
1

Mathematical Analysis of the Packet Delay Statistics in Bluetooth

Piconets under Round Robin Polling Regime

Daniele Miorandi∗ Andrea Zanella§, Simone Merlin§

∗Contact author. CREATE-NET, v. Solteri 38, 38100 – Trento (Italy)
ph. +39.0461.82.85.84, fax +39.0461.42.11.57

daniele.miorandi@create-net.org

§Department of Information Engineering, University of Padova, v. Gradenigo 6/B, 35131 – Padova (Italy)
{andrea.zanella,simone.merlin}@dei.unipd.it

Abstract— Personal Area Network technologies like Bluetooth
and its subsequent derivations and evolutions (Bluetooth v1.2,
v2.0+EDR) are valid candidates to realize the mobile and
pervasive communication paradigm that is considered in several
recent research projects. Although the delay performance of
the basic Bluetooth network configuration (piconet) has been
widely evaluated through numerical simulations, no satisfactory
analytical framework has been yet proposed in the literature.
In this paper we present an analysis of the packet delay statistic
in Bluetooth piconets, for a limited–1 (round robin) polling
strategy. The mathematical model proposed in this paper extends
the other models presented in the literature by providing more
accurate results for a wider range of traffic patterns, under the
assumption of a marked Poisson arrival process. Our analysis
provides a complete statistical characterization of the packet
delay, by means of Laplace-Stieltjes transform, for generic traffic
patterns. Furthermore, expressions for the estimation of the
average packet delay for unbalanced and asymmetric traffic are
derived, thus improving existing results based on the theory of
M |G|1 queues with vacations. Such expressions are, however,
rather complex. Therefore, we propose an approximation, based
on a renewal argument, which leads to a closed–form expression
for the access delay statistic. The proposed analysis permits an
accurate estimation of the packet delay under a wide range of
network load conditions.

Index Terms— Bluetooth, polling, delay analysis, multislot
packets, asymmetric traffic, unbalanced traffic

I. INTRODUCTION

The vision of ubiquitous and pervasive communications
have been recently embraced by several research projects [1],
[2], [3]. Such a vision opens the way to an entire world of
potential new applications and business models. An example
is the Virtual Community, which encompasses all the situa-
tions where people may wish to establish a spontaneous and
self-organized network for sharing information. For instance,
people waiting in an airport lounge or in a waiting-room of
medical clinic may desire to spend some time by playing
a distributed game, exchanging ringing tones or background
pictures for the cellular phone or, more generally, sharing
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information. Home networking and Smart Environments pro-
vide other examples of applications enabled by the pervasive
communications paradigm.

The realization of the anywhere anytime communica-
tion paradigm requires that the user is surrounded by
communication– and computation–enabled devices, embedded
in the environment. In this context, technologies for personal
area networks, such as Bluetooth [4] and its evolutions, play
a primary role, since they offer moderate-to-high transmission
rates, reduced energy consumption, low cost and support of
self–management functionalities in small radio networks.
Unfortunately, the penetration of the Bluetooth technology in
the market has been initially slowed down by some imple-
mentation and compatibility problems. Most of such problems
are now solved and Bluetooth is undertaking the expected
success, being integrated in hundreds of portable electronic
devices [5]. Furthermore, the Bluetooth Special Interest Group
[4] is promoting the enhanced data rate version of the standard,
Bluetooth v2.0, that will permit higher bit rates (up to 3 Mbps)
and faster node connections. Though not yet commercialized,
these latest versions of the standard will enlarge the potential-
ities of the system and promote its diffusion in the context of
pervasive communications.

The realization of the aforementioned visionary scenarios
will require a deep understanding of the fundamentals that
determine the performance of a Wireless Personal Area Net-
work (WPAN). In particular, the analysis of the performance
achieved by different packet scheduling policies under var-
ious traffic loads assumes a role of primary importance, as
stated in many studies on this topics [6], [7]. The research
community working on Bluetooth-related topics is focusing
more and more on the problems involved in the construction,
maintenance and management of Bluetooth-based multihop
networks, the so-called scatternets [8], [9]. On the other
hand, the literature still lacks a complete understanding of
the performance attainable by the basic building block of
Bluetooth technology, i.e., a single-hop network referred to
as piconet in the Bluetooth lexicon.

