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Abstract

In recent decades the fields of computer vision and industrial automation have been
undergoing unprecedented evolution. As a result, applications that were merely theoretical
hypotheses are now reality. Thanks to better controllers, sensors and computational
power, robots are able to perform increasingly complex tasks without human intervention
or supervision.

One such application is ”random bin picking,” that is the recognition and subsequent
manipulation of objects whose placement is unknown in a bin. To obtain the data of the
object to be recognized, expensive scanners or 2D cameras are used to generate datasets
on real samples of it.

In recent years, to reduce the time and cost of generating datasets needed for model
training and tuning of search algorithms, more and more is being invested in the generation
of virtual datasets and the creation of digital twins.

In particular the necessary point clouds or 2D views necessary for those algorithms,
will be generated starting from a 3D model of the object. However, the 3D models
provided, often contains geometry that is not useful for the dataset generation. Such
geometry should be removed to speed up the process and avoid training errors. Real
cameras also contain imperfections in their lenses and alignment that must be simulated
to generate valid datasets.

This work therefore aims to achieve two goals:

1. To provide a solution to simplify generic 3D models by removing invisible geometry
from the outside;

2. To provide a solution for simulating the radial distortion of 2D camera lenses.

This research work was carried out in collaboration with the company Euclid Labs of
Nervesa della Battaglia, which over the years has specialized in offering solutions for bin
picking.
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Sommario

Negli ultimi decenni i campi della computer vision e dell’automazione industriale stanno
subendo una evoluzione senza precedenti. Come risultato di questi progressi applicazioni
che erano solamente ipotesi teoriche si stanno concretizzando. Grazie a migliori controllori,
sensori e potere computazionale i robot sono in grado di compiere compiti sempre più
complessi e senza l’intervento o supervisione umana.

Una di queste applicazioni è il ”Random bin picking” ovvero il riconoscimento e
successiva manipolazione di oggetti la cui posa è sconosciuta in cassoni o altri contenitori.
Per ottenere i dati dell’oggetto da ricercare o della scena generalmente vengono impiegati
costosi scanner o telecamere 2D per generare dataset su esemplari reali dell’oggetto da
ricercare.

Negli ultimi anni per ridurre i tempi e i costi della generazione dei dataset necessari
al training dei modelli e tuning degli algoritmi di ricerca, si sta investendo sempre più
sulla generazione di dataset virtuali e sulla creazione di gemelli digitali.

In particolare, partendo da un modello 3D del pezzo si cerca di estrarne la nuvola
di punti o le viste 2D necessarie a tali algoritmi. Tuttavia i modelli 3D spesso forniti
contengono geometria non utile ai fini pratici della generazione dei dataset, che andrebbe
rimossa per velocizzare il processo ed evitare errori di training. Le telecamere reali inoltre
contengono imperfezioni nelle loro lenti e nel loro allineamento che devono esser simulate
per generare dei dataset validi.

Questo lavoro mira perciò a raggiungere due obiettivi:

1. Fornire una soluzione per semplificare modelli 3D generici, rimuovendo la geometria
invisibile dall’esterno;

2. Fornire una soluzione per la simulazione della distorsione radiale delle lenti delle
camere 2D.

Questo lavoro di ricerca è stato svolto in collaborazione con l’azienda Euclid Labs
di Nervesa della Battaglia, che negli anni si è specializzata a offrire soluzioni per il bin
picking.
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1
Introduction

1.1 The Bin Picking Problem and the Benefits of Digital
Twins

In today’s rapidly evolving world, automation has emerged as a driving force behind
increased efficiency, productivity, and competitiveness.
Mass production of goods that are all the same is a paradigm of the past. Now each
consumer demands a certain level of customization [1] and a lot of products change and
improve very rapidly [2]. Therefore today the manufacturing industry has at its core
the concept of flexibility. Today, many industries have embraced a production layout
organized into islands, each consisting of smaller, versatile production cells. These cells
can be swiftly reconfigured and adapted to manufacture diverse products on the fly.

The Bin Picking Problem tries to find a way for an automatic system to effectively
and reliably locate, grasp, and manipulate given objects in unknown position in a scene.
By solving this problem an automated method for the loading and unloading of these
production units will be established, yielding additional benefits such as:

• Increase Efficiency: reduced cycle times, labor costs and errors in material handling.

• Enhance Safety: reducing manual labor in physically demanding and injury-prone
tasks.
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• Precise Manufacturing: loading and unloading machines in an accurate and repeat-
able way contribute to product quality and consistency.

Therefore this problem is at the intersection of the fields of robotics and computer
vision. Tasks like image segmentation, pose estimation, collision detection, trajectory
planning are all part of what engineers have to face to create a bin picking application.

In addition, the application needs to be as flexible as the production unit that it has
to serve. Since down times in a production unit represent a cost, it is important that
the system can be set in operation with minimal delay and maximum efficiency in the
transitions between different production tasks or product types.

To prevent downtime and help identify issues in the productions digital twins of
the system can be used. Digital twins through the simulation of the real system offers
benefits such as:

• Algorithms optimization: through simulation it is possible to refine and optimize
algorithms for object recognition, grasp and path planning.

• Flexibility: it can help planning modifications to the system to accommodate
changes in the production. It can help identify potential issues with the new setup.

• Remote monitoring and control: digital twins can be accessed remotely, allowing
real-time monitoring and control from anywhere in the world.

• Cost Savings: digital twins do not need physical prototypes. This help to minimize
the number of failed attempts, reducing material wastage, equipment damages and
to minimize the downtime of the system.

ROS [3] and Gazebo [4] are well-known open-source software employed in the field
of robotics and bin picking applications. These platforms offer flexible frameworks for
robot development, simulation, and control.
In the recent years Euclid Labs, the company I collaborated with during my PHD years,
has developed proprietary solutions for such tasks by creating :

• the free software Vostok [5], aimed for students and robotics enthusiasts.

• MARS[6], commercial product for the automation industry.

Both software are capable of simulating a digital twin for a cell, with MARS being
the more comprehensive option. In particular MARS is capable of:

• Simulating: It is possible to simulate 2D cameras, 3D scanners and robot movements
with collision avoidance.
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• Aiding to develop and test a cell: It is possible to develop a digital twin of a cell.
Defining also localization algorithms, cycle logic and path planning solutions.

• Comparing solutions: It is possible to compare the developed localization algorithms,
generated paths, collision checking and path planning.

• Remote monitoring and control: connecting the real hardware to the program,
the digital twin will reflect the real system’s status, allowing for comprehensive
monitoring and analysis. MARS is also designed to control the real Hardware.

In figure 1.1 the digital twin of a real working cell is presented.

Figure 1.1: MARS simulating a workcell. The robot fills the right green blister with clutches.
After filling the blister a new one is taken from the left stack. The blisters are not stationary
and their pose are dynamically estimated using a simulated point cloud, highlighted in orange.

The results of our research, presented in this thesis, have been implemented in both
software to improve the robustness of the recognition algorithms and camera simulation.

1.2 Manuscript Overview

This dissertation explores the optimization of bin picking workflows, with a specific
focus on improving algorithms from 3D models to enhance speed and precision and the
improvement of 2D camera simulation.
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In the context of bin picking applications, training algorithms to perform tasks such
as object recognition and manipulation is a fundamental step. These algorithms heavily
rely on the accuracy and completeness of the 3D models that represent the objects to
locate. However, the efficiency of these algorithms can be compromised when dealing
with intricate 3D models that include non-visible or unnecessary details.

Chapter 2 faces a problem encountered during the simulator development. Our
research aims to optimize the models used for training, ensuring that they contain only
relevant information, eliminating non-visible components, and ultimately resulting in
more streamlined and efficient bin picking operations. Visible-surface determination
methods provide one of the most common solutions to the visibility problem. Our study
presents a robust technique to address the global visibility problem in object space that
guarantees theoretical convergence to the optimal result. We propose a strategy, based
on the ambient occlusion estimate, that in a finite number of steps determines if each
face of the mesh is globally visible or not. The proposed method is based on the use of
Plücker coordinates that allows it to provide an efficient way to determine the intersection
between a ray and a triangle. This algorithm does not require pre-calculations such as
estimating the normal at each face: this implies the resilience to normals orientation.
This technique leads to better performance in terms of data efficiency, as confirmed
by experimental results. The contributions of Chapter 2 are based on Rossi, Barbiero,
Scremin, Carli [7].

The adoption of 3D scanners in the automotive industry is increasingly common.
However, the usage of 2D cameras remains prevalent in tasks like quality control and
assembly line monitoring, and it is also possible to use them in a bin picking application.
The choice is made primarily due to their cost-effectiveness and ease of integration.

Chapter 3 presents an efficient and robust approach for simulating the lens distortion
parameters of 2D cameras. Starting from Brown’s model on radial distortion [8], we
investigate the limits of the inversion of it and we provide a comprehensive solution to
the problem.
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Robust Visibility Surface Determination
in Object Space via Plücker Coordinates

2.1 Introduction

Nowadays, computer vision plays an increasing role in the industrial robotics area [9].
With the transition to Industry 4.0, robotic systems must be able to work even more
independently, without the constant supervision of a human operator. Those systems
must be able to see and perform decisions based on what they perceive [10]. For example,
consider to grab an object, randomly placed within a box, with a robotic manipulator.
Typically, a scanner captures a three-dimensional image of the box and then a matching
algorithm compares it with the 3D model of the object to find correspondences. By
means of complex algorithms, a compatible robot path is then planned. The prob-
lem of those algorithms comes with their complexity which is proportional to mesh
dimension, i.e., the number of its triangles. At once, they must be efficient in order
to satisfy the imposed cycle time and the best practice to reduce it is by removing
unnecessary triangles. Especially in the industrial field, many models are characterised
by detailed interiors which are invisible. Most of the faces are hidden inside the model
and, therefore, this information is redundant for recognition purposes. In some cases,
it can be a considerable part of the total mesh, leading to a waste of system memory
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and a significant decrease in performance. In this scenario, an algorithm is essential for
reducing the number of triangles without losing useful information. In literature, there
exist several different techniques to remove hidden surfaces. They are commonly known as
visible-surface determination (VSD) algorithms. There exist two main approaches: image
space and object space. The former exploits rasterization rendering techniques to convert
objects to pixels. Visibility is decided at each pixel position on the projection plane
and, therefore, the complexity and the accuracy depend on the resolution of the view
image. Image space techniques quickly provide a result, even if it is bound to a particular
view. In other words, surfaces removed for a viewpoint may be visible from another
one. This implies the need to run the algorithm every time the object pose or view
changes. These features make those methods suitable for rendering optimizations, e.g.,
to limit the number of primitives to draw achieving better frame rates. This procedure
is handled differently by several algorithms: z-buffering [11], binary space partitioning
[12], ray tracing, Warnock [13] and Painter algorithms [14] are the most popular ones.
In some scenarios, it is preferable to have a global result, which is view independent,
even if at a higher computational cost. Actually, object space methods compare each
mesh face with all the others to determine which surfaces, as a whole, are visible. Given
the dependence on the number of faces those methods are slower but more precise. Some
examples have been proposed in [15, 16]. There also exists an hybrid approach that
exploits an image space technique with different views to merge the results obtaining
an approximated global result [17].

