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Abstract
Purpose  This paper proposes an integrated method for optimizing the response of underactuated linear vibratory feeders 
operating in open-loop control, under generic periodic excitations. The goal is ensuring a uniform motion of the tray, despite 
the presence of less actuators than degrees of freedom and of several specifications of the desired motion.
Method  To cope with the underactuated nature of these systems and with their non-minimum phase behavior, dynamic 
structural modification and the inverse dynamics approach are properly integrated by exploiting a common definition of the 
system internal dynamics. In the inverse dynamics problem, the inverse dynamics is stabilized through output redefinition 
and the resulting ordinary differential equations are integrated to compute causal actuation forces, ensuring almost-exact 
tracking for as many coordinates as the number of actuators. The tracking of the remaining coordinates of interest is improved 
through a proper design of the mechanical parameters, based on the modification of the internal dynamics.
Results  The effectiveness of the proposed method is assessed through numerical simulations performed on the challenging 
case of a 14-degrees of freedom underactuated non-minimum phase linear vibratory feeder adopted in manufacturing plants 
to convey products.
Conclusion  The results evidence the benefits obtained by integrating structural modification together with inverse dynam-
ics. Inverse dynamics is effective, since the tracking error on the imposed coordinates is negligible. On the other hand, the 
benefits introduced by dynamic structural modification are proved as well, by the reduction of the tracking error also for the 
non-imposed coordinates.

Keywords  Vibratory feeders · Underactuated multibody systems · Non-minimum phase systems · Dynamic structural 
modification · Internal dynamics

Introduction

Motivations and State of the Art

Vibratory feeders are widely used in the industry to convey 
products in manufacturing plants by exploiting mechanical 
vibrations [1]. Linear vibratory feeders convey the products 
along a linear path [2] and the flexibility of these devices is 
exploited to achieve a large amplitude of vibration through a 
low actuation effort [3]. In general, the number of actuators 
is smaller than the number of degrees of freedom (DOFs) 
arising in the system due to its flexibility, leading to an 
underactuated system. It is well known in the literature that 
the control of underactuated systems is not trivial, in par-
ticular when they are operated in open loop, as it is usually 
done for linear vibratory feeders. Hence, it is fundamental 
to carefully plan a-priori the actuation forces to achieve high 
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performances [4]. Open loop control is usually adopted in 
feeders (as well as other resonators or vibration generators), 
because these systems, with the goal of reducing their cost, 
are typically not equipped with sensors, with microproces-
sors implementing feedback control, or with actuators whose 
forces can be modified with a high rate and in real-time con-
trol as commanded by a controller.

Vibratory feeding is often performed by means of a sinu-
soidal vibration of the surface employed to convey the prod-
ucts (see, e.g., [5, 6]); however, harmonic excitation does not 
always allow achieving high conveying velocity [7]. It has 
been proved that non-sinusoidal vibrations might provide 
high conveying speed as well as other beneficial features 
such as reliable sorting and orientating motion [8].

The development of feedforward and motion planning 
algorithms for underactuated multibody systems is not trivial 
due to the presence of a rectangular force distribution matrix 
that exacerbates the difficulties in model inversion. In the 
case of non-minimum phase systems, model inversion is 
not trivial; indeed, zeros with positive real part arise, and 
once the model is inverted, those become right-half com-
plex plane poles leading to unstable internal dynamics that 
does not enable to compute the actuation forces, since they 
diverge.

Trajectory tracking is tackled in [9] through an inverse 
dynamics approach together with the Byrnes–Isidori regu-
lator, a non-causal solution is obtained, i.e., pre-actuation 
is required, to track the desired trajectory. More recently, 
the servo-constraint method has been introduced in [10] 
and applications to meaningful test cases have been pro-
posed in [11, 12]. Such technique represents the trajectory 
to be tracked as an algebraic constraint that transforms the 
system model into a set of differential algebraic equations. 
Optimization-based approaches have been proposed in [4] 
where the model inversion approach through the non-linear 
input–output normal form and the servo-constraints are 
analyzed. Other formulations based on the solution of two-
point boundary value optimization problems are proposed to 
tackle both the inverse dynamics and motion planning; see, 
e.g., [13–15] and the references therein. Recently, an inverse 
dynamics method for non-linear systems that exploits the 
non-linear output redefinition has been proposed by the 
authors in [16] to compute the actuation forces, and the 
method has been adopted in [17] to perform the motion 
planning.

In the case of highly underactuated systems, the num-
ber of non-actuated coordinates is much larger with respect 
to the number of independent actuators. In this scenario, 
achieving satisfying results is not trivial. This is the typi-
cal scenario of long and flexible linear vibratory feeders 
employed in manufacturing plants where several coordinates 
are adopted to model the flexible tray over which products 
flow, while a limited number of actuators are installed. In 

this case, dynamic structural modification (DSM) can be 
employed to improve the system performances. DSM meth-
ods compute the optimal structural modifications (mass, 
damping and stiffness system parameter modifications) that 
enable to achieve the desired specifications. Traditionally, 
structural modification has been widely adopted over the 
decades to assign natural frequencies [18–20], mode shapes 
[21, 22] and antiresonance frequencies [23–25]. Recently, 
DSM has been adopted also to increase the robustness 
against the system uncertainties in motion planning [26] 
and to improve the subspace of the allowable motion in lin-
ear vibratory feeders excited through harmonic excitation 
[27]. In addition, a mechanical design approach to convert 
non-minimum phase systems into minimum phase has been 
proposed in [4].

Contributions of the Paper

This paper proposes the general mathematical formulation 
for the inverse dynamics of non-minimum phase underac-
tuated mechanical systems, where QR decomposition is 
exploited to transform the system into the actuated-unac-
tuated model. Then, the internal dynamics is characterized 
exploiting the definition of the output reference in terms 
of the actuated and unactuated coordinates. Further, since 
the system is non-minimum phase, a strategy to stabilize 
the internal dynamics (relating the desired output trajectory 
and the unactuated coordinates) is proposed through the 
output redefinition method. In particular, the paper extends 
the inverse dynamics method for linear vibratory feeders 
proposed by the authors in [27] and [28] in the simpler case 
of a sinusoidal trajectory reference, to the more general case 
of a generic periodic reference trajectory. Conversely to the 
above-mentioned papers where an algebraic problem was 
solved to compute the actuation forces, here, a differen-
tial–algebraic problem is adopted because of the presence 
of the internal dynamics that is governed by ordinary dif-
ferential equations.

The manuscript also provides a novel structural modifica-
tion strategy compared to the usual DSM approaches pro-
posed in the literature, that is therefore another novelty intro-
duced by this paper. Indeed, the proposed approach directly 
exploits the internal dynamics (formulated for the undamped 
system, and in the presence of harmonic excitations), thus 
considering the forced response in the presence of the refer-
ence trajectories, to compute the optimal mechanical design 
for the system that enables to increase the tracking error 
performances of the whole system.

