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6.1.  Introduction: Flying Robots on Agroecosystems 
More than “flying robots”. Drones. They are more properly defined as ‘unmanned 
aerial systems’  (UAS) and today, they embody different data acquisition tools and 
approaches together: geo-information and communication technologies (GeoICT), 
MEMs and sensors, robots, people, artificial intelligence, social intelligence, 
Internet of Things (IoT), Big Data. Today, small, low-cost quadcopters with 
‘special eyes’  or mimetic bionic-birds fly almost everywhere: on river corridors, 
on forests, on the city, on farmlands (Pajares, 2015; Tang and Guofan, 2015; White 
et al., 2016; Baena et al., 2018; Merkert and James Bushell, 2020). Drones for 
civil and environmental applications – or Drones for Good – are becoming even 
more diffused, assuming a key role especially within the domain of agriculture 
by supporting actual challenges of increasing sustainability in cropping and agro-
food production systems (Sylvester, 2018). In fact, UAS recently seduced and 
entered many fields of cropping systems, particularly through the framework of 
Agriculture 4.0, within the different declinations of precision agriculture, smart 
farming, and climate-resilient faming systems (Radoglou-Grammatikis, 2020; 
Tsouros et al., 2019). They are mainly deployed for monitoring crop yields, 
assessing nutrie  nt and water stress, mapping weed distribution, and for pest 
management (Radoglou-Grammatikis, 2020). 

The epoch of the ‘flying robots’  for agriculture and agro-environmental 
monitoring started a decade ago when drones ‘slipped away’  from the military 
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aviation technologies fences, by entering into the domain of civil applications 
(Kim et al., 2019). Through a huge emphasis from the worlds of academy, 
national and international institutions, and agro-industries, drones rapidly broke 
into the ‘collective imagery’  as the flying robots which will make the difference 
in pursuing sustainability in agriculture. This emphasis is well synthetized by 
mainstream articles from MIT  Technology Review, which enormously sponsored 
the forthcoming entrance of ‘agricultural drones’  (2014) and, later, highlighted 
the ways they are revolutionizing agriculture (2016). In fact, as reported by 
Goldman Sachs research (2021), the expansion of drones in agriculture seems to 
be confirmed also in terms of growth of drone industry and services; agriculture 
is the second one after construction sector, with a total addressable market worth 
USD 6,000 million. Globally, the drone market size was USD 4,400 million in 
2018 and it is expected to grow to USD 63,600 million in 2025, with a compound 
annual growth rate of 55.9 per cent during such temporal range (Market Insider, 
2021). It is estimated that agricultural drones will grow to about USD 32,400 
million by 2050 which will represent almost 25 per cent of UAS global market 
(Kim and Kim, 2019). At present a wide range of UAS are available on the 
global market. If on one hand, different ‘ready to fly’  UAS are produced by big 
manufacturers (DJI, AGEagle, Parrot, Trimble Navigation, Precisonhawk); on 
the other, once UAS open hardware and open software notably increased, giving 
the opportunity to assemble and to build an operational drone for aerial surveys 
(Gayathri Devi et al., 2020). 

This chapter will explore the world of UAS and their applications  in different 
domains of agriculture; it is structured in the following sections: 

 •  From the space to the near surface: UAS in agriculture 
 •  Agricultural UAS: platforms, sensors, components 
 •  UAS applications in sustainable agriculture and agroecology 
 •  UAS 	 for preserving spider monkey and agroecosystem  management: 

experiences from tropical forests of Chocò (Ecuador) 
 •  Opportunities and perspectives for the agroecology transition 

6.2. 	 From the Space to the Near Surface: UAS  
in Agriculture 

In the past, GIScience was widely characterized by an increasing massive use 
of remote sensing technologies and platforms, mainly equipped  on aircraft and 
satellites, to acquire spatial information about Earth surface processes through 
specific sensors (Goodchild, 2007). At present, a wide range of satellite-derived 
images are available: public aerospace programs, such as from USGS/NASA  
Landsat (US) and ESA Copernicus (European Union) or commercial satellites 
(WorldView, Planet among others). For a deeper understanding, see detailed 
explanations in Chapter 11. 
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However, due to their spatial resolutions – which usually range from 30 
to 10m per pixel for public aerospace programs, or up to 0.2 m per pixel for 
commercial platforms – remotely-sensed data from satellite is generally scarcely 
suitable for application at agroecosystem or at a detailed scale (Tsouros et al., 
2019). Moreover, satellite temporal resolution – or namely frequency of revisiting 
time over the same area of interest – may represent a critical constraint in terms 
of image acquisition. In fact, satellite platforms are not generally suitable to 
capture images in a required time-frame, as often needed for acquiring remotely 
sensed information from agroecosystem dynamics and cropping cycle (Kim et 
al., 2019; Zhang et al., 2021). Moreover, some environmental conditions, such 
as cloud cover and atmospheric factors, may drastically affect the quality of 
imagery, making difficult or, in some cases, impossible, to extract data and useful 
information (Kim et al., 2019). 

Airborne cameras have a long track in the history of remote sensing; however, 
the use of aircraft for aerial surveys is at present economically onerous as it 
would require a strong coordination between farmers to acquire large portions of 
agricultural territory to make it cost-effective. 

