
Journal of Global Optimization (2024) 88:27–51
https://doi.org/10.1007/s10898-023-01271-2

An oracle-based framework for robust combinatorial
optimization

Enrico Bettiol1 · Christoph Buchheim1 ·Marianna De Santis2 · Francesco Rinaldi3

Received: 24 December 2021 / Accepted: 10 January 2023 / Published online: 25 January 2023
© The Author(s) 2023

Abstract
We propose a general solution approach for min-max-robust counterparts of combinatorial
optimization problems with uncertain linear objectives. We focus on the discrete scenario
case, but our approach can be extended to other types of uncertainty sets such as polytopes
or ellipsoids. Concerning the underlying certain problem, the algorithm is entirely oracle-
based, i.e., our approach only requires a (primal) algorithm for solving the certain problem.
It is thus particularly useful in case the certain problem is well-studied but its combinato-
rial structure cannot be directly exploited in a tailored robust optimization approach, or in
situations where the underlying problem is only defined implicitly by a given software. The
idea of our algorithm is to solve the convex relaxation of the robust problem by a simplicial
decomposition approach, the main challenge being the non-differentiability of the objective
function in the case of discrete or polytopal uncertainty. The resulting dual bounds are then
used within a tailored branch-and-bound framework for solving the robust problem to opti-
mality. By a computational evaluation, we show that our method outperforms straightforward
linearization approaches on the robust minimum spanning tree problem. Moreover, using the
Concorde solver for the certain oracle, our approach computes much better dual bounds for
the robust traveling salesman problem in the same amount of time.

Keywords Robust optimization · Global optimization · Simplicial decomposition

B Marianna De Santis
marianna.desantis@uniroma1.it

Enrico Bettiol
enrico.bettiol@math.tu-dortmund.de

Christoph Buchheim
christoph.buchheim@math.tu-dortmund.de

Francesco Rinaldi
rinaldi@math.unipd.it

1 Department of Mathematics, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany

2 Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via
Ariosto 25, 00185 Roma, Italy

3 Department of Mathematics, University of Padova, Via Trieste 63, 35121 Padova, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-023-01271-2&domain=pdf
http://orcid.org/0000-0002-1189-5917

28 Journal of Global Optimization (2024) 88:27–51

1 Introduction

Robust optimization has become a wide and active research area in the last decades. The aim
is to address optimization problems with uncertain data. Unlike the stochastic optimization
problem,which usually aims at optimizing expected values, the robust optimization paradigm
tries to optimize the worst case. While stochastic optimization requires full knowledge of
the probability distributions of all uncertain problem data, robust optimization only asks for
so-called uncertainty sets containing all scenarios that need to be taken into account. While
generally leading to computationally easier problems than stochastic optimization, it is well-
known that robust counterparts of tractable combinatorial optimization problems usually turn
out to be NP-hard for most types of uncertainty sets; see, e.g., [17] or the recent survey [7]
and the references therein.

In this paper, we address robust counterparts of general combinatorial optimization prob-
lems of the type

min c�x + c0
s.t. x ∈ X ,

(P)

where X ⊆ {0, 1}n is any set of binary vectors describing the feasible points of the problem
at hand. The objective function coefficients (c0, c) ∈ R

n+1 are considered uncertain. The
robust counterpart of (P) is then given by

min max(c0,c)∈U c�x + c0
s.t. x ∈ X ,

(R)

where U ⊆ R
n+1 is the so-called uncertainty set, collecting all likely scenarios. Note that

allowing an uncertain constant c0 makes the approach slightly more general, even though
the latter is not relevant in the deterministic problem (P). With respect to the considered type
of uncertainty set, our approach is rather general, but we will concentrate our exposition
on the so-called discrete uncertainty case, where U is given as a finite set. Other classes of
uncertainty sets often considered in the literature include polytopal or ellipsoidal sets.

While many approaches devised in the literature consider special classes of combinatorial
structures X , our aim is to devise an entirely oracle-based approach. We thus assume that,
given the objective coefficients (c0, c), an algorithm for solving Problem (P) is available,
but we do not pose any restrictions on how this algorithm works. Our approach is thus
particularly well-suited in situations where the certain problem is well-studied but does
not have a nice enough combinatorial structure that could be exploited in a tailored robust
optimization approach. This is generally the case for NP-hard underlying problems, such as,
e.g., the traveling salesman problem. Another interesting application scenario arises when the
underlying problem is not a classical textbook optimization problem, but it is given by some
sophisticated solution software. This is the case for many real-world optimization problems
solved by practitioners, which generally apply some given optimization tools without having
an insight into the functionality of the respective algorithms. Our approach does not require
any knowledge about the underlying problem, nor about the algorithm used for solving it.

As mentioned above, robust counterparts are often NP-hard even in cases where the
underlying problem (P) is tractable. Consequently, in order to solve (R), it cannot suffice to
call the oracle for solving the certain problem a polynomial number of times. This is even true
without assuming P �=NP [5]. Instead, we propose a branch-and-bound approach, where the
main ingredient is the computation of the lower bound given by the straightforward convex

123

Journal of Global Optimization (2024) 88:27–51 29

relaxation of (R), namely

min max(c0,c)∈U c�x + c0
s.t. x ∈ conv(X).

(C)

This problem is well-defined and convex, as long asU is any compact set, which we assume
throughout this paper. While ellipsoidal uncertainty leads to a smooth objective in (C), which
can be exploited algorithmically [8, 9], the discrete and the polytopal uncertainty cases lead
to piecewise linear objective functions, requiring different solution methods.

In our approach, Problem (C) is solved by an inner approximation algorithm; see, e.g.,
[2] and the references therein. It belongs to the class of Simplicial Decomposition (SD)
methods. First introduced by Holloway in [14] and then further studied in [13, 21, 24, 25],
SD methods currently represent a standard tool in convex optimization. Our SD method
makes use of two different oracles: the first one is an algorithm for solving the convex
relaxation over an inner approximation of conv(X), being the convex hull of a subset X ′
of X . It is important to notice that such a subroutine implicitly defines the uncertainty setU ,
in the sense that the set U is not explicitly part of the problem input, while the rest of
our algorithm is independent of U . The second oracle is the one described above, which
implicitly defines the set X and hence also conv(X). Our approach can thus be seen as an
oracle-based version of a generalized SD algorithm; see, e.g., [2, 3] for further details about
generalized SD. The proposed method indeed performs a two-step optimization process by
handling an ever expanding inner approximation of the relaxed feasible set conv(X). At a
given iteration, the method first builds up a reduced problem (whose feasible set is given by
the inner approximation) and solves it by means of the first oracle. It then feeds the second
oracle with the information coming from the first step to hopefully generate new extreme
points that guarantee a refinement of the inner approximation. If a new point cannot be
found, then the solution obtained with the last reduced problem is the optimal one. The way
the refinement step is carried out is crucial to guarantee finite convergence of our method in
the end.

Dropping rules (i.e., rules that allow to get rid of useless points in the inner approximation)
are often used in simplicial decomposition like algorithms to keep the computational cost
deriving from the first oracle small enough; see, e.g., [2, 4, 25]. As pointed out in [3], defining
suitable dropping rules for a generalized simplicial decomposition, while guaranteeing finite
convergence of the method, is a challenging task. We propose a simple dropping rule and
analyze it in depth both from a theoretical and a computational point of view.

Some other oracle-based algorithms for robust combinatorial optimization with objec-
tive function uncertainty have been devised in the literature. In particular, tailored column
generation approaches for dealing with the continuous relaxation of the given combinatorial
problem are studied in [6, 16]. When considering Problem (C), those column generation
algorithms turn out to be closely related to a Kelley’s cutting plane approach for the problem

max
(c0,c)∈U

min
x∈conv(X)

c�x + c0 ,

which is equivalent to (C) in case of convexU by the minimax theorem. Another interesting
approach to handle the relaxation (C) is described in [19], where the author proposes a pro-
jected subgradient method that approximately solves the projection problem at each iteration
by the classical Frank-Wolfe algorithm. This approach is somehow related to gradient-sliding
methods, see, e.g., [20] and the references therein, and hence obviously differs from the one
described in this paper.

123

30 Journal of Global Optimization (2024) 88:27–51

When aiming at general approaches that do not exploit specific characteristics of the
underlying problem (P), themain alternative to oracle-based algorithms are approaches based
on an IP-formulation of (P). For discrete uncertainty, the non-linear objective in (C) can easily
be linearized, and this approach can be extended to infinite uncertainty setsU using a dynamic
generation of worst-case scenarios, provided that a linear optimization oracle overU is given;
see [22] for a general analysis and [12] for an experimental comparison with reformulation-
based approaches. The scenario generation method is still applicable when having only a
separation algorithm for conv(X) at hand. In the experimental evaluation presented in this
paper, we compare our SD approach to such a separation oracle based approach for the
discrete uncertainty case, using CPLEX to solve the resulting integer linear problems.