The proposed method is applied to the challenging case of 
a non-minimum phase underactuated linear vibratory feeder 
employed in manufacturing plants to convey products and 
the results confirm the effectiveness of the inverse dynamics 
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algorithm, of the DSM approach, and of the overall approach 
proposed in this paper.

The proposed method is of interest under a theoretical 
point of view, because of the challenges in controlling under-
actuated systems that are here exacerbated by the presence 
of more unactuated variables than the actuated ones and 
because of the unstable internal dynamics. Additionally, 
it is of interest for several practical applications: the over-
all approach is an effective tool for the optimal concurrent 
mechanical design of the feeders (through the DSM) and 
of the actuation forces (through the inverse dynamics) to 
improve the feeding capabilities of these widely adopted 
devices, as well as for other vibration generators sharing 
similar dynamic models.

Dynamic Model

Let us consider the linear vibratory feeder, like the one 
sketched in Fig. 1, employed in manufacturing plants to 
convey products (see, e.g., [3]). The tray of the feeder is 
modeled as a flexible beam through Nb Euler–Bernoulli 
planar beam elements, as proposed in [28]. The vertical dis-
placements and the nodal rotations of the tray are denoted 
as yi and �i , respectively (i = 1,…,Nb + 1). The horizontal 
displacement of the tray is xt, and the beam is assumed as 
axially stiff, thus just one coordinate is needed in this direc-
tion. Translations that are orthogonal to the xy plane of 
motion are not considered. The tray is actuated through NA 
independent actuators modeled as suspended masses (as usu-
ally done in linear feeder [28]), whose absolute translations 
are xai = xt + si cos �f and yai = yi + si sin �f (i = 1,…,NA). 
yi is the tray vertical translation in the point of attachment 
of the actuators and si is the tray-actuator relative displace-
ment along the direction defined by the angle �f = 2� − �f , 
with �f being the throw angle, that is a key parameter in the 

feeder design to ensure the desired flow. The model of the 
actuators, whose mass is mai

 and kai is the stiffness of the leaf 
spring connecting it to the tray, is here omitted for brevity 
(for more details about the system model, please refer to [3, 
27, 28]).

The equations of motion of the tray and of the actuators 
can be merged together and a second-order model of the 
N-DOFs system is obtained, with N = 2(Nb + 1) + NA + 1

where �,�,� ∈ ℝ
N×N are the mass, damping and stiff-

ness matrices of the overall system, respectively. The 
displacements, velocities and accelerations are collected 
in vectors z(t) ∈ ℝ

N  , ż(t) ∈ ℝ
N  and z̈(t) ∈ ℝ

N  , with 
z(t) =

{

y1 �1 … yNb+1
�Nb+1

xt s1 … sNA

}T
∈ ℝ

N . f (t) 
collects the NA independent forces exerted by the actuators 
that are distributed along the system through the actuator 
influence matrix � ∈ ℝ

N×NA.
As it will be shown in the section "System Description 

and Performance Specifications", B is a dense matrix, i.e., 
it has more than NA not-null entries. The partition of the 
coordinates into actuated and unactuated ones, to perform 
inverse dynamics, is not straightforward. In this work, coor-
dinate transformation based on QR decomposition of B is 
performed. This approach leads to an orthonormal matrix � 
(satisfying �T� = ��T = � , where I is the identity matrix) 
and an upper triangular nonsingular matrix �� , with 
rank

(

��

)

= rank(�) = NA , such that: � = ��� . By defining 

a new coordinate vector q =

{

qA
qU

}

,

and then by performing the pre multiplication of the left-
hand side and of the right-hand side of Eq. (1) by �T , then a 

(1)�z̈(t) + �ż(t) +�z(t) = �f (t),

(2)z = �

{

qA
qU

}

,

Fig. 1   Simplified scheme of the 
linear vibratory feeder assumed 
as the test case
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partitioned form of the equations of motion is obtained (for 
more details, refer to [27])

The coordinate vector is partitioned into actu-
ated qA ∈ ℝ

NA and unactuated qU ∈ ℝ
N−NA coordinates, 

and the system submatrices are consistently defined: 
���,���,��� ∈ ℝ

NA×NA , ���,���,��� ∈ ℝ
NA×(N−NA) , 

���,���,��� ∈ ℝ(N−NA)×(N−NA) and �� ∈ ℝ
NA×NA.

The dynamics of the actuated sub-system is defined 
through the first NA equations in Eq. (3), by showing how 
it is directly affected by the actuation forces f  through the 
input matrix BA. In contrast, the unactuated coordinates are 
just indirectly controlled by the evolution of the actuated 
coordinates through the remaining N – NA equations

Hereafter, the dependence with respect to time will be 
avoided, if not necessary, for brevity. Equation (4) defines 
constraints on the allowable state trajectories, and depends 
on both positions, speeds and accelerations. Thus, it is a 
set of second-order nonholonomic constraints [29], and any 
commanded trajectory should satisfy such constraints at any 
time. For this reason, the number of independent outputs to 
be imposed for the inverse dynamics is assumed to be equal 
to the number of independent actuation forces  f.

Inverse Dynamics

The Algebraic‑Differential Scheme of Model 
Inversion for Generic Periodic References

The inverse dynamics problem is aimed at computing the 
NA actuation forces collected in f  , so that NA output coor-
dinates, collected in the output vector � , track the prescribed 
periodic desired displacement �des(t) . In particular, the cho-
sen coordinates should be defined to impose the desired 
tray motion, and therefore are defined as NA absolute tray 
displacements. A common requirement is to get uniform dis-
placement along the tray, with a prescribed throw angle [27], 
thus imposing a relationship between the horizontal and the 
vertical displacements of the tray.

While the problem of dynamic inversion for undamped 
feeders tracking harmonic �des has been solved by the authors 
in [27] through a purely algebraic scheme, the use of generic 
periodic (and hence non-harmonic) references and in the 

(3)

[

��� ���

�T
��

���

]{

q̈A(t)

q̈U(t)

}

+

[

��� ���

�T
��

���

]{

q̇A(t)

q̇U(t)

}

+

[

��� ���

�T
��

���

]{

qA(t)

qU(t)

}

=

[

��

�(N−NA)×NA

]

f (t).

(4)���q̈U(t) + ���q̇U(t) +���qU(t) = −�T
��

q̈A(t) − �T
��

q̇A(t) −�T
��

qA(t).

presence of damping is not straightforward, as briefly out-
lined in [16], and requires an algebraic-differential scheme. 

Additionally, the possibility to impose just NA coordinates 
might severely affect the uniformity of the tray displacement, 
thus reducing the overall feeding capability of the device [3].

