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Abstract: Elasmobranchs are among the marine species more threatened by overfishing. Their
conservation is often impaired by the lack of knowledge of species’ life history traits. We filled
knowledge gaps on age and growth of two threatened smooth-hound sharks (Mustelus mustelus, Mm;
Mustelus punctulatus, Mp) in the central Mediterranean Sea, combining standard vertebrae analysis
with growth increment data from a tagging survey. Our data revealed that the two species grow at a
faster rate than previously estimated using vertebrae reading only. The maximum age/size found
was higher for Mm (16 years, 170 cm TL) than Mp (8 years, 120 cm TL), the first species attaining larger
size-at-age than the second one. Mp reaches maturity at earlier ages (A50 3 years for both females
and males) than Mm (A50 females: 4 years; males: 3 years). The use of the tag-recapture method to
validate the growth rate, firstly derived by sectioned vertebrae readings, highlighted the presence
of false check marks. The new estimates of growth and longevity have important implications for
the assessment of natural mortality, productivity, and stock resilience to fishing pressure which,
combined with the high site fidelity highlighted by tagging data, may have crucial implications for
the conservation of these two threatened sharks in the Mediterranean Sea.

Keywords: smooth-hounds; shark biology; shark conservation; age and growth; tag/recapture; life
history traits

1. Introduction

During the last decades, overfishing, habitat degradation, and climate change have
profoundly altered the populations of several marine species [1], especially of those less
resilient to anthropogenic pressures [2]. Elasmobranchs, among these, suffered a fast
decline in many marine areas, particularly as an effect of overfishing [3]. Due to their
k-selected life traits, such as slow population growth rate, late age at maturity, extended
longevity, low fecundity, and long gestation period, they are poorly resilient to fishing,
declining fast when exposed to unbalanced fishing exploitation [4–6]. As a consequence,
many elasmobranch species are endangered or highly threatened to extinction according to
the International Union for the Conservation of Nature (IUCN) [7].
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A paradigmatic example of the status of conservation of this taxon regards the Mediter-
ranean Sea, where the high species diversity of this region has been rapidly eroded by the
development of semi-industrial fisheries during the last century [8–11]. In addition, small
scale fisheries have been also found to impact elasmobranch populations [12]. According
to the IUCN, 53% of the 73 species assessed are classified as threatened (Vulnerable: VU,
Endangered: EN, Critically Endangered: CR) and in category A2 [13]. This means that their
estimated populations declined between 30% and 80% within 10 years, or 3 generations.
The Mediterranean Sea is therefore nowadays regarded as the area with the highest pro-
portion of threatened elasmobranch species worldwide. Among these, the smooth-hounds
(Mustelus spp.) were important components of coastal fish communities and exploited
by artisanal fisheries for centuries [10]. Of the three smooth-hound species occurring
in the Mediterranean Sea, the starry smooth-hound (Mustelus asterias Cloquet, 1819) is
nowadays extremely rare and still occasionally caught in a few areas [10,14]. The other two
species, the common smooth-hound (Mustelus mustelus Linnaeus, 1758) and black-spotted
smooth-hound (Mustelus punctulatus Risso, 1827) are still relatively common but only in a
small part of their original distribution range [10,15]. A rate of reduction of 80–90% since
the beginning of the last century brought the two species to almost disappear in a large
part of their original distributional range during the 1980s and 1990s [10]. Such a quick
temporal decline in abundance was also perceived by fishers [8,11,16]. According to the
Mediterranean IUCN’s European Red List of marine fish, M. asterias, M. mustelus (Mm),
and M. punctulatus (Mp) are classified as “Vulnerable” [13].

The common and black-spotted smooth-hounds have overlapping distribution and
bathymetric ranges and share very similar morphological characteristics, making their
identification often difficult even for skilled fish biologists [17,18]. The current knowledge
of life-history traits of the two smooth-hound species is very scarce and restricted to a
few Mediterranean areas. For both species, the most attention was paid to studying the
maturity and fecundity of individuals captured along Tunisian coasts [19–21], Adriatic
Sea [22–24], and Turkey [25]. Diet composition was also studied in the Gulf of Gabes [21,26],
Adriatic Sea [23,27], and South of Sicily [28]. Only a few published studies focused on age
and growth of the common smooth-hound living along the Mediterranean Turkish [25] and
Libyan coasts [29] and South African waters [30–32], while only one recent study estimated
age and growth rate of the black-spotted smooth-hound in the Adriatic Sea [24].

