
runoff-generating rainfall event, and three 0.5-L water samples
were collected in aluminium bottles from each sub-plot (Figure 2A
and B). The samples were then transferred into plastic containers
and placed in a dryer at 60°C for 48 h. When all the water had
evaporated, the samples were weighed to obtain the sediment yield
for erosive events. Sediment concentration was multiplied by the
runoff volume to determine the sediment yield from each sub-plot
at each runoff event.

To determine the oven-dry soil bulk density (BD), in
November 2017, one month after soybean harvesting, in July 2019
after wheat harvesting, and in November 2019, two weeks after the
CT field’s seedbed preparation, undisturbed soil samples were col-
lected from both the NT and CT fields next to the runoff plots. At
each sampling date, three sampling locations were selected on the

CT and six on the NT field. Among the six sampling locations on
the NT field, three were on the no-track (NT no-track) and three on
the track position (NT track), the latter being the portion of soil
affected by tractor wheels’ passage (Figure 2A). The soil samples
were collected at 15-20 cm depth using cylindrical steel cores
(height, 7.0 cm; internal diameter, 7.2 cm) and then placed in a
labelled plastic bag, sealed, and transported to the laboratory. The
bulk density measured in November 2017 was 1.66±0.067,
1.74±0.069, and 1.55±0.083 g/cm3 for NT track, NT no-track, and
CT, respectively. The bulk density measured in July 2019 was
1.59±0.050, 1.58±0.099, and 1.47±0.023 g/cm3 for NT track, NT
no-track, and CT, respectively. The bulk density measured in
November 2019 was 1.57±0.053, 1.60±0.069, and 1.43±0.069
g/cm3 for NT track, NT no-track, and CT, respectively. To test for
significant differences (P<0.05) of soil bulk density between sam-
pling dates for each sampling location and between sampling loca-
tions for each sampling date, a one-way ANOVA followed by
Tukey post-hoc test was performed using RStudio Version
1.4.1106 (RStudio Team 2021). The bulk density values were not
significantly different between the different sampling dates for NT
track, NT no-track, and CT samples; moreover, no significant dif-
ferences in bulk density were observed between the NT samples
taken at the track and no-track position for each sampling date. The
mean bulk density of NT and CT soils was calculated by averaging
the bulk density values of all the sampling dates without discrimi-
nating between track and no-track positions for the NT soil. The
mean bulk density is 1.62 and 1.48 g/cm3 for NT and CT soil,
respectively.

The soil mass from each sub-plot at each runoff occurrence
was summed over all events that happened within the monitoring
period interspersed with the different SfM surveys and converted
into volume data using the mean bulk density information.

Results and discussion

Structure from motion data processing and error
analysis

By processing SfM, high-quality, dense point cloud
(12,801,448, 11,002,321, and 5,947,619 points, with a mean den-
sity of 170,685, 146,697, and 79,301 points/m2, respectively over
September 2018, November 2019, and June 2020 surveys) meshes,
and DTMs were obtained. These datasets were adequate to identify
micro-topographic features of experimental plots. Table 2 sum-
marises the point quality analysis of the GCPs and CPs in terms of

                             Article

Table 2. Errors assessed for structure from motion point clouds and their derived digital terrain models. 

                                                                                          Point clouds                                                                               DTMs
                                   Accuracy CPs                                             Precision CPs        Georeferencing GCPs                            
                                                MAE                     RMSE3D*                             SDE                          RMSE3D*                     MAE      SDE       RMSE°      NMAD#

                              (m)           (m)       (m)          (m)                  (m)       (m)       (m)               (m)                         (m)       (m)         (m)          (m)
                                 X                Y             Z                                          X            Y             Z                                                                                                       

