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Abstract

Feynman Integrals play a pivotal role in the computation of multi-loop Scattering Amplitudes,
and so they are of vital importance for our capabilities of making predictions. Recent advances
frommultiple experimental sides of fundamental Physics, range from the detection of colliding
point-like particles at the Large Hadron Collider to the observation of gravitational waves as-
sociated to black holes merging. They challenge us to understand and control better than ever
the intimate nature of those integrals.

A key step in the study of Feynman Integrals consists in realizing that their otherwise insur-
mountable complexity can be significantly mitigated exploiting suitable Integration by Parts
identities. Thanks to these it is possible to build a huge set of linear relations among those in-
tegrals and exploit them, through extensive linear algebra manipulations, in order to identify a
set of independent building blocks, known asMaster Integrals. Master Integrals can be thought
of as a basis in the full space of integrals which can appear in the calculation.
Equally importantly, Integration by Parts identities allow deriving differential equations for
Master Integrals. Differential equations constitute another fundamental tool, since solving them
analytically, or numerically, it is possible to determine the expressions and eventually numeri-
cal values for the basis of integrals, and thereby for the full family of Feynman Integrals, under
consideration.

In this thesis we show how the powerful approach of differential equations, in particular the so
called canonical form, can be used in order to evaluate Feynman Integrals arising in somemod-
els relevant for Dark Matter detection. The corresponding Master Integrals, involving different
masses in internal and external states, are expressed in terms of Generalized Polylogarithms.

Moreover, in this work we discuss the role of a mathematical framework−(probably) not so
common to theoretical physicists−known as twisted (Co)Homology or, more colloquially, In-
tersection Theory. It has recently emerged that this framework offers a new view and a new
perspective towards Feynman Integrals, elucidating some of their properties along with offer-
ing new computational tools. Notably, within this theory, it is possible to build the so called
co-homology intersection number, which acts as a scalar product among Feynman Integrals.
Loosely speaking, following a by now well established Amplitude tradition, several important
aspects emerge once we embed our construction into the complex plane, and exploit its rich-
ness. Intersection numbers turn to be built upon basic ingredients, such as Residues and Stokes’
theorem. Thanks to these new techniques the decomposition in terms of Master Integrals can
be obtained by means of a−conceptually clear−projection formula.





Sommario

Gli integrali di Feynman hanno un ruolo centrale nel calcolo delle Ampiezze di Scattering a
molti loop, quindi sono oggetti di vitale importanza per la nostra capacità di fare previsioni. I
recenti sviluppi dal lato sperimentale, che coinvolgono avanzamenti che vanno dalla rivelazioni
di urti di particelle puntiformi al Large Hadron Collider fino all’osservazione di onde gravi-
tazionali prodotte a seguito della fusione di buchi neri, ci spingono a investigare e capire la
natura più profonda di questi integrali meglio di qunato fatto fino ad ora.

Un punto cruciale nello studio degli integrali di Feynamn consiste nel realizzare che la loro com-
plessitaà, altrimenti insormontabile, può essere smussata grazie ad opportune relazioni note
come Integration by Parts. Infatti, grazie a queste, è possibile costruire un sistema di equazioni
lineari, che può essere manipolato−o, in un certo senso, risolto, grazie a dispendiose manipo-
lazioni algebriche−fino ad identificare degli ingredienti fondamentali noti come Master Inte-
grals. I Master Integrals possono essere pensati come una sorta di base nello spazio di tutti gli
integrali che possono essere coinvolti nel calcolo. Altresì, le Integration by Parts consentono
di derivare opportune equazioni differenziali per i Master Integrals. Le equazioni differenziali
costituiscono un altro strumento di fondamentale importanza; infatti, risolvendole, analitica-
mente o numericamente, è possibile determinate l’espressione, e da ultimo i valori numerici,
per la base di integrali, e quindi per ogni possibile integrale all’interno della famiglia in consid-
erazione.

In questa tesi si mostra come l’approcio basato sulle equazioni differenziali, e in particolare
la cosiddetta canonical form, può essere adottato per la valutazione di integrali di Feynman
che compaiono in certi modelli rilevanti per l’osservazione della Dark Matter. I corrispondenti
Master Integrals, che coinvolgono stati intermedi ed esterni massivi, sono espressi in termini di
Generalized Polylogarithms.

Inoltre si discute il ruolo di una nuova teoria matematica−probabilmente non così comune ai
fisici teorici−nota come twisted (Co)Homology, o, in gergo, Intersection Theory. Recentemente
è emerso che questa teoria offre una nuova visione e prospettiva sugli integrali di Feynman,
facendo chiarazza su alcuni loro aspetti e offrendo nuovi strumenti computazionali. In partico-
lare è possibile costruire il cosiddetto co-homology intersection number, che agisce come una
sorta di prodotto scalare per gli integrali di Feynman. Approssimativamente, seguendo una
tendenza ormai stabilita nello studio delle Ampiezze di Scattering, molti aspetti emergono in
modo naturale estendendo lo studio al piano complesso, sfruttandone le sue peculiarità. Gli in-
tersection numbers sono costruiti a partire da semplici ingredienti fondamentali, quali il calcolo
dei Residui e il teorema di Stokes. Grazie a queste nuove tecniche la decomposizione in termini
di Master Integrals tramite una, concettualmente chiara, formula di proiezione.
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1
Introduction

The capability of making quantitative predictions is at the core of Physics [1]. The frame-
work of Quantum Field Theory (QFT), which binds together Quantum Mechanics and Spe-
cial Relativity, successfully describes at least three of the four forces in Nature at the quan-
tum level−namely the electromagnetic, strong and weak nuclear forces−through the Standard
Model (SM) of Particle Physics. Scattering Amplitudes are the key link between theory and ex-
periment, since they allow converting abstract objects−such as quantumfields andLagrangians−
into observables. Following a well established approach, Scattering Amplitudes are tradition-
ally computed via perturbation theory−roughly speaking relying on a series expansion w.r.t.
a small parameter−in terms of Feynman diagrams. The Leading Order (LO) in the above-
mentioned series offers, very often, an inadequate estimate of the physical quantity under con-
sideration. The situation progressively improves considering theNext-to-LeadingOrder (NLO)
term, Next-to-Next-to-Leading Order (NNLO) term and (if possible) Next-to-Next-to-Next-to-
Leading Order (NNNLO) term. A brief look at fig. (1.1)−which, roughly speaking, describes
the production rate of the Higgs boson at Hadron Collider−speaks louder than words. His-
torically, higher order corrections (i.e. beyond LO) related to quantities such as leptonic (in
particular electron and muon) magnetic moments kept physicists busy since the early days of
QFT [3]. They are still of vital importance nowadays in order to identify possible tiny and elu-
sive signals of New Physics beyond the SM, such as the putative g − 2 anomaly−see e.g. [4].
Remarkably, given the impressive and recent efforts in the field of gravitational wave physics,
higher order precise predictions starts to be, and they will be−with no doubts−in the future,
mandatory in General Relativity−the theory which describes, at the classical level, the fourth
fundamental force of Nature namely gravity; see e.g. [5] and references therein.

Nothing is for free. These higher order corrections come hand in hand with lots of enigmas and
complications, both from the physics and mathematics point of view. The source of complexity
can be identified with the presence of ubiquitous, unavoidable and involved dimensionally reg-
ulated Feynman Integrals (FIs) [6, 7]. In a certain sense, these integrals describe the presence of
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Figure 1.1: Production rate of Higgs boson at the Large Hadron Collider. Experimental mea-
surement denoted with ‡, theoretical predictions with color bands. Figure adapted from [2].

virtual−i.e. non-physical−states circulating in closed circuits, dubbed as loops, which emerge
in the diagrammatic approach proposed by Feynman.

Uncovering the deepest structure underlying those integrals is of crucial importance. On the
one hand, this can boost significantly our ability to make predictions, helping the interplay
among theoretical ideas and experimental evidence. On the other hand, it can improve−and, in
more radical scenarios, modify−our understanding of QFT offering us new ways of organizing
calculations, explaining the surprising simplifications often encountered in concrete computa-
tions and even uncovering unexpected relations. Besides this, FIs represent a unique arena in
order to test novel mathematical ideas, and they offer a data mine to (dis)prove older conjec-
tures and formulate new ones.

When dealing with FIs, one is confronted with (at least) two unpleasant aspects: their prolifer-
ation and the complexity of their evaluation. In this respect it is for sure desirable to discard as
much as possible “redundant”−i.e. non independent−objects and focus, or, better, re-express
everything, in terms of truly basic building blocks: the so-called Master Integrals (MIs). The
quest for this operation is the source of the algebraic complexity associated to FIs.
Traditionally this step is accomplished by means of (suitable) Integration By Parts identities
(IBPs) fulfilled by dimensionally regulated integrals [8, 9], as well as a certain (extremely effi-
cient variant of) a linear algebra technique [10] which ultimately goes back to Gauss.

The other source of complexity−often referred to as analytic complexity−associated to FIs is, in
fact, inherent in the evaluation of MIs. In principle, having in mind purely phenomenological
applications, (floating point) numbers are all what we need. Nevertheless analytic results can
teach us much more. For example, understanding the class of functions describing scattering
processes is undoubtedly a deep and fascinating question. In the past years the method of dif-
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CHAPTER 1. INTRODUCTION

ferential equations forMIs [11, 12, 13]−and in particular the so-called canonical form [14]−was
proven to be both extremely powerful and insightful−see e.g. [15, 16, 17, 18, 19] for advanced
multi-loop, multi-leg and multi-scale applications. Since the early days of these techniques, it
was quickly realized that Generalized Polylogarithms (GPLs) [20] play a central role in multi-
loop calculus; uncovering their deep mathematical anatomy was vital for the development of
the field. Nonetheless, it has long been known [21] that they do not exhaust the full class of func-
tions appearing in amplitudes, and other structures−loosely referred to as elliptic functions−are
under scrutiny these days, see e.g. [22] and reference therein.

In recent years, it was observed that many essential aspects of FIs within Dimensional Regu-
larization (DR) are captured by the theory of twisted (Co)Homology. This theory was origi-
nally developed by a school of Japanese mathematicians during the last quarter of the previous
century (see e.g. the monographs [23, 24])−and it is still prosperous nowadays−mainly to
study the properties of hypergeometric integrals. Notably, this theory allows us to build the
co-homology intersection number [25, 26, 27, 28, 29, 30, 31], or, simply, intersection number:
these latter can be thought of, in practice, as a sort of “scalar product” among FIs. It is therefore
possible to express any given FIs in terms of a basis of MIs in a natural way, namely through a
simple projection; in this way the brute force system solving procedure is avoided [32, 33, 34,
35, 36].

It is fair to say that, at the time of writing, we are not yet at a stage in which these new tech-
niques are competitive (in terms of performances) with the more mature and well established
ones. Nevertheless we believe that twisted (Co)Homology offers a new and comprehensive
framework capable to shed new light on FIs. New structures, which could be invisible from
more standard approaches, may not be uncovered yet and, at the same time, it is not unreason-
able to expect improvements and boost even concerning efficiency in the (not too far) future.
Other important aspects of FIs captured by twisted (Co)Homology are considered in the recent
literature, see [37, 38] for applications in the context of canonical basis of MIs, [39, 40] for the
link among FIs, Twisted (Co)Homology and Generalized Unitarity, as well as the relation with
the diagrammatic coaction [41, 42, 43]. We refer the reader to [44, 45, 46, 47, 48] for reviews
and comprehensive overview articles on these topics.

Remarkably the same mathematical framework offers penetrating insights also in the context
of Amplitudes within String Theory−the best candidate to describe gravity at the quantum
level−see [49, 50], as well as Scattering Amplitudes in the Cachazo-Ye-Yuan formulation of
QFT [27].

Having at our disposal such a comprehensive and unifying framework, is−to say the least−
encouraging and promising; our preliminary successful studies call−rather urge−for further
commitment and dedications.
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This work is organized as follows. In chapter 2 we review basic notions about FIs in DR, such
as IBPs, reduction onto MIs as well as the method of differential equations traditionally em-
ployed to evaluate the latter. Beside the standard representation in momentum space, we em-
ploy also alternative representations, in particular Baikov representation [51, 52, 53] (and, more
briefly, the Lee-Pomeransky representation [54]) since, employing those, the link to twisted
(Co)Homology is more transparent.
In chapter 3 we apply part of the machinery introduced, in particular the method of differential
equations to evaluate some quantities−namely 2 loop form factors involving masses in inter-
mediate and external states−which turn to be relevant in some models describing Dark Matter
(DM) detection.
In chapter 4 we give a gentle overview to the theory of Twisted (Co)Homology−focusing on in-
tegrals admitting a univariate representation. We introduce the twisted (co)homology groups
and show how to build pairings among those (and their dual)−the so-called intersection
numbers−which will play an important role in the following discussion.
In fact, in chapter 5 we show how, thanks to intersection numbers, it is possible to build linear
and quadratic relations for certain class of integrals−hypergeometric integrals−often arising in
themathematical literature. Crucially, we also showhow, in the case of FIs, we can obtain reduc-
tion onto Master Integrals working with maximally cut Baikov representation and intersection
numbers.
In chapter 6 we move to the study of twisted Co-Homology associated to integrals admitting a
multivariate representation. The pivotal point consists in building amultivariate generalization
of the co-homology intersection number. We review several [28, 30, 29] strategies to achieve this
goal.
In chapter 7 we derive linear relations among multivariate integrals via intersection numbers.
We highlight the peculiarities of FIs, compared to the hypergeometric integrals traditionally
considered in the mathematical literature.
In chapter 8 we draw our conclusions, pointing out possible future directions and improve-
ments.
In appendix A we give some details concerning technical aspects concerning the multivariate
intersection numbers.
In appendix B we give the expressions for several mathematical functions which appear in the
main text.
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2
Feynman Integrals

In this chapter we review standard notions about FIs in DR.We start from the very definition
of FIs in momentum space (as they arise from Feynman Rules), and we introduce two alterna-
tive representations, the Baikov representation and the Lee-Pomeransky representation. We
describe how, thanks to IBPs, it is possible to obtain linear relations among FIs and, exploiting
them, how it is possible to identify a basis of MIs. We review the powerful method of differen-
tial equations, and in particular the so-called “canonical form”, which is of crucial importance
in order to evaluate MIs themselves.

2.1
Integral representation: momentum space

In the traditional approach to perturbative (Q)FTwe consider a givenmulti-loop amplitude
A expressed in terms of Feynman diagrams, and the corresponding analytic expression being
dictated by Feynman rules. We denote with Γµ1...µn the expression obtained from A, stripping
off all the information about external states (e.g. polarization vectors, spinors), i.e. schemati-
cally1

A ∼ ūΓµ1...µn u ϵµ1 . . . ϵµn ⇝ Γµ1...µn . (2.1)

Γµ1...µn can be further decomposed as

Γµ1...µn =
∑︂
i

T µ1...µn
i Fi, (2.2)

where all the Dirac and Lorentz structures are now incorporated in the Ti. The various Fi, re-
ferred to as form factors, retain all the loop dependence. The form factors Fi can be extracted
from eq. (2.2), upon the application of suitably chosen projectors. Each Fi is a linear combina-

1We consider the case of just two external spinors for ease of notation.
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2.1. INTEGRAL REPRESENTATION: MOMENTUM SPACE

tions of scalar multi-loop integrals: the so-called Feynman integrals (FIs); they will be the main
focus of this work.

Given (p1, . . . , pE) independent external momenta, a generic ℓ-loop FI in dimensional regular-
ization reads

Ia1,a2,...,an =

∫︂ ℓ∏︂
j=1

ddkj

i πd/2
1

Da1
1 . . . Dan

n
; (2.3)

Several comments are in order; theDjs with 1 ≤ j ≤ n, referred to as (inverse) propagators, read

Dj = q2j −m2
j , qj =

ℓ∑︂
r=1

Ajrkr +
E∑︂
r=1

Bjrpr, 1 ≤ j ≤ n; (2.4)

The number n amounts to n = ℓ (ℓ + 1)/2 + lE; the elements of (D1, . . . , Dn) are in one to one
correspondence with the set of scalar products involving at least one loop momentum. For
ℓ ≥ 2, the set (D1, . . . , Dn) is, in general, larger than the set of denominators appearing in a
given Feynman diagrams, and the additional elements are often referred to as irreducible scalar
products (ISPs).
The indices (a1, . . . , an) are integers, so ai ∈ Z for 1 ≤ i ≤ n; we will often adopt the convention
|a| =

∑︁n
i=1 ai.

The collections of all the possible integrals of the form of eq. (2.3), defines an integral family. We
can organize its elements in sectors−often called topologies. More precisely, given any FI within
an integral family, we can associate to it an integer, say ID, according to the following rule

Ia1,a2,...,an ⇝ ID =
n∑︂
j=1

2j·Θ(aj− 1
2
) − 1; (2.5)

integrals with the same ID, fall into the same sector. So a sector is a collection of integrals char-
acterized by the fact that a subset of the propagators appear with powers which are strictly
positive integers in eq. (2.3). Such propagators will be often called denominators. Subsectors-or
subtopologies-are characterized by a smaller collection of the above-mentioned subset of prop-
agators2.
There is a natural way to associate to each integral in a given sector a ℓ-loop graph; the momen-
tum flowing in each internal edge is given by eq. (2.4), while external edges are associated to
external momenta; momentum conservation is enforced at each vertex−see [44] for a detailed
and proper mathematical discussion.

2We will usually adopt the splitting n = nden + nISP and list the denominators first, i.e.

(D1, . . . , Dn) = (D1, . . . , Dnden , Dnden+1, . . . , Dnden+nISP),

while dealing with a given sector.
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CHAPTER 2. FEYNMAN INTEGRALS

Moreover it is also useful to associate to any given FI the following

Ia1,a2,...,an ⇝

⎧⎨⎩r =
∑︁n

i=1 aiΘ
(︁
ai − 1

2

)︁
,

s = −
∑︁n

i=1 aiΘ
(︁
−ai + 1

2

)︁
.

(2.6)

The quantities introduced in eq. (2.6) describes somehow the “complexity" of the integral: the
bigger they are, the more complicated the corresponding FI is expected to be. When we are just
interested in the values of ID, r and s, we will employ the notation IID,r,s or Ir,s.

Eq. (2.3) is not the only possible incarnation of FIs. Via somemanipulationswe can obtain FIs ex-
pressed in different representations compared to eq. (2.3). Wewill consider in this workmostly
the Baikov representation [51, 52, 53] and the Lee-Pomeransky representation [54] (along with
the standard Schwinger and Feynman ones). Each of them is useful since some aspects beyond
FIs may turn out to be more transparent in one particular representation than in others. We
review these representations hereafter, see also the pedagogical treatments in [55, 44].

2.2

Integral representation: Baikov representation

The main observation behind Baikov representation is that eq. (2.3) is a scalar integral and
the loop momenta appear contracted in the scalar products ki · kk and ki · pm with 1 ≤ i, j ≤ ℓ

and 1 ≤ m ≤ E. Therefore we may try to rewrite eq. (2.3) in such a way that these scalar prod-
ucts become the integration variables.

2.2.1

One loop case

Let us consider first a ℓ = 1 FI in Euclidean signature. We introduce two different bases of
Rd, say E = (e1, . . . ed) and E ′ = (p1, . . . , pE , e

′
E+1, . . . , e

′
d). On the one hand E is the standard

orthonormal basis of Rd, i.e.
ei · ej = δij , 1 ≤ i, j ≤ d. (2.7)

On the other hand, E ′ is built completing (p1, . . . , pE), namely the independent external mo-
menta, to a basis of Rd in such a way that

pi · e′j = 0, 1 ≤ i ≤ E, E + 1 ≤ j ≤ d; (2.8a)
e′i · e′j = δij , E + 1 ≤ i, j ≤ d. (2.8b)

7



2.2. INTEGRAL REPRESENTATION: BAIKOV REPRESENTATION

Let us consider the express the loop momentum k into E and E ′

k = k1e1 + · · ·+ kEeE + kE+1eE+1 + · · ·+ kded (2.9a)
= k1∥p1 + · · ·+ kE∥ pE + kE+1

⊥ e′E+1 + · · ·+ kd⊥e
′
d. (2.9b)

The two different set of coordinates are related by the following⎛⎜⎜⎝
k1

...
kd

⎞⎟⎟⎠ = P

⎛⎜⎜⎝
k1∥
...
kd⊥

⎞⎟⎟⎠ , (2.10)

with the columns of P being the elements of E ′ expressed in the basis E ′.

P =

⎛⎜⎝ | | | |
p1 . . . pE e′E . . . e′d
| | | |

⎞⎟⎠ . (2.11)

The original integral eq. (2.3) is expressed in terms of (k1, . . . , kd); we can can rearrange it in
terms of (k1||, . . . , kd⊥) upon changing the integral measure according to

ddk

πd/2
= detP

dEk|| d
d−Ek||

πd/2
. (2.12)

Thanks to eq. (2.8a) and (2.8b) we have

detP =
√
detP⊤ detP =

√
detP⊤ P =

√︁
detG(p1, . . . , pE) =

√︁
G(p1, . . . , pE) (2.13)

where G(p1, . . . , pE) is the Gram matrix built upon the external momenta

(G(p1, . . . , pE))ij = pi · pj , (2.14)

and
G(p1, . . . , pE) = detG(p1, . . . , pE). (2.15)

Furthermore, recalling the decomposition eq. (2.9b), we have

k · pj =

(︄
E∑︂
i=1

ki∥pi +

d∑︂
i=E+1

ki⊥e
′
i

)︄
· pj

(2.8a)
=

E∑︂
i=1

pj · pi ki∥.

(2.16)

8
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So we obtain the following ⎛⎜⎜⎝
k · p1
...

k · pE

⎞⎟⎟⎠ = G(p1, . . . , pE)

⎛⎜⎜⎝
k1∥
...
kE∥

⎞⎟⎟⎠ ; (2.17)

thus
ddk

πd/2
= (G(p1, . . . , pE))

−1/2

∏︁E
i=1 d(k · pi) dd−Ek⊥

πd/2
. (2.18)

Furthermore, recalling once again eqs. (2.8a, 2.8b,2.9b) and the shift invariance of the Gram
determinant, we have

G(k1, p1, . . . , pE) = G

(︄
d∑︂

i=E+1

ki⊥e
′
i, p1, . . . , pE

)︄
= det

(︄
k2⊥ 0

0 G(p1, . . . , pE)

)︄
= k2⊥G(p1, . . . , pE).

(2.19)
Using standard (d−E)-dimensional spherical coordinates, eq. (2.19) and the fact that k · k and
k2⊥ are related by a linear shift, we have:

∫︂ ∞

0
dd−Ek⊥ =

π
d−E
2

Γ
(︁
d−E
2

)︁ ∫︂ ∞

0
dk2⊥

(︁
k2⊥
)︁ d−E−2

2

=
π

d−E
2

Γ
(︁
d−E
2

)︁ ∫︂
γ
d(k · k)

(︃
G(k, p1, . . . , pE)

G(p1, . . . , pE)

)︃ d−E−2
2

,

(2.20)

where the integration region γ is dictated by the requirement

γ ⇝
G(k, p1, . . . , pE)

G(p1, . . . , pE)
> 0. (2.21)

So, combining everything, we have:

ddk

π
d
2

=

∏︁E
i=1 d(k · pi) d(k · k)
π

E
2 Γ
(︁
d−E
2

)︁ (G(p1, . . . , pE))
−d+E+1

2 (G(k1, p1, . . . , pE))
d−E−2

2 . (2.22)

Finally, recalling that the set of denominators z = {z1, . . . , zE+1} = {D1, . . . , DE+1} are linear
in the scalar products s = (k · k, k · p1, . . . , k · pE), namely

z = As+ c, (2.23)

we arrive at the following

IEa1,...aE+1
=

(G(p1, . . . , pE))
−d+E+1

2

π
E
2 Γ
(︁
d−E
2

)︁
detA

∫︂
γ
(B(z))

d−E−2
2

E+1∏︂
i=1

dzi z
−ai
i , (2.24)
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where B(z), the so-called Baikov polynomial, is nothing but

B(z) = G(k1, p1, . . . , pE)
⃓⃓⃓
s=A−1(z−c)

. (2.25)

2.2.2

Multi-loop case

We can extend eq. (2.24) for the case ℓ > 1; in order to do this we can just apply the argument
outlined above focusing on a single loop momentum at a time; at the i−th step, the “external”
space is spanned by (ki+1, . . . , kℓ, p1, . . . , pE).
We just notice that, once all the loop momenta are exhausted, we obtain a remarkable simplifi-
cation among Gram determinants arising in the intermediate stages

ℓ∏︂
i=1

ddki

π
d
2

=
∏︂

1≤i,j≤ℓ
d(ki · kj)

∏︂
1≤i≤ℓ
1≤j≤E

d(ki · pj)
ℓ∏︂

j=1

π−
E+ℓ−j

2

Γ
(︂
d−(E+ℓ−j)

2

)︂ (G(kj , . . . , kℓ, p1, . . . , pE))
d−(E+ℓ−j)−2

2

(G(kj+1, . . . , kℓ, p1, . . . , pE))
d−(E+ℓ−j−1)−2

2

=
∏︂

1≤i,j≤ℓ
d(ki · kj)

∏︂
1≤i≤ℓ
1≤j≤E

d(ki · pj)
π−

ℓE
2
− ℓ(ℓ−1)

4∏︁ℓ
j=1 Γ

(︂
d−(E+ℓ−j)

2

)︂ (G(k1, . . . , kℓ, p1, . . . pE))
d−E−ℓ−1

2

(G(p1, . . . , pE))
d−E−1

2

.

(2.26)

Only the innermost and the outermost survive.

Finally, expressing the scalar products in terms of denominators (cf. eq. (2.23)), we land on

IEa1,...,an =
(G(p1, . . . , pE))

−d+E+1
2

π
ℓE
2
+

ℓ(ℓ−1)
4

∏︁ℓ
j=1 Γ

(︂
d−E−j+1

2

)︂
detA

∫︂
γ
(B(z))

d−ℓ−E−1
2

n∏︂
i=1

dzi z
−ai
i , (2.27)

where
B(z) = G(k1, . . . , kℓ, p1, . . . , pE)

⃓⃓
s=A−1(z−c)

. (2.28)

The integration region γ in eq. (2.27) deserves a comment.
Applying the same reasoning as in eq. (2.21) to each loop, we obtain the set of constraints

γj ⇝
G(kj , . . . , kℓ, p1, . . . pE)

G(kj+1, . . . , kℓ, p1, . . . pE)
> 0, 1 ≤ j ≤ ℓ; (2.29)

so
γ = γℓ ∩ . . . ∩ γ1. (2.30)

A point laying on the boundary of γ belongs to at least some γj , with 1 ≤ j ≤ ℓ. By eq. (2.29)
this means that

G(kj , . . . kℓ, p1, . . . pE) = 0, for some j. (2.31)

10
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Eq. (2.31) tells us that there is degeneracy (i.e. that the vectors (kj , . . . kℓ, p1, . . . pE) are not
independent). In particular it implies a fortiori

G(k1, . . . kℓ, p1, . . . pE) = 0. (2.32)

Therefore the integration region γ is such that

B(∂γ) = 0. (2.33)

Eq. (2.27) can be continued to Minkowski space, see [56, 57] for detailed discussions. Through
this work we will use the Mathematica code associated to [58] for the generation of Baikov
polynomials.

As it was shown in [59, 58, 60, 56], one of the main advantages of Baikov representation is
that it is well suited for considering cut integrals. Roughly speaking a cut integral consists in one
or more internal particles particles going “on-shell", and so considering 1

Dj
→ δ(Dj) for some

j ∈ (1, . . . , nden). In Baikov representation this prescription simply amounts to consider the
residue of the corresponding variable at 0, i.e. δ(Dj)⇝ Reszj=0(•), for some j ∈ (1, . . . , nden).

2.3
Integral representation: Lee-Pomeransky representation

In order to derive the Lee-Pomeransky representation we have to pass through standard
Feynman and Schwinger representations. Let us reconsider eq. (2.3); we assume all the aj to be
positive3 and recast it as

Ia1,...,an = (−1)|a|
∫︂ ℓ∏︂

j=1

ddkj

i π
d
2

1

Da1
1 . . .Dan

n

, (2.34)

where
|a| =

n∑︂
j=1

aj , and Dj = −Dj = −q2j +m2
j , 1 ≤ j ≤ n. (2.35)

We can then employ the Schwinger trick and write

1

Da =
1

Γ(a)

∫︂
R+

dzza−1 exp(−zD), (2.36)

and so eq. (2.34) becomes

Ia1,...,an =
(−1)|a|∏︁n
j=1 Γ(aj)

∫︂
Rn
+

⎛⎝ n∏︂
j=1

dzj z
aj−1
j

⎞⎠ ∫︂ ℓ∏︂
j=1

ddkj

i πd/2
exp

[︄
−

n∑︂
i=1

zi
(︁
−q2j +m2

j

)︁]︄
. (2.37)

3In order to fix the ideas we can think ℓ = 1 FI, or a ℓ > 1 FI where we do not include ISPs. hence n = nden.
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For later convenience we rewrite
n∑︂
i=1

zi
(︁
−q2j +m2

j

)︁
= −

ℓ∑︂
r,s=1

kr Mrs ks + 2
ℓ∑︂

r=1

kr νr + J, (2.38)

where the indices r, s label different loop momenta, M is a symmetricmatrix and Lorentz indices
are contracted.
Being M symmetric there exists and orthogonalmatrix 0 such that

M = O⊤ D O, O⊤ O = 1, (2.39)

where D is diagonal.
We can consider the change of variables:

kr →
ℓ∑︂

s=1

O⊤
rs ks + M−1

rs νs, (2.40)

in such a way that eq. (2.37) becomes

Ia1,...,an =
(−1)|a|∏︁n
j Γ(aj)

∫︂
Rn
+

⎛⎝ n∏︂
j=1

dzj z
aj−1
j

⎞⎠ exp

⎡⎣−
⎛⎝ ℓ∑︂
r,s=1

νr Mrs νs + Js

⎞⎠⎤⎦
×
∫︂ ℓ∏︂

j=1

ddkj

i πd/2
exp

[︄
ℓ∑︂

r=1

Drr k
2
r

]︄
.

(2.41)

After performing a Wick rotation (see standard textbooks e.g. [61], appendix B), eq. (2.41) is
suitable for a gaussian integration; the result reads

Ia1,...,an =
(−1)|a|∏︁n
j=1 Γ(aj)

∫︂
Rn
+

⎛⎝ n∏︂
j=1

dzj z
aj−1
j

⎞⎠ exp

⎡⎣−
⎛⎝ ℓ∑︂
r,s=1

νr Mrs νs + J

⎞⎠⎤⎦ (detM)−
d
2 . (2.42)

We introduce the so-called Symanzik polynomials

U = detM, and F = U

⎛⎝ ℓ∑︂
r,s=1

νr Mrs νs + J

⎞⎠ , (2.43)

which are homogenoues polynomials in the zs variables of degree ℓ and (ℓ+ 1), respectively.
We finally arrive at

Ia1,...,an =
(−1)|a|∏︁n
j=1 Γ(aj)

∫︂
Rn
+

⎛⎝ n∏︂
j=1

dzj z
aj−1
j

⎞⎠ exp

(︃
−F
U

)︃
U− d

2 . (2.44)

Eq. (2.44) is the Schwinger representation.
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Since all the zs are non negative, we have the following identity:

1 =

∫︂ +∞

−∞
dt δ

⎛⎝t− n∑︂
j=1

zj

⎞⎠ =

∫︂ +∞

0
dt δ

⎛⎝t− n∑︂
j=1

zj

⎞⎠ . (2.45)

Inserting eq. (2.45) in eq. (2.44), rescaling all the integration variables as zj → t zj and perform-
ing in the dt-integration we land on

Ia1,...,an = (−1)|a|
Γ
(︁
|a| − ℓ d

2

)︁∏︁n
j=1(aj)

∫︂
Rn
+

⎛⎝ n∏︂
j=1

dzj z
aj−1
j

⎞⎠ δ

⎛⎝1−
n∑︂
j=1

zj

⎞⎠ U |a|− (ℓ+1) d
2

−1

F |a|− ℓ d
2
−1

. (2.46)

Eq. (2.46) is known as Feynman representation.

Finally we introduce the Lee-Pomeransky representation:

Ia1,...,an =
(−1)|a|∏︁n
j=1 Γ(aj)

Γ
(︁
d
2

)︁
Γ
(︂
(ℓ+1)

2 d− |a|
)︂ ∫︂

Rn
+

⎛⎝ n∏︂
j=1

dzj z
aj−1
j

⎞⎠ G− d
2 , (2.47)

where
G = U + F . (2.48)

Once again, inserting the identity: 1 =
∫︁ +∞
0 dt δ

(︂
t−

∑︁n
j=1 zj

)︂
and rescaling zj → t zj , we can

show that eq. (2.47) is equivalent to eq. (2.46).

Eq. (2.46) is clearly ill defined for aj < 0 for some j ∈ (1, . . . , n). As discussed in [62, 63], the ex-
pressions ∫︁∞

0
dxj x

aj

Γ(aj)
(•) for aj ≤ 0 has to be understood as ∫︁∞

0
dxj x

aj

Γ(aj)
(•) → (−1)aj ∂

(−aj)(•)
∂z

(−aj)

j

⃓⃓⃓⃓
zj=0

.
Moreover, in general the integrand in eq. (2.47) is not, in general, vanishing at the boundary of
the integration domain, contrary to Baikov representation.

2.4

Integration by Parts Identities

It is for sure desirable to find relations among FIs within a given integral family. On practical
grounds, it is certainly convenient to exploit such relations, in order to identify a smaller and
minimal set of independent integrals within a given integral family−thus, in a certain sense,
avoiding redundancies. Within DR FIs fulfil Integration by Parts Identities (IBPs) [8, 9], namely:

0 =

∫︂ ℓ∏︂
j=1

ddki

iπd/2
∂

∂kµj

(︃
ξµ

Da1
1 . . . Dan

n

)︃
, (2.49)
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where the vector ξµ belongs to the set (kµ1 , . . . , kµℓ , pµ1 , . . . , pµE) (or linear combinations built upon
them).
Performing the algebra in eq. (2.49) (under the integral sign) and reading back the result in
terms of FIs, we infer that we obtain linear identities among integrals of the following type IID,r,s,
IID,r+1,s, IID,r,s+1 and IID,r+1,s+1 (cf. eqs. (2.5,2.6)). The coefficients are polynomials in d, masses
and scalar products among external momenta. Simplifications among numerators and denom-
inators could also produce integrals belonging to subsectors.

Let us consider the following simple example.

Example. One loop massive tadpole. Let us consider the integral family associated with the following
graph4

(2.50)

the (only) denominator present is
D1 = k21 −m2. (2.51)

Eq. (2.49) for vµ = kµ1 and arbitrary a1 gives:

0 = (d− 2a1) Ia1 − 2m2a1 Ia1+1, (2.52)

which can be rearranged as (a single • denotes a denominator raised to power 2, two • denote a denomi-
nator raised to power 3, and so on)

=
d− 2a1
2m2a1

(2.53)

This implies that applying repeatedly eq. (2.53) any integral within the integral family can be written
just in terms of I1.

Rather than considering IBPs for generic values of (a1, a2, . . . , an), it is instructive to substi-
tute explicit values and massage the resulting identities a bit.

Example. One loop QED triangle. Let us consider the following graph5

4This example is adapted from [64].
5This example is adapted from [65].
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(2.54)

The denominators are

D1 = k21 −m2, D2 = (k1 + p1)
2, D3 = (k1 + p1 + p2)

2 −m2. (2.55)

The kinematic is p21 = p22 = m2 and (p1 + p2) = p23 = s.

Reading eq. (2.49) for the explicit choices vµ = {kµ1 , p
µ
1 , p

µ
2} and (a1, a2, a3) = (1, 1, 1) yields:

0 = (d− 4)I1,1,1 +
(︁
s− 2m2

)︁
I1,1,2 − 2m2I2,1,1 − I0,1,2 − I0,2,1, (2.56a)

0 =
(︁
2m2 − s

)︁
I1,1,2 + 2m2I2,1,1 + I0,1,2 + I0,2,1 − I1,0,2 − I2,0,1, (2.56b)

0 =
(︁
2m2 − s

)︁
I2,1,1 + 2m2I1,1,2 − I1,0,2 + I1,2,0 − I2,0,1 + I2,1,0. (2.56c)

Despite its simplicity, this system of equations presents several key aspects of IBPs.

After the identifications I2,1,1 ⇆ I1,1,2, I2,0,1 ⇆ I1,0,2 and I0,1,2 ⇆ I2,1,0, which follow from the in-
variance of the integrals under shift of the loop momentum, we deduce that

(2.56b) = (2.56c). (2.57)

This means that the last equation does not add any new information to the system, or, in other words, that
IBPs contain a huge redundancy.

Moreover, summing the first and second equation, we infer

0 = (2.56a) + (2.56b)

= (d− 4)I1,1,1 − I1,0,2 − I2,0,1

= (d− 4)I1,1,1 − 2I1,0,2;

(2.58)

where, in the last line, we identified I1,0,2 ⇆ I2,0,1 once again thanks to the invariance upon shift of the
integration variable.
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Diagrammatically this means

=
d− 4

2
. (2.59)

so, colloquially, we say that “the triangle” is not independent−we say it is reducible in terms of (a
suitable) “bubble”.