On the other hand, the lately rapid and extensive spreading of UAS is 
currently offering new opportunities for a deeper understanding of agroecosystem 
complexity and for supporting a paradigm shift in agriculture. In fact, according 
to specific national regulations, UAS can fly at much lower altitudes compared to 
aircraft/satellite, usually from few meters up to 120-600 meters above the ground 
(Zhang et al., 2021). Such flight altitude combined with the actual available 
technology of sensors considerably increases spatial resolution up to 0.01 m 
per pixel, or even higher. Some authors refer to this characteristic as the ‘ultra-
high’ spatial resolution of UAS-derived images (Tsouros et al., 2019). Moreover, 
different UAS can be equipped with a wide range of image-acquisition devices, 
from optical to multi and hyper-spectral sensors (Kim and Kim, 2019). 

One of the advantages of integrating UAS for spatial analysis in agriculture 
is related to the low latency represented by on-demand repeatability of acquisition 
flight, which makes ultra-high resolution aerial surveys more suitable for 
agroecosystem monitoring and management. In fact, drones may survey farmland 
every week, every day or even every hour, given the chance to perform on-demand 
multi-temporal time-series, able to detect changes, and to unveil new opportunities 
in agrosystem management (Radoglou-Grammatikis, 2020; Marino and Alvino, 
2018). Therefore, direct control of temporal resolution of aerial surveys may give 
both to researchers and to farmers an integrated technical and operative support 
for studying ecosystem dynamics and for rapid interventions on the field. 

6.3.	 Agricultural UAS: Platforms, Sensors, 
Components 

This section describes aerial platforms and the main components of an UAS. 
UAS are structured in different components and elements interacting with each 
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other. Key elements and components are five: i) one (or more) aerial platform 
(commonly named Unmanned Aerial Vehicles, UAV); ii) a payload constituted 
by one (or more) sensor for spatial data acquisition or mechanical devices; iii) 
an UAV remote controller combined with a ground control station; iv) a human 
operator; and v) a GIS-based software for image processing and output maps. 

6.3.1. Aerial Platforms: Multi-rotors, Fixed-wing and Hybrids 
Firstly, we refer to the term platform in relation to the underlying aerial-vehicle 
structure which is the physical support for mounting extra tools and peripherals, 
such as MEM, GPS, and sensors. At present, different typologies of aerial 
platforms are available and can be adopted for agricultural purposes, according to 
the specific aims, the operational conditions, and the context. 

They include rotorcraft and fixed-wing aircraft on one side; aerostatic 
balloons, blimps, and kites on the other (Fig. 1). Even if, at present, the most 
diffused platforms for agrosystems monitoring and management are rotorcraft and 
fixed-wing aircraft, the adoption of the long-stand aerial photography represented 
by balloons or kites should not be excluded a priori for photogrammetry surveys, 
as they still represent important alternatives for particular contexts and needs 
(Bryson et al., 2013; Lorenz and Scheidt, 2014). 

In general, the main elements which characterize an aerial platform and, 
therefore, its operational functions and range, are the aerodynamic features 
represented by the wings. Indeed, there are two types of primary aerial platforms: 
rotary- and fixed-wing (Radoglou-Grammatikis, 2020). 

Rotary-wing platforms are usually multi-rotor models which are classified 
according to the number of propellers. With the exception of the traditional 
unmanned helicopters (one propeller), multi-rotors platforms are divided in the 
following categories: tricopters (three propellers); quadcopters (four propellers); 
exacopters (six propellers); octocopters (eight propellers) (Kim and Kim, 2019; 
Radoglou-Grammatikis, 2020). Generally, increase in the number of propellers 
corresponds to largest payload capacity (up to 9.5 kg for octocopters) and size of 
UAS. Quadcopters and hexacopters are usually smaller and are adapted to carry 
a payload ranging above 1.25-2.6 kg (Hayat et al., 2016; Vergouw et al., 2016). 

Major advantages of employing multi-rotor platforms in agriculture are 
the following: i) ease of use compared to fixed-wing platforms (no runaway is 
needed), ii) the capability of taking-off and landing vertically, and iii) the ability 
of hovering on a given area for detailed inspection (Chapman et al., 2014; Hassler 
and Baysal-Gurel, 2019). 

Fixed-wing platforms are similar, both in shape and in aerodynamics, to an 
airplane. They require a reserved space as runway or a catapult (i.e. Trimble UX5), 
according to their size (from 90 to 300 cm wingspan). The main advantages are 
related to their longer flight autonomy and faster velocity compared to multi-
rotors platforms. In fact, they are capable of covering vast areas of land rapidly, 
and to support high temporal and spatial resolution data acquisition; in addition, 
some fixed-wing platforms can carry heavier payloads for extended routes (Hogan 
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et al., 2017). However, they are not adapted for aerial survey in narrow spaces or 
for tasks which require operation of hovering or manoeuvring. They are generally 
preferred for application in wide field-mapping tasks for large portions of areas. 
With the exception of some assembled UAV (Moudrý et al., 2018), fixed-wing 
UAV are generally more expensive and in some countries they are limited due to 
internal regulation of keeping the aircraft in visual line of sight (VLOS) with the 
pilot (Torresan et al., 2017). 