In the subsequent section,wedescribe ourSDapproach inmore detail, concentrating on the
discrete uncertainty case and with a particular focus on dropping rules. In Sect. 3, we explain
how we embedded this approach into a branch-and-bound framework. An experimental
evaluation is presented in Sect. 4. Section 5 concludes.

2 Computation of lower bounds

The main ingredient in our approach is the computation of the lower bound given by
the convex relaxation of the robust counterpart (R). Setting P := conv(X) and f (x) :=
max(c0,c)∈U c�x + c0, the problem we address is thus given as

min f (x)
s.t. x ∈ P.

(CR)

It is easy to see that the objective function f in (CR) is convex for any uncertainty set U ,
however, it is not necessarily differentiable. E.g., in case of a finite set U , differentiability is
guaranteed only in points x̄ where the scenario (c0, c) ∈ U maximizing c� x̄ + c0 is unique.
In the following, we first describe the general idea of the simplicial decomposition approach
applied to the potentially non-differentiable problem (CR); see Sect. 2.1. Afterwards, we
investigate a variant of the approach where vertices are dropped in case they are not needed
to define the current simplex. This however requires to deal with the issue of cycling; see
Sect. 2.2.

Since Problem (CR) has a convex objective function f and a convex feasible set P ,
optimality conditions for (CR) can be stated as follows [2, Prop. 3.1.4]:

Proposition 1 Let f : R
n → R be a convex function. Then, x∗ minimizes f over a convex

set C ⊆ R
n if and only if x∗ ∈ C and there exists a subgradient g ∈ ∂ f (x∗) such that

g�(z − x∗) ≥ 0 ∀z ∈ C .

By introducing the normal cone of C at x , defined by

NC (x) = {g ∈ R
n | g�(z − x) ≤ 0, ∀z ∈ C} x ∈ C,

we can equivalently write the optimality conditions stated in Proposition 1 as follows:

Proposition 2 Let f : R
n → R be a convex function. Then, x∗ minimizes f over the convex

set C ⊆ R
n if and only if x∗ ∈ C and ∂ f (x∗) ∩ (−NC (x∗)) �= ∅.

123

Journal of Global Optimization (2024) 88:27–51 31

2.1 General approach

We now describe the two oracles required in our SD framework. Oracle , namely CONV-O
(CONVex hull Oracle) essentially minimizes f over the convex hull of a finite set V ⊂
R
n , looking for a point x∗ ∈ conv(V) that satisfies Proposition 2. Beyond the optimal

solution x∗, we also need coefficients yielding x∗ as a convex combination of points in V
and a subgradient c∗ of f in x∗ such that −c∗ belongs to the normal cone of conv(V) in x∗.

Oracle 1: CONV-O
Input: finite subset V ⊂ R

n

Output: optimizer x∗ of minx∈conv(V) f (x),

α∗ ∈ R
V+ with

∑
v∈V α∗

v = 1 such that x∗ = ∑
v∈V α∗

vv

c∗ ∈ ∂ f (x∗) ∩ (−Nconv(V)(x
∗))

Oracle , namely LIN-O (LINear optimization Oracle), is the main oracle defining
the underlying problem. It takes as input an objective vector c and returns a minimizer
of minx∈X c�x , which is the same as solving Problem (P).

Oracle 2: LIN-O
Input: c ∈ R

n

Output: optimizer x∗ of minx∈X c�x

Using these oracles, Algorithm SD works as follows (see the pseudo-code Algo-
rithm below): the set V k is initialized as the singleton V 1 = {x̂0}, where x̂0 is an arbitrary
element of X . Then, we enter a loop. At each iteration k, Oracle is first called, in order to
calculate a minimizer xk of f over conv(V k) and a subgradient

ck ∈ ∂ f (xk) ∩ (−Nconv(V k)(x
k)) .

Then, Oracle is called, giving as output a minimizer x̂ k of (ck)�x over x ∈ X . Note that
both xk and x̂ k belong to P = conv(X), but not necessarily to X . Since ck ∈ −Nconv(V k)(x

k)

we have that

(ck)�x ≥ (ck)�xk ∀ x ∈ conv(V k).

This means that as long as (ck)� x̂ k < (ck)�xk we can go further in the minimization of f

over P by including the point x̂ k in the set V k . Otherwise, if ck
�
x̂ k ≥ ck

�
xk we can stop

our algorithm, as xk is a minimizer of f over P and f (xk) is a lower bound for Problem (R).
In Fig. 1,we demonstrate the proceeding ofAlgorithm SD by an example. Starting from x̂0,

an arbitrary element of X , Oracle is called and the subgradient c1 aswell as the optimizer x1 =
x̂0 are computed (picture on the left). By calling Oracle with c1 as input, the point x̂1 is
detected and V 2 is built as the finite set consisting of the two points x̂0 and x̂1. In the second
iteration, the output of Oracle includes x2 and c2, while in the third and last iteration (picture
on the right), Algorithm SD terminates with the optimal solution x3, as (c3)� x̂3 = (c3)�x3.

We claim that Algorithm SD terminates after finitely many iterations with a correct result.
For showing this, first observe

123

32 Journal of Global Optimization (2024) 88:27–51

Algorithm 1: SD
Input: Oracle (CONV-O) and Oracle (LIN-O)

Output: optimizer x∗ of (CR)

1: compute any x̂0 ∈ X by calling Oracle with arbitrary objective
2: set V 1 = {x̂0}
3: for k = 1, 2, . . . do
4: compute αk , xk , ck by calling Oracle for the set V k compute x̂k by calling Oracle with objective ck

5: if (ck)� x̂k ≥ (ck)�xk then
6: STOP: xk minimizes f over P
7: end if
8: set V k+1 := V k ∪ {x̂k }
9: end for

Fig. 1 Illustration of Algorithm SD with X = {0, 1}2

Lemma 1 At every iteration k of Algorithm SD, a lower bound for Problem (CR) is given
by f (xk)+ (ck)�(x̂ k − xk) with xk ∈ conv(V k) computed by Oracle and x̂k ∈ X computed
by Oracle .

Proof Define ck0 := f (xk) − (ck)�xk , where xk ∈ conv(V k) is the minimizer of f over
conv(V k) computed by Oracle . Since ck ∈ ∂ f (xk), and by the choice of x̂ k ∈ X , we obtain

f (x̄) ≥ f (xk) + (ck)�(x̄ − xk) = ck0 + (ck)� x̄ ≥ ck0 + min
x∈P

(ck)�x = ck0 + (ck)� x̂ k

for all x̄ ∈ P , where the last equality holds since optimizing (ck)�x over X is equivalent to
optimizing it over its convex hull P . Therefore, ck0 + (ck)� x̂ k = f (xk) + (ck)�(x̂ k − xk) is
a lower bound for Problem (CR). ��
Theorem 3 Algorithm SD terminates after a finite number of iterations with a correct result.

Proof Correctness immediately follows fromLemma1, since f (xk) is clearly an upper bound
for Problem (CR) and the algorithm only terminates when (ck)� x̂ k≥(ck)�xk . So it remains
to show finiteness. Since ck ∈ −Nconv(V k)(x

k) we have that

(ck)�x ≥ (ck)�xk ∀ x ∈ conv(V k).

This means that in case Algorithm SD does not terminate at iteration k, the point x̂ k ∈ X
does not belong to V k , so that V k+1 is a strict extension of V k . The result then follows from
the finiteness of X . ��
Note that this proof of convergence relies on our general assumption that X is a finite set and
on the fact that we never eliminate vertices of V k . The situation is more complicated when
such an elimination is allowed, as discussed in Sect. 2.2 below.
Discrete Uncertainty. In the remainder of this subsection, we concentrate on the important
special case that U consists of a finite number of scenarios {c1, c2, . . . , cm} ⊆ R

n+1, where

123

Journal of Global Optimization (2024) 88:27–51 33

we denote ci = (c̃i , c̄i) with the uncertain constant being c̃i . In this case, Oracle can be
realized as follows: first note that Oracle essentially needs to solve the problem

min
x∈conv(V k)

f (x) = min
x∈conv(V k)

max{c̄�
1 x + c̃1, c̄

�
2 x + c̃2, . . . , c̄

�
mx + c̃m}. (1)

We denote by xk the minimizer of (1), adopting the same notation used within Algorithm SD.
As mentioned in [3], having a finite number of scenarios is one of the special cases where the
calculation of a subgradient ck ∈ ∂ f (xk)∩ (−Nconv(V k)(x

k)) can be obtained as a byproduct
of the solution of (1). For sake of completeness, we report how the subgradient ck is derived.
Problem (1) can be rewritten as

min z
s.t. c̄�

j x + c̃ j ≤ z, j = 1, . . . ,m
x ∈ conv(V k) .