If z is adopted in the dynamic model, the definition of 
such output coordinates would be straightforward, since they 
are xt and two vertical tray displacements that belong to the 
set of coordinates yi (i = 1,…,Nb + 1). Because of the coor-
dinate partitioning introduced in Eq. (2), � becomes a linear 
combination of the actuated–unactuated coordinates

where �� ∈ ℝ
NA×NA and �� ∈ ℝ

NA×(N−NA) are two full-rank, 
constant matrices related to the choice of the three physical 
coordinates and to Q. It is possible to exploit Eq. (5) together 
with the desired output trajectory �des to express the position 
qA , speed q̇A and acceleration q̈A of the actuated coordinates 
as follows:

Equation  (6) allows the second-order nonholonomic 
constraint in Eq. (4) to be written as a function of q

U
 , �des 

and their derivatives, leading to the so-called “internal 
dynamics”

It should be noted that the internal dynamics depends on 
the chosen output to be controlled, and this choice affects its 
poles because of the term �−1

�
��.

Stabilization of the Internal Dynamics

In the feeder under investigation, as it will be shown in the 
section "Application Example" through the numerical exam-
ple, and in similar cases as well, the system in Eq. (7) is 
unstable because of poles with positive real parts. Hence, 

(5)� = ��qA + ��qU,

(6)

qA = �−1
�

(

�
des − ��qU

)

q̇A = �−1
�

(

�̇
des − ��q̇U

)

q̈A = �−1
�

(

�̈
des − ��q̈U

)

.

(7)

(

��� −�T

��
�−1
�
��

)

q̈U +
(

��� − �T

��
�−1
�
��

)

q̇U

+
(

��� −�T

��
�−1
�
��

)

qU

= −�T

��
�−1
�
�̈
des − �T

��
�−1
�
�̇
des −�T

��
�−1
�
�
des
.



Journal of Vibration Engineering & Technologies	

1 3

the numerical integration of the internal dynamics leads to 
divergent solutions even when forced by bounded input ( �des , 
�̇
des , �̈des ). Stabilization should be therefore performed. An 

effective approach is the output redefinition, that is approxi-
mating y through a proper fictitious output �̃ so that Eq. (7) 
is approximated through a stabilized internal dynamics. 
�̃ is, again, written as a linear combination of the actu-
ated and unactuated coordinates, through proper matrices 
�̃� ∈ ℝ

NA×NA and �̃� ∈ ℝ
NA×(N−NA)

Provided that a proper choice of stabilizing �̃� and �̃� is 
done, the following stabilized internal dynamics is finally 
obtained:

The choice of �̃� and �̃� is not trivial and should pursue a 
twofold goal: on the one hand, �̃ should ensure negative real 
parts of the poles of the approximated internal dynamics; 
on the other hand, it should lead to a negligible perturba-
tion of the stable poles of the internal dynamics to limit the 
tracking error.

Forward numerical integration of the ODEs in Eq. (9) is 
adopted to compute q̈U , q̇U and qU . The numerical integra-
tion scheme employed, and the choice of the discretization 
time step, rely on the usual practices adopted in the numeri-
cal simulations of multibody systems (see, e.g., [30]).

Computation of the Actuation Forces

Once the unactuated coordinates accelerations, speeds and 
displacements are obtained, and will be henceforth denoted 
as qdes

U
 , q̇des

U
 and q̈des

U
 , it is possible to compute the reference 

trajectory for the actuated coordinates qdes
A

 , q̇des
A

 , q̈des
A

 by 
inverting the actual maps in Eq. (6), i.e., using the actual 
values of �� and �� ; indeed, the method just relies on alge-
braic computations in the subsequent steps.

Finally, the actuation forces collected in f  are obtained 
through the solution of the first NA algebraic equations of 
the system in Eq. (3) that represent the invertible inverse 
dynamics of the actuated sub-system for imposed values of 
the motion of all the coordinates

(8)�̃ = �̃�qA + �̃�qU.

(9)

(

��� −�T
��

�̃−1
�
�̃�

)

q̈U +
(

��� − �T
��

�̃−1
�
�̃�

)

q̇U +
(

��� −�T
��

�̃−1
�
�̃�

)

qU

= −�T
��

�̃−1
�
�̈
des − �T

��
�̃−1
�
�̇
des −�T

��
�̃−1
�
�
des.

(10)f = �−1
�

(

���q̈
des
A

+ ���q̈
des
U

+ ���q̇
des
A

+ ���q̇
des
U

+ ���q
des
A

+ ���q
des
U

)

.

Dynamic Structural Modification

Aims of Dynamic Structural Modification

Although the presence of the second-order nonholonomic 
constraints in Eq. (4) imposes to assign the motion of just NA 
outputs, the proper functioning of long-tray feeders needs the 
correct assignment of more coordinates of interest. Indeed, a 
uniform motion of the conveyed parts is obtained if uniform 
oscillations are achieved all along the tray, not just in the 
(NA − 1) positions whose vertical displacements belong to � . 
It should be noted that also the use of feedback control is not 
effective in imposing the correct shape of vibration because 
of the limitation in assigning eigenvectors, and hence the 

vibrational mode shape, in underactuated systems [31, 32].
To overcome these difficulties and to obtain a cor-

rect feeding, this paper exploits the concepts of dynamic 
structural modification (DSM), i.e., the modification of 
elastic and inertial physical parameters, to achieve the 
desired displacements for all the Nd coordinates of inter-
est (NA < Nd < N). DSM is usually adopted for assigning 
poles, mode shapes and antiresonances in vibrating systems, 
with particular regard to undamped ones. In this work, it 
is exploited in a slightly different manner, by considering 
the system forced response in the presence of the desired 
output �des . The application of DSM for feeders is signifi-
cantly simplified, and improved in term of solvability and 
solution reliability, by neglecting damping and by consid-
ering harmonic motion [27]. Under these circumstances, 
both the second-order nonholonomic constraint and the 
internal dynamics become algebraic equations (that define 
holonomic constraints relating the oscillation amplitudes of 
the unactuated coordinates), and the DSM problem can be 
solved as a purely algebraic optimization.

To apply this idea to the case under investigation, where 
the output reference �des is an arbitrary periodic function, the 
Fourier series is exploited together with the system linearity, 
that allows splitting the DSM problem into more subprob-
lems, each one addressing one of the NH dominant harmonic 
components of �des.
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Let �des(t) be periodic with period TF = 2�∕�F
 , then its 

jth entry, j = 1,…,NA, can be approximated as the following 
truncated series ( �j,k and Aj,k denotes the phase and the 
amplitude, respectively, of each harmonic)

The phase of each harmonic is not of interest for the 
DSM, and therefore can be discarded. The continuous com-
ponent can be discarded as well.

The selection of NH should provide an accurate signal rep-
resentation, also considering the actuators bandwidths, while 
trading off with the need of reducing the size of the DSM 
problem. It should be further stressed that such an approxi-
mation of �des is just used for the computation of the physical 
parameter modifications, to aid the inverse dynamics method 
proposed in the section "Inverse Dynamics" to get a quasi-
uniform displacement along the tray, despite the high value of 
the degree of underactuation (i.e., N − NA). Once the system is 
modified through proper mass and stiffness modification, such 
a method will provide the almost-exact solution of the inverse 
dynamic problem; the sole approximation is the one required 
in stabilizing the internal dynamics.