The previous simple example represent a toy-model for a more systematic treatment of IBPs
which goes under the name of Laporta algorithm [10].
IBPs can be generated systematically up to certain explicit values of (r, s) for a given sector and
all its subsectors (cf. eq. (2.6)). The identities can be cast in a linear system where FIs are con-
sidered as unknowns. Remarkably the number of equations grows faster than the number of
integrals. We can then sort the integrals according to their complexity (as mentioned above, this
means that integrals with higher r and s are regarded as more complicated with respect to inte-
grals with lower values of r and s). It is possible to process the system via Gauss’ elimination,
namely scanning it equation by equation and expressing the most complicated integral in terms
of other integrals, and substituting the resulting relation in all the remaining equations. Even-
tually, after a back substitution, all the integrals turns to be expressed as linear combinations of
fewer left-over ones, referred to as Master Integrals (MIs). MIs are considered the truly inde-
pendent objects. Usually the number of MIs is several order of magnitudes lower than number
of FIs involved in the full system (and in physical applications). In this work we will denote
the set of MIs obtained via this system solving procedure as (J1, . . . ,Jν). Different variants of
the strategy briefly reviewed here are nowadays implemented in several public (and private)
computer codes, such as Air [66], Reduze [67], Fire [68], LiteRed [69] and Kira [70]. Let us
mention that one of themain obstacles encountered in practical implementations is due to exten-
sive amount of algebraic manipulation required in the system solving procedure. It is often the
case that the expressions found in intermediate stages of the calculations are waymore involved
than the final result. This issue can be overcome relying on the so-called functional reconstruc-
tion techniques [71, 72]−see also the public implementations FiniteFlow [73] and FireFly [74,
75]. Roughly speaking the idea is to recover the coefficients of the MIs−rational functions in d,
masses and scalar products among external momenta−from numerical evaluations via a sort
of fitting procedure. Assigning explicit values to parameters, the linear system is solved multi-
ple times over (different) finite field(s) Fp (p prime numbers)6: in this way all the operations
are exact−no numerical instabilities−and fast−rational number with large numerators and de-
nominators are absent. Let usmention that, thanks to these techniques, linear-solvers originally
designed for the Laporta algorithm become extremely efficient tools also in other contexts.

6See also [76] for a previous application of finite fields in the context of IBPs.
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2.5
Integration by Parts Identities: Baikov representation

It is instructive to consider IBPs in terms of Baikov representation; this idea was proposed
originally in [59] and later improved in several publications [77, 78, 79, 80, 81]. The main ad-
vantage of this strategy is that, benefiting from tools of Computational Algebraic Geometry, it is
possible to generate a smaller set of IBPs identities−so, in a certain sense, it is possible to “trim”
the starting set of identities−doing so the subsequent system solving procedure is facilitated.
Our starting point is the vanishing of a total differential under the integral sign; so the analogue
of eq. (2.49) is7:

0 =

∫︂
γ
d

(︄
B

d−ℓ−E−1
2

za11 . . . zann
ξ

)︄
, (2.60)

where B(∂γ) = 0, ξ is a (n−1) differential form: ξ =
∑︁n

i=1(−1)i+1 ξi, with ξi = ˆ︁ξ dz1 ∧ . . . ∧ˆ︂dzi ∧ . . .∧ dzn and each ˆ︁ξi a polynomial in the variables z = (z1, . . . , zn)whose coefficients may
depend on the kinematic invariants8.
Rearranging eq. (2.60) we obtain9

0 =

∫︂
γ
dz

n∑︂
m=1

[︄
d−ℓ−E−1

2
∂mB

B
(d−2)−ℓ−E−1

2

za11 . . . zann
ˆ︁ξm − am

B
d−ℓ−E−1

2

za11 . . . zam+1
m . . . zann

ˆ︁ξm +
B

d−ℓ−E−1
2

za11 . . . zann
∂m ˆ︁ξm]︄

=

∫︂
γ
dz

B
d−ℓ−E−1

2

za11 . . . zann

⎡⎣d−ℓ−E−1

2

n∑︂
m=1

ˆ︁ξm ∂mB
B

−
nden∑︂
i=1

ai
ˆ︁ξi
zi

−
n∑︂

j=nden+1

aj
ˆ︁ξj
zj

+

n∑︂
m=1

∂mˆ︁ξm
⎤⎦ ,

(2.61)
where dz = dz1 ∧ . . . ∧ dzn.
On the one hand, we notice that the first summand in eq. (2.61) involves B (d−2)−ℓ−E−1

2 , i.e. we
obtain linear relation among integrals living in (d−2) and d dimensions. This can be avoided
provided that we can find sets of n + 1 polynomials (ˆ︁ξ1, . . . , ˆ︁ξn, ˆ︁ξB), fulfilling the following re-
lation

n∑︂
m=1

ˆ︁ξm ∂mB = ˆ︁ξB B. (2.62)

Eq. (2.62) appears in the context of computational algebraic geometry under the name of syzygy
equation. Since ˆ︁ξB can be always retrieved from (ˆ︁ξ1, . . . , ˆ︁ξn), we will focus on this second,
shorter, set.
Sets of polynomials (ˆ︁ξ1, . . . , ˆ︁ξn) satisfying eq. (2.62) we will denoted it byM1.
On the other hand, the second term in eq. (2.61) is responsible for integrals with denominators

7Comparing to the integral representation in eq. (2.27), we remove the common over-all prefactors, without
altering integral relations.

8In the more refined language of [80], ˆ︁ξi belongs to the ring A = Q(y)[z1, . . . , zn], where y denotes the kinematic
invariants.

9See footnote 2 where nden was introduced.
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2.5. INTEGRATION BY PARTS IDENTITIES: BAIKOV REPRESENTATION

raised to higher powers. This can be avoided requiring that10:

ˆ︁ξi = zi pi 1 ≤ i ≤ nden, (2.63)

where (p1, . . . , pnden) are polynomials in the zs variables. The set of polynomials (ˆ︁ξ1, . . . , ˆ︁ξn) sat-
isfying eq. (2.63) will be denoted byM2

11.
For the case at hand, namely IBPs in Baikov representation, it is easy to solve eq. (2.62) and
eq. (2.63) separately, with almost no computational effort, as shown below. The problem is
pushed in satisfying both of them simultaneously; this amounts to computing the module inter-
sectionM1 ∩M2 [80].

Assuming this is done, namely eq. (2.62) and eq. (2.63) are fulfilled simultaneously, IBPs in
Baikov representation read

0 =

∫︂
γ
dz

B
d−ℓ−E−1

2

za11 . . . zann

⎡⎣d−ℓ−E−1

2
ˆ︁ξB +

nden∑︂
i=1

(︃
∂i (zi pi)− ai pi

)︃
+

n∑︂
j=nden+1

(︃
∂jˆ︁ξj − aj

ˆ︁ξj
zj

)︃⎤⎦ .
(2.64)

We show here how, for the case at hand, we can build explicitly generators forM1 andM2.

Focusing on eq. (2.62) we can exploit the fact that B is, up to a linear change of variables, the de-
terminant of a symmetricmatrix: theGrammatrixG(k1, . . . , kℓ, p1, . . . , pE) (recall that detG = G,
and cf. eq. (2.28)).
It is straightforward to show that the determinant of a symmetric matrix fulfills the following
relation12

ℓ+E∑︂
k=1

(1 + δjk) sik
∂ det(G)
∂sjk

= 2 δij det(G). (2.65)

Restricting j to 1 ≤ j ≤ ℓ and expressing the scalar products in terms of zs variables, namely:

s = A−1(z− c), (2.66)

then eq. (2.65) reads

ℓ+E∑︂
k=1

(1 + δjk) sik |s=A−1(z−c)

n∑︂
m=1

∂ det(G) |s=A−1(z−c)

∂zm

∂zm
∂sjk

= 2 δij det(G) |s=A−1(z−c) , (2.67)

10See also [82, 83, 84] for syzygy-related ideas in the context of IBPs.
11In the language of [80],M1 and M2 are sub-modules of the module An.
12The authors of [80] acknowledge that idea of exploiting such relations is due to Roman Lee, see also http:

//mathsketches.blogspot.com/2010/07/blog-post.html.
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CHAPTER 2. FEYNMAN INTEGRALS

or equivalently (reintroducing B = det(G) |s=A−1(z−c))

n∑︂
m=1

(︄
ℓ+E∑︂
k=1

(1 + δjk) sik |s=A−1(z−c)

∂zm
∂sjk

)︄
∂B
∂zm

= 2 δij B. (2.68)

Comparing eq. (2.62) and (2.68) we are left with the following identifications:

ˆ︁ξm =

(︄
ℓ+E∑︂
k=1

(1 + δjk) sik |s=A−1(z−c)

∂zm
∂sjk

)︄
1 ≤ m ≤ n, (2.69a)

ˆ︁ξB = 2 δij ; (2.69b)

with 1 ≤ j ≤ ℓ and 1 ≤ i ≤ n.
Thus, eq. (2.69a) provides ℓ·n solutions of eq. (2.62) and it turns out that they form a generating
set ofM1.

On the other hand a generating set ofM2 is simply given by the rows of the following matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1 0 . . . 0 0 0 . . . 0

0 z1 . . . 0 0 0 . . . 0
... ... . . . ... 0 0

. . . 0

0 0 . . . znden 0 0 . . . 0

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 0 1 . . . 0

0 0
. . . 0

... ... . . . ...
0 0 . . . 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.70)

Finally eqs. (2.62,2.63) can bemutually satisfied considering themodule intersection of eq. (2.69a)
and eq. (2.70).

Example. Two loop massless sunrise. Let us consider the following graph

(2.71)
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2.5. INTEGRATION BY PARTS IDENTITIES: BAIKOV REPRESENTATION

The denominators are chosen as

D1 = k21, D2 = k22, D3 = (k1 + k2 − p)2 , (2.72)

while the ISPs read
D4 = (k1 + p)2 − 2 s, D5 = (k2 + p)2 − 2 s. (2.73)

The kinematics is p2 = s.
The Baikov polynomial is

B =− s2z3 − 2sz21 − 2sz22 − sz23 + 5sz1z2 + 3sz1z3 + 3sz2z3 + sz1z4 − 2sz2z4

− sz3z4 − 2sz1z5 + sz2z5 − sz3z5 + sz4z5 − 3z1z
2
2 − 2z2z

2
4 − 2z1z

2
5 + z4z

2
5

− 3z21z2 + z1z2z3 + 2z22z4 + 5z1z2z4 − z2z3z4 + 2z21z5 + z24z5 + 5z1z2z5 − z1z3z5

− 3z1z4z5 − 3z2z4z5 + z3z4z5,

(2.74)

and
d− E − ℓ− 1

2
=
d− 1− 2− 1

2
=
d− 4

2
. (2.75)

The relation between z = {z1, . . . , z5} and the scalar products s = {k21, k22, k1·k2, k1·p, k2·p} is

z = As+ c (2.76)

with

A =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0

0 1 0 0 0

1 1 2 −2 −2

1 0 0 2 0

0 1 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎠ and c =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

s

−s
−s

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.77)

Let us denote ˆ︁ξ(i,j) = (ˆ︁ξ1, . . . , ˆ︁ξ5) the set of polynomials obtained via eq. (2.69a) for a given choice of
(i, j); we obtain

ˆ︁ξ(1,1) = (2z1, 0, z1−2z2+z3+z5, s+z1+z4, 0),

ξ(1,2) = (0, s−2z1−2z2+z3+z4+z5, z1−2z2+z3+z5, 0, 2s−3z1−2z2+z3+2z4+z5),ˆ︁ξ(2,1) = (s−2z1−2z2+z3+z4+z5, 0,−2z1+z2+z3+z4, 2s−2z1−3z2+z3+z4+2z5, 0),ˆ︁ξ(2,2) = (0, 2z2,−2z1+z2+z3+z4, 0, s+z2+z5),ˆ︁ξ(3,1) = (s−z1+z4, 0,−z1−z2+z4+z5, 3s−z1+z4, 0),ˆ︁ξ(3,2) = (0, s−z2+z5,−z1−z2+z4+z5, 0, 3s−z2+z5).

(2.78)

Therefore (ˆ︁ξ(1,1), ˆ︁ξ(1,2), ˆ︁ξ(2,1), ˆ︁ξ(2,2), ˆ︁ξ(3,1), ˆ︁ξ(3,2)) is a generating set forM1.
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On the other hand the rows of ⎛⎜⎜⎜⎜⎜⎜⎝
z1 0 0 0 0

0 z2 0 0 0

0 0 z3 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (2.79)

constitute a generating set forM2.

Then the module intersection of eq. (2.78) and eq. (2.79)−computed via e.g. Singular13 [86]−yields 9
set of polynomials fulfilling both eq. (2.62) and eq. (2.63).

Let us focus on one set of the obtained polynomials

(0, z22+z1z2−z4z2−z5z2,−sz3+z2z3−z5z3, 0,−sz5−sz1+2sz2+sz3−z25+z1z5+z2z5−z4z5);
(2.80)

the corresponding IBPs identity, for the explicit choice (a1, a2, a3, a4, a5) = (1, 1, 1, 0, 0) reads14

d− 2

2

(︃
− sI1,1,1,0,0 + I0,1,1,0,0 + 2I1,0,1,0,0 − I1,1,1,−1,0 − 2I1,1,1,0,−1

)︃
= 0. (2.81)

No square denominator appears. Eq. (2.81) is verified with LiteRed.

2.6
Differential equations for Feynman Integrals: momentum space

Once aminimal set ofMIs for a given integral family has been identified, we are left with the
problem of its evaluation. Roughly speaking we can group the various possible strategies into
two categories, direct and indirectmethods. With direct methods we mean all those approaches
which aim at attacking each MI individually, numerically or analytically, often exploiting their
deep mathematical structures and benefiting from advanced tools such as polynomial reduction
and linear reducibility [87], along with the implementations in HyperInt [88], tropocial integra-
tion [89], sector decomposition [90, 91] and its public implementations sector_decomposition [91],
Fiesta [92] and pySecDec [93], just to mention a few.
On contrary, by indirect methods we refer to the idea of solving (analytically or numerically)
some (cleverly built) functional relations obeyed byMIs; dimensional recurrence relations [94, 52],
see also the implementations SummerTime [95] and Dream [96], difference equations [10, 97, 98,
99, 100] and differential equations [101, 12, 13]−see also [64, 102, 103, 44, 45] for comprehensive
and detailed reviews. In this work we consider the method of differential equations; we sum-
marize the main ideas behind it hereafter.

13We used the command SingularIntersect of its Mathematica interface [85].
14We do not apply to this identity any symmetry relations, nor we eliminate dimensionsless integrals.
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Let us start with integrals expressed in momentum space eq. (2.3). We assume that a set−or,
better in this context, a vector−of MIs has been identified; we denote it with J = (J1, . . . ,Jν).
We regard (each entry in) this vector as a function of the internal masses or kinematic invari-
ants, collectively denoted by y, so J⇝ J(y).

We can then differentiate (under the integral sign) each Ji w.r.t. a given yk ∈ y. The result
of this operation will be a linear combination of integrals belonging to the integral family (the
action of the derivative is straightforward if we are differentiatingw.r.t. any internalmass; in the
case of kinematic invariants we have just to rewrite the differential operator in terms of deriva-
tive w.r.t. external momenta via the chain rule). Nevertheless we can just IBPs-reduce the above
mentioned combination of integrals onto MIs. So far we have

∂yk Ji(y) =
∑︂
i

ci(y) Ii(y)

IBPs
=

ν∑︂
j=1

Ω̂y,ij(y)Jj(y).
(2.82)

Iterating the procedure for all the MIs, we will obtain a system of differential equations

∂y J(y) = Ω̂y(y) · J(y). (2.83)

Repeating it for all the ys, we obtain a system of partial differential equations which we can cast
in the compact form

dyJ(y) = Ω(y) · J(y), (2.84)

where
dy(•) =

∑︂
yk∈y

∂yk(•) dyk and Ω(y) =
∑︂
yk∈y

Ω̂yk(y)dyk. (2.85)

Eq. (2.84) deserves some comments. First of all, organizing the vector J(y) from the sim-
plest integral to the most complicated one−according to the ordering introduced in the Laporta
algorithm−it is clear that the resulting system eq. (2.84) is lower block triangular. This is ex-
pected since ∂y(•) cannot produce any new denominator w.r.t. the set already present in the MI
it is acting on.

It turns out that not all the differential operators ∂y(•) are independent. Let us focus on any
given MI, say J (y) = J(r,s)(y)

15; rescaling all the masses and all the external momenta accord-
ing to (p,m) → (λ p, λm) (which means y → λ2 y), the integral representation eq. (2.3) reveals
that J(r,s)(y) is an homogeneous function of degree ℓd

2 − r + s, i.e.

y → λ2y =⇒ J(r,s)(y) →
(︁
λ2
)︁ ℓd

2
−r−s J(r,s)(y). (2.86)

15We temporary introduce the dependence on (r, s)−see eq. (2.6)−since it will be useful for the considerations
in the following.
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Then, a theorem by Euler on homogenous functions guarantees that

∑︂
yi∈y

yi ∂yiJ(r,s)(y) =

(︃
ℓd

2
− r + s

)︃
J(r,s)(y). (2.87)

Eq. (2.87) tells us precisely that not all the differential operators are independent.

We can consider the matrix-valued version of eq. (2.87), which reads

∑︂
yi∈y

yi ∂yiJ(y) =
∑︂
yi∈y

yi Ω̂yi(y) · J(y) = Diag
(︃
ℓd

2
−r1+s1, . . . ,

ℓd

2
−rν+sν

)︃
· J(y), (2.88)

Eq. (2.88) represents a non trivial relations for the various Ω̂y(y), and, in practice, it serves as
a non trivial check on their correctness. Moreover eq. (2.88) implies that differential equations
are trivial in the case of single scale problems16.

Furthermore the system eq. (2.84) satisfies integrability condition, i.e. d2yJ(y) = 0, which im-
plies

dyΩ(y) = Ω(y) ∧Ω(y). (2.89)

Once again, eq. (2.89) gives non-trivial checks in practical examples.

In view of the previous discussion, we will work with a set of rescaled adimensional variables
x = {x1, . . . , xn−1} with xi−1 = yi

y1
for 2 ≤ i ≤ n. All the complicated functional dependence

of the MIs is encoded in those variables; the dependence on y1 is in fact trivial−it is the only
dimensionful variable left−and is dictated by simple dimensional analysis.

Example. The half massive bubble. Let us consider the integral family defined by the following graph

(2.90)

the denominators are chose as

D1 = (k1 + p1)
2, D2 = k21 −m2, (2.91)

with p21 = s (the internal mass is denoted in blue).
Comparing with the main text we have y = (m2, s); from now on we will drop the the dependence on
(m2, s) for ease of notation.

16Nevertheless they can still be applied in such cases, at the price of introducing a new, fictitious, scale-which is
eventually set to 0-in order to have a non-trivial system. See e.g. [104, 105, 106].
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Let us consider the set of MIs given by

J = (J1,J2) =

⎛⎜⎝ ,

⎞⎟⎠ . (2.92)

It is instructive to consider the action of ∂m2(•) and ∂s(•) separately on each element in eq. (2.92).

We clearly have

∂m2J1 = I0,2
IBPs
=

d− 2

m2
J1,

∂m2J2 = I1,2
IBPs
= − d− 2

m2(m2 − s)
J1 +

d− 3

m2 − s
J2.

(2.93)

In order to consider the action of ∂s(•) we have just to apply the chain rule ∂s(•) = 1
2sp

µ ∂pµ(•); we
obtain17

∂sJ1 = 0,

∂sJ2 =
1

2s

(︁
I2,0 − I1,1 + (m2 − s)I2,1

)︁
IBPs
=

d− 2

2(m2 − s)s
J1 −

(d− 4)s+ (d− 2)m2

m2 − s
J2.

(2.94)

Putting in matrix form we have

Ω̂m2 =

(︄
d−2
2m2 0

− d−2
2m2(m2−s)

d−3
m2−s

)︄
, Ω̂s =

(︄
0 0
d−2

2s(m2−s)
(d−2)m2+(d−4)s

2s(s−m2)

)︄
. (2.95)

These matrices satisfy the relation

m2 Ω̂m2 + s Ω̂s = Diag
(︃
d

2
− 1,

d

2
− 2

)︃
, (2.96)

as they should.

Finally, we can verify the the matrices satisfy the explicit integrability condition

∂sΩ̂m2 − ∂m2Ω̂s − [Ω̂s, Ω̂m2 ] = 0. (2.97)

Eq. (2.84) does not exhaust all the inputs needed in order to determine the actual expres-
sions of the MIs. As usual, when dealing with differential equations, we need also an informa-
tion about the initial conditions or, better, boundary constants. Differential equations for MIs
are no different in this respect: we need to determine the boundary values, say J0, so that the

17If needed, rewrite numerators in terms of denominators and simplify common factors
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general solution of eq. (2.84) represents the actual expression of the MIs we are aiming to.
On practical calculations, the set of constant J0 = (J0,1, . . . ,J0,ν) can be determined, for ex-
ample, requiring that the solution of eq. (2.84) matches the values of the MIs in some par-
ticular kinematic limits, where the asymptotic behaviour of the MIs can be obtained by other
methods−e.g. Expansion by Regions [107]. Nevertheless it is worth stressing that, often, some
general considerations such as the expected regularity of MIs in some limits, or the analysis of
the differential equation around singular points, provide enough information in order to fix the
boundary constants.

All our considerations so far are valid for both numerical and analytic strategies aiming to
solve eq. (2.84). Purely numerical approaches [108, 109, 110, 111] and semi-analytic ones [112,
113] together with the implementations DiffExp [114], SeaSide [115] and AMFlow [116] were
proven to be extremely effective and powerful in several cutting-edge examples−see e.g. recent
works [117, 118, 119, 120, 121].

We discuss here the analytic solution of eq. (2.84), andwe tailor the discussion to this approach.
First of all we are almost always just interested in the ϵ-expansion of the MIs, say

Ji(x, ϵ) =
Max∑︂
k=Min

Ji,k(x) ϵk, 1 ≤ i ≤ ν, (2.98)

where (usually)
ϵ =

4− d

2
. (2.99)

This means that we have just to determine the unknowns in eq. (2.98), without solving the dif-
ferential equations in full generality.
Moreover, a strategy for solving eq. (2.84) should certainly exploit its lower block triangular
structure. Roughly speaking we can start from the simplest block, which, once solved, become
the known, non-homogeneous, term of the next-to-simplest block. The next-to-simplest block
can in fact be split into an homogeneous and a non-homogeneous part and can be solved via Euler
variations of constant. Iterating the procedure bottom-up, we arrive to the final block. In the case
of more than one MIs in a given block we are forced to consider a system of coupled differen-
tial equations, which can always be cast into a single higher order differential equation. On a
mathematical ground, no general technique is known in order to obtain a solutions of an (ho-
mogeneous) higher order differential equation and we have to rely on guessing or intuition.
Nevertheless, for the case of FIs, it was shown that maximal cut of a given MI represents the so-
lution of the corresponding homogeneous differential equation [21, 122, 123, 58, 124]. We refer
the reader to [64] for the details andmanyworked out examples of the procedure sketched here.

It turns out that this iterative procedure can be by-passed, and the system can be solved “all
at once", in a more “algebraic" way. In order to explain how this can be done, we need some pre-
liminary considerations.
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2.6.1
Canonical Form

It should be clear that the basis of MIs for a given problem is by no means unique. Let us
consider the (perhaps most) simple integral family1819:

= Ia1,a2 = eϵγE
∫︂
ddk1

iπ
d
2

1

Da1
1

1

Da1
2

, (2.100)

with
D1 = k21, D2 = (k1 + p1)

2. (2.101)

and p21 = s. The integral family we are considering has just 1 MIs; eq. (2.100) is simple enough
that the integration can be performed analytically for arbitrary integers (a1, a2), obtaining

Ia1,a2 = (−1)a1+a2 (−s)2−a1−a2−ϵ Γ(a1 + a2 − 2 + ϵ)

Γ(a1) Γ(a2)

Γ(2− a1 − ϵ)Γ(2− a2 − ϵ)

Γ(4− a1 − a2 − 2ϵ)
. (2.102)

We can use eq. (2.102) and sample over (a1, a2); each choice would correspond to a valid MI.
First, let us consider the standard

I1,1 =
1

ϵ
+ (2− log(−s)) + ϵ

(︃
1

2
log2(−s)− 2 log(−s)− π2

12
+ 4

)︃
+ ϵ2

(︃
−1

6
log3(−s) + log2(−s) + 1

12

(︁
π2 − 48

)︁
log(−s)− 7ζ(3)

3
− π2

6
+ 8

)︃
+O

(︁
ϵ3
)︁

(2.103)

and compare with the (at the moment) artificial choice

(−s)ϵI2,1 = 1− ϵ log(−s) + ϵ2

12

(︁
6 log2(−s)− π2

)︁
+
ϵ3

12

(︁
−2 log3(−s) + π2 log(−s)− 28ζ(3)

)︁
+O

(︁
ϵ4
)︁ (2.104)

The last equation is not only very compact, but it is also organized in a very neat and precise
way. Let us attribute a weight to the various terms appearing in eqs. (2.103, 2.104). We assign
weight 0 to all rational numbers and rational functions of the kinematics, weight 1 to log(−s)

18The factor eϵγE is included here in order to have somewhat cleaner formulas in the following discussion. Nev-
ertheless its presence is important if we address more number-theoretical questions related to FIs, see [125, 126].

19This example is adapted from [127].
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and to π andweight n to ζn. Moreover we consider that the weight of a product is the sum of the
weight of its factors (e.g. the weight of π log(−s) is the same as the one of log2(−s), and is equal
to 2). Assigning then weight −1 to ϵ, we notice that each term in eq. (2.104) has weight 0, and
so we will refer to it as an expression of uniform weight 0. Evidently eq. (2.103) is not of uniform
weight. Therefore, in general, finding a basis of MIs such that the integrated expression is of
uniform weight 0 seems desirable.
This simple analysis suggests that it should be possible to choose a suitable basis of MIs, such
that a structure like the one in eq. (2.104) naturally emerges from the differential equation itself.
An even more striking fact is that, provided this basis is found, not only the final result is very
elegant but also the integration procedure is−to some extent−trivialized.

A remarkable observation was presented in [14]. In this work it was proposed to consider a
carefully chosen set of MIs, say I(x, ϵ)−in general not the set dictated by the Laporta ordering−
such that the resulting system of differential equations is cast in the so-called canonical form
(and the corresponding set of MIs I(x, ϵ) is referred to as canonical basis)

dxI(x, ϵ) = ϵΩc(x) I(x, ϵ), Ωc(x) =
∑︂
ηi∈A

Mηi d log(ηi(x)). (2.105)

In eq. (2.105) the regulator ϵ is factorized from the kinematics. The matrices Mη contained only
rational numbers, while the set of d log forms are referred to as letters, and their union A is the
alphabet. This implies, for example, that each of the term in eq. (2.89) is vanishing independently
(since the lhs is proportional to ϵ, while the r.h.s. is proportional to ϵ2)

dxΩc(x) = 0, Ωc(x) ∧Ωc(x) = 0. (2.106)

Eq. (2.105) can be solved very elegant, convenient and somehow compact way. For the sake of
clarity, let us specify the discussion to the case of a single variable x.
Let us assume that the boundary vector is represented by I(x, ϵ)|x→0 = I0(ϵ). Then the solution
of eq. (2.105) (with x → x) is

I(x, ϵ) = P exp
(︃
ϵ

∫︂ x

0
Ω̂c(t)dt

)︃
I0(ϵ) (2.107)

where the path order exponential P exp(•) appeared, and its first few terms read

P exp
(︃
ϵ

∫︂ x

0
Ω̂c(t)dt

)︃
= 1+ ϵ

∫︂ x

0
Ω̂c(t1)dt1 + ϵ2

∫︂ x

0
Ω̂c(t2)dt2

∫︂ t2

0
Ω̂c(t1)dt2 +O(ϵ3). (2.108)

We can see that the canonical form offers a clear way to truncate the ϵ expansion of eq. (2.108),
and the integrated expression resemble closely eq. (2.104).
In fact, in the case in which all the arguments of the the d log form are rational functions of x,
then eq. (2.108) evaluates to a particular class of functions known as Generalized Polylogarithms
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(GPLs)20 [20] (log(•), log2(•) being just special cases). The mathematical aspects of these func-
tions are very well studied and understood and can bee implement in computer codes, such as
HPL [131, 132], the Maple implementation[133] and PolyLogTools [134]. Moreover, several
efficient numerical routines are available for their evaluation, such us the implementation in
hplog [135], GiNaC [136], Chaplin [137], the one of [138],HandyG [139] , FastGPL [140]. We
briefly review hereafter some of their properties.

Nevertheless, before doing so, we pause for a comment. We may wonder why (and how) we
could ever face arguments of dlogs which are not rational functions. After all differential equa-
tions are derived through operations which manifestly involve only rational functions (differ-
entiation, reduction to MIs via Laporta algorithm). The obvious solution to this puzzle is that
the canonical basis is related to standard set of MIs (e.g. the one dictated by Laporta criterion)
via

I(x, ϵ) = B(x, ϵ)J(x, ϵ), B(x, ϵ)⇝ algebraic function of x, (2.109)

and the entries of B(x, ϵ) are algebraic functions (i.e. they are not forced to be rational, and the
may contain e.g. square roots).
Finding a suitable change of variable(s) which rationalizes simultaneously all the square roots
is, in general, a very non-trivial problem−nowadays we have at our disposal the software Ra-
tionalizeRoots [141, 142] dedicated to this task. If the arguments are not explicitly rational,
then it is not guaranteed that eq. (2.108) (and, in general, iterated integrals) can be expressed
in terms of GPLs, see [143] for an explicit counterexample. Let us also stress that eq. (2.105) is
not guaranteed to exist for generic FIs. So the situation we will discuss is not the most generic
possible set-up; though we are still able to cover a pletora of interesting examples.

GPLs can be introduced in the following recursive way

G(a1, . . . , an;x) =

∫︂ x

0

dt

t− a1
G(a2, . . . , an;x), (an ̸= 0), (2.110)

where the various ai, often referred to as weights, are elements in C and

G(;x) = 1. (2.111)

In the case the rightmost index is an = 0, we may be worried about a severe divergence at 0; this
is indeed correct, nevertheless we define

G(0, . . . , 0⏞ ⏟⏟ ⏞
n times

;x) ≡ 1

n!
logn(x). (2.112)

20In the study of Differential equations for FIs the class of functions which was systematically studied at the
beginning was the one of Harmonic Polylogarithms (HPLs) [128]. See also the references in this work for previous
incarnations of these functions in related contexts of Physics. More generally the class of functions that are relevant
are iterated integrals [129, 130].
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We will often employ a vector-like notation, where e.g. a = (a1, . . . , an)
21.

The products of two GPLs (with same argument) is controlled by the so-called shuffle relations

G(a;x)G(b;x) =
∑︂

c∈a⊔⊔b
G(c;x), (2.113)

where a ⊔⊔b denotes all the possible lists obtained by joining a and b, without modifying the
relative order among the elements of a and the ones of b22. They are invariant under rescaling,
i.e. given that λ ∈ C \ {0}

G(a;x) = G(λa;λx), provided an ̸= 0. (2.114)

Much more than this is known about GPLs; for example they can be equipped with additional
structure like the coproduct and the symbol map, and it is known that they form an Hopf algebra;
see e.g. [144, 126] and references therein. Such a variety of tools is useful also in practice, in
order to study discontinuities of GPLs, derivatives w.r.t. their weights and in order to capture
the−otherwise mysterious−complicated functional identities they satisfy.

2.6.2
Canonical basis via Magnus/Dyson Exponential

In the previous discussion we just assumed that a canonical form exists and it is possible to
cast the system in this form. Clearly this is a non trivial task. We discuss now a possible strategy,
presented for the first time in [145], in order to cast the system in such a from. We will dub this
approach as theMagnus/Dyson exponential [146, 147]. Over the years other techniques appeared
in order to reach the canonical form; for example, let usmention the analysis basis on the leading
singularity of the integral, see e.g. [102] and the packageDlogBasis [148], various implementa-
tion of the strategy of [149], namely Fuchsia [150], epsilon [151] and Libra [152], the programs
CANONICA [153, 154] and Initial [155], and the intersection theory-based method [38].

First of all it is instructive to consider a generic change of basis of MIs

J(x, ϵ) = B(x, ϵ)F(x, ϵ), B(x, ϵ)⇝ invertible, (2.115)

21The above-mentioned HPLs (cf. footnote 20) are characterized by the fact that ai ∈ (−1, 0, 1).
22Let us consider a = (a1) and b = (b1, b2), then

a ⊔⊔b = {(a1, b1, b2), (b1, a1, b2), (b1, b2, a1)},

and so e.g. (b2, b1, a1) /∈ a ⊔⊔b since the order among b1 and b2 is not respected.
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and observe that eq. (2.84), for the new basis reads

dxF(x, ϵ) = B−1(x, ϵ) · (Ω(x, ϵ) ·B(x, ϵ)− dxB(x, ϵ)) · F(x, ϵ). (2.116)

Our starting point is that−essentially by trial-and-error and experience−it is possible to choose
a basis of MIs, say F(x, ϵ) such that the system is linear in ϵ, i.e.

dxF(x, ϵ) = [Ωx,0(x) + ϵΩx,1(x)] · F(x, ϵ). (2.117)

Therefore (cf. eq. (2.116)) it is sufficient to find a transformationR(x), withF(x, ϵ) = R(x)I(x, ϵ)

such that
dxR(x) = Ωx,0(x) ·R(x); (2.118)

if this is the case, the system for the new basis I(x, ϵ) is ϵ-factorized,

dxI(x, ϵ) = ϵ
[︁
R−1(x) ·Ωx,1(x) ·R(x)

]︁
· I(x, ϵ); (2.119)

in (very) many practical examples eq. (2.119) is not only ϵ-factorized, but also canonical in the
sense of eq. (2.105).
Eq. (2.118) is yet another differential equation, and the reader may wonder whether this is
another complicated task: fortunately this is not the case in practice. First of all let us observe
that eq. (2.118) does not exhibit any dependence on ϵ. Moreover we further assume (this is
often the case in practice) that Ω̂0(x) has the following structure

Ω̂x,0(x) = N̂(x) + D̂(x), (2.120)

where D̂(x) is a diagonalmatrix and N̂(x) a nilpotent one; to fix the ideas, we assume that it is a
strictly lower triangular matrix.
We will solve eq. (2.118) in two steps, or, in other words, we consider a solution of eq. (2.118)
of the following form (the notation will be clear in a moment)

R(x) = RD(x) ·RN′(x); (2.121)

first we look for a transformationRD(x) such that

dxRD(x) = D(x) ·RD(x), (2.122)

whose solution reads
RD(x) = exp

∫︂ x

•
dx1 D̂(x1), (2.123)

where the integration in eq. (2.123) has to be understood as an indefinite integration
Plugging the ansatz eq. (2.121), with the explicit solution eq. (2.123), into eq. (2.118) we are left
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with the following

dxRN′(x) =
[︁
R−1

D (x) ·N(x) ·RD(x)
]︁
·RN(x)

= N′(x) ·RN′(x)
(2.124)

we notice that the matrix appearing in eq (2.124), under our assumptions, strictly lower trian-
gluar.
The formal solution of eq. (2.124) can be expressed in terms of the Dyson series as (this is
morally the same as eq. (2.108))

RN′(x) = 1+
∞∑︂
n=1

Dn[N
′(x)], (2.125)

where

Dn[N
′(x)] =

∫︂ x

•
dt1

∫︂ t1

•
dt2 · · ·

∫︂ tn−1

•
dtnN̂

′
(t1) · N̂

′
(t2) · · · N̂

′
(tn). (2.126)

The remarkable fact is that under our assumptions, namely the fact that N(x) (and N′(x) is
strictly lower triangular), eq (2.125) involves just a finite number of terms (Dn (•) vanishes by
construction for n ≥ ν).

Alternatively, eq. (2.124) can be solved by means of theMagnus exponential

RN′(x) = exp

(︄ ∞∑︂
n=1

Mn[N
′(x)]

)︄
, (2.127)

where the various terms in eq. (2.127) are repeated integrals of nested commutators; the first
few terms in the series are

M1[N
′(x)] =

∫︂ x

•
dt1N̂

′
(t1),

M2[N
′(x)] =

1

2

∫︂ x

•
dt1

∫︂ x1

•
dt2

[︂
N̂

′
t1), N̂

′
(t2)
]︂
,

M3[N
′(x)] =

1

6

∫︂ x

•
dt1

∫︂ t1

•
dt2

∫︂ t2

•
dt3

[︂
N̂

′
(t1),

[︂
N̂

′
(t2), N̂

′
(t3)
]︂]︂

+
[︂
N̂

′
(t3),

[︂
N̂

′
(t2), N̂

′
(t1)
]︂]︂
.

(2.128)

The mapping between the terms of eq. (2.127) and eq. (2.125) is shown in [145]. Even if for
the sake of our presentation we discussed just the single variable case, the procedure discussed
here can be applied to systems depending on more variables. After having identified a basis of
MIs which fulfills a system of differential equations linear in ϵ in all the variables, we can apply
the transformation in eq. (2.123) one variable at a time (recalling that once we apply a change
of basis to a given set of MIs, this propagates everywhere). Once the systems is in the form of
eq. (2.124) for all the variables, we solve eq. (2.124) for each variable (again, once we obtain a
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given transformation via the Magnus/Dyson exponential, this has to be applied everywhere);
see e.g. [156] for details.

