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Abstract: This paper deals with the covariance matrix (CM) of two-mode Gaussian states, which,
together with the mean vector, fully describes these states. In the two-mode states, the (ordinary) CM
is a real symmetric matrix of order 4; therefore, it depends on 10 real variables. However, there is
a very efficient representation of the CM called the standard form (SF) that reduces the degrees of
freedom to four real variables, while preserving all the relevant information on the state. The SF can
be easily evaluated using a set of symplectic invariants. The paper starts from the SF, introducing an
architecture that implements with primitive components the given two-mode Gaussian state having
the CM with the SF. The architecture consists of a beam splitter, followed by the parallel set of two
single–mode real squeezers, followed by another beam splitter. The advantage of this architecture
is that it gives a precise non-redundant physical meaning of the generation of the Gaussian state.
Essentially, all the relevant information is contained in this simple architecture.

Keywords: continuous quantum variables; Gaussian states; covariance matrix; standard form

PACS: 03.67.Hk

1. Introduction

In the last few years the development of quantum information has given a great atten-
tion to continuous-variable systems [1–3]. In particular, multimode states received great
interest, since they may exhibit the entanglement, which represents a key resource in quan-
tum computing and quantum protocols such as teleportation and cryptography. Among the
theoretical work devoted to multimode quantum systems, Gaussian states and Gaussian
transformations have attracted a lot of interest, because of their easy implementation and
manipulation. Gaussian states cover a wide range applications in quantum information [2],
among which is quantum key distribution with continuous variables [4] and protocols
based on entanglement sharing [5,6]. Experiments [7] show also the robustness of the
quantum coherence of Gaussian states in disturbed quantum channels.

Several tools can be used to efficiently describe Gaussian states. In the phase space,
a Gaussian state is completely represented by the covariance matrix (CM) and the mean
vector (often neglected in the analysis). For two-mode states the CM is a real symmetric
matrix of order four; therefore, it depends on 10 real variables. These variables turn out to
be somehow redundant, since a fundamental result on two-mode Gaussian states shows
that the degrees of freedom of the CM can be reduced from 10 to 4 real variables [8–10].
This compact representation, called the standard form (SF) of the covariance matrix, is given by

Vs f =


a 0 c+ 0
0 a 0 c−

c+ 0 b 0
0 c− 0 b

 (1)
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The SF is easily obtained from the ordinary CM by elementary symplectic opera-
tions and contains all the relevant information on the given two-mode Gaussian state—in
particular, the information on entanglement.

Our approach starts from the SF of the covariance matrix, introducing an architecture
that implements with primitive components any desired two-mode Gaussian which CM is
expressed in the SF. The architecture consists of a beam splitter, followed by two real single–
mode (local) squeezers, followed by another beam splitter. This set of primitive components
is driven by two thermal states, as shown in Figure 1. Squeezing and quantum nonclassical
correlations like the entanglement are fundamental characteristics of physics and show
their effects even in fields very different form the framework of quantum information
and communications, such as the quantum dynamics of cosmological perturbations [11].
In particular, the entanglement, for pure states, can arise from a simple device such as a
beam-splitter by the nonclassical behavior of the input fields [12], obtained, for example,
by squeezing. On the other hand, entanglement can be obtained in a beam-splitter by the
non-monochromaticity of photons [13–15]. Here the most general case is considered, since
at the beam splitter input we consider mixed states (thermal states). The physical origin of
entanglement is not very relevant in our scheme, since the entanglement characterisics can
be referred directly to the properties of the covariance matrix (see, for example, [9]) and we
focus on the implementation with minimal resources of any desired covariance matrix in
standard form.

Figure 1. Implementation of a two-mode Gaussian state with the covariance matrix in standard form.

Note that the four variables of the CM in standard form have entropic and statistical
meanings—namely, a and b are auto-correlations, and c+ and c− are cross–correlations—but
not physical meanings. The implementation with primitive components adds a physical
meaning to the SF. In fact, by varying the parameters of the physical devices, i.e., p, r1, r2 and
s in Figure 1, and the thermal states, one can cover the whole class of two-mode Gaussian
states. The main contribution of this work is the formulation of the fundamental features of
Gaussian states through a universal architecture, which consists of the connection of a few
elementary physical components (called primitive components) with the main goal of finding
a two-mode Gaussian state whose covariance matrix has the standard form given by (1).
By this procedure, one obtains easy formulas for the four values of the SF, for any choices
of the architecture parameters. The other way around, given some desired properties of
the state in terms of CM, we give easy formulas to set the parameters of the experimental
implementation to build the desired two-mode Gaussian state.