DSM Problem Formulation for a Single Harmonic

In this section, the DSM problem is formulated and discussed 
for an arbitrary harmonic, indexed through k = 1,…, NH. The 
overall problem, considering all the dominant harmonics, is 
formulated in the section "DSM Problem Formulation for NH 
Harmonics".

The internal dynamics formulated in Eq. (7), under the 
hypotheses of neglecting damping and in the presence of har-
monic reference, is written as follows:

where �des
0,k

 collects the amplitudes Aj,k j = 1,…,NA, for 
the kth harmonic. Hereafter, subscript 0 denotes the 
amplitude of the signals. The inverse of the receptance 
mat r ices  ���,k ∈ ℝ

NA×NA  ,  ���,k ∈ ℝ
NA×(N−NA) and 

���,k ∈ ℝ(N−NA)×(N−NA) , are introduced and defined as

(11)�des
j

(t) ≃ Aj,0 +

NH
∑

k=1

Aj,k cos
(

k�Ft + �j,k

)

.

(12)

(

−
(

k�
F

)2

�T

��
+�T

��

)

�−1
�
�
des
0,k

+
(

−
(

k�
F

)2

��� +���

−
(

−
(

k�
F

)2

�T

��
+�T

��

)

�−1
�
��

)

qU0,k = 0,

(13)

�
k
=

[

���,k ���,k

�T

��,k
���,k

]

=

[

��� −
(

k�
F

)2

��� ��� −
(

k�
F

)2

���

�T

��
−
(

k�
F

)2

�T

��
��� −

(

k�
F

)2

���

]

.

Hence, Eq. (12) is therefore recast in the following more 
compact form:

Equation (14) can be exploited to modify the system inter-
nal dynamics, when forced by the desired output, such that 
all the Nd coordinates of interest track the desired reference. 
The following structural modification matrices are defined to 
represent the model changes due to the Np design variables 
collected in vector p:

ΔKAU, ΔMAU, ΔKUU, ΔMUU are the mass and stiffness 
modification matrices obtained as

The mass and stiffness modification matrices of the 
model with physical coordinates z, are denoted by ΔK, 
ΔM. The topology of the modification matrices is a-priori 
assumed and it represents the admissible choices in the 
system design, as usually done in the state of the art (see, 
e.g., [3, 27]).

Once structural modifications are considered, Eq. (14) 
is recast, in terms of the modified system, as follows:

with:

DSM Problem Formulation for NH Harmonics

Since the system is linear, the superposition principle can 
be applied. Therefore, for all the NH harmonics adopted to 
model the output reference signal in the frequency domain, 
the structural modification problem introduced in Eq. (17) 
becomes

(14)�T
��,k

�−1
�
�
des
0,k

+
(

���,k −�T
��,k

�−1
�
��

)

qU0,k = 0.

(15)

��
��,k

(p) = ��
��

(p) −
(

k�F

)2
��

��
(p) ∈ ℝ

NA×(N−NA)

��
��,k

(p) = ����(p) −
(

k�F

)2
����(p) ∈ ℝ(N−NA)×(N−NA),

(16)
�T��(p)� =

[

����(p) ����(p)

��T
��

(p) ����(p)

]

∈ ℝ
N×N

�T��(p)� =

[

����(p) ����(p)

��T
��

(p) ����(p)

]

∈ ℝ
N×N .

(17)
�̃T

��,k
(p)�−1

�
�
des
0,k

+
(

�̃��,k(p) − �̃T
��,k

(p)�−1
�
��

)

qU0,k = 0,

(18)
�̃

��,k
(p) = �

��,k
+ ��

��,k
(p), �̃��,k(p) = ���,k + ��

��,k
(p).

(19)

NH
∑

k=1

�̃T
��,k

(p)�−1
�
�
des
0,k

+
(

�̃��,k(p) − �̃T
��,k

(p)�−1
�
��

)

qU0,k =0.
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Let us consider the scenario, introduced in the section 
"Aims of Dynamic Structural Modification", where a set 
zdes
s0,k

 of Nd coordinates of the system are of interest 
(k = 1,…,NH). The remaining N − Nd are unassigned coor-
dinates, whose amplitudes are collected in vector zf0,k, 
k = 1,…,NH, as additional unknowns in the IDSM problem, 
together with the design parameters p. The desired dis-
placement amplitude vector in the transformed coordinate 
q is obtained through the transformation matrix Q, thus 
making qdes

A0,k
 and qdes

U0,k
 functions of the unknown

where superscript des denotes the desired displacements.
The Np design variables are constrained to belong to a 

feasible domain defined through lower and upper bounds as 
follows pL ≤ p ≤ pU (with element-wise inequalities), and 
pL, pU ∈ ℝ

Np are related to technological and economical 
constraints on the admissible system modifications. Con-
straints on the unassigned displacements are introduced as 
well to define their admissible values through the following 
element-wise inequalities, i.e., zL

f 0,k
≤ z

f 0,k
≤ zU

f 0,k
 with 

zL
f 0,k

, zU
f 0,k

∈ ℝ
N−Nd , k = 1,…,NH. Such constraints provide 

several benefits in the development of an effective solution 
method for finding the optimal values of p, as explained in 
the section "Solution of the Minimization Problem". All the 
constraints on the unknowns are merged to define the feasi-
ble domain �.

The IDSM problem is defined by recasting Eq. (19) 
into the following minimization:

where � ∈ ℝ
NH×NH is a diagonal matrix that collects NH sca-

lar coefficients that are introduced to reflect different levels 
of concern on each harmonic adopted to approximate the 
output reference signal. The cost function also includes a 
Tikhonov regularization term � ∈ ℝ

Np×Np , i.e., a positive-
definite diagonal matrix that collects Np scalar coefficients, 
introduced to improve numerical conditioning, and it is 
adopted to properly weigh the structural modification param-
eters [33].

Equation (21) features bilinear terms due to the prod-
ucts between the two unknowns, and hence, it yields 
to a non-linear and non-convex minimization problem. 
Handling non-convex optimization is cumbersome, and 

(20)
{

qdes
A0,k

qdes
U0,k

}

= �Tzd
0,k

= �T

{

zdes
s0,k

z
f 0,k

}

, k = 1, ...,NH,

(21)min
p,z

f0

⎧

⎪

⎨

⎪

⎩

�

�

�

�

�

�

�

NH
�

k=1

�̃T
��,k

(p)�−1
�
�
des
0,k

�

z
f 0,k

�

+
�

�̃��,k(p) − �̃T
��,k

(p)�−1
�
��

�

qdes
U0,k

�

z
f 0,k

�

�

�

�

�

�

�

2

2

+ ‖�p‖2
2
,

�

p

z
f 0

�

∈ �

⎫

⎪

⎬

⎪

⎭

,

the main threat is related to the risk of attaining a local 
minimum instead of the desired global optimal solution. 
Hence, it requires a proper solving strategy, such as the 
one explained in the section "Solution of the Minimi-
zation Problem", to boost the attainment of the global 
optimum. Once the optimal values popt for the design vari-
ables are found, it is possible to compute the modified 
system matrices as follows:

Then, the actuation forces are computed through the 
procedure proposed in the section "Inverse Dynamics", 
by adopting the modified system matrices obtained by 
solving the DSM problem in Eq. (21).