September 2018        0.0132            0.0117        0.0590            0.0706                      0.0115        0.0104        0.0381                  0.0500                               0.0436        0.0647          0.0739           0.0716
November 2019          0.0160            0.0098        0.0065            0.0228                      0.0093        0.0070        0.0051                  0.0192                               0.0329        0.0393          0.0380           0.0315
June 2020                    0.0159            0.0099        0.0065            0.0239                      0.0094        0.0071        0.0050                  0.0191                               0.0353        0.0341          0.0346           0.0311
CP, control points; GCP, ground control points; DTMs, digital terrain models; MAE, mean of the residuals; SDE, standard deviation of the residuals; RMSE, root mean square error; NMAD, normalized median absolute
deviation. Note: For structure from motion surveys, the bootstrapping technique applied in Agisoft Metashape after all of the iterations provides MAE as an indication of the accuracy of the georeferencing process
and the point cloud when GCP and CP residuals are used, respectively, while SDE yields an indication of the precision. *RMSE3D (3D root mean square error) of GCPs and CPs computed along the x, y, and z direc-
tions; °the outliers were removed by applying a threshold (2 times the RMSE) selected from an initial calculation of the RMSE measures (Höhle and Höhle, 2009); #NMAD: proportional to the median of the absolute
differences between errors and the median error (Höhle and Höhle, 2009). 
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precision, accuracy, and georeferencing error for each SfM survey
carried out. In addition, the bootstrap resampling technique (see
Section: Error analysis) enabled detailed SfM errors to be evaluat-
ed, which were all in the order of magnitude of centimetres, and
thus suitable for investigating soil erosion processes at the plot
scale as stated in different works (Eltner et al., 2015; Balaguer-
Puig et al., 2017; Kaiser et al., 2018).

The precision maps calculated in Agisoft Metashape for each
SfM cloud showed a spatial variation of mean point precision of 22
mm, 6 mm, and 9 mm for September 2018, November 2019, and
June 2020 surveys, respectively. The spatial variation of precision
maps was related to the image overlap and the UAV flights due to
the manual mode navigation, which required operator care to
achieve the necessary coverage of the area of the plots. In addition,
other factors that influence the precision of SfM models were the
presence of vegetation and soil roughness, as highlighted in differ-
ent studies as Eltner et al. (2015), James et al. (2017b), and
Cândido et al. (2020). The precision of the obtained SfM results
highlighted that the acquisition of images from two different obser-
vation directions (i.e., oblique and nadir) and platforms (i.e., UAV
and ground-based) led to an optimal camera network geometry
(i.e., great image overlap and high angle of convergence), and
fewer deformation errors or area distortions. Several pieces of
research confirmed that the addition of oblique photographs in a
UAV survey considerably strengthens the network geometry
(Eltner et al., 2016). This also allowed reducing the errors in esti-
mated camera parameters and the likelihood of detectable system-
atic DTM error, such as the ‘doming effect’. The possibility to
exploit different acquisition platforms is certainly one of the
strengths of the SfM surveys. In the case of the experimental plots
discussed in this paper, the nadiral perspective allowed a more
effective survey of the points compared to techniques of terrestrial
acquisition and more classic as the TLS. 

Table 2 shows the DTM errors for each survey, underlining the
high quality of the final outputs obtained from SfM data by com-
paring CPs measured in the field. These statistics also highlighted
how the interpolation process (i.e., gridding) slightly increased the
errors in DTM data compared to the errors at the point cloud level
for all statistical values analysed. This is the well-known problem
of the gridding process that induced a loss of resolution and
increased errors compared to the original data (Chaplot et al.,
2006; Heritage et al., 2009). As in Li et al. (2004), further analysis
could be done to improve the DTM errors estimations and confirm
the shown results. Similar results were presented in
Nourbakhshbeidokhti et al. (2019), where errors were significantly
smaller in point clouds before triangulation than in DTM as con-
verting a LiDAR (laser imaging detection and ranging) point cloud
to grids increases the error by interpolation. However, the quality
of the DTMs obtained was certainly high (centimetre-level), con-
sidering the values in Table 2, which demonstrated how the SfM
process proved effective in generating very high-resolution topo-
graphic (HRT) data. Also, Balaguer-Puig et al. (2017) stated that at
the plot scale, erosive processes could lead to very small surface
variations, and high precision DTMs were needed to account for
differences measured in millimetres. The wide range of calculated
metrics allowed a more robust error estimation, especially after the
outlier removal, making the statistics more reliable (Höhle and
Höhle, 2009). Moreover, using metrics such as NDAM further
reinforced the data obtained from other statistics as being very
similar. Several authors have stated the importance of using robust
accuracy assessment methodology and metrics, preferably not
influenced by outliers or by a skew in the distribution of the errors
(Wang et al., 2015).

The ICP errors obtained in CloudCompare software for the co-
registration processes of the different SfM survey show RMSE of
0.045 and 0.031 m in stable areas for the September 2018-
November 2019 and November 2019-June 2020 point cloud pair-
ing, respectively. The choice to start the ICP process from the over-
lapping stable areas and then extend the co-registration process to
the whole area certainly improved the quality of the multi-tempo-
ral survey alignments, as demonstrated in several studies
(Cucchiaro et al., 2020b). The co-registration procedure enabled
noise reduction and better identification of the actual changes in
multi-temporal surveys.