Using ring counts on vertebrae sections, the studies carried out in the Mediterranean
Sea missed validating the ring pattern on vertebrae, making the estimates of growth, age at
maturity, and longevity largely uncertain. As shown by [32], the occurrence of false rings
in the vertebrae of the common smooth-hound can likely lead to age overestimation and,
in turn, underestimation of the growth rate.

The objective of this study was to provide new knowledge on life history traits of the
of the two smooth-hound species from the North sector of the Strait of Sicily in the central
Mediterranean Sea. Although this area is highly impacted by fishing [11,33,34], it still
hosts viable populations of the smooth-hound populations. We therefore hypothesize that
the presence of these species in the area could be due to their potential fast growing. We
filled knowledge gaps on age and growth of the two species by validating ring deposition
patterns on vertebral centra using tagging data. This new knowledge is important to better
understand the impact of fishing on smooth-hound populations and, in turn, for their
sustainable management and conservation [35].

2. Materials and Methods
2.1. Study Area, Sample Collection, and Ethical Statement

The south coast of Sicily lies in the Strait of Sicily (SoS), a region located in the central
Mediterranean Sea between Sicily, Tunisia, east Algeria, and west Libya (Figure 1). It is
an important biogeographic area where biota of the western and eastern Mediterranean
overlap, leading to high biodiversity [33]. It hosts large continental shelf banks off the
eastern (Malta Bank) and western Sicilian coasts (Adventure Bank). It is an important
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fishing area where multi-national fleets (i.e., Italy, Malta, Tunisia, and even Egypt) exploit
pelagic and demersal stocks with a high by-catch of sharks and rays [33].
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Figure 1. Map of the Strait of Sicily showing locations where both species of smooth-hounds were
tagged (pink dots) and recaptured once (yellow dots) or twice (blue dots). Numbers refer to tagged
individuals. For details, see Table S1.

The two smooth-hound species are still common, and are frequently landed in the
harbors along the South coasts of Sicily by trawlers and artisanal vessels using trammel
nets and gillnets. They are also commonly caught during bottom trawl surveys carried out
in the area [36,37]. Fish samples were collected between 2012 and 2017 from both scientific
trawl surveys (MEDITS: International bottom trawl survey in the Mediterranean) carried
out in the South of Sicily (FAO-GSA 16), and commercial landings (EU Data Collection
Framework, DCF) of fishing vessels of Mazara del Vallo harbor (SW Sicily). All procedures
carried out were approved by the international authorities (EU/DG Mare, FAO/GFCM).
All individuals were sampled in accordance with the relevant guidelines and regulations.
In cases when the animal was alive when it arrived on the vessel during the scientific
survey (MEDITS-DCF, EU Reg. 199/2008), it was suppressed by administering an overdose
of anesthetic in compliance with the recommendation of Decree Law n. 26 of 4 March
2014. All efforts were made to minimize suffering. Species identification was based on the
shape of dermal denticles according to Marino et al. (2018). A slice of skin was removed
from each sampled individual and observed under a binocular microscope. Mm presents a
weakly tricuspidate crown and three longitudinal crests along the entire denticles, while
Mp has a smooth tip and weakly, if present, ridges. All individuals were measured for
total length (TL) to the nearest centimeter, weighted to the nearest gram, and both sex and
macroscopic maturity stage were recorded according to MEDITS program protocol.