The Bluetooth standard encompasses a medium access
control (MAC) mechanism inspired to a classic and simple
polling scheme, which greatly impacts on system performance.
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Therefore, several polling strategies proposed for Bluetooth
have been analyzed in literature, mostly via simulation [10],
[6], [7], [11], [12], [13], [14]. However, a mathematical
performance characterization of the basic polling mechanisms
for Bluetooth would permit a much deeper understanding of
the actual effect of different design choices. Unfortunately,
the specific characteristics of this technology, such as the tight
correlation among the service time of different queues, prevent
a straightforward application of well-known results obtained
for classical polling systems [7].
Misic and Misic [15] presented a model, based on the theory of
M |G|1 queues with vacations, which provides an approximate
expression for the mean packet delay. In their model, however,
some dependencies among random variables are not taken
into account, leading to an underestimation of the delay up
to 40% for a heavily loaded piconet operating under the
limited-1 (Pure Round Robin) regime. These problems have
been pointed out in [16], where the authors propose a clever
and elegant model that permits to reduce the problem to the
analysis of a classical gated limited-1 polling system with
non–zero switch–over time. Furthermore, the authors showed
that inaccurate modeling may lead to significant performance
estimation errors, in particular when the system approaches
saturation. Unfortunately, the method proposed in [16] leads
to exact results only under specific traffic patterns, namely
when the same amount of traffic is offered by each slave to
the master (symmetrical traffic) and by the master to each slave
(bi-directional traffic). Some generalizations are considered in
[17], which relaxes some of the assumptions of the previous
work, but still maintains the constraint on the symmetrical
traffic pattern. In [18] the authors presented another model,
also based on M |G|1 queuing theory, that slightly improves
the one presented in [15]. Nevertheless, it also ignores some
dependencies among the service time of the different queues,
that affects the precision of the delay estimation as the system
approaches saturation.

In this paper we present a novel model for the limited-
1 polling policy that provides better performance estimation
under a wide range of operating conditions. Although an
exact model for systems of multiple interacting queues is still
far from being defined, we prove that an accurate modeling
of some of the interdependencies neglected in the previous
works may drastically improve the accuracy of the model
in predicting the packet delay. The price paid for such an
improvement is a greater model complexity. Therefore, we
propose, starting from such enhanced model, an approximation
that leads to a closed–form expression for the estimation of the
average packet delay. Such an estimation is proved to be very
accurate and, hence, it improves over the existing literature.

In summary, the model presented in this manuscript extends
the models already proposed in the literature in that it is
able to closely track the behavior of the network delay for
asymmetric and unbalanced traffic pattern, also when the
system approaches saturation. Furthermore, in the scenarios
where expressions for the average delay have been derived in
the literature ([16], [17]), the model returns exact results.

The paper is organized as follows: Sec. II provides a
brief overview of the Bluetooth baseband layer characteristics.

Sec. III presents the system model we use for our analysis.
In Sec. IV we evaluate the network performance in terms of
packet delay distribution. Sec. V provides numerical results,
presenting comparison with the results obtained in [15], [18]
and [16], whenever possible. Sec. VI concludes the paper
pointing out some open issues for future research.