Example. The half massive bubble (continued). Let us start from the following basis of MIs

J =

⎛⎜⎝ ,

⎞⎟⎠ . (2.129)

We will consider the dependence onm2 and x = −s/m2.
Sincem2 is the only dimensionful quantity, its dependence can be simply predicted by dimensional anal-
ysis (or obtained from the scaling relation)

J1 ∼ (m2)−ϵ, J2 ∼ (m2)−1−ϵ. (2.130)

It is useful to work with MIs which has the samem2 scaling, and so we consider

J′ =

⎛⎜⎝ ,m2

⎞⎟⎠ . (2.131)

Furthermore, the analytic evaluation of of J ′
1 can be carried out explicitly, obtaining

J ′
1 = (m2)−ϵ Γ(ϵ)

=
1

ϵ
− log

(︁
m2
)︁
+O(ϵ).

(2.132)

This result is clearly not of uniform weight 0. We need to consider J ′
1 → ϵJ ′

1 = J ′′
1 in order to remove

the 1/ϵ pole. Moreover, we find convenient to slightly modify the integral measure according to

eϵγE
∫︂
ddk

iπ
d
2

→
∫︂
ddk

iπ
d
2

· (m2)ϵ

Γ(1 + ϵ)
. (2.133)

With the explicit choice eq. (2.133), then

ϵ = 1. (2.134)

After all these considerations we can finally move to study the dependence of the MIs w.r.t. the variable
x, which is the non-trivial one.
According to what we said so far, the basis of MIs is

J′′ =

⎛⎜⎝ϵ , m2

⎞⎟⎠ , (2.135)
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and the corresponding differential equation is controlled by

Ω̂x =

(︄
0 0

− 1
x(x+1) − 1

x − (x−1)ϵ
x(x+1)

)︄
. (2.136)

Eq. (2.136) is linear in ϵ; we could naively think that this is a good starting point for the Magnus/Dyson
algorithm. However, as a general rule, it is convenient to have asmany elements as possible proportional to
ϵ, or, equivalently, to have a kernel Ω̂0 with as many 0s has possible, in order to have a better convergence
of eq. (2.125). In the case at hand, this is achieved rescaling also the second MIs by ϵ, that is to say
considering

F =

⎛⎜⎝ϵ , ϵm2

⎞⎟⎠ ; (2.137)

the corresponding system of differential equations is controlled by

Ω̂x = Ω̂x,0 + ϵ Ω̂x,1 =

(︄
0 0

0 − 1
x

)︄
+ ϵ

(︄
0 0

− 1
x(x+1) − x−1

x(x+1)

)︄
. (2.138)

So, in this case
Ω̂x,0 = D =

(︄
0 0

0 − 1
x

)︄
. (2.139)

Therefore the desired rotation simply reads

R = RD =

(︄
1 0

0 1
x

)︄
. (2.140)

The resulting transformed matrix is

Ωc = ϵ (d log(x)M1 + d log(1 + x)M2) , (2.141)

with
M1 =

(︄
0 0

0 1

)︄
, M2 =

(︄
0 0

−1 −2

)︄
. (2.142)

Unfolding everything back, we find that the following basis of MIs is canonical (going back to the physical
variables (s,m2))

I =

⎛⎜⎝ϵ , (−s)ϵ

⎞⎟⎠ . (2.143)
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2.7
Differential Equations for Feynman Integrals: Baikov representation

As we have done in the case of IBPs, it is interesting to briefly explore differential equations
fulfilled by MIs, working with Baikov representation [58, 60].
The general strategy is the one outlined above: namely acting with a differential operator ∂y(•)
on a certain MI, and reduce the resulting combination of FIs back in terms of MIs. Dealing with
Baikov representation, the action of ∂y(•) is−to some extent−non trivial.

In order the fix the ideas, we focus on the dependence on a single variable y .
Therefore we consider the action of ∂y(•) on a certain MI, say

J = Ia1,a2,...,an ∼ (G(p1, . . . ,pE))
E−d+1

2

∫︂
γ
B(z)

d−ℓ−E−1
2

n∏︂
i=1

dzi z
−a1 ai ⇝ fixed. (2.144)

It is important to make explicit the y dependence in the various quantities; in order to do this
we introduce for a moment the following notations

G(p1, . . . ,pE)⇝ G(y), γ ⇝ γ(y), B(z)⇝ B(z, y), (2.145)

since each of them could, in principle, depend on y.
The action of ∂y(•) on G(y) is trivial; it will just produce a term proportional to the MI itself:

∂yJ ⊃
(︃
E − d+ 1

2

∂yG(y)

G(y)

)︃
J . (2.146)

The action ∂y(•) on γ(y) gives no contribution, since B(∂γ) = 0.

The non trivial point is acting with ∂y(•) of B(z, y) under the integral sign23.
The resulting expression is

∂yJ ⊃
∫︂
γ
dz

B
d−ℓ−E−1−2

2

za11 . . . zann

d−ℓ−E−1

2
∂yB. =

∫︂
γ
dz

B
d−ℓ−E−1

2

za11 . . . zann

d−ℓ−E−1

2

1

B
∂yB

=

∫︂
γ
dz

B
d−ℓ−E−1

2

za11 . . . zann

d−ℓ−E−1

2
∂y logB.

(2.147)

Eq. (2.147) can be interpreted as linear combinations of integrals in (d− 2)-dimensions, which
is not what we want.

Once more the issue can be overcome relying on the so-called syzygy equations, and look for

23From now one we omit the dependence of B(z, y), on (x, y). Therefore B(z, y) = B.
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polynomials (ˆ︁ξ1, . . . , ˆ︁ξn, ˆ︁ξB) such that [60]

∂yB =
n∑︂

m=1

ˆ︁ξm ∂mB + ˆ︁ξB B. (2.148)

Plugging eq. (2.148) into eq. (2.147) yields
∫︂
γ
dz

B
d−ℓ−E−1

2

za11 . . . zann

d−ℓ−E−1

2

(︄
n∑︂

m=1

ˆ︁ξm ∂mB
B

+ ˆ︁ξB)︄ (2.149)

The blue term gives combination of d-dimensional FIs, and so there is no problem with them.
The left-over terms can be reorganized as follows

n∑︂
m=1

∫︂
γ
dz

B
d−ℓ−E−1

2

za11 . . . zann

d−ℓ−E−1

2
ˆ︁ξm ∂mB

B
=

n∑︂
m=1

∫︂
γ
dz

ˆ︁ξm
za11 . . . zann

∂mB
d−ℓ−E−1

2 ; (2.150)

finally integrating by parts and neglecting surface terms, we have

n∑︂
m=1

∫︂
γ
dz

ˆ︁ξm
za11 . . . zann

∂mB
d−ℓ−E−1

2 = −
n∑︂

m=1

∫︂
γ
dzB

d−ℓ−E−1
2 ∂m

(︄ ˆ︁ξm
za11 . . . zann

)︄
. (2.151)

The r.h.s. is finally written as linear combination of d-dimensional FIs.
Therefore we summarize our findings saying that the action of ∂y(•) on any given MIs can be
written as linear combination of (d-dimensional) FIs, at the price of solving syzygy equations
eq. (2.148). The resulting combination can be rewritten in terms of MIs, as it was done in the
standard case.
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3
Loop Calculus for Dark Matter Models

Wediscuss in this chapter an application of themethod of differential equations forMIs. The
context in which these techniques are applied is not the (perhaps) usual perturbative Quantum
Chromodynamics (QCD), rather the so called Dark matter leptophillic scenarios. Without any
pretension of completeness, we give here an extremely concise introduction to this topic. Our
goal in doing so is motivating the type of amplitude that we will then process with multi-loop
techniques. We will avoid any sort of phenomenological discussion; we refer to the original
work [157] and references therein for such considerations. The integral family under consid-
eration is a three-point 2 loop graph, with different masses in internal and external lines. In
parallel to this, we will also consider other auxiliary integrals families (three-point 2 loop graph
with equal masses and two-point 2 loop graph with different masses) which emerge in suitable
kinematic limits of the previous one. We employ the method of canonical basis, obtained by
means of the Magnus/Dyson exponential.

3.1
Physical Model and Form Factors

There is a vast experimental effort devoted to the study of elastic non-relativistic scattering
among Dark matter (DM) particles (denoted by χ), and nuclei, (sayA): so χA→ χA; this type
of processes goes under the name of direct Dark matter searches; they are complementary to the so
called indirect Dark matter searches and Dark matter searches at Collider−see e.g. the review [158].
In the leptophillic scenarios, DM does not interact directly with quarks, and therefore with nu-
clei. Rather, the DM-SM interaction is mediated via a field (ϕ) which couples to leptons (l)−and
hence the name leptophillic.
Limiting ourselves to a scalar mediator (ϕS) or a pseudo-scalar mediator (ϕP ), the Lagrangian
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describing these models will contain the following terms

−LS ⊃ gS ϕS l̄l + gχ ϕSΓχ, −LP ⊃ igP ϕP l̄γ5ℓ+ gχ ϕSΓχ. (3.1)

where Γχ = {χ† χ} in the case of scalar DM, and Γχ = {χ̄ χ, χ̄γ5χ} in the case of fermionic
DM. Finally, the interaction among leptons and quarks is mediated via photons. Actually, at the
energies relevant for experiments, photons cannot access quarks directly, ratherwewill consider
their interactions with nucleons (in other words, the internal structure of nucleons cannot be
accessed). The coupling of photons to nucleons is well known and is controlled by the Dirac
and Pauli form factors, F1 and F2 respectively. For the phenomenological scenario considered
in [157], the contribution proportional to F2 is negligible, and the coupling among photons and
nucleons is analogous to the one among photons and quarks, where the only difference is due to
the charge−therefore only protons are relevant; see once again [157] for a detailed discussion1

Diagrammatically we are lead to the following 2-loop Feynman diagrams2:

(3.2)

Leptons (with mass ml) are depicted in blue, nucleons (with mass mN) in red, photons via
wiggly lines. The kinematics is p2 = p′2 = m2

N and q2 = (p′ − p)2 = t. The corresponding
amplitudes is

AS,P (t;mN ,ml) = i gS,P Q
2
N

∑︂
l=e,µ,τ

Q2
l

(︁
ūN (p

′) ΓS,P (t;mN ,ml)uN (p)
)︁
. (3.3)

Some comments are in order. The subscript •S,P denotes either the scalar contribution (in this
case we use (•S)) or the pseudo-scalar one (•P ). Ql = 1 andQN = {1, 0}, forN = p, n (where p
denotes the proton and n the neutron) are the electric charges of lepton and nucleon respectively.
Finally, (e, µ, τ) stands for electron, muon and tau respectively.
The operator ΓS,P (t,mN ,ml) results from the sum of the two diagrams, which give identical

1In the following we will keep the general subscript (•)N for nucleons, since some of the expressions obtained
can be used even in different approximations compared to the one of [157].

2The two loop diagrams are the so called one body interactions. Other contributions are the two body interactions,
corresponding to one loop Feynman diagrams. See [157] and references therein for the interplay of the two.
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contributions. Its explicit expression is3

ΓS,P (t;mN ,ml) = −32π2 α2
em

∫︂
d4k1
(2π)4

d4k2
(2π)4

gµρ γ
ρ ( /k2 −mN ) gνσ γ

σ TrµνS,P (q, k1, k2;mN ,ml)

D1D2D3D4D5D6
,

(3.4)
where αem = e2/(4π) and TrµνS,P is the Dirac trace

TrµνS,P (q, k1, k2;mN ,ml) = Tr
{︂(︁

/k1 + /q +ml

)︁
ΛS,P ( /k1 +ml) γ

µ
(︁
/k1 + /k2 + /p

′ +ml

)︁
γν
}︂
, (3.5)

with ΛS = 1 and ΛP = γ5. The inverse propagators Di in eq. (3.4) are

D1 = k21 −m2
l , D2 = (k1 + q)2 −m2

l , D3 = k22 −m2
N , (3.6)

D4 = (k2 + p)2, D5 = (k2 + p′)2, D6 = (k1 + k2 + p′)2 −m2
l . (3.7)

From Lorentz invariance, the operators ΓS,P must have the form

ΓS,P (t;mN ,ml) = AS,P (t;mN ,ml) ΛS,P +BS,P (t;mN ,ml)
(︁
/p
′ + /p

)︁
ΛS,P

+ CS,P (t;mN ,ml)
(︁
/p
′ − /p

)︁
ΛS,P .

(3.8)

Upon using the equations of motions eq. (3.8) can be rewritten as

F1b
S = AS + 2mNBS ,

F1b
P = AP + 2mNCP .

(3.9)

So we have one single form factor in the scalar case, and one in the pseudo-scalar one.
F1b
S,P can be extracted from ΓS,P via the following projection

F1b
S,P (t;mN ,mℓ) =

1

2 (p′ ± p)2
Tr{︁ΛS,P (︁/p±mN

)︁
ΓS,P

(︁
/p
′ ±mN

)︁}︁
, (3.10)

where the sign is (+1) for the scalar case (S), and (−1) for the pseudo-scalar (P ). Our goal is
to compute the expressions for F1b

S,P .

3.2
Scalar Integrals Evaluation

Even if the diagrams in (3.2) are finite, from now on we assume the DR scheme with d =

4 − 2ϵ. The desired results are then recovered in the ϵ → 0 limit. Working in DR4 allows us
3We write the expressions momentarily in d = 4.
4For the d-dimensional treatment of γ5 we follow the pragmatic approach of [159] and references therein. In

particular γ5 = −i/4!ϵµ,ν,ρ,σγ
µγνγργσ where the indices are d−dimensional. Dirac algebra is performed also with

the help of Package-X [160].
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to benefit from the techniques described in the previous part of this work, namely IBPs and
differential equations for MIs.
In parallel with the integral family associated to (3.2), we consider also an auxiliary integral
family with a unique mass dependence, i.e. m2

l = m2
N = m2−referred to as the equal mass

case−and one associated with the soft approximation qµ → 0 (corresponding to t = 0). Both
these limits are considered ab-initio and, in both cases, the resulting integrals depend on one
scale less compared to the original problem; simpler expressions are expected for both MIs and
form factors. The auxiliary integral family for the equal mass limit serves as useful check for
eq. (3.9), since we could verify that the form factors for the full problem (numerically) agree
with the simpler ones, once the limitmN → ml is considered. Moreover, the equal mass limit is
useful for comparing our results with previous expressions obtained in the literature, offering
other important consistency checks. Finally, we mention that the sclar form factor in the soft
approximation is of phenomenological interest [157]5.

3.2.1
Different Mass Integral Family and its Canonical Basis

We consider the integral family associated to the following graph:

(3.11)

The denominators read

D1 = k21 −m2
l , D2 = (k1 + q)2 −m2

l , D3 = k22 −m2
N , (3.12)

D4 = (k2 + p)2, D5 = (k2 + p′)2, D6 = (k1 + k2 + p′)2 −m2
l , (3.13)

while the ISP is chosen as
D7 = (k1 − p)2. (3.14)

The kinematics is given by p2 = p′2 = m2
N and t = (p− p′)2.

This integral family have been computed originally in [161], in the context of Higgs decay into
b̄ b pair; we recomputed it separately.

5The pseudo-scalar form factor in the soft approximation admits an asymptotic expansion which we do not
consider here.
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In this work we employed Reduze2 [67] and LiteRed [162]. In this case 20 MIs were identi-
fied. Employing the strategy described in section 2.6.2, we obtain the following set of canonical
MIs

I1 = ϵ2 J1, I2 = ϵ2 J2,

I3 = ϵ2 λl J3, I4 = −ϵ2 tJ4,

I5 = ϵ2
(︃
1

2
(−t+λl) J4+λl J5

)︃
, I6 = −ϵ2 tJ6,

I7 =
ϵ2m2

N (t+λl) ρN
(λN+t) ρl

(J7+2J8) , I8 = ϵ2m2
N J8,

I9 = ϵ2 λl J9, I10 = −ϵ2 t λl J10,

I11 = ϵ3 λN J11, I12 =
ϵ2 λl
4 t

(︂
(t−λN ) (J4+2J5)−4m2

N λN J12

)︂
,

I13 = ϵ3 λN J13, I14 = ϵ3 (−1+2 ϵ) tJ14,

I15 = ϵ3 λl λN J15, I16 = ϵ3 λN J16,

I17 = ϵ3 λN J17, I18 =
ϵ2

t

(︂
λl (−t+λN ) J9+ϵ (t−λl) λN J17+(−1+2 ϵ)λl λN J18

)︂
,

I19 =
ϵ2

2 t

(︂
t (λl−t) J3−2 tm2

l (J7+2J8)+
(︁
4 tm2

l+λl (λN−t)
)︁
J9+ϵ

4 t2m2
N

λN+t
J16

+ϵ
(︁
λN (t−λl)−4 tm2

l

)︁
J17 +(2 ϵ−1)

(︁
4 tm2

l+λl λN−t2
)︁
J18+2 t2

(︁
m2
l−m2

N

)︁
J19

)︂
,

I20 = −ϵ4 t λN J20. (3.15)

where we introduced the following notations

λi =
√
−t
√︂

4m2
i − t , ρi =

√︄
2m2

i − t− λi
m2
i

, with: i = N, l. (3.16)

and the integrals (J1, . . . ,J20) are depicted in fig. (3.1). The square roots are rationalized by
the following change of variables

t = −m2
l

(1− x2)2

x2
, m2

N = m2
l

(1− x2)2y2

(1− y2)2x2
, (3.17)

where (x, y) are chosen to lay in the following region:

0 < x < 1
⋂︂

0 < y < x. (3.18)

This region, in terms of physical variables, corresponds to

t < 0
⋂︂

0 < m2
N < m2

l , (3.19)
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J1 J2 J3 J4

J5 J6 J7 J8

J9 J10 J11 J12

J13 J14 J15 J16

J17 J18 J19 J20

Figure 3.1: MIs for the integral family in fig. (3.11). Dots denote squared propagators.
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and the inverse of eq. (3.17) is

x =
1

2
(
√
4−σl −

√
−σl), y =

1

2
(
√
4−σN −

√
−σN ), σl,N =

t

m2
l,N

. (3.20)

The same definition of (x, y) holds also for the inverted mass hierarchy: 0 < m2
l < m2

N (t < 0)
and so it can be used for the full kinematic region of our interest.
With the explicit choices in eqs. (3.15,3.17), the (system of) differential equation(s) reads

dI(x, y, ϵ) = ϵΩc(x, y) I(x, y, ϵ), Ωc(x, y) =
12∑︂
i=1

Mi d log(ηi(x, y)) (3.21)

with

η1(x, y) = x, η2(x, y) = 1 + x, η3(x, y) = 1− x,

η4(x, y) = 1 + x2, η5(x, y) = y, η6(x, y) = 1 + y,

η7(x, y) = 1− y, η8(x, y) = 1 + y2, η9(x, y) = x+ y,

η10(x, y) = x− y, η11(x, y) = 1 + xy, η12(x, y) = 1− xy.

The solution of eq. (3.21) (with rational alphabet) leads to GPLs.

The boundary constants are determined thanks to the following considerations67

• The tadpoles I1,2 and the factorized integral I6 are obtained by direct integration and pro-
vided as an external input to the system of differential equations:

I1 = 1 ,

I2(x, y, ϵ) =
(︃
(1− x2)2 y2

(1− y2)2 x2

)︃−ϵ
,

I6(x, ϵ) =
(︃
(1− x2)2

x2

)︃−ϵ (︃
1− π2

6
ϵ2 − 2 ζ3 ϵ

3 − π4

40
ϵ4 +O(ϵ)5

)︃
.

• The boundary constants of the integrals I3,4,5,9,10,11,12,14,16,17,18,19 are determined by im-
posing their regularity at the pseudo-threshold t→ 0. In particular, due to the prefactors
that appear in the definition of the canonical MIs in eq. (3.15), I3,4,5,9,10,14,16,17 vanish in
this limit.8 The same conclusion is inferred for I11,12,18,19, analyzing the differential equa-
tion in this limit. I10 results to be vanishing in the t→ 0 limit, due to the faster convergence
of the factorized (canonical) massive bubble, with respect to the massless one.

• The boundary constants of I7,8 are determined thanks to the regularity atm2
N → 0; specif-

ically, due to the prefactors in eq. (3.15), these MIs vanish in this limit.
• The boundary constants of I13,15,20 are determined by demanding regularity in the t →

4m2
N limit. Thanks to the prefactors in eq. (3.15), these MIs vanish in this limit.

6The integral measure is assumed to be (m2
l )

ϵ
∫︁
ddki (iπ

d/2Γ(1 + ϵ))−1 for each loop, in such a way that I1 = 1.
The original integral measure can be always retrieved at the end.

7In some cases the analytic expressionswere recovered fromhigh-precision numerical evaluations obtainedwith
GiNaC, thanks to the PSLQ algorithm [163, 164] implementation of PolyLogTools.

8The fact that I14 vanishes in the t → 0 limit can be inferred from the results of ref. [165].
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3.2.2
Equal Mass Integral Family and its Canonical Basis

We consider here the auxiliary integral family

(3.22)

Denominators and the kinematics is the one in subsection 3.2.1, upon consideringm2
N = m2

l =

m2.
In this case 15MIs are identified, and they can be chose as9

I1 = ϵ2 J1, I2 = ϵ2 λm J2,

I3 = −ϵ2 tJ3, I4 = ϵ2
(︃
1

2
J3 (λm+t)+J4 λm

)︃
,

I5 = −ϵ2 tJ5, I6 = ϵ2m2 J6,

I7 = −ϵ2 t λm J7, I8 = ϵ3 λm J8,

I9 = ϵ2
(︃
1

4

(︁
4m2−λm−t

)︁
(J3+2J4)+m

2
(︁
4m2−t

)︁
J9

)︃
, I10 = ϵ3 λm J10,

I11 = ϵ3 (1−2 ϵ) tJ11, I12 = ϵ3 t
(︁
t−4m2

)︁
J12,

I13 = ϵ3 λm J13,

I14 = ϵ2
(︂ (︁

4m2−λm−t
)︁
(J2−ϵJ13)+(2 ϵ−1)

(︁
4m2−t

)︁
J14

)︂
,

I15 = −ϵ4 λm tJ15, (3.23)

where we have introduced the notation

λm =
√
−t
√︁

4m2−t. (3.24)

and (J1, . . . ,J15) are presented in fig. (3.2). Eq. (3.24) is rationalized by the following change
of variables

t = −m2 (1− w)2

w
(3.25)

with w in the following region
0 < w < 1, (3.26)

9The canonical set of MIs for this example has been found by Hernik J. Munch.
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J1 J2 J3 J4

J5 J6 J7 J8

J9 J10 J11 J12

J13 J14 J15

Figure 3.2: MIs for the integral family in fig. (3.22). Dots denote squared propagators.
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corresponding to
t < 0

⋂︂
m2 > 0. (3.27)

The inverse of eq. (3.25) reads

w =

√
4m2 − t−

√
−t√

4m2 − t+
√
−t

(3.28)

The canonical differential equation w.r.t. reads

dI(w, ϵ) = ϵΩc(w)I(w, ϵ), Ωc(w) =
3∑︂
i=1

Mid log(ηi(w)), (3.29)

with
η1(w) = w, η2(w) = 1 + w, η3(w) = 1− w. (3.30)

Eq. (3.29) can be solved in terms of GPLs (or, better, in terms of HPLs).

The boundary constants are fixed thanks to the following considerations

• The integrals I1,5,6 are provided as an external input. In particular, I1,5 are obtained by
direct integration

I1 = 1 ,

I5(w, ϵ) =
(︃
(1− w)2

w

)︃−ϵ (︃
1− π2

6
ϵ2 − 2 ζ3 ϵ

3 − π4

40
ϵ4 +O(ϵ)5

)︃
,

while I6 is obtained from the general case as [166]

I6(ϵ) = −ϵ2 π
2

12
+
ϵ3

4

(︁
2π2 log(2)− 7 ζ3

)︁
+

ϵ4

360

(︃
31π4 − 180 log4(2)− 360π2 log2(2)− 4320Li4

(︃
1

2

)︃)︃
+O(ϵ5).

(3.31)

• The integral I12 is obtained as the product of I2 and I10.

• The boundary constants for I2,3,4,8,9,11,13,14 are determined by the regularity at the pseudo-
threshold t → 0. In particular I2,3,4,8,11,13 vanish in this limit due to the prefactors in
eq. (3.23). Analyzing the differential equation in the t → 0 limit, we obtain relations
among MIs in this limit, namely I9 |t→0 = 3 I6 and I14 |t→0 = 6 I6; the latter are sufficient
to determine the boundary constants for I9,14. I7 vanishes due to the factorized canonical
bubble.

• The boundary constants for I10 are determined from the regularity at the pseudo-threshold
t→ 4m2. In particular due to the prefactor in eq. (3.23), I10 vanishes in this limit.

• The boundary constants for I10 are obtained by comparing our resultswith those in ref. [167].
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3.2.3
Soft Limit and its Canonical Form

We consider here the integral family which is relevant for the case qµ → 0 (which implies
t→ 0). The situation is represented diagrammaticaly by the following

(3.32)

so, compared to the previous section we will consider a two-point function. The integral family
is associated with the following graph:

(3.33)

The denominators are10

D1 = k21 −m2
l , D3 = k22 −m2

N , D4 = (k2 + p)2, D6 = (k1 + k2 + p)2 −m2
l , (3.34)

and the ISP is
D7 = (k1 − p)2. (3.35)

10The subscripts follow from the original set in subsection 3.2.1.
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J1 J2 J3 J4

Figure 3.3: MIs for the integral family in fig. (3.33). Dots denote squared propagators.

For this problem 4MIs are identified. The canonical set of MIs is given by

I1 =ϵ2 J1, I2 = ϵ2 J2 ,

I3 =ϵ2mlmN (J3 + 2J4) , I4 = ϵ2m2
NJ4, (3.36)

where (J1, . . . ,J4) are depicted in fig. (3.3). The differential equations is derived w.r.t.

z =
mN

ml
, (3.37)

and it takes the form

dI(z, ϵ) = ϵΩc(z) I(z, ϵ), Ωc(z) =

3∑︂
i=1

Mi d log(ηi(z)), (3.38)

with
η1(z) = z, η2(z) = 1 + z, η3(z) = 1− z. (3.39)

Eq. (3.38) can be solved in terms of GPLs (rather HPLs).

The boundary constants are fixed by means of the following analysis

• I1 and I2 are obtained by direct integration
I1 = 1 ,

I2(z, ϵ) = z−2 ϵ .

• The boundary conditions for I3 and I4 are determined from to their regularity at mN →
0 [166]. In particular, thanks to the prefactors in eq. (3.36), they vanish in this limit.
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3.3

Results

The explicit results for F1b
S,P where we retain all the dependence on (t,m2

N ,m
2
l ) are too

lengthy to be reported here. Rather we present analytic expressions for the form factors in
various limits;

• Scalar form factor in the equal mass limit: F1b
S (t;m2,m2).

The variable w is introduced in eq. (3.28) and we use the short-hand notationG(a;w) = Ga(w).
We have F1b

S = α2
em
π2 F̂1b

S , with

F̂1b
S (w) = − (20w2+4w)

(w−1) (w+1)2
G0(w) +

w

(w−1) (w+1)

[︁
24G−1,0(w)+4G1,0(w)

]︁
+

w

(w−1)2 (w+1)3
[−12w3−38w2+8w+2]G0,0(w) −

w

π2 (w−1)2
[︁
2G0,0,0(w)+4 ζ3

]︁
+

w ζ3
(w−1)3 (w+1)

[5w2−6w+5]G0(w) +
w

π2 (w+1)2

[︃
12G0,0,1(w)−

4π2

3
G0(w)+16G1(w)

]︃
+

w

(w−1)2 (w+1)2

[︂
(−16w2+64w−16)G0,−1,0(w)+(8w2−48w+8)G1,0,0(w)+16wG0,1,0(w)

]︂
+

w

(w−1) (w+1)3

[︄
(−14w2+4w−14)G0,1(w)+

(︃
w2

3
+2w+

1

3

)︃
G1,0(w)π

2

+(2w2+12w+2)
(︁
G1,0,0,0(w)−G0,0,1,0(w)

)︁
+

(︃
2w2−20w

3
+2

)︃
π2

]︄

+
w

(w−1)3 (w+1)3

[︄(︃
5w4

6
−2w3+

23w2

3
−2w+

5

6

)︃
G0,0(w)π

2

+
(︁
8w4−32w3+112w2−32w+8

)︁
G0,0,−1,0(w)+

(︃
3w4

2
−2w3+9w2−2w+

3

2

)︃
G0,0,0,0(w)

+
(︁
−9w4+12w3−54w2+12w−9

)︁
G0,0,0,1(w)+

(︁
−2w4+24w3−76w2+24w−2

)︁
G0,1,0,0(w)

+

(︃
w4

18
−2w3

45
+
11w2

45
−2w

45
+

1

18

)︃
π4

]︄
. (3.40)

Thanks to crossing symmetry, this form factor is related to the one appearing in theHiggs boson
decay into a heavy-quarks discussed in [168]. Nevertheless, the form factor considered in this
reference receives contribution from several s-channel diagrams, (and so from several integral
families). Our expression, instead, is associated to a single integral family.

• Pseudo-scalar form factor in the equal mass limit: F1b
S (t;m2,m2).

The variable w is introduced in eq. (3.28) and we use the short-hand notationG(a;w) = Ga(w).
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We have F1b
P = α2

em
π2 F̂1b

P , with

F̂1b
P (w) = − w2

(w−1)3 (w+1)

[︃
2π2

3
G0(w)+4G0,0,0(w)

]︃
+

w

(w−1)2

[︃
G0,0(w)−4G0,0,1(w)−4G0,1,0(w)+8G1,0,0(w)+12 ζ3+

π2

3

]︃
+

w

(w−1) (w+1)

[︃
−3 ζ3G0(w)−

π2

6
G0,0(w)−

π2

3
G1,0(w)−

1

2
G0,0,0,0(w)

+3G0,0,0,1(w)+2G0,0,1,0(w)−2G0,1,0,0(w)−2G1,0,0,0(w)−
π4

45

]︃
.

(3.41)

Thanks to crossing symmetry, this quantity is related to the pseudo-scalar form factor ear-
lier considered in the context of QCD corrections to heavy quarks form factors in s-channel
processes−see AR in [159]. We reproduced the result of the above-mentioned reference with
our MIs and suitable projectors. Our result, valid for a t-channel process, is reported in [157]
for the first time.

• Scalar form factor in the soft limit: F1b
S (t ∼ 0;m2

N ,m
2
l ).

The variable z is introduced in eq. (3.37). We have F1b
S = α2

em
π2 F̂1b

S , with

F̂1b
S (z) = −2

z

[︂
1− ln(z)

2
+ fS(z) + fS(−z)

]︂
, (3.42)

where fS(τ) =
1

4 τ2
(︁
4 + 3 τ + τ3

)︁ [︂
log |τ | log(1 + τ) + Li2(−τ)

]︂
. (3.43)

• Scalar form factor: F1b
S (t;m2

N ,m
2
l ) & Pseudo-scalar form factor: F1b

P (t;m2
N ,m

2
l ).

As anticipated above the expression are too lengthy to be reported here. Rather the qualitative
behaviour11 is captured by the plot in fig. (3.4) and fig. (3.5), for the scalar and pseudo-scalar
contribution respectively.

11The numerical evaluations of the form factor was carried over by P. Mastrolia and A. Primo.
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Figure 3.4: Scalar form factor F1b
S (t;m2

N ,m
2
l ). The nucleon considered is the proton; (e, µ, τ)

denote the contributions of electron, muon and tau.
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Figure 3.5: Pseudo-scalar form factor F1b
P (t;m2

N ,m
2
l ). The nucleon considered is the proton;

(e, µ, τ) denote the contributions of electron, muon and tau.
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4
An Introduction to

Twisted (Co)Homology:
univariate case

The main goal of this chapter is to give a gentle introduction to twisted Homology and Co-
Homology and to study integrals and their properties within this framework. Wewill focus our
discussion mostly on the univariate case (i.e. one-fold integrals)−and later on generalize our
results to themultivariate case. After introducing the (co)homology groups, wewill review the
construction of (co)homology intersection numbers: these last are pairing among the elements
of the above-mentioned groups (and their dual) and will play a crucial role in the remaining
part of this work. There are several textbooks and reviews on this topic, see e.g. [23, 169, 170];
here we follow the discussion of [24], trying to smooth asmuch as possible all themathematical
asperities.1

Loosely speaking, we will focus on integrals of the form∫︂
∆
(P1(z))

α1 . . . (Pm(z))
αm dz, (4.1)

where Pi(z), 1 ≤ i ≤ m are polynomials in z (eventually depending on some external data),
αi ∈ C\Z, 1 ≤ i ≤ m, and∆ is some integration contour−not yet specified−inX = C\

⋃︁m
j=1Dj

with Dj = {z ∈ C : Pj(z) = 0}. One of the main peculiarities of the integrand in eq. (4.1) is
that, under our assumptions, (Pi(z))αi is a multivalued function in X .

We introduce here a simple yet interesting example which will guide us through the whole
1We benefit a lot from the set of lectures “AdvancedMethods for Scattering Amplitudes" delivered by S.L. Cacciatori,

Y. Goto and P. Mastrolia, Padova−July 2021 as well as from the cycle of seminars held by Y. Goto and K. Matsumoto,
Padova−September 2019 and several discussions with S. Mizera.
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discussion.

Example. The Euler Beta function. Perhaps the simplest example of integrals of the form of eq. (4.1) is

B(p, q) =

∫︂ 1

0
dz zp−1 (1− z)q−1, Re(p) > 0, and Re(q) > 0,

=

∫︂ 1

0
zp (1− z)q

dz

z(1− z)

(4.2)

We have the clear identifications2:

• P1(z) = z, and α1 = p− 1;
• P2(z) = 1− z, and α2 = q − 1;
• ∆ = (0, 1) ⊂ X = C \ {0, 1}.

We will consider here some gymnastic one the Euler Beta function eq. (4.2); technically
speaking we will obtain an analytic continuation valid for (p, q) /∈ Z, but getting acquainted
with the multivalued nature of the integrand will be useful for later constructions.

Let us consider the closed contour γP, dubbed as the Pochhammer contour [171], depicted in
fig. (4.1).

Figure 4.1: The Pochhammer contour denoted, γP. Branch points are denoted by ◦: so ◦ = 0 or
◦ = 1; the starting (and final) point, placed at position ϵ along the (0, 1) segment is denoted by:
•. We assume arg(t) = 0 and arg(1− t) = 0 on each point belonging to (0, 1). C◦ and C ′

◦ denote
a small circles of radius ϵ around the point ◦. More details are given in the main text.

We aim to rewrite the integral over γP in terms of the original original integral eq. (4.2). Let us

2The importance of the harmless rearrangement in the last line of eq. (4.2) will become more transparent soon.
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state the result, and then justify it.∫︂
γP

zp (1− z)q
dz

z(1− z)
=
(︂
1−e2πiq+e2πi(q+p)−e2πiq

)︂ ∫︂ 1

0
zp (1− z)q

dz

z(1− z)
. (4.3)

Some comments are in order to explain the r.h.s. of eq. (4.3); firstly we integrate following a
straight line from 0 to 1 passing through the point •, and this explain the first term+1. Next, we
turn around the branch point ◦ = 1moving counterclockwise along the circle of arbitrary small
radius ϵ, say C1 (cf. caption in fig. (4.1)). Therefore this contribution to the integral is negligible
(and the same holds for C0, C ′

0 and C ′
1) but zp(1 − z)q produces an extra e2πiq. This factor,

together with the fact that we travel from 1 to 0 (and not from 0 to 1 as done before) explains
the second term −e2πiq in eq. (4.3). Following the same logic, keeping track of the orientation
of circles and segments, we can derive the other contributions namely +e2πi(q+p) and −e2πiq.
We can recast eq. (4.3) as:∫︂

γP

zp (1− z)q
dz

z(1− z)
=
(︁
1− e2πiq

)︁ (︁
1− e2πip

)︁ ∫︂ 1

0
zp (1− z)q

dz

z(1− z)
. (4.4)

Let us introduce
γ′ =

γP
(1− e2πiq) (1− e2πip)

. (4.5)

We can split the contour γ′ as the sum of three contributions, say around ◦ = 0, the segment
[ϵ, 1− ϵ] and ◦ = 1.

Let Cϵ(◦) be an anticlockwise circle of radius ϵ centered at ◦ with starting point laying on the
segment (0, 1) (with arg(ϵ) = 0 and arg(1− ϵ) = 0).
The contribution around ◦ = 0 is−keeping track of the argument of z and (1− z) at the starting
point of C0 and C ′

0 as well as orientation−

=
C0 + C ′

0

(1− e2πiq) (1− e2πip)
=

(︁
e2πiq − 1

)︁
Cϵ(0)

(1− e2πiq) (1− e2πip)
= − Cϵ(0)

1− e2πip
. (4.6)

The contribution from the middle segment is

=

(︁
1− e2πiq

)︁ (︁
1− e2πip

)︁
(1− e2πiq) (1− e2πip)

[ϵ, 1−ϵ] = [ϵ, 1−ϵ]. (4.7)
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Finally the contribution around ◦ = 1 is

=
C1 + C ′

1

(1− e2πiq) (1− e2πip)
=

(︁
1− e2πip

)︁
Cϵ(1)

(1− e2πiq) (1− e2πip)
= +

Cϵ(1)

1− e2πiq
. (4.8)

Therefore we have

γ′ =

= − Cϵ(0)

1− e2πip
+ [ϵ, 1−ϵ] + Cϵ(1)

1− e2πiq
.

