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Abstract

Consider a nonlocal conservation law where the flux function depends on the convolution of the solution with a given kernel. In 
the singular local limit obtained by letting the convolution kernel converge to the Dirac delta one formally recovers a conservation 
law. However, recent counter-examples show that in general the solutions of the nonlocal equations do not converge to a solution of 
the conservation law. In this work we focus on nonlocal conservation laws modeling vehicular traffic: in this case, the convolution 
kernel is anisotropic. We show that, under fairly general assumptions on the (anisotropic) convolution kernel, the nonlocal-to-local 
limit can be rigorously justified provided the initial datum satisfies a one-sided Lipschitz condition and is bounded away from 0. 
We also exhibit a counter-example showing that, if the initial datum attains the value 0, then there are severe obstructions to a 
convergence proof.
© 2021 L’Association Publications de l’Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We deal with the nonlocal conservation law (or nonlocal continuity equation)

∂tu + ∂x

[
uV (u ∗ η)

]
= 0, (1)

where u : R+ × R → R is the unknown, V : R → R is a given Lipschitz continuous function and in the nonlocal 
term the symbol ∗ denotes the convolution with respect to the space variable only. The convolution kernel η ∈ L1(R)
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is compactly supported, nonnegative, and has unit integral. Conservation laws involving nonlocal terms appear in 
models for sedimentation [3], pedestrian crowds [9,10], vehicular traffic [4,13], and others.

In the present work we are concerned with the nonlocal-to-local limit. More precisely, consider a parameter ε > 0, 
define ηε by setting ηε(x) := η(x/ε)/ε, and consider the family of nonlocal equations

∂tuε + ∂x

[
uεV (uε ∗ ηε)

]
= 0 (2)

which are obtained from (1) by replacing η with ηε . When ε → 0+, the kernel ηε converges weakly−∗ in the sense 
of measures to the Dirac delta, and hence one formally recovers the (local) conservation law

∂tu + ∂x

[
uV (u)

]
= 0. (3)

In [1] Amorim, R. Colombo and Teixeira posed the following question: can we rigorously justify this formal limit? 
In other words, can we show that when ε → 0+ the solution uε of (2) converges to the entropy admissible solution 
of (3)? In a previous work [8], counter-examples were exhibited showing that the answer to this question is, in general, 
negative. See also [7] for the role of numerical viscosity.

However, the results in [8] do not rule out the possibility that, in some more specific case, convergence indeed 
holds. In particular, several recent works (see for instance Blandin and Goatin [4] and Chiarello and Goatin [6]) have 
been devoted to the analysis of the case when V is monotone nonincreasing, the initial datum is nonnegative, and the 
convolution kernel is anisotropic, in particular it is supported on the negative axis ] −∞, 0]. This case is very relevant 
in the modeling of vehicular traffic, where the unknown u represents the density of cars and V their speed. Assuming 
that V is monotone nonincreasing is standard in local and nonlocal traffic models: the higher the density of cars on 
a road, the lower their speed. The assumption that the convolution kernel is supported on the negative axis expresses 
the fact that one expects the drivers to decide their speed based only on the downstream traffic density, i.e. they only 
look forward, not backward.

Remarkably, when V is monotone nonincreasing and the convolution kernel is supported and nondecreasing on the 
negative axis ] − ∞, 0], stronger analytic results are available. More precisely:

• The nonlocal equation (1) satisfies a maximum principle, see [4, Theorem 1] (see also Proposition 8 below).
• The nonlocal equation (1) is monotonicity preserving, that is if the initial datum is bounded and monotone, so 

is u(t, ·) for every t > 0, see [4, Proposition 2]. This allows to show that, if the initial datum is monotone and 
bounded, the nonlocal-to-local limit can be rigorously justified under suitable assumptions on the function V , 
see [15].

• Very recently, Bressan and Shen [5] proved that, if the convolution kernel is η(x) = 1]−∞,0]ex and the initial 
datum is bounded away from 0 and has bounded total variation, then the solutions of uε of (2) converge to a 
weak solution of (3). Under the further assumption that the function V is affine, they also show that the limit 
is the unique entropy admissible solution. The analysis in [5] relies on a change of variable which allows to 
rewrite (2) as a 2 × 2 system of conservation laws with relaxation, provided the convolution kernel is exactly 
η(x) = 1]−∞,0]ex .

• To conclude, we point out that the numerical experiments in [1,4] suggest that in the case of anisotropic kernels 
the behavior of the solutions uε in the local limit ε → 0+ is more stable than in the case of general convolution 
kernels. In particular, they suggest that, if V is monotone nonincreasing and the convolution kernel is supported 
on ] − ∞, 0], the total variation TotVaruε(t, ·) is a monotone nonincreasing function of time.

Our main positive result establishes the nonlocal-to-local limit from (2) to the entropy admissible solution of (3)
under fairly general assumptions on V and on the (anisotropic) convolution kernel, provided that the initial datum 
has bounded total variation, is bounded away from 0 and satisfies a one-sided Lipschitz condition. Note that our 
assumptions on η and V are much weaker than those in [5], but on the other hand we impose stronger assumptions on 
the initial datum, more precisely we have to assume that it satisfies a one-sided Lipschitz condition that is defined in 
the following.