II. THE BLUETOOTH TECHNOLOGY

The basic network configuration, in the Bluetooth world, is
the so-called piconet, a cluster of no more than eight devices
sharing a common frequency-hopping radio channel. The
access to the shared medium is regulated by one of the units,
called master, which cyclically polls the other devices, named
slaves. Full-duplex communication is achieved by means of
a time-division duplex (TDD) mechanism. The standard does
not specify the polling scheme to be adopted. Even if offering
poor performance, limited-1 polling is the current choice, due
to its simplicity and low implementation cost. The protocol
encompasses two types of links. One, synchronous connection
oriented (SCO), is aimed at the transport of real-time services
(mainly voice), and is based upon a periodical reservation
scheme. The other, asynchronous connectionless (ACL), is
designed for the transport of elastic data traffic. In this paper
we focus on ACL only. For ACL links, the standard offers
six different Basic Rate (BR) packet formats, which differ
in length and error protection. Unprotected packet formats,
which provide High nominal Data rate, are denoted by DHn.
Similarly, DMn is used for protected formats which provide
Medium Data rate by adopting a (15, 20) shortened Hamming
Forward Error Correction (FEC) code over the payload field.
Both unprotected and protected formats can extend over n = 1,
3 or 5 consecutive slots, where a slot is of 0.625 ms.

The version v2.0 + EDR of the Bluetooth specifications
introduces the Enhanced Data Rate (EDR), which obtains
higher data rates by using more powerful modulation schemes
at the physical layer.
For backward compatibility, the synchronization and frame–
control fields of EDR packets are identical in format and
modulation to Basic Rate (BR) packets. However, these fields
are followed by a guard time of approximately 5 µs and by a
synchronization field (SYNC), whose length depends on the
specific EDR packet type considered. The SYNC field and the
following payload and trailer fields are transmitted by using
one of the two higher rate modulation schemes. Nevertheless,
the slot occupancy of EDR packet formats is still limited to
1, 3 or 5 consecutive slots.

A resume of the characteristics of the different ACL packet
formats provided by Bluetooth v2.0+EDR is reported in Ta-
ble I.

It is worth stressing that, in this paper we are interested in
evaluating the performance of the 1–limited polling strategy
only. Therefore, we limit our analysis to the case of error-free
channels and consider only unprotected packet formats.

III. SYSTEM MODEL

We introduce a probability space (Ω,F ,P), on which all
the stochastic processes of interest are defined.
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Type Rate Slot Max. payload FEC rate
occupancy length [bytes]

DM1 BR 1 17 2/3
DM3 BR 3 121 2/3
DM5 BR 5 224 2/3
DH1 BR 1 27 –
DH3 BR 3 183 –
DH5 BR 5 339 –

2-DH1 EDR 1 54 –
2-DH3 EDR 3 366 –
2-DH5 EDR 5 678 –
3-DH1 EDR 1 83 –
3-DH3 EDR 3 552 –
3-DH5 EDR 5 1021 –

TABLE I
PACKET CHARACTERISTICS FOR ACL LINKS (BR=BASIC RATE; EDR=

ENHANCED DATA RATE)

Slave 3Slave 2Slave 1

Master

Fig. 1. Equivalent queuing model of a Bluetooth piconet with N = 3 slaves.

The statistical expectation operator (taken with respect to
the measure induced by P) is denoted by E[·]. For any
random variable X , we denote its mean by x = E[X],
its statistical power by x2 = E[X2], its zeta-transform by
X (z) = E[zX ] and its Laplace-Stieltjes transform (LST) by
X ∗(s) = E[e−sX ].

A piconet consisting of N slaves may be modeled as a
system of 2N interacting queues, as depicted in Fig.1 for the
case of N = 3. Let us enumerate each queue in a piconet from
0 to 2N − 1, so that the suffix i ∈ {0, . . . , 2N − 1} will be
used to denote the i-th queue. (Notice that, for each slave node,
uplink and downlink queues are indexed separately). Arrivals
to the system are modeled by means of a Poisson point process
{tn}n∈N, defined on (Ω,F ,P), where tn represents the arrival
epoch of the n-th packet [19]. We may associate to {tn} a
counting process N(·), defined as:

N [0, t) =
∑

n∈N
δtn ([0, t)) ,

where δtn(·) is the Dirac measure at tn. The process N [0, t)
counts the number of packet generated in the interval [0, T ).
We assume that the process has a finite non-zero intensity,
such that:

0 < λ = E [N [0, T )] < +∞, (1)

where T = 0.625 ms is the slot length.
To each point we then associate a mark σn, defined on

the same probability space, of the form (i, l), which takes
value in {0, . . . , 2N − 1} × {1, 3, 5}. The marks represent,
respectively, the queue to which the packet arrives and the
packet length. Notice that, we are assuming that only one-hop
communications take place.1 Further, we consider the marks
to be independent identically distributed (i.i.d.). Then, we may
define the arrival intensity at link i as:

λi = λ · P[σ0 ∈ {(i, {1, 3, 5})}], i = 0, . . . , 2N − 1 . (2)

Note that, the arrival processes at the various queues turn out
to be independent Poisson processes with intensities λi.