Finally, an interesting technological solution among modern platforms is 
represented by the hybrid-wing which integrates propellers for taking-off and 
landing, but also fixed-wing for large field-mapping tasks (Kim and Kim, 2019). 

Aerial platforms vary in weight, size, flight autonomy, payload, and power. 
Aerial platforms are generally classified according to their weight, specifically 
named maximum take off mass (known as MTOM); hence, they are commonly 
divided in ‘small’ (≤15 kg), ‘light’ (≤7kg) and ‘ultra-light’ (≤0.250 kg) (Zhang 
et al., 2021). 

A less explored opportunity for low-cost aerial surveys is today represented 
by aerostatic balloons, blimps, and kites (Lorenz and Scheidt, 2014). Different 
platforms, which do not integrate any propellers or electric engines, are at 
present available. Generally, they are more suitable for semi-static or punctual 
aerial surveys or data acquisition for small areas. They are adapted for different 
geographical contexts, especially for non-invasive aerial surveys in sensitive 
ecosystems (Bryson et al., 2013). Main characteristics and categories of aerial 
platforms are summarized in Table 1. It is worth noting that each typology of the 
above-mentioned aerial platforms presents the corresponding pros and cons. 

Fig. 1: Main typologies of unmanned aerial vehicles: (a) Fixed-wing UAV Trimble®
 

UX5 (100 cm wingspan); (b) Multi-rotor hexacopter DJI® Matrice600; (c) Kite platform 

and camera; (d) Fixed-wing UAV EbeeSensfly® (115 cm wingspan); (e) Multi-rotor 


quadcopter DJI® Mavic Pro 2; (f) Bionic bird, Drone Bird®
 

(Source: Author’s elaboration)
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Table 1: Main Characteristics of Aerial Platforms for Agricultural Monitoring and 

Management (Source: Author’s elaboration)
	

Aerial Platform 
Category 

Advantages Disadvantages 

Rotary-wings 
(quadcopter, 
hexacopter, octocopter) 

Ease of use 
Take-off/landing vertically 
Hovering on a specific spot 
Capture detailed images 
Suitable for narrow spaces 

Low flight autonomy (15-
25′) 
Limited payload 
Not suitable for extreme 
environments (tropical 
context, high temperatures) 

Fixed-wings High flight autonomy (20-40′) 
Data acquisition on vast areas 
Large payload 

Runway or catapult for 
take-off 
Requirement of flight 
ability and control 
No hovering 

Kite & balloon Extremely low-cost 
Handmade assembly 
Limited legal regulations 

Not suitable for large 
mobile mapping 
Limitations in stability 
Requirement of technical 
skills 

6.3.2. Payload: Sensors and Peripherals 
The component that gives ‘special eyes’ or other specific functions to UAVs 
is represented by the payload. Generally, it is constituted by different types 
of sensors for spatial data acquisition, but it could be implemented by other 
mechanical or electronic peripherals (grippers, discharger devices, biological 
and chemical sensors, weather sensors). By mounting these equipments, UAS 
are turning into powerful observation-and-sensing systems which may speed up 
a more comprehensive understanding of agroecosystem processes and functions, 
by interlinking ground sensors and stations based on IoT technologies (Gupta 
et al., 2015; Hayat and Yanmaz, 2016). 

Kind and number of elements of payload that can be installed on a UAV 
depend on their size and weight; the main aspect to be considered is the UAV’s 
payload lift capability. Therefore, every aerial platform will have a maximum 
payload which limits size and weight of equipment that can be adopted. Similarly, 
general performances of UAV, such as flight time, stability, and velocity are 
strongly affected by the payload. It is noteworthy that many UAV manufacturers, 
such as DJI or Parrots provide on-board sensors which comply with the mentioned 
characteristics (Kim and Kim, 2019; Easterday et al., 2019). UAS applications in 
agriculture usually require adoption of small and lightweight payload to ensure 
performance, both in data acquisition and flight range (Zhang et al., 2021). 

Typically, UAV sensors can be classified in the following types: 



 

 •  Visible light sensors (RGB) 
 •  Multispectral sensors 
 •  Hyperspectral 
 •  Thermal sensors 
 •  Light detection and ranging sensors (LiDAR) 

6.3.2.1.  Visible Light Sensors (RGB) 

Undoubtedly, visible light sensors – or commonly named RGB cameras – are 
the most used optical devices integrated into UAVs. These cameras produce 
the image most typically recognized in photography, by using red, green, and 
blue bands (or channels) within the range of visible light for image composition. 
Different typology of RGB cameras are at present available for aerial surveys: 
from reflex to mirror-less, from bridge to compact cameras (Yonah et al., 2018). 
They are generally capable of acquiring images from high to ultra-high spatial 
resolution, according to pixel count and sensor size. The main advantage of 
RGB cameras is the relative ease of use, both in terms of image acquisition 
and data  processing, by using common photogrammetry software (Zheng et al., 
2018; Tewes and Schellberg, 2018). Moreover, aerial surveys can be performed 
in different skylight conditions, both with cloud cover or cloudiness; however, 
weather changes during the UAV  survey time-frame may extremely affect the 
quality of mosaic composition, due to changes in light conditions and, therefore, 
the different image exposures (Roth and Streit, 2017). 