2.2. Age and Growth Curve Estimation

The first cervical vertebrae (n. 4 or 5) were extracted from each sampled individual,
from the second to the fifth or sixth vertebra, behind the gills. Vertebral samples were sepa-
rated into individual centra and cleaned mechanically to remove tissue before immersing
them in an ammoniacal solution for 2–3 h [38]. Each centrum was sectioned through the
middle along the sagittal plane using an IsoMet low-speed diamond bladed saw to obtain
a 1 mm section. The sections were mounted on glass slides and a liquid cover slip was
applied. Sections were observed under a stereomicroscope with a magnification of 0.8×.
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Vertebrae centra of small specimens (less than 60 cm TL) were embedded in a hard epoxy
composed by Buehler EpoThin resin and Buehler EpoThin hardener in a 5:2 weight ratio.
To make the resin harder, we put the samples in an oven with a temperature of 50 ◦C for
about 2 h. Then, the cube of resin with the vertebra inside was cut as described above
for vertebrae of larger specimens. The sections were put in a petri dish with water and
observed with the help of a stereomicroscope with a magnification of 0.8×.

Age estimations were obtained by counting fully formed translucent bands along
the corpus calcareum occurring after the birth mark (BM) [39]. A banding pattern with
wide opaque bands separated by distinct narrow translucent bands was distinguishable in
sectioned centra using transmitted light (Figure 2). This pattern occurred on both arms of
the corpus calcareum and extended across the intermedialia. We digitalized the vertebra
image using a Leica camera connected to the stereomicroscope using the ImageJ software
(https://imagej.nih.gov/, (accessed on 25 May 2021)) to measure the centrum radius
(CR) and distance to the outer margin of each translucent band. All the measures were
taken to the nearest 0.001 mm along a straight line from the central focus to the center of
the outer margin of the corpus calcareum (Figure 2) [40]. Total body length was plotted
against Vertebra Radius (VR), the distance from the center of the section to the end of the
corpus calcareum (Figure 2), to determine whether vertebral growth was proportional to
somatic growth.
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Figure 2. Sagittal sections from a female M. mustelus, 153.5 cm TL showing the alternation of opaque
and translucent rings.

We used the back-calculation method to describe the growth history of each individual
sampled [39]. Back-calculations estimate lengths-at-previous-ages for each individual, and
its use is recommended if a sample size is small and samples are not available for every
month [41], as in the present study. The method relies on the relationship between fish
body size and the length of the radius of the vertebral centrum. We adopted the “size-
at-birth-modified” Fraser-Lee equation [42] to relate the point of origin of proportional
back-calculations to a biologically derived intercept (i.e., length at birth):

Li = Lc + ((CRi − CRc) × (Lc − Lbirth)/(CRc − CRbirth)) (1)

where Li is the estimated total length at band i, Lc is the total length at capture, CRc is the
centrum radius at capture, CRi is the centrum radius at band i, Lbirth is the length at birth,
and CRbirth is the centrum radius at the birth mark.

https://imagej.nih.gov/
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To identify the latter, we compared the back-calculated lengths of the first 2–3 translu-
cent rings with the observed size of newborn individuals. This was obtained from the
size of embryos found in females in a very advanced pregnancy stage, so very close to
parturition, and according to the available literature [20,21].

Back-calculated length-at-age of females and males of the two species were used to
estimate the parameters of the Von Bertalanffy growth function (VBGF):

VBGF: L∞
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specific difference in growth were tested through the likelihood ratio test for comparing
multiple growth curves using the R package Fishmethod [44]. Likelihood ratios were cal-
culated by using the residual sum-of-squares and were tested against chi-square statistics
with the appropriate degrees of freedom.

2.3. Validation of Ring Pattern on Vertebrae Using Tagging Data

A tag and recapture program of Mm and Mp was carried out along the SW Sicil-
ian coast in 2007–2010. Smooth hounds were tagged on board of commercial trawlers
using “spaghetti” tags (Hallprint©; Hindmarsh Valley, Australia). These consisted of a
monofilament vinyl streamer attached to a plastic barb and were inscribed with a unique
alphanumeric code and contact details (i.e., phone number and the address of the CNR
institute involved in the project). The following information were collected for each in-
dividual during the two phases of the experiment, tagging and recapture: tag code, TL,
weight, sex, geographic coordinates, and date. We used the same approach and tools to
measure fish length at tagging and recapture phases to make the measurement with high
accuracy. Unfortunately, it was not possible to distinguish the two species on board due to
their very similar morphological characteristics. For this reason, individuals were classified
as Mustelus spp. Consequently, tagging data were analyzed for the two species combined
and the corresponding growth rate of recaptured specimens was used as a guideline to
discriminate true winter ring from false check marks on vertebrae centra. As shown by [32]
for Mm in South African waters, the existence of false check marks, narrow vertebral band
composition with aperiodic vertebral band deposition resulted in problems with estimation
of age and highlights the need for age validation. To avoid an overestimation of age due to
the existence of false checks, we adopted the following approach based on back-calculated
length-at-age: (1) the birth mark (BM: age 0) was selected as the one laying at a back-
calculated length corresponding to the size of newborns; (2) the first winter ring (age 1) was
the first translucent ring whose back-calculated length corresponded to a size increment
from length at BM comparable with the growth rate of tagged and recaptured specimens in
the same size range; (3) the same approach was adopted for the subsequent rings.