This study presents a robust technique to address the global visibility problem
in object space. The aim of this work is to develop an algorithm that guarantees
theoretical convergence to the optimal result. In particular, we prove that, with a proper
sampling technique, it is possible to correctly classify all the visible faces of a mesh
using a finite number of computations. In addition, the proposed method does not
require pre-calculations such as estimating the normal at each face, which is necessary
information for algorithms relying on image space. These properties make this algorithm
suitable for offline evaluation to optimize a 3D model by reducing its size. A typical
background of interest of this application is the industrial one where the user needs to
recognize an object to plan its manufacturing. Usually, such object does not deform but
continuously changes its pose. In this case, it would be enough to pre-process the 3D
model once using our method before running recognition algorithms.

Actually, we propose an algorithm based on the definition of ambient occlusion to
determine the visibility of 3D model triangles. We exploit the ray tracing technique and,
consequently, ray-triangle intersection algorithm. This process is further improved by
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using a test based on Plücker coordinates instead of the widely known Möller-Trumbore
algorithm [18]. Plücker coordinates have already been adopted in exact visibility culling
methods [19]: despite this, it is difficult to find a comprehensive mathematical treatment
and an algorithm that achieves the optimum in solving the visibility problem. Finally,
this approach is numerically tested to validate both the choice of such intersection test
and the performance with respect to a state-of-the-art VSD method.

The chapter is organized as follows. Section 2.2 summarizes the most recent works
regarding VSD methods and the use of Plücker coordinates to speed up ray-triangle
intersection tests. Section 2.3 shows the problem formulation in detail, focusing on the de-
scription of ambient occlusion and Plücker coordinates. Section 2.5 presents design
and software implementation of the algorithm: special emphasis is placed on its limits,
highlighting possible future improvements. In Section 2.6, the proposed solution is tested
to analyse compression, quality and performance. The results are then compared to
the ones obtained using the VSD method implemented in the MeshLab software. Finally,
concluding remarks and possible extensions are presented in Section 2.8.

2.2 Related Works

Visibility computation is crucial in a wide variety of fields like computer graphics, computer
vision, robotics, architecture and telecommunication. First visibility estimation algorithms
aimed to determine visible lines or surfaces in a synthesized image of a three-dimensional
scene. These problems are known as visible line or visible surface determination. There
exist many different techniques to address the visibility problems, but we can identify
two widespread algorithms: z-buffering for local visible surface determination and ray
tracing for computing global visibility. The z-buffering and its modifications dominate
the area of real-time rendering, whereas ray tracing is commonly used in the scope of
global illumination simulations. Besides these, there is a plethora of algorithms to solve
specific visibility problems. Sutherland et al.[14] provides a survey on ten traditional
visible surface algorithms. Durand [20] gives a comprehensive multidisciplinary overview
of visibility techniques in various research areas. Bittner et al. [21] provides a taxonomy
of visibility problems based on the problem domain and provides a broad overview
of visibility problems and algorithms in computer graphics grouped by the proposed
taxonomy.

The visibility problem that this work aims to solve can be classified as global visibility,
i.e., to identify which surfaces are invisible independently from the viewpoint of an observer
placed outside the 3D model. The algorithms that address such problem aim to determine
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a data structure able to yield the information about which parts of the geometry are
invisible to an external observer. Developing efficient global visibility algorithms is still
an open problem. A notable work in this field is presented by Durand et al. [16], where
the authors propose a structure called visibility complex encoding all visibility relations
in 3D space. Unfortunately, creating such structure is O(n4 log n), where n is the number
of polygonal faces in the scene. Therefore, those methods are unfeasible for industrial
applications and provide more information of what is really needed for the preprocessing
purposes of this work. As explained in Section 2.3, the approach presented in this chapter
is based on ambient occlusion computation through ray tracing, to estimate the visibility
degree of the various faces to an external observer. Concerning ray tracing computations,
several intersection algorithms have been developed over the years. According to Jiménez
et al. [22], the most used algorithm to test ray-triangle intersection is the one introduced
by Möller and Trumbore [18]. Then, slightly different versions have been proposed
mainly aimed at taking advantage of specific hardware accelerations as done by Havel
[23]. However, if the intersection point is not required, algorithms based on Plücker
coordinates could be faster [24].

2.3 Problem Formulation

In this section, we describe the problem we aim to solve. We want to identify the visible
faces of a 3D mesh by exploiting the concept of ambient occlusion in object space. As we
will explain extensively in Section 2.4.1, we evaluate the visibility of a certain point
on a face in relation to the amount of ambient light hitting that point. Our goal is to
ensure theoretical convergence to the optimal result, i.e., all faces identified correctly.
Moreover, we do not take any restrictive assumptions. Before going into theoretical
and implementation details, it is useful to first introduce the core elements composing
a 3D model and to provide a brief overview about the visibility problem.

2.3.1 Representation of 3D Objects

There are several ways to represent 3D objects in computer graphics. The most common
one consists in considering an object as a collection of surfaces. Given the massive amount
of different object types, several surface models have been developed over the years, with
an increasing level of complexity according to the level of detail required. Figure 2.1
shows how a complex surface can be arbitrarily approximated using simple triangles.
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Figure 2.1: Different approximations of the “Stanford Bunny” using triangular meshes.

The resulting collection of surfaces is called polygonal mesh or simply mesh. Object
rendering can be simplified and sped up using polygonal meshes since all surfaces can be
described with linear equations. In particular, triangular meshes are preferred for their
simplicity, numerical robustness and efficient visualization [25]. Polygonal meshes can be
represented in a variety of ways by using the following core elements:

• vertex: a vector representing the position in 3D space along with further information
such as colour, normal vector and texture coordinates;

• edge: the segment between two vertices;

• face: a closed set of edges, i.e., a triangle.

These elements are represented in Figure 2.2.

Vertices Edges Faces Object

Figure 2.2: Representation of the core elements of a mesh.

This work aims to identify which faces of the 3D model are visible or not. By visible
we mean there is at least one point outside the model for which there exists a segment,
from that point to another on the triangle, that does not intersect any other.
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2.3.2 Visibility Problem

The visibility problem has been one of the first major research topics in computer graphics
and is the core of many state-of-the-art algorithms. This concept can be intuitively
defined in terms of lines: two points A and B are mutually visible if no object intersects
the line AB between them. From this simple notion, it is possible to address the visibility
problem in different spaces regarding where points A and B lie [20].

• Image space: a 2D space for the visual representation of a scene. The rasterization
process of converting a 3D scene into a 2D image works in this space. For this
reason, the most common methods to solve the visibility problem perform their
operations in 2D projection planes.

• Object space: a 3D space in which the scene is defined and objects lie. Methods
developed within this space are computationally onerous and they are usually used
to create proper data structure used to sped up subsequent algorithms. These
acceleration structures are crucial for real time computer graphics applications such
as video games.

• Line space: the one of all the possible lines that could be traced in a scene. Methods
developed within this space try to divide the line space according to the geometry
that a given line intercepts. Indeed, as stated at the beginning of this section,
the visibility notation can be naturally expressed in relation to those elements.

• Viewpoint space: the one of all the possible views of an object. Theoretically,
it could be partitioned into different regions divided by visual events. A visual
event is a change in the topological appearance. For example, while rotating
a coin vertically, at a certain point, one of its faces becomes visible while the other
not. This process generates a structure referred in literature as aspect graph [26].
The latter has only a theoretical interest since it could have a O(n9) complexity
for general non convex polyhedral objects in a 3D viewpoint space, where n is
the number of object faces. Nevertheless, a few visibility problems are defined
and addressed in this space, such as viewpoint optimization for object tracking.

2.3.3 Problem Statement

In this work, the visibility of a certain point on a face is defined in relation to the quantity
of ambient light hitting that point; this is the definition of ambient occlusion that
we review in Section 2.4.1. Here, we address the visibility problem in object space and,
without loss of generality, we consider triangular meshes. It is trivial to extend the results
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presented in the following sections to a mesh composed of generic polygons. The problem
we want to address can be formally cast as follows. Assume we have a 3D mesh T
composed by N triangles, i.e., T = {T1, . . . , TN}. The triangle Ti is said to be visible,
if there exist a ray starting from a point on Ti and proceeding to infinity that does not
intersect any other triangle of the mesh. The goal is to determine, for i = 1, . . . , N , if Ti

is visible or not.

2.4 Proposed Approach: Ambient Occlusion, Visibility
Index and Plücker Coordinates

The approach we propose to deal with the problem stated in Section 2.3.3 is based
on the notion of ambient occlusion. Inspired by this definition, we introduce a visibility
index which allows us to estimate if a triangle is visible or not. Basically, given a number
of rays starting from points of a triangle, we try to determine if they intersect other
triangles of the mesh. We will see that the intersection test can be done in an efficient
way exploiting Plücker coordinates and the so-called side operator.

2.4.1 Ambient Occlusion

Ambient occlusion is a rendering technique used to improve the realism of a scene. It is
an empirical technique introduced for the first time by Zhukov et al. to approximate
the effects produced by global illumination systems [27]. The ambient occlusion models
how a certain surface is illuminated by indirect light caused by the reflections of direct
light over the various surfaces of the scene. Figure 2.3 shows the improvements that such
technique brings to a rendered image.
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Figure 2.3: Visual comparison of a scene illuminated by ambient light. The image on the right
shows how ambient occlusion estimation increases the realism of the scene. In particular, note
that this method generates soft global shadows that contribute to the visual separation of

objects.

The indirect light is approximated by considering an omnipresent, omnidirectional light
source with fixed intensity and colour which is called ambient light. Then the exposure
of a certain surface to this light is computed by looking at the geometrical properties of
its surrounding. In other words, ambient occlusion is an approximation of the darkening
which occurs when the ambient light is blocked by nearby objects. Formally, such term is
defined for a point on the surface as the cosine-weighted fraction of the upper hemisphere
where incoming light cannot reach the point. To be more precise, the ambient occlusion
term for a point P on a face with normal n corresponds to the integral

AO(P ) = 1
π

∫
ω∈Ω

V (P, ω) cos θdω (2.1)

where:

• P is the surface point;

• Ω is the upper hemisphere generated by the cutting of a sphere centred in P by
the plane on which the surface lies;

• ω is a point of the hemisphere Ω and identifies the incoming light direction (with
a slight abuse of language, in the following we will sometimes refer to ω as the ray
direction);

• V (P, ω) is a function with value 1 if there is incoming ambient light from direction
ω and 0 if not;
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• 1
π is a normalization factor;

• θ is the angle between direction ω and the surface normal n (note also that
cos θ = ω · n).