Similarly, we may define the packet length probability for
the queue i:

πi(l) =
P[σ0 = (i, l)]

P[σ0 ∈ {(i, {1, 3, 5})}] , l = 1, 3, 5. (3)

Clearly, we have
∑

l=1,3,5

πi(l) = 1 for any i. The system may

thus be completely described by means of the traffic vector
Λ(s), having entries:

Λ(s)i = λi

∑

l=1,3,5

πi(l)e−sl, i ∈ {0, . . . , 2N − 1}. (4)

Note that the LST of the transmission time Zi of a packet of
queue i) is given by Z∗i (s) = Λ(s)i

λi
.

IV. PERFORMANCE ANALYSIS

Our aim is to derive a mathematical expression of the
average packet delay, i.e., the average time that a packet spends
in queue and in transmission before being received by the next-
hop node. The average delay is, hence, given by the sum of
the access delay, i.e., the time spent in queue waiting for the
service to begin, and the service time.
To this end, we first determine the statistic of the cycle time,
defined as the time interval between two successive polls of
the same node. Then, we consider the statistic of the access
delay, i.e., the time between a packet arrival and its service
beginning. Finally, we combine the results to get the statistic
of the packet delay.

A. Cycle time statistics

The cycle time TC is defined as the time interval between
two successive polls of the same node. Let Bi be the part of
the cycle time dedicated to the queue i. Furthermore, let ρi

denote the equivalent load factor of the i-th queue, defined as:

ρi = λitC = λi

∑

i=0,...,2N−1

bi . (5)

In other words, the load factor gives the average number of
packets generated by a given transmission queue in a polling
cycle. It is easy to verify that the load factor is also equal to
the stationary probability that the served queue is found empty

1The analysis can be extended to take into account slave-to-slave communi-
cations as done in [18], where the classical tool of statistical routing is applied
in order to get estimates of the mean packet delay.
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bi =

(2N − 1)λi [2πi(3) + 4πi(5)] + 1− ∑
m 6=i

λm [2πm(3) + 4πm(5)]

1−∑
m

λm [2πm(3) + 4πm(5)] .
(10)

[20].
Considering that a 1–slot long POLL/NULL packet is sent
whenever a queue is found empty, the probability mass distri-
bution of the random variable (r.v.) Bi is given by:

P [Bi = k] =





ρiπi(1) + 1− ρi k = 1,

ρiπi(3) k = 3,

ρiπi(5) k = 5,

0 otherwise.

Taking expectation, we get:

bi = ρi (2πi(3) + 4πi(5)) + 1. (6)

Together with (5) this defines a system of 2N equations in ρi:

ρi = λi ·
∑

m=0,...,2N−1

[ρm (2πm(3) + 4πm(5)) + 1] , (7)

which (the computation is trivial) solves for

ρi =
2Nλi

1−∑
m

λm [2πm(3) + 4πm(5)]
. (8)

We recall that the piconet is stable if and only if ρi < 1
for each i. Then, (8) defines the achievable rate regions of a
Bluetooth piconet, providing a characterization of the limiting
performance in terms of throughput (see [18] for some exam-
ples and [21] for an extension to fading channels). It is worth
noting that the stability condition applies to a more general
stationary ergodic framework, where the expectations are taken
with respect to the measure induced by the corresponding Palm
probability [22].

Replacing (8) in (5), the average cycle time is given by:

tC =
2N

1−
2N−1∑
i=0

λi [2πi(3) + 4πi(5)]
. (9)

The expression for the mean cycle time can be shown to hold
in a more general stationary ergodic framework [23], and the
same happens for the mean station times bi, reported in (10),
where, again, the expectations are taken with respect to the
Palm probability P0 [19].