To rigorously state our result we have to introduce some notation. First, we introduce the assumptions we impose 
on V and η.
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Assumption 1. The function V is of class C2 and satisfies V ′′ ≤ 0. Also, there are δ, umax > 0 such that

V (umax) = 0 and V ′(v) ≤ −δ for every v ∈ [0, umax]. (4)

The concavity assumption on V is technical, while (4) is fairly common in traffic models: umax represents the 
maximum possible car density, which occurs when cars are completely packed and cannot move.

Assumption 2. The convolution kernel η satisfies

η(x) ≥ 0 for every x ∈ R, η(x) = 0 for every x ∈]0,+∞],
∫
R

η(x)dx = 1. (5)

Also, η is Lipschitz continuous on ] − ∞, 0] and there is a constant D > 0 such that

η(y) ≤ Dη′(y), for a.e. y ∈] − ∞,0[. (6)

While the conditions in (5) are standard in this context, the one in (6) is purely technical and it excludes for example 
the case of piecewise constant kernels. Note that by combining (5) and (6) we conclude that η is nondecreasing on 
] − ∞, 0[. From the modeling point of view, this last property encodes the fact that the drivers pay more attention to 
the cars which are closer. In the following we focus on the Cauchy problem, so we impose the initial condition

u(0, ·) = u0. (7)

We assume that the initial datum belongs to the set (the same as in [5])

D := {
u0 ∈ L∞(R) : TotVar(u0) < ∞, u0(x) ∈ [0, umax] for a.e. x ∈ R

}
. (8)

Note that the assumption u0(x) ∈ [0, umax] models the fact that the initial density u0 should be positive and not exceed 
the maximum possible density. To conclude, for every f : R →R, we define the quantity Lip−f by setting

Lip−f := − inf
x<y

f (y) − f (x)

y − x
.

The quantity above bounds the negative part of the difference quotients. In particular Lip−f < ∞ implies that f has 
no jumps with negative sign, while positive jumps are allowed. Our main result of this section is Theorem 3, which 
establishes a new uniform decay on the negative part of the space derivative of uε, that is on Lip−uε(t).

Theorem 3. Let V and η satisfy Assumptions 1 and 2, respectively. Assume moreover that u0 ∈ D satisfies infu0 > 0
and Lip−u0 ≤ L for some L > 0. Let uε(t) be the solution of the Cauchy problem (2), (7). If

ε <
infu0

2DL
, (9)

where D > 0 is the same as in Assumption 1, then

Lip−uε(t, ·) ≤ L

2δLt + 1
<

1

2δt
, for every t ≥ 0. (10)

Some remarks are here in order: first, owing to Assumption 1 the flux function u 	→ uV (u) satisfies (uV (u))′′ ≤
−2δ and hence the decay estimate (10) is consistent with the celebrated Oleı̆nik estimate [17] for (local) conservation 
laws (3). Second, as a consequence of the decay estimate (10) we rigorously establish the nonlocal-to-local limit, more 
precisely we show that the solutions of the nonlocal Cauchy problems (2), (7) converge to the entropy admissible 
solution of (3), (7) strongly in L1

loc(R
+ ×R) as ε → 0. Here is the precise statement.

Corollary 4. Assume that V and η satisfy Assumptions 1 and 2, respectively, and that u0 ∈ D satisfies Lip−u0 < ∞
and infx∈R u0 > 0. Let uε be the solution of the Cauchy problem (2), (7). Then, for every t ≥ 0, the family uε(t, ·)
strongly converges in L1 (R) as ε → 0+ to the entropy admissible solution of the Cauchy problem (3), (7) u(t, ·).
loc

1655



M. Colombo, G. Crippa, E. Marconi et al. Annales de l’Institut Henri Poincaré – Analyse non linéaire 38 (2021) 1653–1666
Remark 5. The assumptions on u0 imposed in the statement of Corollary 4, namely Lip−u0 < ∞ and infx∈R u0 > 0, 
can be relaxed to 0 ≤ u0 ≤ umax if one allows for an ε-dependence of the initial datum of the Cauchy problem (2), (7), 
that is if one replaces the condition uε(0, ·) = u0 with the condition uε(0, ·) = u0,ε for a suitably chosen sequence 
u0,ε → u0. For instance, under the sole assumption 0 ≤ u0 ≤ umax, one can consider u0,ε = max{u0 ∗ ρε2/3 , c0ε

1/3}, 
where ρν(x) := ρ(x/ν)/ν, ρ :R →R+ is a fixed smooth convolution kernel and c0 > 0 is a suitable constant. In this 
case we can rigorously establish the same nonlocal-to-local limit as in the statement of Corollary 4. The proof relies 
again on Theorem 3, which also in this case provides a uniform bound on Lip−uε(t, ·) as ε → 0.

We now discuss our main negative result concerning the nonlocal-to-local limit from (2) to (3). First, we point 
out that the proof of Corollary 4 relies on the Helly-Kolmogorov Compactness Theorem. More precisely, we show 
that the one-sided Lipschitz estimate (10) implies a uniform local bound on the total variation, i.e. it implies that 
TotVar{uε(t, ·); ] − R, R[} is uniformly bounded with respect to t and ε, for every R > 0, see (28). As a matter of 
fact, to the best of our knowledge all the known convergence results on the nonlocal-to-local limit (that is, Corollary 4
and the results in [5,15]) are based on the Helly-Kolmogorov Compactness Theorem and require a uniform control on 
the total variation. The only exception is the convergence result due to Zumbrun [18], which however only applies to 
time intervals where the solution of the conservation law (3), (7) is very regular (of class C4). We point out in passing 
that the maximum principle implies weak-∗ compactness of the family {uε}, but weak-∗ convergence alone does not 
allow to pass to the limit in the equation (2). Note furthermore that the semigroup of entropy admissible solutions of 
scalar conservation laws (3) is total variation decreasing, and hence uniform bounds on the total variation of (2) are 
somehow natural in view of a convergence result. Also, numerical experiments in [1,4] suggest that, in the case of 
anisotropic convolution kernels, the total variation of (2) is uniformly bounded.