In Figure 2.4, a visual representation of the problem is presented.

n

P

ω1

Ω

ω2

Figure 2.4: Visual representation of the ambient occlusion for a point P . For the rays
in example, the function V (P, ω) has the following results: V (P, ω2) = 0, while V (P, ωi) =

1, ∀ωi in the grey area of the hemisphere Ω, in particular for ω1.

The integral in (2.1) is usually evaluated using Monte Carlo techniques by sampling
the upper hemisphere in K points and, for each one, cast a ray to test for occlusions.
Therefore, the integral is approximated by:

ÂO(P ) = 1
K

K−1∑
i=0

V (P, ωi) (2.2)

with ωi sampled with probability density function

p(ωi) = cos(θi)
π

= ωi · n
π

. (2.3)

Notice that normal n shall be oriented correctly towards the outside of the mesh for
(2.3) to be a probability density.

Several different algorithms can be adopted to estimate the ambient occlusion: [28]
reviews exhaustively the evolution of ambient occlusion techniques in recent years.
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2.4.2 Visibility Index

We describe the strategy used to determine if a point P of a triangle of the mesh is visible
or not. Suppose K rays, say r0, . . . , rK−1, starting from point P have been generated.
Notice that each ray ri is well identified by its direction ωi. Then, based on the notion
of ambient occlusion and, in particular, on its Monte Carlo estimate in Equation (2.2),
the visibility score of a point P can be expressed as

PVscore(P ) = 1
K

K−1∑
i=0

V (P, ωi) (2.4)

where V (P, ω) = 1 if the ray does not intersect any other triangle and proceed infinitely.
Therefore, the point visibility score PVscore of a point P is the fraction of light-rays which
are un-occluded. The choice for this visibility score seems well posed since an observer
along the direction of such un-occluded rays is able to see the point P . By testing enough
points {P1, . . . , PM} on a face T it is possible to estimate its visibility score SVscore as
the mean of its points scores, giving

SVscore(T ) = 1
M

M−1∑
i=0

PVscore(Pi) . (2.5)

After the computation of such score for all the faces of the object it is possible to select
only the most visible ones applying a global threshold, effectively removing the internal
geometry of the model. Actually, a zero threshold allows to select only the visible faces.

The most costly part of the algorithm is to determine the value of the function V (P, ω).
This translates in determining if any given ray intersects any other triangle of the mesh
along its path. In this study, this process has been developed using Plücker coordinates
and tested against the widely known Möller-Trumbore ray-triangle intersection algorithm.
In our implementation every ray is tested against all the other object faces until a first
intersection is found.

2.4.3 Plücker Coordinates

Firstly introduced by the mathematician Julius Plücker in 19th century, these coordinates
provide an efficient representation of oriented lines. Any real line can be mapped to
the Plücker space. Since coordinates are homogeneous, any two points on the same
oriented line will have the same Plücker coordinate up to a scaling factor. Let P =
(Px, Py, Pz) and Q = (Qx, Qy, Qz) be two distinct points in R3 which define an oriented
line l that goes from Q to P . This line corresponds to a set l of six coefficients, called
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Plücker coordinates of the line l

l = (l0, l1, l2, l3, l4, l5)

where the first three represent the direction of the line. Actually,

l0 = Px −Qx, l1 = Py −Qy, l2 = Pz −Qz,

while the other three components are given by the cross product between P and Q, giving

l3 = PyQz − PzQy, l4 = PzQx − PxQz,

l5 = PxQy − PyQx .

An important aspect of these coordinates, which has been crucial to this study, is
the so-called side operator [29]. Such function characterizes the relative orientation of
two lines. Given l = (l0, l1, l2, l3, l4, l5) and r = (r0, r1, r2, r3, r4, r5), the side operator is
defined as:

side(l, r) = lT Wr (2.6)

where

W =
[
03×3 I3×3

I3×3 03×3

]
.

Therefore, the side operator can also be written as

side(l, r) = l3r0 + l4r1 + l5r2 + l0r3 + l1r4 + l2r5 . (2.7)

Two oriented lines l and r can interact in space in three different ways:

1. if l intersects r, then side(l, r) = 0;

2. if l goes clockwise around r, then side(l, r) > 0;

3. if l goes counter-clockwise around r, then side(l, r) < 0.

Such cases are highlighted in Figure 2.5.
Plücker coordinates can be defined in other less intuitive ways and possess other

properties that are not used in this work. Also note that not all the Plücker points
define a real line in 3D space. To do so the Plücker point l have to satisfy the condition
side(l, l) = 0.
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Figure 2.5: Possible line configurations in space: on the left l and r intersect, in the middle l
goes clockwise around r while on the right l goes counter-clockwise around r.

2.5 Visibility Algorithm Based on Plücker Coordinates

This section starts with an overview of the main steps of the algorithm and, then, describes
the implementation details. First, we want to emphasize that typically, in computer
graphics, it cannot be assumed that triangles normals are always directed outwards
the mesh. Actually, if only the upper hemisphere is considered, like in Figure 2.4,
the procedure may create false occlusions. To avoid such scenario, it is sufficient to
consider the whole sphere instead. A false occlusion example is presented in Figure 2.6.

The algorithm may be divided in three major steps for each mesh triangle Ti for
which to compute the visibility.

Initialization
We select a set of M points, say P = {P1, . . . , PM}, on Ti. For each point Pi ∈ P ,
we generate K rays as follows: we first create a sphere centred in Pi, then
we sample K points on the surface of this sphere and, finally, we draw the K

rays starting from Pi and passing through the previously sampled points. Notice
that we generate in total MK rays. How selecting the points on Ti and sampling
the sphere is described in Sections 2.5.1 and 2.5.2, respectively.
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n

P

ω

Ω

r

Figure 2.6: Example of a wrongly oriented normal that results in a false occlusion. By
considering only the hemisphere Ω oriented along the normal n, the classification gives a wrong
result: the ambient occlusion term is zero. Indeed ∀ω ∈ Ω we have an occlusion but there is at

least one un-occluded ray r that reaches P .

Score computation
Each triangle Tj ̸= Ti is tested against all the rays generated at the previous step
to see if an intersection occurs. The ray-triangle intersection test is performed
in Plücker space as it will be explained in Section 2.5.3. If a ray intersects a triangle
Tj , then it is removed from the set of generated rays. Once the above intersection
testing phase has been completed, the visibility score of Ti is computed as

SVscore(Ti) = remaining rays
MK

. (2.8)

Classification
If SVscore(Ti) > 0 then Ti is classified as visible, otherwise as invisible.

A couple of remarks are now in order.

Remark 1. Typically, in computer graphics, meshes consist of a large number of triangles
that are very small compared to the size of the mesh itself. Based on this fact, in order
to reduce the computational burden of the proposed algorithm, in the initialization step
we might consider only the barycenter of Ti, in place of selecting M points; by doing that,
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we generate only K rays per triangle instead of MK. Our numerical tests show that such
choice does not affect the overall result.

Remark 2. Note that it is possible to select triangles that are barely visible using
a non-zero threshold δ ≥ 0 on the score. Formally, Ti is invisible or barely visible
if SVscore(Ti) ≤ δ.

Next, we explain more in detail how to select the M points on a face of the mesh,
how to generate K rays on a sphere and how to compute the intersections of these rays
with mesh triangles.

2.5.1 Sampling Points on Triangle

The points on a triangle Ti can be efficiently selected by taking random points at minimum
distance or uniformly distributed.

Uniform distribution
Arvo [30] presents a procedure for deriving an area-preserving parametrization
from a unit square [0, 1]× [0, 1] to a given bounded 2-manifold M⊂ Rn. Using
those results it is possible to uniformly sample any bounded surface, in particular
a triangle, by having two independent random variables uniformly distributed
over the interval [0, 1].

Minimum distance
Random samples are generated on a rectangle containing the triangle Ti using
the Fast Poisson Disk Sampling method [31]. Then, following the rejection-
sampling approach, only points that belong to that triangle are kept. The benefit
of this algorithm is to apply a constraint on the minimum distance between
the generated points, solving the typical clustering issue of uniform sampling
methods.

The uniform distribution method is certainly easier to implement and faster to
compute, although it tends to generate clusters of points. On the other hand, the minimum
distance approach provides a more distributed set since it imposes a constraint on mutual
distances. Therefore, to generate a few points, we recommend using the second method.

2.5.2 Rays Generation through Sphere Sampling

A key feature for a VSD algorithm is the ability to uniformly explore the surrounding
space. It is, in fact, very important to select points on the surface of a sphere as uniform
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as possible. The two most common methods to generate uniformly distributed points on
a spherical surface are the following two.

Uniform distribution
An easy method to uniformly pick random points on an n-dimensional sphere is
presented in [32]. It is sufficient to generate an n-dimension vector x = [x1, x2, . . . , xn]T

whose xi elements are independent and identically distributed samples of a Gaus-
sian distribution. Then, a point P on the sphere is given by P = x

||x||2 .

Fibonacci lattice distribution
By using the notion of golden ratio and golden angle, both deriving from the Fi-
bonacci sequence, it is possible to generate a set of samples at the same distance
from their neighbours [33, 34]. In fact, the golden angle optimizes the packing
efficiency of elements in spiral lattices.

Applying one of the following algorithms on a unitary sphere centred in the axis
origin is equivalent to generate a collection of rays directions. Recalling that the visibility
score for a given face Ti is defined as the fraction of un-occluded rays over the total rays
created, it is important to notice that the choice of one algorithm in place of another will
change the value and the meaning of that visibility score. The uniform distribution is
certainly easier to implement than Fibonacci’s one but tends to generate clusters when
the number of sampled points is small. On the other hand, Fibonacci lattice provides
greater uniformity even in the case of a few points. Figure 2.7 shows the sampling
results obtained using the two methods described above. The figure also shows the result
obtained with the cosine-weighted distribution [30]. The latter is the only one that allows
to correctly estimate the ambient occlusion value as defined is Section 2.4.1. However,
we can observe how this choice is not suitable for our aim since it tends to accumulate
points near the poles and, consequently, rays are not well distributed. Notice that we are
interested to evaluate the occlusion determined by homogeneously distributed rays rather
than mathematically estimate the ambient occlusion term. Therefore, from our tests,
we conclude that Fibonacci lattice provides the best distribution for our goal.
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(a) (b) (c)

Figure 2.7: Comparison of three different points distributions on the surface of a sphere: (a)
Cosine-weighted, (b) Uniform, (c) Fibonacci.

2.5.3 Ray Intersection Algorithm via Plücker Coordinates

We are now interested to determine the intersection between a ray and a triangle in Plücker
space. This is not trivial since, in this space, it is not possible to define rays but only
lines. Recall that a line extends infinitely in both directions while a ray is only a portion
of it, starting from a point and going to infinity. This implies the inability to directly use
a line-polygon intersection test to search for intersections between a ray and a polygon.
Figure 2.8 shows the difference between the results obtained using line and ray intersection
tests. In this section, we first describe Plücker line-polygon intersection test and, then,
we modify it to support ray-polygon intersection.

e1

e2

e3

l

A

B

(a)

r

A

B

e1

e2

e3

(b)

Figure 2.8: Comparison between line and ray intersection tests. (a) Considering the line
passing through A and B, there is an intersection with the polygon. (b) Considering the ray

starting in A and passing through B, there is no intersection.