The paper is organized as follows. The first part deals with the descriptions of Gaus-
sian unitaries and Gaussian states arriving at the general implementation with primitive
components. In the second part, the SF of the CM and its implementation anticipated
in Figure 1 is presented. Specifically, in Section 2 we formulate the Gaussian unitaries
and their decomposition into elementary unitaries and the derivation of Gaussian states
according to Williamson’s theorem. In Section 3, we show the implementation of Gaussian
unitaries with primitive components based on the Bloch–Messiah reduction, where the
Takagi factorization [16] is applied to the decomposition of the squeeze matrix. Although
this implementation could be carried out for the general multimode case [17], here for
simplicity we detail the architecture for two-mode states, and in Section 4 we evaluate the
corresponding ordinary covariance matrix from the architecture with primitive components.
As we will realize, the derivation based on this architecture leads to very simple formulas.
Sections 5 and 6 deal with the SF of the CM and the symplectic algebra involved in the
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evaluation of the SF from the ordinary CM. Additionally, starting from the SF, the physical
parameters N1,N2, p, r1, r2, s appearing in the implementation of Figure 1 are evaluated.
In Section 7, and in the Appendix B, we suggest several paths of the usage of the theory
formulated in this paper.

2. Gaussian Unitaries and Gaussian States

A quantum transformation is Gaussian when it transforms Gaussian states into Gaussian
states and it is called Gaussian unitary when it is performed according to a unitary map.

Any Gaussian unitary in the N-mode can be expressed as a combination of three
fundamental unitary operators: displacement, rotation, and squeezer operators. Here
we follow the representation based on the Bloch–Messiah (BM) reduction [1,18] that was
recently reconsidered in [16,19] in terms of the Takagi factorization [20].

We remind the reader that the most general Gaussian unitary can be decomposed
as the cascade of a rotation operator R(ψ), a squeeze operator S(rD) characterized by a
diagonal matrix rD with real entries, a rotation operator R(γ), and finally, a displacement
operator D(α), as illustrated in Figure 2.

Figure 2. Decomposition of a Gaussian unitary according to the Bloch–Messiah (BM) reduction.

2.1. Degrees of Freedom

The specification of an arbitrary N–mode Gaussian unitary is provided by the matrices
α, β, rD, φ. Owing to their symmetry, the degrees of freedom are

2N2 + 3N real variables (Gaussian unitary) (2)

2.2. Gaussian States

Gaussian states can be obtained from a Gaussian unitary driven by thermal states: we
remind the reader that a thermal state corresponds to a state in thermal equilibrium and can
be characterized by a mixture of Fock states [21], although not maximally mixed, thereby
not with the maximum Von Neumann entropy.

In particular, we obtain pure Gaussian states when the thermal states degenerate to
vacuum states, that is, the quantum states characterized by the lowest possible energy [22]
and by zero photons.

A Gaussian state is completely characterized by the covariance matrix and the mean
vector. We recall that, according to Williamson’s theorem, the covariance matrix can always
be written in the form

V = S V⊕ ST (3)

where S is an N-mode symplectic matrix and

V⊕ = diag [n1, n1, · · · , nN , nN ] (4)

corresponding to the tensor product of N thermal states, with average thermal photons
Nk = 1

2 (nk − 1) , k = 1, 2, . . . , N. The quantities {nk} are referred to as the symplectic
eigenvalues of the CM V, and the matrix S performs the symplectic diagonalization of V.

With reference to the decomposition of the Gaussian unitaries shown in Figure 2, we
have that, when the architecture is driven by N input thermal states, at the output we
obtain the most general N-mode Gaussian.
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2.3. Gaussian States in the Two-Mode

Since in this work we focus on two-mode Gaussian states, we review here their
specification, given by the complex matrices of the architecture of Figure 2

α =

[
α1
α2

]
, ψ =

[
ψ11 ψ12
ψ∗12 ψ22

]
, γ =

[
γ11 γ12
γ∗12 γ22

]
, rD =

[
r1 0
0 r2

]
(5)

and by two thermal noises N1 , N2.

3. Implementation with Primitive Components

In order to evaluate the quantities involved in the two-mode CM from the parame-
ters (5) we followed the implementation with primitive components that has been detailed
in [23] and that could be carried out in the general N-mode [17]. Note that the displacement
vector does not enter in the evaluation, and therefore, it will not be further considered. In
the following, we summarize the main steps.

The primitive components are: (1) single–mode displacement, (2) single–mode rotation
operators, briefly shifters, (3) single–mode real squeezers, and (4) beam splitters (BSs).

A shifter is specified by a phase β ∈ [0, 2π), leading to the 1× 1 exponential matrix
eiβ. A single-mode squeezer is specified by the squeeze factor r ∈ R. A free-phase BS is
specified by the rotation matrix

Ubs =

[
cos φ sin φ
− sin φ cos φ

]
=

[
c s
−s c

]
(6)

where τ = c2 determines the transmissivity and s =
√

1− τ the reflectivity.