(4.9)

After all these manipulations we are lead to consider the following∫︂
γ′
u(z)

dz

z(1− z)
, u(z) = zp(1− z)q. (4.10)

Eq. (4.10), which is valid for (p, q) /∈ Z, reduces to eq. (4.2) when Re(p),Re(q) > 0 (and (p, q) /∈
Z).
Even if eq. (4.10) looks like a simple reshuffling of the original objects at our disposal, it offers
an interesting change of perspective.
Eq. (4.10) can be seen as the integral of a multivalued function over a topological path γ′. On
the other hand, eq. (4.10) can be re-considered as the pairing of a single-valued differential form
which, in the case at hand, reads

dz

z(1− z)
(4.11)

and

− Cϵ(0)

1− e2πip
⊗ u(z) + [ϵ, 1− ϵ]⊗ u(z) +

Cϵ(1)

1− e2πiq
⊗ u(z). (4.12)

Colloquially, eq. (4.12) means that we assign to each path an information about the branch of the
multivalued function u−in the case at hand, the branch is specified by arg(z) = arg(1 − z) = 0

on [ϵ, 1 − ϵ] as well as at the starting point of Cϵ(0) and Cϵ(1). Eq. (4.12) is called twisted−or
loaded−path.
Therefore−introducing a notation which will be fully clear only later on−we will focus on the
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following configuration∫︂
γ
u(z)φ(z) = ⟨φ | γ ⊗ u(z)]

⇝ Single-valued 1-form× Twisted path;
(4.13)

Integrals of the form of eq. (4.13) can be addressed and better understood thanks to the theory
of twisted Homology and twisted Co-Homology, or, more colloquially with the tools offered by
Intersection Theory−the reason behind this name will be clear later on.

4.1
Basic Aspects of Twisted Homology

We discuss here some basic aspects of twisted Homology. Clearly an important difference
compared to “standard"−i.e. the non-twisted3 case−is due to the multivaluedness of the objects
we are dealingwith. We do not dive into formal proofs, rather we try to give priority to intuition
and explicit calculations. In order the fix the ideas, at the beginningwewill work explicitly with
the Euler Beta integral; we will slightly generalize our results later on.

4.1.1
Boundary Operator

While studying regular homology, we realize that the boundary operator ∂(•) plays an impor-
tant role. So, it seems desirable to understand howwe can implement to action of the boundary
operator, say ∂u(•)−where the superscript u is used in order to stress that we are dealing with
twisted, or loaded, paths−within our context.

Let us consider first a straight path (r, s) loaded with u(z), we define the action of ∂u as

∂u ((r, s)⊗ u(z)) = [s]⊗ u(s)− [r]⊗ u(r)

⇝ + Final point of the path loaded with u(z) evaluated there
− Initial point of the path loaded with u(z) evaluated there.

(4.14)

3For a physics-oriented introduction to Homology see e.g. [172].
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Let us consider now the closed path Pr given by:

Pr = − 1

1− e2πip
. (4.15)

We find:

∂u (Pr ⊗ u(z)) = − 1

1− e2πip

(︃
[r]⊗ e2πipu(r)− [r]⊗ u(r)

)︃
= [r]⊗ u(r). (4.16)

Finally, moving to the loaded path as defined in eq. (4.9)−we have

∂u (4.9) =∂u
(︃
− Cϵ(0)

1− e2πip
⊗ u(z) + [ϵ, 1−ϵ]⊗ u(z) +

Cϵ(1)

1− e2πiq
⊗ u(z)

)︃
=− 1

1− e2πip

(︃
[ϵ]⊗ e2πipu(ϵ)− [ϵ]⊗ u(ϵ)

)︃
+

(︃
[1−ϵ]⊗ u(1−ϵ)− [ϵ]⊗ u(ϵ)

)︃
+

1

1− e2πiq

(︃
[1−ϵ]⊗ e2πiqu(1−ϵ)− [1−ϵ]⊗ u(1−ϵ)

)︃
=[ϵ]⊗ u(ϵ) +

(︃
[1−ϵ]⊗ u(1−ϵ)− [ϵ]⊗ u(ϵ)

)︃
− [1−ϵ]⊗ u(1−ϵ)

=0.

(4.17)

We will refer to a twisted−or loaded−pathwith zero boundary as a twisted−or loaded−cycle.

Eq. (4.17) shows that eq. (4.9) is a twisted cycle; conversely Pr ⊗ u(z) is not twisted cycle, as
eq. (4.16) reveals.
We would like also to go back to (0, 1)⊗ u(z)which was, after all, the starting point of our dis-
cussion (cf. eq. (4.2)). It has no boundary inside X = C \ {0, 1}, and so we declare that it is a
twisted cycle as well.
We conclude this paragraph stating that, similarly to the regular (i.e. non-twisted) case, the
boundary operator turns to be nilpotent, namely:

∂u ◦ ∂u = 0. (4.18)

Wewill organize the results from the previous paragraph in the following subsection, introduc-
ing other important structures.
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4.1.2
Twisted Homology Groups

We will focus on the following, slightly more general4:

u(z) = (z − x0)
α0 . . . (z − xm+1)

αm+1 , (4.19)

defined on X = CP1 \ {x0, . . . , xm+1, xm+2 = ∞}. We define αm+2 = −
∑︁m+1

j=0 αj and, to fix
ideas, we assume that the xi are real (i.e. xi ∈ R, 0 ≤ i ≤ m+ 1) and ordered in a natural way:
xi < xj for i < j. Moreover we assume that the exponents αi are not integers (namely αi /∈ Z,
0 ≤ i ≤ m+ 2).

Let us introduce a twisted k−chains ∑︂
j∈J

aj ∆
k
j ⊗ u, (4.20)

where J is some finite set, aj ∈ C and we can think at each ∆k
j as a point (k = 0), path (k = 1)

or curvilinear triangle (k = 2).
Then denoting with Ck(X,u), or simply−for short−Ck, the set of twisted k-chains

Ck(X,u) = Ck =

{︃∑︂
j∈J

aj ∆
k
j ⊗ u

}︃
(4.21)

Then the (C-linear) map ∂u acts as

∂u : Ck → Ck−1,

∆k ⊗ u→ ∂∆k ⊗ u
⃓⃓
∂∆k .

(4.22)

The nilpotency of the boundary operator (cf. eq. (4.18)) implies:

∂u ◦ ∂u = 0 =⇒ Im (∂u : Ck+1 → Ck) ⊂ Ker (∂u : Ck → Ck−1) ; (4.23)

elements of the kernal of ∂u are referred to as twisted cycles:

Ker (∂u : Ck → Ck−1) ∋ twisted cycle. (4.24)

Eq. (4.23) leads to the definition of the twisted k-th homology group:

Hk(X,u) = Hk =
Ker (∂u : Ck → Ck−1)

Im (∂u : Ck+1 → Ck)
, k = 0, 1, 2. (4.25)

The other Hk with k > 2 are empty, since we cannot consider higher dimensional objects.
The next, natural, problem is to determine the dimension of H0, H1 and H2; we will try to do it

4It can be shown that, for instance, the Euler Beta B(p, q) and the hypergeometric 2F1 can be cast in this form
(cf. appendix B). Beside them, also the Lauricella FD admits the same representation [173, 174].
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in an intuitive way in the following paragraph.

Let us start from H0; eq. (4.15) and eq. (4.16) shows that every loaded point can be written
as the boundary of a suitably chosen loaded path, therefore dimH0 = 0.

Moving to H2, we argue that we cannot find an element laying in Ker (∂u : C2 → C1).
Let us start from a single triangle and compute its boundary:

∂
⇝ (4.26)

it is clearly non zero.
We could be tempted to eliminate the boundaries patching up other triangles (with proper
orientation). Nevertheless this does not work, since we keep introducing new boundaries at
each step, and the problem cannot be solved if we are working with finite sums.

∂
⇝ (4.27)

Thus, we conclude that dimH2 = 0.

It is a known fact that the Euler characteristic ofX is equal to the alternating sum of the dimensions
of the twisted homology groups [23]:

χ(X) = dim(H0)− dim(H1) + dim(H2)

= 0− dim(H1) + 0

= −dim(H1).

(4.28)

We have

χ(X) = χ(CP1 \ {(m+ 3) points}) = χ(CP1 ≈ S2)− χ({(m+ 3) points})
= 2− (m+ 3)

= −(m+ 1).

(4.29)

and so:
dim(H1) = m+ 1. (4.30)
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4.1.3

Homology Intersection Number

Crucially, it is possible to build a bilinear pairing among elements of H1 (or better, as we
will see, among H1 and its dual space), referred to as homology intersection number [175, 176,
177, 178]. Let us describe how this is built, following a constructive approach.
Starting from the non-twisted case (i.e. u = 1), we can define a topological intersection num-
ber which describes how many times two paths, say γ and γ∨, intersect each other (taking into
account the relative orientation).

We have two building blocks:

= +1, (4.31)

or

= −1. (4.32)

We can see that a deformation of one of the two paths does not alter the final result:

= +1−1+1 = +1. (4.33)

Moving to the twisted case, we have to take into account the presence of u(z). Let us consider
two twisted−or loaded−cycles, intersecting transversally, say−for concreteness−as in eq. (4.31),
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at a given point •. A naive guess for the intersection pairing could be

= (+1) · u(•) · u(•), (4.34)

where we have one factor of u(z) evaluated at • for each cycle.
Differently from the non-twisted case, eq. (4.34) is not invariant under small deformation of on
of the two cycles (u(z) evaluated at, say, • is different from u(z) evaluated at a different point,
say ♦ ̸= •).
We can cure this problem, correcting eq. (4.34) as:

= (+1) · u(•) · u−1(•). (4.35)

Eq. (4.35) reveals thatwe cannot build a pairing among elements ofH1 = H1(X,u), rather among
(elements of) H1(X,u) and its dual space H1(X,u

−1).
We notice that the factor u(z) · u−1(z) is not trivially 1, since we could have different phases
going around a branch point.
Indeed, the situation around a given branch point, say xi, is delicate. Let us focus on a specific
example: the intersection between γ = (xi−1, xi) and γ∨ = (xi, xi+1). Even in the non-twisted
case the situation seems ambiguous: on the one hand small deformations may change the final
result:

?
= +1, (4.36)

or

?
= −1. (4.37)

On the other hand, declaring that such an intersection number is 0−since, after all, xi /∈ X−is
too drastic: if this is the case, we could deform all the topological cycle and force all the inter-
section numbers to be 0. Therefore some sort of regularization−say regh(•)−is needed. It is at
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this stage that our preliminary discussion becomes useful. It turns out that the following map
does the job (cf. eq. (4.9))

regh : ⇝ .

(4.38)
Therefore the homology intersection number is given by

[•|•] : H1(X,u)×H1(X,u
−1) → C(︁

[γ ⊗ u(z)|, |γ∨ ⊗ u−1(z)]
)︁
→ [γ ⊗ u(z)|γ∨ ⊗ u−1(z)]

=
∑︂

•∈ γ∩γ∨

[︁regh (γ) | γ∨ ]︁top. · u(•) · u−1(•).
(4.39)

We will give here explicit examples of homology intersection numbers, where the topological
cycle are γ = (xj , xj+1) and γ∨ = (xk, xk+1) for some j, k.

At this stage, it is important to specify which branch of u(z) is loaded on any given cycle, say
(xp, xp+1); our prescription is that the branch of u loaded on it is given by the following assign-
ments

arg(z − xj) = 0 for j ≤ p, arg(z − xj) = −π, for j ≥ p+ 1. (4.40)

Eq. (4.40) may seem a bit involved at a first glance. Let us try to justify it in the following. Given
a point • ∈ (xm+1, xm+2), then all the factors (z−xj)|z=• = (•−xj) for 0 ≤ j ≤ m+1 are positive
real quantities, and therefore we have the natural choice arg(z − xj) = 0 for 0 ≤ j ≤ m + 1,
consistently with eq. (4.40). Next, we consider a • ∈ (xm, xm+1). It is clear that (• − xj) for
0 ≤ j ≤ m are positive and real (and so arg(z − xj) = 0 for 0 ≤ j ≤ m), while (• − xm+1) < 0.
Our choice is then arg(• − xm+1) = −π. So graphically

. (4.41)

Eq. (4.41) is summarized saying that u(z) is defined on the lower half plane. Once again this is
exactly what eq. (4.40) is telling us. Iterating this reasoning we get exacly eq. (4.40). We also
assume that eq (4.40) holds for u−1(z) as well.
Finally we need to load a branch on Cϵ(xp) (and Cϵ(xp+1)). The branch is assigned by the fact
that arg(z−xp) (arg(z−xp+1)) at the starting point ofCϵ(xp) (andCϵ(xp+1)) is given by eq. (4.40)
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and it increases along Cϵ(xp) (and Cϵ(xp+1)).

We give below some explicit examples.

• The self-intersection number
[︁
(xj , xj+1)⊗ u(z) | (xj , xj+1)⊗ u−1(z)

]︁
.

We start with the (self) intersection (xj , xj+1)⊗ u(z) and (xj , xj+1)⊗ u−1(z). On the one hand
we have to apply the regularization map regh(•) to the first element, on the other we have to
slightly deform the second cycle; this is necessary since we would have to segments laying on
top of each other. We claim that the way in which we do it, does not alter the final result (i.e.
different deformations lead to the same result).
Let us consider first [︁

(xj , xj+1)⊗ u(z) | (xj , xj+1)sin ⊗ u−1(z)
]︁
, (4.42)

namely:

= −
(−1)top.
1− e2πiαj

+ (−1)top. +
(+1)top.

1− e2πiαj+1
.

(4.43)
We could also have [︁

(xj , xj+1)⊗ u(z) | (xj , xj+1)arc ⊗ u−1(z)
]︁
, (4.44)

which corresponds to:

= −
(−1)top.
1− e2πiαj

+
(+1)top. · e2πiαj+1

1− e2πiαj+1
; (4.45)

where the factor e+2πiαj+1 originates from the difference of the arguments, since arg(z − xj+1)

increased flowing along the cricle.
Despite the fact that individual contributions are different, eq. (4.43) and eq. (4.45) sum up to
the same result:

[︁
(xj , xj+1)⊗ u(z) | (xj , xj+1)⊗ u−1(z)

]︁
=

1− e2πi(αj+αj+1)(︁
1− e2πiαj

)︁ (︁
1− e2πiαj+1

)︁ . (4.46)
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Keeping in mind eq. (4.40) and tracing the variation of arg(•) along circles we can compute
intersection numbers among adjacent cycles.
• The intersection number [(xj , xj+1)⊗ u(z) | (xj , xj−1)⊗ u(z)].
Let us consider

[(xj , xj+1)⊗ u(z) | (xj , xj−1)⊗ u(z)] , (4.47)

which is given by

= −
(+1)top. · e2πiαj

1− e2πiαj
. (4.48)

• The intersection number [(xj−1, xj)⊗ u(z) | (xj , xj+1)⊗ u(z)] .

Finally we consider
[(xj−1, xj)⊗ u(z) | (xj , xj+1)⊗ u(z)] , (4.49)

associated to

= +
(−1)top.
1− e2πiαj

; (4.50)

So we have
[(xj−1, xj)⊗ u(z) | (xj , xj+1)⊗ u(z)] = +

(−1)

1− e2πiαj
. (4.51)

We conclude this section mentioning that intersection numbers involving non-adjacent seg-
ments are trivially zero, since the topological intersection is vanishing.
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4.2
Basic Aspects of Twisted Co-Homology

4.2.1
Twist and Connection

Let us go back now to our guiding example, namely Euler Beta-like integrals (cf. eq. (4.2)).
Given

u(z) = zp(1− z)q, ξ ⇝ single-valued smooth function on X = C \ {0, 1}, (4.52)

ordinary Stokes’ theorem gives ∫︂ 1

0
d (u(z) ξ) = 0, (4.53)

where we used u (∂(0, 1)) = 0 forRe(p, q) sufficiently large (see also eq. (2.60), in order to make
contact with physics-motivated examples).
Once again, it is useful to slightly rearrange eq. (4.53); performing the algebra under the integral
sign we find:

0 =

∫︂ 1

0
d (u(z) ξ) =

∫︂ 1

0
(u(z)dξ + du(z) ∧ ξ)

=

∫︂ 1

0
u(z)

(︃
dξ(z) +

du(z)

u(z)
∧ ξ
)︃
;

(4.54)

we can further refine the previous expression, introducing the followingholomorphic one form−dubbed
as twist−

ω(z) = d log u(z) =
du(z)

u(z)
, (4.55)

and the operator−often dubbed as connection−

∇ω(•) = d(•) + ω(z) ∧ •. (4.56)

Therefore eq. (4.54) boils down to:

0 =

∫︂ 1

0
u(z)∇ωξ. (4.57)

Eq. (4.57) implies that shifting the single-valued one form φ by ∇ωξ under the integral sign is
harmless, namely ∫︂ 1

0
u(z)φ =

∫︂ 1

0
u(z)

(︁
φ+∇ωξ

)︁
; (4.58)

therefor φ and φ+∇ωξ can be considered equivalent

φ ∼ φ+∇ωξ. (4.59)
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In fact, studying integrals of the form of eq. (4.13) at the level of equivalence classes is one of
the essence of twisted Co-Homology.
We conclude this introductory paragraph noticing showing that∇ω is integrable, i.e.:

∇ω ◦ ∇ω = 0. (4.60)

An explicit calculation shows:

∇ω (∇ωξ) = ∇ω

(︁
dξ + ω(z) ∧ ξ

)︁
= d

(︃
dξ + ω(z) ∧ ξ

)︃
+ ω(z) ∧

(︃
dξ + ω(z) ∧ ξ

)︃
= dω(z) ∧ ξ −�����XXXXXω(z) ∧ dξ +�����XXXXXω(z) ∧ dξ + ω(z) ∧ ω(z) ∧ ξ

= �
���⌃0

dω(z) ∧ ξ +�������⁓0
ω(z) ∧ ω(z) ∧ ξ

= 0.

(4.61)

We reorganize these preliminary notions in a more systematic way in the following subsection.

4.2.2
Twisted Co-Homology Groups

Let us work for concreteness on the set-up described in eq. (4.19)5; we introduce the space
of smooth k−forms on X = CP1 \ {x0, . . . xm+2} = CP1 \ Pω6

E k(X) = E k =
{︁smooth single-valued k−forms on X}︁, (4.63)

then the operator introduced in eq. (4.56) is such that

∇ω : E k → E k+1,

ξ → dξ + ω(z) ∧ ξ.
(4.64)

Eq. (4.60) implies

∇ω ◦ ∇ω = 0 =⇒ Im
(︂
∇ω : E k−1 → E k

)︂
⊂ Ker

(︂
∇ω : E k → E k+1

)︂
; (4.65)

5We stress that this is just a choice in order to simplify the discussion. Even if several mathematical functions fall
into this category (cf. footnote (4)), some of the results derived hereafter will be applied in a more generic scenario.
For example we will never rely on the fact that the various xi are real.

6The set of points {x0, . . . xm+2} are now the poles of ω(z), see also eq. (4.55). Hence the notation

Pω = {x0, . . . xm+2}. (4.62)
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elements laying in the kernel of∇ω(•) are referred to as twisted co-cycles

Ker
(︂
∇ω : E k → E k+1

)︂
∋ twisted co-cycle. (4.66)

The situation summarized in the following diagram:

(4.67)

We can introduce twisted k−th co-homology group

Hk(X,∇ω) = Hk =
Ker

(︁
∇ω : E k → E k+1

)︁
Im (∇ω : E k−1 → E k)

, k = 0, 1, 2. (4.68)

Their elements are denoted with ⟨φ|, and two object which differ by shift through ∇ω(•) are
declared to be equivalent

Hk ∋ ⟨φ| : φ ∼ φ+∇ωξ. (4.69)

Wewould like now to determine the dimension ofH0,H1 andH2; once again we proceed trying
to give priority to the intuition.

We claim that dimH0 = 0. Let us consider

∇ωf = 0 (4.70)

as a differential equation; we infer that a general solution reads

f = c/u(z), (4.71)

being c a constant, c ∈ C.
Nevertheless eq. (4.71) multivalued in X , the only global solution single-valued solution is
f = 0, and hence the claim.
Next, we want to show that also dimH2(X,∇ω) = 0; we aim to prove that given any η ∈ E 2 we
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can find λ ∈ E 1 such that
∇ωλ = η. (4.72)

By the ∂̄−Poincaré lemma7, there exists a (1, 0) form−say λ = g dz−such that ∂̄λ = η. There-
fore8:

∇ωλ = (∂ + ∂̄)
(︁
g dz

)︁
+ ω(z) ∧

(︁
gdz
)︁

= ∂̄
(︁
g dz

)︁
= η.

(4.73)

Once again, we rely on the fact that the Euler characteristic is equal to the alternating sum of
the dimensions of the twisted co-homology groups [23],

χ(X) = dim(H0)− dim(H1) + dim(H2)

= 0− dim(H1) + 0

= −dim(H1),

(4.74)

and therefore9:
dimH1 (= ν) = −χ(X) = m+ 1. (4.75)

So we conclude by saying that H1 is the only interesting−i.e. non empty−space. Its elements
are ⟨φ| ∈ H1 (see also eq. (4.69)).
Any holomorphic one form belongs to Ker(∇ω(•)) and so to H1. From now on, unless specify
differently, we will focus on those i.e. φ = φ(z) = φ̂(z) dz, with φ̂(z) holomorphic in X .

4.2.3
Euler Characteristic via Morse Theory

We discuss here how to compute χ(X) relying on Morse theory−or, better, its complex ver-
sion known as Picard–Lefschetz theory10.
Let us introduce the followingMorse function

hr : X → R,

z → Re (log u(z)) .
(4.76)

Colloquially eq. (4.76) gives an “height” to each point of X ; it is useful since one can deduce
topological properties of X studying this function.

7See e.g. [179], proposition (1.3.7).
8In full generality d(•) = ∂(•) + ∂̄(•) = ∂(•)

∂z
dz + ∂(•)

∂z̄
dz̄.

9At the moment ν is a mere symbol. However, as it will become clear in the following, this choice is not an
accident (cf. section 2.4). In fact, applying this framework to the case of FIs, ν will be precisely the number of
MIs. The connection among dimensions of (co)homology groups, Euler characteristic and number of MIs has been
proposed originally in [54, 180].

10For a comprehensive discussion on Morse Theory see e.g. [181].
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We also introduce the−at the moment−auxiliary function

hc : X → C,

z → log u(z);
(4.77)

Its role will be clear later on; for the moment we stress that hc ̸= hr.
A point zcrt is a critical point of hr iff

dhr(zcrt) = 0; (4.78)

then the following relation holds [181]:

χ(X) =
2∑︂
j=0

(−1)j Mj , (4.79)

where Mj is the number of critical points with Morse index j; intuitively a Morse index indicates
the number of downwards directions for the Morse function−i.e. the direction along which hr
decreases−passing through zcrt.
The function log u(z) is holomorphic if we are not in the proximity of a branch point xi; so in a
neighborhood of a critical point zcrt, hr = Re (log u(z)) admits the following expansion (assum-
ing local coordinate w around each critical point zcrt)

hr(w) = hr(0) + Re(w2) + . . . . (4.80)

Rewriting eq. (4.80) in terms of real coordinates w = x+ iy we find

hr(x, y) = hr(0, 0) + x2 − y2 + . . . . (4.81)

Eq. (4.81) reveals that each critical point has Morse index equal to one.
Therefore eq. (4.79) reduces to

χ(X) = − M1, (4.82)

so χ(X) is equal to the number of critical points, up to a sign.
Finally Cauchy-Riemann equations imply that zcrt is a critical point of hr iff it is a critical point
also for hc11. Critical points of hc = log u(z), are nothing but zeros of

ω(z) = d log u(z); (4.85)
11If zcrt = (xcrt, ycrt) is a critical point for hc then it is clear that it is also a critical point for hr , since

dhc|(xcrt,ycrt) = dRe hc|(xcrt,ycrt) + i d Im hc|(xcrt,ycrt) = dhr|(xcrt,ycrt) + i d Im hc|(xcrt,ycrt) = 0, (4.83)

implies that both terms vanish separately, hence dhr|(xcrt,ycrt).

Conversely if (xcrt, ycrt) is a critical point for hr = Re(log u)−i.e. dxhr|(xcrt,ycrt) = dyhr|(xcrt,ycrt) = 0−then
Cauchy−Riemann equations imply (hr = Rehc)

dyhr|(xcrt,ycrt) = −dx Imhc|(xcrt,ycrt) = 0, dxhr|(xcrt,ycrt) = dy Imhc|(xcrt,ycrt) = 0, (4.84)

and therefore dhc|(xcrt,ycrt) = dRehc|(xcrt,ycrt) + id Imhc|(xcrt,ycrt) = 0.
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Putting everything together, we have

dimH1 (= ν) = −χ(X) = # solutions of: ω(z) = 0. (4.86)

4.2.4

Co-Homology Intersection Number

Following [25]we can introduce a bilinear, non-degenerate pairing among elements ofH1(X,∇ω)

and the dual space H1(X,∇−ω) (notice that u → u−1 produces ω → −ω), referred to as co-
homology intersection number, or, simply (in this work) intersection number.

Let us consider ⟨φ| ∈ H1(X,∇ω) and |φ∨⟩ ∈ H1(X,∇−ω) with φ and φ∨ holomorphic; our
first guess would be

⟨φ |φ∨⟩ ?
=

∫︂
X
φ(z) ∧ φ∨(z). (4.87)

Unfortunately eq. (4.87) is ill defined; roughly speaking the integrand diverges near the bound-
ary of X−i.e. the set of points Pω = {x0, x1, . . . , xm+2} removed from CP1−due to the fact
that φ(∨) may have poles at those locations. Furthermore the integrand in eq. (4.87) carries a
dz∧dz = 0 in the numerator, loosely speakingwe land in a sort of indeterminate “0/0" problem.
Some sort of regularization for φ, say regω (φ), is required.

Intuitively, we want to replace φwith something vanishing in a small neighborhood Vi around
each xi, laying in the same equivalence class of the original φ; so we look for something of the
following form

regω : φ→ regω(φ) = φ±∇ω(•) ⇝ vanishing on each Vi. (4.88)

Let us consider an holomorphic function ψi, satisfying:

∇ω ψi = φ, locally on each Vi. (4.89)

For the moment we just assume that an explicit solution of eq. (4.89) can be found. Therefore
we can correct our guess eq. (4.88) as

regω : φ→ regω(φ)
?
= φ−

∑︂
i

∇ω(ψi) ⇝ vanishing on each Vi by eq. (4.89). (4.90)

Eq. (4.93) is almost the final answer; we have just to glue, or interpolate, the various ψi together
in a proper way, to have something defined on the full X . In order to do this, we introduce a
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bump function hi(z, z̄) such that

hi(z, z̄) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 on Ui,
0 ≤ hi ≤ 1 on Vi \ Ui,
0 outside Vi;

(4.91)

where Ui ⊂ Vi is another (small) neighborhood of xi.
The situation is described by the following picture:

h1(z, z̄)⇝
U

V
i

i

(4.92)

So, the desired regularization map reads

regω : φ→ regω(φ) = φ−
∑︂
i

∇ω

(︁
hi ψi

)︁
. (4.93)

Therefore, the intersection pairing is given by

⟨φ |φ∨⟩ =
∫︂
X
regω(φ) ∧ φ∨

=

∫︂
X

(︄
φ−

∑︂
i

∇ω

(︁
hi ψi

)︁)︄
∧ φ∨.

(4.94)

Eq. (4.94) looks quite involved; we will show now that we can simplify it in order to arrive to a
(strikingly) simple and compact result.

Let us consider its derivation step-by-step. On the one hand, that hi = 0 on X \
⋃︁
i Vi and

φ∧φ∨ = 0 there; on the other hand, that hi = 1 on Ui and (φ−∇ωψi)∧φ∨ = (φ− φ)∧φ∨ = 0

by thanks to (4.89). Therefore the integral eq. (4.94) gets non-vanishing contribution only from
the region⋃︁i Vi \ Ui, i.e.

⟨φ |φ∨⟩ =
∫︂
⋃︁

i Vi\Ui

(︄
φ−

∑︂
i

∇ω

(︁
hi ψi

)︁)︄
∧ φ∨; (4.95)

using (once again) the fact that φ ∧ φ∨ = 0 on ⋃︁i Vi \ Ui we obtain

⟨φ |φ∨⟩ = −
∑︂
i

∫︂
Vi\Ui

∇ω (hiψi) ∧ φ∨; (4.96)
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since also ω ∧ φ∨ = 0 on ⋃︁i Vi \ Ui, eq. (4.96) simplifies to

⟨φ |φ∨⟩ = −
∑︂
i

∫︂
Vi\Ui

d(hiψi) ∧ φ∨ = −
∑︂
i

∫︂
Vi\Ui

d(hiψi φ
∨); (4.97)

finally Stokes’ theorem and the very definition eq. (4.91) yield

⟨φ |φ∨⟩ = −
∑︂
i

∫︂
∂(Vi\Ui)

hiψi φ
∨ = −

∑︂
i

∫︂
∂Vi

hiψi φ
∨ +

∑︂
i

∫︂
∂Ui

hiψi φ
∨

= −
∑︂
i

∫︂
∂Vi

0 · ψi φ∨ +
∑︂
i

∫︂
∂Ui

1 · ψi φ∨

= 2πi
∑︂
xi∈Pω

Resz=xi
(︁
ψiφ

∨)︁ .
(4.98)

So, the intersection pairing reads12:

⟨•|•⟩ : H1(X,∇ω)×H1(X,∇−ω) → C(︁
⟨φ|, |φ∨⟩

)︁
→ ⟨φ|φ∨⟩ =

∑︂
xi∈Pω

Res (︁ψiφ∨)︁ , (4.99)

with
ψi : local solution of: ∇ωψi = φ ; Pω = set of poles of ω . (4.100)

We notice that, compared to the full integral eq. (4.94), in eq. (4.99) only the local behaviour
around the set of poles xi is relevant and the result is built upon small building blocks.

In a more rigorous language, the regularization map regω(•) replaces φ with its (non holo-
morphic) compact support version. We could employ a different choice, namely replacing φ∨

with its compact support version−i.e. adopting reg−ω(•)− this would be an alternative and
equivalent legitimate choice.
The intersection pairing is manifestly (bi)linear, i.e. ⟨c1φ1 + c2φ2|φ∨⟩ = c1⟨φ1|φ∨⟩ + c2⟨φ2|φ∨⟩
(as well as ⟨φ|c1φ∨

1 + c2φ
∨
2 ⟩ = c1⟨φ|φ∨

1 ⟩ + c2⟨φ|φ∨
2 ⟩). Moreover we stress that the intersection

number is a pairing among elements of H1 and its dual, and so replacing say φ with another
representative in the same co-homology class, i.e. φ → φ + ∇ωξ does not alter the result (the
same holds for φ∨, upon the replacement φ∨ → φ∨ +∇−ωξ

∨).

Above we just assumed that eq. (4.89) could be found, without specifying how this is done
in practice. We address this point now.
Assuming local coordinates around each xi, say z = y+xi, the following series expansions hold

ω =

∞∑︂
m=−1

ω̂m y
m dy, φ =

∞∑︂
m=minφ

φ̂m y
m dy; (4.101)

12Comparing to eq. (4.98), we rescaled the r.h.s. by an harmless factor (2πi)−1. This is usually not the convention
adopted in the mathematical literature.
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We can just look for a solution−around each xi−of the form13:

ψi =
∞∑︂

m=minφ +1

ψm y
m. (4.102)

We have just to plug the expansion eq. (4.101, 4.102) into∇ωψ = φ; we have:⎛⎝ ∞∑︂
m=minφ +1

mψm y
m−1 +

(︃
ω̂−1

y
+ ω̂0 + ω̂1 y + . . .

)︃
·

∞∑︂
m=minφ +1

ψm y
m

⎞⎠ =
∑︂

m=minφ

φ̂m y
m,

(4.103)
which, rearranging the products of two sums into a single sum, gives

∞∑︂
m=minφ

⎛⎝(m+ 1)ψm+1 +

m−minφ −1∑︂
q=−1

ω̂q ψm−q

⎞⎠ ym =
∞∑︂

m=minφ

φ̂m y
m. (4.104)

Requiring that eq. (4.104) holds order by order in y, we obtain a linear system for the unknown
coefficients ψm in eq. (4.102).

We notice that eq. (4.104) can be simplified even further, since the unknown coefficients obey a
recursion relation−in other words the linear system is triangular−and we have

ψm+1 =
1

m+ 1 + ω̂−1

⎛⎝φ̂m −
m−minφ −1∑︂

q=0

ω̂q ψm−q

⎞⎠ , ψminφ +1 =
φ̂minφ

minφ+1 + ω̂−1
; (4.105)

the coefficients appearing on the r.h.s. at them−th step can be considered known.

Even if the coefficients in eq. (4.102) can be computed−in principle−to arbitrary order, it is
useful to inspect eq. (4.99). We notice that product ψ φ∨ has to be computed up to order: (−1),
since we are just interested in its residue.
Therefore, considering the local expansion

φ∨ =
∞∑︂

m=minφ∨

φ̂∨
m y

m dy, (4.106)

we infer that it is sufficient to expandψ up to order: (−minφ∨ −1); in this way all themeaningful
contributions to the residue are captured.

• The special case of logarithmic differential forms.
We conclude this section, specifying our discussion to the case of logarithmic forms, i.e. differ-

13The minimum of the expansion has to be understood as an “optimal” choice. Clearly a lower minimum would
correspond to coefficients which are automatically set to 0.
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ential forms such that
minφ ≥ −1, and minφ∨ ≥ −1; (4.107)

around each pole. Such differential forms are often considered in the mathematical literature.
If the conditions in eq. (4.107) are satisfied (around each pole), then just the leading terms in
eq. (4.101) and eq. (4.106) are relevant, and eq. (4.99) boils down to

⟨φ|φ∨⟩ =
∑︂
xi∈Pω

Resz=xi (φ) Resz=xi (φ∨)

Resz=xi (ω)
. (4.108)

Let us give some simple examples of co-homology intersection numbers constructed starting
from eq. (4.19); eq. (4.108) gives

⟨︃
d log

z − xk
z − xk+1

⃓⃓⃓⃓
d log

z − xj
z − xj+1

⟩︃
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1/αj if k = j − 1,

1/αj + 1/αj+1 if k = j,

−1/αj+1 if k = j + 1,

0 else.

(4.109)

Other examples of co-homology intersection numbers will be considered extensively in the fol-
lowing.

4.3

Twisted Riemann’s Period Relations

In the previous sections we introduced pairings among elements of twisted (co)homology
groups and their duals. In the same spirit, an integral is the pairing between an element of the
twisted co-homology group and twisted homology group

⟨•|•] : H1(X,∇ω)×H1(X,u) → C,(︁
⟨φ|, |γ ⊗ u(z)]

)︁
→ ⟨φ|γ ⊗ u(z)] =

∫︂
γ
u(z)φ(z).

(4.110)

while a dual integral is

[•|•⟩ : H1(X,u
−1)×H1(X,∇−ω) → C,(︁

[γ∨ ⊗ u−1(z)|, |φ∨⟩
)︁
→ [γ∨ ⊗ u−1(z)|φ∨⟩ =

∫︂
γ∨
u−1(z)φ∨(z).

(4.111)

Let (⟨e1|, . . . , ⟨eν |) a basis for H1(X,∇ω) ((|h1⟩, . . . , |hν⟩) a basis for H1(X,∇−ω)) and ([γ1 ⊗
u(z)|, . . . , [γν⊗u(z)|) a basis forH1(X,u) (([γ∨1 ⊗u−1(z)|, . . . , [γ∨ν ⊗u−1(z)|) a basis forH1(X,u

−1))
then we define the following matrices
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• Cij = ⟨ei|hj⟩⇝the co-homology intersection matrix,

• Hij = [γi ⊗ u(z)|γ∨j ⊗ u−1(z)]⇝the homology intersection matrix,

• Pij = ⟨ei|γj ⊗ u(z)]⇝the twisted period matrix,
• P∨

ij = [γ∨j ⊗ u(z)|hi⟩⇝the dual twisted perioed matrix.

All the previous quantities appear tight together in the so-called Twisted Riemann’s Period
Relations14 [182]

C = P ·H−⊤ ·P∨⊤. (4.112)

Eq. (4.112) contains a lot of information and reveals deep structures underlying the structure
of these integrals. Let us just mention that eq. (4.112) offers yet another computational strategy
for the evaluation of co-homology intersection numbers of logarithmic15 (one) forms [27]

⟨φ|φ∨⟩ = −
∑︂

zcrt∈Sω

Resz=yi
(︃
φ̂ φ∨

∂ω̂

)︃
, (4.113)

where, now, Sω is the set of zeros of ω.

14Compared to the original literature [182], the co-homology intersection numbers used in this work have an ad-
ditional (2πi)−1 factor. In order to reproduce eq. (4.112) correctly, we have to restore the convention in the literature.
This means that we have to multiply the co-homology intersection numbers defined in this work by a factor 2πi.