As introduced in Section 2.4.3, Plücker coordinates can be used to define an efficient
line-polygon intersection test thanks to the side operator. Actually, a line hits a polygon
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if and only if it hits one of the polygon edges, or goes around clockwise or counter-clockwise
to all the edges [35]. Figure 2.9 shows two examples of such test. The convention chosen is
to define a polygon as a sequence of vertices {X1, . . . , XN} in such a way that the direction
of the edges ei is defined from Xi to Xi+1; in particular, the last edge goes from XN to
X1.

Consider the edges ei of a convex polygon with i = {1, . . . , m}, m ∈ N ≥ 3 and a line
l. The line l intersects the polygon if and only if

∀ei, side(l, ei) ≥ 0 OR ∀ei, side(l, ei) ≤ 0 .

e1

e2

e3

e4

l

r

(a)

e1

e2

e3

e4

l

r

(b)

Figure 2.9: (a) Lines stabbing a convex polygon in 3D space. Note that the line l goes
counter-clockwise around all the edges ei, while r clockwise. (b) Lines missing a convex
polygon in 3D space. Note that the line l goes counter-clockwise around the edges e1 and e4,

while clockwise around e2 and e3. The opposite happens with r.

After describing the line-polygon intersection test method, we show how it is possible
to use it as a ray intersection test [36, 37].

First of all, consider a plane π containing the ray origin P . Observe that this plane
divides the 3D space in two half-spaces Hf and Hb, where we assume the former contains
the ray trajectory. Now, let n be the versor orthogonal to π starting from P and contained
in Hf . Then, the two half-spaces are formally defined as:

Hf = {x ∈ R3 : n · (x− P ) > 0}

Hb = {x ∈ R3 : n · (x− P ) < 0} .

As shown in Figure 2.10, ray-polygon intersection test is equivalent to the line-polygon
one when considering only the geometries in Hf . Figure 2.10 also shows the challenging
situation in which the vertices of a polygon may not belong entirely to one half-space.
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In this condition, the polygon shall be clipped into two sub-polygons, each one belonging
to the corresponding half-space. For instance, with reference to Figure 2.10, triangle T4 is
split into the trapezoid T f

4 and the triangle T b
4 . Only the trapezoid T f

4 will be processed
in the ray intersection test. This clipping procedure is explained in Section 2.5.3.

T1

T2

T3
T b
4

P

π

r

front back

T f
4

Figure 2.10: A ray-polygon intersection can be seen as a line-polygon one by considering
only front geometries. Notice the case of the polygon T4 that overlaps the plane π: in this

case a clipping procedure is needed to subdivide it in T f
4 and T b

4 .

Clipping

The aim of this procedure is to determine the intersection points between the edges of
the triangle and the plane that divides it. As we can see in Figure 2.11, to identify the poly-
gons T f

4 and T b
4 in which the triangle is divided, we need to compute the intersection

points I1 and I2 with the plane π.

A

B

I1

I2

C

n

π
P

T f
4

T b
4

Figure 2.11: A triangle clipping example. The points I1 and I2 represent the intersections
between the edges of the triangle ABC and the plane π. The trapezoid of vertices AI1I2C is

considered in front of the plane, while the triangle I1BI2 behind it.

Consider the intersection point I1. With reference to Figure 2.12, it is possible to
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classify the points A and B to be either in front, back or on the plane π defined by
the normal n and a point P .

n

π

A

B

I1
P

Figure 2.12: Segment clipping example. The point I1 is the intersection between the segment
AB and the plane π. The segment AI1 is considered in front of the plane, while BI1 behind it.

The classification can be done by looking at the signs of dA and dB, which are
the scalar products between n and the vectors A− P and B − P , respectively:

dA = nT (A− P ) , dB = nT (B − P ) .

If sign (dA) > 0, the point A is in front of the plane while, if sign (dA) < 0, on the back
and, if dA = 0, the point lies on the plane. From those observations, it is clear that
an intersection between the segment AB and the plane π is only possible if the following
condition holds:

sign(dA) ̸= sign(dB) OR sign(dA) · sign(dB) = 0 .

Note that the intersection point I1 between segment AB and plane π can be expressed
as

I1 = A + t(B −A),

where t ∈ [0, 1]. It is possible to compute the value of t by observing that the vector
I1 − P lies on the plane and, therefore, nT (I1 − P ) = 0. We obtain:

0 = nT (I1 − P ) = nT (A− P ) + t nT (B −A)

= nT (A− P ) + t nT (B − P + P −A)

= dA + t(dB − dA) .
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This implies:
t = dA

dA − dB
.

Finally, we obtain:
I1 = A + dA

dA − dB
(B −A) .

In a similar way we can compute the intersection point I2. By using the above
procedure, it is possible to divide any polygon w.r.t. an arbitrary plane π in 3D space
into its front and back geometries. For example, by assuming that the polygon has
three vertices, the only case in which clipping is required is when a vertex belongs to
a different half-space of the others. Without loss of generality, we assume that B ∈ Hb,
while A, C ∈ Hf . The clipping procedure can be summarized with the following points:

• Compute intersection points I1 and I2 of segments AB and BC with the plane π

using the procedure described above.

• Generate two sub-polygons: the triangle I1BI2 ∈ Hb and the trapezoid AI1I2C ∈
Hf .

Figure 2.11 shows the result of this procedure.
In our implementation, given a point Pj on Ti and a pencil of K rays starting from

Pj , the clipping procedure is applied using the same plane for all the rays; specifically
the plane used is the one containing the triangle Ti.

2.5.4 Proposed Approach Implementation and Its Convergence
Properties

The implementation of the strategy we described in the previous sections, is reported
in Algorithm 1.

Observe that, based on the proposed procedure, a non-visible triangle will be always
classified as non visible, while a visible triangle might be erroneously classified as non-
visible. However, it is possible to see that by increasing M and K, i.e., the number of
points randomly selected on any triangle and the number of rays generated starting from
any selected point, respectively, the misclassification error decreases. This fact is formally
stated in the following propositions.
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Algorithm 1 VSD based on Plücker coordinates
Input: 3D mesh T = {T1, . . . , TN}

Implementation: For each Ti, the following actions are performed in order:

1. select M points, P1, . . . , PM , on Ti (see Section 2.5.1);

2. for each point Ph, h = 1, . . . , M , generate K rays (see Section 2.5.2);

3. for each of the MK rays generated at the previous point, perform the ray intersection
test against all the triangles Tj ̸= Ti (see Section 2.5.3); if a ray intersects Tj , then
it is removed from the set of generated rays;

4. compute the visibility score of triangle Ti as in (2.8).

Classification: For i ∈ {1, . . . , N}, triangle Ti is classified as visible is SVscore(Ti) > 0,
otherwise as non visible.

Proposition 2.5.1. Consider Algorithm 1. Assume that

• the M points in step (1) are selected either uniformly random or adopting the min-
imum distance approach; and

• the K rays in step (2) are generated uniformly random.

Then, for M and K going to infinity, that is, M, K →∞, the probability that a visible
triangle is classified as non visible goes to 0.

Proof. Let S be a sphere that contains the entire mesh. Consider a visible triangle Ti.
The fact that Ti is visible means that there exists a point Q1 on Ti and a point Q2 on
S such that the segment connecting Q1 to Q2 does not intersect any other triangle of
the mesh. Let ℓQ1Q2 be the line passing through Q1 and Q2 and let Cr

ℓQ1Q2
be the infinitely

long cylinder of radius r having as axis the line ℓQ1Q2 . Accordingly, define

• Ir
1 to be the region obtained by intersecting Cr

ℓQ1Q2
with Ti; and

• Ir
2 to be the region obtained by intersecting Cr

ℓQ1Q2
with S and containing Q2.

Notice that, for r > 0, both Ir
1 and Ir

2 are connected regions of non-zero measure.
Since Ti is visible, it follows that there exists r̄ > 0 such that the portion of C r̄

ℓQ1Q2
included between I r̄

1 and I r̄
2 does not intersect any triangle of the mesh; in turn, this fact

is true also for any segment connecting a point in I r̄
1 to a point in I r̄

2 .
Since M goes to ∞, the probability of randomly picking a point Pj on Ti belonging

to I r̄
1 goes to 1 (either using the uniform selection or the minimum distance approach).
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Coordinates

Moreover, since also K goes to ∞, the probability of selecting a ray starting from a given
point Pj that crosses I r̄

2 goes to 1. Hence, for M, K,→∞, Ti will be classified as visible
with probability that goes to 1. This concludes the proof.

Proposition 2.5.2. Assume that

• the M points in step (1) are selected either uniformly random or adopting the min-
imum distance approach; and

• the K rays in step (2) are generated according to the Fibonacci lattice distribution.

Then, there exists K̄ > 0, such that, if K ≥ K̄ and M →∞, then the probability that
a visible triangle is classified as non visible goes to 0.

Proof. Consider a visible triangle Ti. Let I r̄
1 and I r̄

2 be as in the proof of Proposition 2.5.1.
As observed previously, since M goes to ∞, the probability of randomly picking a point
Pj on Ti belonging to I r̄

1 goes to 1 (either using the uniform selection or the minimum
distance approach). Moreover, adopting the Fibonacci lattice distribution, there exists
K̄i, such that, if K ≥ K̄i, then, for any point Pj selected on Ti, Algorithm 1 will generate
at least one ray starting from Pj that crosses the region I r̄

2 . This implies that, for K ≥ Ki

and M → ∞, triangle Ti will be correctly classified with probability 1. To conclude
the proof, it suffices to define

K̄ := max {Ki : Ti is visible} .

Based on Remark 1, we may provide a modified version of Algorithm 1 where
step (1) can be simplified by considering only the barycentre of the triangle instead
of sampling it. Specifically, step (1) can be substituted by the following step: (1’)
Compute the barycenter of Ti. Clearly, Proposition 2.5.1 and Proposition 2.5.2 are not
still valid when implementing step (1’) instead of step (1). However, in our numerical
tests described in Section 2.6, we have implemented this modified version of Algorithm 1
and the obtained results show that this choice does not affect the overall result. This
fact is not surprising since we have considered the typical case where the size of each
triangle is very small as compared to the size of the entire mesh.

2.6 Results

This section presents a series of numerical tests to evaluate the proposed algorithm effi-
ciency and robustness. First we compare the performance of the ray-triangle intersection
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test obtained using our Plücker space-based approach with the use of the Möller-Trumbore
algorithm [18], that represents the state-of-the-art in this scenario. We then compare our
solution with a state-of-the-art method, based on ambient occlusion estimate in the image
space, which is implemented in MeshLab; see [17] for all the implementation details. To
carry on all of these tests, we used a midrange PC equipped with an Intel i3-6100 CPU,
8 GB DDR4 RAM, and a AMD RX-480 4 GB GPU with 2304 stream processors. In par-
ticular, we implemented all the algorithms using high-level shading language (HLSL).
This allows us to take full advantage of the GPU power which is made specifically for
computer graphics tasks.