2.4. Maturity and Reproduction

Male sexual maturity stage was evaluated by exploring external features: clasper
size (relative to pelvic fins) and calcification, and the extrusion of sperm after applying
pressure to the sperm sacs. The females were dissected, and the reproductive apparatus
was analyzed to determine sexual maturity. They were considered sexually mature if
eggs/embryos were present in the uteri, or eggs/embryos were absent but uteri had
placental scars and/or if uteri were well developed and vascularized and the ovary had
large yellow oocytes [45]. If the embryos were recognizable, they were sexed and measured
with a caliper to the nearest millimeter (TL). The Chi-Square test was used to test for
significant difference in the sex ratio of litters examined. The length at which 50% (L50)
of the males and females were sexually mature was estimated using a logistic regression
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for each sex and species separately by calculating coefficients a and b, respectively, of the
following logistic equation:

PTL = 1/(1 + e(−(a+bTL))) (3)

where PTL is the probability of an individual to be sexually mature. L50 is equal to −a/b.
The fecundity (f), as mean number of embryos per female length class, was estimated

only for Mm using a power function with two parameters f = xTLy. It was not possible to
estimate the fecundity of Mp due to a low number of specimens collected during the study.

3. Results
3.1. Smooth-Hounds’ Samples

The study was based on a sample of 232 (139 females and 93 males) Mm, and 97
(56 females and 41 males) Mp, whose size ranged between 31.5 and 170.0 cm TL and
between 35.5 and 120.0 cm TL, respectively (Figure 3).
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Figure 3. Length frequency distributions by sex of Mm (n = 232) and Mp (n = 97) collected in SW Sicily.

The two species did not show significant differences in length–weight relationships
(ANCOVA, p > 0.05, F = 785.549) (Figure 4).

3.2. Tag-Recapture Data

About 349 specimens of Mustelus spp. were tagged and released at sea during the
tagging survey along the SW coast of Sicily. On the whole, recapture data of 26 individuals
were obtained from local fishers, three of which were recaptured and released twice (Table
S1). Tagging effort was fairly evenly distributed throughout all months, whereas most
recaptures were made in Autumn (43.7%) and Spring (40.6%). Time at liberty, defined as
the number of days between tagging and recapture, of tagged individuals ranged between
2 and 1007 days. All the recaptures (93%, n = 27) occurred within 60 km from the original
tagging site. Only four specimens were recaptured beyond this range, showing a movement
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between the Sicilian and Tunisian shelf (Figure 1). The distance from the tagging site seems
to increase with days at liberty. Particularly, the tagged individual that travelled the longest
distance (60 km) was recaptured after 2 years. The shortest distance (0.2 km) was recorded
for an individual recaptured after 1 month from tagging. Growth increments of tagged and
recaptured individuals of Mustelus spp. showed a rate of increment averaging 16.2 cm per
year, with most of the records at 14–16 cm year per year (Table S2; Figure 5a), which was
almost constant among individuals between 55 and 125 cm TL, with some outliers growing
at a rate of 25–28 cm TL per year (Table S2; Figure 5b).
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Figure 5. Growth trajectories of Mustelus spp. Individuals tagged along the SW coast of Sicily:
(a) frequency distribution of growth increments data (cm/year); (b) relationship between time spent
at sea and total length of tagged and recaptured individuals. Colored lines represent the growth
trajectories of single individuals.