Our main negative result states that, if V , η and u0 satisfy all the hypotheses of Corollary 4 but the condition 
infu0 > 0, then the total variation of (2), (7) can blow up in ε for every positive time. Although strictly speaking this 
does not rule out convergence in the nonlocal-to-local limit, it provides a severe obstruction to a convergence proof, 
as it prevents the application of the argument used in the proof of basically all the known convergence results.

Theorem 6. Assume that V (u) = 1 − u and that either η(x) := 1[−1,0](x) or η satisfies the following assumption: η
satisfies (5), it is Lipschitz continuous on ] −∞, 0] and η′(x) ≥ 0 for a.e. x ∈] −∞, 0]. Then there is u0 ∈ L∞(R) such 
that 0 ≤ u0(x) ≤ 1 for a.e. x ∈ R, TotVar u0 < +∞, Lip−u0 < +∞ and the solution of the Cauchy problem (2), (7)
satisfies

sup
ε>0

TotVar uε(τ, ·) = +∞, for every τ > 0. (11)

Some remarks are here in order. First, V (u) = 1 − u satisfies Assumption 1 and the requirements on the convolu-
tion kernel η in Theorem 6 are weaker than Assumption 2. In particular, kernels satisfying condition (6) satisfy the 
statement of Theorem 6, but in Theorem 6 a much more general class of kernels can be considered.

Second, our counter-example is completely explicit and in §4 we provide the precise formula for an initial datum 
u0 satisfying the statement of the theorem, see (41) and (56). Third, if the initial datum u0 were monotone one could 
apply the results in [4,15] and establish uniform bounds on the total variation, and indeed the initial datum we exhibit 
in the proof of Theorem 6 is not monotone. Fourth, it is natural to compare Corollary 4 and Theorem 6 and wonder 
what are the sharp conditions that prevent the total variation blow up. Our guess is that the conditions Lip−u0 < +∞
is just a technical hypothesis, and that the key condition to obtain a uniform bound on the total variation is infu0 > 0. 
More precisely, we propose the following conjecture.

Conjecture 7. Assume that V and η satisfy Assumptions 1 and 2, respectively, and that u0 ∈ D satisfies infx∈R u0 > 0. 
Let uε be the solution of the Cauchy problem (2), (7). Then for every T , R > 0 there is a constant C > 0, possibly 
depending on T , R and u0, such that

TotVar{uε(t, ·); ] − R,R[} ≤ C, for every t ∈ [0, T ] and every ε > 0. (12)

We remark that as mentioned above Conjecture 7 has been proved in [5] under the assumption that η(x) =
1]−∞,0]ex . The exposition is organized as follows: in §2 we establish the well-posedness of the Cauchy prob-
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lem (2), (7) by slightly extending previous results in [4–6,14]. In §3 we establish the proof of Theorem 3 and 
Corollary 4 and in §4 we establish the proof of Theorem 6.

2. Well-posedness of the Cauchy problem for fixed ε > 0

In the case of anisotropic kernels, well-posedness of the Cauchy problem (1), (7) is discussed in several works, see 
for instance [2,4–6,14]. The following proposition slightly extends previous well-posedness results.

Proposition 8. Let Assumptions 1 and 2 hold true and fix ε > 0. Then there is a unique semigroup Sε : [0, +∞[×D →
D, continuous in L1

loc, such that each trajectory t 	→ Sε
t u0 provides a distributional solution of the Cauchy problem 

(2), (7).
Moreover, the semigroup Sε satisfies the following properties.

i) Assume u0(x) ∈ [a, b] for a.e. x ∈R and for some 0 ≤ a < b ≤ umax. Then

a ≤ Sε
t u0(x) ≤ b for every t > 0 and for a.e. x ∈R. (13)

ii) For every k ∈ N and every T , A ≥ 0 there is a constant C = C(k, T , η, ε, A) such that if ‖u0‖Ck ≤ A, then 
‖Sε

t u0‖Ck ≤ C for every t ∈ [0, T ].
iii) Assume that ‖u0‖C1 < ∞, then the map t 	→ Lip−(Sε

t u0) is a locally Lipschitz continuous function from [0, +∞[
to [0, +∞[.