2.6.1 Intersection Algorithms Comparison

The algorithm described in Section 2.5 is heavily based on the intersection test be-
tween rays and triangles. Therefore, the computation complexity strongly depends
on the optimization of this test. For that reason, we decide to compare the perfor-
mance of Plücker-based ray-triangle intersection algorithm with the Möller-Trumbore
one. To compare the two methods we designed a numerical test that can be summarized
in the following steps.

1. Generate a set of triangles T randomly within a cubic volume of 1 m× 1 m× 1 m.

2. Create a set of points S by sampling the surface of a sphere, with radius 2 m,
centred in the cubic volume, using the Fibonacci distribution.

3. For each point S ∈ S, generate a ray starting from the volume centre and passing
through S, thus generating a set of rays R.

4. For each ray in R, check if it is occluded by at least one triangle in T .

Finally, the algorithm yields the following set:

V = {r ∈ R : ∃ t ∈ T : intersects(r, t)}

where intersects(r, t) is either computed with Möller-Trumbore method or the Plücker-
based one. Of course, the two methods produce the same set V but the number of
operations they require is different. To provide a more reliable result, we reproduced
all the tests 10 times by averaging the partial results. Moreover, since there are two
parameters in the test algorithm, i.e., the number of sampled points in the sphere surface
(|S|) and the number of generated triangles (|T |), we decide each time to fix one parameter
and change the other to allow a more detailed and clear reading. Figure 2.13 shows
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the time spent to run the two algorithms and the ratio between them obtained using
10,000 triangles and a different number of rays. We have chosen this particular value
because it allows all GPU cores to work full-throttle. Actually, Figure 2.14 shows that,
by using a small number of triangles, some GPU cores remain in idle state. This figure,
indeed, shows a performance comparison obtained using 1000 rays and a different number
of triangles.

From the results, it is clear how Plücker-based algorithm always offers better perfor-
mance than the Möller-Trumbore one in the cases tested. Indeed, the latter is about 3
times slower at the same load. An intuitive reason is related to the nature of the two
algorithms. At each call of the intersection test, Möller-Trumbore must perform four
dot products, three cross products, and three vectorial subtractions [18]. On the other
hand, the method based on Plücker coordinates only needs 2 dot products and 1 vectorial
subtraction. Although Plücker’s algorithm needs a challenging initialization, it allows to
reuse some valuable information about the triangle that in Möller-Trumbore must be
calculated on-the-fly at each iteration. Therefore, since we compare the same triangle
with many different rays, the pre-processing done by Plücker’s algorithm allows us to save
valuable time in the long run. Finally, we want to emphasize that Möller-Trumbore also
computes the intersection point between a ray and a triangle. However, this information
is totally irrelevant for our purposes.
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Figure 2.13: Computation time comparison for intersecting 10,000 triangles with an increasing
number of rays using Möller-Trumbore and Plücker-based algorithms. (a) Computation time,

(b) Ratio between the computation times of the two algorithms.
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Plücker

(a)

103 104 105 106 107
0

1

2

3

4

5

6

Number of triangles

M
öl
le
r-
T
ru
m
b
or
e
T
im

e
/
P
lü
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Figure 2.14: Computation time comparison for intersecting an increasing number of triangles
with 1000 rays using Möller-Trumbore and Plücker-based algorithms. (a) Computation time,

(b) Ratio between the computation times of the two algorithms.

2.6.2 Comparison with a State-of-the-Art Method

In this section, we compare the results obtained using the proposed algorithm with
the ones provided by a state-of-the-art VSD method. The latter is based on the ambient
occlusion estimate in image space and it is implemented within an open-source software
called MeshLab [17]. MeshLab is widely used in computer graphics for processing
and editing 3D triangular meshes. Among the many operations that this software offers,
it provides visibility surface determination based on a custom version of the screen-space
ambient occlusion (SSAO) [38]. This technique is typically used to improve the realism
of a scene during rendering. Since it works in image space, it is characterized by
a lower computational complexity. On the other hand, the dependence on the rendered
image resolution limits the result quality. This limitation does not occur by estimating
the ambient occlusion in object space using a ray tracing technique as presented in this
work. The VSD method provided by MeshLab consists of the following steps.

1. Given a number of views V , V points are sampled on the surface of a sphere
that fully embrace the triangular mesh using the Fibonacci distribution. The set
R of camera directions contains all the rays starting from each sampled point
and directed to the sphere origin.

2. For each direction r ∈ R, the depth map of the corresponding camera view is
computed. By using this map the ambient occlusion term is computed for each
pixel. Each value is then added to the correspondent projected triangle vertex.
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3. For each vertex, the partial results obtained for each direction r, i.e., for each view,
are averaged to obtain a unique global value.

After this process, it is possible to identify the invisible triangles by selecting those that
have at least one occluded vertex of the three, i.e., with a zero ambient occlusion value.
Obviously, the approximation improves as the number of views increases. With this
brief description of the algorithm, that can be found at MeshLab GitHub repository
[39], we want to highlight a couple of key points that distinguish the two approaches.
As mentioned earlier, MeshLab VSD method works in the image space. This makes
it significantly faster than the algorithm we propose but less robust, due to the dependence
on the image resolution used when rendering depth maps. The second main limit regards
the assumption that all triangles normals must be oriented towards the outside of
the mesh. Actually, the method implemented in MeshLab is directly based on the notion
of ambient occlusion presented in Section 2.4.1 and, therefore, it relies on triangle normals.
The following numerical results show that, if triangles normals are flipped, the resulting
estimate is totally meaningless. Actually, in the industrial domain, it may happen to
observe models with some normals that are wrongly oriented. However, for the first tests,
we have considered models with all the normal properly oriented.

To verify and compare performance in a reproducible way, we decided to create three
different 3D models. As shown in Figure 2.15, a monkey head, a ball and a Stanford
Bunny are respectively inserted in a box characterized by a hole in the front side. Since
we want to test the ability to detect hidden triangles, we decided to design these ad-hoc
models which perfectly fit an ideal scenario.

(a) (b) (c)

Figure 2.15: An overview of the 3D models used for numerical tests. (a) Sample 1 consists
of 986 triangles, (b) Sample 2 of 1006 triangles and (c) Sample 3 of 9297 triangles.

We start by comparing the time needed for the two algorithms to estimate the visibility
for each face of the sample meshes. From Figure 2.16, we can notice how the results are
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fully expected due to the significant difference in complexity. Actually, we can infer that
the computational complexity of MeshLab algorithm is O(V N), where V is the number
of views and N the number of triangles. Indeed, the depth map calculation complexity is
proportional to the number of triangles. As far as Algorithm 1 is concerned, we have
implemented it by considering the modified step (1′) and the Fibonacci lattice distribution
method; it can be seen that has a complexity of O(KN2) where K is the number of rays
tested for each triangle.
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Figure 2.16: Computation time comparison of the two algorithms using different settings
and samples. (a) shows the results obtained with Plücker VSD, (b) shows the results obtained

with MeshLab VSD.

However, the time needed to perform VSD is not of particular interest for this work.
In fact, recall that these algorithms are usually used in computer graphics only once to
lighten 3D models. We aim for a robust method and, therefore, we are more interested
in evaluating a performance index such as the number of incorrect classifications. Given
the set of triangles T , we consider as misclassification error the sum of false positives
and negatives divided by the number of triangles. Since we test if a triangle is invisible,
false positives correspond to visible triangles that the algorithm identifies invisible.
Consider the set IA of triangles classified as invisible by the algorithm and the set IG of
truly invisible triangles which is known a priori. The misclassification error ME can be
written as:

ME = |{t ∈ IA : t ̸∈ IG}|+ |{t ∈ IG : t ̸∈ IA}|
|T |

. (2.9)

Notice that, as discussed in Section 2.5.4, false negatives cannot exist by construction
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of the algorithm, i.e., |{t ∈ IG : t ̸∈ IA}| = 0. Therefore, (2.9) can be simplified obtaining

ME = |{t ∈ IA : t ̸∈ IG}|
|T |

.

We want to emphasize our interest in achieving the maximum lossless compression
in terms of number of triangles. Since the maximum compression is reached when
IA = IG, by minimizing ME we are maximizing the lossless compression.

Figure 2.17 shows the misclassification rates obtained using a different number of
rays, or corresponding views, for each of the designed mesh samples. From these plots
we can observe how, as the number of rays or views increases, the misclassification rate
decreases. This is widely expected since, using fewer views or rays per triangle, it is more
likely to misidentify a visible triangle as invisible and, thus, increase the number of false
positives. Intuitively, having more views or rays per triangle allows the algorithm to find
even the most hidden triangles, getting closer to the optimum value.

From Figure 2.18 we can observe that our algorithm tends to the optimal faster than
the method in comparison. Actually, as described previously, MeshLab VSD method
operates in image space and it is constrained to a maximum resolution of 2048 × 2048
pixels [39]. As a result, even if the number of views increases infinitely, this method could
never reach the optimal since sphere mapped points would have a finer quantization than
the rendered image. This explains why the improvement in accuracy is so slow after
a certain number of views. To be more precise, we report in Table 2.1 the evolution of
the two misclassification rates with an increasing number of rays or views. In particular,
we can notice that, using 10,000 rays, our algorithm is able to converge to the optimum
while, MeshLab algorithm, stabilizes around 1% of error.
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Figure 2.17: Misclassification rates comparison of the two algorithms using different settings
and samples. (a) shows the results obtained with Plücker VSD, (b) shows the results obtained

with MeshLab VSD.

103 104 105
0

1

2

3

4

5

6

7

·10−2

Rays | Views

M
is

cl
as

si
fi

ca
ti

on
E

rr
or
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Figure 2.18: Convergence comparison of the misclassification error using the two algorithms
on Sample 1.

Finally, we want to highlight another significant result. At the beginning of this section,
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we stressed that one of the limitations of MeshLab algorithm regards the orientation of
mesh triangles normals. Based on the notion of ambient occlusion, these normals must
be oriented towards the outside of the mesh. This scenario is not so common in computer
graphics: a triangular mesh may have normals flipped or it may not have normals at all.
Indeed, as described in Section 2.3.1, depending upon the file format used to represent
a mesh, there may or may not be encoded information on triangles normals. We then
tried to flip all the normals of the third sample mesh and measuring the misclassification
rate again as the number of views changed. Figure 2.19 shows how MeshLab algorithm
is totally unable to solve the VSD problem in the case of incorrectly oriented normals.
Our method, on the other hand, obtains the same results as before since it considers
the entire sphere and not only the upper hemisphere according to the normal.

Table 2.1: Detail of times and misclassification rates of VSD performed on Sample 1 by
the two algorithms.