Solution of the Minimization Problem

The minimization problem in Eq. (21) is solved through 
homotopy optimization. This technique has been widely 
adopted to solve structural modification problems [26, 27, 
34]. Homotopy relies on the idea of solving a finite set of 
optimization problems fi, starting from a convex relaxation 
fc of the non-convex function to be solved and moving to 
the non-convex function fnc to be solved by means of a path, 
called the homotopy map defined as

where � ∈ [0;1] is a morphing parameter that varies dis-
cretely from 0 to 1. Since � is monotonically increasing, fi 
varies from convexity to non-convexity.

In the last optimization step ( � = 1 ), the func-

tion fnc is solved and the solutions obtained at the 
last step (i .e. ,  ��opt = ��

(

popt
)

= ��
(

p�=1
)

 and 

��opt = ��
(

popt
)

= ��
(

p�=1
)

 ) are the optimal structural 
modification matrices. It is worth to notice that homotopy 
procedures prescribe to exploit the solution of the previous 
optimization step as the initial guess of the following mini-
mization. This feature is fundamental to boost the attainment 
of a global minima instead of a local one.

More details regarding homotopy optimization and its 
applications to DSM problems are provided in [27, 34] and 
here omitted for brevity.

(22)� mod = � + ��
(

popt
)

, � mod = � + ��
(

popt
)

.

(23)f i = (1 − �)f c + �f nc,



	 Journal of Vibration Engineering & Technologies

1 3

Outline of the Method

The method proposed in this paper is outlined in Fig. 2, 
where the required equations are referenced. The method 
requires, as the input, the system dynamic model through 
matrices M, C, K, B, together with the required motion pro-
file for the output coordinates �des(t) ; the method output are 
the actuation forces f (t).

Two decisions may be needed: first, once the desired 
outputs are defined, if the dynamic system features unsta-
ble internal dynamics, it is necessary to stabilize it as 
shown in the flowchart in Fig. 2; otherwise, stabilization 
is not required. For these systems, it is quite common 
experiencing a non-minimum phase behavior, and hence, 
stabilization is usually likely to be required. Second, if the 
tracking errors obtained in the coordinates not belonging 
to �des (and hence not imposed in the desired output) are 

larger than desired, it is possible to take advantage of the 
DSM modification algorithm to improve trajectory track-
ing in more than NA coordinates.

Application Example

System Description and Performance Specifications

Let us consider the linear vibratory feeder sketched in Fig. 1. 
It recalls a typical linear feeder adopted in packaging lines. 
The system properties and the performance requirements of 
the proposed test case are based on typical specifications set 
for proper operating these devices in industrial plants [3, 35].

The number of actuators is NA = 3 and the force distri-
bution matrix is

Fig. 2   Outline of the proposed 
method
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T h e  fe e d e r  i s  m o d e l e d  t h r o u g h  N b  =  4 
Euler  Ber noul l i  beam elements ,  and hence, 
z =

{

y1 �1 … y5 �5 xt s1 … s3
}T . It follows that N = 14, 

since 3 independent actuation forces are adopted, 3 coordi-
nates are actuated, while the remaining 11 coordinates are 
unactuated. The tray length is L = 3.6 m and its damping 
matrix is obtained using the Rayleigh damping model [36] 
C = αM + βK, with α = 102 and β = 10–3. The remaining 
parameters are listed in Table 1.

To ensure a uniform flow of the conveyed parts, it is 
required that the tray behaves as a rigid body with uniform 
displacements ensuring a uniform throw angle αf = 20°. This 
requirement would impose assigning the 5 vertical displace-
ments y1, y2, y3, y4, y5 and the horizontal one x

t
 , and the 

nodal elastic rotations as well. All the vertical displacements 
should track the same references, while the elastic nodal 
rotations of the tray should be equal to zero, to ensure the 
rigid-like motion. These specifications yield to Nd = 11 coor-
dinates of interest.

However, since NA = 3, just three outputs can be assigned. 
To boost the achievement of the desired goal, the output 
vector is defined as � =

{

y2 y4 xt
}T : two vertical displace-

ments in the attachment points of the first and third actua-
tors, and the horizontal displacement to set the desired throw 
angle. �des(t) is defined as a periodic asymmetric reference 
profile, whose period is TF = 28.60 ms, i.e., ωF = 2π 35 
rads−1, as often adopted in feeding of small parts [3, 27]. 

(24)

� =

⎡

⎢

⎢

⎣

0 0 sin �f 0 0 0 0 0 0 0 cos �f 1 0 0

0 0 0 0 sin �f 0 0 0 0 0 cos �f 0 1 0

0 0 0 0 0 0 sin �f 0 0 0 cos �f 0 0 1

⎤

⎥

⎥

⎦

T

.

Each period of the wave signal consists of a rising phase 
lasting 0.4TF, followed by a drop phase of 0.6TF; both phases 
are performed through a fifth-degree polynomial motion law. 
The peak oscillation amplitude in the throw angle direction 
is sd

max
= 5 mm , and hence, yd

max
= sd

max
sin

(

� − �f
)

 and 

xd
t0
= sd

max
cos

(

� − �f
)

 . The required motion profiles for y2, 
y4, xt are shown in Fig. 3a.

Application of the Inverse Dynamics on the Original 
System

The inverse dynamic approach proposed in the section 
"Inverse Dynamics" is applied to the system with the origi-
nal parameters, to meet the motion requirements listed in 
the section "System Description and Performance Specifi-
cations". The linear vibratory feeder, for the chosen output 
coordinates � , has unstable internal dynamics, as shown in 
Fig. 4a, where a right-half complex plane pole appears. A 

Table 1   Original and modified system parameters

Parameter Original value Modification bounds Modified value

ma1 [kg] 23 [− 5; + 5] 18
ma2 [kg] 23 [− 5; + 5] 28
ma3 [kg] 23 [− 5; + 5] 18
m1 [kg] – [0; + 3] 0
m2 [kg] – [0; + 3] 1.18
m3 [kg] – [0; + 3] 0
m4 [kg] – [0; + 3] 1.18
m5 [kg] – [0; + 3] 0
ka1 [Nm−1] 4.6e5 [− 2.3e5; 4.6e5] 4.6e5
ka2 [Nm−1] 4.6e5 [− 2.3e5; 4.6e5] 4.6e5
ka3 [Nm−1] 4.6e5 [− 2.3e5; 4.6e5] 4.6e5
kl [Nm−1] 1.8e5 [− 9e4; 1.8e5] 3.6e5
kr [Nm−1] 1.8e5 [− 9e4; 1.8e5] 3.6e5
kx [Nm−1] 1.8e5 [− 9e4; 5.4e5] 7.2e5
EI [Nm2] 1.93e5 – –
ρA [kgm−1] 22.87 – –

(a) (b)

Fig. 3   Output reference for y2, y4, xt: time history (a) and their fre-
quency spectrum (b)

Fig. 4   poles of the exact and the stabilized internal dynamics, for 
both the original (a) and the modified (b) systems
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proper selection of the tuning matrices �̃� and �̃� enables 
to stabilize its internal dynamics as evidenced in Fig. 4a; 
further, the original internal dynamics poles are only slightly 
perturbed in the approximate internal dynamics. The actua-
tion forces are computed through the method outlined in the 
section "Outline of the Method" without applying structural 
modification, and the time history of the obtained actuation 
forces is shown in Fig. 5.