Downsides of using only RGB cameras are mainly due to their incapability 
of detecting different parameters which are not included the visible range. 
Consequently, RGB cameras are often coupled with multispectral sensors (Gruner 
et al., 2019; Hassler and Baysal-Gurel, 2019). 

6.3.2.2.  Multispectral Sensors 

Multispectral sensors expand the capability to obtain information beyond the 
visible spectrum  of human eyes. As vegetation absorbs and reflects light in a wider 
range of spectrum, a larger amount of information can be, therefore, derived from 
multispectral images. Particularly, this spectral information is essential to assess, 
to monitor, and to manage different components and dynamics of agroecosystems: 
from physiological, biological, and physical characteristics of vegetation, to 
biodiversity and water management (Patrick et al., 2017; Iqbal et al., 2018). 

The most diffused use of multispectral sensors in agriculture is related to the 
generation of several vegetation indices by the use of combinations of specific 
bands, commonly located in the near infrared (NIR) region of spectrum, within 
750 nm and 2,500 nm wavelength. Therefore, multispectral sensors are designed 
to acquire information in multiple channels of light spectrum (typically, from 4 
to 12 bands) and they cover large wavelength ranges (from 50 to 100 nm wide). 
Undoubtedly, the most important and adopted vegetation index for analyses on 
vegetation is the normalized difference vegetation index (NDVI) (Zaman-Allah 
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et al., 2015; Zhang et al., 2018; Hassler and Baysal-Gurel, 2019); however, 
many variants based on bands in the NIR region were developed to increase 
performances of multispectral analyses. It is worth noting that, as most of the 
vegetation has higher spectral response within a slight portion between Red and 
NIR, different sensors are implemented with a dedicated channel around 717 nm 
wavelength, called Red-Edge (Hassler and Baysal-Gurel, 2019). 

Disadvantages of multispectral sensors are mainly linked to the complexity 
of data to be acquired and processed for deriving useful information. In fact, use 
of multispectral sensors requires corrections in different phases of the processing 
workflow: i) on site before the aerial survey for image acquisition (radiometric 
calibration); ii) during pre-processing (image enhancement and mosaicking); iii) 
during the calculation of vegetation indices (Zhang et al., 2021). 

In terms of accessibility, multispectral sensors for UAS are usually much 
more expensive as compared to RGB cameras. It is not rare that RGB cameras 
are hacked and modified by stakeholders to extend the capability to acquire 
information in NIR and Red-Edge as well. This improvement is technically 
possible by complete substitution of the original RGB optical filter with another 
one, turning the original camera into a multispectral sensor in NIR region. 
Commonly, the result from hacking the camera is a hybrid sensor which acquires 
invisible RGB and NIR together. Clearly, hacked sensor will no longer work in 
visible light acquisition mode; hence, the use of original RGB camera together 
with the modified NIR camera is documented in many cases (Zhang et al., 2021). 

6.3.2.3. Hyperspectral Sensors 

Likewise multispectral cameras are capable of detecting information beyond 
the visible light spectrum. The main significant differences are related to the 
number of available bands and the bandwidths. In general, hyperspectral cameras 
can capture specific and independent spectral information by hundreds, or even 
thousands, of bands which cover narrow wavelength windows, ranging from 10 to 
20 nm (Hunt and Daughtry, 2018). Detailed explanations of hyperspectral sensors 
and image-processing techniques are described in Chapter 4 of the present book. 

The adoption of such cameras on UAS seems to be very promising in 
agriculture as they can be adopted for different purposes: mapping plant species 
and phytocenosys dynamics by detecting specific spectral signatures, measuring 
physiological processes of vegetation, plant phenotyping and modeling (Hunt and 
Daughtry, 2018; Tsouros et al., 2019). Unfortunately, lightweight hyperspectral 
sensors which are suitable for UAS platforms are currently in full technological 
development and, therefore, they are still very expensive, both for public 
institutions and farmers; hence, they are not commonly adopted in agricultural 
applications. 

In addition, these sensors require a huge amount of computational resources 
as hyperspectral imaging typically generates an enormous volume of data to be 
processed and managed. 
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6.3.2.4. Thermal Sensors 

Thermal sensors are specific cameras which are able to detect the temperature 
of surfaces and objects. As all bodies with temperature > 0 K (–273°C - –459°F) 
have the physical property of emitting energy in the infrared spectrum, these 
sensors are capable of capturing and – after calibration processes – return an 
output in terms of thermal imaging (Hassel and Baisal-Gurel, 2019). They usually 
detect infrared energy within a wavelength range from 750 to 106 nm (REF). In 
general, thermal sensors are adopted for mapping and assessing spatial variability 
of evapo-transpiration rate of vegetation and water stress associated with other 
physical factors, such as morphology, pedology, and micrometeorology (Granum 
et al., 2015; Ribeiro-Gomes and Hernández-López, 2017). 

The main constraint of thermal cameras is related to the low spatial resolution 
as compared to the other mentioned sensors (Ribeiro-Gomes and Hernández-
López, 2017). This typology of sensors is not commonly adopted in agriculture 
as it is particularly expensive on one hand, and requires advanced skills and 
competences in data pre- and post-processing, on the other. Thermal sensors 
are often combined with RGB and multispectral sensors for UAS survey (Lioy 
et al., 2021). 