3.3. Age Estimation

Vertebrae were collected from 115 Mm (52 males and 63 females), ranging from 34 to
170 cm TL, and 62 Mp (27 males and 35 females), between 36.5–120 cm. The relationship
between TL and VR was described by a polynomial function in both species and did
not show significant differences between sexes either for Mm or Mp (ANCOVA, p > 0.05;
Figure 6).
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Figure 6. Relationship between vertebra radius (VR) and total length (TL) for males and females of
M. mustelus (a) and M. punctulatus (b) from the SW coast of Sicily.

The vertebrae of both species showed a multiple pattern of translucent and opaque
rings along the corpus calcareum. Translucent rings did not show a clear pattern of
decreasing inter-ring distance from the first to the last ring as expected due to decreasing
growth rate during ontogeny, thus indicating the likely occurrence of false check marks. To
discriminate the latter and exclude them from our matrix of back-calculated length-at-ages,
we used growth increments derived from tagged individuals as a guideline for aging (see
material and method section). Ring interpretation based on growth rate of tagged and
recaptured specimens returned a pattern with winter rings that alternate with false checks,
i.e., two translucent rings lay down every year (Figure 7). As shown in Figure 7, false
rings are not always observed between the winter rings, thus highlighting that they are not
constantly laid down in all individuals and during growth.
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Figure 7. Back-calculated length distributions corresponding to translucent vertebral centra measure-
ments of the first four years of life of M. mustelus from the South of Sicily. Blue bars: true winter rings;
red bars: false rings.

The mean annual increase in growth derived from the two translucent rings hypothesis
is very similar to the growth rate of the tagged individuals. The hypothesis of a translucent
ring laid down per year results in a growth rate that is approximately half of that derived
from tagging (Figure 8).
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Figure 8. Box-plots of annual growth increments of M. mustelus individuals obtained from back-
calculated lengths-at-age according to two different interpretations of translucent rings deposition:
one winter ring per year (1R) and two winter rings per year (2R). The growth increment calculated
from tagged and recaptured Mustelus spp. is also shown.

The two species showed significant interspecific differences in growth (p < 0.01), with
Mm achieving a higher asymptotic length (L∞) and a lower growth coefficient (k) than Mp
(Figure 8; Tables S3 and S4). The estimated VBGF were as follows:

Mm females: L∞ = 209 cm TL; k = 0.11; t0 = −1.73; r2 = 0.985
Mm males: L∞ = 206 cm TL; k = 0.10; t0 = −2.04; r2 = 0.97
Mp sex combined: L∞ = 156 cm TL; k = 0.17; t0 = −1.41; r2 = 0.95 (Figure 9).
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Figure 9. Von Bertalanffy growth curves of M. mustelus females (a) and males (b), and M. punctulatus
(sexes combined); (c) from SW Sicily.

Mm females and males grow at a similar rate in the first years of life, with females
attaining larger sizes at ages than males after age 4 (Figure 9). The maximum age found for
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Mm was 16 and 12 years for females and males, respectively. The low number of individuals
sampled of Mp did not allow for estimating the growth curves by sex, and back-calculated
length-at-ages were combined. The oldest Mp individual was a male of 8 years, whilst
females were not found over 6 years old (Figure 9).

3.4. Maturity and Fecundity

Maturity data were collected for 209 Mm (117 females, 92 males) and 97 Mp (56 females,
41 males). The smallest mature female was 105 cm TL for Mm and 86 cm for Mp. Mature
males were observed from 79 cm and 85 cm TL for Mm and Mp, respectively. Females
attained maturity at larger sizes and ages than males (Figure 10). L50 of Mm was 111.5
cm TL (5 years) for females and 92.5 cm TL (4 years) for males. L50 of Mp was 92.5 cm TL
(4 years) and 84.5 cm TL (3 years) for females and males, respectively (Figure 10).
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Figure 10. Maturity ogives of males and females of M. mustelus (a) and M. punctulatus (b) from the
south coast of Sicily.