Proof. The maximum principle (13) is established in [4]. The proof of property ii) is provided in [5, §2]. We are left 
with establishing property iii): we fix ε > 0 and by combining property ii) with the equation (2), we establish C0

bounds on ∂tuε . We conclude that uε is of class C1 with respect to both space and time and it is a classical solution 
of (2). Next, we set vε := ∂xuε and we point out that

Lip−(Sε
t u0) = − inf

x∈R
∂xuε(t, x) = − inf

x∈R
vε(t, x). (14)

We use the characteristic lines of (2) and we denote by Xε(·, ̄t, x̄) the solution of the Cauchy problem⎧⎪⎨
⎪⎩

dXε

dt
= V (uε ∗ ηε)(t,Xε)

Xε(t = t̄ ) = x̄.
(15)

By differentiating (2) with respect to x we infer that the material derivative of vε is given by

∂tvε + V (uε ∗ ηε)∂xvε = −2vεV
′(uε ∗ ηε)vε ∗ ηε − uεV

′′(uε ∗ ηε)(vε ∗ ηε)
2 − uεV

′(uε ∗ ηε)(∂xvε ∗ ηε). (16)

Since ‖uε(t)‖C1 is bounded on [0, T ], then the source at the right hand side of (16) is uniformly bounded on [0, T ] ×R. 
To conclude, we fix t1, t2 ∈ [0, T ] and just to fix the ideas we assume that Lip−(Sε

t1
u0) ≥ Lip−(Sε

t2
u0). We fix an 

arbitrarily small constant h > 0 and a point x1 such that

vε(t1, x1) ≤ inf
x∈R

vε(t1, x) + h. (17)

By recalling (14) we get

|Lip−(Sε
t1
u0) − Lip−(Sε

t2
u0)| = Lip−(Sε

t1
u0) − Lip−(Sε

t2
u0)

(14)= − inf
x∈R

vε(t1, x) − Lip−(Sε
t2
u0)

(17)≤ −vε(t1, x1) + h − Lip−(Sε
t2
u0)

(14)≤ −vε(t1, x1) + h + vε(t1,Xε(t2, t1, x1)).

By using the fact the material derivative (16) is uniformly bounded and the arbitrariness of the constant h we conclude 
that the map t 	→ Lip−(Sε

t u0) is a Lipschitz continuous function on [0, T ]. �
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Remark 9 (Preservation of the monotonicity). For sake of completeness, we sketch here a formal proof of the preser-
vation of the monotonicity of the initial datum rigorously shown in [4, Proposition 2] and [15, §4]. Let us assume to 
fix the ideas that the initial datum uε(0, ·) is nondecreasing, that is (using the same notation as in the proof of Propo-
sition 8) vε(0, ·) ≥ 0. We evaluate (16) at a minimum point x̄ of vε(t, ·) at which vε(t, x̄) = 0: we have ∂xvε(t, x̄) = 0. 
By using Assumption 2 and integrating by parts we get

∂xvε ∗ ηε(t, x̄) =
∞∫

0

ηε(y)∂xvε(t, x̄ − y)dy = −ηε(0)∂xvε(t, x̄)︸ ︷︷ ︸
=0

+
∞∫

0

η′
ε(y)vε(t, x̄ − y)dy ≥ 0.

We conclude that ∂tvε(t, x̄) ≥ 0 and this yields the preservation of the monotonicity of uε.

3. Proof of Theorem 3 and of Corollary 4

3.1. Proof of Theorem 3

First, we point out that it suffices to establish the statement of Theorem 3 under the additional assumption that 
u0 ∈ D satisfies ‖u0‖C2 < ∞. Indeed, estimate (10) in the general case u0 ∈ D follows by the L1

loc-continuity of the 
semigroup Sε

t defined in the statement of Proposition 8 and by the lower semicontinuity of the map u 	→ Lip−u.
We fix u0 ∈ D such that ‖u0‖C2 < ∞. By arguing as in the proof of Proposition 8 we infer that Sε

t u0 is C2 with 
respect to space and time and it is a classical solution of (2), (7). Next, we fix T > 0 and we separately consider the 
following two cases:

1. for every t ∈ [0, T ] there is x ∈R such that ∂xuε(t, x) ≤ 0;
2. there is t ∈ [0, T ] such that ∂xuε(t, x) > 0 for every x ∈R.

CASE 1. Fix t ∈ [0, T ]: by using the fact that there is x ∈ R such that ∂xuε(t, x) ≤ 0 and recalling that TotVar(uε(t))

and ‖uε(t)‖C1 are both finite owing to Proposition 8, we conclude that there is x̄ ∈R such that

∂xuε(t, x̄) = min
x∈R

∂xuε(t, x) = min
x∈R

vε(t, x) := −c(t) ≤ 0, (18)

where we have used the notation vε = ∂xuε and to simplify the exposition we write c(t) instead of cε(t). Next, we 
evaluate (16) at (t, x̄) and recall that V is concave and that uε ≥ 0. We obtain

∂tvε(t, x̄) ≥ V ′(uε ∗ ηε(t, x̄)) [2c(t)vε ∗ ηε(t, x̄) − uε(t, x̄)(∂xvε ∗ ηε(t, x̄))] . (19)

Integrating by parts we get

∂xvε ∗ ηε(t, x̄) =
∞∫

0

∂xvε(t, x̄ + y)ηε(−y)dy

= c(t)ηε(0) +
∞∫

0

vε(t, x̄ + y)η′
ε(−y)dy.

(20)

Plugging (20) into (19) we get

∂tvε(t, x̄) ≥ V ′(uε ∗ ηε(t, x̄))

⎛
⎝−uε(t, x̄)c(t)ηε(0) +

∞∫
0

vε(t, x̄ + y)
[
2c(t)ηε(−y) − uε(t, x̄)η′

ε(−y)
]
dy

⎞
⎠

= − V ′(uε ∗ ηε(t, x̄))

⎛
⎝uε(t, x̄)c(t)ηε(0) +

∞∫
0

vε(t, x̄ + y)
[
uε(t, x̄)η′

ε(−y) − 2c(t)ηε(−y)
]
dy

⎞
⎠ .