The method implementation is not demanding under a 
computational point of view: the average computational time 
employed to compute the actuation forces for an interval of 
0.3 s, by means of MATLAB/Simulink running on an i7 
16 GB RAM laptop, is equal to 1.7 s. It is worth to notice, 
however, that open-loop control can be computed offline.

The multibody system is simulated with Ts = 0.01 ms, 
adopting the Runge–Kutta ODE4 solver for the numeri-
cal integration, and the time histories of the desired output 
coordinates y2, y4, xt are reported in Fig. 6, where it can be 
noticed that the reference signals and the simulated signals 
are almost overlapped. This aspect is confirmed by the track-
ing errors shown in Fig. 6, where ei = ydes

i
− yi is the tracking 

error related to coordinate yi. Similarly, ex is the tracking 
error related to xt. Figure 6 highlights the tracking errors 

Fig. 5   Actuation forces f1 (a), f2 (b) and f3 (c) for the original and the 
modified systems

Fig. 6   Comparison of the trajectory tracking responses (a, c, e) and 
tracking errors (b, d, f) of the desired output coordinates for the origi-
nal and the modified systems

Fig. 7   Comparison of the trajectory tracking responses (a, c, e) and 
of the tracking errors (b, d, f), for the non-imposed tray vertical dis-
placements: original and modified systems
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achieved. The effectiveness of the proposed inverse dynamic 
method is corroborated by the root mean square (RMS) and 
maximum tracking errors, respectively, denoted through 
eRMS and eMAX = max(|ei|), whose values for the imposed 
coordinates are the following ones:

•	 eRMS
2

= 2.51 × 10−5 m and eMAX
2

= 3.74 × 10−5 m;
•	 eRMS

4
= 9.76 × 10−5 m and eMAX

4
= 1.92 × 10−4 m;

•	 eRMS
x

= 1.26 × 10−4 m and eMAX
x

= 2.74 × 10−4 m.

Figure 10a shows the overall RMS error for the imposed 
coordinates, denoted as eRMS

�des
= RMS

(

�
des − �

)

 . Its time his-
tory evidences that the inverse dynamic method proposed in 
this paper is effective and, indeed, it enables to achieve low 
tracking error values: the maximum value of eRMS

�des
 is equal to 

0.16 mm.
This paper pursues a further goal that is to achieve a 

rigid-like motion of the entire tray, as already pointed out in 
the previous section. This aspect is analyzed by considering 
the remaining vertical displacements (y1, y3, y5) and compar-
ing them with the reference signals for the desired vertical 
output displacements. The simulated time histories, together 
with the tracking errors, for these signals are reported in 
Fig. 7. Higher tracking errors with respect to the imposed 
output coordinates are obtained. This yields to an unsatisfy-
ing behavior for the feeder tray. These results are summa-
rized by the following performance indexes:

•	 eRMS
1

= 1.40 × 10−3 m and eMAX
1

= 2.30 × 10−3 m;
•	 eRMS

3
= 5.94 × 10−4 m and eMAX

3
= 1.00 × 10−3 m;

•	 eRMS
5

= 1.50 × 10−3 m and eMAX
5

= 2.60 × 10−3 m.

Additionally, the nodal rotations at each node of the tray 
are reported in Fig. 9, together with the desired nodal rota-
tions that should be null to enforce uniform displacements 
all along the tray of the feeder. In this case

•	 �RMS
1

= 1.60 × 10−3 ◦ and �MAX
1

= 2.70 × 10−3 ◦;
•	 �RMS

2
= 1.20 × 10−3 ◦ and �MAX

2
= 2.10 × 10−3 ◦;

•	 �RMS
3

= 7.97 × 10−5 ◦ and �MAX
3

= 1.61 × 10−4 ◦;
•	 �RMS

4
= 1.30 × 10−3 ◦ and �MAX

4
= 2.30 × 10−3 ◦;

•	 �RMS
5

= 1.80 × 10−3 ◦ and �MAX
5

= 3.20 × 10−3 ◦.

The behavior of the non-imposed coordinates is evaluated 
through two additional error vectors adopted as synthetizing 
performance indexes. The RMS error of the remaining verti-
cal displacements: eRMS

yni
= RMS

(

ydes
ni

− yni
)

 , where ydes
ni

 col-
lects the desired motions of the not imposed vertical dis-
placements, which are equal to the displacements required 
for y2 and y4, and yni =

[

y1 y3 y5
]T . The time history of 

eRMS
yni

 is shown in Fig. 10b and its maximum value is equal to 

2 . 0   m m .  A d d i t i o n a l ly,  t h e  e r r o r  ve c t o r 
e
�
=
[

�1 �2 �3 �4 �5

]T is also considered, which con-
tains all the nodal rotations, allowing for a concise evalua-
tion of the rotations at each node of the tray. Its RMS value 
is reported in Fig. 10c and the maximum value of eRMS

�
 is 

equal to 0.13°.
An overall performance index is adopted to evaluate  

the tracking error between the desired and the obtained  
vertical displacements of the tray: it is computed as 

eyt = ydes
t

− yt , where ydes
t

=

[

ydes
1

ydes
2

ydes
3

ydes
4

ydes
5

]T with  

ydes
1

= ydes
2

= ydes
3

= ydes
4

= ydes
5

 , and yt =
[

y
1
y
2

y
3
y
4
y
5

]T . 

The time history of the RMS value of eyt is shown in Fig. 10d 
and the maximum value of eRMS

yt
 is equal to 1.6 mm.

The results here discussed highlight that the error in the 
trajectory tracking of the imposed coordinates approaches 
zero. Conversely, for the remaining non-imposed coordinates, 
the tracking errors are larger and these should be reduced to 
achieve a more uniform and rigid-like behavior of the tray. In 
this light and following the outline of the proposed method 
provided in Fig. 2, it is possible to exploit structural modifica-
tion to improve the performances of the system.