Rays | Views
MeshLab VSD Plücker VSD

Time [s] M. E. Rate [%] Time [s] M. E. Rate [%]

1000 0.58 6.39 2.29 1.93
2500 1.27 4.56 5.70 0.61
5000 2.41 3.75 11.39 0.61
7500 3.67 2.84 16.99 0.30

10,000 4.77 1.72 22.66 0.00
25,000 11.74 1.72 44.31 0.00
50,000 24.23 1.22 114.20 0.00
75,000 34.79 1.22 170.50 0.00
100,000 48.51 1.12 226.92 0.00
200,000 91.08 1.12 456.20 0.00
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Figure 2.19: Misclassification rates comparison using MeshLab VSD algorithm on Sample 3
with outer and inner normals.

2.7 Hybrid approach

Results showed that our approach is more robust in terms of convergence to the maximum
lossless compression. In addition, it is resilient to normals orientation, a fundamental
characteristic for the industrial context.

However, from the results, it is evident that our algorithm exhibits high complexity
and considerable computation time. To mitigate the computation time while maintaining
classification optimality, we propose the following algorithm, referred to as the ”Hybrid
approach”. This entails applying our Plücker algorithm only to triangles classified as
non-visible by the MeshLab VSD algorithm. To carry on all of the test that follows,
we used a midrange laptop equipped with an Intel i7-9750H CPU, 16 GB DDR4 RAM,
and a NVIDIA GeForce GTX1650 4 GB GPU.

We start by comparing the time needed for the three algorithms to estimate the visi-
bility for each face of the sample meshes. From Figure 2.20
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Figure 2.20: Computation time comparison of the two algorithms and the mixed approach
using different settings and samples. (a) shows the results obtained with Plücker VSD, (b)
shows the results obtained with MeshLab VSD, (c) shows the results obtained with the hybrid

method.

Looking at Figure 2.20 it is clear that the computation time is higher compared
to the MeshLab VSD algorithm and lower compared to our Plücker algorithm. As
previously stated thePlücker method is the most computationally expensive being it
O(N2). Nonetheless, it can be observed in Figure 2.21 that the Hybrid approach it
does achieve lower classification error compared to the Meshab VSD but is not precise
as the the pure Plücker Method. This is the case since the Hybrid method method
only re-checks the faces classified as invisible from the Meshlab VSD, therefore faces
incorrectly classified as as visibile will not be corrected.
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Figure 2.21: Misclassification rates comparison of the two algorithms using different settings
and samples. (a) shows the results obtained with Plücker VSD, (b) shows the results obtained

with MeshLab VSD, (c) shows the results obtained with the mixedhybrid method.

2.8 Conclusions

In this chapter, we address the visibility problem in object space. We started from
the notion of ambient occlusion and we adapted it to solve the VSD problem. Thanks to
the use of Plücker coordinates, we were able to speed up the ray-triangle intersection
test. We compared the performance of our algorithm against a state-of-the-art one
which exploits another approach based on image space. This allowed us to evaluate
pros and cons of a solution in object space with another in image space. Results
showed that our approach is more robust in terms of convergence to the maximum
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lossless compression. In addition, it is resilient to normals orientation, a fundamental
characteristic for the industrial context. Although the proposed solution is characterized
by a high computational complexity, we stress that its impact is completely negligible
since VSD techniques are typically used once per mesh. Anyway, there exist several
acceleration techniques that can be adopted to speed up computations such as kd-trees,
grids, bounding volume hierarchies [40]. Since the purpose of this work is to prove
the result optimality, these improvements were not considered.

We then created an hybrid approach, where a first processing step is done using
an image space VSD method and, then, a second step with our algorithm in order to
give a more accurate result. In this case, our Plücker-based method will check only
the invisible triangles recognized during the first step.

This hybrid approach proved to reduce the computational burden, but in some of our
test cases, it also decreased the accuracy of the method since false visible faces will not
be retested by our method.

The outcome of these experiments appears to be heavily influenced by the specific
geometry involved. In some tests infact the hybrid method reached the optimal classifica-
tion. Future developments may involve integrating our method with established space
partitioning techniques like octree or kd-tree. Another possible route is refining the image
space VSD by eliminating its quantization, leading to theoretical optimal classification.



3
Robust Simulation

of Radial Optical Distortion

3.1 Introduction

Computer vision is playing a key role in the automation process due to the increasing
use of recognition and pose estimation algorithms. Although, in recent years, the usage
of three-dimensional scanners is increased, most recognition algorithms are still based
on images [41]. Robots are required to autonomously operate based on information
derived from those images. Due to the variability in this data, it is mandatory to test the
safety, efficiency, and robustness of any new algorithm by means of realistic and reliable
simulations. In fact, even the smallest artifact may cause the target not to be recognized
correctly and, thus, the simulation of an ideal virtual camera is not sufficient for industrial
purposes. Actually, many computer vision algorithms rely on the assumptions of a linear
pinhole camera model, but the distortion caused by the optics is usually significant
enough to violate this assumption. Obviously, it is not feasible to exactly replicate a
real camera: noise, light conditions and lens physics deeply characterize the acquired
image and modeling them is extremely complex. For this reason, in this work, we aim
to provide an efficient and robust solution to simulate optical distortion for industrial
cameras. In particular, we present a deep characterization of the common polynomial
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distortion model and from there we develop a useful simulation tool that is embedded
in Vostok[42]. Vostokis a free software developed by the company Euclidlabs, that also
collabareted with the work here presented. Figure 3.1 shows an overview of the camera
simulation toolkit implemented in Vostok which is based on this work.

Figure 3.1: Overview of the camera simulation toolkit available in Vostok.

Decentering lens distortion was modeled by Conrady in 1919 [43], then improved by
Brown in 1966 [44] and a definitive distortion model was proposed by Brown in 1971
[8]. The latter has been adopted by the computer vision community for several decades.
Since then, many studies have focused on estimating the distortion coefficients of the
polynomial models through several camera calibration techniques. Viala [45] compares
different lens distortion models to define the one that achieves the best results under
particular conditions. The author also introduces a novel technique to calibrate several
models under stable conditions. Alvarez et al. [46] propose an algebraic approach for
estimating optical distortion parameters based on the rectification of lines in the image.
The authors present a new energy function, based on a statistical approach, to measure
the distortion error and an efficient technique to minimize it. Bukhari [47] provides a
novel method for automatic radial distortion estimation based on the plumb-line approach.
That method only requires a single image and no special calibration pattern. However,
although we have the equations to compensate the distortion, our interest is focused on
applying it to ideal images to simulate the effects introduced by real lenses. Regarding
the polynomial model, several solutions have been adopted to perform inverse radial
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distortion: those can be divided in iterative and non-iterative ones. The former iteratively
refine the distorted position until a convenient convergence is reached, while the latter
try to find an approximated closed-form solution of the inverted model. For example,
Drap et al [48] presents a formal calculus involving a power series used to deduce a
closed-form solution. Iterative approaches give excellent results, but the processing time
is drastically increased with respect to non-iterative methods. However, the use of the
so-called look-up tables allow to store the mapping between ideal and distorted pixels:
thus, the computation time becomes negligible. For this reason, we decided to focus on
iterative methods because they offer a better accuracy. In the literature we can also find
further simulation approaches that are based on a physical radiometric description of
the lenses, i.e., how optical elements convert scene radiance in sensor irradiance [49, 50].
Those solutions are much more faithful but slower than those based on approximate
polynomial models; the latter are then more suitable for real-time simulations.

In this chapter, to simulate optical distortion, we perform a comprehensive analysis
of the inversion of the Brown’s polynomial model: particular interest is placed on the
determination of the limits of invertibility. Then, we describe an iterative algorithm to
apply the distortion by exploiting the Newton’s method. To evaluate the robustness of
the proposed algorithm, we study its performance on synthetic images. In particular,
Section 3.2 shows the problem formulation in detail. Section 3.3 presents design and
software implementation of the simulation tool. In Section 3.4, the proposed algorithm is
tested analyzing the robustness and quality of the results. Finally, concluding remarks
and possible extensions are presented in Section 3.5.

3.2 Problem Formulation

Before introducing the distortion model, we need to recall some basics of an ideal camera
model that can be used for simulation purposes. From a geometrical point of view, the
most common choice is to adopt the so-called pinhole camera model [51]. In this section,
we start by introducing this framework and, then, we move onto the distortion caused by
the curved nature of any lens.

3.2.1 Pinhole Model

The pinhole camera model is widely adopted to describe how the coordinates in a three-
dimensional space are projected into the image plane, i.e., the two-dimensional pixel
space. This model, represented in Figure 3.2, assumes that the camera aperture has the
dimension of an Euclidean point and no lenses are present. This is a very simplified model
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and, therefore, some corrections must be included to develop an accurate simulator.
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Figure 3.2: Representation of the pinhole camera model.
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The intrinsic parameters matrix K encodes information about the focal length f , the
image sensor format and the principal point C. The latter represents the intersection
between the optical axis and the image plane. In particular,

• fu = f/mu, where mu is the pixel size width;

• fv = f/mv, where mv is the pixel size height;

• γ is the skew coefficient: the pixels in a CCD sensor may not be perfectly squared,
resulting in a small distortion along u and v directions;

• C = (uc, vc) represents the principal point which is ideally the center of the image.

The model is also characterized by R and T , i.e., the rotation and translation matrices
of the camera frame (Xc, Yc, Zc,Fc) with respect to the world frame.

Cameras are usually equipped with lenses because they allow us to gather more light
and keep the image sharper. The pinhole camera model does not consider the presence
of lenses, which makes it too simplified for our purposes.

3.2.2 Optical Distortion

The optical distortion occurs in an image when a deviation from the standard projection
is present. This phenomenon can be modeled by two components: a radial and a
tangential distortion. Radial distortion (Figure 3.3b,c) is caused by the spherical shape
of the lens, whereas tangential distortion (Figure 3.3d) is caused by the decentering and
non-orthogonality of the lens components with respect to the optical axis [52]. Radial
distortions can be further classified as either barrel or pincushion distortions. The former
happens when the lens’ field of view is larger than the size of the image sensor. As a
result, straight lines are visibly curved inwards, especially towards the extreme edges
of the image. Pincushion distortion is the exact opposite: the field of view is smaller
than the size of the image sensor and, consequently, straight lines appear to be curved
outwards from the center.
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(a) No effect (b) Barrel distortion

(c) Pincushion distortion (d) Tangential distortion

Figure 3.3: Overview of the main optical distortion effects by framing a checkerboard from
the same position.