15The formula is not restricted to one forms, and it holds for generic twist, even if it was originally proposed for
the case of (degenerate) hyperplanes arrangements.
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5
Integral Relations via
Intersection Theory:

univariate case

The main focus of this chapter will be the study of integral relations obtained thanks to the
tools described in chapter 4. Having at our disposal, so far, a theory capable to treat integrals ad-
mitting a one-fold representation, we will first consider how to obtain contiguity relations−i.e.
linear relations−among special functions often considered in themathematical literature. These
relations are obtained by means of projection via intersection numbers, thanks to the so-called
master decomposition formula. We will briefly show how, within this framework, it is possible
to derive also quadratic relations among these functions. Next we move to the case of FIs; given
our current limitations we consider the case of reduction onto MIs on the maximal cut−i.e.
discarding subsectors; once again, thanks to intersection numbers this is done bypassing the
system solving strategy described in chapter 2.

5.1
Illustrative Example: Euler Beta Function

Let us consider once again the integral

I = I1,1 =

∫︂ 1

0
zp(1− z)q

dz

z(1− z)
; (5.1)

indeed eq. (5.1) corresponds to the particular choice (a1, a2) = (1, 1) within the more integral
family

Ia1,a2 =

∫︂ 1

0
zp(1− z)q

dz

za1(1− z)a2
, (a1, a2) ∈ Z2. (5.2)
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5.1. ILLUSTRATIVE EXAMPLE: EULER BETA FUNCTION

On the one hand, linear relations among elements of eq. (5.2) are known in the mathematical
literature as contiguity relations. On the other hand, the reader acquainted with the physics lit-
erature will quickly realize that−at the prize of generating and solving a (in this case) small
system of IBPs− any given integral within the ones in the integral family eq. (5.2), can be ex-
pressed in terms of a single MI, say1 J = I1,1. So

Ia1,a2 = ca1,a2 I1,1

= ca1,a2 J .
(5.3)

The coefficient ca1,a2 is determined through the system solving procedure for any given (a1, a2).

We will follow here an orthogonal approach, exploiting the twisted co-homology structure un-
derpinning eqs. (5.1,5.2).
The first step consists in focusing on the single valued differential form, or, better, twisted co-
cycle associated to each integral, stripping off the twisted cycle which is common to all of them.
The linear relations derived at the level of co-cycles will hold for the integrals as well since these
are built pairing twisted co-cycles with the common twisted cycle (cf. section 4.3). So in the
case at hand

Ia1,a2 =

∫︂ 1

0
zp(1− z)q

dz

za1 (1− z)a2
⇝

⟨︃
dz

za1(1− z)a2

⃓⃓⃓⃓
= ⟨φ| ∈ H1(X,∇ω), (5.4)

where

X = CP1 \ {0, 1,∞} and ω = d log
(︁
zp(1− z)q

)︁
=

(︃
p

z
− q

1− z

)︃
dz. (5.5)

Actually, the fact that there is just one independent form (modulo IBPs)−i.e. oneMIs− is, in this
approach, a prediction: H1(X,∇ω) is a one dimensional space, as we can infer from a critical
points analysis, see eq. (4.75).
Explicitly, we have

ν = 1 = # solutions of: ω = 0. (5.6)

Consistently with eq. (5.3), we choose the single basis element as

⟨e| =
⟨︃

dz

z (1− z)

⃓⃓⃓⃓
∈ H1(X,∇ω). (5.7)

Roughly speaking the main idea is that we can think at ca1,a2 in eq. (5.3) as the projection of any
given ⟨φ| onto ⟨e|; the coefficient can be extracted thanks to a (IBP-compatible) “scalar product”
defined among elements of H1. Indeed, the intersection number in eq. (4.99) is what we are
looking for.
We have

ca1,a2 =

⟨︃
dz

za1(1− z)a2

⃓⃓⃓⃓
dz

z(1− z)

⟩︃/︃⟨︃
dz

z(1− z)

⃓⃓⃓⃓
dz

z(1− z)

⟩︃
, (5.8)

1This choice is just for illustrative purposes.
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where, at this stage, the denominator in eq. (5.8) can be seen as sort of normalization.

Example. The explicit case (a1, a2) = (2, 1). We want to determine the coefficient c2,1 appearing in

I2,1 = c2,1 J . (5.9)

Following eq. (5.8), two different intersection numbers are required, namely⟨︃
dz

z2(1− z)

⃓⃓⃓⃓
dz

z (1− z)

⟩︃
and

⟨︃
dz

z(1− z)

⃓⃓⃓⃓
dz

z (1− z)

⟩︃
. (5.10)

We show here the explicit intermediate expressions needed for the evaluation of:⟨︃
dz

z2(1− z)

⃓⃓⃓⃓
dz

z (1− z)

⟩︃
. (5.11)

We have to solve the differential equation

∇ωψ =
dz

z2(1− z)
, around Pω = {0, 1,∞}. (5.12)

The explicit solutions around each pole reads
• ψ0 ⇝ series solution around 0 (local coordinate: y = z)

ψ0 = − 1

(1− p)y
− q + p− 1

(1− p)p
+O(y); (5.13)

• ψ1 ⇝ series solution around 1 (local coordinate: y = z − 1)

ψ1 = −1

q
+O(y0); (5.14)

• ψ∞ ⇝ series solution around∞ (local coordinate: y = 1/z)
ψ∞ = O(y2). (5.15)

Let us now focus on the expansion of

dz

z (1− z)
, around Pω = {0, 1,∞} (5.16)

• dz
z(1−z) ⇝ series expansion around 0 (local coordinate: y = z)(︃

1

y
+ 1 +O(y)

)︃
dy; (5.17)

• dz
z(1−z) ⇝ series expansion around 1 (local coordinate: y = z − 1)(︃

−1

y
+O(y0)

)︃
dy; (5.18)

• dz
z(1−z) ⇝ series expansion around∞ (local coordinate: y = 1/z)

(1 +O(y)) dy. (5.19)
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Combining the various expansions as dictated by eq. (4.99), we conclude that just the points 0 and 1
give a non vanishing contribution in the sum of residues2; we obtain⟨︃

dz

z2(1− z)

⃓⃓⃓⃓
dz

z (1− z)

⟩︃
=

1− 2p− q

(1− p)p
+

1

q
. (5.20)

Similarly we can compute ⟨︃
dz

z (1− z)

⃓⃓⃓⃓
dz

z (1− z)

⟩︃
=
p+ q

p q
. (5.21)

Therefore
c2,1 =

⟨︃
dz

z2(1− z)

⃓⃓⃓⃓
dz

z(1− z)

⟩︃/︃⟨︃
dz

z(1− z)

⃓⃓⃓⃓
dz

z(1− z)

⟩︃
=

1− p− q

1− p
. (5.22)

5.2
Linear Relations and Master Decomposition Formula

Let us consider now the more general case

I =

∫︂
γ
u(z)φ(z) (5.23)

where γ is some path in

X = CP1 \ Pω, Pω ⇝ set of poles of: ω = d log u. (5.24)

such that u(∂γ) = 0.
The integral family in eq. (5.23) admits ν MIs, say (J1, . . . ,Jν), where

ν = #solutions of: ω = 0, Ji =
∫︂
γ
u(z) ei(z) 1 ≤ i ≤ ν. (5.25)

The problem of finding the decomposition of any given integral of the form of eq. (5.23) in
terms of the above mentioned basis of MIs, is then translated into the decomposition of ⟨φ| ∈
H1(X,∇ω) in terms of (⟨ei|, . . . , ⟨eν |) ∈ H1(X,∇ω)

I =

ν∑︂
i=1

ci Ji ⇝ ⟨φ| =
ν∑︂
i=1

ci ⟨ei|. (5.26)

Let us discuss now how to obtain the decomposition in eq. (5.26). We first introduce an auxiliary
dual element |φ∨⟩ ∈ H1(X,∇−ω) and an arbitrary dual basis (|h1⟩, . . . , |hν⟩) ∈ H1(X,∇−ω), and we

2In fact a given pole gives a non vanishing contribution iff the following relation holds: minφ +minφ∨ ≤ −2.
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build the (ν + 1)× (ν + 1) matrix, dubbed as Mmatrix, as follows

M =

⎛⎜⎜⎜⎜⎝
⟨φ |φ∨⟩ ⟨φ |h1⟩ . . . ⟨φ |hν⟩
⟨e1 |φ∨⟩ ⟨e1 |h1⟩ . . . ⟨e1 |hν⟩

... ... . . . ...
⟨eν |φ∨⟩ ⟨eν |h1⟩ . . . ⟨eν |hν⟩

⎞⎟⎟⎟⎟⎠ =

(︄
⟨φ |φ∨⟩ A⊤

B C

)︄
. (5.27)

We notice that, thanks to the linearity of the intersection pairing, the M matrix is degenerate,
since the first row can be seen as a linear combination of the others. Therefore we have

0 = detM = det

(︄
⟨φ |φ∨⟩ A⊤

B C

)︄
. (5.28)

Recalling the expression of the determinant of a matrix in terms of its sub-blocks, we have

0 = detM = detC ·
(︂
⟨φ |φ∨⟩ −A⊤ ·C−1 ·B

)︂
. (5.29)

Since (⟨ei|, . . . , ⟨eν |) and (|h1⟩, . . . , |hν⟩)were chosen to be a basis ofH1(X,∇±ω), then detC ̸= 0.
Therefore we are left with

⟨φ |φ∨⟩ −A⊤ ·C−1 ·B = 0. (5.30)

Reinserting the explicit expressions, we have

⟨φ|φ∨⟩ =
ν∑︂

i,j=1

⟨φ|hj⟩
(︁
C−1

)︁
ji
⟨ei|φ∨⟩; (5.31)

eq. (5.31) holds notmatterwhat the choice of |φ∨⟩ is−sowe candrop it andpretend the resulting
expression to hold; doing this we arrive at the master decomposition formula

⟨φ| =
ν∑︂

i,j=1

⟨φ|hj⟩
(︁
C−1

)︁
ji
⟨ei|. (5.32)

Eq. (5.32) is precisely of the form of eq. (5.26), namely

⟨φ| =
ν∑︂
i=1

ci ⟨ei| with: ci =

ν∑︂
j=1

⟨φ|hj⟩
(︁
C−1

)︁
ji

and Cij = ⟨ei|hj⟩. (5.33)

The coefficients of the decomposition are extracted in terms of intersection numbers (see also
eq. (5.8); the normalization factor we were referring to is nothing but C−1).
We conclude this paragraph noticing that we can consider again eq. (5.31), with |φ∨⟩ fixed
and letting ⟨φ| be arbitrary; so we can drop it from the expression and obtain the dual master
decomposition formula−whose importance will be clear later on−which reads

|φ∨⟩ =
ν∑︂

i,j=1

|hj⟩
(︁
C−1

)︁
ji
⟨ei|φ∨⟩, (5.34)
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and so

|φ∨⟩ =
ν∑︂
j=1

c∨j |hj⟩ with: c∨j =

ν∑︂
i=1

(︁
C−1

)︁
ji
⟨ei|φ∨⟩ and Cij = ⟨ei|hj⟩. (5.35)

5.3

Quadratic Relations and Twisted Riemann’s Period Relations

Even if themain focus of thiswork is devoted to the study of linear relations among integrals,
it is worth stressing that twisted (Co)Homology represents a framework where also quadratic
relations among integrals can be addressed [182, 183, 184, 185, 186], as they are naturally en-
coded in twisted Riemann’s Period Relations eq. (4.112). Since quadratic relations for FIs were
recently investigated by the physics community [187, 188, 189, 190, 191, 192, 193, 194, 195], we
expect that twisted (Co)Homology could help in understanding more about those identities in
the future. Remarkably, twisted Riemann’s Period Relations were recently understood to be the
mathematical structure underpinning Kaway-Lewellew-Tye relations among closed and open
String Amplitudes [49].
In the following, we inspect some explicit example from the mathematical literature, see [169];
we stick to setting introduced in section 4.1 and subsection 4.1.3 (see also appendix B).

Example. The reflection formula for B(p, q). Let us consider the following

u(z) = z−p−q (z − 1)q (5.36)

which is in the form of eq. (4.19), provided we considerm = 0 and

x0 = 0, x1 = 1, x2 = ∞; (5.37)
α0 = −p− q, α1 = q, α2 = p. (5.38)

It is clear than ν = dimH1 = H1 = 1.
Let

|γ ⊗ u(z)] = |(1,∞)⊗ u(z)] ⟨e| = ⟨f log(z − 1)|; (5.39)

we then consider

P = J = ⟨e|γ ⊗ u(z)] =

∫︂ ∞

1
z−p−q (z − 1)q

dz

z − 1

= B(p, q).

(5.40)

Let us also introduce

[γ∨ ⊗ u−1(z)| = [(1,∞)⊗ u−1(z)|, |h⟩ = |d log(z − 1)⟩; (5.41)
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next we consider the dual integral

P∨ = J ∨ = [γ∨ ⊗ u−1(z)|h⟩ =
∫︂ ∞

1
zp+q(z − 1)−q

dz

z − 1

= B(−p,−q).
(5.42)

Finally we just need the self intersection numbers

H = [γ ⊗ u(z)|γ∨ ⊗ u−1(z)] = [(1,∞)⊗ u(z)|(1,∞)⊗ u−1(z)]

=
1− e2πi(q+p))

(1− e2πq) (1− e2πip)
,

(5.43)

and3

C = ⟨e|h⟩ = ⟨d log(z − 1)|d log(z − 1)⟩

= 2πi

(︃
1

p
+

1

q

)︃
.

(5.44)

So eq. (4.112) gives

C = P ·H−⊤ ·P∨⊤ =

2πi

(︃
1

p
+

1

q

)︃
= B(p, q)B(−p,−q) (1− e2πq) (1− e2πip)

1− e2πi(q+p))
.

(5.45)

Example. Quadratic relations for hypergeometric 2F1. Let us consider the following

u(z) = zb−c(z − x)−b(z − 1)c−a, (5.46)

which is in the form of eq. (4.19), withm = 1 and

x0 = 0, x1 = x, x2 = 1, x3 = ∞, (5.47)
α0 = b− c, α1 = −b, α2 = c− a, α4 = a. (5.48)

Thus we have ν = dimH1 = H1 = 2.
Let

⟨e1| = ⟨d log(z − 1)|, |γ1 ⊗ u(z)] = |(1,∞)⊗ u(z)], (5.49)
⟨e2| = ⟨d log(z/(z − x))|, |γ2 ⊗ u(z)] = |(0, x)⊗ u(z)]; (5.50)

and

|h1⟩ = |d log(z − 1)⟩, [γ∨1 ⊗ u−1(z)] = [(1,∞)⊗ u−1(z)|, (5.51)
|h2⟩ = |d log(z/(z − x))⟩, [γ∨2 ⊗ u−1(z)| = [(0, x)⊗ u−1(z)|. (5.52)

3See the comment in footnote 14.
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Thus we have

P
=

(︄ ⟨e
1
|γ

1
⊗
u
(z
)]

⟨e
1
|γ

2
⊗
u
(z
)]

⟨e
2
|γ

1
⊗
u
(z
)]

⟨e
2
|γ

2
⊗
u
(z
)]

)︄

=

(︄
B
(a
,c
−
a
) 2
F
1
(a
,b
,c
;x

)
−
x
1
−
c
e−

iπ
(c
−
a
−
b)
B
(1
+
b−
c,
1−
b)

2
F
1
(1
+
b−
c,
1+
a
−
c,
,2
−
c;
x
)

−
x
B
(1

+
a
,1

+
c
−
a
) 2
F
1
(1

+
a
,1

+
b,
2
+
c;
x
)

x
−
c
e−

iπ
(c
−
a
−
b)
B
(b

−
c,
−
b)

2
F
1
(b

−
c,
a
−
c,
−
c;
x
)

)︄

(5.53)

and
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P
∨
=

(︄ [γ
∨ 1
⊗
u
−
1
(z
)|h

1
⟩

[γ
∨ 2
⊗
u
−
1
(z
)|h

1
⟩

[
γ
∨ 1
⊗
u
−
1
(z
)|h

2
⟩

[γ
∨ 2
⊗
u
−
1
(z
)|h

2
⟩

)︄

=

(︄
B
(−
a
,a

−
c)

2
F
1
(−
a
,−
b,
−
c;
x
)

−
x
1
+
c
ei
π
(c
−
a
−
b)
B
(1
−
b
+
c,
1+
b)

2
F
1
(1
−
b+
c,
1−
a
+
c,
2+
c;
x
)

−
x
B
(1
−
a
,1
+
a
−
c)

2
F
1
(1
−
a
,1
−
b,
2
−
c;
x
)

ei
π
(c
−
a
−
b)
x
c
B
(c
−
b,
b)

2
F
1
(c
−
b,
c−
a
,c
;x

)

)︄ .

(5.54)
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We get

C =

(︄
⟨e1|h1⟩ ⟨e1|h2⟩
⟨e2|h1⟩ ⟨e2|h2⟩

)︄
=

(︄
⟨d log(z − 1)|d log(z − 1)⟩ ⟨d log(z − 1)|d log(z/(z − x))⟩

⟨d log(z/(z − x))|d log(z − 1)⟩ ⟨d log(z/(z − x))|d log(z/(z − x))⟩

)︄

= 2πi

(︄
1
c−a +

1
a 0

0 1
b−c −

1
b

)︄
;

(5.55)

and

H =

(︄
[γ1 ⊗ u(z)|γ∨1 ⊗ u−1(z)] [γ1 ⊗ u(z)|γ∨2 ⊗ u−1(z)]

[ γ2 ⊗ u(z)|γ∨1 ⊗ u−1(z)] [γ2 ⊗ u(z)|γ∨2 ⊗ u−1(z)]

)︄

=

(︄
[(1,∞)⊗ u(z)|(1,∞)⊗ u−1(z)] [(1,∞)⊗ u(z)|(0, x)⊗ u−1(z)]

[ (0, x)⊗ u(z)|(1,∞)⊗ u−1(z)] [(0, x)⊗ u(z)|(0, x)⊗ u−1(z)]

)︄

=

⎛⎝ 1−e2iπc

(1−e2iπa)(1−e2iπ(c−a))
0

0 1−e−2iπc

(1−e−2iπb)(1−e2iπ(b−c))

⎞⎠ .

(5.56)

So the (1, 1) entry of the identity eq. (4.112) gives4

1 =
abx2(a−c)(c−b)

c2 (c2−1)
2F1(1+a−c, 1+b−c; 2−c;x) 2F1(1−a+c, 1−b+c; 2+c;x)

+ 2F1(−a,−b;−c;x) 2F1(a, b; c;x).

(5.57)

The (1, 2) entry is

0 = 2F1(1−a, 1−b; 2−c;x) 2F1(a, b; c;x)− 2F1(1+a−c, 1+b−c; 2−c;x) 2F1(c−a, c−b; c;x).
(5.58)

The (2, 1) entry is

0 = 2F1(−a,−b;−c;x) 2F1(1+a, 1+b; 2+c;x)

− 2F1(a−c, b−c;−c;x) 2F1(1−a+c, 1−b+c; 2+c;x)

= (5.58)
⃓⃓
(a,b,c)→−(a,b,c)

.

(5.59)

Finally the (2, 2) entry is

1 =
abx2(a− c)(c− b)

c2 (c2 − 1)
2F1(1−a, 1−b; 2−c;x) 2F1(1+a, 1+b; 2+c;x)

+ 2F1(a−c, b−c;−c;x) 2F1(c−a, c−b; c;x).
(5.60)

Eqs. (5.57,5.58,5.59,5.60) are numerically verified against Mathematica.

4We present the identities in such a way that the l.h.s. is normalized to 0 or 1.

86



CHAPTER 5. INTEGRAL RELATIONS VIA INTERSECTION THEORY: UNIVARIATE CASE

5.4

Feynman Integrals Reduction via Intersection Numbers:
Maximal Cut

We are now in the position of discussing the case of FIs, in particular the reduction ontoMIs
via co-homology intersection numbers; as we anticipated, this allows us to avoid the explicit
system solving procedure required by the standard Laporta algorithm.

Having at our disposal−at the moment−intersection pairings among 1-forms, we will focus
on FIs admitting a one-fold integral representation. Despite this limitation, we can still treat a
plethora of interesting examples.
Wewill investigatemaximally cut FIs in Baikov representation; following a pragmatic approach,
a maximal cut acts like a filter: given a certain integral family all the integrals belonging to
subtopologies are not supported on the cut and they vanish (cf. the discussion at the end of
section 2.2). So, we are only sensitive to the homogeneous part of the reduction.

The integration variable, denoted by z, will be the ISP for the integral family under consid-
eration, and we have the identification

u(z) = (B(z))
d−ℓ−E−1

2 ; (5.61)

the integration cycle γ, always assumed to be such that u(∂γ) = B(∂γ) = 0, is never involved
explicitly, and so we will be omitted.

Example. A four-loop vacuum graph. We consider the following graph

(5.62)
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The denominators are chosen as

D1 = k21 − 1, D2 = k22 − 1, D3 = k23 − 1,

D4 = (k1 − k2)
2 − 1, D5 = (k1 − k3)

2 − 1, D6 = (k2 − k3)
2 − 1, (5.63)

D7 = (k1 − k4)
2 − 1, D8 = (k2 − k4)

2 − 1, D9 = (k3 − k4)
2 − 1;

while the ISPs is chosen as
z = D10 = k24. (5.64)

The multivalued function and the twist associated to it read

u(z) =

(︃
z

2
− 3z2

16

)︃ d−5
2

, ω(z) =
(d− 5)(3z − 4)

z(3z − 8)
dz. (5.65)

The equation ω = 0, yields 1 solution implying 1 MI (on the maximal cut):

ν = 1, Pω =

{︃
0,

8

3
,∞
}︃
. (5.66)

Let us choose the MI and the corresponding differential form as

J = I1,1,1,1,1,1,1,1,1;0 ⇝ ⟨e| = ⟨1 dz|. (5.67)

We focus on the decomposition of

I1,1,1,1,1,1,1,1,1;−1 ⇝ ⟨φ| = ⟨z dz|; (5.68)

our (arbitrary) choice for the dual basis will be:

|h⟩ = |h1⟩ = |1 dz⟩. (5.69)

Eq. (5.32) requires the evaluation of ⟨φ|h1⟩ and C1 = ⟨e|h1⟩.

We have
⟨φ|h1⟩ = ⟨z dz|1 dz⟩ = 64(d− 5)

27(d− 6)(d− 4)
; (5.70)

and
C1 = ⟨e|h⟩ = ⟨1 dz|1 dz⟩ = 16(d− 5)

9(d− 6)(d− 4)
. (5.71)

Then, combining everything together we obtain

⟨φ| = ⟨φ|h⟩C−1
1 ⟨e|

=
4

3
⟨e|.

(5.72)
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Eq. (5.72) implies
I1,1,1,1,1,1,1,1,1;−1 =

4

3
J , (5.73)

in agreement with LiteRed.

It is also instructive to show explicitly the independence of the final result eq. (5.72) from the choice
of dual basis.
Let us consider

|h⟩ = |h2⟩, (5.74)

then the intersection numbers read

⟨φ|h2⟩ = ⟨z dz|z dz⟩ = 256(d− 5)

81(d− 6)(d− 4)
, (5.75)

and
C2 = ⟨e|h2⟩ = ⟨1 dz|z dz⟩ = 64(d− 5)

27(d− 6)(d− 4)
. (5.76)

The individual intersection numbers are changed, but the final decomposition is not:

⟨φ| = ⟨φ|h2⟩C−1
2 ⟨e|

=
4

3
⟨e|.

(5.77)

Example. Three-loop triple-cross. We consider the following graph:

(5.78)

The denominators are chosen as

D1 = k21, D2 = k22, D3 = k23, D4 = (p− k1)
2 − 1

D5 = (p− k1 − k2)
2 − 1, D6 = (p− k1 − k2 − k3)

2 − 1, (5.79)
D7 = (p− k2 − k3)

2 − 1, D8 = (p− k3)
2 − 1;

while the ISP is chosen as
z = D9 = k2 · p. (5.80)

The kinematics is p2 = s.
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The multivalued function and the twist form associated to it read

u(z) =

(︃
1

4
z2(2z − s− 3)(2z − s+ 1)

)︃ d−5
2

,

ω(z) = (d− 5)

(︃
1

2z − s− 3
+

1

2z − s+ 1
+

1

z

)︃
dz.

(5.81)

The number of solution of ω = 0 amounts to two, denoting that there are two MIs (on the
maximal cut)

ν = 2, Pω =

{︃
0,
s− 1

2
,
s+ 3

2
,∞
}︃
. (5.82)

Let us consider the following basis of MIs

J1 = I1,1,1,1,1,1,1,1;0 ⇝ ⟨e1| = ⟨1 dz|, J2 = I1,1,1,1,1,1,1,1;−1 ⇝ ⟨e2| = ⟨z dz|. (5.83)

We aim to decompose
I1,1,1,1,1,1,,1,1;−2 ⇝ ⟨φ| = ⟨z2 dz|, (5.84)

in terms of the above-mentioned basis.

We employ the following arbitrary choice for the dual basis:

|h1⟩ =
⃓⃓
dz
/︁
z
⟩︁
, |h2⟩ =

⃓⃓
2 dz

/︁
(2z − s+ 1)

⟩︁ (5.85)

Eq. (5.32) requires the evaluation of ⟨φ|h1⟩, ⟨φ|h2⟩ and Cij = ⟨ei|hj⟩ with 1 ≤ i, j ≤ 2.

⟨φ|h1⟩ =
⟨︁
z2 dz

⃓⃓
dz
/︁
z
⟩︁

=
(d−4)(d−3)s3 + 3(d−4)(d−3)s2 + (d(35d−281) + 560)s+ 3d(11d−89) + 536

32(d−4)(2d−9)(2d−7)
,
(5.86)

and

⟨φ|h2⟩ =
⟨︁
z2 dz

⃓⃓
2 dz

/︁
(2z − s+ 1)

⟩︁
=

−(d−4)(d−3)s3 + (d(25d−203) + 408)s2 + (d(21d−167) + 328)s+ 3(d−4)(9d−35)

32(d−4)(2d−9)(2d−7)
,

(5.87)

finally

C =

(︄
s+1

4(2d−9) − s−3
4(2d−9)

(d−4)s2+2(d−4)s+9d−40
16(d−4)(2d−9) − (d−4)s2−2(5d−22)s−3d+12

16(d−4)(2d−9)

)︄
. (5.88)
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Combining everything together, we get:

⟨φ| =
2∑︂
i=1

⟨φ|hj⟩
(︁
C−1

)︁
ji
⟨ei|

= −(d− 4)(s− 1)(s+ 3)

4(2d− 7)
⟨e1|+

(3d− 11)(s+ 1)

2(2d− 7)
⟨e2|,

(5.89)

which implies

I1,1,1,1,1,1,1,1;−2 = −(d− 4)(s− 1)(s+ 3)

4(2d− 7)
J1 +

(3d− 11)(s+ 1)

2(2d− 7)
J2, (5.90)

in agreement with LiteRed.

Example. Two loop two masses triangle. We consider the following graph:

(5.91)

The denominaotrs are chosen as

D1 = k21 −m2
ℓ , D2 = (k1 − p1 + p2)

2 −m2
ℓ , D3 = k22 −m2

N ,

D4 = (k2 + p1)
2, D5 = k2 + p2, D6 = (k1 + k2 + p2)

2 −m2
ℓ , (5.92)

while the ISP is chosen as
z = D7 = (k1 − p1)

2. (5.93)

The kinematics is such that p21 = p22 = m2
N and (p1 − p2)

2 = t.
The multivalued function and the twist associated to it read

u(z) =

(︃
t2

16

(︁
−2m2

ℓ

(︁
m2
N + t+ z

)︁
+m4

ℓ +
(︁
−m2

N + t+ z
)︁
2
)︁)︃ d−5

2

ω(z) = −
(d− 5)

(︁
m2
ℓ +m2

N − t− z
)︁

−2m2
ℓ

(︁
m2
N + t+ z

)︁
+m4

ℓ +
(︁
−m2

N + t+ z
)︁
2
dz.

(5.94)
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The equation ω = 0 admits one solution, implying that there is one MIs (one the maximal cut)

ν = 1, Pω =
{︁
(mℓ −mN )

2 − t, (mℓ +mN )
2 − t,∞

}︁
. (5.95)

Our choice of MIs is
J1 = I1,1,1,1,1,1;0 ⇝ ⟨e| = ⟨1 dz|. (5.96)

and we look for the decomposition of

I1,1,1,1,1,1;−1 ⇝ ⟨φ| = ⟨z dz|. (5.97)

The choice of the dual basis is
|h⟩ = |1 dz⟩. (5.98)

The required intersection number, ⟨φ|h⟩ and ⟨e|h⟩, read

⟨φ|h⟩ = ⟨z dz|1 dz⟩ =
4(d− 5)m2

ℓ m
2
N

(︁
m2
ℓ +m2

N − t
)︁

(d− 6)(d− 4)
, (5.99)

and
C = ⟨e|h⟩ = ⟨1 dz|1 dz⟩ =

4(d− 5)m2
ℓ m

2
N

(d− 6)(d− 4)
. (5.100)

Eq. (5.32) reads

⟨φ| = ⟨φ|h⟩C−1 ⟨e|

=
(︁
m2
ℓ +m2

N − t
)︁
⟨e|,

(5.101)

and so
I1,1,1,1,1,1;−1 =

(︁
m2
ℓ +m2

N − t
)︁
J , (5.102)

in agreement with LiteRed.

Even if we do not discuss it here, the same strategy can be applied to obtain differential
equations fulfilled by MIs, on the maximal cut [32, 33].
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6
An Introduction to

Twisted Co-Homology:
multivariate case

We are now ready to study integrals admitting a multivariate representation. Since we are
ultimately interested in deriving integral relations for FIs, we will focus on the twisted co-
homology structure underlying those integrals, extending the discussion of section 5.4. Sup-
ported by the treatment in section 4.2, we introduce the twisted co-homology groups and we
discuss in detail an algorithm, first proposed in [28], for the evaluation of multivariate intersec-
tion numbers. Even if the application of this framework to simple examples is−we believe−an
important achievement, wewould like to stress thatwe are far from the finalword on the subject,
and−very likely−new structures may emerge in the near future. The evaluation of the intersec-
tion number is, per se, still an open topic. For example we discuss in some detail the proposal
of [30]; this work presents an improvement of the algorithm for the evaluation of multivariate
intersection numbers, which may lead to more efficient implementations. We also review the
approach of [29]−which is, in some sense, orthogonal to the onementioned above−intersection
numbers are viewed as solution of suitable (system of partial) differential equations, the so-
called Secondary Equation.
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6.1. TWISTED CO-HOMOLOGY GROUPS

6.1

Twisted Co-Homology Groups

Let us consider the following (we use the notation z = (z1, . . . , zn)):

u(z) = (P1(z))
α1 . . . (Pm(z))

αm , (6.1)

defined on X = Cn \
⋃︁m
j=1Dj with Dj = {z ∈ Cn : Pj(z) = 0} and αm ∈ C \ Z, 1 ≤ i ≤ m.

Given eq. (6.1), in order to study the co-homology structure associated to it, we define

ω(z) = d log u(z) =

n∑︂
i=1

ω̂i(z) dzi, ∇ω(•) = d(•) + ω ∧ •. (6.2)

The various co-homology groups are (cf. the discussion in section 4.2)

Hk =
Ker(∇ω : E k → E k+1)

Im(∇ω : E k−1 → E k)
, k = 0, 1, . . . , 2n. (6.3)

Under some assumptions [196]−which we always assume to be satisfied−once can show that
all the groups Hk ̸=n are trivial−i.e. empty. Being Hn the only interesting space, we will just
consider (equivalence classes) of n-forms (we will use the notation n = (12 . . . n) to denote
differential n−forms)

⟨φ(n)| : φ(n) ∼ φ(n) +∇ωξ
(n−1) (6.4)

with
φ(n) = φ̂(z)dz; (6.5)

and φ̂(z) defined on X .

The first natural question concerns the dimension of Hn, i.e.:

ν(n) = dimHn . (6.6)

Once again we can rely on the counting of critical points, cf. subsection 4.2.3. In fact we can
generalize eq. (4.75) to

ν(n) = # solutions of: ω1 = 0, . . . , ωn = 0. (6.7)
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We just mention that eq. (6.7) is equivalent to a system of polynomial equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑︁m
i=1 αi∂z1Pi(z)

(︂∏︁
j ̸=i Pj(z)

)︂
= 0

...∑︁m
i=1 αi∂znPi(z)

(︂∏︁
j ̸=i Pj(z)

)︂
= 0

1− z0
∏︁m
i=1 Pi(z) = 0

, (6.8)

where the last equation in (6.8) is introduced in order to remove spurious solutionswhich could
otherwise annihilates both the numerator and the denominator of certain ωi.
Since we are just interested in counting the number of solutions of eq. (6.8) (or, equivalently,
eq. (6.7)), and not in the actual solutions, we can rely on tools from Computational Algebraic
Geometry such has Gröbner basis [54], Shape Lemma (see e.g. [197], and [198] for an application
to physics in a different context),Maculay Resultants (see e.g. [199], and [200] for an application
to physics in a different context) or advanced numerical techniques (see e.g. HomotopyContin-
uation.jl [201] and [202, 203] for an application to physics in a different context) to determine ν.
Therefore finding the number of solutions of eq. (6.8) does not represent an obstacle in practice1

6.2
Co-Homology Intersection Number: multivariate case

6.2.1
Co-Homology Intersection Number: Generalized Beta Function

We are now at the main point: the co-homology intersection number for multivariate forms.
Aswehavedone in section 4.2, we start froman explicit example−the generalizedBeta function−in
order to develop some intuition and introduce key concepts2.
Let us consider

B(p, q, r) =

∫︂
γ(2)

zp1 z
q
2 (1− z1 − z2)

r dz1 ∧ dz2
z1 z2 (1− z1 − z2)

, (6.9)

where

γ(2) = z1 > 0 ∩ z2 > 0 ∩ z1+z2 < 1 ∈ X ∈ C2 \ (z1 = 0 ∪ z2 = 0 ∪ 1−z1−z2 = 0) . (6.10)

1Nevertheless, the situation could be more delicate when ν represents the number of MIs emerging from solu-
tions of IBPs system.

2See also the very clear discussion of [26], from where this preliminary discussion is adapted. We thank S.
Mizera for sharing his notes on this subject.
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Eq. (6.9) is simple enough to perform a direct integration w.r.t. z1

B(p, q, r) =

∫︂
γ(2)

(︃
zq2

∫︂
γ(1)

zp1 (1− z1 − z2)
r dz1
z1 (1− z1 − z2)

)︃
dz2
z2

=
Γ(p) Γ(r)

Γ(p+ r)

∫︂
γ(2)

zq−1
2 (1− z2)

p+r−1 dz2
z2

=

∫︂
γ(2)

u(z2)
dz2
z2
,

(6.11)

with

γ(1) = (0, 1− z2) ∈ X1, with: X1 = C \ {0, 1− z2} = CP1 \ {0, 1− z2,∞},

γ(2) = (0, 1) ∈ X2, with: X2 = C \ {0, 1} = CP1 \ {0, 1,∞};
(6.12)

and
u(z2) =

Γ(p) Γ(r)

Γ(p+ r)
zq−1
2 (1− z2)

p+r−1. (6.13)

The situation is summarized in the following 3

(6.14)

Provided the fact that we are able to integrate out the variable z1, we reduce a 2 variables prob-
lem into a 1 variable problem. We can consider the analogue of eq. (4.54)

0 =

∫︂ 1

0
d (u(z2) ξ) =

∫︂ 1

0
u(z2)

(︂
dξ +Ω(2) ∧ ξ

)︂
=

∫︂ 1

0
u(z2)∇Ω(2)(ξ).

(6.15)

with, in this case,

Ω(2) = d log u(z2), ∇Ω(2) (•) = d(•) + Ω(2) ∧ (•). (6.16)

3Figure adapted from [26]. We depict just the real slice.
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Thanks to eqs. (6.15,6.16), we could proceed following the discussion in subsection 4.2.4 and
compute the intersection number w.r.t. z2. Nevertheless, it is clear that in a (realistic) more
complicated example, we cannot perform an explicit direct integration. Fortunately we can rely
on the possibility of obtaining Ω(2) via univariate intersection numbers w.r.t. z1−thus avoiding
a direct integration.

Let us consider the following identification

u(z2) =

∫︂ 1−z2

0
zq2 z

p
1 (1−z1−z2)

r dz1
z1 (1−z1−z2)

=

∫︂
γ(1)

u(z1) e
(1),

(6.17)

with

u(z1) = zq2 z
p
1 (1− z1 − z2)

r, e(1) =
dz1

z1 (1− z1 − z2)
, γ(1) = (0, 1− z2). (6.18)

where, at this stage, z2 is not considered as an integration variable, rather it is regarded as an
external parameter.
Then, Ω(2), which is what we want to determine, is defined implicitly by the following (cf.
eqs. (6.15, 6.16))

du(z2) = Ω(2) ∧ u(z2). (6.19)

Rewriting u(z2) as in eq. (6.17), then eq. (6.19) is equivalent to∫︂
γ(1)

u(z1)∇ω̂2

(︁
e(1)
)︁
= Ω̂

(2)
∫︂
γ(1)

u(z1) e
(1), (6.20)

with
∇ω̂2(•) = ∂z2(•) + ω̂2 · (•). (6.21)

But now we realize that Ω̂(2) can be computed without relying on any explicit integration, via
univariate intersection numbers, w.r.t. the variable z1, employing ∇ω|dz2=0 = ∇ω1 as a connec-
tion. Therefore we obtain

Ω̂
(2)

=
⟨∇ω̂2(e

(1)) |h(1)⟩
⟨e(1) |h(1)⟩

, (6.22)

with arbitrary |h(1)⟩ ∈ H1
−ω1

.