(21)
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Next, we combine (6) with (9) and recall that c(0) ≤ L and that ηε(y) = η(y/ε)/ε. We obtain

uε(t, x̄)η′
ε(−y) − 2c(t)ηε(−y) ≥ 0 for a.e. y ∈ [0,+∞[ at t = 0. (22)

We now introduce the value τ ∈ [0, T ] by setting

τ := sup
{
t ∈ [0, T ] : uε(s, x̄)η′

ε(−y) − 2c(s)ηε(−y) ≥ 0 for a.e. y ∈ [0,+∞[ and every s ∈ [0, t]} . (23)

Owing to (18), vε(t, x̄ + y) ≥ −c(t) for every y ≥ 0. By using (21) and (23) we get that for every t ∈ [0, τ ]

∂tvε(t, x̄) ≥ −V ′(uε ∗ ηε(t, x̄))

⎛
⎝uε(t, x̄)c(t)ηε(0) − c(t)

∞∫
0

(
uε(t, x̄)η′

ε(−y) − 2c(t)ηε(−y)
)
dy

⎞
⎠

∫
η(y)dy=1= −V ′(uε ∗ ηε(t, x̄))(2c(t)2)

(4)≥ 2δc(t)2.

(24)

We now point out that c(t) = Lip−(Sε
t u0) and hence, by property iii) in the statement of Theorem 8, it is a.e. differ-

entiable. By combining (18) and (24) we get ċ(t) ≤ −2δc(t)2 and by a classical comparison argument for ODEs we 
arrive at

c(t) ≤ L

2δLt + 1
on [0, τ ].

To conclude, we are left to show that τ = T . Assume by contradiction that τ < T , then by the continuity of c we get 
that

c(τ ) = uε(τ, x̄) inf
y∈suppηε

η′
ε(y)

2ηε(y)

(6), (13)≥ infu0D

2ε

(9)
> L ≥ c(0).

On the other hand, the inequality ċ(t) ≤ −2δc(t)2 on [0, τ [ implies that c(τ ) ≤ c(0), which contradicts the previous 
chain of inequalities, shows that τ = T and hence establishes (10) in CASE 1.
CASE 2. We define t̄ ∈ [0, T ] by setting

t̄ := inf{t ∈ [0, T ] : ∂xuε(t, x) > 0 for every x ∈R}. (25)

Assume t̄ > 0: on the interval [0, ̄t[ we can apply the same argument as in CASE 1 and, by using the continuity of 
the function t 	→ Lip−uε(t) (see property iii) in the statement of Theorem 8), establish (10) on [0, ̄t]. Next, we use 
the fact that (1) preserves the monotonicity of the initial datum, see [4,15] and Remark 9. This implies that, for every 
t ∈]t̄ , T ], uε(t, ·) is a monotone increasing function, that is Lip−uε(t) ≤ 0. If t̄ = 0, then we can directly apply the 
preservation of monotonicity argument. This concludes the proof of Theorem 3. �
Remark 10. In the proof of Proposition 3 we have used an approximation argument on the initial datum, because 
the computations require that uε(t) ∈ C2(R), that is u0 ∈ C2(R). Another possibility is to apply an approximation 
argument on the equation. More precisely, one could consider the viscous equation

∂tu
ν
ε + ∂x(u

ν
εV (uν

ε ∗ ηε)) = ν∂xxu
ν
ε , ν > 0, (26)

which has a regularizing effect. The same proof as in Proposition 3 establishes the main estimate (24) for uν
ε . Next, 

one could argue as in the proof of Corollary 4 and show that uν
ε strongly convergence in L1

loc to uε as ν → 0+. By the 
L1-lower semicontinuity of the map uε 	→ Lip−(uε) this eventually yields (24).

Remark 11. Note that the one-sided Lipschitz estimate (10) does not depend on L, that is on Lip−u0. However, we 
have only established (10) for ε satisfying (9), and hence the range of ε > 0 such that (10) holds true does depends on 
Lip−u0. This is the reason why Theorem 3 does not apply to general BV initial data.
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3.2. Proof of Corollary 4

We proceed according to the following steps.
STEP 1: uniform BV bounds. Theorem 3 implies that for every ε > 0 sufficiently small and for every t > 0 we have

Lip−uε(t) ≤ L

2δtL + 1
≤ L. (27)

We now want to establish uniform bounds in BVloc, that is we want to show that, for any R > 0, the quantity 
TotVar{uε(t); ] − R, R[} is uniformly bounded with respect to ε and t . We recall that

TotVar{uε(t); [−R,R]} = sup
−R≤x1≤···≤xN≤R

N−1∑
i=1

|uε(t, xi+1) − uε(t, xi)|. (28)

We consider separately the positive and the negative parts of the total variation of uε(t), defined respectively by

TotVar+{uε(t); [−R,R]} = sup
−R≤x1≤···≤xN≤R

N−1∑
i=1

(uε(t, xi+1) − uε(t, xi))
+,

TotVar−{uε(t); [−R,R]} = sup
−R≤x1≤···≤xN≤R

N−1∑
i=1

(uε(t, xi+1) − uε(t, xi))
−.