Implementation in the Two-Mode

The objective is to implement the architecture of Figure 2 with a primitive component
in the two-mode case. Note that the squeezer is already decomposed into primitive
components, and the two-mode displacement operator D(α) is trivial, since it is given
by two parallel single-mode displacement operators D(α1) and D(α2). For the rotation
operators, we remind the reader that an arbitrary two-mode rotation operator with unitary
matrix U = eiψ = [ρhkeiψhk ] can be implemented by: (1) two phase shifters with phase γ11
and γ12, (2) a BS with reflectivity s = ρ12, and (3) a phase shifter with phase µ = γ22 − γ12.
For the proof see [17,23].

Therefore, any Gaussian unitary can be implemented with primitive components as in
Figure 3.

Figure 3. Implementation of a general two-mode Gaussian unitary with primitive components.

Note that this architecture generates the whole class of Gaussian unitaries in the
two-mode. It is composed of 6 shifters, 2 BSs, 2 real squeezers, and 2 displacements,
corresponding to a degrees of freedom of 14 real variables, as in (2).

The following objective is the generation of two-mode Gaussian states, which are
obtained when the architecture of Figure 3 is driven by two thermal noises, as shown in
Figure 4. Then the phase shifters ψ11 and ψ12 can be removed, since they are irrelevant
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when driven by thermal states. Finally, the final displacements are removed, because
they do not contribute to the covariance matrix V (whose evaluation is the fundamental
objective of this paper). Note that the number of real parameters in the architecture is 10.

Figure 4. Scheme with primitive components for the generation of a general two-mode Gaussian
state, starting from two thermal states, N1 and N2. The architecture does not contain the irrelevant
initial rotations ψ11 and ψ12 and the final displacements α1 and α2, which do not influence the
covariance matrix.

4. Evaluation of the Covariance Matrix

The architectures of Figure 3 and of Figure 4 represent the basis for the derivation of
the CM for two-mode Gaussian states.

4.1. The Symplectic Matrix

A Gaussian unitary is fully described by the symplectic matrix (SM), neglecting the
displacement. Here we consider the real SM S, where the phase-space variables are arranged
in the form X := [q1, p1, q2, p2]

T. A symplectic transformation has the form

X→ SX + d (7)

where S is a 2N × 2N real matrix and d ∈ R2N . The condition for preserving the commuta-
tion relations is

S Ω ST = Ω (8)

where

Ω =
N⊕
i

Ω with Ω =
[
0 1 − 1 0

]
(9)

a matrix S that verifies this condition is called symplectic.
Following the architecture of Figure 3, we found the global SM

Sg = Srot(γ)Ssq(rD)Srot(ψ) (10)

For the evaluation of the trigonometric matrices in the two-mode, we start from the exponential

eiψ =

[
ce i ψ11 se i ψ12

−se i (ψ11+µ) ce i (ψ12+µ)

]
(11)

then

cos(ψ) =

[
c cos(ψ11) s cos(ψ12)

−s cos(ψ11 + µ) c cos(ψ12 + µ)

]
sin(ψ) =

[
c sin(ψ11) s sin(ψ12)

−s sin(ψ11 + µ) c sin(ψ12 + µ)

] (12)
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analogously

cos(γ) =
[

q cos(γ11) p cos(γ12)
−p cos(γ11 + ε) q cos(γ12 + ε)

]
sin(γ) =

[
q sin(γ11) p sin(γ12)

−p sin(γ11 + ε) q sin(γ12 + ε)

] (13)

where p is the reflectivity of the second BS and q =
√

1− p2.
For the central squeezer, considering that it is real and diagonal, we find[

cosh r + sinh r 0
0 cosh r− sinh r

]
=

[
er 0
0 e−r

]
with er =

[
er1 0
0 er2

]
; (14)

then,

Ssq = Π

[
er 0
0 e−r

]
ΠT =

[
er 0
0 e−r

]
=


er1 0 0 0
0 e−r1 0 0
0 0 er2 0
0 0 0 e−r2

 (15)

This completes the evaluation of the global symplectic matrix S. Note that S depends on
the 10 real variables ψ11, ψ1,2, s, µ, r1, r2, γ11, γ12, p, and ε. Note also that all the formulas
are “radical free”.

4.2. The Covariance Matrix (cm)

The covariance matrix V is evaluated from the global SM by adding the information
on thermal noise (see (3))

V = SV⊕ST , V⊕ = diag [n1, n1, n2, n2] (16)

It is convenient to express the result in partitioned form of 2× 2 blocks. Letting

S =
[
S11 S12 S21 S22

]
, V =

[
A C
CT B

]
, (17)

one finds
A = n1S11ST

11 + n2S12ST
12

B = n1S21ST
21 + n2S22ST

22

C = n1S11ST
21 + n2S12ST

22

(18)

As evidenced by Figure 4, the ordinary CM V depends on 10 real parameters, namely,

n1 , n2 , s , µ , r1 , r2 , γ11 , γ12 , p , ε (19)

The Sij depend also on the phases ψ11, ψ21.

Remark 1. Here the CM is evaluated from the implementation of the Gaussian states with primitive
components. This approach, discussed in [23], has the advantage of a simple algebra, and it is
completely radical-free. Other methods of evaluation start from the polar decomposition of the
squeeze matrix, which leads to radicals of radicals.