Sediment connectivity analysis
Figure 3 depicts the IC maps highlighting how the sediment

connectivity changed over time due to rainfall events and agricul-
tural practices. The multi-temporal sediment connectivity analysis
proved useful to identify soil zones potentially connected to runoff
collectors and more prone to water erosion and zones not directly
connected to the plot outlet. Indeed, the potential connected areas
(i.e., yellow boundaries in Figure 3A, C, and E) are only 13%,
54%, and 40% of the whole surface represented by the experimen-
tal plots respectively in September 2018, November 2019, and
June 2020. The remaining sediment volumes showed a tendency
not to be virtually mobilisable and, therefore, were not accounted
for in the estimation of eroded soil volumes. The areas contributing
to sediment production further decrease when analysing the IC val-
ues since only the portions of the plots in the Medium-High and
High IC classes (i.e., the caption in Figure 3) may be considered
the most likely to produce erosive processes, i.e., only 10 % (0.93
m2), 4% (1.31 m2) and 3% (0.76 m2) of the entire potentially con-
nected area (i.e., yellow boundaries in Figure 3A, C, and E) respec-
tively for September 2018, November 2019, and June 2020 sur-
veys. This point also proved valid in work presented by
Prosdocimi et al. (2017), where the consideration of the only high
values of IC for masking the elevation differences maps in multi-
temporal SfM surveys yielded results of the same order of magni-
tude between erosion measurements obtained by topographic and
traditional methods. Furthermore, sediment connectivity analysis
emphasized the higher IC values of the CT than NT conditions:
18% (0.60 m2), 4% (1 m2) and 3% (0.47 m2) for CT with respect
to 5% (0.33 m2), 2% (0.35 m2) and 2% (0.29 m2) for NT corre-
spondingly for September 2018, November 2019, and June 2020
surveys. 

In this work, a step further than the study presented by
Prosdocimi et al. (2017) was realised because the multi-temporal
component of connectivity (i.e., DoIC maps in Figure 3B, D, and
F) was considered, and then the only areas with IC increments (i.e.,
positive DoIC values) between two successive surveys were used
to identify potentially mobilisable sediment. Also, sediment con-
nectivity analysis with DoIC highlighted the different sediment
dynamics of agricultural lands under NT and CT conditions.
Indeed, the CT plots presented higher IC values in the Medium-
High and High classes than NT considering the entire potentially
connected surface: 18%, 4%, and 3% (CT) with respect to 5%, 2%,
and 2% (NT) correspondingly for September 2018, November
2019, and June 2020 surveys. This feature persists over time, also
analysing the ‘increase DoIC’ values (Figure 3B, D, and F) for the
same areas: 2%, 5%, and 2% (CT) with respect to 1%, 3%, and 1%
(NT) correspondingly for September 2018, November 2019, and
June 2020 surveys. This phenomenon can be explained by
analysing the different micro-topography resulting from current
agricultural treatments. As stated by Tarolli et al. (2019): NT areas
were characterized by rougher surfaces, with more pronounced
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Figure 3. Index of connectivity (IC) and differences of IC (DoIC) maps for experimental plots realised through digital terrain models
(DTMs). In the background, the shaded relief map of DTMs used for the analysis. Based on the Natural Breaks classification methods,
the IC values have been classified into five classes (low, medium-low, medium, medium-high, and high). A) the IC map of September
2018; B) the DoIC map of September 2018-November 2019; C) the IC map of November 2019; D) the DoIC map of November 2019-
June 2020; E) the IC map of June 2020; F) the DoIC map of September 2018-June 2020.
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concavities and convexities (due to no-tillage conditions and pref-
erential tractor paths during the harvesting process), while CT sur-
faces were smoother than NT less than one month after seedbed
preparation. Generally, tilled soil presents rougher surfaces soon
after the seedbed preparation, representing the best conditions for
the crop seedling emergence. The micro-depression or furrows
generated by the tillage can store water and erode sediment during
rainfall events, but the accumulation of sediment in surface depres-
sions or furrows results in smoothing the soil surface over time.
Instead, after several years of no-tillage, it is expected that the sur-
face morphology and soil aggregated will be stable and consolidat-
ed. Therefore, a terrain with the NT condition was likely to reduce
overland flow (quantity) and velocity (energy) and thus sediment
connectivity that may significantly change the soil delivery at the
outlet (Pineux et al., 2017). These results confirm the importance
of micro-topography in sediment connectivity and, consequently,
in estimating eroded materials. 