6.3.2.5. Light Detection and Ranging Sensors (LiDAR) 

Light detection and ranging (LiDAR) devices are active sensors which are able 
to acquire 3D information (x,y,z) by emitting a beam of light pulses which hit 
surfaces and objects; light is reflected back and recorded by the sensor as spatial 
information (Maltamo et al., 2014). 

In general, LiDAR sensors are consolidated technologies commonly 
adopted as laser scanners for on-ground surveys. Since more than twenty years, 
airborne LiDAR is widely used for different environmental applications, such 
as geomorphological and topographic applications. High-resolution digital 
surface models (DSM) and digital terrain models (DTM) are the first-level output 
of using LiDAR data. By analyzing and integrating DSM and/or DTM with 
other information, it is possible to exploit LiDAR data in various applications 
(Vepakomma et al., 2004; Lombard et al., 2019). 

Only recently, by the rapid advances in technology development, LiDAR 
sensors are integrated into UAS platforms, gaining even more attention in a wide 
range of applications. Due to their effective capability to accurately measure 
3D structures, LiDAR technology provides different opportunities, especially 
in forest ecology, agriculture, soil and water management (Bagaram et al., 
2018). Common applications in agroforestry refer to canopy height and density 
measurements, fractional vegetation coverage, above-ground mass estimations, 
and land mapping (Zhang et al., 2021). 

The main constraint of deploying LiDAR survey is today represented by the 
extremely high costs of sensors which also may require an adequate UAV in terms 
of payload and safe aerial operations. 
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6.3.3. Ground Control Station and UAV Controller 
To deploy an effective aerial survey, dedicated flight planning, a real-time 
flight control, and drone monitoring are required. The ground control station – 
commonly named GCS – is a computer (tablet, smartphone or laptop) by which 
the human operator is able to monitor, in real-time, UAV data acquisition during 
the flight (Kim and Kim, 2019). In addition, GCS continuously communicates 
to UAV controller, which is commonly the remote control device working in 
two-way data link for managing both flight operations and the autopilot system. 
With the UAV control system, different information acquired by the set of sensors 
integrated on to the drone allows control over important parameters, such as the 
flight altitude, the planimetric distance from the take-off/landing base (home 
point), the inside and outside temperature, the presence of obstacles, and air force 
(Kim and Kim, 2019). All the acquired information from UAV sensors is therefore 
displayed on the GCS which allows direct monitoring of the flight, both for real-
time assessment of the aerial survey-data acquisition and for possibly performing 
recovery or safety operations. 

Usually, GCS is based on dedicated proprietary software or applications 
provided by the UAV manufacturers or by other software houses, such as UgCS 
(universal ground control station), DroneDeploy; on the other hand, according to 
UAV hardware compatibility, different open-source software is available and is 
currently under development, such as mission planner ground station, MAV Pilot, 
APM Planner 2.0, MAVProxy, QGroundControl. 

6.3.4. Human UAS Operator 
The human control in UAS is crucial in all phases: from flight planning to the 
aerial survey. Firstly, it is necessary, and in most of countries mandatory by law, 
to pilot the UAV during the flight. Even if most of aerial surveys are performed 
automatically by the GCS by accomplishing the pre-planned flight for spatial data 
acquisition, a pilot is always required to assist all the aerial operations. Normally, 
a second operator is often required to support the pilot in all flight operations, in 
order to assist possible recovery manoeuvrings. 

Beyond the UAV pilot, the human component is essential also in upstream 
and downstream phases of the aerial survey. In the preliminary phase, a 
geographical analysis of the area of interest by using GIS-based software is 
strongly recommended, in order to: (i) set up an optimized flight scenario which 
is able to maximize capability of data acquisition; (ii) identify possible physical 
limitations to flight (obstacles, accessibility, topography, infrastructures, sensitive 
places); (iii) examine critical factors that may affect data acquisition (water 
bodies, weather conditions, vegetation). In the post-flight phase, all data acquired 
by aerial survey must be processed, visualized, and analyzed. 
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6.4.	 UAS Applications in Sustainable Agriculture 
and Agroecology 

Thanks to the wide range of UAS platform typologies, sensors, and possible 
interlinks with agro-environmental ground-based sensor networks, a broad set of 
applications in the domain of agriculture are at present experienced. Moreover, 
by considering the current speed of UAS technology development, areas of 
application may be further consolidated as well as other potential uses in the 
future will be tested and implemented (Hunt and Daughtry, 2017). However, 
UAS applications are mainly developed in different domains and sub-domains 
of farming, with particular emphasis within the Agriculture 4.0 framework: 
precision farming, smart farming, and sustainable agriculture (Hunter et al., 
2017). Unfortunately, scientific literature does not report UAS applications in the 
field of agroecology as such. 