5. The Standard Form of the Covariance Matrix

Hereafter we deal with the standard form of the CM given by (1), a form of symplectic
invariant of a two-mode Gaussian state, which depends only on four real parameters (recall
that in the general case the CM depends on 10 real parameters). Hereafter the general form
evaluated in the previous sections will be called ordinary CM, symbolized by V.

It is important to state the following:
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• For every two-mode Gaussian state having the ordinary CM V, it is possible to obtain
the corresponding standard form Vs f from V with a local symplectic transformation Sl .

• The standard form Vs f contains all the relevant information on the Gaussian state,
so that the transformation V −→ Vs f may be considered as the removal of the
redundancy in V.

5.1. Properties of Symplectic Invariants

The correlations a, b, c+, c− are determined by the four local symplectic invariants

detV = (ab− c2
+)(ab− c2

−) , detA = a2 , detB = b2 , detC = c+c− (20)

Therefore, the SF of any CM is unique (up to a common flip of the signs of c− and c+).
For two-mode states, the uncertainty principle [2] can be recast as a constraint on the
Sp4,R invariants detV and ∆(V) = detA + detB + 2detC, namely, ∆(V) ≤ 1 + detV. For
a two-mode Gaussian state, the symplectic eigenvalues will be named n1 and n2 with
n2 ≤ n1, where the Heisenberg uncertainty relation imposes n2 ≥ 1. The values of n1,2 are
related by a simple expression to the Sp4,R invariants (invariants under global, two-mode
symplectic operations) [24,25]:

2n2
1,2 = ∆(V)±

√
∆(V)2 − 4detV (21)

The determinantal invariants det(V) and ∆(V) are simply related to the thermal noises by

det(V) = n2
1n2

2 , ∆(V) = n2
1 + n2

2 (22)

Meaning of the CM Entries According to Probability Theory

For the interpretation of the CM (ordinary or standard), it is convenient to recall the
properties of the covariance matrix of two random variables x, y:

Vxy =

[
vxx vxy
vxy vyy

]
The diagonal entries vxx and vyy represent, respectively, the variances of x and y, usually
denoted by σ2

x and σ2
y . The nondiagonal entry vxy = vyx represents the cross–covariance,

or simply the covariance between the two random variables. The CM entries verify the
important inequality 0 ≤ v2

xy ≤ σxσy. Then, the normalized correlation is introduced
cxy := vxy/(σxσy), with |cxy| ≤ 1 having the limit cases: (1) cxy = 0 → vxy = 0:
uncorrelated variables and (2) cxy = 1: completely correlated variables. In this second case, the
random variables are deterministically related in the form y = a x + b, with a and b real
quantities (a 6= 0).

We now use the above ideas for the interpretation of the standard CM:

Vs f =


q1 p1 q2 p2

q1 a 0 c+ 0
p1 0 a 0 c−
q2 c+ 0 b 0
p2 0 c− 0 b


where q1, p1, q2, p2 are considered as random variables. We find that

1. q1, p1 are uncorrelated with the same variance σ2
q1

= σ2
p1

= a;
2. q2, p2 are uncorrelated with the same variance σ2

q2
= σ2

p2
= b;

3. q1, q2 have cross–covariance vq1q2 = c+ and then normalized covariance
cq1q2 = c+√

ab
→ 0 ≤ |c+| ≤

√
ab;
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4. p1, p2 have cross–covariance vp1 p2 = c− and then normalized covariance
cp1 p2 = c−√

ab
→ 0 ≤ |c−| ≤

√
ab;

5. (q1, p1), (q1, p2), (q2, p1) and (q2, p2) are uncorrelated pairs.

5.2. The Correlations (A, B, C±) from the Ordinary Cm V

The standard variables (a, b, c±) can be obtained from the invariants of the ordinary CM.

Proposition 1. From the blocks of the ordinary covariance matrix V (see (17)), one obtains

a =
√

detA , b =
√

detB

c+ = ∓
√

Z2 − 4a2b2detC− Z
2ab

c− = ±
√

Z2 − 4a2b2detC + Z
2ab

(23)

where Z = a2b2 − detV + detC.

Indeed, c+ and c− are obtained by solving the equations detC = c+c− and detV =
(ab− c2

+)(ab− c2
−).

5.3. The Standard Form Ii (Sf–Ii)

Another form of CM sometimes considered in the literature [9] is the standard form II

Vs f ,I I =


a1 0 c1 0
0 a2 0 c2
c1 0 b1 0
0 c2 0 b2

 (24)

which depends on six real variables. This form will be very useful in our investigation.
It is easy to obtain the SF from the SF-II with a local symplectic matrix, as illustrated

in Figure 5. In this context, Vs f is denoted by Vs f ,I

Figure 5. The local symplectic matrices S1 and S2 that provide the transformation of the SF-II to the
SF: Vs f ,I I → Vs f ,I .