Soil erosion computations and data validation 
Figure 4 provides a visual quantification of soil erosion over

time by exploiting raw data (i.e., point clouds and meshes in Figure
4A, B, and C) and the rasterised products (i.e., DoDs; Figure 4D,
E, and F). The M3C2-PM clouds show the geomorphic change in
experimental plots with a high level of detail. The M3C2-PM mean
distance was -0.033 m with 0.048 m standard deviation, –0.020 m
mean with 0.025 m standard deviation, -0.060 m mean with 0.050
m standard deviation, respectively for September 2018-November
2019, November 2019-June 2020, and September 2018-June 2020
clouds (Figure 4A.1, B.1, and C.1). Also, at the corresponding grid
level (i.e., DoDs; Figure 4D, E, and F), the topographic changes
were evident for NT and CT plots. The significative changes in the
maps at point cloud level (Figure 4A.2, B.2, and C.2) and the cor-
responding raster data (i.e., DoDs; Figure 4D, E and F) highlighted
how the topographic difference was subject to an important degree
of uncertainty and noise. In fact, the rasterised precision maps
allowed the thresholding of raw DoDs (Figure 4D, E, and F) and
the identification of actual morphological changes as in the M3C2-
PM point clouds. Several researchers stress the importance of
thresholding and uncertainty estimation in the soil erosion process,
such as Cândido et al. (2020), who affirmed the usefulness of
raster precision maps for removing insignificant topographical
changes. As in this study, Balaguer-Puig et al. (2018) stated that
setting an error threshold was fundamental to quantify small-mag-
nitude soil erosion at the plot scale, while Balaguer-Puig et al.

(2017) highlighted how the choice of different threshold values in
the DoDs could lead to volume differences as large as 60% when
compared to the direct volumetric difference. Also, Eltner et al.
(2015) underlined that minimal changes in minLoD had a signifi-
cant influence on laminar changes; thus, HRT data accuracy was
more relevant for estimating diffuse erosion and levelling process-
es than rill erosion. The effectiveness of using an uncertainty
threshold to identify reliable erosional processes is confirmed by
the volumetric data calculated from the DoMs and DoDs compared
to those measured in the field, which acts as ground truth (Table 3).
Table 3 demonstrated how the thresholded maps enabled the elim-
ination of some residual phenomena of unrealistic deposition due
to possible systematic errors and filtering of crop residues (partic-
ularly in NT plots; Figure 4D). As happened in the September
2018-November 2019 survey, raw DoD and DoM showed a posi-
tive net volume difference, which is impossible in a closed system
with only sediment loss. The thresholded DoDs and DoMs dis-
played lower volumetric estimates than raw data and were closer
to those measured with field sediment collection systems, remov-
ing some of the uncertainty of all topographic surveys.

The results in Table 3 confirmed the ongoing erosional pro-
cesses illustrated in Figure 4 and their low magnitude, which is dif-
ficult to identify without very accurate surveys. Indeed, the vol-
umes estimated by processing SfM data show net negative differ-
ences, indicating widespread erosion phenomena throughout the
monitoring period (i.e., September 2018-June 2020). During the
period November 2019-June 2020, volumetric estimates obtained
from topographic surveys were very high for all quantification
methods (i.e., DoDs and DoMs) compared to collected sediment
measurements. This could be due to the presence of wheat crop
residues that were difficult to remove without removing soil infor-
mation in the filtering process in the June 2020 SfM survey. An
overestimation of topographic volumes was generally found
(except for NT volumes measured by DoMs during September
2018-November 2019) when compared with direct measurements
(Table 3). Previous laboratory studies reported similar soil loss
overestimation, usually attributed to soil settling within the simu-
lation box and bulk density changes due to raindrops compaction
(Gessesse et al., 2010). Hänsel et al. (2016) offered crucial evi-
dence of how the validation of SfM photogrammetry that deter-
mined soil loss estimations with rainfall simulation measurements
were solely possible due to the consideration of soil compaction
processes in agricultural landscapes. The authors applied a height
correction to the DoD cell values to compensate for supposed soil
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Table 3. Comparison between sediment erosion measurements directly conducted under natural rainfall conditions in the field and soil
erosion estimates through structure from motion survey obtained from difference of digital terrain models and differences of meshes
areas in Figure 4.  