As an intrinsic function of most remote sensing technologies, land-
cover mapping and classification are the main achievements of using UAS in 
agriculture. By the multi-scalar geometric resolution provided by UAS (from 
sub-meter to sub-centimeter resolution) which may fly at different altitudes, 
such information becomes crucial to understand spatial distribution, variability, 
and dynamic changes of land-cover features. Therefore, classification can be 
performed by discriminating, within large portions of surface, different land cover 
macro classes, i.e. forests, agricultural patches, grazing lands, bare soil and build-
up areas; on the other hand, UAS ultra-resolution acquisition capability gives 
the opportunity to perform extremely detailed land cover/land use classification, 
enabling recognition of specific habitat types, phytochenosys, and individual 
plants (Ahmed et al., 2017; Strong et al., 2017; Librán-Embid et al., 2020). 

In addition, they might be exploited to produce high-resolution three-
dimensional maps of forests or individual tree. This is made possible by 
photogrammetric elaborations, such as structure from motion techniques (known 
as SfM), by using stereoscopic images acquired by RGB cameras or LiDAR data. 

In general, UAS applications help to obtain useful diagnostic information 
of different agroecosystem components and dynamics, derived from image 
acquisition and processing. It includes, among others: vegetation growth and 
yield, above-ground biomass, nutrients and chlorophyll contents, water stress, 
plant and animal diversity, plant species density, presence of pollinators, soil 
characteristics, soil water, and terrain morphology (Jay et al., 2019; Cruzan et al., 
2016). Diagnostic information may be acquired in different phases of vegetation 
growth by different aerial surveys, making UAS a powerful tool for monitoring 
at multiple temporal and spatial scales. Continuous high-resolution monitoring 
gives to farmers the possibility to know where and when to deploy action during 
the growing period of vegetation (Nonni et al., 2018). 

One interesting approach to clarify and to summarize UAS applications which 
are diffused in precision agriculture is presented by Hunt and Daughtry (2017). 
This work proposes to divide UAS employments in three niches, according to 
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the objectives and costs: ‘scouting’ for problems, monitoring to prevent yield 
losses, and planning agricultural management operations. Firstly, UAS can 
be used for ‘praecox diagnosis’ to rapidly detect emerging issues by real-time 
image acquisition and, therefore, to support decision making for interventions. 
Secondly, it can be employed for monitoring crop changes by advanced adoption 
of different sensors which require calibration, pre- and post-data processing from 
GIScientists or professionals. Finally, the third niche is related to the use of UAS 
for planning and management, which is today mainly oriented only for nutrient 
applications (2017). 

As the most diffused applications are related to mapping, classifying, and 
monitoring land cover, we present common UAS employments simplified by 
areas of interest, which may have intersections at each other: vegetation, soil, 
agrosystems, and biodiversity. 

6.4.1. Vegetation Monitoring 
This activity represents the most diffused UAS applications to support agricultural 
practices. It usually combines the use of RGB cameras with multispectral sensors 
to identify possible critical issues on the land cover (Marcial-Pablo et al., 2019). 
The main purposes are to detect and to map, at a very detailed scale, the health 
status of plants by analyzing different vegetation stresses: nutrients deficits, water 
stress, and plant diseases (Zhang et al., 2021). 

To perform these tasks, several vegetation indices based on multispectral 
bands have been adopted in remote sensing analyses, according to the specific 
objectives. Most common vegetation indices exploited in agriculture are the 
following: NDVI, difference vegetation index (DVI), enhanced vegetation index 
(EVI), ratio vegetation index (RVI), Red-edge vegetation stress index (RVTI), 
green normalized vegetation index (GNVI), chlorophyll absorption ratio index 
(CARI), nitrogen nutrition index (NNI), and photochemical reflectance index 
(PRI) (Liu et al., 2018; Galiano et al., 2012). It is worth noting that the combination 
of NIR with red bands is often adopted for above-ground biomass estimation, 
canopy structure, and calculation of the leaf area index (Gruner et al., 2019). A 
complete overview of vegetation indices, operating bands, and applications in 
agriculture is summarized by Padua et al. (2017) in Table 3. 

Another emerging application is represented by exploiting the ultra-resolution 
of UAS images to identify individual or clustered specific plant species, commonly 
defined in conventional agriculture as weeds. This application has found notable 
interest in precision agriculture technology, by the site-specific weed management 
framework (Peña et al., 2013; Castaldi et al., 2017). This approach aims to control 
weed and to drastically reduce the use of herbicides within the crop by detecting 
weed in early stages and by deploying a strict site-specific herbicide distribution. 
To pursuit this goal, a detailed weed map is required for precise operations and 
actions. Spatial analysis can be performed, both by image photo-interpretation 
techniques and by automatic extraction for weed detection. The first choice does 
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not require advanced skills or expertise but, according to the size of the surveyed 
area, it can be time-consuming; the second one is time-efficient but requires skills 
and competences in GIS-analyses and modeling. In the latter case, use of machine-
learning techniques and computer -ision analyses are required. The most common 
automatic classification techniques are the following: object-based image analysis 
(OBIA), artificial neural network (ANN), and maximum likelihood classifier 
(MLL) (Tamouridou et al., 2017; De Castro et al., 2012; Bechtel et al., 2008). 
Generally, computer vision techniques are based on the use of both RGB and 
multispectral bands. However, RGB cameras can be used alone for automatic 
land-cover classification, simplifying calibration, and data processing (Ayhan and 
Kwan, 2020). 