Proposition 2. The equalization of the blocks A and B of the SF-II is obtained with the symplectic
matrices

S1 =

[
eR1 0
0 e−R1

]
, S2 =

[
eR2 0
0 e−R2

]
(25)

where R1 and R2 are determined by

e4R1 = a2/a1with a = (a1a2)
1/2 , e4R2 = b2/b1with b = (b1b2)

1/2

and leads to the equalized blocks A′ = a I2 , B′ = b I2. The block C becomes

C′ = S1CS2 =

[
c1eR1+R2 0

0 c2e−R1−R2

]
:=
[

c+ 0
0 c−

]
(26)
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6. Gallery of Covariance Matrices and Classification

We recall that our main target is finding a two-mode Gaussian state whose ordinary CM has
the standard form. A state having this property will be called the standard Gaussian state.
Before we discuss the forms of interest encountered in the solution of our problem, we
believe it will be convenient to discuss several forms of CMs, which are collected in Table 1.

Table 1. Forms of covariance matrices related to the standard form (SF).

Type Covariance Matrix Degrees of Fredom

general V =


a11 a12 c11 c12
a12 a22 c12 c22
c11 c12 b11 b12
c12 c22 b12 b22

 10 real variables

standard form II VI I
s f =


a1 0 c1 0
0 a2 0 c2
c1 0 b1 0
0 c2 0 b2

 6 real variables

standard form (SF) Vs f =


a 0 c+ 0
0 a 0 c−

c+ 0 b 0
0 c− 0 b

 4 real variables

SF lateral symmetric VLS
s f =


a 0 c 0
0 a 0 c
c 0 b 0
0 c 0 b

 3 real variables

SF lateral antisymmetric VLA
s f =


a 0 c 0
0 a 0 −c
c 0 b 0
0 −c 0 b

 3 real variables

The first form is the ordinary CM, where the submatrices A and B are symmetric, and
since the matrix V itself is real symmetric, the degrees of freedom are 10 real variables.
In the second form, called standard form II in [9], the 2× 2 submatrices A, B and C are
diagonal and the degrees of freedom are six real variables. The central form is the standard
covariance with degrees of freedom of four real variables. The last two forms represent
special cases of the SF in which c− = c+ or c− = −c− with a reduction in the degrees of
freedom to three real variables.

A more stringent classification will be useful for the SF:

• Full SF: is the class obtained by imposing the conditions a 6= b, |c−| 6= |c+|.
• Lateral–symmetric SF: is the class in which a 6= b, c− = c+.
• Lateral–antiymmetric SF: is the class in which a 6= b, c= − c+.

The classification is transferred to Gaussian states, e.g., lateral–symmetric Gaussian state.
We need also suitable terms for the variables:

• standard variables: (a, b, c+, c−)
• standard II variables: (a1, a2, b1, b2, c1, c2)
• physical variables: (n1, n2, s, µ, r1, r2, γ11, γ12, p, ε)

We also recall from [10] that a lateral antisymmetric state is called symmetric and that
pure states are always symmetric.

7. Two Fundamental Cases

In this section, we develop two fundamental cases. The first one (EPR) is important
mainly for historical reasons. The second one, where all phases are set to zero, represents
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the starting point to solve our main task. In both cases we evaluate the ordinary CM and
the standard form.

7.1. EPR State with Noise

The EPR unitary is a squeezing with the following matrix:

z =

[
0 eiθr0

eiθr0 0

]
where we set the squeeze phase to zero: θ = 0. To get this unitary, the architecture must
have the following physical variables r1 = r2 = r0, balanced BSs p = q = s = c = 1/

√
2

and the phases µ = π/2 , γ11 = −π/4 , γ12 = π/4 , ε = −π/2.
The blocks of the CM result in

A =

[
n1 cosh2(r0) + n2 sinh2(r0) 0

0 n1 cosh2(r0) + n2 sinh2(r0)

]

B =

[
n2 cosh2(r0) + n1 sinh2(r0) 0

0 n2 cosh2(r0) + n1 sinh2(r0)

]

C =

[
cosh(r0)(n1 + n2) sinh(r0) 0

0 − cosh(r0)(n1 + n2) sinh(r0)

]
in agreement with the result of [10].

The form is lateral antisymmetric without the introduction of equalization. The physical
variables had degrees of freedom of three real variables given by n1, n2, r0.

The implementation is a special case of the general architecture of Figure 4, obtained
with the values of the physical variables indicated above. With free variables n1, n2, r0
running in their ranges, this architecture generates the whole class of antisymmetric standard
states. This means that all two-mode Gaussian states having the invariants that verify the
condition c− = −c+ can be studied as “EPR state with noise”.