(2)

From the optimality conditions of (2), we have that the optimal solution (xk, zk), together
with the dual optimal variables λkj , satisfies

zk = f (xk) = max{c̄�
1 x

k + c̃1, c̄�
2 x

k + c̃2, . . . , c̄�
mx

k + c̃m}
xk ∈ conv(V k), c̄�

j x
k + c̃ j ≤ zk j = 1, . . . ,m (primal feasibility)

(xk, zk) ∈ argmin
x∈conv(V k), z∈R

{(
1 − ∑m

j=1 λkj

)
z + ∑m

j=1 λkj c̄
�
j x

}
(Lagrangian optimality)

λkj ≥ 0, (dual feasibility)

λkj = 0 if c̄�
j x

k + c̃ j < zk = f (xk) j = 1, . . . ,m (complementary slackness)

Note that

min
(
1 − ∑m

j=1 λkj

)
z + ∑m

j=1 λkj c̄
�
j x

s.t. x ∈ conv(V k)

z ∈ R

has a solution only if
∑m

j=1 λkj = 1, as it would be unbounded otherwise. Then, from
Lagrangian optimality, we have

(m∑

j=1

λkj c̄ j
)�

(x − xk) ≥ 0, ∀x ∈ conv(V k). (3)

It can be shown [1, p. 199] that the vector ck := ∑m
j=1 λkj c̄ j is a subgradient of f at xk ,

and (3) implies that −ck belongs to the normal cone of conv(V k) at xk , so that we indeed
have

ck ∈ ∂ f (xk) ∩ (−Nconv(V k)(x
k)) .

Summarizing, when the set U is finite, an Oracle (CONV-O) suited for our purposes can
be implemented by any linear programming solver able to address Problem (2), rewritten
considering the αk

v as variables. In this way, xk is obtained as the convex combination of αk
v .

Whenever the function f is differentiable, the choice of ck is unique, since ∂ f (xk) =
{∇ f (xk)} in this case. On contrary, in case of finite U , this function is piecewise linear, so
one may ask the question whether there is some freedom in the choice of ck , which could
potentially be exploited in order to find particularly promising search directions. However, it
turns out that even in the discrete uncertainty case, the subgradient ck is usually unique. As

123

34 Journal of Global Optimization (2024) 88:27–51

shown in the following, when the scenarios c1, . . . , cm are chosen (or perturbed) randomly,
with independently and continuously distributed entries, uniqueness is guaranteed with prob-
ability one. This essentially follows from the fact that the set of all uncertainty setsU leading
to non-unique subgradients is not full-dimensional in R

m(n+1).

Theorem 4 Assume that all scenarios inU = {c1, . . . , cm} are perturbed by any continuously
distributed random vector in R

m(n+1) with full-dimensional support. Then, with probability
one, the set ∂ f (xk) ∩ (−Nconv(V k)(x

k)) is a singleton in each iteration.

Proof By definition, there exist zk and αk such that (zk, xk, αk) is a basic optimal solution
of

min z
s.t. c̄�

j x + c̃ j ≤ z, j = 1, . . . ,m
x = ∑

v∈V k αvv

α ≥ 0∑
v∈V k αv = 1 .

(4)

Define A= := {v ∈ V k | αk
v = 0} and C= := { j ∈ {1, . . . ,m} | c̄�

j x
k + c̃ j = zk}.

The feasible set of (4) has dimension |V k |, since α can be freely chosen from a simplex
of dimension |V k | − 1 while x depends linearly on α and z adds another dimension to the
feasible set. Since (zk, xk, αk) is a basic solution of (4), it follows that |C=| + |A=| ≥ |V k |.
Moreover, equality holds with probability one. Indeed, due to the continuous distribution of
the left hand side coefficients in the constraints c̄�

j x + c̃ j ≤ z, the optimal solution of (4) is
degenerate with probability zero.

Now ∂ f (xk) = conv{c̄ j | j ∈ C=} has dimension at most |C=| − 1 and Nconv(V k)(x
k)

has dimension n − (|V k | − |A=| − 1). Consequently, the sum of the two dimensions is
at most n with probability one, but both sets are defined in R

n and ∂ f (xk) is a convex
combination of vectors with continuously distributed entries. Hence, again with probability
one, the sets ∂ f (xk) and −Nconv(V k)(x

k) intersect in at most one point. ��

2.2 Vertex dropping rule

The running time of an iteration of Algorithm SD strongly depends on the size of V k .
The overall performance could thus benefit from a dropping rule for elements of V k . A
straightforward idea is to eliminate vertices not needed to define the minimizer of f over V k .
We thus consider the following modified update rule:

V k+1 := {v ∈ V k | αk
v > 0} ∪ {x̂ k}. (drop)

In the following, we will refer to Algorithm SD where V k is updated according to (drop) as
Algorithm SD-DROP. In case of a non-differentiable function f , Algorithm SD-DROPmay
cycle, as shown in the following example.

Example 1 Let us consider the following problem

min max{x1 − x2, x2 − x1}
s.t. x1 + x2 ≤ 1

x1, x2 ∈ {0, 1},
where conv(X) = {x ∈ R

2 | x1 + x2 ≤ 1, x1, x2 ≥ 0}. Starting from x1 = (0
0

)
, Algo-

rithm SD-DROP will perform the following iterations:

123

Journal of Global Optimization (2024) 88:27–51 35

Fig. 2 Illustration of Example 1

k=1: x1 = (0
0

)
, V 1 = {x1},α1 = (1) and ∂ f (x1)∩(−Nconv(V 1)(x

1)) = conv{(1
−1

)
,
(−1
1

)}.
We choose c1 = (1

−1

)
. Then x̂1 = (0

1

)
, V 2 = {(00

)
,
(0
1

)}
k=2: x2 = (0

0

)
, α2 = (1

0

)
and ∂ f (x2) ∩ (−Nconv(V 2)(x

2)) = conv{(00
)
,
(−1
1

)}.
We choose c2 = (−1

1

)
. Then x̂2 = (1

0

)
, V 3 = {(00

)
,
(1
0

)}
k=3: x3 = (0

0

)
, α3 = (1

0

)
and ∂ f (x3) ∩ (−Nconv(V 3)(x

3)) = conv{(00
)
,
(1
−1

)}.
We choose c3 = (1

−1

)
. Then x̂3 = (0

1

)
, V 4 = {(00

)
,
(0
1

)}.
At iteration k = 3, we thus get V 4 = V 2 and the algorithm cycles. See Fig. 2 for an
illustration.

Considering this example, two questions may arise. Firstly, the solution x1 is actually
optimal, so that choosing a better subgradient (namely zero)would have stopped the algorithm
immediately. Secondly, the scenarios (0, 1,−1)� and (0,−1, 1)� defining the uncertainty
setU contain negative entries. The following example shows that neither of the two features
causes cycling:

Example 2 Let us consider the following problem

min max{x1, x2}
s.t. x1 + x2 ≥ 1

x1, x2 ∈ {0, 1},
where conv(X) = {x ∈ R

2 | x1 + x2 ≥ 1, x1, x2 ≤ 1}. Starting from x1 = (1
1

)
, Algo-

rithm SD-DROP will perform the following iterations:

k=1: x1 = (1
1

)
, V 1 = {x1}, α1 = (1) and ∂ f (x1) ∩ (−Nconv(V 1)(x

1)) = conv{(10
)
,
(0
1

)}.
We choose c1 = (1

0

)
. Then x̂1 = (0

1

)
, V 2 = {(11

)
,
(0
1

)}
k=2: x2 may be

(1
1

)
again, with c2 = c1 and x̂2 = x̂1. Since α2 = (1

0

)
, we eliminate

(0
1

)
,

hence V 3 = {(11
)} = V 1.

See Fig. 3 for an illustration.

It is easy to see that cycling cannot occur when f is differentiable. In fact, in this case,
if xk is not optimal for Problem (CR), we have f (xk+1) < f (xk), since −ck is a descent
direction. In particular, Algorithm SD-DROP terminates after a finite number of iterations.

For the case of finite U , differentiability is not given, and cycling can occur as seen in
the examples above. However, we can still show a weaker result: we will prove that a small
random perturbation of the scenario entries ensures that the objective function value f (xk)
strictly decreases in every iteration and thus can avoid cycling (with probability one). For
this, we first need the following observations.

123

36 Journal of Global Optimization (2024) 88:27–51

Fig. 3 Illustration of Example 2

Lemma 2 Let L be an affine subspace of R
n and assume that f |L , the restriction of f to L,

is differentiable in x ∈ L. Consider y ∈ L and g ∈ ∂ f (x) with g�(y − x) < 0. Then y − x
is a descent direction of f in x.