                                                                                                         SfM surveys
                                  Sediment erosion Raw DoDs  Thresholded DoDs Raw DoMs        Thresholded DoMs
                                collection in the field Net volume               Net volume Net volume          Net volume

Soil volumes*                difference°              difference° difference° difference°
                                         (cm3)     (cm3)       (cm3) (cm3)              (cm3)
Survey                                        NT            CT             NT             CT            NT             CT              NT               CT                    NT             CT

September 2018-November 2019         1225.134         3080.544          1181.689        –39,230.905    –2623.809      –33,456.633         213.886           –12,598.792                 –905.273         –9682.214
November 2019-June 2020                     1134.752         1445.150       –29,027.242     –51,660.248   –28,598.717    –48,225.507     –24,234.134       –40,033.805              –23,526.995     –35,656.994
September 2018-June 2020                    2359.886         4525.693       –11,236.501     –79,464.741    –9280.055      –79,464.741       –2722.149         –38,288.126                –2213.762      –38,155.128
SfM, structure from motion; DoDs, differences of digital terrain models; DoMs, differences of meshes; NT, no-till; CT, conventional tillage. Note: The ± uncertainty of the thresholded DoDs volumes was estimated
considering a minLoD. ‘Raw DoDs’ are DoD where the digital terrain models uncertainty and error propagation were not applied, while ‘Raw DoMs’ means the difference of meshes were not cut out considering the
areas with significant changes between two different surveys. *The soil mass from experimental plots was converted into volume data using the mean bulk density information; °net volume changes were the differ-
ence between deposition and erosion volumes. 
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Figure 4. Geomorphic change detection using multitemporal clouds and grids data for the experimental plots where the differences of
index of connectivity (DoIC) areas used for the volume computations of the soil erosion are shown. (A.1) Multiple model to model
cloud comparison-precision maps (M3C2-PM) point cloud distances and (A.2) their significative change maps used to mask the meshes
between September 2018 and November 2019 point clouds; (B.1) M3C2-PM point cloud distances and (B.2) their significative change
maps between November 2019 and June 2020 point clouds; (C.1) M3C2-PM point cloud distances and (C.2) their significative change
maps between September 2018 and June 2020 point clouds; (D) the difference of digital terrain model (DoD) of September 2018-
November 2019 and the respective DoIC areas; (E) the DoD of November 2019-June 2020 and the respective DoIC areas; F) the DoD
of September 2018-June 2020 and the respective DoIC areas.
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compaction. Balaguer-Puig et al. (2018) also reported an overesti-
mation of 13% in accumulated soil loss obtained from SfM-based
DoDs compared with actual sediments collected in the field. The
authors of the study highlighted how other factors or variables than
photogrammetric or geometric ones, as some edaphic issues (e.g.,
soil settling or bulk density variations), were involved in runoff
generation, such as surface roughness or sediment connectivity.

Moreover, Kaiser et al. (2018) quantified the influence of non-
erosive soil surface processes on sediment loss estimations and
volume calculations to critically examine the potential misinterpre-
tations of high-resolution topography data in soil erosion studies.
Kaiser et al. (2018) verified the hypothesis of the influence of soil
physical properties on topographic data. Therefore, soil loss over-
estimation in Table 3 could be attributed to non-erosive soil surface
processes that can lead to significant errors in sediment yield esti-
mation.

The most important thing arising from Table 3 was that thresh-
olded DoMs estimations were closer to the reality of the processes
that occurred in the field. Indeed, the thresholded DoMs obtained
only through the triangulation of point cloud and M3C2-PM infor-
mation provided erosion volumes more similar to reference data
(i.e., traditional runoff and sediment measures) than DoDs. In par-
ticular, the thresholded DoMs show lower volume estimations
which denoted a decrease in noise and errors mainly related to the
rasterization process. Identifying significant changes by working
directly on the point clouds without triangulation or gridding
through the M3C2-PM algorithm certainly helped in detailed dis-
crimination between noise and real morphological changes.
Similar outcomes were presented by Nourbakhshbeidokhti et al.
(2019) that stated how the estimation of topographic changes sole-
ly based on point comparison (i.e., Cloud to Cloud and M3C2)
were more reliable than those that interpolate surfaces (i.e., Cloud
to Mesh and DoD). At the point cloud level, it is challenging to
make volumetric calculations, and it is necessary to interpolate the
data. However, this work demonstrates how more accurate results
can be obtained using cloud error information and DoMs rather
than the traditional DoDs. A mesh surface can better reconstruct
the course of the micro-topography and thus recreate a more
detailed terrain morphology in its complexity than a raster product.