Among the Mm mature females collected, 11 were pregnant with a mean (±SD) litter
size of 10.5 ± 3.6. In total, there were 127 embryos (66 females, 61 males). The embryos
ranged in size from 120–190 mm in October–November to 32–42 cm in May–June for full-
term embryos. Late spring can be therefore assumed as a parturition period. The embryo
sex ratio did not differ significantly from 1:1 (χ2 = 0.019, d.f. = 1, p = 0.94). The results of the
relationship between length and fecundity (f = n. embryos) of Mm was significant (power
function: f = 2e−16TL7.73 (R2 = 0.62, p < 0.001), with the number of embryos increasing from
7 to 17 for females between 140 and 152 cm TL (Figure 11).
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Figure 11. Relationship between total length (TL) and fecundity. The black dots are the number of
embryos observed in pregnant females of M. mustelus sampled in SW Sicily. The red line is the power
function: N. embryos = 2e−16TL7.7297 (R2 = 0.62, p < 0.001).
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Maturity data on Mp were scanty. Only three collected Mp females (96–99.5 cm TL)
were pregnant at the beginning of the gestation period (November), respectively with 1, 11,
and 18 embryos of 12–14 cm TL body size. It is likely that the female with only 1 embryo
had a miscarriage due to the stress during capture. It was therefore not possible to estimate
the length of the newborn.

4. Discussion

In this study we have provided new knowledge on the life history traits of two
threatened smooth-hounds species, Musteus mustelus and M. punctulatus, in the central
Mediterranean Sea. In particular, using data from a tagging survey, we have shown
that the smooth-hounds grow at a faster rate than assumed in other studies based on
vertebral age readings only [24,25,29]. Growth increments of tagged and recaptured smooth-
hounds’ individuals in the size range between 50 and 130 cm total length indicated annual
increments between 8 and 28 cm per year, 16.2 cm per year on average, more or less double
than those obtained from the reading of vertebrae assuming the deposition of only one
translucent ring every year. The occurrence of fast-growing individuals could be due
to difference in growth rate between the two species or among individuals of the same
species. Differences in growth rates are quite common and may depend on food availability,
temperature, and other factors varying according to the areas inhabited [46]. Tagging data,
although available for the two species combined (i.e., Mustelus spp.), because they are very
difficult to discriminate in the field, support the hypothesis that at least one false check
mark is laid down before or after the deposition of the winter ring. The occurrence of false
check mark was demonstrated for Mm in South African waters using micro-computed
tomography [32].

In the case of smooth-hounds of the Strait of Sicily, most of the recaptured individuals,
and in particular those spending more than one year at liberty, showed a rate of increase
higher than the one assumed in past studies. We can reasonably assume that our tagging
dataset of growth increment was made up by both species, given that their abundance in
the study area is similar and they are often landed together in mixed boxes by local fishing
vessels [34].

Age analysis showed that Mm reaches larger sizes than Mp and lives longer. Overall,
the maximum sizes of both smooth-hound species observed in this study were in line with
those observed in other Mediterranean areas, confirming that adults Mm reach bigger sizes-
at-ages than Mp (Table 1). The oldest individuals found in our study were a 16 years old
(170 cm TL) Mm female and 8 years old (120 cm TL) Mp male, thus indicating longevities
less extended than assumed in previous studies carried out in the Mediterranean region,
where the maximum age reported was over 25 years in Mm [25,29] and 19 years in Mp [24].
Similar to our study, Da Silva et al. [32], in South African waters accounting for false check
marks in vertebral centra, found that the maximum age of Mm along the South African
coasts was 13 years for both females (190 cm TL) and males (112 cm TL). This was almost
half of the maximum age estimated from a previous study in South Africa, where false
check marks on vertebrae were interpreted as true winter rings [31]. Our estimates of
growth and longevity of the two Mediterranean smooth-hounds are also coherent with
the patterns in life-history traits found for other smooth-hound species. For most of the
species belonging to the genus Mustelus, the longevity seems to be between 10 and 20 years:
16 years: Mustelus antarcticus [47], M. canis [48], and M. walkeri [49]; 13 years: M. asterias [50]
and M. henlei [51], and 12 years: M. lenticulatus [52]; 11 years M. schmitti [53]; 9 years: M.
californicus [51] and M. manazo [54]. According to these findings, smooth-hounds cannot
be considered long-living species as other Carchariniformes [55], and this, along with a
rather fast growth, can be the main reason explaining the existence of productive fisheries
exploiting these meso-predatory sharks in several marine areas (e.g., [56–58]).
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Table 1. Comparison of life-history traits of M. mustelus and M. punctulatus from different studies
and in different areas. Source as in the reference list [1]: SW Sicily (present work); [22]: N Adriatic
Sea (Riginella et al., 2020); [20]: Gulf of Gabes, Tunisia (Saïdi et al., 2008); [29]: Libya (Faraj Kara et al.,
2019); [25]: Gulf of Iskenderun (Ozcan and Başusta, 2018); [30]: South Africa (Goosen and Smale,
1997); [31]: South Africa (Smale and Compagno, 1997); [32]: South Africa (Da Silva et al. 2021); [24]:
NE Adriatic Sea (Gračan et al., 2021); [21]: Gulf of Gabes, Tunisia (Saïdi et al., 2009).