Proof Let d := y − x . Then ∂ f
∂d (x) = − ∂ f

∂(−d)
(x), since f |L is differentiable in x . From g ∈

∂ f (x) we obtain ∂ f
∂(−d)

(x) ≥ g�(−d). Hence ∂ f
∂d (x) ≤ g�d < 0. ��

Lemma 3 Consider an iteration k in which Algorithm SD-DROP does not terminate. Let L
be an affine subspace of R

n containing xk such that

(i) f |L is differentiable in xk ,
(ii) dim(L ∩ aff(V k+1)) ≥ 1,
(iii) and ck is not orthogonal to L ∩ aff(V k+1).

Then f (xk+1) < f (xk).

Proof By (ii), there exists some y ∈ L ∩ aff(V k+1) with y �= xk . Since L and aff(V k+1) are
affine spaces both containing xk , we may choose y such that (ck)�(y − xk) ≤ 0 (otherwise
replace y by 2xk − y). By (iii), we may even assume that (ck)�(y− xk) < 0. Using Lemma 2
and (i), we thus derive that y − xk is a descent direction of f in xk . It thus remains to show
that xk +ε(y− xk) ∈ conv(V k+1) for some ε > 0, which implies that some x̄ ∈ conv(V k+1)

has a strictly smaller objective value than xk and hence f (xk+1) ≤ f (x̄) < f (xk). Since y ∈
aff(V k+1), and by the definition of V k+1 according to (drop), we can write

y = xk +
∑

v∈V̄ k

γv(v − xk) + δ(x̂ k − xk) , (5)

wherewe define V̄ k := {v ∈ V k | αk
v > 0}. As xk belongs to the relative interior of conv(V̄ k),

there exists ε̄ > 0 such that xk + ∑
v∈V̄ k ε̄γv(v − xk) ∈ conv(V̄ k). Now, since both ck ∈

−Nconv(V k)(x
k) and xk is in the relative interior of conv(V̄ k), we have (ck)�(v − xk) = 0

for all v ∈ V̄ k . In addition,
since SD-DROP does not terminate in iteration k, we have (ck)� x̂ k < (ck)�xk . Together

with (ck)�(y − xk) < 0,
we derive δ > 0 frommultiplying (5) by ck . By choosing ε̄ ≤ 1

δ
, we may assume that xk +

ε̄δ(x̂ k − xk) ∈ conv(V k+1). Altogether, we derive that xk + 1
2 ε̄(y − xk) ∈ conv(V k+1). ��

Theorem 5 Assume that all scenarios inU = {c1, . . . , cm} are perturbed by any continuously
distributed random vector in R

m(n+1) with full-dimensional support. Then, with probability
one, Algorithm SD-DROP terminates after finitely many iterations.

123

Journal of Global Optimization (2024) 88:27–51 37

Proof Consider any iteration k in which Algorithm SD-DROP does not terminate. Then it
suffices to show that f (xk+1) < f (xk) with probability one, since X is finite. For this,
let L be the maximal affine space such that xk ∈ L and f |L is differentiable in xk . By
the definition of f , its epigraph epi(f) is a polyhedron, and L is obtained by projecting
the minimal face of epi(f) containing (xk, f (xk)) onto R

n and taking the affine hull of
the projection. In particular, L is an affine subspace of R

n containing xk which depends
continuously on the perturbation of c1, . . . , cm , whose dimension is n − dim(∂ f (xk)). We
claim that the conditions (ii) and (iii) of Lemma 3 are satisfied by L with probability one,
so that the result follows. Using the same notation as in the proof of Theorem 4 and setting
V̄ k := {v ∈ V k | αk

v > 0}, we note that dim(aff V̄ k) = |V k | − |A=| − 1 and, as shown in
the proof of Theorem 4, |C=| + |A=| = |V k | with probability one. Hence, we have:

dim(L) = n − dim(∂ f (xk)) = n − (|C=| − 1) = n − (|V k | − |A=| − 1) = n − dim(aff V̄ k)

with probability one. Thus, with probability one, we obtain dim(L) + dim(aff V̄ k) = n and
hence dim(L) + dim(aff V k+1) = n + 1, because x̂ k /∈ aff V̄ k and thus dim(aff V k+1) =
dim(aff V̄ k) + 1. Thus (ii) holds with probability one. For showing (iii), we use again that
dim(L ∩ aff V k+1) ≥ 1 with probability one. This implies that the probability of the fixed
vector ck being orthogonal to L ∩ aff V k+1 is zero. ��
Theorem 5 shows that cycling can be avoided by applying small random perturbations to the
scenarios c1, . . . , cm , e.g., by choosing (ĉ j)i ∈ [(c j)i − ε, (c j)i + ε] uniformly at random
for some ε > 0, independently for all j = 1, . . . ,m and i = 0, . . . , n. As X is finite, the
optimal solution of the perturbed problem (R) will agree with an optimizer of the unperturbed
problem if ε is small enough (even though this is not true for the relaxation (CR)). Note that
Theorem 5 requires that also the constant in the objective function is perturbed.

Remark 1 In practice, the perturbation applied in Theorem 5 is not necessary, because small
numerical errors arising in the optimization process will have the same effect. In our experi-
ments described in Sect. 4, we do not explicitly apply any perturbation.

Note that Theorem 4 also holds when eliminating vertices. In particular, this implies that,
when starting from the same set V k , the next subgradient ck is the same with or without
elimination (with probability 1). However, in a later iteration, the set V k and hence the
optimal solution xk may be different in the two cases, and thus also the subgradients. In
our experiments, we observed that vertices being eliminated were sometimes re-generated
in subsequent iterations.

Removing all vertices with zero weight might be too aggressive as a dropping strategy,
as some of the vertices removed in the first iterations might be useful in the subsequent
iterations. A more conservative strategy might hence be eliminating vertices v ∈ V k with
zero weight only if they define a strict ascent direction, i.e., if (ck)�(v − xk) ≥ ε with a fixed
threshold ε > 0. We thus consider the following modified update rule:

V k+1 := {v ∈ V k | αk
v > 0 or (ck)�(v − xk) < ε} ∪ {x̂ k}. (drop2)

Both dropping strategies (drop) and (drop2) will be carefully analyzed in Sect. 4.

3 Embedding SD into a branch-and-bound scheme

In order to solve Problem (R) to optimality, we embed Algorithm SD into a branch-and-
bound scheme, which we will denote by BB-SD. Recall that Algorithm SD is able to solve

123

38 Journal of Global Optimization (2024) 88:27–51

Problem (CR), the continuous relaxation of Problem (R), in a finite number of iterations,
yielding an optimizer x∗ and a set of feasible solutions V ∗ such that x∗ ∈ conv(V ∗).

Within BB-SD we adopt a depth first search (DFS). This choice is motivated by the
fact that we need an enumeration strategy that provides primal solutions quickly, assuming
that we do not have access to any problem-specific heuristics. Moreover, the branching
rule implemented within BB-SD branches on variables that are fractional in the continuous
relaxation, bymeans of the canonical disjunction.More precisely, we branch on the fractional
variable xi closest to one and produce two child nodes: in the node considered first, we fix
the branching variable to 1, in the other node we fix it to 0. This choice, combined with DFS,
typically allows to quickly find integer solutions, which are sparse for many combinatorial
problems. Note that all nodes in BB-SD remain feasible. Indeed, since x∗ ∈ conv(V ∗),
regardless of how we select the fractional variable xi to branch on, the set V ∗ must contain
both solutions with xi = 0 and xi = 1

Note that some specific features of Algorithm SD can be exploited within BB-SD. Firstly,
all binary vertices generated at some node of the branch-and-bound tree can be reused in the
child nodes. Indeed, if we branch on fractional variables, each such vertex must be feasible
in one of the child nodes, and can thus be inherited. This initial set of vertices enables us to
warmstart the SDalgorithmat every child node.Moreover, thanks toLemma1, every iteration
of SD leads to a valid lower bound on the solution of the convex relaxation considered,
meaning that early pruning can be performed. More precisely, at every node we either need
to solve the convex relaxation to optimality or we can stop as soon as SD computes a lower
bound greater than the current upper bound. In both cases, thanks to Theorem 3, the number
of iterations performed by SD is finite.

As emphasized above, we assume that Problem (P) can be accessed only by an optimiza-
tion oracle. Therefore, even when dealing with specific combinatorial problems, we do not
exploit any structure to define primal heuristics within BB-SD. Nevertheless, at every node
of BB-SD, we easily get an upper bound by evaluating the objective function on all the
generated extreme points and taking the minimal value among them.