(29)

From (27) it follows that

TotVar−{uε(t); [−R,R]} ≤ 2LR, (30)

therefore, since uε takes values in [0, umax],
TotVar+{uε(t); [−R,R]} = TotVar−{uε(t); [−R,R]} + uε(t,R) − uε(t,−R)

≤ 2LR + umax.
(31)

It follows from (30) and (31) that

TotVar{uε(t); [−R,R]} = TotVar+{uε(t); [−R,R]} + TotVar−{uε(t); [−R,R]}
≤ 4LR + umax

(32)

and this concludes Step 1.
STEP 2: ε → 0+ limit. First, we point out that, by the properties of convolution, from (32) we deduce that uε ∗ ηε

satisfies the same estimate. By using equation (2) we conclude that uε ∈ Lip(R+, L1
loc(R)) and that the Lipschitz 

constant is uniform in ε, provided ε > 0 is sufficiently small. We apply the Helly-Kolmogorov Compactness Theorem 
and conclude that for every sequence εn → 0 there exists a subsequence εnk

such that uεnk
converges to some function 

ũ in L1
loc(R+ ×R). Note that ũ is a weak solution of the Cauchy problem (3), (7). To conclude the proof we are left to 

show that ũ is actually the entropy admissible solution of (3), (7). First, we point out that the flux function u 	→ uV (u)

satisfies (uV )′′ ≤ −2δ. Next, we use (10) and conclude that ũ satisfies the Oleı̆nik estimate

Lip−ũ(t) ≤ 1

2δt
(33)

and, owing to Chapter 8.5 in [12], this implies that ũ is the entropy admissible solution. �
4. Proof of Theorem 6

The proof of Theorem 6 is based on the explicit construction of an initial datum u0 satisfying the statement. 
To highlight the basic ideas of the construction and avoid some technicalities, we first provide in §4.1 the proof of 
Proposition 12 below. Proposition 12 is basically a weaker version of Theorem 6 as it establishes the total variation 
blow-up (11) in the case where η(x) = 1[−1,0](x). Also, the initial datum u0 constructed in the proof of Proposition 12
satisfies 0 ≤ u0 ≤ 1 and TotVaru0 < +∞, but does not satisfy the one-sided Lipschitz condition Lip−u0 < +∞. Next, 
in §4.2 we complete the proof of Theorem 6 by extending the construction to more general kernels and to initial data 
satisfying the one-sided Lipschitz condition.
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Proposition 12. Assume that V (u) = 1 − u and η(x) = 1[−1,0](x), then there is u0 ∈ L1(R) such that 0 ≤ u0 ≤ 1, 
TotVaru0 < +∞ and the solution of the Cauchy problem (2), (7) satisfies (11).

4.1. Proof of Proposition 12

Note that, under the assumptions of Proposition 12, equation (1) boils down to

∂tuε + ∂x

⎡
⎣uε

⎛
⎝1 − 1

ε

x+ε∫
x

uε(t, z) dz

⎞
⎠
⎤
⎦= 0. (34)

The proof of Proposition 12 is organized as follows: in §4.1.1 we use the same approach as in [11,14,16] and we 
discuss the characteristic lines of (34), in §4.1.2 we describe the basic idea underpinning the construction of u0, 
in §4.1.3 we provide the actual construction of u0, in §4.1.4 we establish some preliminary results and in §4.1.5 we 
eventually conclude the proof.

4.1.1. Characteristic lines
We refer to the analysis in Crippa and Lécureux-Mercier [11] and Keimer and Pflug [14] and we recall that the 

solution of (34) given by Proposition 8 can be obtained via a fixed point argument by considering the continuity 
equation

∂tuε + ∂x[uε(1 − wε)] = 0 (35)

requiring that the field wε be given by

wε(t, x) = 1

ε

x+ε∫
x

uε(t, z) dz =⇒ −∂x

[
1 − wε(t, x)

]= uε(t, x + ε) − uε(t, x)

ε
. (36)

The solution of (35) can be expressed by relying on the method of characteristics. In the following we term Xε(·, y)

the characteristic line starting at the point y, i.e. the solution of the Cauchy problem⎧⎪⎨
⎪⎩

d

dt
Xε(t, y) = 1 − wε(t,Xε(t, y))

Xε(0, y) = y.

(37)

By (36) we get that, if the initial datum is bounded (and hence the solution is bounded at all times, by the analysis 
in [11,14]), then for any fixed ε > 0 the vector field 1 −wε is locally Lipschitz continuous with respect to the variable 
x and continuous with respect to the variable t . This implies that the Cauchy problem (37) is well posed and that the 
characteristic lines are well defined. Also, by combining (35) with (36) we get that the material derivative satisfies

d

dt
uε(t,Xε) = −uε(t,Xε)∂x

[
1 − wε(t,Xε)

]= uε(t,Xε)
uε(t,Xε + ε) − uε(t,Xε)

ε
. (38)

We point out in passing that formula (38) formally shows that, at a maximum point of uε(t, ·), the material derivative 
is negative, which yields (13).

4.1.2. The mechanism for the increase of the total variation
Before entering into the technical details of the construction of the initial datum u0 that triggers the blow-up of the 

total variation, we make some heuristic considerations to describe the basic ideas underpinning the construction of u0. 
In particular, we describe the very basic mechanism that leads to the total variation increase.

Fix h > 0 and consider the function (sketched in Fig. 1)

ū(x) =
⎧⎨
⎩

1/2 x ∈ [−h,−h/2]
1 x ≥ 0
0 otherwise.

(39)

Consider now the solution of the Cauchy problem obtained by coupling (34) with the initial condition uε(0, x) =
ū(x) in (39). We observe that:
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Fig. 1. The initial datum ū triggering the total variation increase.