Mustelus mustelus Mustelus punctulatus

Source

1 22 20 29 25 30 31 32 1 22 24 21

L∞ F 209 / / / / 204.9 / 189.7 / / 208.4 /
kF 0.11 / / / / 0.06 / 0.11 / / 0.04 /
t0 F −1.73 / / / / −3.35 / −2.08 / / −4.49 /

L∞ M 206 / / / / 145.1 / 112 / / 136.4 /
kM 0.10 / / / / 0.12 / 0.41 / / 0.10 /
t0 M −2.04 / / / / −2.14 / −1.26 / / −2.53 /

L∞ F+M / / / 194.9 195.1 / / / 156 / / /
kF+M / / / 0.03 0.06 / / / 0.17 / / /
t0 F+M / / / −9.31 −4.27 / / / −1.41 / / /

Agemax F 16 / / 28 25 24 / 13 6 / 19 /
Agemax M 12 / / 21 20 17 / 11 8 / 14 /

Agemax F+M / / / / / / / / /
A50F 5 / / / 8 12–15 / 6.2 11 / 12.5 /
A50M 4 / / / 7 6–9 / 3.2 9 / 6.6 /

Lmax F 170 158 165 168 162.6 164 165 173.4 111 141 136.2 122
Lmax M 148 150 144.5 129.2 149 145 145 126.7 120 119 126.5 111

L50F 111.5 121.2 117.2 85 109 / 125 * 119.4 92.5 109.9 100 95.6
L50M 92.5 108.1 97.1 75 92 / 95 * 96.7 84.5 91.3 83.1 81.4

Litter size 8–16 3–18 4–18 8–24 10–15 / 2–23 2–26 11–18 7–35 / 12–27

* minimum maturity size.

Lengths-at-maturity data of the two species in South of Sicily seem to support the
occurrence of geographical differences likely linked to a latitudinal pattern of increasing
size at maturity from south to north [22]. L50 values were smaller in South of Sicily, Tunisia
(Mm: males: 97.1 cm, females: 117.2 cm, [20]; Mp: males: 81.4 cm, females: 95.6 cm, [21]),
and Turkey (Mm males: 92 cm, females: 109 cm [25]) than in the Adriatic Sea (Mm: males:
108.1 cm, females: 121.2 cm; Mp: males: 91.3 cm, females: 109.9 cm [22]). Latitudinal
patterns of maximum size and size at maturity were reported in general for several marine
fish [59] and also observed in other smooth-hound species (M. manazo, [60]) and described
in the small-spotted catshark, Scyliorhinus canicula [61].

As commonly observed in smooth-hounds, fecundity of Mm increased with size with a
maximum observed number of 17 embryos in a female of 154 cm TL. A similar pattern was
found in Tunisia [20] and Adriatic Sea [22]. Mp has a higher fecundity (7–35 embryos, [22];
12–27 embryos, [21]) and the newborns are smaller (24–30.5 cm [21]) than in Mm. In this
latter species we found sizes at birth ranging between 32 and 42 cm TL, supporting the
data reported in Tunisian waters [20] and similar to the minimum size of the specimens
collected in this study during late spring.

The observed body size of Mm embryos increased between October and June, while the
only two pregnant Mp females found in November were at the beginning of the gestation
period. This trend is in agreement with past studies, highlighting a gestation period of
11–12 months and parturition in April–May for both species [20–22].