If the system is stable, the throughput on the link i,
expressed in bit/s, can be easily found. Denoting by γ(l) the
payload length (in bits) of the packets of length l, we get:

Si = λi

∑

l=1,3,5

πi(l)γ(l). (11)

This clearly applies to the case in which just the same Physical
Rate and Error Correction Code (if any) is used in each traffic
flow. In the more general case, to deal with all the packet types
outlined in Table I we just need to extend the marks by adding
a field specifying the kind of packet under consideration.

While no characterization of the complete cycle time statis-
tics is possible in general, we may get an approximation by
considering the Bi to be independent random variables. In this
way, we get for the cycle time LST:

TC∗(s) =
∏

i=0,...,2N−1

B∗i (s). (12)

For example, such an approximation would lead to the follow-
ing (optimistic) estimate of the cycle time variance

σ2
TC

=
∑

i=0,...,2N−1

σ2
Bi

,

which could be used to obtain bounds on the cycle time
distribution by means of the classical Chebyshev’s bound.

B. Delay analysis

The access delay, W, is defined as the time between a packet
arrival and its service time beginning, and may be thought as
the sum of two terms, as depicted in Fig. 2. The first, V,
denotes the time interval between the arrival of the packet to
the queue and the time instant the queue gets the token. The
second describes the time needed to serve all the packets found
waiting in queue, whose number is indicated by L. Denoting
by U(k) the inter-visit time for the k-th packet, i.e., the time
needed to get rid of the k-th queued packet, we can express
the access delay as:

Wi = Vi +
Li∑

k=1

Ui(k). (13)

Time

Queue Length (pkts)

1

2

Packet Generation
Time

Cycle n+1 Cycle n+2

0

Cycle n

V

U(1)

W

D

Fig. 2. Decomposition of the packet delay for the case L = 1.
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w̃i =
t2C

2tC ·
{

1− λi

[
2N + 2πi(3) + 4πi(5) +

∑
m 6=i

ρ̃m,i · (2πm(3) + 4πm(5))

]} . (30)

Since packet arrivals follow a Poisson process, we easily
obtain the following relationship between the zeta-transform
of L and the LST of W [24]:

Li(z) = W∗
i (λi − λiz). (14)

Note that, once we solve for W∗(s), by means of (14) we can
get the statistics of the packet length distribution at polling
instants, which can be used to correctly dimension the system
buffers.

As previously done for the cycle time, let us assume Ui(k)
to be i.i.d., so that we can work with transforms. It is worth
stressing that this represents just an approximation of the
extremely complex network behavior; however, it enables us
to get an exact expression for the first order moments, while
providing (optimistic) estimates of the higher order moments.
Transforming both members of (13) and applying relationship
(14), we thus find

W∗
i (s) = V∗i (s) · W∗

i (λi − λiU∗i (s)) . (15)

The packet delay is the sum of the access delay and the
transmission delay. The two terms are independent and, thus:

D∗i (s) = W∗
i (s) · Z∗i (s). (16)

Note that, in general, (15) cannot be inverted directly, so that
we should resort to numerical methods to obtain the access
delay probability density function [25]. However, statistical
moments of any order may be obtained by deriving both
members, easily allowing one to get bounds on the delay
distribution. To this end, we need to compute the LSTs of
Vi and Ui. Although the inter-visit time Ui is technically a
polling cycle, its statistic is conditioned on the fact that there
is at least one packet waiting at queue i and, thus, the other
queues experience a greater load. Therefore, we can write

Ui = Zi +
∑

m 6=i

B̃m,i, (17)

where B̃m,i is distributed like Bm but with an equivalent
load factor ρ̃m,i. Clearly, in stationary regime, ρ̃m,i = λmui.
Therefore, we get a system of equations that, after some
algebra, can be shown to solve for

ρ̃m,i =
λm [zi + 2N − 1]

1−∑
r 6=i λr[2πr(3) + 4πr(5)]