The previous construction admits a slight generalization, where u(z2) is promoted to a vector-
valued object

u(z2) =

∫︂
γ(1)

u(z1) e
(1) ⇝ u(z2) =

ν(1)∑︂
i=1

ui(z2) =

ν(1)∑︂
i=1

∫︂
γ(1)

u(z1) e
(1)
i , (6.23)
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where
ν(1) = dim(H1(X1,∇±ω1)). (6.24)

Eq. (6.23) induces

Ω̂
(2)
ij =

ν(1)∑︂
k=1

⟨∇ω1e
(1)
i |h(1)k ⟩

(︁
C(1)

)︁−1

kj
, with: C

(1)
ij = ⟨e(1)i |h(1)j ⟩, (6.25)

and the matrix-valued connection4

(∇Ω(2))ij (•)j = δij d(•)j +
(︁
Ω(2)⊤)︁

ij
∧ (•)j . (6.26)

We can finally describe a procedure in order to compute the intersection pairing among ⟨φ(2)| ∈
H2(X,∇ω) and ⟨φ(2)∨| ∈ H2(X,∇−ω). We assume

(⟨e(1)1 |, . . . , ⟨e(1)ν(1)
|) ⇝ basis for H1(X1,∇ω1)

(|h(1)1 ⟩, . . . , |h(1)ν(1)
⟩) ⇝ basis for H1(X1,∇−ω1),

(6.27)

then we can derive the following decompositions

⟨φ(2)| =
ν(1)∑︂
i=1

⟨e(1)i | ∧ ⟨φ(2)
i | with ⟨φ(2)

i | ∈ H1(X2,∇Ω(2)), (6.28a)

|φ(2)∨⟩ =
ν(1)∑︂
j=1

|h(1)j ⟩ ∧ |φ(2)∨
j ⟩ with |φ(2)∨

j ⟩ ∈ H1(X2,∇−Ω(2)); (6.28b)

where (⟨φ(2)
1 |, . . . , ⟨φ(2)

ν(1) |) (resp. (|φ
(2)∨
1 ⟩, . . . , |φ(2)∨

ν(1) ⟩)) are derived via the (dual) master decom-
position formula eqs. (5.32,5.34).
Next we define

⟨φ(2) |φ(2)∨⟩ ?
=

1

(2πi)2

∫︂
X2

(︃∫︂
X1

regω1

(︁
e
(1)
i

)︁
∧ h(1)j

)︃
φ
(2)
i ∧ φ(2)∨

j

?
=

1

2πi

∫︂
X2

C
(1)
ij φ

(2)
i ∧ φ(2)∨

j .

(6.29)

Indeed eq. (6.29) is almost correct; following the discussion in (4.2.4), we have to replace φ(2)
i

with regΩ(2)

(︁
φ(2)

)︁, namely its compact support version laying in the same equivalence class.
Given the fact that we are dealing with a matrix-valued connection, the explicit realization of

4Just consider (sum over repeated indices understood)

0 =

∫︂
γ(2)

d (uj(z2) ξj) =

∫︂
γ(2)

(uj(z2)dξj + duj(z2) ∧ ξj) =

∫︂
γ(2)

(︂
uj(z2)dξj +Ω

(2)
ji ui(z2) ∧ ξj

)︂
=

∫︂
γ(2)

ui(z2)
(︂
δij dξj +

(︁
Ω(2)⊤)︁

ij
∧ ξj

)︂
.
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the map is

regΩ(2) : φ(2) → regΩ(2)

(︁
φ(2)

)︁
= φ(2) −

∑︂
xi∈PΩ(2)

∇Ω(2)

(︁
hxi(z2, z̄2)ψxi

)︁ (6.30)

where ψxi is a vector-valued solution local solution of5

∇Ω(2) (ψxi) = φ(2) around xi. (6.31)

Therefore eq. (6.29) becomes

⟨φ(2)|φ(2)∨⟩ = 1

2πi

∫︂
X2

(︁
regΩ(2) φ(2)

)︁
i
∧ φ(2)∨

j ·C(1)
ij (6.32a)

=
∑︂

xi∈PΩ(2)

Res
(︂
ψxi ·C(1) · φ(2)∨

)︂
; (6.32b)

where eq. (6.32b) is derived from eq. (6.32a) following the same steps as in subsection 4.2.4.

Example. A two variables co-homology intersection number. Let us reconsider the situation described
in eq. (6.9), namely

u(z1, z2) = zp1z
q
2(1− z1 − z2)

r (6.33)

then

ω = ω̂1 dz1 + ω̂2 dz2 =

(︃
p

z1
− r

1− z1 − z2

)︃
dz1 +

(︃
q

z2
− r

1− z1 − z2

)︃
dz2, (6.34)

and let
X = C2

\︁ {︁
z1 = 0 ∪ z2 = 0 ∪ 1− z1 − z2 = 0}; (6.35)

say we want to compute

⟨φ(2)|φ∨(2)⟩ =
⟨︃

dz

z1z2(1− z1 − z2)

⃓⃓⃓⃓
dz

z21z2(1− z1 − z2)

⟩︃
. (6.36)

The spaceX can be decomposed in terms ofX1 = C \ {0, 1−z2} = CP1 \ {0, 1−z2,∞} (whose coordi-
nate is z1) and X2 = C \ {0, 1} = CP1 \ {0, 1,∞} (whose coordinate is z2).

According to the discussion above, we have to choose a basis for H1(X1,∇±ω|dz2=0
). A critical point

analysis reveals
ν(1) = dim

(︂
H1(X1,∇±ω|dz2=0

)
)︂
= 1; (6.37)

5See appendix A for details of this step.
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our choice is

⟨e(1)| =
⟨︃

dz1
z1(1− z1 − z2)

⃓⃓⃓⃓
∈ H1(X1,∇ω1), |h(1)⟩ =

⃓⃓⃓⃓
dz1

z1(1− z1 − z2)

⟩︃
∈ H1(X1,∇−ω1).

(6.38)
The univariate intersection number among basis elements is

C(1) = ⟨e(1)|h(1)⟩ = p+ r

pr (z2 − 1) 2
. (6.39)

We have to determine Ω̂(2); aoccrding to eq. (6.25)

Ω̂
(2)

= ⟨∇ω̂2(e
(1))|h(1)⟩ ·C−1

(1) =
1− p− r

1− z2
+

q

z2
. (6.40)

Given
⟨φ(2)| =

⟨︃
dz

z1z2(1− z1 − z2)

⃓⃓⃓⃓
, |φ(2)∨⟩ =

⃓⃓⃓⃓
dz

z21z2(1− z1 − z2)

⟩︃
, (6.41)

then the univariate decomposition w.r.t. the variable z1−see eqs. (6.28a, 6.28b)−gives

⟨φ(2)| = ⟨φ(2)|h(1)⟩ ·C−1
(1) =

⟨︃
dz2
z2

⃓⃓⃓⃓
,

|φ(2)∨⟩ = C−1
(1) · ⟨e

(1)|φ(2)∨⟩ =
⃓⃓⃓⃓
(1 + p+ r) dz2

(1 + p)(1− z2)z2

⟩︃
.

(6.42)

The local solution of eq. (6.31) around each pole reads

• ψ0 ⇝ series solution around 0 (local coordinate: y = z)

ψ0 =
1

q
+O(y); (6.43)

• ψ1 ⇝ series solution around 1 (local coordinate: y = z − 1)

ψ1 =
1

p+ r
y − (p+ q + r)

(p+ r)(p+ r + 1)
y2 +O

(︁
y3
)︁ (6.44)

• ψ∞ ⇝ series solution around∞ (local coordinate: y = 1
z )

ψ∞ =
1

p+ q + r − 1
+O(y). (6.45)

Finally eq. (6.32b) yields⟨︃
dz

z1z2(1− z1 − z2)

⃓⃓⃓⃓
dz

z21z2(1− z1 − z2)

⟩︃
=

(p+ q + r)(p+ q + r + 1)

p(p+ 1)qr
. (6.46)

6.2.2
Co-Homology Intersection Number: general case

The above construction suggests that the multivariate intersection number among n−forms
can be computed via a recursive strategy. We assume that (n−1)-intersection numbers are

100



CHAPTER 6. AN INTRODUCTION TO TWISTED CO-HOMOLOGY: MULTIVARIATE CASE

known, or, better, computable; then given

⟨φ(n)| ∈ Hn(X,∇ω), |φ(n)∨⟩ ∈ Hn(X,∇−ω), ω = d log u, (6.47)

and chosen

(⟨e(n−1)
1 | . . . , ⟨e(n−1)

ν(n−1)
|) ⇝ basis for Hn−1(Xn−1,∇ω|dzn=0

)

(|h(n−1)
1 ⟩ . . . , |h(n−1)

ν(n−1)
⟩)⇝ basis for Hn−1(Xn−1,∇−ω|dzn=0

)
(6.48)

the multivariate intersection number is given by

⟨φ(n) |φ(n)∨⟩ =
∑︂

xi∈PΩ(n)

Reszn=xi
(︂
ψxi,i ·C

(n−1)
ij · φ(n)∨

j

)︂
, (6.49)

where the following are assumed to be known

• C
(n−1)
ij = C(n−1),ij = ⟨e(n−1)

i |h(n−1)
j ⟩;

• ⟨φ(n)| =
∑︁ν(n−1)

i=1 ⟨e(n−1)
i | ∧ ⟨φ(n)

i | with

⟨φ(n)
i | =

ν(n−1)∑︂
j=1

⟨φ(n)|h(n−1)
j ⟩

(︁
C−1

(n−1)

)︁
ji
; (6.50)

• |φ(n)∨⟩ =
∑︁ν(n−1)

i=1 |h(n−1)
i ⟩ ∧ |φ(n)∨

i ⟩ with

|φ(n)∨
i ⟩ =

νn−1∑︂
j=1

(︁
C−1

(n−1)

)︁
ij
⟨e(n−1)
j |φ(n)∨⟩; (6.51)

• ψxi local solution of (see footnote 5)

∇Ω(n)

(︁
ψxi
)︁
= φ(n), Ω̂

(n)
ij =

ν(n−1)∑︂
k=1

⟨∇ωn−1e
(n−1)
i |h(n−1)

k ⟩
(︁
C−1

(n−1)

)︁
kj
; (6.52)

• PΩ(n) the set of poles of Ω̂(n) (including∞). In order to improve the readability, from now
on will adopt the notation

Pn = PΩ(n) . (6.53)
From the recursive nature of the algorithm, it is clear that intersection numbers among

(n−1)-forms can be computed building upon intersection numbers among (n−2)-forms and so
on, till we land on intersection numbers among 1-forms which can be computed as described in
subsection 4.2.4. Therefore, the dimension ν(m) ofHm, aswell as (dual) bases (⟨e(m)

1 |, . . . , ⟨e(m)
ν(m)

|)
and (|h(m)

1 ⟩, . . . , |h(m)
ν(m)

⟩), for m = 1, . . . ,n−1 has to be provided as input.

We give here an elementary example of pseudo-code which illustrates the algorithm6

6We assume the reader to be familiar with Mathematica syntax. Nevertheless these few lines has to be under-
stood just as a sketch; we omit detailed discussions such as managing of lists.
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1 InterX[phi,phiV,omegas_List,e_List,h_List,zvars_List]=
2 (* varin is the set of inner variables; varout is the outer variable *)
3 varin=zvars[[2;;]];
4 varout=zvars[[1]];
5

6 If[Length[varin]>0,
7

8 (* omegain is the set of dlog forms associate to the (n-1) inner variables; omegaout is
related to outer variable *)

9 omegain=omega[[2;;]];
10 omegaout=omega[[1]];
11

12 (* eInner (hInner) are the set of internal (dual) bases w.r.t. varout *)
13 eInner=If[Length[varin]>=2,e[[2;;]],e[[2]]];
14 hInner=If[Length[varin]>=2,h[[2;;]],h[[2]]];
15

16 (* eCurrent (hCurrent) are the current (dual) basis *)
17 eCurrent=If[Length[varin]==1,eInner,eInner[[1]]];
18 hCurrent=If[Length[varin]==1,eInner,hInner[[1]]];
19

20 (* CMatrix is the matrix of intersection numbers among current (dual) basis *)
21 CMatrix=InterX[eCurrent,hCurrent,omegain,eInner,hInner,varin];
22

23 (* phiN is the decomposition of phi onto eCurrent *)
24 phiN=InterX[phi,hCurrent,omegain,eInner,hInner,varin];
25 phiN=phiN.Inverse[C_matrix];
26

27 (* phiVN is the decomposition of phiV onto hCurrent *)
28 phiVN=InterX[eCurrent,phiV,omegain,eInner,hInner,varin];
29 phiVN=Inverse[CMatrix].phiVN;
30

31 (* Omega is the matrix defining the new connection *)
32 Omega=InterX[D[eCurrent,varout]+omegaout*eCurrent,omegain,eInner,hInner,varin].Inverse[

CMatrix];
33 ,
34 (* inizialization the univariate case *)
35 CMatrix={{1}};
36 phiN={phi};
37 phiVN={phiV};
38 Omega={omegas};
39 ];
40

41 (* DeqRes solve the differential equation, and compute the resiude around each pole of
Omega (summing the results) *)

42 out=DeqRes[phiN,phiVN,CMatrix,Omega,varout]
43 ];
44

45

46 (************************************************)
47 (*************** Example of usage ***************)
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48 (************************************************)
49

50 (* We consider the example in eq (6.46) *)
51

52 (* Inizializations *)
53 phi=1/z1/z2/(1-z1-z2);
54 phiV=1/z1^2/z2/(1-z1-z2);
55 omegas={q/z2-r/(1-z1-z2),p/z1-r/(1-z1-z2)};
56 e={{},{1/z1/(1-z1-z2)}};
57 h={{},{1/z1/(1-z1-z2)}};
58 zvars={z2,z1};
59

60 (* Call the function *)
61 InterX[phi,phiV,omegas,e,h,zvars]
62 (* output *)
63 (p+q+r)*(p+q+r+1)/p/(p+1)/q/r.

Code 6.1: Example of pseudo-code for the evaluation of multivariate intersection numbers.
InterX is the functions which computes (multivariate) intersection number. phi (resp. phiV)
corresponds to the (dual) form φ(n) (resp. φ(n)∨). omegas_List is the list of dlogs forms, with
ω1 as rightmost and ωn as leftmost. e_List (resp. h_List) corresponds to the list of inner (dual)
bases, with e(1) (resp. h(1)), as rightmost, e(n−1) (resp. h(n−1)) as next-to-leftmost and an empty
list−which replaces e(n) (resp. h(n))−as leftmost element. zvars_List is the set of integration
variables, with z1 as rightmost and zn as leftmost.

Let us add a brief comment on eq. (6.49). We notice that the residue contains C(n−1), which
is compensated by C−1

(n−1) contained in |φ(n)∨⟩ (see eq. (6.51)). In practical calculations it is
therefore useful to keep this in mind, avoiding spurious objects and minimizing the amount of
algebraic manipulations preformed.
Concretely, we can thus consider

|φ(n)∨
C,i ⟩ = ⟨e(n−1)

i |φ(n)∨⟩, (6.54)

and
⟨φ(n)|φ(n)∨⟩ =

∑︂
xi∈Pn

Reszn=xi
(︂
ψxi · φ

(n)∨
C

)︂
. (6.55)

Nevertheless, we stress that this does not mean that we can avoid the computation of C(n−1),
since it enters indirectly in the definitions of other quantities, e.g. Ω(n).

Equivalently, as noticed in [30], eq. (6.54) can be thought of as a decomposition obtained em-
ploying a rescaled dual basis, say (|h(n−1)

C,1 ⟩, . . . , |h(n−1)
C,ν(n−1)

⟩) related to the old one via

|h(n−1)
C,i ⟩ =

ν(n−1)∑︂
j=1

|h(n−1)
j ⟩(C−1

(n−1))ji, (6.56)
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such that
C

(n−1)
ij ≡ δij = ⟨e(n−1)

i |h(n−1)
C,j ⟩. (6.57)

Once again this is, to the best of our knowledge, an a-posteriori choice, and general criteria in
order to obtain such a basis are missing.

6.3
Co-Homology Intersection Number: Proposal for Optimization

In the derivation of themultivariate intersection numberwe consider the decomposition (cf.
eqs. (6.50,6.51))

⟨φ(n)| =
ν(n−1)∑︂
i=1

⟨e(n−1)
i | ∧ ⟨φ(n)

i |, (6.58a)

|φ(n)∨⟩ =
ν(n−1)∑︂
i=1

|h(n−1)
C,i ⟩ ∧ |φ(n)∨

C,i ⟩; (6.58b)

where (⟨e(n−1)
1 | . . . , ⟨e(n−1)

ν(n−1)
|) is a basis for Hn−1(Xn−1,∇ω|dzn=0

), and (|h(n−1)
C,1 ⟩ , . . . , |h(n−1)

C,ν(n−1)
⟩)

is a basis for Hn−1(Xn−1,∇−ω|dzn=0
) such that eq. (6.57) holds. The notation ⟨φ(n)

i | and |φ(n)∨
C,i ⟩,

for 1 ≤ i ≤ ν(n−1) is not accidental; in fact the coefficients of these decompositions can be
thought of as equivalence classes themselves [30] 7

⟨φ(n)| : φ(n) ∼ φ(n) +∇Ω(n)ξ, (6.59a)
|φ(n)∨

C ⟩ : φ
(n)∨
C ∼ φ

(n)∨
C +∇−Ω(n)ξ∨. (6.59b)

Thismeans thatwe can use the freedomallowed by eqs. (6.59a, 6.59b) in order to simply the sub-
sequent steps in the calculation; we will discuss hereafter a possible strategy, proposed in [30],
in order to do this.

We assume in the following that Ω(n) is fuchsian, i.e. all the poles are simple poles8. Then we
aim to find a different representative of φ(n), laying in the same equivalence class but having
only simple poles; we will denote this representative as φ(n)

sp (similarly φ(n)∨
C,sp is the representative

with simple poles within the same equivalence class of φ(n)∨
C ).

One of the advantages of working with φ(n)
sp and φ(n)∨

sp is that the pole-by-pole solution of

∇Ω(n) (ψxi) = φ(n)
sp , around xi ∈ Pn, (6.60)

7On the one hand the action of (∇Ω(n))ij (•)j is as in eq. (6.26). On the other hand (︁
∇−Ω(n)

)︁
ij
(•)j = δijd(•)j −

Ω
(n)
ij ∧ (•)j . See [28, 30] for a derivation.

8If this is not the case, we can try to employ some gauge-like transformation as done in eq. (2.116) or a different
choice for the internal basis.
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is bypassed−even the explicit locations of the poles is not needed.
In fact, since φ(n)

sp and φ(n)∨
C,sp have just simple poles, the required solution of eq. (6.60) around

each pole consists just in the constant term in the expansion of ψxi . Nevertheless, we can write
a single unique expression which, once expanded around each pole, reproduces the solution of
eq. (6.60) at the desired order. Explicitly, we have that

ψ =
(︁
Ω̂
(n))︁−⊤ · φ̂(n)

sp (6.61)

once expanded around each xi, reproduces ψxi at the desired order.
Once eq. (6.61) is known, the expression for the multivariate intersection number eq. (6.55)
becomes

⟨φ(n)|φ(n)∨)⟩ =
∑︂
xi∈Pn

Reszn=xi
(︂
φ̂(n)
sp ·

(︁
Ω̂
(n))︁−1 · φ(n)∨

C,sp

)︂
. (6.62)

Eq. (6.62) can massaged further.
Let us introduce the adjugate matrix of Ω̂(n), dubbed as adj (︁Ω̂(n))︁, which satisfies

Ω̂
(n) · adj

(︁
Ω̂
(n))︁

= det Ω̂
(n) · 1. (6.63)

Furthermore, we consider the following

det Ω̂
(n)

=
P

Q
, (6.64)

Then the set of poles of Ω̂(n)−dubbed as Pn−coincides with the zeros of Q (plus the point at
infinity), while the set of critical points of Ω̂(n)−dubbed as Sn−is given by the zeros of P. We
assume that those two sets are distinct (i.e. they do not have any common element).
With this in mind, we can rewrite eq. (6.62) as

⟨φ(n)|φ(n)∨⟩ =
∑︂
xi∈Pn

Res
(︃
Q

P
φ̂(n)
sp · adj Ω̂(n) · φ(n)∨

C,sp

)︃
. (6.65)

We notice that in eq. (6.65) the residue is computed just for the subset Pn of the full set of poles
of the integrand, which is given by Sn

⋃︁
Pn. Since the sum of all the residue as to be identically

vanishing, we conclude that

⟨φ(n)|φ(n)∨⟩ = −
∑︂

zcrt∈Sn

Res
(︃
Q

P
φ̂(n)
sp · adj Ω̂(n) · φ(n)∨

C,sp

)︃
. (6.66)

So eq. (6.66) is completely localized on the set of critical points of Ω̂(n), rather than on its poles.
We find that eq. (6.66) is an interesting result on its own; nevertheless in Ref. [30] it was noticed
that it corresponds to a global residue, and can be computed efficiently, see e.g. [204, 30]−once
again without knowing the explicit locations of the critical points Sn. So, under our assump-
tions, we can evaluate the multivariate intersection number via eq. (6.66), without knowing the
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explicit locations of poles nor the critical points. Since, usually, determining the locations of the
poles (or critical points) introduces algebraic extensions−e.g. square roots−this variant of the
algorithm allows to avoid these extensions.

• The reduction to simple poles.
We postponed the detailed description on how to find the representative φ(n)

sp with simple poles
laying equivalence class ⟨φ(n)| (as well as φ(n)∨

C,sp belonging to |φ(n)∨
C,sp⟩). We address here such a

problem.

We will heavily rely on the partial fraction decomposition of φ̂(n) w.r.t. zn. The partial frac-
tion can be performed even without introducing algebraic extensions; so we do not spoil this
feature of the algorithm.
Let us first assume that φ(n) has a pole of order ord∞ at infinity. This means that the partial frac-
tion decomposition of φ(n) contains the monomial zord∞ −2

n . We can then consider the following
vector-valued function

ξ∞ = c zord∞ −1
n , (6.67)

where c = (c1, . . . , cν(n−1)
) is a vector of ν(n−1) unknown coefficients.

Requiring that in the partial fraction decomposition of

˜︁φ(n) = φ(n) +∇Ω(n)

(︁
ξ∞
)︁ (6.68)

the monomial zord∞ −2
n is absent, we obtain a linear system for the (c1, . . . , cν(n−1)

). Provided the
fact that this system admits a solution, then the corresponding ˜︁φ(n) will have a pole of order
ord∞−1 at infinity. We can iterate the procedure until we land on a simple pole at infinity.

Let us consider now the case of poles at finite positions. Let us assume that an irreducible
polynomial q(zn) of degree deg(q) appears raised to power ordq in the partial fraction decom-
position of φ(n).
It is sufficient to consider the following vector-valued function

ξq =
1

q(zn)ordq −1

deg(q)−1∑︂
j=0

cjz
j
n. (6.69)

where each cj = (cj,1, . . . , cj,ν(n−1)
) is a vector of ν(n−1) unknown coefficients.

Requiring that in the partial fraction decomposition of

˜︁φ(n) = φ(n) +∇Ω(n)

(︁
ξq
)︁ (6.70)

the term proportional to q(zn)− ordq is absent, we obtain ν(n−1) ·degq constraints for the unknown
ν(n−1) · degq coefficients. Provided the fact that the resulting linear system admits a solution,
the partial fraction decomposition of ˜︁φ(n) will contain at most q(zn)− ordq +1. We can iterate the
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procedure until we arrive at ordq = 1.

The same discussion holds for φ(n)∨, replacing ∇Ω(n)(•) with ∇−Ω(n)(•). Notice that, since we
assumed that Ω(n) has just simple pole, this procedure never introduce any new higher order
pole.

Example. Let us reconsider eq. (6.11)

u(z1, z2) = zp1z
q
2(1− z1 − z2)

r; (6.71)

A critical point analysis gives
ν(2) = 1, ν(1) = 1; (6.72)

we choose again the internal basis as

⟨e(1)| =
⟨︃

dz1
z1(1− z1 − z2)

⃓⃓⃓⃓
, |h(1)⟩ =

⃓⃓⃓⃓
dz1

z1(1− z1 − z2)

⟩︃
. (6.73)

• Let us consider the evaluation of

⟨φ(2)|φ(2)∨⟩ =
⟨︃

dz

z1z22(1− z1 − z2)

⃓⃓⃓⃓
dz

z1z2(1− z1 − z2)

⟩︃
(6.74)

With the above-mentioned choice of internal basis we obtain (as reported in eqs. (6.39,6.40))

C(1) =
p+ r

pr (z2 − 1) 2
, (6.75)

and
Ω̂
(2)

=
1− p− r

1− z2
+

q

z2
. (6.76)

Eq. (6.76) has just simple poles.
The decomposition ⟨φ(2)| = ⟨e(1)| ∧ ⟨φ(2)| and |φ(2)∨⟩ = |h(1)⟩ ∧ |φ(2)∨⟩ yields

⟨φ(2)| =
⟨︃
dz2
z22

⃓⃓⃓⃓
, (6.77a)

|φ(2)∨⟩ =
⃓⃓⃓⃓
dz2
z2

⟩︃
. (6.77b)

and so
|φ(2)∨

C ⟩ =
⃓⃓⃓⃓

(p+ r) dz2
pr (z2 − 1) 2z2

⟩︃
. (6.78)

Eqs. (6.77a,6.78) have a double pole at a finite position.
We will work first on φ(2). Following the description in the main text, we have

q(z2) = z2, ordz2 = 2. (6.79)
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Thus, we consider the following ansatz
ξz2 =

1

z2
c, (6.80)

where c is an unknown constant.
Let us consider ˜︁φ(2) = φ(2) +∇Ω(2)ξz2 (6.81)

and its partial fraction decomposition

c(p+ r − 1)

z2 − 1
− c(p+ r − 1)

z2
+
c(q − 1) + 1

z22
; (6.82)

requiring that the blue term is vanishing, we find

c =
1

1− q
; (6.83)

so
φ(2)
sp = ˜︁φ(2)

⃓⃓
c→(1−q)−1 =

(︃
−p− r + 1

(q − 1) (z2 − 1)
+
p+ r − 1

(q − 1)z2

)︃
dz2 (6.84)

is free from higher order poles.

We move now to φ(2)∨
C ; in its partial fraction decomposition we find

q(z2) = 1− z2, ord1−z2 = 2. (6.85)

So, we consider
ξ1−z2 =

1

1−z2
c. (6.86)

Next, we consider ˜︁φ(2)∨
C = φ

(2)∨
C +∇−Ω(2)ξ1−z2 , (6.87)

and its partial fraction decomposition which reads

(p+ r)(cpr + 1)

pr (z2 − 1) 2
+
cpqr − p− r

pr (z2 − 1)
− cpqr − p− r

prz2
; (6.88)

requiring that the blue term is vanishing, we find

c = − 1

pr
. (6.89)

So
φ
(2)∨
C,sp = ˜︁φ(2)∨

C

⃓⃓
c→−(pr)−1 =

(︃
p+ q + r

pr (1− z2)
+
p+ q + r

prz2

)︃
dz2, (6.90)

has just simple poles.
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Finally we just need
det Ω̂

(2)
= Ω̂

(2)
=

P

Q
=
q − (p+ q + r − 1)z2

(1− z2)z2
(6.91)

with P2 = {0, 1,∞} and S2 = { q
p+q+r−1}. Therefore eq. (6.66) gives

⟨φ(2)|φ(2)∨⟩ = −
∑︂

zcrt∈S2

Res z2=zcrt

(︃
Q

P
φ̂(2)
sp φ

(2)∨
C,sp

)︃
=

(p+ q + r − 1)(p+ q + r)

p(q − 1)qr
. (6.92)

Let us also briefly mention that eq. (6.92) can be massaged even further−see once again [30]. In fact
eq. (6.92) is of the following form:

⟨φ(2)|φ(2)∨⟩ = −
∑︂

zcrt∈S2

Res z2=zcrt

(︃
h

P

)︃
, S2 ⇝ zeros of P, (6.93)

and h can be thought as a ratio of two polynomials in z2, say

h =
Ph
Qh

. (6.94)

Assuming that P and Qh does not have any common zero, then Hilbert’s Nullstellensatz guarantees that
there exists two polynomials, say R and S such that9

1 = RP+Qh S . (6.95)

. Thanks to this step we have:

(6.93) = −
∑︂

zcrt∈S2

Res z2=zcrt

(︃
h

P
· 1
)︃

= −
∑︂

zcrt∈S2

Res z2=zcrt

(︃
Ph S

P

)︃
. (6.96)

Eq. (6.96) is the basis of further manipulations in [30]; we avoid here such a discussion referring the
reader to the original work. Let us just mention that Ph, S and P are polynomials, and so e.g. eq. (6.96)
correspond to the residue of the same function, computed at z2 = ∞10.

• Let us also briefly discuss the calculation of

⟨φ(2)|φ(2)∨⟩ =
⟨︃
1 · dz

z1(1− z1 − z2)

⃓⃓⃓⃓
dz

z1z2(1− z1 − z2)

⟩︃
, (6.97)

since it exhibits a new feature.

We find that
⟨φ(2)| = ⟨1 · dz2| (6.98)

9We accomplished this step via theMathematica command PolynomialExtendedGCD.
10In our basic Mathematica implementation we find this step satisfactory enough in practical examples; never-

theless we expect more refined implementations of [30] to be more efficient.
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which has a pole at infinity with
ord∞ = 2. (6.99)

There for we consider the following ansatz

ξ∞ = cz2. (6.100)

Next we consider ˜︁φ(2) = φ(2) +∇Ω(2)ξ∞. (6.101)

and its partial fraction decomposition

1 + (p+ q + r)c+
c(p+ r − 1)

z2 − 1
; (6.102)

requiring that the blue term is vanishing, we find

c = − 1

(p+ q + r)
. (6.103)

So, finally
φ(2)
sp = ˜︁φ(2)

⃓⃓
c→−(p+q+r)−1 =

(︃
− p+ r − 1

(z2 − 1) (p+ q + r)

)︃
dz2. (6.104)

Eqs. (6.104,6.90), can be used in eq. (6.66) yielding

⟨φ(2)|φ(2)∨⟩ = 1

pr
. (6.105)

6.4
Co-Homology Intersection Number: Secondary Equation Approach

We discuss here briefly an alternative approach for the computation of (multivariate) inter-
section numbers. This approach was proposed in [29], and aim to obtain intersection numbers
as solutions of suitable system(s) of (partial) differential equations: the so-called Secondary
Equation; this method can be applied irrespectively to compute univariate and multivariate in-
tersection numbers, even though it relies on essential external inputs. We review the methods
hereafter.

Let us consider once again eq. (4.112), and rearrange it as

H⊤ = P∨⊤ ·C−1 ·P. (6.106)

Eq. (6.106) offers another possibility of computing co-homology intersection numbers, and,
more precisely, the full matrix C. Clearly pretending to have access to H, and−even worse−P

andP∨ is too demanding. Nevertheless we recall that the u(z) does, in general, depend on other

110



CHAPTER 6. AN INTRODUCTION TO TWISTED CO-HOMOLOGY: MULTIVARIATE CASE

external parameters which are not integration variables, say x−to fix the ideas we can think at
the case of FIs where x represents (ratio of) kinematic invariants. On the one hand we expect
thatC and P(∨) do depend on x, on the other hand we assume thatH is independent from it−c.f.
e.g. the explicit computations in section 4.1.3. In other words we just have

dxH
⊤ = 0. (6.107)

Moreover P and P∨ obey the following

dxP = Ω ·P, dxP
∨ = Ω∨ ·P∨. (6.108)

The matrices Ω(∨) are known as Pfaffians matrices−once again, in order to fix the ideas, we can
think at the differential equations fulfilled by FIs. These matrices represent the external input
for this algorithm11 Therefore, applying dx(•) to eq. (6.107), eqs. (6.107, 6.108) imply

P∨⊤ ·
(︂
Ω∨⊤ ·C−1 + dxC

−1 +C−1 ·Ω
)︂
·P = 0. (6.109)

Then, requiring that P and P∨ have full rank, we infer that

Ω∨⊤ ·C−1 + dxC
−1 +C−1 ·Ω = 0, (6.110)

or, equivalently12
dxC = Ω ·C+C ·Ω∨⊤. (6.111)

Eq. (6.111) is known as Secondary Equation, and will plays a key role: solving the latter we can
determine C.

Eq. (6.111) represents a system of partial differential equations. Solving such a system is, in
general, a formidable task. Fortunately enough it is known that co-homology intersection num-
bers, and so the full matrix C, are known to be rational function in x [29]13. Therefore we just
look for a rational solution, say CRat of eq. (6.111). This is a less complicated task and it is im-
plemented in the program IntegrableConnection [217].
Finally, even if we determine a rational solution CRat of eq. (6.111), there is still an ambiguity
due to an over-all multiplicative constant14 κ in order to determine the correct matrix C; so we

11It is important to stress that the cases of our interest, namely hypergeometric functions and FIs−once expressed
in the Lee-Pomeransky representation (cf. section 2.3), fall into the category of Gelf́and-Kapranov-Zelevinsky
(GKZ) systems [205]. Within this framework Pfaffian matrices can be obtained e.g. my means of the Maculay
matrix method [36]. For the interplay among GKZ systems and FIs see also [206, 209, 210, 211, 212, 213, 214, 215,
216, 207, 208].

12Using 0 = C−1 · dxC ·C−1 + dxC
−1.

13We are going to use intersection numbers in order to achieve reduction onto MIs; it is clear that the coeffi-
cients of the decomposition obtained through the standard Laporta algorithm are rational functions (cf. section 2.4).
So−unless mysterious cancellations occur− we can expect the intersection numbers themselves to be rational func-
tions.

14In other words, we have to input some boundary values in eq. (6.111), in order to fully determineC.
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have
C = κCRat, (6.112)

where κ is, in general, unknown.
Even if the actual value of κ can be, in principle computed−see [218]−we can avoid this final
step if we are just interested obtaining linear relations among integrals. The reason for this will
become clear in chapter 7.
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7
Integral Relations via
Intersection Theory:

multivariate case

In this chapter we will address the study of linear relations among integrals admitting a
multivariate representation. At a first sight there is no conceptual difference w.r.t. the univari-
ate case, see the discussion in section 5.2−clearly we have to replace the univariate intersection
number employed in section 5.2 with the multivariate intersection number discussed in sec-
tion 6.2. First we will apply our machinery to the case of hypergeometric integrals, and then we
will move to the case of FIs, highlighting some of their peculiarities, particular features as well
as possible strategies to overcome them.

7.1

Contiguity Relations via Intersection Numbers

We show here how the master decomposition formula and the multivariate intersection
numbers can be employed in order to obtain contiguity relations among certain hypergeomet-
ric integrals. Such type of relations are often of interest in the mathematical literature, and they
constitute the prototype of relations we aim to derive working with FIs.

Example. The hypergeometric 3F2. Let us consider the following

u(z) = za31 (1− z1)
b2−a3 za22 (1− z2)

b1−a2 (1− xz1z2)
−a1 ; (7.1)
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eq. (7.1) is associated to the hypergeometric function 3F2 (see also appendix B). We hvae

ω = ω̂1dz1 + ω̂2dz2 =

(︃
a3
z1

+
a3 − b2
1− z1

+
a1xz2

1− xz1z2

)︃
dz1 +

(︃
a2
z2

+
a2 − b1
1− z2

+
a1xz1

1− xz1z2

)︃
dz2.

(7.2)
A critical point analysis reveals that

ν(2) = 3, (7.3)

while, for the inner variable z1, we find
ν(1) = 2; (7.4)

We choose the inner bases as

(⟨e(1)1 | , ⟨e(1)2 |) = (⟨d log z1|, ⟨d log(1− z2)|), (7.5a)
(|h(1)1 ⟩ , |h(1)2 ⟩) = (|d log z1⟩, |d log(1− z2)⟩). (7.5b)

We aim to achieve the decomposition

3F2(a1, a2, a3 − 1; b1 + 1, b2;x) = c1 3F2(a1, a2, a3; b1 + 1, b2 + 1;x)

+ c2 3F2(a1, a2, a3 + 1; b1 + 1, b2 + 1;x)

+ c3 3F2(a1, a2, a3; b1, b2;x).

(7.6)

with the corresponding twisted co-cycles being

3F2(a1, a2, a3 − 1; b1 + 1, b2;x)⇝
1

B(a2, 1 + b1 − a2)B(a3 − 1, 1 + b2 − a3)

⟨︃
dz

z21z2

⃓⃓⃓⃓
= ⟨φ(2)|,

(7.7)
and

3F2(a1, a2, a3; b1 + 1, b2 + 1;x)⇝
1

B(a2, 1+b1−a2)B(a3, 1+b2−a3)

⟨︃
dz

z1 z2

⃓⃓⃓⃓
= ⟨e(2)1 |,

3F2(a1, a2, a3 + 1; b1 + 1, b2 + 1;x)⇝
1

B(a2, 1+b1−a2)B(a3+1, b2−a3)

⟨︃
dz

(1− z1) z2

⃓⃓⃓⃓
= ⟨e(2)2 |,

3F2(a1, a2, a3; b1, b2;x)⇝
1

B(a2, b1−a2)B(a3, b2−a3)

⟨︃
dz

z1 z2 (1− z1) (1− z2)

⃓⃓⃓⃓
= ⟨e(2)3 |.