Application of the Dynamic Structural Modification

The required motion profile is decomposed through Fourier 
Series and its dominant harmonics are: 35, 70 and 105 Hz, as 
evidenced in Fig. 3b. These harmonics are adopted to define 
the DSM problem in Eq. (21) with � = diag

([

105;103;1
])

 , 
which reflects the relative importance of the three harmonics.

The following system parameters are assumed to be 
modifiable: the actuator masses and the leaf spring stiff-
nesses, respectively, mai and kai, i = 1,…3, the tray sup-
port stiffnesses in the vertical (kl and kr) and horizontal 
directions (kx). In addition, 5 nodal lumped masses mi, 
i = 1,…,5, to be placed to the tray, are introduced in the 
DSM problem. Modifications of the tray flexural stiffness 
EI and linear mass density ρA are not allowed, although the 
method can handle their modifications too. Indeed, for an 
existing feeder, it is very difficult to modify its tray. Con-
versely, including these parameters would allow for bet-
ter results. The Tikhonov regularization matrix adopted is 
� = diag

([

1;1;1;1;1;10−3;10−3;10−3;5 ⋅ 10−3;5 ⋅ 10−3;5 ⋅ 10−3;103;103;103
]) , 

and these weights are chosen to penalize modifications of 
the lumped masses and of the leaf springs of the actuators. 
The optimal values of the modified variables together with 
the structural modification constraints adopted are listed in 
Table 1. The average computational time needed to compute 
the optimal structural modifications in MATLAB running on 
a laptop with an i7 16 GB RAM is equal to 5.2 s.
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Inverse Dynamics on the Modified System

The modified parameters reported in Table 1 are adopted 
to update the mass and stiffness matrices accordingly to 
Eq. (22). The same motion specifications listed in the section 
"System Description and Performance Specifications" are 
required. For the chosen output coordinates � , the internal 
dynamics is unstable once again, as shown through the pole 
map in Fig. 4b, where it is evident the presence of a right-
half complex plane pole. Once �̃� and �̃� are chosen, the 
internal dynamics is stable, as shown in Fig. 4b, indeed the 
right-half complex plane pole migrates beyond the imagi-
nary axis and its real part becomes negative; further, only 
a negligible spillover is obtained on the remaining stable 
poles.

The inverse dynamic approach proposed in the section 
"Inverse Dynamics" is exploited once again for the modi-
fied system, to compute the actuation forces through the 
procedure outlined in the section “Outline of the Method". 
The time history of the obtained actuation forces is shown 
in Fig. 5 and compared with the actuation forces computed 
for the original system. It shows that the adoption of DSM 
does not increase the average RMS value of the actuation 
forces, that is 1.15e5 N for the original system, and 1.14e5 
N for the one modified with the optimal structural modi-
fication. While f1 and f3 decrease (both in term of RMS 
and maximum values), f2 increases. Indeed, the actuation 
forces of the original system are

•	 f RMS
1

= 1.05e5N , f RMS
2

= 1.21e5N and f RMS
3

= 1.15e5N;
•	 f MAX

1
= 4.30e5N , f MAX

2
= 3.40e5N and f MAX

3
= 3.40e5N.

Those of the modified system are

•	 f RMS
1

= 7.94e4N , f RMS
2

= 1.81e5N and f RMS
3

= 8.17e4N;
•	 f MAX

1
= 3.34e5N , f MAX

2
= 4.92e5N and f MAX

3
= 2.52e5N.

It should be clearly stated that there is no a-priori con-
trol on the changes in the actuation forces, that can either 
increase or decrease, since DSM is focused on just reduc-
ing the tracking error.

The same sample time and numerical integrator adopted 
for the original system (see the section "Application of 
the Inverse Dynamics on the Original System") are used 
for the modified system to provide a fair comparison. The 
application of the actuation forces to the dynamic model 
of the modified vibratory feeder yields to the response of 
the imposed coordinates y2, y4, xt shown in Fig. 6. Once 
again, the reference signals and the simulated ones are 
almost overlapped, as corroborated by the small values of 
the tracking errors reported in Fig. 6. Hence, the proposed 
inverse dynamics approach is effective. Additionally, the 

RMS and maximum values of the tracking errors for the 
imposed coordinates are the following:

•	 eRMS
2

= 1.43 × 10−5 m and eMAX
2

= 2.86 × 10−5 m;
•	 eRMS

4
= 9.92 × 10−5 m and eMAX

4
= 2.50 × 10−4 m;

•	 eRMS
x

= 1.00 × 10−4 m and eMAX
x

= 2.37 × 10−4 m.

These results evidence that the adoption of DSM does 
not alter the trajectory tracking performances for the 
desired output coordinates. Indeed, the tracking error is 
smaller for y2 and xt, in the modified system and only an 
increase of the RMS and maximum values of the track-
ing error is obtained for the output coordinate y4. Table 2 
summarizes the obtained errors together with the percent-
age variation of these parameters with respect to those 
obtained for the original system.

The time history of the overall RMS error for the 
desired output coordinates is reported in Fig. 10a. It con-
firms the effectiveness of the inverse dynamics method 
proposed in this paper and it shows, once again, that the 
mechanical redesign of the feeder is almost negligible for 

Table 2   Comparison of the tracking errors for the original and the 
modified systems

Parameter Original system Modified system Variation [%]

max

(

|

|

|

e
RMS

yt

|

|

|

)

 
[mm]

1.60 0.81 − 49.1

max

(

|

|

|

e
RMS

�des

|

|

|

)

 
[mm]

0.16 0.19 + 21.3

max

(

|

|

|

e
RMS

yni

|

|

|

)

 
[mm]

2.00 1.00 − 50.0

max

(

|

|

|

e
RMS

�

|

|

|

)

 [°]
0.13 0.07 − 45.2

Imposed coordinates
e
RMS

2
 [mm] 2.51e−2 1.43e−2 − 43.0

e
RMS

4
 [mm] 9.76e−2 9.92e−2 + 1.6

e
RMS

x
 [mm] 1.26e−1 1.00e−1 − 20.6

e
MAX

2
 [mm] 3.74e−2 2.86e−2 − 23.5

e
MAX

4
 [mm] 1.92e−1 2.50e−1 + 30.2

e
MAX

x
 [mm] 2.74e−1 2.37e−1 − 13.5

Non-imposed coordinates
e
RMS

1
 [mm] 1.40 0.59 − 57.9

e
RMS

3
 [mm] 0.59 0.12 − 79.1

e
RMS

5
 [mm] 1.50 0.61 − 59.5

e
MAX

1
 [mm] 2.30 1.20 − 47.8

e
MAX

3
 [mm] 1.00 0.30 − 69.8

e
MAX

5
 [mm] 2.60 1.30 − 50.0
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the desired output coordinates. Indeed, the maximum 
value of eRMS

�des
 is equal to 1.94 × 10−4 m.