Moreover, Heritage et al. (2009) highlighted how the interpo-
lation errors increase with local topographic variability. Therefore,
the use of DoMs with a high level of detail could be beneficial to
describe the processes in place more accurately, especially when it
was required to detect micro-topography. Indeed, DoMs could help
identify erosive phenomena through topographic techniques reach-
ing accuracies of the same order of magnitude as the elevation
changes. However, this methodology has been poorly used in the
literature and would merit further analysis, perhaps by doing tests
on determining morphological changes with different features and
contexts where the reference volumes are known and extremely
accurate. 

In addition, the outcomes in Table 3 shed light on the differ-
ences between erosion phenomena in plots managed with no-till
and conventional tillage systems. As already revealed by the multi-
temporal analysis of IC within plots (see Section: Sediment con-
nectivity analysis), sediment was potentially more mobilisable in
the tillage zone. This phenomenon was also confirmed by sediment
volumes measured directly in the field and through topographic
techniques. Indeed, the erosive processes in tillage plots were more
significant than in those managed with non-tilled throughout the
SfM monitoring period (Table 3). A similar result for these exper-
imental plots was presented by Carretta et al. (2021), where NT
practices coincided with reductions of over 50% in runoff volumes

and 50% to 95% in sediment losses with significant on-site bene-
fits in terms of both sustainable soil management and surface water
quality. Furthermore, as mentioned in Section: Sediment connecti-
vity analysis in NT plots, micro-depressions can readily intercept
and trap sediments, which significantly affect the influence of sed-
iment output, highlighting the importance of a rougher surface.
These observations are also supported by Tarolli et al. (2019) and
Wang et al. (2017b) and underlined how in a tilled field, surface
morphology and soil hydrological properties were subjected to
considerable variations over time due to tillage operations and
field management. For this reason, detailed and frequent monitor-
ing of soil morphology, using remote sensing techniques and digi-
tal terrain analysis, were required to provide a more solid basis
from which to draw conclusions.

Conclusions
This work demonstrated how topographic techniques such as

SfM through UAV surveys help to understand the sediment
dynamics of no-till and conventional tillage in experimental plots
over time. However, these results were possible only through a
careful analysis of SfM outputs and a detailed workflow that min-
imises errors such as co-registration and interpolation to distin-
guish real erosion processes from noise due to uncertainties. The
error information was fundamental to threshold different multi-
temporal SfM-derived products: the traditional DoDs and the less
used DoMs. The validation of the erosion volumetric changes cal-
culated from the SfM outputs with the amount of soil directly col-
lected through traditional runoff and sediment measures in the field
showed a slight overestimation of the results, but it was
attributable to other factors (e.g., the soil compaction processes) or
variables other than photogrammetric or geometric ones. However,
the most significant aspect was that the thresholded DoMs
obtained only through the triangulation of point cloud and M3C2-
PM information provided erosion volumes closer to reference data
than DoDs, denoting a decrease in noise and errors mainly related
to the rasterization process. Consequently, this work established
how the use of DoMs instead of the traditional DoDs could accu-
rately describe the micro-topography and ongoing processes, espe-
cially when the magnitude of the elevation changes is low. 

Another key aspect that led to achieving volumetric estimates
using DoMs comparable to field measurements results was the
analysis of multi-temporal sediment connectivity identifying
exclusively the areas potentially connected to runoff water collec-
tors. This aspect is often overlooked, and it is erroneously assumed
that all the soil within the plots could be connected to the outlet.
However, this research demonstrates how, in the monitoring of
erosion processes, the sediment connectivity must be considered to
obtain an accurate evaluation of the phenomena.

Combining these tools in a specific and detailed workflow
allowed us to obtain satisfactory volumetric estimates able to
describe in detail how the diffuse erosion processes in tillage plots
were greater than in non-tilled. Therefore, the information
obtained from the monitoring through multi-temporal UAV-SfM
surveys, in addition to the quantification of sediment loss, for later
use in models, also could represent detailed spatial and temporal
dimensions of the soil erosion dynamics, which is of great impor-
tance in understanding the mechanisms of the soil erosion in con-
ventional tillage and no-till system. Furthermore, a constant UAV-
SfM monitoring, which can be extended to a larger scale in the
future, can provide useful and detailed feedback that can influence
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decisions concerning the mitigation of erosion processes, such as
choosing the best agricultural management practices to focus on.
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