(7.8)

Our choice for the dual basis is

B(a2, 1+b1−a2)B(a3, 1+b2−a3)
⃓⃓⃓⃓
dz

z1 z2

⟩︃
= |h(2)1 ⟩,

B(a2, 1+b1−a2)B(a3+1, b2−a3)
⃓⃓⃓⃓

dz

(1− z1) z2

⟩︃
= |h(2)2 ⟩,

B(a2, b1−a2)B(a3, b2−a3)
⃓⃓⃓⃓

dz

z1 z2 (1− z1) (1− z2)

⟩︃
= |h(2)3 ⟩.

(7.9)
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The required intersection numbers are

C
(2)
ij = ⟨e(2)i |h(2)j ⟩ 1 ≤ i, j ≤ 3; and ⟨φ(2)|h(2)j ⟩ 1 ≤ j ≤ 3. (7.10)

We find

C
(2)
11 =

a1
a2

(︃
a2+a3−b1

a3 (a1−b1) (a3−b1)
+

1

(a1−a2) (a2−b2)

)︃
+
(a2−b1)
(a1−b1)

(︃
1

(a1−a2) (b2−a1)
+

1

a2a3

)︃
,

C
(2)
12 =

(a1 + a2) a3b1 + a3b2 (a1 + a2 − b1)−
(︁
a21 + a2a1 + a22

)︁
a3

a2 (a1 − b1) (a1 − b2) (a2 − b2) (b2 − a3)
,

C
(2)
13 =

b1b2
a2a3 (a2 − b1) (a3 − b2)

,

C
(2)
21 =

(︁
a1 (a2 − b1 − b2) + (a2 − b1) (a2 − b2) + a21

)︁
(a3 − b2)

a2a3 (a1 − b1) (a1 − b2) (a2 − b2)
,

C
(2)
22 =

(a2 − a3) a1 (a2 − b1 − b2)− a3 (a2 − b1) (a2 − b2) + (a2 − a3) a
2
1

a2 (a1 − b1) (a1 − b2) (a2 − b2) (b2 − a3)
,

C
(2)
23 =

b1b2
a2a3 (a2 − b1) (a3 − b2)

,

C
(2)
31 =

(a2 − b1) (a3 − b2)

a2a3b1b2
,

C
(2)
32 =

a3 (a2 − b1)

a2b1b2 (a3 − b2)
,

C
(2)
33 =

b1b2
a2a3 (a2 − b1) (a3 − b2)

.

(7.11)

and

⟨φ(2)|h(2)1 ⟩ = a2a
2
1x(b1−a2)+a2a1b1x(a2−b1)+a1((a3−b1)

2+a2(2a3−b1−1)−a3+b1)(a3−b2)+(a2−b1)(b1−a3)(−a3+b1+1)(a3−b2)

a2a3b2(a3−b1−1)(a3−b1)(b1−a1)
,

⟨φ(2)|h(2)2 ⟩ = a3 ((a2 − b1) (a3 − b1 − 1) + a1 (a2 + a3 − b1 − 1))

a2b2 (a1 − b1) (−a3 + b1 + 1) (a3 − b2)
,

⟨φ(2)|h(2)3 ⟩ = b1 (b2 (a3 − b1 − 1) + a1a2x)

a2a3 (a2 − b1) (a3 − b1 − 1) (a3 − b2)
.

(7.12)

Combing everything within the master decomposition formula

⟨φ(2)| =
3∑︂

i,j=1

⟨φ(2)|h(2)j ⟩
(︂
C−1

(2)

)︂
ji
⟨e(2)i |

=

3∑︂
i=1

ci ⟨e(2)i |,

(7.13)
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we obtain

c1 =
a3 (x (−a1 − a2 + b1 + b2) + b2 + 1) + a1a2x− a23 − b2 (b1x+ 1)

b2 (a3 − b1 − 1)
,

c2 =
a3 (x (a1 + a2 − b1 − b2) + a3 − 1)

b2 (a3 − b1 − 1)
,

c3 =
b1(x− 1)

a3 − b1 − 1
.

(7.14)

The coefficients appearing in eq. (7.14) are (numerically) verified withMathematica.

7.2
Feynman Integrals Reduction via Intersection Numbers

We are finally at the point of discussing full reduction (i.e. including subtopologies) of FIs.
In view of our subsequent discussion, it is beneficial to recall briefly our starting point−cf. also
section 5.4−namely FIs in Baikov representation

Ia1,...,an =

∫︂
γ
u(z)φ(z), (7.15)

with−in general1

u(z) = (B(z))
d−ℓ−E−1

2 , φ(z) =
N(z)

za11 . . . zann
dz, (a1, . . . , an) ∈ Zn, (7.16)

and
γ ∈ X = Cn \ (B = 0), s.t. B(∂γ) = 0. (7.17)

Some of the ai can be (strictly) positive−in particular the exponents of the actual denomina-
tors (a1, . . . , anden

)−and this poses a problem, since φ is not defined onX−colloquially, with an
abuse of terminology, we will say that the “poles” of φ(z) are not regulated by u(z). Thus the full
machinery of chapter 6 cannot be directly applied.
Onepossible solution consists in consider a slightlymodifiedversion of the originalu(z), namely

u(z)⇝ ureg(z) =
nden∏︂
i=1

zρii u(z), (7.18)

where ρi /∈ Z, for 1 ≤ i ≤ nden, are referred to as regulators. In this case X = Cn \ (B =

0
⋃︁nden
i=1 zi = 0), and now φ is defined on X . This regularization can be consider an analogue of

the one of [219].
The reduction onto MIs is then performed working with eq. (7.18); the regulators ρi are set to
0 once the coefficients of the reduction are obtained.

1In order to fix, we can considerN(z) as a polynomial in z. Neverthelesswe can lift this assumption, and consider
the case in which N(z) has singularities, provided that they are “regulated” by u(z).
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Eq. (7.18) has an obvious disadvantage, namely the fact that there are more unphysical param-
eters involved in the reduction; in order to minimize the amount of algebraic manipulations in-
volved, we often find convenient−and effective in practice−to set all the regulators equal, ρi = ρ

for 1 ≤ i ≤ nden. As anticipated, an alternative to this regularization procedure is discussed in
the refined−and, probably, more appropriate−treatment of [40, 39], where the framework of
relative twisted Co-Homology [220] is adopted.

We make here a small remark; we could consider a slightly modified version of eq. (7.18),
where we regulate just a subset Σ, with Σ ⊂ {1, 2, . . . , nden} of the full set of possible poles;
Σwill be, in practice, associated to a given sector (cf. section 2.1). We will denoted the replace-
ment u(z) ⇝ uΣ(z) according to eq. (7.18)). If this is the case, we could not consider−i.e. we
would not sensitive−to differential forms with poles at zi with i /∈ Σ. The auxiliary object uΣ(z)
is useful, in practice, since the corresponding ωΣ = d log uΣ(z) dictates the number of MIs in
the sector Σ (including all its possible subsectors) through a critical point analysis.
Therefore a possible strategy to identify a putative set ofMIs consists in−starting from the small-
est possible sector(s)− i) consider the corresponding log uΣ(z), ii) count the number of critical
points νΣ, iii) update the list of MIs accordingly, without over-counting the MIs common to
subsectors.
Some comments are in order. First of all, we are completely blind to any sort of symmetry re-
lation, as the ones usually implemented in public codes, therefore the number of independent
MIs can be−in principle−reduced further. Second, the same strategy can be adopted in order
to determine basis elements for the internal layers, required by the algorithm for the multivari-
ate intersection number described in sec (6.2). Third, and more important, the determination
of the number of MIs via (co)homological methods is a topic still under development, and the
strategy above has to be considered more a guiding principle. We refer the reader to e.g. the
discussion of [54] for the case of non isolated critical points, [221] for subtleties concerning
the (loop-by-loop) Baikov representation, [39, 40] for a treatment of FIs directly in momentum
space, where the dimension of Co-Homology groups are determined without relying on the
critical point analysis and the case of degenerate kinematics is discussed. See also [180, 36, 203]
for related, more mathematical, discussions.

Example. One loop QED triangle. Let us consider the integral family associated to the following graph

(7.19)
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The denominators are

z1 = D1 = (k1 + p1 + p2)
2 −m2, z2 = D2 = k21 −m2, z3 = D3 = (k1 + p1)

2 (7.20)

and the kinematics is p21 = p22 = m2 and p23 = s.

There are in total 8 possible sectors, labelled by

{Σ} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. (7.21)

Then we consider
uΣ(z) =

∏︂
i∈Σ

zρii u(z), ωΣ = d log uΣ(z), (7.22)

associated to each sector.
The counting of critical points associated to each regularized twist is

{νΣ} = {0, 1, 1, 0, 3, 1, 1, 3}. (7.23)

Eq. (7.23) implies that there is no MIs without any pole, one MIs with pole in z1 only, one MIs with
pole in z2 only, no MIs with pole in z3 only, three MIs with poles in either z1 or z2 or both (notice
that two of them were already counted), one MIs with poles in either z1 or z3 or both (notice that one
was already counted, so no new MIs appears), one MIs with poles in either z2 or z3 or both (notice that
one was already counted, so no new MIs appears), three MIs with poles in either z1 or z2 or z3 or in
each possible couple or in the full triplet (notice that threewere already counted, so no newMIs appears).

So we are left with the following basis

⟨e(3)1 | =
⟨︃
dz

z1

⃓⃓⃓⃓
, ⟨e(3)2 | =

⟨︃
dz

z2

⃓⃓⃓⃓
, ⟨e(3)3 | =

⟨︃
dz

z1z2

⃓⃓⃓⃓
, (7.24)

which are nothing but the familiar

⟨e(3)1 |⇝ J1 = , ⟨e(3)2 |⇝ J2 = ,

⟨e(3)3 |⇝ J3 = .

(7.25)
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We will focus on the decomposition of

I1,1,1 = c1 J1 + c2 J2 + c3 J3, (7.26)

where the twisted co-cycle associated to I1,1,1 is

⟨φ(3)| =
⟨︃

dz

z1z2z3

⃓⃓⃓⃓
. (7.27)

The diagrammatic representation of eq. (7.26) is

= c1 + c2 + c3 (7.28)

In order to compute multivariate intersection numbers we have to provide explicit choices of bases for
one forms w.r.t. z1, and of bases of two forms-w.r.t. (z1, z2). Once again a critical point analysis on the
regularized twist performed considering (z2, z3) and z3 constant respectively, gives

ν(1) = 2, ν(2) = 4; (7.29)

the corresponding bases are
(⟨e(1)1 |, ⟨e(1)2 |) =

(︃
⟨1 · dz1|,

⟨︃
dz1
z1

⃓⃓⃓⃓)︃
, (7.30)

and

(⟨e(2)1 |, ⟨e(2)2 |, ⟨e(2)3 |, ⟨e(2)4 |) =
(︃
⟨1 · dz1 ∧ dz2|,

⟨︃
dz1 ∧ dz2

z1

⃓⃓⃓⃓
,

⟨︃
dz1 ∧ dz2

z2

⃓⃓⃓⃓
,

⟨︃
dz1 ∧ dz2
z1z2

⃓⃓⃓⃓)︃
. (7.31)

We consider dual forms identical to forms, namely h(•)i = e
(•)
i for all i, and • = 1,2,3.

Computing all the required intersection numbers according to eq. (5.32), we obtain the following ρ-
dependent coefficients:

c1(ρ) =
(d+ 3ρ− 3)(d+ 3ρ− 2)(d+ 6ρ− 2)

2m2(d+ 4ρ− 4)(d+ 4ρ− 3)(d+ 4ρ− 2) (s− 4m2)
,

c2(ρ) =
(d+ 3ρ− 3)(d+ 3ρ− 2)(d+ 6ρ− 2)

2m2(d+ 4ρ− 4)(d+ 4ρ− 3)(d+ 4ρ− 2) (s− 4m2)
,

c3(ρ) = −
(d+ 3ρ− 3)

(︁
2dm2 + 8m2ρ− 6m2 + ρs

)︁
m2(d+ 4ρ− 4)(d+ 4ρ− 3) (s− 4m2)

;

(7.32)

119



7.2. FEYNMAN INTEGRALS REDUCTION VIA INTERSECTION NUMBERS

in the ρ→ 0 limit the decomposition boils down to:

=
2− d

2(d− 4)m2 (4m2 − s)
+

2− d

2(d− 4)m2 (4m2 − s)

+
2(d− 3)

(d− 4) (4m2 − s)
.

(7.33)

Eq. (7.33) is in agreement with FiniteFlow & LiteRed2.

Before moving on, we pause for a small comment; despite the fact that the result of the inter-
section number ⟨φ(n)|φ(n)∨⟩ is independent from the choices of (dual) internal bases (as well as
on the ordering of the variables), intermediate expression can severely depend on their choices.
At the time being there is no clear criterion which could leads to simple intermediate expres-
sions. We give an explicit example on the impact of different choices of internal bases hereafter
(see also the discussion in appendix A).

Example. One loop massless triangle. We consider here the following graph

(7.34)

The denominators are chosen as

z1 = D1 = (k1 + p1 + p2)
2, z2 = D2 = k21, z3 = D3 = (k1 + p1)

2. (7.35)

The kinematics is given by p21 = p22 = m2 = 1 and p23 = s.

Once again there are 8 possible sectors, labelled by

{Σ} = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. (7.36)

2We thank G. Fontana and T. Peraro for correspondence on the use of FiniteFlow.
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The counting of critical points is

{νΣ} = {0, 0, 0, 0, 1, 1, 1, 4} (7.37)

and the forms are chosen as

⟨e(3)1 | =
⟨︃
dz

z1z2

⃓⃓⃓⃓
, ⟨e(3)2 | =

⟨︃
dz

z1z3

⃓⃓⃓⃓
, ⟨e(3)3 | =

⟨︃
dz

z2z3

⃓⃓⃓⃓
, ⟨e(3)4 | =

⟨︃
dz

z1z2z3

⃓⃓⃓⃓
. (7.38)

Diagrammaticaly they correspond to

⟨e(3)1 |⇝ J1 = , ⟨e(3)2 |⇝ J2 = ,

⟨e(3)3 |⇝ J3 = , ⟨e(3)4 |⇝ J4 = .

(7.39)

We focus for concreteness on the decomposition

I2,1,1 = c1 J1 + c2 J2 + c3 J3 + c4 J4, (7.40)

where the co-cycle associate to I2,1,1 is

⟨φ(3)| =
⟨︃

dz

z21z2z3

⃓⃓⃓⃓
. (7.41)

Eq. (7.40) graphically is nothing but

= c1 + c2

+ c3 + c4 .

(7.42)

We have to assign specific internal bases w.r.t. z1 and w.r.t. (z1, z2); a critical point analysis gives

ν(1) = 2, ν(2) = 4; (7.43)
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let us consider the same choice employed in eqs. (7.30,7.31), i.e.:

(⟨e(1)1 |, ⟨e(1)2 ) =

(︃
⟨1 · dz1|,

⟨︃
dz1
z1

⃓⃓⃓⃓)︃
, (7.44)

and

(⟨e(2)1 |, ⟨e(2)2 |, ⟨e(2)3 |, ⟨e(2)4 |) =
(︃
⟨1 · dz1 ∧ dz2|,

⟨︃
dz1 ∧ dz2

z1

⃓⃓⃓⃓
,

⟨︃
dz1 ∧ dz2

z2

⃓⃓⃓⃓
,

⟨︃
dz1 ∧ dz2
z1z2

⃓⃓⃓⃓)︃
. (7.45)

Once again we assume h(•)i = e
(•)
i for all i, and • = 1,2,3.

According to the iterative multivariate algorithm, we have to compute

Ω̂
(3)
ij =

ν(2)∑︂
k=1

⟨∇ω3e
(2)
i |h(2)k ⟩

(︂
C−1

(n−1)

)︂
kj
, (7.46)

and then solve
∇Ω(3) (ψxi) = φ(3). (7.47)

Different choices of ( ⟨e(2)1 |, ⟨e(2)2 |, ⟨e(2)3 |, ⟨e(2)4 |) result in different expressions for Ω(3); suitable choices
can simplify the task of solving eq (7.47).

For example eq. (7.45) gives3:

Ω̂
(3)

=

⎛⎜⎜⎜⎜⎜⎝
11
2z3

3(z3−1)
2z3

3(z3−1)
2z3

0

− 5
2(z3−1)z3

17z3−3
2(z3−1)z3

3(z3+1)
2(z3−1)z3

− 15
z3−1

− 5
2(z3−1)z3

3(z3+1)
2(z3−1)z3

17z3−3
2(z3−1)z3

− 15
z3−1

− 5(z3+1)

2(z3−1)z3(z23+3z3+1)
3z23+14z3+3

2(z3−1)z3(z23+3z3+1)
3z23+14z3+3

2(z3−1)z3(z23+3z3+1)
3(4z33−5z23−17z3−2)
2(z3−1)z3(z23+3z3+1)

⎞⎟⎟⎟⎟⎟⎠ ,

(7.48)

and so Ω(3) = Ω̂
(3)
dz3 has a double pole at infinity.

We could consider a rotated basis, say4⎛⎜⎜⎜⎜⎝
⟨e(2)1 |
⟨e(2)2 |
⟨e(2)3 |
⟨e(2)4 |

⎞⎟⎟⎟⎟⎠
T

= T

⎛⎜⎜⎜⎜⎝
⟨e(2)1 |
⟨e(2)2 |
⟨e(2)3 |
⟨e(2)4 |

⎞⎟⎟⎟⎟⎠ , T =

⎛⎜⎜⎜⎜⎝
− 1
z3

ρ(z3+1)
z3(d+2(ρ−1))

ρ(z3+1)
z3(d+2(ρ−1)) 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ . (7.49)

3The matrix is reported for the specific value d = 1, ρ = 3 and s = 5.
4The matrix T is obtained with Fuchsia.
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which leads to

Ω̂
(3)
T =

⎛⎜⎜⎜⎜⎜⎝
3

2z3
+ 6
z3−1

24
5(z3−1)−

24
5z3

24
5(z3−1)−

24
5z3

18
z3
− 36
z3−1

5
2(z3−1)

3
z3
+ 4
z3−1 0 − 15

z3−1
5

2(z3−1) 0 3
z3
+ 4
z3−1 − 15

z3−1
−2z3−3

2(z23+3z3+1)
+ 1
z3−1

4
5(z3−1)−

4(z3+4)

5(z23+3z3+1)
4

5(z3−1)−
4(z3+4)

5(z23+3z3+1)
9(2z3+3)

2(z23+3z3+1)
− 6
z3−1+

3
z3

⎞⎟⎟⎟⎟⎟⎠ ;

(7.50)
in this way Ω(3) = Ω̂

(3)
dz3 as at most simple poles (including at infinity).

Completing the calculation with the rotated basis, eq. (5.32) gives

c1(ρ) =
(d+ 3(ρ− 1))(d+ 4(ρ− 1))

(ρ− 1)s(d+ 2(ρ− 2))
,

c2(ρ) =
(d+ 3(ρ− 1))(d+ 4(ρ− 1))

(ρ− 1)s(d+ 2(ρ− 2))
,

c3(ρ) = −d+ 3(ρ− 1)

(ρ− 1)s
,

c4(ρ) =
(d+ 4(ρ− 1))(s(d+ 2(ρ− 2))− 2ρ)

2(ρ− 1)s(d+ 2(ρ− 2))
;

(7.51)

in the limit ρ→ 0 the decomposition boils down to

=
3− d

s
+

3− d

s

− 3− d

s
+

4− d

2
.

(7.52)

Eq. (7.52) is in agreement with FiniteFlow & LiteRed.

7.3
Feynman Integrals Reduction via Intersection Numbers and Unitarity-
cuts

The decomposition via intersection numbers can be also combined with unitarity-based
method. After having identified all the sectors which contain at least one MIs, we can engi-
neer a spanning set of cuts defined as the minimal set of cuts such that each MIs appears at least
once [59] (MIs which do not contain all the cut-denominators will not contribute to the decom-
position on that cut).
The advantages of this combined strategy are clear. Unitarity-cuts are easy to perform working
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with the Baikov representation and the required intersection number are computationally less
expensive since they involved fewer integration variables w.r.t. the original problem. Let us also
mention that the sameMI can appear on different spanning cuts, and so the corresponding coef-
ficient is computed in different ways−i.e. building upon different sets of intersection numbers.
This offers a consistency check on our procedure.

Example. One loop massless box via unitarity cuts. Let us consider the integral family associated with
the following graph

(7.53)

The kinematics is chosen as p21 = p22 = p23 = p24 = 0, s = (p1 + p2)
2 and t = (p2 + p3)

2.

There are 16 possible sectors, labelled by

{Σ} = {{}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3},

{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.
(7.54)

The counting of critical points associated to each regularized twist is

{νΣ} = {0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 3}, (7.55)

and so the basis elements can be chose as

⟨e(4)1 | =
⟨︃
dz

z1z3

⃓⃓⃓⃓
, ⟨e(4)2 | =

⟨︃
dz

z2z4

⃓⃓⃓⃓
, ⟨e(4)3 | =

⟨︃
dz

z1z2z3z4

⃓⃓⃓⃓
, (7.56)

diagrammaticaly they correspond to

⟨e(4)1 |⇝ J1 = , ⟨e(4)2 |⇝ J2 = ⟨e(4)3 |⇝ J3 = . (7.57)

We focus on the decomposition
I2,2,1,1 = c1J1 + c2J2 + c3J3, (7.58)
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where the co-cycle associated to I2,2,1,1 is5

⟨φ(4)| =
⟨︃

dz

z21z
2
2z3z4

⃓⃓⃓⃓
=

⟨︃
∂1 log u(z)

dz

z1z22z3z4

⃓⃓⃓⃓
=

⟨︃
∂2 log u(z)

dz

z21z2z3z4

⃓⃓⃓⃓
. (7.59)

Eq. (7.58) is nothing but

= c1 + c2 + c3 (7.60)

Eqs. (7.57, 7.58) imply that the full decomposition can be reconstructed from the following spanning set
of cuts

{S} = {Cut1,3,Cut2,4}. (7.61)

Diagrammaticaly this means that on Cut1,3 we have

= c1 + c3 ; (7.62)

while on Cut2,4

= c2 + c3 . (7.63)

• Cut1,3.
On this cut we have the following

u(z)⇝ u⟲(z2, z4) = u(z)|z1=z3=0, (7.64)

and its regularized version6
ureg,⟲(z2, z4) = zρ22 z

ρ4
4 u⟲(z2, z4). (7.65)

5The chain of equalities follows from trivial IBPs in Baikov representation, before applying any sort of regular-
ization.

6Notice that the counting of critical points associated to the twist d log ureg,⟲(z2, z4) is consistence with the dia-
grammatic decomposition in eq. (7.62).
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Then the following identifications hold

⟨e(4)1 |⇝ ⟨e(24)1,⟲ | =
⟨︃
1 · dz2 ∧ dz4

⃓⃓⃓⃓
, ⟨e(4)3 |⇝ ⟨e(24)3,⟲ | =

⟨︃
dz2 ∧ dz4
z2z4

⃓⃓⃓⃓
. (7.66)

and
⟨φ(4)|⇝ ⟨φ(24)

⟲ | =
⟨︃(︁
∂1 log u(z)

)︁
|z1=z3=0 ·

dz2 ∧ dz4
z22z4

⃓⃓⃓⃓
. (7.67)

Choosing z2 as the inner variable, a critical points analysis reveals

ν(2) = 2, (7.68)

and the inner basis elements are chose as

(⟨e(2)1 |, ⟨e(2)2 ) = (⟨1 · dz2|, ⟨d log z2|). (7.69)

We choose the dual bases elements as h(•)i = e
(•)
i for all i, • = (2), (24).

We can then perform the decomposition according to eq. (5.32), with our new setting described by
eqs. (7.65-7.67). We obtain

c1(ρ) =
4(d+ 2ρ− 5)(d+ 2(ρ− 2))(d+ 2ρ− 3)

(ρ− 1) s3t (d+ 4(ρ− 1))
, (7.70a)

c3(ρ) = −(d+ 2ρ− 5)(s(d+ 4ρ− 6)(d+ 4(ρ− 1)) + 2ρt(d+ 2(ρ− 2)))

(ρ− 1)s2t(d+ 4(ρ− 1))
. (7.70b)

Therefore, in the ρ→ 0 we obtain

= −4(d− 5)(d− 3)

s3t
+

(d− 6)(d− 5)

st
. (7.71)

• Cut2,4.
On this cut we have the following

u(z)⇝ u⟲(z1, z3) = u(z)|z2=z4=0, (7.72)

and its regularized version7
ureg,⟲(z1, z3) = zρ11 z

ρ3
3 u⟲(z1, z3). (7.73)

Then we have the identifications

⟨e(4)2 |⇝ ⟨e(13)2,⟲ | = ⟨1 · dz1 ∧ dz3|, ⟨e(4)3 |⇝ ⟨e(13)3,⟲ | =
⟨︃
dz1 ∧ dz3
z1z3

⃓⃓⃓⃓
, (7.74)

7Notice that the counting of critical points associated to the twist d log ureg,⟲(z1, z3) is consistence with the dia-
grammatic decomposition in eq. (7.63).
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and
⟨φ(4)|⇝ ⟨φ(13)

⟲ | =
⟨︃(︁
∂2 log u(z)

)︁
|z2=z4=0 ·

dz1 ∧ dz3
z21z3

⃓⃓⃓⃓
. (7.75)

Choosing z1 as the inner variable, a critical point analysis reveals

ν(1) = 2, (7.76)

and the inner basis elements are chosen as

(⟨e(1)1 |, ⟨e(1)2 |) = (⟨dz1|, ⟨d log z1|). (7.77)

We employ h(•)i = e
(•)
i for all i, • = (1), (13). Then we can apply eq. (5.32) obtaining

c2(ρ) =
4(d+ 2ρ− 5)(d+ 2(ρ− 2))(d+ 2ρ− 3)

(ρ− 1)st3(d+ 4(ρ− 1))
, (7.78a)

c3(ρ) = −(d+ 2ρ− 5)(2ρs(d+ 2(ρ− 2)) + t(d+ 2(2ρ− 3))(d+ 4(ρ− 1)))

(ρ− 1)st2(d+ 4(ρ− 1))
; (7.78b)

in the ρ→ 0 we obtain

= −4(d− 5)(d− 3)

st3
+

(d− 6)(d− 5)

st
. (7.79)

We observe that the coefficients of J3 in eqs. (7.71,7.79) agree, and this serves as a consistency check.

Combining eqs. (7.71,7.79) we obtain the full decomposition

=− 4(d− 5)(d− 3)

s3t
− 4(d− 5)(d− 3)

st3

+
(d− 6)(d− 5)

st
.

(7.80)

Eq. (7.80) is in agreement with FiniteFlow & LiteRed.
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Example. One loop Bhabha box. We consider the following graph

(7.81)

The denominators are chosen as

z1 =D1 = k21 − 1, z2 = D2 = (k1 − p1)
2, (7.82)

z3 =D3 = (k1 − p1 − p2)
2 = 1, z4 = D4 = (k1 − p1 − p2 − p3)

2, (7.83)

while the kinematics is given by p21 = p22 = p23 = p24 = 1, (p1 + p2)
2 = s and (p2 + p3)

2 = t.

There are 16 possible sectors, labelled by

{Σ} = {{}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3},

{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.
(7.84)

The counting of critical points associated to each regularized twist, is given by

{νΣ} = {0, 1, 0, 1, 0, 1, 3, 1, 1, 1, 1, 3, 3, 3, 3, 7}. (7.85)

The basis elements are then

⟨e(4)1 | =
⟨︃
dz

z1

⃓⃓⃓⃓
, ⟨e(4)2 | =

⟨︃
dz

z3

⃓⃓⃓⃓
, ⟨e(4)3 | =

⟨︃
dz

z1z3

⃓⃓⃓⃓
, ⟨e(4)4 | =

⟨︃
dz

z2z4

⃓⃓⃓⃓
,

⟨e(4)5 | =
⟨︃

dz

z1z2z4

⃓⃓⃓⃓
, ⟨e(4)6 | =

⟨︃
dz

z2z3z4

⃓⃓⃓⃓
, ⟨e(4)7 | =

⟨︃
dz

z1z2z3z4

⃓⃓⃓⃓
,

(7.86)
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associated with

⟨e(4)1 |⇝ J1 = , ⟨e(4)2 |⇝ J2 = , ⟨e(4)3 |⇝ J3 = ,

⟨e(4)4 |⇝ J4 = , ⟨e(4)5 |⇝ J5 = , ⟨e(4)6 |⇝ J6 = ,

⟨e(4)7 |⇝ J7 = .

(7.87)

Let us consider the following decomposition

I1,2,1,1 =
7∑︂
i=1

ci Ji, (7.88)

where the twisted co-cycle associated to I1,2,1,1 is8

⟨φ(4)| =
⟨︃

dz

z1z22z3z4

⃓⃓⃓⃓
=

⟨︃
∂2 log u(z) ·

dz

z1z2z3z4

⃓⃓⃓⃓
. (7.89)

Eq. (7.88) can be reconstructed from the following spanning set of cuts

{S} = {Cut1,Cut3,Cut2,4}. (7.90)

Diagrammaticaly on Cut1 we have

=c1 + c3

c5 + c7 ;

(7.91)

8See footnote (5).
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while on Cut3

=c2 + c3

c6 + c7 ;

(7.92)

finally Cut2,4

=c4 + c5

c6 + c7 .

(7.93)

• We consider first Cut1.

On this cut we have the following twist

u(z)⇝ u⟲(z2, z3, z4) = u(z)
⃓⃓
z1=0

, (7.94)

with its regularized version

ureg,⟲(z2, z3, z4) = zρ22 z
ρ3
3 z

ρ4
4 u⟲(z2, z3, z4). (7.95)

Furthermore we have the following identifications

⟨e(4)1 |⇝ ⟨e(234)1,⟲ | = ⟨1 · dz2 ∧ dz3 ∧ dz4|, ⟨e(4)3 |⇝ ⟨e(234)3,⟲ | =
⟨︃
dz2 ∧ dz3 ∧ dz4

z3

⃓⃓⃓⃓
,

⟨e(4)5 |⇝ ⟨e(234)5,⟲ | =
⟨︃
dz2 ∧ dz3 ∧ dz4

z2z3

⃓⃓⃓⃓
, ⟨e(4)7 |⇝ ⟨e(234)7,⟲ | =

⟨︃
dz2 ∧ dz3 ∧ dz4

z2z3z4

⃓⃓⃓⃓
,

(7.96)
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and
⟨φ(4)|⇝ ⟨φ(234)

⟲ | =
⟨︃
dz2 ∧ dz3 ∧ dz4

z22z3z4

⃓⃓⃓⃓
. (7.97)

We have to assign the internal basis w.r.t. z2 and w.r.t. (z2, z3); the counting of critical points is

ν(2) = 2, ν(23) = 4. (7.98)

We employ
(⟨e(2)1 |, ⟨e(2)2 |) = (⟨1 · dz2|, ⟨d log z2|), (7.99)

and

(⟨e(23)1 |, ⟨e(23)2 |, ⟨e(23)3 |, ⟨e(23)4 |) = (⟨1 ·dz2 ∧dz3|, ⟨d log z2∧dz3|, ⟨dz2 ∧d log z3|, ⟨d log z2 ∧d log z3|);
(7.100)

we will consider h(•)i = e
(•)
i for all i, and • = 2, 23.

It turns out that with the above-mentioned choices of internal bases Ω̂(4) has just simple poles, and so
we can apply at this stage the machinery introduced in section 6.3.

In the ρ→ 0 limit the coefficients read

=
(d−2)(d(s−8)−4(s−9))

4(d−6)(s−4)2t
+

4(d−5)(d−3)

(d−6)(s−4)2t

+ 0 − d− 5

t
.

(7.101)

• We move now to Cut3.
We have

u(z)⇝ u⟲(z1, z2, z4) = u(z)
⃓⃓
z3=0

, (7.102)

and its regularized version

ureg,⟲(z1, z2, z4) = zρ11 z
ρ2
2 z

ρ4
4 u⟲(z1, z2, z4). (7.103)
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Furthermore we have the following identifications

⟨e(4)2 |⇝ ⟨e(124)1,⟲ | = ⟨1 · dz1 ∧ dz2 ∧ dz4|, ⟨e(4)3 |⇝ ⟨e(124)3,⟲ | =
⟨︃
dz1 ∧ dz2 ∧ dz4

z1

⃓⃓⃓⃓
,

⟨e(4)6 |⇝ ⟨e(124)6,⟲ | =
⟨︃
dz1 ∧ dz2 ∧ dz4

z2z4

⃓⃓⃓⃓
, ⟨e(4)7 |⇝ ⟨e(124)7,⟲ | =

⟨︃
dz1 ∧ dz2 ∧ dz4

z1z2z4

⃓⃓⃓⃓
,

(7.104)

and
⟨φ(4)|⇝ ⟨φ(124)| =

⟨︃
dz1 ∧ dz2 ∧ z4

z1z22z4

⃓⃓⃓⃓
. (7.105)

For what concerns the internal basis elements, we have

ν(1) = 2, ν(12) = 4. (7.106)

and the basis elements read
(⟨e(1)1 |, ⟨e(1)2 |) = (⟨1 · dz1|, ⟨d log z1|), (7.107)

and

(⟨e(12)1 |, ⟨e(12)2 |, ⟨e(12)3 |, ⟨e(12)4 |) = (⟨1 ·dz1 ∧dz2|, ⟨d log z1∧dz2|, ⟨dz1 ∧d log z2|, ⟨d log z1 ∧d log z2|).
(7.108)

We will consider h(•)i = e
(•)
i , for all i and • = 1, 12.

The coefficients in the ρ→ 0 limit read

=
(d−2)(d(s−8)−4(s−9))

4(d−6)(s−4)2t
+

4(d−5)(d−3)

(d−6)(s−4)2t

+ 0 − d− 5

t
.

(7.109)

• Finally we consider Cut2,4.
We have

u(z)⇝ u⟲(z1, z3) = u(z)
⃓⃓
z1=z3=0

, (7.110)

and its regularized version
ureg,⟲(z1, z3) = zρ11 z

ρ3
3 u⟲(z1, z3). (7.111)
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The following identifications hold

⟨e(4)4 |⇝ ⟨e(13)4,⟲ | = ⟨1 · dz1 ∧ dz3|, ⟨e(4)5 |⇝ ⟨e(13)5,⟲ | =
⟨︃
dz1 ∧ dz3

z1

⃓⃓⃓⃓
⟨e(4)6 |⇝ ⟨e(13)6,⟲ | =

⟨︃
dz1 ∧ dz3

z3

⃓⃓⃓⃓
, e

(4)
7 |⇝ ⟨e(13)7,⟲ | =

⟨︃
dz1 ∧ dz3
z1z3

⃓⃓⃓⃓
,

(7.112)

and
⟨φ(4)|⇝ ⟨φ(13)

⟲ | =
⟨︃(︁
∂2 log u(z)

)︁⃓⃓
z2=z4=0

· dz1 ∧ dz3
z1z3

⃓⃓⃓⃓
. (7.113)

Choosing z1 as inner variable, we have
ν(1) = 2, (7.114)

and
(⟨e(1)1 |, ⟨e(1)2 |) = (⟨1 · dz1|, ⟨d log z1|). (7.115)

We will consider h(1)i = e
(1)
i , for i = 1, 2.

The coefficients in the ρ→ 0 limit read

= 0 + 0

0 − d− 5

t
.

(7.116)

Combining eqs. (7.101,7.109,7.116) we obtain the full decomposition eq. (7.88), which is in agreement
with FiniteFlow & LiteRed.

7.4
Feynman Integrals Reduction via Intersection Numbers and Secondary
Equation Approach

In section 6.4 we introduced another method for the evaluation of intersection numbers. We
discuss here how it can be combinedwith themaster decomposition formula eq. (5.32), in order
to obtain reduction onto MIs.
Let us assume we want to decompose ⟨φ(n)| in terms of (⟨e(n)1 |, . . . , ⟨e(n)ν |). Having introduced
the dual basis (|h(n)1 ⟩, . . . , |h(n)ν ⟩), then eq. (5.32) tells us that two different sets of intersection
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numbers are required

• set1 ⇝ ⟨e(n)i |h(n)j ⟩ = Cij for 1 ≤ i, j ≤ ν;

• set2 ⇝ ⟨φ(n)|h(n)j ⟩ for 1 ≤ j ≤ ν.

On the one hand, set1 can be determined−up to the ovar-all constant κ−via the procedure
outlined above in section 6.4. So, we assume:

C = κCrat, (7.117)

where Crat is known at this stage.

On the other hand set2 can be determined thanks to the same procedure, considering auxil-
iary bases (⟨e(n) aux1 |, . . . , e(n) auxν |) = (⟨e(n)1 |, . . . , ⟨e(n)ν−1|, ⟨φ(n)|) and
(|h(n) aux1 ⟩, . . . , |h(n) auxν ⟩) = (|h(n)1 ⟩, . . . , |h(n)ν ⟩). So we have

Caux = κauxCaux
Rat (7.118)

where Caux
Rat is, at this stage, known. It is clear that set2 corresponds to the last of row Caux.