One promising application of automatic mapping specific plant species 
in organic farming and in agroecology is the use of low-cost commercial 
drones, equipped with a standard RGB camera. A representative case study in 
the framework of organic farming is reported by Mattivi et al. (2021). In this 
experimental research, a Parrot Anafi UAV was adopted to automatically extract 
presence of Sorghum halepense, Chenopodium and Amaranthus retroflexus in 
a maize-crop field. Results showed good performances of detecting weed by 
testing ANN, OBIA, and MLL (Figure 2). Moreover, this study also showed 
the feasibility of adopting a completely open-source workflow for RGB image 
processing (OpenDroneMap software) and automatic weed extraction by using 
open algorithms and packages available in SAGA and QGIS software (Mattivi et 
al., 2021). 

It is noteworthy that even if weed mapping is mainly developed within 
precision farming, the use of such information offers to organic farming and 
agroecology the opportunity to scout farmers for geovisualizing components of 
biodiversity and for improving agrosystems management. 

6.4.2. Soil Monitoring 
Assessing general conditions and physico-chemical characteristics of soil system 
in agroecosystem is paramount. Soil texture, soil moisture contents (SMC), soil 
organic matter (SOM), soil water, soil temperature, electrical conductivity, and 
biological activity are the most important aspects that can be assessed by using 
UAS (Jorge et al., 2019; Sobayo et al., 2018; Krížová et al., 2018). To monitor 
soil-related characteristics, multi-spectral, hyper-spectral and thermal sensors are 
generally required, often combined together. 

According to experimental studies of Wang (2016) and Guo et al. (2020), 
SOM, which is an important indicator of soil fertility, can be modeled and 
estimated by combining multi-spectral with hyper-spectral images. UAS equipped 
with thermal infrared sensor can be exploited to assess the spatial distribution of 
crop water deficit (Chisholm et al., 2013; Chen et al., 2019). In addition, thermal 
imaging can be also used for estimating the soil moisture, the water temperature 
comprehensive index, as well as the SMC, at different soil depths (Zhang et al., 2019; 
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Fig. 2: Details of the weed map obtained with: (A) expert photo interpretation (reference 
data), (B) MLC method, (C) ANN method, and (D) OBIA method (Mattivi et al., 2021) 

Zhang et al., 2021). To deploy such applications, usually adopted in the domain 
of precision agriculture, it is necessary to manage a set of specific hardware (UAV 
and sensors), dedicated software, and expertise which might represent critical 
elements that make scarcely accessible UAS to medium/small farms. 

On the other hand, more user-friendly and affordable systems are at present 
adopted, especially for scouting farmers on a specific site and for supporting 
decision-making processes. It is the case of water stagnation in low-lying 
areas from intense precipitation, which is due to the lack of proper drainage or 
infiltration processes (Hunt et al., 2018). By using a small low-cost UAS equipped 
with RGB cameras it is possible to map in detail the flooded areas and to deploy 
rapid interventions. 

In general, soil monitoring by the use of UAS and different kinds of sensors 
is mainly oriented to increase efficiency of water management and irrigation, in 
the framework of smart farming. 
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6.4.3. Agroecosystems and Biodiversity Monitoring 
Only recently, some efforts and successful attempts to bring UAS technologies 
within an agroecological framework to manage agricultural lands and agroforest 
ecosystems were accomplished (Xavier et al., 2018; Padua et al., 2017; Libràn-
Embid et al., 2020). The role of integrating biodiversity conservation with habitat 
management for agricultural-landscape diversification is widely documented. 
In fact, different strategies to improve and manage ecosystem services 
through agrobiodiversity, such as pollination and pest control, are at present 
experimented (Gurr et al., 2017; Landis, 2017). They substantially require a shift 
in geographic scales – from crop to farm and to landscape – in agroecosystem 
and natural-resources management. The main effort is oriented to consolidate 
the relationship between plant and animal diversity and to pursuit in beneficial 
effects on productivity of agroecosystems (Snyder and Tylianakis, 2012; Gurr et 
al., 2017; Libràn-Embid et al., 2020). These strategies include the use of UAS 
for different purposes: mapping plant diversity, detecting floral resources and 
animals, as well monitoring habitat changes (Padua et al., 2011; Libràn-Embid 
et al., 2020). 

In this framework UAS is representing a promising technology to support 
agroecosystem and biodiversity monitoring and management. For instance, it was 
adopted to monitor and to assess the implementation of vegetative buffer strips, 
such as wildflowers, hedgerows or shrubs at (or within) the field margins, in order 
to increase useful biodiversity, such as beneficial organisms (Tschumi et al., 2017; 
Balzan et al., 2016). 