4 Numerical results

To test the performance of our algorithm SD and of the branch-and-bound schemeBB-SD, we
considered instances of Problem (R) with two different underlying problems: the Spanning
Tree problem (Sect. 4.1) and theTravelingSalesmanproblem (Sect. 4.2). The standardmodels
for these problems use an exponential number of constraints that can be separated efficiently.
In the case of the Spanning Tree problem, this exponential set of constraints yields a complete
linear formulation, while this is not the case for the NP-hard Traveling Salesman problem.
For the robust Minimum Spanning Tree Problem, we report a comparison between BB-SD
and the MILP solver of CPLEX 12.9 [15]. For the robust Traveling Salesman Problem, we
focus on the continuous relaxations, thus reporting a comparison on the bounds obtained at
the root node of the branch-and-bound tree.

In the implementation of SD, for both the robust Minimum Spanning Tree Problem (r-
MSTP) and the robust Traveling Salesman Problem (r-TSP), Oracle (LIN-O) is defined
according to the underlying problem: for the r-MSTP we implemented the standard Kruskal
algorithm [18], a well-known polynomial-time algorithm. For the r-TSP, we used the imple-
mentation of the solver Concorde [10]. Since the TSP is NP-hard, the computational times

123

Journal of Global Optimization (2024) 88:27–51 39

needed to call the linear Oracle differ significantly in the two problems, as seen later in the
numerical experiments.

Except for the Oracle , we used exactly the same implementation for both problems. In
particular, we applied the same Oracle for both r-MSTP and r-TSP. Problem (2) is rewritten
by expanding the condition x ∈ conv(V k). By using the LP formulation (4) and eliminating
the x variables, we obtain the following equivalent formulation:

min z
s.t.

∑
v∈V k c̄v

jαv + c̃ j ≤ z, j = 1, . . . ,m
∑

v∈V k αv = 1
αv ≥ 0, v ∈ V k,

(6)

where c̄v
j = c̄�

j v, for every v ∈ V k . Problem (6) is solved with the LP solver of CPLEX
12.9. Note that the number of constraints depends on the number of scenarios, and the
number of variables corresponds to the cardinality of V k and thus increases at every iteration
in our approach SD. The dropping rule implemented in SD-DROP may reduce the size of
this problem, thus potentially leading to practical improvements in the running time.

Our numerical experiments are organized as follows. We start by analyzing the perfor-
mance of Algorithm SD. For this, in Sect. 4.1.1, we compare the use of different dropping
rules on continuous relaxations of instances of the Robust MST. Then, on the same instances,
we evaluate the performance of Algorithm BB-SD in Sect. 4.1.2, showing the benefits of
warmstarting Algorithm SD along the nodes. Still for the Robust MST, we compare the
performance of Algorithm BB-SD and CPLEX on the generated instances in Sect. 4.1.3.

In Sect. 4.2 we investigate the Robust TSP. We emphasize that our approach computes
exactly the same bound as CPLEX for the Robust MST, while this is not the case for the
Robust TSP: by using an exact linear optimization oracle (Oracle) we implicitly optimize
over the TSP polytope while CPLEX must rely only on a relaxation. This is why for the
Robust TSP we limit ourselves to the comparison between SD and CPLEX on the continuous
relaxation of problem (R) at the root node. We implemented BB-SD in C++ and all the tests
were run in single thread on an Intel Xeon processor CPU E5-2670 running at 2.60 GHz (16
cores) with 64 GB RAM.

4.1 Spanning Tree Problem

Given an undirected weighted graph G = (N , E), a minimum spanning tree is a subset of
edges that connects all vertices, without any cycles and with the minimum total edge weight.
We use the following formulation of the Robust Minimum Spanning Tree problem:

min maxc∈U c�x
s.t.

∑
(u,v)∈E xu,v = |N | − 1

∑
u,v∈X xu,v ≤ |X | − 1, ∀ ∅ �= X ⊆ N

x ∈ {0, 1}E
(r-MSTP)

The binary vector x in (r-MSTP) corresponds to a set E ′ ⊆ E of edges inG. The second class
of constraints in (r-MSTP) excludes cycles in (N , E ′). Together with this, the first constraint
enforces that (N , E ′) is connected.

The objective function can easily be linearized by introducing a new variable z ∈ R

and constraints z ≥ c�x for all c ∈ U . In the above model, the number of inequalities is
exponential in the input size, hence we have to use a separation algorithm within CPLEX.

123

40 Journal of Global Optimization (2024) 88:27–51

Table 1 Comparison between
different dropping rules (1000
scenarios)

N E d0 d1 d2

time (s) #it time (s) #it time (s) #it

20 190 0.27 69.3 0.30 105.0 0.25 73.1

30 435 0.85 111.1 0.95 184.4 0.73 110.6

40 780 1.72 152.2 2.31 295.2 1.59 155.6

50 1225 2.55 173.6 3.74 353.6 2.44 172.4

60 1770 3.36 208.5 4.65 416.6 3.28 205.5

For our experiments, we consider a benchmark of randomly generated instances of r-
MSTP. We build complete graphs of five different sizes (from 20 to 60 nodes). The nominal
costs are real numbers randomly chosen in the interval [1, 2]. For each size we randomly
generate 10 different nominal cost vectors. The scenarios c ∈ U are generated by adding to
the vector of nominal costs a random unit vector, multiplied by a scalar factor β. We consider
three such factors 1, 2, and 3, and generate three different numbers of scenarios (#sc) 10, 100,
and 1000. In total, then, we have a benchmark of 450 instances, available at https://github.
com/enribet/MST-Instances/.

In a first experiment, we analyze different dropping rules within algorithm SD. Then, we
showhowperforming awarmstart along the branch-and-bound iterations leads to a significant
reduction in terms of number of iterations compared to a cold start. Finally, our branch-and-
bound method BB-SD is compared to the MILP solver of CPLEX. Within CPLEX, we apply
a dynamic separation algorithm using a callback adding lazy constraints, adopting a simple
implementation based on the Ford-Fulkerson algorithm.

4.1.1 Comparison of dropping rules

In this section, we focus on the performance of algorithm SD for solving the continuous
relaxation of our r-MSTP instances. In particular, we compare the performance of SD imple-
menting three different dropping rules. Since all instances with 10 or 100 scenarios are solved
in less than 0.1 seconds, we only consider the continuous relaxations of instances with 1000
scenarios, meaning that the evaluation is carried out on 150 instances. As dropping rules, we
implemented the following:

• d0: meaning that no dropping rule is applied within SD;
• d1: meaning that we update the set V k according to rule (drop) defined in Sect. 2.2, i.e.,

we eliminate all vertices v ∈ V k such that αk
v = 0 at every iteration of SD;

• d2: meaning that we update the set V k according to rule (drop2) defined in Sect. 2.2,
i.e., we eliminate vertices v ∈ V k such that αk

v = 0 only if they provide a strict ascent
direction, i.e., if (ck)�(v − xk) ≥ ε with a fixed threshold ε > 0. In our numerical
experiments we used ε = 0.01 · ||ck ||2.

As mentioned before, for each |N | we built 30 instances, 10 for each factor β. In Table 1,
we report the average running times in seconds (time) and the average numbers of iterations
(#it) for each version of SD; note that the number n of variables in (P) is given by |E | here.
To further analyze the performance of the three different rules, we also report in Table 2 the
median, the minimum and the maximum running time attained in seconds.

For our comparisonwe also use performance profiles (PP) as proposed byDolan andMoré
[11]. Given a set of solvers S and a set of problems P , the performance of a solver s ∈ S on

123

https://github.com/enribet/MST-Instances/
https://github.com/enribet/MST-Instances/

Journal of Global Optimization (2024) 88:27–51 41

Fig. 4 Comparison between different dropping rules (1000 scenarios)

Table 2 Comparison between different dropping rules (1000 scenarios) – focus on CPU time

N E d0 d1 d2

median (s) min (s) max (s) median (s) min (s) max (s) median (s) min (s) max (s)

20 190 0.22 0.04 0.76 0.21 0.03 0.96 0.21 0.04 0.71

30 435 0.81 0.15 1.76 0.73 0.17 2.37 0.59 0.15 1.58

40 780 1.49 0.45 3.79 1.79 0.38 5.69 1.33 0.34 3.69

50 1225 2.12 0.44 6.04 3.26 0.5 10.34 2.22 0.41 5.63

60 1770 2.82 0.66 8.38 3.57 0.75 15.46 2.73 0.59 9.53

problem p ∈ P is compared against the best performance obtained by any solver in S on the
same problem. The performance ratio is defined as rp,s = tp,s/min{tp,s′ | s′ ∈ S}, where
tp,s is the measure we want to compare. The performance profile for s ∈ S is the plot of the
cumulative distribution function ρs(τ) = |{p ∈ P | rp,s ≤ τ }|/|P|. In Fig. 4, we report the
performance profiles related to the CPU time (in seconds) and the number of iterations.