From a practical viewpoint, one may proceed as follows: given a two-mode Gaussian
state, one evaluates from the symplectic invariant the standard variables a, b, c+, c−. If the
antisymmetric condition c− = −c+ is verified, the study can proceed with the present
architecture, but the corresponding physical variables n1, n2, r0 remain to be found. To
solve this problem, we use the equations

a = n1 cosh2(r0) + n2 sinh2(r0)

b = n2 cosh2(r0) + n1 sinh2(r0)

c+ = cosh(r0)(n1 + n2) sinh(r0)

whose solution is

n1,2 =
1
2

(√
(a + b)2 − 4c2

+ ± (a− b)
)

e2r0 =

√
a + b + 2c+√
a + b− 2c+

7.2. Cases Obtained by Setting All the Phases to Zero

In the general architecture of Figure 4, we set all the phases to zero: µ = γ11 = γ12 =
ε = 0. Then, we find that the CM has the SF II given by (24), where the six variables in the
diagonal of each sub-block result in
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a1 = n1(er1 cq− er2 ps)2 + (er2 cp + er1 qs)2n2

a2 = n1
(
e−r1 cq− e−r2 ps

)2
+
(
e−r2 cp + e−r1 qs

)2n2

b1 = n1(er1 cp + er2 qs)2 + n2(er2 cq− er1 ps)2

b2 = n1
(
e−r1 cp + e−r2 qs

)2
+ n2

(
e−r2 cq− e−r1 ps

)2

c1 = n1(qcer1 − pser2 )(−pcer1 − qser2 ) + n2(qser1 + pcer2 )(−pser1 + qcer2 )

c2 = n1
(
qce−r1 − pse−r2

)(
−pce−r1 − qse−r2

)
+ n2

(
qse−r1 + pce−r2

)(
−pse−r1 + qce−r2

)
(27)

To get the standard form, an equalization according to Proposition 2 is needed with the
symplectic matrices given by (25), where

e4R1 = a2/a1 , e4R2 = b2/b1 (28)

the standard variables result in (see (20) and (26))

a =
√

a1a2 , b =
√

b1b2

c+ = c1 eR1+R2 , c− = c2 e−(R1+R2)
(29)

The implementation has been anticipated in Figure 1.
To evaluate the physical variables n1, n2, r1, r2 from the standard variables a, b, c+, c−,

the four equations are given by (29). Perhaps it is impossible to solve the system in a closed
form, due to the complication coming from the equalization. However, we introduce a
procedure that avoids the equalization and solves the problem in a closed form. Note that
the solution is not unique, but we will give a minimal solution, indeed with four degrees of
freedom.

We proceed in two steps: first we get the physical variables from the standard variables
II and then the physical variables from the standard variables I, a procedure echoed
from [10].

7.3. Physical Variables from the Standard Variables II

We work on the SF-II relations (27) in order to evaluate the physical variables
n1, n2, r1, r2, p, s from the SF-II variables a1, a2, b1, b2, c1, c2. We first evaluate the number of
thermal photons using (21); that is,

n1,2 =

√
∆(V)±

√
∆(V)2 − 4 detV

2
(30)

where

detV = −a2b2c2
1 − a1b1c2

2 + a1a2b1b2 + c2
2c2

1 , ∆V = a1a2 + b1b2 + 2c1c2

Hence, the symplectic eigenvalues corresponding to the number of photons of the input
thermal states are obtained independently of the other physical variables. The ambiguity
between n1 and n2 can be solved in the following.

Next, we introduce the ancillary variables:

X = c2 n1 + s2 n2 Y = s2 n1 + c2 n2 (31)
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and Equations (27) become

a1 = q2 e2r1 X + p2 e2r2 Y− 2
cs

1− 2s2 pq er1+r2(X−Y) (32)

a2 = q2 e−2r1 X + p2 e−2r2 Y− 2
cs

1− 2s2 pq e−r1−r2(X−Y) (33)

b1 = p2 e2r1 X + q2 e2r2 Y + 2
cs

1− 2s2 pq er1+r2(X−Y) (34)

b2 = p2 e−2r1 X + q2 e−2r2 Y + 2
cs

1− 2s2 pq e−r1−r2(X−Y) (35)

c1 = −pq
(

X e2r1 −Y e2r2
)
+

cs
1− 2s2 (p2 − q2)er1+r2(X−Y) (36)

c2 = −pq
(

X e−2r1 −Y e−2r2
)
+

cs
1− 2s2 (p2 − q2)e−r1−r2(X−Y) (37)

Note that from (31), one gets

X + Y = n1 + n2 , X−Y = (c2 − s2)(n1 − n2) (38)

Considering (38), easy algebra from (32)–(37) leads to

(a1 + b1) e−R + (a2 + b2) eR = 2(n1 + n2) cosh(∆r) (39)

(a1 − b1) e−R − (a2 − b2) eR = 2(q2 − p2)(n1 + n2) sinh(∆r) (40)

c1 e−R − c2 eR = −2pq(n1 + n2) sinh(∆r) (41)

(a1 + b1) e−R − (a2 + b2) eR = 2(c2 − s2)(n1 − n2) sinh(∆r) (42)

where
R = r1 + r2 , ∆r = r1 − r2

Now the unknown variables are R, ∆r, p and s. In Appendix A we solve the system of
Equations (39)–(42).