The traditional model of radial and tangential distortion, called Brown’s model[8],
gives the map between the position of the observed points (ũ, ṽ) and the corresponding
undistorted ones (u, v). The model, truncated at the fourth order, is the following:

u = ũ +
radial distortion︷ ︸︸ ︷

∆u(k1r̃2 + k2r̃4) +

tangential distortion︷ ︸︸ ︷
p1(r̃2 + 2∆2

u) + 2p2∆u∆v

v = ṽ + ∆v(k1r̃2 + k2r̃4) + 2p1∆u∆v + p2(r̃2 + 2∆2
v)

where ∆u = (ũ− uc), ∆v = (ṽ − vc), r̃ =
√

∆2
u + ∆2

v, kn is the n-th radial distortion
coefficient, and pn is the n-th tangential distortion coefficient. Although Brown’s model
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takes into account the tangential component, the radial one is the most significant in
today’s industrial cameras [53, 54]. For this reason, we decided to neglect the tangential
component, obtaining the following simplified model:

u = ũ + ∆u(k1r̃2 + k2r̃4) (3.1)

v = ṽ + ∆v(k1r̃2 + k2r̃4) . (3.2)

3.2.3 Inversion of Radial Distortion Model

In this section, we want to analyze the invertibility of the radial distortion model through
a functional analysis. Our interest is primarily in studying the analytical bounds on
the maximal residual distortion. Actually, we are interested in determining a priori the
maximum radius r that we can distort, i.e., for which the model is invertible, given a
particular pair of distortion coefficients (k1, k2). To do this, through a function study,
we are going to identify the domain of existence of r̃ and, by using directly the Brown’s
model, we will be able to determine the maximum allowable radius r.

Let’s start from the simplified model described by equations (3.1) and (3.2). To
further simplify the notation, we can subtract both members of the equations for the
corresponding principal point component, obtaining:

x︷ ︸︸ ︷
u− uc =

x̃︷ ︸︸ ︷
(ũ− uc)(1 + k1r̃2 + k2r̃4)

v − vc︸ ︷︷ ︸
y

= (ṽ − vc)︸ ︷︷ ︸
ỹ

(1 + k1r̃2 + k2r̃4) .

Therefore, a point P = (x, y) can be described by means of a function of the cor-
responding distorted one P̃ = (x̃, ỹ) and the distance of P̃ from the principal point C.
Formally, we obtain:

x = x̃(1 + k1r̃2 + k2r̃4) (3.3)

y = ỹ(1 + k1r̃2 + k2r̃4) (3.4)

where r̃ = ∥P̃ − C∥ =
√

x̃2 + ỹ2 ≥ 0. Those points can also be expressed in polar
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coordinates, i.e.,

P = (x, y) = (r sin θ, r cos θ)

P̃ = (x̃, ỹ) = (r̃ sin θ, r̃ cos θ) .

By definition, radial distortion involves perturbation only on the radius of the pixel
without modifying angles. Therefore, it is sufficient to inspect the radius only. By
merging equations (3.3) and (3.4), we obtain:

x2 + y2︸ ︷︷ ︸
r C2

= (x̃2 + ỹ2)︸ ︷︷ ︸
r̃ C2

(1 + k1r̃2 + k2r̃4)A2

that leads to

r̃ + k1r̃3 + k2r̃5 − r = 0 . (3.5)

Consequently, recalling that r is known, to obtain the position of the distorted point
P̃ , we need to find the positive real zero of equation (3.5) that is closer to r. Real and
positive because r̃ represents a radius of a circumference, while closer to r because we
want to discard unrealistic distortions.

Note that, by Abel-Ruffini theorem, there is no closed-form solution for the roots of
a polynomial equation of degree five with arbitrary coefficients, but there exist several
numerical techniques to estimate them. Starting from equation (3.5), we define (3.6) and
(3.7), and resort to functional analysis to determine the domain in which the model is
invertible.

f(r̃) := r̃ + k1r̃3 + k2r̃5 (3.6)

g(r̃) := f(r̃)− r (3.7)

Note that f(0) = 0 and r ∈ R+
0 . Therefore, g(0) = −r ≤ 0. Then, we must identify

the interval D = [0, R] ⊂ R, R ∈ R+
0 where the solution of the function g(r̃) exists and is

unique. Since g(r̃) is continuous, this is equivalent to identify the interval in which g(r̃) is
strictly monotonic. This analysis can be done directly on f(r̃) since r is constant. Within
a neighborhood of zero, f(r̃) can be approximated to f(r̃) ≃ r̃ + O(r̃), highlighting that
it is clearly an increasing function in this area. From (3.6), we compute its derivative,
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obtaining:

ḟ(r̃) = 1 + 3k1r̃2 + 5k2r̃4 .

We need to determine the interval where ḟ(r̃) > 0. Meanwhile, by exploiting the
monotonicity, we prove the uniqueness of the solution. Let’s compute the solutions of
ḟ(r̃) = 0, i.e.,

(3k1 + 5k2r̃2)r̃2 = −1 . (3.8)

The four roots of (3.8) are:

r̃ = ±

√√√√±√
9k2

1 − 20k2 − 3k1

10k2
.

If k1 ≥ 0 and k2 ≥ 0 or if k1 < 0 and k2 ≥
9k2

1
20 then D ∈ R+

0 . In the other cases, the
domain is D = [0, R], where

R =

√√√√−√
9k2

1 − 20k2 − 3k1

10k2

if k2 ̸= 0. Otherwise, if k2 = 0, then

R =
√
−1
3k1

.

Table 3.1 summarizes all the intervals, depending on the distortion coefficients (k1, k2),
in which the function f(r̃) is strictly monotonically increasing. Note also that R, when it
exists finite, is also the maximum point of the function f(r̃) and, consequently, of g(r̃).
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Table 3.1: Intervals of existence and uniqueness of the solution r̃.

k1 < 0 k1 ≥ 0

k2 < 0 0 ≤ R <

√
−
√

9k2
1−20k2−3k1
10k2

k2 = 0 0 ≤ R <
√

−1
3k1

R ∈ R+
0

0 < k2 < 9
20k2

1 0 ≤ R <

√
−
√

9k2
1−20k2−3k1
10k2

R ∈ R+
0

k2 ≥ 9
20k2

1 R ∈ R+
0

3.3 Robust Radial Distortion Simulation

3.3.1 Newton-Raphson Method

As mentioned before, the Abel-Ruffini theorem states that there is no closed-form solution
for the roots of a polynomial equation of degree five with arbitrary coefficients, but there
exist several numerical techniques to estimate them. One of the most famous iterative
methods is surely the Newton-Raphson method. The approximation process is repeated
as

ri = ri−1 −
g(ri−1)
ġ(ri−1)

until convergence is reached. To ensure the solution convergence, it is sufficient to
verify that all the assumptions of the Newton-Raphson theorem are satisfied. In the case
of the function g(r̃), defined in (3.7), all the hypotheses are respected. In particular,
g(r) ∈ C∞ which implies g(r) ∈ C2. Moreover, we defined the domain D = [0, R], such
that ∀ p ∈ D, ġ(p) ̸= 0. Finally, the fact that the function g(r̃) is monotonically increasing
and that g(0) ≤ 0, implies that ∃ p ∈ [0, R] : g(p) = 0.

Therefore, we can use the Newton-Raphson method to find the distorted radius r̃

starting from the original one r. Algorithm 2 summarizes the key steps on which the
distortion algorithm is based.

3.3.2 Image Size Pre-Computation

For some combinations of the distortion coefficients (k1, k2), the distorted image may
appear surrounded by black borders: note the effect in Figure 3.4b. This artifact occurs
in the case of barrel-type distortions in which the image is curved inwards. In this case,
we do not have enough information to complete the distorted image if the starting original
image has the same size. To compensate this effect, we first compute the acquiring
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Algorithm 2 Iterative distortion method
Input: undistorted pixel (px, py)

Implementation:

1. Convert (px, py) to normalized coordinates (x, y) using the inverse of the intrinsic
parameters matrix K. Formally,

x = px − uc

fu
, y = py − vc

fv
.

2. Find the numerical solution r̃ of the inverse distortion model by using the Newton-
Raphson method. Initialize r0 = r =

√
x2 + y2 and, until convergence, repeat:

r̃i = r̃i−1 −
(r̃i−1 + k1r̃3

i−1 + k2r̃5
i−1 − r)

(1 + 3k1r̃2
i−1 + 5k2r̃4

i−1) .

3. Given θ = atan2(y

x
)

x̃ = r̃ cos(θ) , ỹ = r̃ sin(θ) .

4. Convert (x̃, ỹ) back to pixel coordinates using the intrinsic parameters matrix K,
thus obtaining:

p̃x = x̃fu + uc , p̃y = ỹfv + vc .

resolution, that will be larger than the original one in case of barrel-type distortions, and
then we capture the image to be distorted using this information. Algorithm 3 shows
how to compute the acquiring resolution. This procedure has the caveat that the final
image, especially at the corners, will have a narrower field of view than a real camera lens
with barrel-type distortion. One workaround to compensate for this effect is to increase
the field of view of the camera sensor.
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(a) (b)

Figure 3.4: A comparison of the same image obtained simulating a barrel-type distortion
with (a) and without (b) image size pre-computation.

Algorithm 3 Image size pre-computation

Input: final distorted image size (w̃, h̃)

Implementation:
1: x̃← max(w̃−uc,uc)

fu

2: ỹ ← max(h̃−vc,vc)
fv

3: r̃ ←
√

x̃2 + ỹ2

4: θ ← atan2( ỹ
x̃)

5: r ← Apply Brown’s model on r̃
6: w ← 2fur cos(θ)
7: h← 2fvr sin(θ)

3.4 Numerical Results

Within this section we provide two numerical tests to evaluate the quality and robustness of
the proposed algorithm. Simulation techniques are very difficult to evaluate and compare:
they cannot be measured from the point of view of the computational complexity which
depends proportionally on the number of pixels and can be easily accelerated with
memory caching techniques. On the other hand, it is hard to compare the results with a
real workbench, given the number of details characteristic of the real world that cannot
be modeled in simulation, such as, for example, the effects of reflection and refraction
of light on different materials. An interesting way to evaluate these methodologies is
to test whether they are inherently robust. To prove this we developed two different
tests. With the former, we analyzed the results of a state-of-the-art camera calibration
algorithm from synthetic images generated using the tool we developed. If the calibration
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provides estimated distortion parameters close to those used to generate the synthetic
images, it means that our methodology is reliable. By means of the OpenCV calibration
function, this test evaluates the ability of our algorithm to accurately reproduce radial
distortions. The second experiment tests the robustness of our distortion procedure to
be compliant with the un-distortion model by comparing an ideal image to a distorted
and then rectified one. By feeding a distorted image into a state-of-the-art rectification
algorithm, configured with the same distortion coefficients, we should get an image that
is nearly the same as the original before applying the distortion. Both tests shall be
carried on using different sets of distortion parameters to verify a wide range of conditions.
To minimize the variability between individual tests, we defined a virtual environment
within Vostok. We reproduced a particular sensor, the IDS GV-5250CP-C-HQ. Its
resolution is 1600× 1200 pixels whereas the pixel size is 4.5 µm and the focal length is
8 mm. The camera is positioned 1500 mm above a checkerboard of size 986× 732× 20.1
mm. The latter is composed by 216 square blocks arranged in twelve rows and eighteen
columns: each block is 40 mm wide. Figure 3.5 shows a frame of this experimental virtual
workbench.