We notice that dropping rule d2 allows SD to have slightly better performance in terms of
CPU time, despite being not always better with respect to SD with no dropping rule in terms
of number of iterations. Indeed, in the MST problem, the linear oracle (Oracle) calls are
extremely fast, while most of the computational time is needed to solve the problem (6). This
explains why, although some more iterations are needed, dropping some vertices and hence
reducing the size of problem (6) can improve the overall performance of the algorithm. On
the other hand, it is clear from the results that eliminating all inactive vertices as in Algorithm
SD-DROP (rule d1) is not beneficial for SD as both the number of iterations and the CPU
time increase.

4.1.2 Warmstart benefits

In the following, we evaluate our branch-and-bound method BB-SD. In particular, we will
compare the performance of BB-SD considering both SDwith no dropping rule (d0) and SD
with dropping rule (d2). The comparison is done on all 450 instances of r-MST.Asmentioned
before, for each combination of |N | and #sc, we built 30 instances, 10 for each value of the
scalar factor β. In Table 3, we first compare the performance of BB-SD by considering SD
with no dropping rule with and without warmstart (d0 no ws vs d0 with ws). In the

123

42 Journal of Global Optimization (2024) 88:27–51

Table 3 Using BB-SD with and without warmstart

N E #sc d0 no ws d0 with ws

#sol time (s) #nodes #it #sol time (s) #nodes #it

20 190 10 30 1.49 6.72e+2 8.00e+3 30 0.84 6.69e+2 4.23e+3

100 30 60.03 6.85e+3 1.63e+5 30 33.44 6.87e+3 8.56e+4

1000 24 476.59 6.74e+3 1.66e+5 27 588.38 1.24e+4 1.78e+5

30 435 10 30 13.12 3.15e+3 5.97e+4 30 7.34 3.52e+3 3.21e+4

100 25 602.07 3.55e+4 1.15e+5 27 451.05 5.04e+4 8.29e+5

1000 11 493.33 3.47e+3 8.30e+4 14 642.41 8.64e+3 1.12e+5

40 780 10 30 110.32 1.59e+4 4.10e+5 30 51.77 1.59e+4 1.91e+5

10 17 764.88 3.24e+4 1.10e+6 19 632.17 5.25e+4 8.65e+5

10 8 1592.79 7.67e+3 1.78e+5 9 837.77 9.12e+3 9.24e+4

50 1225 10 30 441.38 4.35e+4 1.32e+6 30 201.05 4.40e+4 6.10e+5

100 10 137.71 7.26e+3 1.53e+5 13 558.02 3.47e+4 5.81e+5

1000 7 1209.52 3.83e+3 9.81e+4 9 810.38 5.92e+3 6.64e+4

60 1770 10 25 513.71 4.21e+4 1.28e+6 30 575.38 9.81e+4 1.47e+6

100 9 240.12 9.04e+3 2.09e+5 12 689.81 3.50e+4 5.77e+5

1000 2 867.80 2.08e+3 5.77e+4 3 1136.77 6.47e+3 7.58e+4

table, we report the number of instances solved within the time limit of one hour (#sol),
the average running times in seconds (time), the average number of nodes (#nodes) and the
average number of iterations (#it) for each version of SD. To further analyze the performance
of BB-SD, we also report in Table 4 the median, the minimum and the maximum running
time attained in seconds. All metrics are taken over the instances solved within the time
limit. It is clear from the results that the warmstart leads to a considerable decrease in the
average number of iterations and consequently a significant decrease in CPU time. The same
behavior can be noticed when looking at Table 5 and Table 6 where we compare BB-SD
using dropping rule d2 with and without warmstart (d2 no ws vs d2 with ws).

In Fig. 5, we further report the performance profiles with respect to the CPU time of
the four versions of BB-SD. The versions of BB-SD with no elimination (d0) and with
dropping rule d2 show very similar performances. The profiles clearly show that BB-SD
with nowarmstart is almost two times slower than BB-SDwithwarmstart. In fact, the profiles
are getting closer only when τ ≥ 1.8. This can be noticed also by looking at the metrics
reported in Tables 3-6. Note that from our results it is clear that the instances become harder
with a higher number of scenarios.We can also notice that BB-SDwith d2 with ws shows
slightly better performances when looking at the hardest instances, namely those with 1000
scenarios.

4.1.3 Comparison between BB-SD and CPLEX

We now compare our branch-and-bound algorithm BB-SD with CPLEX on our r-MSTP
instances. As already mentioned, within the MILP solver of CPLEX, we apply a dynamic
separation algorithm using a callback adding lazy constraints, adopting a simple imple-
mentation based on the Ford-Fulkerson algorithm. The comparison is made with BB-SD
implementing the dropping rule d2 and allowing warmstart. In Table 7, we report for each

123

Journal of Global Optimization (2024) 88:27–51 43

Table 4 Using BB-SD with and without warmstart – focus on CPU time

N E #sc d0 no ws d0 with ws

#sol median (s) min (s) max (s) #sol median (s) min (s) max (s)

20 190 10 30 0.505 0.01 7.84 30 0.28 0.01 4.53

100 30 12.88 0.24 634.19 30 6.67 0.16 367.72

1000 24 129.485 2.08 3199.37 27 100.79 1.00 3381.95

30 435 10 30 3.74 0.08 130.15 30 1.91 0.05 64.92

100 25 116.7 1.95 3318.87 27 70.11 1.00 2411.94

1000 11 127.16 53.81 3094.10 14 107.29 26.51 2454.02

40 780 10 30 47.25 0.24 771.56 30 19.58 0.14 358.47

10 17 91.2 1.25 3286.76 19 124.17 0.74 3550.3

10 8 1603.91 221.19 3497.91 9 827.92 95.49 1809.2

50 1225 10 30 107.57 0.5 1774.98 30 50.93 0.3 820.17

100 10 61.83 18.79 495.49 13 55.32 8.17 3367.21

1000 7 823.86 257.84 3435.23 9 425.75 86.55 1816.43

60 1770 10 25 253.83 3.68 2680.46 30 142.68 1.79 3209.57

100 9 144.65 36.48 1056.5 12 83.62 18.72 3032.88

1000 2 867.795 855.32 880.27 3 433.79 349.25 2627.27

Table 5 Using BB-SD with and without warmstart, applying dropping rule d2

N E #sc d2 no ws d2 with ws

#sol time (s) #nodes #it #sol time (s) #nodes #it

20 190 10 30 1.55 6.75e+2 8.25e+3 30 0.88 6.82e+2 4.39e+3

100 30 61.11 6.85e+3 1.69e+5 30 34.38 6.88e+3 8.82e+4

1000 24 480.61 6.74e+3 1.70e+5 27 592.45 1.24e+4 1.82e+5

30 435 10 30 14.62 3.39e+3 6.52e+4 30 7.58 3.52e+3 3.24e+4

100 25 614.89 3.55e+4 1.16e+6 27 461.70 5.04e+4 8.34e+5

1000 12 695.62 4.76e+3 1.27e+5 14 576.20 7.51e+3 9.94e+4

40 780 10 30 115.76 1.57e+4 4.10e+5 30 53.22 1.56e+4 1.88e+5

100 17 776.65 3.21e+4 1.08e+6 18 473.66 3.88e+4 6.37e+5

1000 7 1266.34 6.69e+3 1.42e+5 9 856.06 9.13e+3 9.26e+4

50 1225 10 30 523.91 4.73e+4 1.44e+6 30 229.78 4.71e+4 6.52e+5

100 10 143.25 7.26e+3 1.53e+5 13 580.32 3.41e+4 5.75e+5

1000 7 1194.76 3.83e+3 9.81e+4 9 848.74 5.92e+3 6.64e+4

60 1770 10 25 592.07 4.26e+4 1.29e+6 30 584.95 9.07e+4 1.36e+6

100 9 249.59 9.04e+3 2.09e+5 12 718.41 3.50e+4 5.77e+5

1000 2 859.83 2.08e+3 5.77e+4 3 1188.03 6.47e+3 7.58e+4

123

44 Journal of Global Optimization (2024) 88:27–51

Table 6 Using BB-SD with and without warmstart, applying dropping rule d2 – focus on CPU time

N E #sc d2 no ws d2 with ws

#sol median (s) min (s) max (s) #sol median (s) min (s) max(s)

20 190 10 30 0.515 0.01 8.2 30 0.29 0.01 4.96

100 30 13.14 0.21 648.88 30 6.80 0.13 380.00

1000 24 127.41 2.06 3273.04 27 97.18 1.01 3444.12

30 435 10 30 3.87 0.08 135.63 30 1.96 0.05 67.2

100 25 118.93 2.01 3388.87 27 71.67 1.01 2481.13

1000 12 124.66 54.08 3257.92 14 107.24 26.8 2097.43

40 780 10 30 44.545 0.27 824.24 30 44.545 0.27 824.24

100 17 92.88 1.26 3235.81 18 85.29 0.75 2556.65

1000 7 1363.21 215.43 2525.02 9 790.28 95.72 1798.67

50 1225 10 30 120.555 0.53 2087.87 30 53.99 0.31 884.55

100 10 63.96 19.02 522.4 13 56.1 8.44 3495.11

1000 7 785.54 194.14 3480.99 9 427.07 79.56 2027.78

60 1770 10 25 292.88 4.08 2955.47 30 154.38 1.93 2411.76

100 9 152.7 38.17 1102.45 12 84.66 19.25 3229.65

1000 2 859.825 859.07 860.58 3 437.11 350.52 2776.47

combination of |N | and #sc, the number of instances solved within the time limit of one
hour (#sol), the average running times in seconds (time) and the average number of nodes
(#nodes). We recall that the averages are taken considering the results on 30 instances each.
For a further comparison, we also report in Table 8 the median, the minimum and the max-
imum running time attained in seconds for both BB-SD and CPLEX. Performance profiles
are presented in Fig. 6.