The increase of performances provided by the adoption 
of structural modifications is shown in Fig. 7, where the 
trajectory tracking responses for the non-imposed verti-
cal displacements (y1, y3, y5) are reported together with 
their tracking errors. An improvement of the motion of 
the entire tray is obtained with the goal of achieving the 
desired rigid-like motion. This result is confirmed by the 
following values for the RMS and maximum tracking 
errors:

•	 eRMS
1

= 5.87 × 10−4 m and eMAX
1

= 1.20 × 10−3 m;
•	 eRMS

3
= 1.24 × 10−4 m and eMAX

3
= 3.02 × 10−4 m;

•	 eRMS
5

= 6.07 × 10−4 m and eMAX
5

= 1.30 × 10−3 m.

The percentage variations with respect to the original 
system are summarized in Table 2 and confirm the benefits 
obtained through the adoption of the DSM.

The Cartesian displacements of each tray node for 
the original and modified system are reported in Fig. 8, 
together with the desired reference signals. It can be 
noticed that the inverse dynamic algorithm is effective in 
obtaining the desired throw angle for the imposed coor-
dinates, i.e., y2, y4 and xt. Further, structural modification 
allows to significantly improve the throw angle for the 
non-imposed nodes, i.e., those denoted through y1, y3 and 
y5.

Fig. 8   Cartesian displacements of the tray nodes for the original and 
the modified systems

Fig. 9   Elastic rotations for the tray nodes for the original and the 
modified systems

Fig. 10   Comparison of the RMS tracking errors for the original and 
the modified systems: eRMS

�des
 (a), eRMS

yni
 (b), eRMS

�
 (c), and eRMS

yt
 (d)
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The effectiveness of the proposed method is assessed 
by the elastic rotations at each node of the tray, which are 
shown in Fig. 9 and take the following values for the modi-
fied system:

•	 �RMS
1

= 7.57 × 10−4 ◦ and �MAX
1

= 1.60 × 10−3 ◦;
•	 �RMS

2
= 3.89 × 10−4 ◦ and �MAX

2
= 8.61 × 10−4 ◦;

•	 �RMS
3

= 9.22 × 10−5 ◦ and �MAX
3

= 2.30 × 10−4 ◦;
•	 �RMS

4
= 4.12 × 10−4 ◦ and �MAX

4
= 9.36 × 10−4 ◦;

•	 �RMS
5

= 8.65 × 10−4 ◦ and �MAX
5

= 2.00 × 10−3 ◦.

The time history of eRMS
yni

 is reported in Fig. 10b: it clearly 
shows that the tracking error for the non-imposed coordi-
nates is remarkably reduced for the modified system. Indeed, 
it is characterized by a maximum value equal to 1.00 mm 
which yields to a percentage reduction of the 50% with 
respect to the original system. The tracking error related to 
the nodal elastic rotations, whose reference is imposed to be 
null to enforce the uniformity requirement for the tray dis-
placements, is shown in Fig. 10c. The maximum value of 
eRMS
�

 is equal to 0.07°, i.e., it is 45.2% smaller if compared 
with the original system. The time history of the overall 
performance index eRMS

yt
 is reported in Fig. 10d and it shows 

that the tracking error for the vertical coordinates of the tray 
remarkably decreases; indeed, its maximum value is equal 
to 0.81 mm leading to a percentage reduction equal to 49.1% 
with respect to the original system.

These results, together with those summarized in Table 2, 
evidence that the concurrent usage of the proposed inverse 
dynamics approach together with the optimized mechanical 
design obtained through the DSM algorithm is effective. 
Indeed, both the imposed output coordinates and the remain-
ing non-imposed coordinates of interest lead to a uniform 
rigid-like behavior of the tray.

Conclusions

This paper proposes an integrated method for ensuring uni-
form motion of the tray of linear vibratory feeders, oper-
ated in open-loop control with generic periodic references, 
by means of the integrated use of inverse dynamics and 
dynamic structural modification. The goal is challenging, 
since these systems are underactuated and non-minimum 
phase. Additionally, although inverse dynamics enables to 
impose just a number of desired outputs equal to the number 
of independent actuation forces, specifications on the motion 
of the whole tray is usually set to ensure proper motion. This 
problem cannot be therefore solved if internal dynamics is 
used alone. To overcome this limitation, this paper exploits 
DSM.

The inverse dynamics technique exploits the QR decom-
position to transform the model of the system into a rep-
resentation featuring actuated and unactuated coordinates. 
Then, the output reference coordinates are defined, and the 
system internal dynamics is analyzed. Since unstable inter-
nal dynamics occurs for non-minimum phase systems, the 
output redefinition method is exploited to stabilize it. The 
stabilized internal dynamics ordinary differential equations 
are then integrated to obtain the reference values for the 
unactuated coordinates and, finally through algebraic calcu-
lations, the actuation forces. The proposed approach leads 
to a causal, almost-exact solution of the inverse dynamics 
problem, thanks to the use of the actual output map in the 
computation of the forces.

The formulation of the internal dynamics with the actual 
output map is then exploited to perform structural modifica-
tion, by considering the undamped system in the presence 
of harmonic excitations, thus leading to a straightforward 
problem formulation. Hence, the periodic output reference is 
decomposed through the Fourier Series truncated to a subset 
of harmonics of interest. Then, a DSM problem for the inter-
nal dynamics is formulated to improve the system perfor-
mances by properly shaping such a constraint on the allow-
able motion. The solvability of the DSM problem for all the 
choices of the design parameters is ensured by recasting it 
into a non-linear non-convex optimization solved through 
the homotopy optimization technique.

To summarize, the main novel contributions of this inte-
grated method for optimal control and design of feeders are:

•	 Generic periodic references are handled both in the 
inverse dynamics and in the DSM;

•	 The presence of viscous damping is considered in the 
inverse dynamics problem;

•	 The second-order nonholonomic constraints, represent-
ing the motion of the unactuated coordinates leads to 
unstable internal dynamics, that is coped with in this 
paper through an output redefinition strategy;

•	 DSM is performed by considering the internal dynamics, 
to better represent the effect of the desired reference on 
the desired output.

The effectiveness of the proposed method is assessed by 
its application to the challenging test case of a 14-DOFs 
industrial linear vibratory feeder employed in packag-
ing plants. The system is excited through 3 independent 
actuators and its tray, over which products flow, is modeled 
through 11 coordinates. To ensure a uniform flow of the 
transported parts over the tray, it is required that the tray 
behaves as a rigid-like beam even if it is flexible. Underac-
tuation exacerbates the problem, since only 3 tray coordi-
nates can be imposed through the inverse dynamics algo-
rithm, while an effective achievement of the remaining 8 
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coordinates of the tray relies on the DSM algorithm. The 
results proposed in the paper highlight the effectiveness of 
the proposed method. Indeed, the proposed inverse dynam-
ics technique enables to obtain low tracking error for the 
imposed coordinates. Further, the optimized mechanical 
design obtained through structural modification enables to 
drastically reduce the tracking error also for the non-imposed 
coordinates of interest.
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