(a) uε(t, x) ≡ 1 if x ≥ 0 and t ≥ 0. Loosely speaking, this can be seen by combining two facts: (i) the nonlocal term 
evaluated at the point (t, x) is only affected by the values of uε(t, z) at z ≥ x and (ii) the characteristic line starting 
at x = 0 has zero speed and hence information cannot cross the vertical axis. This implies that the values of the 
solution uε on R+ × R+ are only affected by the values of the initial datum ū on R+. Since ū ≡ 1 on R+, then 
uε ≡ 1 on R+ ×R+.

(b) Assume that ε > h and consider the characteristic lines starting at y ∈ [−h, −h/2]. Since ū(y + ε) = 1, owing 
to (38), the material derivative at t = 0 satisfies

d

dt
uε(t,Xε(t, y))

∣∣∣∣
t=0

= uε(0, y)
1 − uε(0, y)

ε
= 1

4ε
> 0,

which means that, at least for a small time, uε increases along the characteristic line Xε(t, y).
(c) By using again (38), we see that, if ū(y) = 0, then uε is identically 0 along the characteristic line Xε(·, y).

As a consequence we have that, for ε > h, the solution uε is identically equal to 1 on R+ ×R+, increases (locally in 
time) along the characteristic lines Xε(·, y) if y ∈ [−h, −h/2], and vanishes identically elsewhere. We can infer that

TotVaruε(τ, ·) > TotVar ū = 2, for every τ > 0 sufficiently small.

4.1.3. Construction of the initial datum u0
There are two main issues we have to address in order to construct an initial datum as in the statement of Propo-

sition 12: (i) in §4.1.2 the total variation increases only if ε > h, and (ii) we claim that the total variation not only 
increases but actually blows up. To tackle these issues, we introduce the building block a :R → R by setting

a(x) := 1[−1,−3/4](x) (40)

and we define u0 as

u0(x) := 1[0,+∞[(x) +
∞∑

k=0

2−ka(2kx). (41)

See Fig. 2 for a representation. Note that due to the chosen scaling the building blocks of u0 do not overlap and are 
separated by intervals where u0 = 0. This implies that

0 ≤ u0(x) ≤ 1 for a.e. x ∈R, TotVar u0 = 1 + 2
∞∑

k=0

2−k = 5 < +∞. (42)

Note furthermore that, very loosely speaking, u0 is made by a sequence of building blocks that approaches the “big 
jump” located at t = 0. In this way, for every ε > 0 there are infinitely many building blocks that behave as the 
initial datum ū in the example of §4.1.2. Each of them contributes to the total variation increase and this is the basic 
mechanism that leads to the total variation blow-up.
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Fig. 2. The initial datum u0 triggering the total variation blow-up.

4.1.4. Preliminary results
In this paragraph we establish some qualitative properties of the solution of the Cauchy problem obtained by 

coupling (34) with the initial datum u0 in (41).
By combining the first inequality in (42) with the maximum principle (13) we get that

0 ≤ uε(t, x) ≤ 1, for a.e. (t, x) ∈ R+ ×R (43)

and by recalling (36) we arrive at

0 ≤ 1 − wε(t, x) ≤ 1, for a.e. (t, x) ∈R+ ×R. (44)

Lemma 13. Let uε be the solution of (34) with initial datum (41), then

uε(t, x) = 1, for a.e. (t, x) such that x ≥ 0 and t ≥ 0. (45)

Lemma 13 can be shown arguing as in item (a) in §4.1.2 and its proof exploits the fact that, owing to the particular 
expression of the velocity field (36), the values of uε on R+ ×R+ are only affected by the values of the initial datum 
on R+ and hence on R+ ×R+ the solution uε behaves “as if the initial datum is the constant 1”. This formal argument 
can be turned in a rigorous proof by a fixed-point argument as in [11,14]. As a consequence of Lemma 13, we get the 
following fact.

Lemma 14. Let uε be the solution of (34) with initial datum (41), then

y ≤ Xε(t, y) ≤ 0, for every t ≥ 0, y ≤ 0 and ε > 0. (46)

Proof. By combining (37) with the fact that wε(t, x) = 1 for every x ≥ 0 and t ≥ 0 we get that

Xε(t,0) = 0, for every ε > 0 and t ≥ 0. (47)

Since the characteristic lines cannot intersect, this implies the inequality Xε(t, y) ≤ 0 in (46). The inequality y ≤
Xε(t, y) follows from the first inequality in (44). �
4.1.5. Total variation blow-up

We can now conclude the proof of Proposition 12. Fix ε ∈]0, 1[. By combining (46) and (45) we get that

uε

(
t,Xε(t, y) + ε

)= 1, for every y ∈ [−ε,0] and t ≥ 0. (48)

Owing to (38), the material derivative satisfies

d

dt
uε(t,Xε) = uε(t,Xε)

1 − uε(t,Xε)

ε
, for every y ∈ [−ε,0] and t ≥ 0. (49)

By explicitly computing the solution of the ODE (49) we arrive at

uε(t,Xε(t, y)) = u0(y)

−t/ε
, for every y ∈ [−ε,0] and t ≥ 0. (50)
[1 − u0(y)]e + u0(y)
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We recall (41) and notice that

u0(y) =

⎧⎪⎨
⎪⎩

2−k if y ∈ [−2−k,−2−k · 3/4] for some k ∈N

0 if y ∈ [−2−k · 3/4,−2−(k+1)] for some k ∈ N.
(51)

Using the fact that characteristic lines cannot intersect we conclude that

TotVaruε(τ, ·) ≥ 2
∑

k≥− log2 ε

2−k

[1 − 2−k]e−τ/ε + 2−k
, (52)

where we have used (51) and the restriction k ≥ − log2 ε in the sum is due to the fact that (50) is valid for y ∈ [−ε, 0].
To establish (11) it now suffices to show that, for every τ > 0, the right hand side in (52) is not bounded as ε → 0+. 