We can notice that BB-SD strongly ouperforms CPLEX when considering instances
with 10 and 100 scenarios. As already highlighted before, the higher the number of scenar-
ios, the harder the instances become. Still, also when dealing with instances containing 1000
scenarios, BB-SD shows better performance with respect to CPLEX. On instances with 10
scenarios, we see that BB-SD is able to solve all instances within the time limit, while CPLEX
fails in 46 cases. For instances on 100 scenarios, BB-SD and CPLEX show 50 and 75 failures,
respectively, while for instances with 1000 scenarios, BB-SD and CPLEX show 88 and 95
failures.

4.2 Traveling Salesman Problem

Given an undirected, complete, and weighted graph G = (N , E), the Traveling Salesman
problem consists in finding a path starting and ending at a given vertex v ∈ N such that all
vertices in the graph are visited exactly once and the sum of the weights of its constituent
edges is minimized. Our approach uses the following formulation of the Traveling Salesman
problem:

min maxc∈U c�x
s.t.

∑
e∈δ(i) xe = 2, ∀i ∈ N

∑
e∈δ(X) xe ≥ 2, ∀ ∅ �= X � N

x ∈ {0, 1}|E |
(r-TSP)

123

Journal of Global Optimization (2024) 88:27–51 45

Fig. 5 Comparison of BB-SD
with and without warmstart

123

46 Journal of Global Optimization (2024) 88:27–51

Table 7 Comparison between BB-SD and CPLEX on r-MST instances

N E #sc BB-SD CPLEX

#sol time (s) #nodes #sol time (s) #nodes

20 190 10 30 0.88 6.81e+2 30 0.36 2.15e+3

100 30 34.38 6.88e+3 30 11.85 3.65e+4

1000 27 592.45 1.24e+4 30 295.54 1.47e+5

30 435 10 30 7.58 3.52e+3 30 39.19 6.80e+4

100 27 461.70 5.04e+4 27 399.98 7.91e+5

1000 14 576.20 7.51e+3 17 649.76 2.42e+5

40 780 10 30 53.22 1.56e+4 21 304.25 3.56e+5

100 18 473.66 3.88e+4 11 897.02 9.29e+5

1000 9 856.06 9.13e+3 4 1159.91 3.29e+5

50 1225 10 30 229.78 4.71e+4 12 855.83 7.43e+5

100 13 580.32 3.41e+4 4 685.22 5.17e+5

1000 9 848.74 5.92e+3 3 3247.92 5.36e+5

60 1770 10 30 584.95 9.07e+4 11 596.26 4.24e+5

100 12 718.41 3.50e+4 3 1167.98 9.92e+5

1000 3 1188.03 6.47e+3 1 577.20 8.76e+4

Table 8 Comparison between BB-SD and CPLEX on r-MST instances – focus on CPU time

N E #sc BB-SD CPLEX

#sol median (s) min (s) max (s) #sol median (s) min (s) max (s)

20 190 10 30 0.29 0.01 4.96 30 0.20 0.01 1.58

100 30 6.79 0.13 380.00 30 4.83 0.16 110.94

1000 27 97.18 1.01 3444.12 30 38.80 1.22 2908.79

30 435 10 30 1.96 0.05 67.20 30 3.38 0.27 369.54

100 27 71.67 1.01 2481.13 27 91.24 1.04 3197.07

1000 14 107.23 26.80 2097.43 17 319.39 15.54 3194.27

40 780 10 30 20.70 0.14 376.32 21 59.16 5.66 1793.91

100 18 85.29 0.75 2556.65 11 431.04 6.17 2639.18

1000 9 790.28 95.72 1798.67 4 793.67 126.42 2925.89

50 1225 10 30 53.99 0.31 884.55 12 700.54 9.56 2249.47

100 13 56.10 8.44 3495.11 4 774.44 159.68 1032.33

1000 9 427.07 79.56 2027.78 3 3496.58 2748.87 3498.32

60 1770 10 30 154.38 1.93 2411.76 11 167.14 24.79 2799.27

100 12 84.66 19.25 3229.65 3 485.80 317.63 2700.50

1000 3 437.11 350.52 2776.47 1 577.20 577.20 577.20

123

Journal of Global Optimization (2024) 88:27–51 47

Fig. 6 Comparison between BB-SD and CPLEX on r-MST instances

The constraints in (r-TSP) define the set of feasible cycles starting and ending at a given
vertex v ∈ N , also called tours. The first constraint is known as degree constraint and
guarantees that the tour visits each vertex in the graph exactly once. The remaining constraints,
known as subtour elimination constraints, guarantee that the solution does not decompose
into several subtours. The number of inequalities is again exponential and for CPLEXwe use
essentially the same separation algorithm as for the Spanning Tree problem; see Sect. 4.1.

For our tests, we consider 10 instances from the TSPLIB library [23]. For each instance, we
generate different scenarios by adding to the nominal costs a randomunit vectormultiplied by
some coefficient. This vector has non-negative components, to avoid negative distances, and

123

48 Journal of Global Optimization (2024) 88:27–51

the coefficients are 1, 2 and3, as for the r-MSTcase.Weagain consider three different numbers
of scenarios, namely 10, 100, and 1000, thus producing a benchmark of 90 instances in total.
As mentioned above, we realized the linear oracle (Oracle) by using the solver Concorde
(release 03.12.19) [10]. We used the default version and solved each linear problem exactly.
In particular, in each linear oracle call an NP-hard problem is solved, so that the time needed
by Oracle is now much larger than the time needed by Oracle , unlike in the MST case.
Therefore, eliminating variables is not effective: it would slightly reduce the overall running
time for Oracle , while increasing the number of iterations and hence increasing the overall
running time forOracle . For this reason, for our tests, we only consider SDwhere no dropping
rule is applied.

In the following, we compare the performance of SD applied to solve the continuous
relaxation of the instances considered and the performance of CPLEX at the root node. We
notice that CPLEXminimizes the non-linear objective function maxc∈U c�x over the subtour
relaxation of the problem, while in our formulation we implicitly optimize the same function
over the convex hull of feasible tours, thus obtaining a tighter lower bound. However, our
approach needs to solve NP-hard problems to achieve this. It is thus not surprising that the
computing time needed by SD to solve the relaxation is often larger than the time needed
by CPLEX to solve its weaker relaxation. However, when requiring CPLEX to obtain the
same stronger bound, the required computational time increases significantly. In Table 9, we
show the results for the TSP instances. For every instance and every number of scenarios,
we report the average bound and computing time in seconds obtained by SD (SD root node)
and by CPLEX (CPLEX root node) to solve the continuous relaxation. In the last column,
we report the time in seconds needed by CPLEX to obtain the same bound as the SD bound
(CPLEX – SD bound). The table shows that, on average, the SD bound is much stronger
than the subtour relaxation bound, but it is obtained in a longer time. Furthermore, the time
needed by CPLEX to compute the same bound as SD is often much larger for instances with
a large number of scenarios, e.g. #sc = 1000.

5 Conclusion

We presented an algorithm for the exact solution of strictly robust counterparts of combinato-
rial optimization problems, entirely based on a linear optimization oracle for the underlying
problem. Concentrating on the discrete scenario case, our experimental evaluation shows that
the approach is competitive both in case the underlying problem is very easy to solve, as in
the MST case, and in case it is a hard problem, as in the TSP case. In particular, in the latter
case, we have seen that solving the underlying problem to optimality can be beneficial even
when it is NP-hard: in the same amount of time, our approach produces much better dual
bounds than CPLEX based on a linearized IP formulation of the problem, using the standard
subtour formulation.

We emphasize again that our approach is not restricted to the case of discrete uncertainty.
However, Oracle must be adapted when considering other classes of uncertainty sets and an
empirical evaluation is an open topic for future research. In case of ellipsoidal uncertainty,
Oracle turns out to be a second-order cone program. As mentioned above, since f is a
smooth function in this case, cycling is not possible even if the most aggressive dropping
rule (drop) is used. For the case of polyhedral uncertainty, Oracle can again be realized as a
linear program, and the statement of Theorem 5 holds analogously.