7.4. Physical Variables from the Standard Variables

The previous procedure to obtain the physical parameters from the CM SF-II works
also for the SF, with the setting

a1 = a2 = a , b1 = b2 = b (43)

Then, Equations (39)–(42) reduce to

(a + b) cosh(R) = cosh(∆r)(n1 + n2) (44)

(a− b) sinh(R) = (p2 − q2) sinh(∆r)(n1 + n2) (45)

c1 e−R − c2 eR = −2pq(n1 + n2) sinh(∆r) (46)

(a + b) sinh(R) = − sinh(∆r)(c2 − s2)(n1 − n2) (47)

Now the degrees of freedom are reduced to four, instead of six as in the case of SF-II, and the
equations become redundant. In fact, it is easy to show that in the case (43) from (39)–(42),
some algebra gives

− (c2 − s2)
n1 − n2

n1 + n2
=

tanh(R)
tanh(∆r)

,
a− b
a + b

= (q2 − p2)(c2 − s2)
n1 + n2

(n1 − n2)
(48)

Below we can see the solutions in a convenient form, where the subsequent requires the
knowledge of the former.
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7.4.1. Thermal Photon Numbers

The photon numbers were evaluated separately in the previous subsection. Now they
are given by

n1,2 =
1√
2

√
∆(V)±

√
∆(V)2 − 4 detV (49)

where
detV =

(
ab− c2

+

)(
ab− c2

−

)
, ∆(V) = a2 + b2 + 2c+c−

7.4.2. Squeeze Parameters

The combination of (44) to (47) gives (see Appendix A)

e2R =
n1n2

ab− c2
−

→ R =
1
2

log

(
n1n2

ab− c2
−

)

and then from (44)

cosh(∆r) =
(a + b) cosh(R)

n1 + n2

and
r1 =

1
2
(R + ∆r) , r2 =

1
2
(R− ∆r)

7.4.3. BS Parameters

From (45) and (47)

p =

√
(a− b) sinh(R) + (n1 + n2) sinh(T)√

2
√
(n1 + n2) sinh(∆r)

(50)

s =
√
(a + b) sinh(R) + (n1 − n2) sinh(T)√

2
√
(n1 − n2) sinh(∆r)

(51)

A plot of the standard variables as a function of the physical variables is shown in
Figure 6.

Figure 6. Left: The standard variables (a, b, c+, c−) as a function of r2, for s = 0.3, n1 = 3.1, n2 = 2.1.
Right: The standard variables (a, b, c+, c−) as a function of s, for r2 = 0.7, n1 = 3.1, n2 = 2.1.

Examples of plots of the physical variables as functions of the standard variables are
shown in Figure 7 and in Figure 8. In Figure 7, the physical variables (n1, n2) and (r1, r2)
are presented as functions of the standard variables, for a = 2.5, b = 2.8, c− = 1.35.
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Figure 7. The physical variables (n1, n2) (left) and (r1, r2) (right) as functions of a for b = 2.62,
c+ = 1.29, c− = 1.36.

Figure 8. The physical variables (p, s) (as functions of a) for b = 2.62 , c+ = 1.29, c− = 1.36.

In Figure 8, the physical variables (p, s) are shown as a function of a for b = 2.62 ,
c+ = 1.29, c− = 1.36.

Another plot of the physical variables (n1, n2) and (r1, r2) as functions of the standard
variables are shown in Figure 9.

Figure 9. The physical variables (n1, n2) (left) and (r1, r2) (right) as functions of c+ for a = 2.5,
b = 2.8, c− = 1.35.

8. Conclusions

Gaussian states and transformations are fundamental for continuous-variable systems
and in general for quantum information. However, the characterization of Gaussian states
is usually developed by employing heavy algebra (algebraic approach), which often removes
the attention from the physical meanings of parameters in the the quantities involved, such
as the covariance matrix.

Here we have developed the details of a structural approach in which the algebra is
reduced to the minimum, while the attention is focused on the implementation architecture,
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which can serve also as the basis for experimental setups. This architecture provides the
way to generate the whole class of two-mode Gaussian states having a covariance matrix
in standard form, which retains all the characteristics of the two-mode Gaussian state, for
example, about the entanglement. Moreover, this architecture to derive all the classes of
two–mode Gaussian states is minimal, in that it consists of only two beam splitter and two
local single-mode squeezers.

The expression of all the physical parameters of the architecture to obtain any desired
CM was presented for both SF-I and SF-II. Given the parameters of the structural approach,
the expression of the elements of the CM was given by simple expressions.