Tagging data provided some new insights about the movement patterns and site
fidelity of Mustelus spp. in the central Mediterranean region. All the tagged sharks showed
localized movements, with the majority of individuals recaptured less than 60 km from
their original release sites. Although our tagging approach did not allow us to monitor
the movement patterns during the days at liberty, our results indicate that the tagged
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individuals of Mustelus spp. had high site fidelity, in line with the results of a recently
published study on the movements of Mm in South Africa [62]. This behavior might
determine the existence of multiple quite isolated stocks with low interconnectivity. The site
fidelity of this species may be related to their philopatric behavior; in fact, smooth-hound’
individuals show a residency and site fidelity behavior, at least for females, which, even if
able to disperse over long distances, return preferentially to key reproductive areas [62–67].
In the case of Mm and Mp there is still a lack of knowledge on their population structure and
connectivity patterns in the Mediterranean Sea, although the existence of very specialized
local fisheries exploiting mating aggregations and pregnant females might be indirect
evidence of the occurrence of groups of individuals belonging to specific localities, rather
than to large mixed stocks [10]. To bridge this knowledge gap, further studies are required
to understand population connectivity in relation to the existence of aggregation sites
of the species (e.g., mating and parturition areas), site fidelity, and dispersal behavior.
Understanding habitat-use and movements of smooth-hounds across their distribution
area would be crucial to implement spatial conservation strategies to protect individuals
when they aggregate and are more vulnerable to fishing exploitation.

During the last century, Mm and Mp have dramatically been overexploited in the
Mediterranean Sea, although mostly caught as by-catch by trawlers and artisanal fishing
vessels, causing a drastic reduction in both their distribution and abundance [10,11]. The
estimates of Mm and Mp growth, age at maturity, and longevity obtained in our study
could lead to a more optimistic vision about the resilience of smooth-hounds’ populations
to fishing exploitation. However, the ongoing decline of the two species in the Strait of
Sicily, as in the rest of the Mediterranean Sea, is a clear wake-up call about the sustainability
of the ongoing exploitation pattern, indicating the need for the adoption of a conservation
strategy aimed at population rebuilding. Unfortunately, no management measures have
been developed to date to mitigate the impact of fishing on smooth-hounds, including
minimum landing size. Restriction of fishing activities should be designed to protect
spawning aggregations and areas where pregnant females concentrate for parturition. The
reduction of fishing mortality on spawners, in combination with the protection of the
newborn and their recruitment habitats, could increase population resilience to fishing
exploitation [68]. It has been shown that successful fishery could occur when fishing
mortality is minimized for older sharks, as they can maintain high levels of recruitment [69,
70]. For this purpose, it would be important to elucidate the spatial distribution patterns
of the two species in the region in relation to parturition and mating areas. This body of
knowledge could also be advantaged from the local ecological knowledge of fishers to
make the decision-making process more robust [11,16]. Stakeholder involvement in co-
management is indeed considered determinant to share responsibility in shark conservation,
making the regulations more legitimate for the fishing sector and therefore improving the
likelihood of compliance with the rules [70,71]. From a species conservation perspective,
the new data on growth, longevity, maturity, and spatial dynamics of smooth-hounds in the
Strait of Sicily provided in this study can be relevant to better assess the impact of fishing
on populations and support the adoption of a sound management plan.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse10111647/s1, Table S1: Tagged individuals of M. mustelus in
the South of Sicily. Samples are sorted by time at liberty. Information includes: tag codes; released
and recapture dates; fish total length and sex. The bold rows indicate individuals recaptured twice.
Table S2: Comparison of annual growth estimates (cm) obtained from vertebrae of M. mustelus
and tagged individuals of Mustelus spp. Data are listed for different size classes. SD = Standard
deviation; Table S3: Mean back-calculated length-at-age (cm) for combined sexes of M. mustelus and
M. punctulatus. SD = Standard deviation; Table S4: Summary of estimated growth parameters of M.
mustelus and M. punctulatus in the South of Sicily. SD = Standard deviation.

https://www.mdpi.com/article/10.3390/jmse10111647/s1
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