To this end, we first point out that

2−k

[1 − 2−k]e−τ/ε + 2−k
≥ 1

2
⇔ k ≤ − log2

(
e−τ/ε

1 + e−τ/ε

)
, (53)

which owing to (52) yields

TotVaruε(τ, ·) ≥ 	

{
k ∈ N : − log2 ε ≤ k ≤ − log2

(
e−τ/ε

1 + e−τ/ε

)}
. (54)

In the previous expression, the symbol 	 denotes the cardinality of a set. By plugging the elementary inequality

− log2

(
e−τ/ε

1 + e−τ/ε

)
≥ − log2

(
e−τ/ε

)= τ

ε
log2 e

into (54) and choosing ε = 2−j , we get that

TotVaru2−j (τ, ·) ≥ 	
{
k ∈ N : j ≤ k ≤ 2j τ log2 e

}
. (55)

For any given τ > 0, the right hand side of (55) blows up as j → +∞, yielding (11). This concludes the proof of 
Proposition 12. �
4.2. Conclusion of the proof of Theorem 6

To complete the proof of Theorem 6 we are left to show that i) we can modify the construction of u0 in such a 
way that it satisfies the condition Lip−u0 < ∞, and ii) we can extend the blow-up proof to the case of more general 
convolution kernels.

To tackle issue i), it suffices to replace the building block a in (40) with

ã(x) :=
⎧⎨
⎩

0 x < −1
−4x − 3 −1 ≤ x < −3/4
0 x ≥ −3/4.

(56)

We define u0 by plugging the above expression into (41) and obtain that u0 satisfies 0 ≤ u0 ≤ 1, TotVaru0 ≤ 5 and 
Lip−u0 = 4. One can then study the evolution of uε along the characteristic lines Xε(·, y) with y = 2−k , k ∈ N and 
conclude that the key estimate (52) is still valid. The rest of the proof of Proposition 12 extends with no need of 
modifications.

To tackle issue ii) (extension of the proof to the case of more general kernels) we fix a Lipschitz continuous kernel 
η as in the statement of Theorem 6. We go back to the discussion about characteristic lines in §4.1.1 and we point out 
that we have to replace (36) with

wε(t, x) =
+∞∫

uε(y)ηε(x − y)dy =⇒ −∂x[1 − wε(t, x)] = −uε(x)ηε(0) +
+∞∫

uε(y)η′
ε(x − y)dy. (57)
x x
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Note that, since ηε has unit integral and 0 ≤ uε ≤ 1, then (44) is still valid and the rest of the analysis in §4.1.4 extends 
with no modifications. We now discuss how we can modify (38). Let us fix x∗ < 0 such that

M := η(x∗)
η(0)

≥ 3

4
. (58)

Next, we fix y such that εx∗ ≤ y < 0, which owing to (46) yields εx∗ ≤ Xε(t, y) < 0 for every t ≥ 0. We have the 
following chain of inequalities:

d

dt
uε(t,Xε)

(57)= uε(t,Xε)

⎛
⎜⎝−uε(t,Xε)ηε(0) +

+∞∫
Xε

uε(y)η′
ε(Xε − y)dy

⎞
⎟⎠

uε,η
′
ε≥0≥ uε(t,Xε)

⎛
⎜⎝−uε(t,Xε)ηε(0) +

+∞∫
0

uε(y)︸ ︷︷ ︸
=1by (45)

η′
ε(Xε − y)dy

⎞
⎟⎠

= uε(t,Xε)

⎛
⎝−uε(t,Xε)ηε(0) +

+∞∫
0

η′
ε(Xε − y)dy

⎞
⎠

= uε(t,Xε)
(− uε(t,Xε)ηε(0) + ηε(Xε)

) η′
ε≥0≥ uε(t,Xε)

(− uε(t,Xε)ηε(0) + ηε(x
∗ε)

)
.

(59)

We recall that the constant M is defined in (58). Since ηε(x) = η(x/ε)/ε, then M = ηε(x
∗ε)/ηε(0) and by using (59)

we get

d

dt
uε(t,Xε) ≥ uε(t,Xε)ηε(0) (−uε(t,Xε) + M) = η(0)

uε(t,Xε) (−uε(t,Xε) + M)

ε
.

We compute the explicit solution of the ODE u̇ = η(0)u(M −u)/ε and by a classical comparison argument for ODEs 
we conclude that

uε(t,Xε(t, y)) ≥ Mu0(y)

(M − u0(y))e−Mη(0)t/ε + u0(y)
for every y ≥ εx∗. (60)

This implies that we can replace (52) with

TotVaruε(τ, ·) ≥ 2
∑

k≥− log2(−εx∗)

M2−k

(M − 2−k)e−Mη(0)t/ε + 2−k
. (61)

By using (58), the rest of the analysis in §4.1.5 straightforwardly extends and this yields (11). �
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