The (ν−1)×(ν−1) left sub-blocks ofC andCaux must coincide; given this fact eq. (5.32) implies

Caux ·C−1 =

⎛⎜⎜⎜⎜⎝
0

1ν−1
...
0

c1 c2 . . . cν

⎞⎟⎟⎟⎟⎠ =
κaux

κ
Caux

Rat ·CRat. (7.119)

Therefore the unknowns κ and κaux enter in the coefficients of the decomposition just through
the ratio κaux/κ. This ratio can be fixed from the (ν−1) × (ν−1) left sub-blocks of eq. (7.119).
Explicitly the, say, (1, 1) entry of Caux

Rat ·CRat fixes its inverse κ/κaux.

Example. One loop massless box in the Lee-Pomeransky representation via the Secondary Equation. Let
us consider once again the integral family associated to the following graph

(7.120)
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The denominator are chosen as

z1 = D1 = −k21, z2 = D2 = −(k1 − p1)
2,

z3 = D3 = −(k1 − p1 − p2)
2, z4 = D4 = −(k1 − p1 − p2 − p3)

2; (7.121)

the kinematics is p21 = p22 = p23 = p24 = 0, s = (p1 + p2)
2 and t = (p2 + p3)

2.

In this case we rely on a regularization of Lee-Pomeransky representation. In fact, before applying the
machinery introduced in section 6.4, we have to consider some preliminary consideration in order to cast
the integrals in a suitable form9. Let us consider the the integrand associated to Ia1,a2,a3,a4 , namely

Ia1,a2,a3,a4 ⇝

(︄
4∏︂
i=1

zρ+aii

)︄
(z1+z2+z3+z4−s z1z3−t z2z4)−d/2

dz

z1z2z3z4
. (7.122)

Within this context, we find convenient to consider the rescaling

zi →
zi

(−s)
, 1 ≤ i ≤ 4, d = 4− 2ϵ; (7.123)

Under eq. (7.123), eq. (7.122) becomes(︄
4∏︂
i=1

zρi

)︄
(z1+z2+z3+z4+z1z3+xz2z4)

ϵ (−s)2−4ρ−|a|za11 z
a2
2 z

a3
3 z

a4
4

dz

G2 z1z2z3z4
, (7.124)

with x = (−t)/(−s).

In this case we have
u(z) =

(︄
4∏︂
i=1

zρi

)︄
(z1+z2+z3+z4+z1z3+xz2z4.)

ϵ (7.125)

Let us consider the the decomposition of

I = ϵ(−s)3+ϵ x , (7.126)

in the following basis of MIs

J1 = (−s)1+ϵ x J2 = (−s)1+ϵ , J3 = (−s)2+ϵ ϵ x . (7.127)

9This regularization is often referred to as “generalized Feynman integrlas”, see e.g. section 5 of [36] for a
detailed discussion.
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The corresponding twisted co-cycles reads

⟨φ(4)| = ϵ (−s)−4ρ z Γ(2− ϵ)

Γ(1− 2ϵ− 4ρ)Γ(1 + ρ)3Γ(2 + ρ)

⟨︃
z1dz

G2

⃓⃓⃓⃓
, (7.128)

and

⟨e(4)1 | = (−s)−4ρ z Γ(2− ϵ)

Γ(1− 2ϵ− 4ρ)Γ(ρ)2Γ(1 + ρ)Γ(2 + ρ)

⟨︃
z4
z1z3

dz

G2

⃓⃓⃓⃓
,

⟨e(4)2 | = (−s)−4ρ 1Γ(2− ϵ)

Γ(1− 2ϵ− 4ρ)Γ(ρ)2Γ(1 + ρ)Γ(2 + ρ)

⟨︃
z3
z2z4

dz

G2

⃓⃓⃓⃓
,

⟨e(4)3 | = ϵ (−s)−4ρ z Γ(2− ϵ)

Γ(−2ϵ− 4ρ)Γ(1 + ρ)2

⟨︃
dz

G2

⃓⃓⃓⃓
.

(7.129)

We will consider h(4)i = e
(4)
i

⃓⃓
(ϵ,ρ)→−(ϵ,ρ)

, for i = 1, 2, 3.

By means of the algorithm presented in [36], we obtain

Ω =

⎛⎜⎜⎝
−ρ2(12x+11)+(x+1)ϵ2+7ρ(x+1)ϵ

x(x+1)(3ρ+ϵ) − ρ2

(x+1)(3ρ+ϵ)
ρ2(ρ(x+2)+ϵ)

2(ρ+1)x(x+1)ϵ(3ρ+ϵ)
ρ2

x(x+1)(3ρ+ϵ) − ρ2

(x+1)(3ρ+ϵ) − ρ2(ρ+x(2ρ+ϵ))
2(ρ+1)x(x+1)ϵ(3ρ+ϵ)

−2(ρ+1)ϵ(2ρ+ϵ)
x(x+1)(3ρ+ϵ)

2(ρ+1)ϵ(2ρ+ϵ)
(x+1)(3ρ+ϵ) −ρ2(5x+7)+ρ(2x+5)ϵ+ϵ2

x(x+1)(3ρ+ϵ)

⎞⎟⎟⎠ , (7.130)

and
Ω∨ = Ω|(ϵ,ρ)→−(ϵ,ρ). (7.131)

The rational solution to the Secondary Equation (6.111) isC = κCRat, whereCRat, obtained via [217],
is

CRat =

⎛⎜⎜⎝
− (2ρ+ϵ)(4ρ+ϵ)

ρϵ
ρ
ϵ −2(ρ− 1)

ρ
ϵ − (2ρ+ϵ)(4ρ+ϵ)

ρϵ −2(ρ− 1)

2(ρ+ 1) 2(ρ+ 1) −4(ρ−1)(ρ+1)ϵ(10ρ2+ϵ2+6ρϵ)
ρ3

⎞⎟⎟⎠ . (7.132)

Moving then to the auxiliary basis, we input

Ωaux =

⎛⎜⎝ — Ω⊤
1,aux —

— Ω⊤
2,aux —

— Ω⊤
3,aux —

⎞⎟⎠ , (7.133)

where the explicit expressions for Ω⊤
1,2,3,aux, once again obtained through [36], are too lengthy to be

reported here.
A rational solution to the (auxiliary) secondary equation is Caux = κauxCaux

Rat with

Caux
Rat =

⎛⎝ − (2ρ+ϵ)(4ρ+ϵ)
ρϵ

ρ
ϵ

−2(ρ− 1)
ρ
ϵ

− (2ρ+ϵ)(4ρ+ϵ)
ρϵ

−2(ρ− 1)

2(3ρ+ϵ+1)(4ρ+2ϵ+1)(6ρ2+2ρ2x+ρx+ρxϵ+ϵ2+5ρϵ)
ρx(2ρ+ϵ+1)2

2(4ρ+2ϵ+1)(12ρ2+5ρ+2ϵ2+10ρϵ+2ϵ+1)
(2ρ+ϵ+1)2

Caux
Rat,33

⎞⎠ ,

(7.134)

136



CHAPTER 7. INTEGRAL RELATIONS VIA INTERSECTION THEORY: MULTIVARIATE CASE

and

Caux
Rat,33 =− 4(ρ− 1)ϵ(4ρ+ 2ϵ+ 1)

ρ3x(2ρ+ ϵ+ 1)2
(︁
18ρ4 + 6ρ3 + 66ρ4x+ 50ρ3x+ 10ρ2x

+xϵ4 + 11ρxϵ3 + 2xϵ3 + 47ρ2xϵ2 + 17ρxϵ2 + xϵ2 + 91ρ3xϵ+ 50ρ2xϵ

+6ρxϵ+ ρϵ3 + 8ρ2ϵ2 + ρϵ2 + 21ρ3ϵ+ 5ρ2ϵ
)︁
.

(7.135)

Finally, we evaluate the product Caux ·C−1, which reads:
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C
a
u
x
·C

−
1
=

κ
a
u
x

κ

⎛ ⎜ ⎜ ⎝
1

0
0

0
1

0

−
2
ϵ
(2

ρ
+
ϵ
)(
3
ρ
+
ϵ
+
1
)(
4
ρ
+
2
ϵ
+
1
)

x
(2

ρ
+
ϵ
+
1
)2

(3
ρ
+
ϵ
)

−
2
ρ
ϵ
(2

ρ
+
ϵ
)(
4
ρ
+
2
ϵ
+
1
)

(2
ρ
+
ϵ
+
1
)2

(3
ρ
+
ϵ
)

(4
ρ
+
2
ϵ
+
1
) (

x
(ρ
(2

0
ρ
2
+
1
5
ρ
+
3
)+

ϵ
3
+
(8

ρ
+
2
)ϵ

2
+
(2

2
ρ
2
+
1
1
ρ
+
1
)ϵ
)+

ρ
(2

ρ
(3

ρ
+
1
)+

ϵ
2
+
5
ρ
ϵ
+
ϵ
))

(ρ
+
1
)x

(2
ρ
+
ϵ
+
1
)2

(3
ρ
+
ϵ
)

⎞ ⎟ ⎟ ⎠.

(7.136)

Matching eq (7.136) onto eq. (7.119)we inferκ/κaux = 1. Finally, considering the last row of eq. (7.136)
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in the ρ→ 0 limit, yields the following

I = −2ϵ(1 + 2ϵ)

x(1 + ϵ)
J1 + 0 · J2 + (1 + 2ϵ)J3. (7.137)

Eq. (7.4) cam be verified to be consistent with the reduction provided by LiteRed.
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8
Conclusions and Outlook

Feynman Integrals are pervasive objects in (Quantum) Field Theory; taming their com-
plexity is of primary importance in order to meet the increasing precision required by particle
physics experiments and, as it emerged more recently, by the program dedicated to gravita-
tional wave detection.
In order to tackle multi-loop Feynman Integrals, a very convenient−if not mandatory−road
map consists in identifying a minimal set of independent building blocks, known as Master In-
tegrals; this task is traditionally accomplished via the solution of a large and computationally
challenging linear system of Integration by Parts identities. Once Master Integrals have been
identified, we are left with the problem of their evaluation. In this respect, a very powerful ap-
proach is the method of canonical differential equations.

In this work we have shown how these techniques can be applied to some (perhaps less conven-
tional to collider physicists) models relevant for detection of Dark Matter particles, involving 2

loop Feynman Integrals and different massive particles both in internal and external states. In
particular, the system of differential equations was cast in canonical form thanks to the Dyson/-
Magnus exponential. We also computed the Master Integrals ab-initio in several kinematic lim-
its; this was important both for phenomenological aspects, and for comparing our results with
the literature. This study confirms once more the flexibility and the wide range of applicability
of “Feynman Calculus”.

Despite the success over the past years, it is fair to say that the deep mathematical structures
controlling multi-loop scattering processes are still being uncovered. Recently, it emerged that
the framework of twisted (Co)Homology−originally developed in the mathematical literature
in the study of hypergeometric-like integrals−is able to capture several important aspects of
Feynman Integrals in Dimensional Regularization.
In this work we have reviewed the basic aspects of this theory. Starting from the univariate
case, we introduced the notion of the twisted homology group and the twisted co-homology
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group, as well as the corresponding elements, namely twisted cycles and twisted co-cycles. We
have discussed how the dimension of the above-mentioned groups can be interpreted in an el-
egant way in terms of the Euler characteristic. We have discussed how it is possible to build the
homology intersection number, i.e. a pairing among elements of the twisted homology group
and its dual, as well as co-homology intersection number, i.e. a pairing among elements of the
twisted co-homology group and its dual. Finally, we have seen how an integral is interpreted in
a natural way as a pairing among a twisted co-cycle and a twisted cycle (and, in the same spirit,
a dual integral is a pairing among a dual twisted cycle and a dual twisted co-cycle).
We have studied how linear relations among integrals (admitting an univariate representation)
−in particular the reduction of Feynman Integrals in Baikov representation on the Maximal
Cut−can be obtained via co-homology intersection numbers and the master decomposition
formula. Co-homology intersection numbers act as a “scalar product” in the space of Feyn-
man Integrals. We have briefly touched upon quadratic relations for hypergeometric functions,
and in particular how they arise from Twisted Riemann’s Period Relations.

We have discussed the twisted co-homology group and the intersection number for twisted
co-cycles in the multivariate case. We have considered in detail a recursive algorithm for the
evaluation of multivariate co-homology intersection numbers, as well as a proposal for its op-
timization. Furthermore, we have also seen how co-homology intersection numbers arise as
solutions of a suitable system of differential equations: the so-called Secondary Equation.
We have applied these tools in order to derive contiguity relations for hypergeometric integrals;
we have also derived full reductions for simple Feynman integrals, highlighting their peculiar-
ities and difficulties compared to the hypoergeometric case.

We hope that our work could help in charting the road towards more refined analysis andmore
elaborated applications, but we believe that our studies constitute an important starting point
in this direction. We are confident that this line of research is of interest for both physicists and
mathematicians, and could represent a fruitful and stimulating meeting point for the two com-
munities.
Being far from the last word on the topic, we list here some possible items which are left for
future investigations.

The Role of the representation of Feynman Integrals. In this work we employed mostly the
Baikov representation since the link with the world of twisted (Co)Homology is more trans-
parent. Nevertheless this choice is by no means mandatory. It is known that this representa-
tion is not always “faithful”−see e.g. the analysis of [30] section 11.3, where some coalescence
among critical points and singular points of the (internal) twist is described. The study can
be performed in different representations, e.g. Lee-Pomeransky representation or even in the
momentum space representation; it would be interesting to analyze the same physical example,
working with different representations and consider the various peculiarities of each of those.
It should also be noticed that the twist associated to Feynman Integrals is not “arbitrary” nor
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“completely general”, but they have a certain structure which is−so far−ignored. For example,
the twist associated to Baikov representation emerges from a Gram determinant; since this fact
played an important role in the generation of syzygy equations in the context of Integration by
Parts (see section 2.5), it is not hopeless to expect that this simple consideration could offer
some insights also on the (Co)Homology side.

The Counting of Master Integrals via (Co)Homological methods. There are cases in which
e.g. the counting of critical points described in section 6.2 does not match the expectation and
the result found by standard Integration by Parts identities and public implementations of the
Laporta Algorithm. In this regard, some mathematically solid analysis is needed. The work
of [203] represents an encouraging starting point. Generally speaking, experience shows that
issues emerge while considering “non-generic” kinematics (by non-generic we mean e.g. equal
internal masses; this is in contrast to generic, i.e. different internal masses). It would be inter-
esting to understand why and how subtleties emerge when some generic kinematics reduces
to a non-generic one. In this respect, the theory of restriction [222] seems to be an appropriate
framework to tackle this kind of considerations.

The Role of Relative Twisted (Co)Homology. In this work, in order to apply the framework
of Twisted (Co)Homology to Feynman Integrals, we employed a suitable regularization. This
technical aspect was important in order to perform explicit calculations beyond the maximal
cut and obtain successful concrete examples. Nevertheless, as we stressed in the main text, this
has obvious computational disadvantages. The freshly proposed framework of relative twisted
(Co)Homology [220] seems to be tailored to Feynman Integrals [39, 40]. Loosely speaking,
this variant of the theory allows us to avoid the above-mentioned regularization when treating
Feynman Integrals (while Dimensional Regularization is still employed). Some concrete calcu-
lations within this framework are underway, giving encouraging results.

The Role of Bases and the Evaluation of Intersection Numbers. The role of dual bases is
so far−to a certain extent−obscure. It would be for sure desirable to identify suitable choice(s)
of dual bases “orthogonal” to the ones associated to Master Integrals (i.e. in such a way that
C = 1). Such an a priori knowledge would drastically reduce the amount of computations
needed to achieve a reduction. Once again, in this respect, relative twisted Co-Homology seems
elucidating.
Moreover, considering for concreteness the recursive algorithm of section 6, it would be im-
portant to identify a criterion which leads to internal twists which has “good properties”− (cf.
also appendix A). More generally, even if intersection numbers themselves are independent of
the choice of (dual) internal bases, intermediate results are not and may become even more
involved than the final one. Beside this it would be interesting and beneficial to tandem the
algorithms of sections 6.3,6.4 with Functional Reconstruction techniques over Finite Fields. Fi-
nally, other strategies−not presented here−for the evaluation of intersection numbers are still
under development [31] and so we are not at the final point of the search even in this respect.
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Broadly speaking Feynman Integrals represent a topic on which several branches of Mathe-
matics converge; it would not be a surprise if some other techniques e.g. the one reviewed in
section 2.5, turn out to be beneficial even in the evaluation of intersection numbers. This would
represent an opportunity to build bridges among different sub-field of Mathematics which are
not explored yet.

NewInsights on Feynman Integrals. Aswehave stressed several times, twisted (Co)Homology
offers a comprehensive framework for the study of Feynman Integrals in Dimensional Regular-
ization. It would be interesting to explore quadratic relations among (maximally cut) Feynman
Integrals, mimicking the ones emerging for hypergeometric functions via Twisted Riemann’s
Period Relations. More generally, it seems plausible that twisted (Co)Homology could offer
new understanding on the relations fulfilled by the type of functions Feynman Integrals evalu-
ate to.
Even if we did not discuss it here explicitly, it should be clear that intersection numbers control
also differential equations fulfilled by MIs, which can be obtained by simple projection as well.
Therefore, on a more speculative note, it would be interesting to explore whether twisted Co-
Homology could offer some insights, or some a-priori knowledge, on the structure−i.e. some
particular ϵ or kinematic dependence−of the coefficients appearing in the differential equation
itself. This knowledge could be useful in order to e.g. predict the alphabet of the differential
equation or to help function reconstruction techniques, narrowing down the function form of
the objects these methods aim to reconstruct.
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A
Further Details on Multivariate

Intersection Number

We give here some details about the algorithm for the multivariate intersection number (cf.
section 6.2), and in particular on the solution of the system of differential equations.
For ease of notation, comparing to the main text, we will consider the following replacements

φ̂(n) → φ̂, φ̂
(n)∨
C → φ̂∨, ψxi → ψ, Ω̂

(n)⊤ → Ω̂
⊤
, ν(n−1) → ν. (A.1)

Assuming local coordinates, say y, around any given pole xi, the algorithm includes the follow-
ing steps: i) finding the series solution of

∂y ψ + Ω̂
⊤ · ψ = φ̂; (A.2)

and ii) computing the residue
Resy=0

(︁
ψ · φ∨)︁ . (A.3)

We assume the following expansion:

Ω̂ =

∞∑︂
i=−1

Ω̂ i y
i, (A.4)

and
φ̂ =

∞∑︂
i=minφ

φ̂i y
i, φ̂∨ =

∞∑︂
i=minφ∨

φ̂∨
i y

i. (A.5)

We look for a solution of eq. (A.2) of the following form

ψ =
Max∑︂
j=Min

ψi y
i, (A.6)
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where each ψi is a vector of ν unknowns

ψi = (αi,1, . . . , αi,ν)
⊤ . (A.7)

We will set1 Min = Min (minφ,−1) + 1; Max is determined requiring that we have to fix all the
coefficients that could give a non vanishing contribution to the residue (see eq. (A.3); therefore
we employ Max = maxψ = −minφ∨ −1. Plugging eq. (A.6) into eq. (A.2) and collecting the
terms order by order in y we are lead to the following⎛⎜⎜⎜⎜⎝

Ω⊤
−1 +Min ·1 0 · · · 0

Ω⊤
0 Ω⊤

−1 + (Min+1)1 · · · 0
... ... . . . ...

Ω⊤
Max−Min−1 Ω⊤

Max−Min−2 · · · Ω⊤
−1 +Max ·1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ψMin

ψMin+1

...
ψMax

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
φMin−1

φMin

...
φMax−1

⎞⎟⎟⎟⎟⎠ .

(A.8)
So, an inspection of eq. (A.8) tells us that if the eigenvalues of Ω−1 are not integer, the solution
of eq. (A.2) is guaranteed to exist to all orders in y, and the unknowns can be uniquely deter-
mined in cascade since the system is block triangular. Nevertheless, we find this condition often
to restrictive in practice, i.e. this condition is not always fulfilled by FIs; nevertheless eq. (A.8)
indicates precisely that not all the orders contributes.

So, we follow a more pragmatic approach2. Without any consideration on the spectrum of Ω−1,
we consider a slight modification of eq. (A.8). In fact, rather than considering the two steps
i.) and ii.) separately, we consider the solution of an augmented linear system which combines
i.)⊕ ii.) at once. This means that we introduce a new scalar unknown quantity−say αres−and
a new single equation

0 = αres − Resy=0

(︁
ψ · φ∨)︁

= αres −
Max∑︂
j=Min

ψj · φ∨
−j−1.

(A.9)

Next eq. (A.8) becomes⎛⎜⎜⎜⎜⎜⎜⎜⎝

Ω⊤
−1 +Min ·1 0 · · · 0 0

Ω⊤
0 Ω⊤

−1 + (Min+1) · 1 · · · 0 0
... ... . . . ... ...

Ω⊤
Max−Min−1 Ω⊤

Max−Min−2 · · · Ω⊤
−1 +Max ·1 0

−φ∨⊤
−Min−1 −φ∨⊤

−Min−2 . . . −φ∨⊤
−Max−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ψMin

ψMin+1

...
ψMax

αres

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

φMin−1

φMin

...
φMax−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(A.10)

1If Ω−1 has no integer eigenvalue, and so−a fortiori−if 0 is not an eigenvalue, then Ω−1 has a trivial kernel and
Min = minφ +1 would be enough. Since we want to consider also the case in which 0 is eigenvalue, we employ the
choice reported in the main text; nevertheless it is a just a prescription which works in practice.

2We thank Seva Chestnov for pointing this to us, and for several discussions on this topic−see [223].
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Finally, we just solve eq. (A.10) w.r.t. αres, eliminating all (and only) the αi,js appearing in it.
Comparing eq. (A.8) and eq. (A.10), our approach implies that, even if some the unknowns
cannot be uniquely determined (working up to a given order in y), the residue−and so the in-
tersection number−is unambiguously determined.

Let us also notice that eq. (A.4) is, per se, a restrictive condition; it should be replaced with
the more general

Ω̂ =

∞∑︂
i=minΩ

Ω̂i y
i, (A.11)

with, in principle, minΩ < −1.

The properties of Ω̂, such as the order of the deepest pole in its expansion, its eigenvalues, etc.
are tightly related to the choice of internal basis elements−colloquially Ω̂ controls the (system
of) differential equation(s) fulfilled by internal basis elements. Unfortunately conditions on
the basis elements such that e.g. eq. (A.4) holds are not known yet. Nevertheless given Ω̂ as in
eq. (A.11), we can still apply themethod described in eqs. (A.9,A.10), with trivialmodifications,
i.e. modifying the ansatz withMin = minψ = Min(minφ,minΩ) + 1, and solving the augmented
linear system3 w.r.t. αres. Alternatively, we can adopt theMoser reduction [224], such as the one
implemented in the program Fuchsia [150] in order to map Ω̂ via a gauge-like transformation
T, to a new matrix Ω̂T such that eq. (A.4) holds around each pole. We are dealing with series
expansions, which could be delicate; our basic implementation relies on theMathematica com-
mand SeriesData. In particular SeriesData[y,0,{},Max+1,Max+1,1](= O(yMax+1), is added
to the ansatz ψ. In this way the expansion are automatically taken care at least consistently.

We give a simple example of FIs which illustrates some of the features described above.

Example. The one loop half massive bubble. Let us consider the integral family associated to following
graph

(A.12)

The denominators are
z1 = D1 = (k1 + p)2, z2 = D2 = k21 −m2, (A.13)

and the kinematics is p2 = s.

3In this case the structure of the system will not be the one in eq. (A.10), but there is no conceptual difference in
the procedure.
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We have the following regularized

ureg(z) = zρ1z
ρ
2

(︃
−m

4

4
− s2

4
+
m2s

2
+
m2

2
(z1 − z2) +

s

2
(z1 + z2)−

1

4
(z21 + z22) +

z1z2
2

)︃
d−3
2 .

(A.14)
Counting of critical points gives

ν(1) = 2, ν(2) = 2. (A.15)

We assume the following inner basis

(⟨e(1)1 |, ⟨e(1)1 |) = (⟨1 · dz1|, ⟨d log z1|). (A.16)

Let us focus first on
⟨φ(2)|φ(2)∨⟩ =

⟨︃
dz

z1z2

⃓⃓⃓⃓
dz

z1z2

⟩︃
. (A.17)

With the above-mentioned choice of internal basis we obtain

Ω̂
(2)

=

(︄
d+ρ−2

2(m2+z2)
+ ρ

z2
ρ
2 − ρs

2(m2+z2)
−d−ρ+2

2s(m2−s+z2) +
d+ρ−2

2s(m2+z2)
d+2ρ−3
m2−s+z2 − ρ

2(m2+z2)
+ ρ

z2

)︄
. (A.18)

Looking at the (1, 2) entry of eq. (A.18) that Ω(2) = Ω̂
(2)
dz2 has a double pole at: ∞ (minΩ = −2); in

the following we will focus on the contribution from this pole.

Decomposing the two two-forms in terms of internal one-forms we find

φ̂(2) =
(︂

0 1
z2

)︂
, φ̂(2)∨ =

(︂
(d−3)(m2+s+z2)
z2(d+ρ−3)(d+ρ−2)

(d−3)
ρz2(d+ρ−3)

)︂
. (A.19)

We infer that minφ = −1, while minφ∨ = −2. Therefore we set Min = −1 and Max = +1. The
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augmented linear system is

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

1 2
(−
d
−
3ρ

)
0

0
0

0
0

0
1 2
m

2
(d

+
ρ
−
2)

1 2
(d

+
ρ
−
2
)

1 2
(−
d
−
3
ρ
+
2)

0
0

0
0

−
1 2
m

4
(d

+
ρ
−
2)

−
1 2
(d

+
ρ
−
2)
(︁ 2m2

−
s)︁

1 2
m

2
(d

+
ρ
−
2)

1 2
(d

+
ρ
−
2)

1 2
(−
d
−
3
ρ
+
4)

0
0

−
ρ 2

0
0

0
0

0
0

ρ
s 2

−
d
−

5
ρ 2
+
2

−
ρ 2

0
0

0
0

−
1 2
m

2
ρ
s

(d
+
2
ρ
−
3
)
(︁ m2

−
s)︁ −

m
2
ρ

2
ρ
s 2

−
d
−

5
ρ 2
+
3

−
ρ 2

0
0

0
0

(d
−
3
) (
m

2
+
s )

(d
+
ρ
−
3
)(
d
+
ρ
−
2
)

d
−
3

ρ
(d
+
ρ
−
3
)

d
−
3

(d
+
ρ
−
3
)(
d
+
ρ
−
2
)

0
1

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝α
−
1
,1

α
−
1
,2

α
0
,1

α
0
,2

α
1
,1

α
1
,2

α
re
s

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠=

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝0 0 0 0 0 −
1 0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠.

(A.20)
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Despite the fact that Ω̂(2)
−2 has eigenvalue 0−with multiplicity 2−solving for αres eliminating all the αi,j

appearing in it we obtain the unambiguous

αres = − d− 3

ρ(d+ ρ− 3)(d+ 2ρ− 3)
. (A.21)

Alternatively, we can look for a gauge transformation−or, equivalently, for a new internal basis−which
maps Ω̂(2) to a fuchsian form.

Fuchsia produces

T =

(︄
−z2 0

0 1

)︄
. (A.22)

Eq. (A.22) maps the above-mentioned internal basis onto

(⟨e(1)T,1|, ⟨e
(1)
T,2|) = (⟨−dz1/z2|, ⟨d log z1|), (A.23)

which leads to

Ω̂
(2)
T =

⎛⎝ d+ρ−2
2(m2+z2)

+ ρ−1
z2

−ρ(m2−s)
2m2z2

− ρs
2m2(m2+z2)

m2(d+ρ−2)
2s(m2+z2)

+
(d+ρ−2)(s−m2)
2s(m2−s+z2)

d+2ρ−3
m2−s+z2 − ρ

2(m2+z2)
+ ρ

z2

⎞⎠ . (A.24)

Focusing again around the pole ∞, then Ω̂
(2)
−1 has non-integer eigenvalues there, and the analysis can be

carried on straightforwardly.

Both the procedures (i.e. the choice in eq. (A.16) and the one in eq. (A.23)) yield the same final result⟨︃
dz

z1z2

⃓⃓⃓⃓
dz

z1z2

⟩︃
=

d− 3

ρ2(d+ 2ρ− 3)
. (A.25)

It is also instructive to consider

⟨φ(2)|φ(2)∨⟩ =
⟨︃
dz

z21z2

⃓⃓⃓⃓
dz

z1z2

⟩︃
, (A.26)

with the internal basis given by eq. (A.23) which leads to eq. (A.24). We will focus now on the pole:
s−m2, where Ω̂(2)

−1 has an eigenvalue 0-with multiplicity 1.

The coefficients of the two two-forms decomposed in terms of inner one-forms read

φ̂(2) =
(︂

d+ρ−2
(ρ−1)(m2−s+z2)2

(d+2ρ−3)(m2+s+z2)
(ρ−1)z2(m2−s+z2)2

)︂⊤
, (A.27a)

φ̂(2)∨ =
(︂

− (d−3)(m2+s+z2)
z22(d+ρ−3)(d+ρ−2)

d−3
ρz2(d+ρ−3)

)︂⊤
; (A.27b)
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we have minφ = −2 and minφ∨ = 0, and so we set Min = Max = −1. The augmented system reads(︄
Ω
(2)⊤
−1 − 1 · 1 0

−φ(2)∨⊤
0 1

)︄(︄
ψ−1

αres

)︄
=

(︄
φ
(2)
−2

0

)︄
, (A.28)

with explicit expressions⎛⎜⎜⎝ −1
(d+ρ−2)(s−m2)

2s 0

0 d+ 2ρ− 4 0
2(d−3)s

(d+ρ−3)(d+ρ−2)(m2−s)2
d−3

ρ(d+ρ−3)(m2−s) 1

⎞⎟⎟⎠
⎛⎜⎝ α−1,1

α−1,2

αres

⎞⎟⎠ =

⎛⎜⎝
d+ρ−2
ρ−1

2s(d+2ρ−3)
(ρ−1)(s−m2)

0

⎞⎟⎠ . (A.29)

In this case all the unknown coefficients appearing in eq. (A.29) can be determined, since Ω(2)⊤
−1 − 1 · 1

is invertible (while Ω(2)⊤
−1 − 0 · 1 is not, but it does not appear in eq. (A.29)); our procedure gives

αres =
2(d− 3)s

(ρ− 1)ρ(d+ 2ρ− 4) (m2 − s)2
. (A.30)

Finally, it is interesting to study a case in which Ω
(2)⊤
−1 − 01 (which is not invertible) appears in the

augmented linear system.

Let us consider
⟨φ(2)|φ(2)∨⟩ =

⟨︃
dz

z21z2

⃓⃓⃓⃓
dz

z21z2

⟩︃
, (A.31)

with (once again) the internal basis given by eq. (A.23) which leads to eq. (A.24). We obtain

φ̂(2) =
(︂

d+ρ−2
(ρ−1)(m2−s+z2)2

(d+2ρ−3)(m2+s+z2)
(ρ−1)z2(m2−s+z2)2

)︂⊤
, (A.32a)

φ̂(2)∨ =
(︂

− d−3
(ρ+1)z22(d+ρ−2)

(d−3)(m2+s+z2)
ρ(ρ+1)z2(m2−s+z2)2

)︂⊤
. (A.32b)

We haveminφ = −2 andminφ∨ = −2, and so we setMin = −1 andMax = +1; the augmented system
is ⎛⎜⎜⎜⎜⎜⎝

Ω̂
(2)⊤
−1 − 11 0 0 0

Ω̂
(2)⊤
0 Ω̂

(2)⊤
−1 − 01 0 0

Ω̂
(2)⊤
1 Ω̂

(2)⊤
0 Ω̂

(2)⊤
−1 + 11 0

−φ̂(2)∨⊤
0 −φ̂(2)∨⊤

−1 −φ̂(2)∨⊤
−2 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ψ−1

ψ0

ψ1

αres

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
φ̂
(2)
−2

φ̂
(2)
−1

φ̂
(2)
0

0

⎞⎟⎟⎟⎟⎠ . (A.33)

With explicit values we obtain
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⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

−
1

(d
+
ρ
−
2
) (
s−
m

2
)

2
s

0
0

0
0

0

0
d
+
2
ρ
−
4

0
0

0
0

0

d
+
ρ
−
2

2
s

+
ρ
−
1

s−
m

2
m

2
(d
+
ρ
−
2
)

2
s2

0
(d
+
ρ
−
2
) (
s−
m

2
)

2
s

0
0

0

0
ρ
(m

2
+
s )

2
s(
s−
m

2
)

0
d
+
2
ρ
−
3

0
0

0

1
−
ρ

(m
2
−
s)

2
−

d
+
ρ
−
2

2
s2

−
m

2
(d
+
ρ
−
2
)

2
s3

d
+
ρ
−
2

2
s

+
ρ
−
1

s−
m

2
m

2
(d
+
ρ
−
2
)

2
s2

1
(d
+
ρ
−
2
) (
s−
m

2
)

2
s

0

ρ
2
m

2
s−

2
s2

1 2
ρ
(︂ 1 s2

−
2

(m
2
−
s)

2

)︂
0

ρ
(m

2
+
s )

2
s(
s−
m

2
)

0
d
+
2
ρ
−
2

0

d
−
3

(ρ
+
1
)(
d
+
ρ
−
2
)(
m

2
−
s)

2

(d
−
3
) (
m

2
+
s )

ρ
(ρ
+
1
)(
m

2
−
s)

3
0

(d
−
3
) (
m

2
+
s )

ρ
(ρ
+
1
)(
m

2
−
s)

2
0

2
(d
−
3
)s

ρ
(ρ
+
1
)(
m

2
−
s)

1

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝α
−
1
,1

α
−
1
,2

α
0
,1

α
0
,2

α
1
,1

α
1
,2

α
re
s

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠=

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

d
+
ρ
−
2

ρ
−
1

2
s(
d
+
2
ρ
−
3
)

(ρ
−
1
)(
s−
m

2
)

0

−
(d
+
2
ρ
−
3
) (
m

2
+
s )

(ρ
−
1
)(
s−
m

2
)2

0
(d
+
2
ρ
−
3
) (
m

2
+
s )

(ρ
−
1
)(
s−
m

2
)3

0

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠,

(A.34)
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we uniquely determine

αres =(d−3)
(︁
d2m4+6d2m2s+5d2s2+4dm4ρ−6dm4+32dm2ρs−36dm2s+24dρs2

−30ds2+4m4ρ2−12m4ρ+8m4+44m2ρ2s−96m2ρs+52m2s+28ρ2s2

−72ρs2+44s2
)︁
/
(︁
(ρ−1)ρ(ρ+1)(d+2ρ−4)(d+2ρ−2)

(︁
m2−s

)︁4 )︁
.

(A.35)

As a consistency check we consider the decomposition

I2,1 = c1J1 + c2J2, (A.36)

with
I2,1 ⇝ ⟨φ(2)| =

⟨︃
dz

z21z2

⃓⃓⃓⃓
, (A.37)

and
J1 ⇝ ⟨e(2)1 | =

⟨︃
dz

z2

⃓⃓⃓⃓
, J2 ⇝ ⟨e(2)2 | =

⟨︃
dz

z1z2

⃓⃓⃓⃓
. (A.38)

Eq. (A.36) can be obtained with two different choices of dual basis, namely

(|h(2)•,1⟩, |h
(2)
•,2⟩) =

(︃⃓⃓⃓⃓
dz

z2

⟩︃
,

⃓⃓⃓⃓
dz

z1z2

⟩︃)︃
, (A.39)

or
(|h(2)•,1⟩, |h

(2)
•,2⟩) =

(︃⃓⃓⃓⃓
dz

z2

⟩︃
,

⃓⃓⃓⃓
dz

z21z2

⟩︃)︃
. (A.40)

Both eq. (A.39) (involving eq. (A.26)) and eq. (A.40) (involving eq. (A.31)) give the same decomposi-
tion. Moreover the coefficients in the ρ→ 0 are in agreement with LiteRed.
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B
Special Mathematical Functions

We list here the special mathematical functions which appear in the main text.

• The Euler Beta Integral.

B(p, q) =

∫︂ 1

0
zp(1− z)q

dz

z(1− z)
z =

1

w

=

∫︂ ∞

1
w−p−q(w − 1)q

dw

w − 1
.

(B.1)

• The 2F1 Hypergeometric Function.

2F1(a, b, c;x) =
1

B(a, c− a)

∫︂ 1

0
za (1− z)c−a(1− xz)−b

dz

z(1− z)
z =

1

w

=
1

B(a, c− a)

∫︂ ∞

1
wb−c(w − x)−b(w − 1)c−a

dw

w − 1
.

(B.2)

• The 3F2 Hypergeometric Function.

3F2(a1, a2, a3 : b1, b2, b3 : x) =
1

B(a2, b1 − a2)B(a3, b2 − a3
×∫︂

(0,1)2
za31 (1− z1)

b2−a3za22 (1− z2)
b1−a2(1− xz1z2)

−a1 dz1 ∧ dz2
z1(1− z1)z2(1− z2)

.
(B.3)
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