, (18)

where zi is the average service time at queue (i), zi = πi(1)+
3πi(3) + 5πi(5).
As for the cycle time, we consider the terms of (17) to be
independent. Thus, we get:

U∗i (s) = Z∗i (s) ·
∏

m6=i

B̃∗m,i(s). (19)

For the computation of V ∗
i (s) we follow the footprints of

[26], generalizing their results in terms of LST upon an

independence approximation. First, we condition Vi on the
link m that was in service when the packet arrived (at queue
i). We denote such quantity by Vi|m. By the total expectation
theorem, we get:

Vi =
∑
m

Vi|mpm, (20)

where, upon the Poisson assumption and the renewal theorem,
it can be readily understood that the probability of queue m
being in service when the packet arrived is:

pm =
bm

tc
. (21)

The random variable Vi|m can be written as the sum of two
quantities,

Vi|m = Ωm + Yi,m. (22)

The first quantity, denoted by Ωm, is the residual service time
at queue m. Thanks to the Poisson assumption for the arrival
process, its LST can be shown to be equal to [24]:

Ω∗m(s) =
1− B∗m(s)

bmtc
. (23)

The other term, Yi,m is the time spent serving the links that,
in the polling cycle, come after m, but before i. This is
conditioned on the fact that there was an arrival (at queue
i, but this is immaterial due to the Poisson assumption) while
queue m was in service. In symbols:

Yi,m =
∑

i>r>m

B̂r,m. (24)

Again, the distribution of B̂r,m is the same as Br, but with a
higher load due to the conditioning. The quantity ρ̂r,m equals
the probability of having an arrival at queue r given that there
was an arrival (at queue i) while queue m was in service. This
leads us to defining the following system of 2N equations:

ρ̂r,m = λr





b2
m

bm
+ 2N − 1 +

∑

u6=m

λu [2πu(3) + 4πu(5)]



 ,

(25)
where we used the fact that, again due to the Poisson as-
sumption on the arrival process and the renewal theorem, the
average service time at link m given that it was in service
when a packet arrived equals b2m

bm
[24]. The system turns out

to solve for:

ρ̂r,m =
λr

(
b2m
bm

+ 2N − 1
)

1−∑
u 6=m λu[2πu(3) + 4πu(5)]

. (26)
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Assuming the quantities of interest to be independent and
passing to LSTs, we find:

V∗i (s) =
∑
m

1
tC
· 1− B∗m(s)

s
· Y∗m,i(s), (27)

Y∗m,i(s) =
∏

i>r>m

B̂∗r,m(s). (28)

It is apparent that the derivation of V∗i (s) is lengthy and
cumbersome. It seems then natural to look for a further
approximation, which, on the one hand, is able to track the
network behavior till high loads, while, on the other one, leads
to a closed form expression for the mean packet delay, so that
it can be easily used for dimensioning purposes.
The idea is to approximate the r.v. V as the residual life in a
renewal process having renewal period equal to TC . Thus, we
have [24]:

Ṽ∗i (s) =
1− TC∗(s)

stC
, (29)

which turns out to be independent of the index i. For example,
plugging (29) into (15), after some easy algebra we get a
closed-form approximation, reported in (30), for the mean
packet delay . We may also use such expression to provide
some (rough) buffer dimensioning guidelines. For example,
applying Little’s formula, we may get the approximate mean
buffer length, l̃i = λiw̃i. Then, using Markov bound, we get
P [L̃i ≥ α] ≤ l̃i

α . A better estimate can be found by deriving
the second order moments of W̃i and applying Chebyshev’s
bound.

V. NUMERICAL RESULTS

In this section, we present some numerical results which
show the accuracy of our analytical delay estimation both in
the balanced (symmetrical and asymmetrical) and unbalanced
case. It is worth recalling that, for a general limited-1 polling
system with non-zero switchover times, exact expressions for
the mean delay are known (for the case of Poisson arrivals)
only for the balanced case, where all the queues experience
the same load [20], [27].