Note that the proposed architecture technique can be extended to general multimode
Gaussian functions, with the unavoidable complication of an increased order. This paper
gives the complete basis for this extension.
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Appendix A. Solution of the System (39) to (42)

We first note that:

• it is not a limitation to assume that in the beam-splitters p, q, c, s ≥ 0
• (q2 − p2)2 = 1− (2pq)2

• cosh2(∆r)− sinh2(∆r) = 1

Step 1—Find R from (39)–(41)

From (39)–(41) one can find

(a1 + b1) e−R + (a2 + b2) eR =
√

4(X + Y)2 + Z2 (A1)

(a1 − b1) e−R − (a2 − b2) eR = (q2 − p2)Z (A2)

c1 e−R − c2 eR = −pqZ (A3)

c1 e−R + c2 eR = −2pq(X−Y) cosh(∆r)− 2(q2 − p2)W (A4)

where we introduced the variables

Z = 2(X + Y) sinh(∆r) , W =
cs

1− 2s2 (X−Y) (A5)

Then, combining the squares of (A2) and (A3) with (A1), one gets

Z2 =
[
(a2 − b2) eR

]2
+ 4
(

c1 e−R − c2 eR
)2

(A6)

4(X + Y)2 + Z2 =
[
(a1 + b1) e−R + (a2 + b2) eR

]2
(A7)
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which gives the equation in the variable R(
a1b1 − c2

1

)
e−2R +

(
a2b2 − c2

2

)
e2R = (X + Y)2 − (a1a2 + b1b2 − 2c1c2) (A8)

First, note that from (22) we have

(X + Y)2 − (a1a2 + b1b2 − 2c1c2) = (n1 + n2)
2 − (n2

1 + n2
2) = 2n1n2 (A9)

Moreover,
(2n1n2)

2 − 4
(

a1b1 − c2
1

)(
a2b2 − c2

2

)
= 0 (A10)

so that the only solution to (A8) is the value

e2R =
n1n2

a2b2 − c2
2

(A11)

Step 2—Find p, q from (A2) and (A3)

From (A2) and (A3), once R is known, one gets

p2 − q2

pq
= − (a1 − b1)e−R − (a2 − b2)eR

c1 e−R − c2 eR (A12)

which can be solved in terms of p, with complementary solutions

p1 =

√
e2R(a2 − b2)− (a1 − b1) + M

2M
p2 =

√
e2R(b2 − a2) + (a1 − b1) + M

2M
(A13)

where we denote with M the expression

M =
√

e2R[(b2 − a2) + a1 − b1]
2 + 4c2

2e4R − 8c1c2e2R + 4c2
1 . (A14)

Note that from (A2) and (A3), we can find

sign(p2 − q2) = sign
{
(a1 − b1)− (a2 − b2)e2R

c1 − c2e2R

}
(A15)

Therefore,

p =

{
max(p1, p2) if sign (p2 − q2) ≥ 0
min(p1, p2) if sign (p2 − q2) < 0

Step 3—Find ∆r from (39) and (41)

From (39) and (41) we have

e−2∆r =
pq
[
e−R(a1 + b1) + eR(a2 + b2)

]
+ c1e−R − c2eR

pq[e−R(a1 + b1) + eR(a2 + b2)]− c1e−R + c2eR (A16)

which leads immediately to ∆r and finally to r1 = (R + ∆r)/2, r2 = (R− ∆r)/2.

Step 4—Find n1 and n2

The ambiguity between n1 and n2 is removed by observing that from (A5) and (38)
one gets sign(n1 − n2) = sign(W). On the other hand, we can find first (X−Y) as

(X−Y) =
(a1 + b1)e−R − (a2 + b2)eR

e∆r − e−∆r (A17)
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and W can be calculated from (A4) as

W =
c1e−R + c2eR + pq(X−Y)

(
e∆r + e−∆r)

2(p2 − q2)
(A18)

Therefore,

n1 =

{
max(n1, n2) if sign W ≥ 0
min(n1, n2) if sign W < 0

(A19)

Step 5—Find s from (38)

From the second of (38), one can find directly

s =

√
n1 − n2 − (X−Y)

2(n1 − n2)
(A20)

where (X−Y) has already been obtained in (A17). Note that the solution with the negative
sign can be discarded according to the hypothesis that the coefficients of the beam-splitters
are nonnegative.

Appendix B. Possible Approaches for the Use of This Theory

The usage of the theory developed in this paper can be manifold.

Reader I.

If one wants to study a specific two-mode Gaussian state starting from the “physical”
specification, based on rotation, squeeze, and displacement operators, one can easily obtain
the full architecture of Figure 4 and evaluate the ordinary CM V using the procedure of
Section IV. Then, from the symplectic invariants of V, one can evaluate the standard CM
Vs f using the procedure of Section V-B arriving at the “minimal” architecture of Figure 1
with the advantage of the simplification therein.

Reader II.

If one wants to obtain any standard CM, which contains all the information on the
Gaussian state, the physical variables of the architecture are obtained by the procedure of
Section VIII-B, arriving at the minimal architecture.

Reader III.

To study the class of two-mode Gaussian states, one can start directly from the minimal
architecture by managing the six primitive components. For the evaluation of the standard
CM, relations (27) can be used with a1 = a, b1 = b.
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