Figure 3.5: A frame of our test environment.

3.4.1 Calibration Test

This test aims to verify that the distortion reproduced by our algorithm is correct. The
most effective way is to provide a calibration algorithm with a set of distorted synthetic
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images generated by our method and, then, compare the estimated distortion parameters
with those used to generate the input images. The widely adopted OpenCV library[55]
provides one of the most optimized calibration algorithm, whose implementation is based
on the well-known technique proposed by Zhang [53, 56]. The calibration function,
cv.calibrateCamera, requires a series of photos taken with the camera to be calibrated.
These images must frame a checkerboard from different poses: the best way is to maintain
the distance between the camera and the checkerboard and keep the focus locked. The
more poses are achieved, the better the result: we decided to use 20 poses, a value that
allows us to obtain a RMS lower than 1 pixel. The latter describes the goodness of
the estimate made by the algorithm: a value lower than one is an indication of a good
estimate.

Table 3.2: Experimental results using several (k1, k2) pairs.

k1 k2
Test 1 - Calibration Test 2 - Pearson Correlation

ke
1 ke

2 RMS k1 − ke
1 k2 − ke

2 ρIu
1 ,I0 ρIu

2 ,I0 Diff.%
−1.25 1.25 −1.284 1.345 0.533 84 0.034 −0.095 97.61% 97.37% 0.23%
−1.00 1.00 −1.022 1.037 0.536 09 0.022 −0.037 97.79% 97.41% 0.38%
−0.75 0.75 −0.771 0.766 0.523 98 0.021 −0.016 97.81% 97.38% 0.43%
−0.75 1.00 −0.778 1.105 0.537 57 0.028 −0.105 99.19% 99.00% 0.19%
−0.50 0.25 −0.529 0.353 0.534 72 0.029 −0.103 97.83% 97.39% 0.44%
−0.50 0.50 −0.534 0.683 0.533 70 0.034 −0.183 99.38% 98.95% 0.43%
−0.50 0.75 −0.530 0.874 0.566 21 0.030 −0.124 97.84% 97.52% 0.32%
−0.40 0.00 −0.420 0.068 0.528 40 0.020 −0.068 97.88% 97.68% 0.20%
−0.30 −0.20 −0.325 −0.086 0.527 67 0.025 −0.114 99.46% 99.26% 0.20%
−0.25 −0.25 −0.280 −0.081 0.528 49 0.030 −0.169 98.66% 98.37% 0.29%
−0.25 0.25 −0.279 0.408 0.512 77 0.029 −0.158 97.83% 97.59% 0.24%

0.00 0.00 −0.006 −0.008 0.353 05 0.006 0.008 100.00% 99.91% 0.09%
0.25 −0.25 0.276 −0.499 0.527 05 −0.026 0.249 97.71% 97.66% 0.05%
0.25 0.25 0.273 0.041 0.529 68 −0.023 0.209 98.78% 98.80% −0.02%
0.50 −0.75 0.523 −0.938 0.536 08 −0.023 0.188 97.62% 97.59% 0.04%
0.50 −0.50 0.526 −0.736 0.533 65 −0.026 0.236 98.76% 98.78% −0.01%
0.50 −0.25 0.525 −0.468 0.538 47 −0.025 0.218 98.76% 98.78% −0.03%
0.50 0.50 0.519 0.383 0.540 15 −0.019 0.117 96.35% 96.32% 0.03%
0.50 1.00 0.530 0.789 0.536 33 −0.030 0.211 95.99% 96.06% −0.07%
0.75 −1.00 0.769 −1.144 0.554 48 −0.019 0.144 97.52% 97.53% −0.01%
0.75 −0.75 0.759 −0.807 0.552 40 −0.009 0.057 96.38% 96.34% 0.04%
0.75 −0.25 0.767 −0.380 0.556 52 −0.017 0.130 95.96% 96.03% −0.08%
0.75 0.50 0.755 0.516 0.555 28 −0.005 −0.016 96.32% 96.30% 0.02%
0.75 0.75 0.767 0.659 0.560 48 −0.017 0.091 97.42% 97.54% −0.12%
1.00 −1.00 1.015 −1.126 0.564 23 −0.015 0.126 95.77% 95.90% −0.13%
1.00 0.75 1.013 0.723 0.568 00 −0.013 0.027 96.17% 96.27% −0.10%

To perform the experiment, we generated a set of 26 (k1, k2) pairs and, for each pair,
we took 20 photos of the checkerboard each time with a different pose using Vostok, our
simulation tool. Those images are then processed using the calibration algorithm provided
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by OpenCV, obtaining the estimation of the distortion parameters (ke
1, ke

2). Table 3.2
summarizes the results of this test (Test 1 ). The table should provide a sufficient range
of paramteres to cover the majority of industrial applications. Looking at the results it is
clear that the method proposed works very well for (k1, k2) pairs with high amplitude,
i.e., those generating marked distortions. As far as minor distortions are concerned,
the deviation between the values used and their estimate becomes important only for
k2, always in excess of magnitude. Our hypothesis is that our parameters and those
estimated by OpenCV represent a very similar distortion, closer than the numbers tell as
can be seen in the last column of Table 3.2. Anyway, this issue will be analyzed in the
next section, where the second experiment will be explained.

3.4.2 Pearson Correlation Test

The previous test showed that the distortion produced by our method is usually correctly
recognized by the OpenCV calibration algorithm. However, in the case of low-magnitude
coefficient pairs, the difference in values cannot be ignored or justified by an error in the
calibration algorithm. Our hypothesis is that some pairs and their estimates reproduce
very similar, if not equal, effects, even if they are quite different in value. For this
reason, we decided to develop two different tests: in the first we verify that, by taking a
distorted image generated by our tool and, then, applying a correction filter with the
same parameters, the obtained image coincides with the original one. In the second test,
instead, we applied the estimated parameters on the correction filter to the distorted
image and compared the output with the initial image. To perform these tests, once
again, we exploited an OpenCV function, cv.undistort, that allows to rectify a distorted
image knowing the camera parameters. To be more precise, the tests can be reproduced
by following these steps:

1. Define a camera pose and grab a photo I0;

2. Define a pair of (k1, k2) and grab a photo Id using our distortion method;

3. Calibrate the camera using the OpenCV calibration algorithm and retrieve (ke
1, ke

2);

4. Apply the OpenCV rectification filter on Id using (k1, k2) to obtain Iu
1 ;

5. Apply the OpenCV rectification filter on Id using (ke
1, ke

2) to obtain Iu
2 ;

6. Compute Pearson correlation coefficient of Iu
1 and Iu

2 with regard to I0, i.e., ρIu
1 ,I0

and ρIu
2 ,I0 .
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This test tries to verify if

Uk1,k2(Dk1,k2(I0)) = I0 (3.9)

where Dk1,k2(·) represents our distortion algorithm whereas Uk1,k2(·) the OpenCV rec-
tification filter. If (3.9) is valid, it means that Dk1,k2(·) = U-1

k1,k2
(·), i.e., our algorithm

provides a perfect distortion following the Brown model. We chose the Pearson Cor-
relation Coefficient (PCC) to compare images since it provides a synthetic parameter
of similarity of two bivariate distributions: a value equal to 1 indicates that the two
variables are linearly correlated whereas a PCC equal to zero means that the twos are
totally uncorrelated. The formula is

ρX,Y = cov(X, Y )
var (X) var (Y )

where X and Y represent the two images in gray scale.
The obtained results are reported in Table 3.2: the first column reports the Pearson

coefficients comparing Iu
1 with I0 for each pair whereas, the second one, the ones comparing

Iu
2 with I0. The PCC using (k1, k2) in the rectification filter are very close to one and

this proves that our algorithm produces a reliable result, especially for a barrel distortion
in which PCC higher than 99% are achieved. The PCC using (ke

1, ke
2), instead, suggest

us a couple of considerations. First of all, it can be noticed that, for barrel distortion,
the OpenCV calibration algorithm is not so precise in estimating the parameters since,
by applying them to the filter, we get a worse result than using the reference (k1, k2)
pair. However, this is not repeated in the case of pincushion distortion, where, although
the values of k2 and ke

2 differ appreciably, the PCC of the two is very close if not the
same. This leads us to the second consideration, i.e., very different pair can represent
very similar if not identical effects.

3.5 Conclusions

In this chapter, we introduced a robust simulation technique for radial optical distortion.
The reliability of the proposed algorithm makes this tool very useful for testing robotics
and machine vision applications. Through the use of GPU architectures, the generation
of realistic images occurs in negligible time. This allows to use the simulator to generate
synthetic image datasets to train deep learning models which are increasingly being used
in industry. At the same time, it can be a great tool to verify the match between a
particular sensor and an optic, and even to perform preliminary analysis on new designs.
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After a brief summary of the pinhole model, in Section 2.3 we discussed the distortion
model proposed by Brown. From that, we analyzed the distortion function in order to
determine the analytical bounds of invertibility. Section 2.5, showed an iterative method
for finding solutions to the inverse problem and solving the black borders issue. Finally,
in Section 2.6, we presented two numerical tests to evaluate the quality and robustness of
the proposed algorithm. Both tests demonstrated excellent ability to simulate distortion
and numerical robustness of the iterative algorithm.

Obviously, the proposed simulation model can be extended. A future improvement
might be to consider also the tangential distortion component even though it contributes
minimally to the final image formation in today’s cameras. Instead, to improve the
simulation tool offered, we are going to add the simulation of the focal aberration effect
that results to be the other greater factor of distortion in the final image.
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4
Conclusions

In this dissertation, we have talked about the increasing role that digital twins play
in the modern manufacturing industry and proposed two methods to push further the
boundaries of such technology. This work has been the result of a collaborative effort
with the company Euclidlabs, a company that works in the machine vision field and
provides bin picking solutions. In collaboration with their team we developed and tested
solutions to improve the effectiveness of their software.

Specifically, in chapter 2, we introduced a novel approach to solve the visible surface
determination problem using Plücker coordinates. This study presents a robust technique
for addressing the global visibility problem in object space, ensuring theoretical conver-
gence to the optimal solution. Such novel method allows us to determine, within a finite
number of steps, whether a given face of the mesh is globally visible or not, and with
what degree of visibility. As a result, we were able to optimize 3D models and enhance
the performance of various simulator tasks, including rendering, vision system simulation,
collision detection, pose estimation algorithms tuning and setup.

Then, in Chapter 3, we improved the simulation of 2D cameras by developing an
efficient and robust approach for radial distortion simulation. Such approach has been
derived by first conducting an analytical examination of the optical distortion model,
emphasizing its constraints regarding invertibility. Such approach has been then validated
through numerical tests, confirming the algorithm’s robustness.
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In conclusion, it is our hope that through our efforts, our work has contributed to
the advancement of the digital twin technology, leading to more realistic simulations,
optimization of vision algorithms and ultimately in reducing production times and costs
for goods and services.
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