Therefore, in the case of balanced-traffic scenario, the re-
sults provided by our model can be compared with both results
obtained by other analytical models presented in the literature
[15] [18] and the exact values, which can be computed as
in [16] or by means of (15). On the other hand, in the
unbalanced-traffic case, the proposed formula is validated
through simulation results, since no exact analytical expression
is available.

Let us first consider a balanced scenario, where the packet
size distribution and the generation rate are equal for all
the traffic flows. Both symmetrical and asymmetrical con-
figurations are evaluated. In the first one, both uplink and
downlink queues are active, whereas, in the asymmetrical
configuration, only downlink traffic is present. The resulting
curves are plotted in Fig. 3 and Fig. 4, respectively. It is
apparent that the approximation introduced in (30) leads to
accurate results (underestimation of the access delay of the
order of a few % for loads above 0.9), clearly overcoming
those obtained by using the techniques in [15] and [18], which
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show relevant underestimation of the delay. From these two
figures, it is possible to appreciate the ability of the proposed
approximation to track the network behavior in an accurate
way, for a wide range of traffic conditions.

Let us now consider an unbalanced scenario, where the
traffic intensity and the packet length distribution of the
various flows can differ. Since no exact results are known,
the analytical results are compared with the outcomes of
extensive numerical simulations. The comparison also includes
the results provided by the model proposed in [18], which was
the only model for the delay estimation in the unbalanced case
previously presented in the literature.

The first set of results refers to a piconet with N = 3
slaves, with an equal packet length distribution for all the flows
(πi(l) = 1

3 ∀i, l), but different traffic intensities (λ1 = 0.2,
λ2 = 0.4, λ3 = 0.6). Fig. 5 shows the delay experienced by
the three nodes. Simulation results are plotted with a statistical
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Fig. 5. Mean access delay for an unbalanced symmetrical scenario,N =
3, πi(l) = 1

3
∀i, l. Comparison with analytical (Eq. (30), [18]) and simulative

results (98% confidence interval) is shown.

confidence interval of 98%, and are compared with those given
by (30) and obtained in [18]. As expected, the higher the
load of a node, the higher the delay experienced by that node.
However, it can be seen that the model proposed in this paper
leads to results that fall within the confidence interval, while
the approach described in [18] returns less accurate results.

The second set of results shows how our analysis might be
used to provide an estimation of the delay-limited capacity
regions of a piconet. The delay-limited capacity region for a
piconet of N slaves is defined as the convex 2N -dimensional
polyhedron characterizing all the achievable rates able to guar-
antee an upper–bounded packet access delay. As an example,
in Fig. 6 it is reported the delay-limited capacity region of a
piconet with N = 2 slaves, for two different packet length
distributions (πi(l) = l

9 and πi(l) = 6−l
9 , l ∈ {1, 3, 5}) and

for a delay of 5 ms.

VI. CONCLUSION

In this paper, we have presented a novel mathematical
model for performance evaluation of the 1-limited polling
policy in a Bluetooth piconet. The proposed analysis im-
proves the previous models in that (i) it enables to deal
with unbalanced asymmetric traffic patterns (ii) it provides
better performance estimations for a wide range of operating
scenarios. The proposed model returns the exact average delay
in two specific scenarios, for which the exact expression of the
mean packet delay is known. A simplification, derived upon
a renewal approximation, has been introduced, leading to a
simple closed-form expression for the mean packet delay. Such
formula has been shown, by comparison with the outcomes of
extensive simulations, to offer a good match for a wide range
of operating conditions.

Future research directions include, on the one hand, the
inclusion of channel errors in the framework and, on the
other one, the introduction of a more realistic traffic model
(of particular interest is the case of batch arrivals, where a
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Fig. 6. Delay limited capacity region for a symmetrical scenario, calculated
using Eq. (30) with N = 2, (a): π(1) = 1

9
, π(3) = 3

9
, π(5) = 5

9
; (b):

π(1) = 5
9
, π(3) = 3

9
, π(5) = 1

9
.

batch corresponds to the segmentation of a single L2CAP layer
packet).
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