123

Journal of Global Optimization (2024) 88:27–51 49

Table 9 Results for r-TSP, continuous relaxations (averaged on the different scenarios)

instance #sc SD root node CPLEX CPLEX

root node SD bound
bound time (s) bound time (s) time (s)

brazil58 10 46031.5 2.09 41982.9 0.03 1.77

100 48086.6 12.35 43722.6 0.21 9.75

1000 49278.8 19.09 44810.6 2.68 256.33

dantzig42 10 1158.0 1.59 1093.1 0.02 0.26

100 1203.6 0.97 1143.7 0.17 0.99

1000 1230.9 6.92 1166.3 3.50 15.33

fri26 10 1622.8 0.45 1550.9 0.01 0.09

100 1691.7 1.32 1624.7 0.07 0.39

1000 1721.6 1.44 1663.8 0.64 2.75

gr120 10 9801.5 15.96 9564.9 0.16 203.93

100 9977.8 68.51 9759.4 1.03 672.07

1000 10131.3 68.74 9886.2 18.34 > 3600.00

gr17 10 3911.2 0.28 3623.6 0.01 0.04

100 4053.9 0.57 3676.5 0.02 0.19

1000 4248.6 0.73 3925.4 0.16 1.94

gr21 10 4928.4 0.22 4903.8 0.01 0.01

100 5138.5 0.22 5104.6 0.03 0.15

1000 5301.1 0.23 5277.2 0.24 0.76

gr24 10 2202.9 0.30 2153.9 0.01 0.04

100 2272.6 0.55 2251.5 0.04 0.16

1000 2359.8 1.76 2318.3 0.37 1.52

gr48 10 7642.8 0.92 7417.6 0.02 0.43

100 7907.4 6.38 7668.2 0.14 3.10

1000 8034.1 8.38 7789.8 1.57 31.01

hk48 10 18545.0 0.55 17895.9 0.02 0.40

100 18889.0 1.50 18377.3 0.14 2.18

1000 19190.6 6.74 18854.7 1.63 21.43

swiss42 10 2051.0 1.71 1970.7 0.03 0.50

100 2128.4 1.41 2064.1 0.16 1.25

1000 2185.3 9.20 2117.2 2.13 19.31

The investigation of other generalizations of our approach is left as future work. In particu-
lar, it may be interesting to extend it to more general classes of uncertain objective functions,
e.g., of the form c�g(x), where a convex function g : R

n → R
m is given and the coeffi-

cients c ∈ R
m+ are uncertain. In this case, the function f describing the worst case over all

scenarios is still a convex function, and it suffices to adapt the oracle Oracle .

Acknowledgements The authors thank the editors and the reviewers for their constructive and helpful com-
ments.

Funding Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.

123

50 Journal of Global Optimization (2024) 88:27–51

Data availability The datasets generated and analysed during the current study are provided by the corre-
sponding author by reasonable request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont, MA (2009)
2. Bertsekas, D.P.: Convex Optimization Algorithms. Athena Scientific, Belmont, MA (2015)
3. Bertsekas, D.P., Huizhen, Yu.: A unifying polyhedral approximation framework for convex optimization.

SIAM J. Optim. 21(1), 333–360 (2011). https://doi.org/10.1137/090772204
4. Bettiol, E., Létocart, L., Rinaldi, F., Traversi, E.: A conjugate direction based simplicial decomposition

framework for solving a specific class of dense convex quadratic programs. Comput. Optim. Appl. 75(2),
321–360 (2020). https://doi.org/10.1007/s10589-019-00151-4

5. Buchheim, C.: A note on the nonexistence of oracle-polynomial algorithms for robust combinatorial
optimization. Discret. Appl. Math. 285, 591–593 (2020). https://doi.org/10.1016/j.dam.2020.07.002

6. Buchheim, C., Kurtz, J.: Min-max-min robust combinatorial optimization. Math. Program. 163(1–2),
1–23 (2017). https://doi.org/10.1007/s10107-016-1053-z

7. Buchheim, C., Kurtz, J.: Robust combinatorial optimization under convex and discrete cost uncertainty.
EURO J. Comput. Optim. 6(3), 211–238 (2018). https://doi.org/10.1007/s13675-018-0103-0

8. Buchheim, C., De Santis, M.: An active set algorithm for robust combinatorial optimization based on
separation oracles.Math. Program.Comput. 11(4), 755–789 (2019). https://doi.org/10.1007/s12532-019-
00160-8

9. Buchheim, C., De Santis, M., Rinaldi, F., Trieu, L.: A Frank-Wolfe based branch-and-bound algorithm for
mean-risk optimization. J. Global Optim. 70(3), 625–644 (2018). https://doi.org/10.1007/s10898-017-
0571-4

10. Concorde TSP solver. https://www.math.uwaterloo.ca/tsp/concorde/index.html
11. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. Progr.

91, 201–213 (2002)
12. Fischetti, M., Monaci, M.: Cutting plane versus compact formulations for uncertain (integer) linear pro-

grams. Math. Progr. Comput. (2012). https://doi.org/10.1007/s12532-012-0039-y
13. Hearn, Donald W, Lawphongpanich, S., Ventura, Jose A.: Restricted simplicial decomposition: Compu-

tation and extensions. In: ComputationMathematical Programming, pp 99–118. Springer, (1987). https://
doi.org/10.1007/BFb0121181

14. Holloway, C.A.: An extension of the frank and wolfe method of feasible directions. Math. Program. 6(1),
14–27 (1974). https://doi.org/10.1007/BF01580219

15. IBM ILOG CPLEX Optimizer, (2021). https://www.ibm.com/it-it/analytics/cplex-optimizer
16. Kämmerling, N., Kurtz, J.: Oracle-based algorithms for binary two-stage robust optimization. Comput.

Optim. Appl. 77(2), 539–569 (2020). https://doi.org/10.1007/s10589-020-00207-w
17. Kouvelis, P., Gang, Y.: Robust Discrete Optimization and its Applications. Springer, Berlin (1996)
18. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedi.

Am. Math. Soc. 7(1), 48–50 (1956). https://doi.org/10.2307/2033241
19. Kurtz, J.: New complexity results and algorithms for min-max-min robust combinatorial optimization.

arXiv:2106.03107, (2021)
20. Lan, G.: First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, New

York (2020)
21. Larsson, T., Patriksson, M.: Simplicial decomposition with disaggregated representation for the traffic

assignment problem. Transp. Sci. 26(1), 4–17 (1992). https://doi.org/10.1287/trsc.26.1.4
22. Mutapcic, A., Boyd, S.: Cutting-set methods for robust convex optimization with pessimizing oracles.

Optim. Methods Softw. 24(3), 381–406 (2009). https://doi.org/10.1080/10556780802712889
23. TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/090772204
https://doi.org/10.1007/s10589-019-00151-4
https://doi.org/10.1016/j.dam.2020.07.002
https://doi.org/10.1007/s10107-016-1053-z
https://doi.org/10.1007/s13675-018-0103-0
https://doi.org/10.1007/s12532-019-00160-8
https://doi.org/10.1007/s12532-019-00160-8
https://doi.org/10.1007/s10898-017-0571-4
https://doi.org/10.1007/s10898-017-0571-4
https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://doi.org/10.1007/s12532-012-0039-y
https://doi.org/10.1007/BFb0121181
https://doi.org/10.1007/BFb0121181
https://doi.org/10.1007/BF01580219
https://www.ibm.com/it-it/analytics/cplex-optimizer
https://doi.org/10.1007/s10589-020-00207-w
https://doi.org/10.2307/2033241
http://arxiv.org/abs/2106.03107
https://doi.org/10.1287/trsc.26.1.4
https://doi.org/10.1080/10556780802712889
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95

Journal of Global Optimization (2024) 88:27–51 51

24. Ventura, J.A., Hearn, D.W.: Restricted simplicial decomposition for convex constrained problems. Math.
Program. 59(1), 71–85 (1993). https://doi.org/10.1007/BF01581238

25. Von Hohenbalken, B.: Simplicial decomposition in nonlinear programming algorithms. Math. Program.
13(1), 49–68 (1977). https://doi.org/10.1007/BF01584323

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/BF01581238
https://doi.org/10.1007/BF01584323

	An oracle-based framework for robust combinatorial optimization
	Abstract
	1 Introduction
	2 Computation of lower bounds
	2.1 General approach
	2.2 Vertex dropping rule

	3 Embedding SD into a branch-and-bound scheme
	4 Numerical results
	4.1 Spanning Tree Problem
	4.1.1 Comparison of dropping rules
	4.1.2 Warmstart benefits
	4.1.3 Comparison between BB-SD and CPLEX

	4.2 Traveling Salesman Problem

	5 Conclusion
	Acknowledgements
	References