One among the most common UAS applications is related to manual or 
automatic discrimination of flowers within agricultural landscapes in order to 
identify, to assess plant diversity, and to enhance biocontrol processes (Mullerova 
et al., 2017). For instance, some studies reported good accuracy in mapping 
and classifying Heracleum mantegazzianum (giant hogweed) (Michez et al., 
2016), Robiniapseudo acacia (black locust) (Mullerova et al., 2017) and Iris 
pseudacorus (yellow flag iris) (Hill et al., 2017). In addition, by combining 
remote-sensing imaging techniques with ground agro-environmental data, 
emerging experimentations are showing the capability of using UAS for estimating 
arthropod populations and understanding agroecosystems dynamics (Carl et al., 
2017; Xavier et al., 2018). Related to this, an interesting study, which adopted 
UAS for agrobiodiversity monitoring, was developed by Xavier et al. (2018) in 
South Georgia (USA). They used an DJI® M100 hexacopter equipped with an 
RGB ZenmuseX3 camera combined with ground data to monitor and predict the 
population-beneficial arthropod as pollinators, by mapping flower areas from 
high-resolution UAV imagery. Their results highlight concrete possible UAS 
applications for agroecosystem management by showing a positive correlation 
between greater areas of blooming flowers and higher numbers of pollinators 
(Xavier et al., 2018). 
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UAS technologies were also tested for different scopes within integrated 
agroforestry management (Padua et al., 2017). They were adopted to measure both 
ecological and structural properties, such as canopy gaps, floristic biodiversity, 
phytochemical features, and height metrics in forests, shrub, and grass ecosystem 
(Anderson and Gaston, 2013). Fixed-wing UAS is used to assess canopy gaps and 
floristic biodiversity in the forest under-storey, indicating that very-high spatial 
resolution is sufficient to reveal strong dependency between disturbance patterns 
and plant diversity (Getzin et al., 2012). In addition, by using SfM photogrammetry 
technique, UAS can be employed to assess growth, both on individual tree or 
groups of trees (Gatziolis et al., 2015). An important application is also related 
to forest-fires detection and monitoring by using multiple UAS equipped with 
infrared and RGB cameras and a central station (Merino et al., 2011). 

As concealing food production with biodiversity conservation is one of the 
key elements of agroecology, some efforts at using UAS to monitor fauna in 
agricultural landscapes were deployed. By combining the use of RGB with thermal 
cameras, UAS provides a useful tool to detect and to track movement of many 
endothermic animals and environmental anomalies in temperatures as well (Costa 
et al., 2013). These tasks may be useful to quantify and to localize presence of 
animals in agricultural landscapes, reducing the unintentional kills, and increasing 
harvest efficiency (Libràn-Embid et al., 2020). Several studies reported important 
results in optimizing relationships between farming management and the presence 
of different species of fauna, such as Circus pygargus (Mulero-Pázmány and 
Negro, 2011), Capreolus capreolus (Cukor et al., 2019), Vanellus vanellus (Israel 
and Reinhard, 2017). 

Only recently, other UAS applications to monitor and to assess animal 
biodiversity in agroecosystems are offering new opportunities for both 
optimizing harvests and valorising human-environment relationships. One 
ongoing experimental research is about detecting and assessing wasps’ nests 
through the use of UAS thermal sensors (Lioy et al., 2021). As wasps’ nests might 
play an important role as they are pest predators in many crops (Prezoto et al., 
2019), their precise localization and assessment is essential. Other promising 
UAS applications are related to the localization and quantification of important 
vertebrate pollinators and seed dispersers, such as bats and hummingbirds. In fact, 
it has been demonstrated that their absence can drastically reduce fruit or seed 
production up to 60 per cent on an average (Ratto et al., 2018). Spatial distribution 
and behavior about vertebrate pollinators and seed dispersers may represent 
an important task for improving agroecosystem management and wildlife 
biodiversity conservation. In addition, the combined use of a multispectral sensor 
with thermal camera showed interesting performances in detecting birds and 
mammals, allowing UAS-derived counts and age of colony-nesting (Chretien et 
al., 2016; Weissensteiner et al., 2015). Hence, detection and tracking of certain 
species which have mobility in and around farmlands might make an important 
contribution to agroecosystem planning and biodiversity conservation (Libràn-
Embid et al., 2020). 
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6.5.	 UAS for Preserving Spider Monkey and for 
Agroecosystem Management: Experiences 
from Tropical Forests of Chocò (Ecuador) 

The present study is developed in the tropical forest ecosystems of Ecuador, 
under the Washu Project. The general framework of the project is to develop an 
integrated model by combining scientific investigation, environmental education, 
and community education to create empowered, strong, and independent 
communities for conservation practitioners and for their own forests. 

One of the main tasks was to support management and rehabilitation of spider 
monkey (Atelesfuscipes fuscipes), which is one of 25 most threatened primates in 
the world, listed within the category Critically Endangered (CR) and included in 
Appendix II of CITES. Moreover, spider monkey is currently the most threatened 
primate in Ecuador, especially through illegal trafficking and habitat loss. They 
inhabit the northern and central region of the Ecuadorian coast, and the western 
foothills. They live in tropics and humid subtropics between 100 and 1700m a.s.l., 
both in continuous forest and forest patches – principally in primary and older 
secondary forests. Spider monkeys are vulnerable to ecosystem degradation as 
their diet is based on mature fruits; therefore, larger areas of healthy forest are 
required to acquire food. Agroup formed of 30 individuals occupies approximately 
90 to 250 hectares. Their ecological role is crucial as they are, among neotropical 
primates, the best disperser species due to their digestive system and a mobility 
range of about 6 kms per day. Moreover, as umbrella species, conservation of 
spider monkey results in a wider protection of habitat also for other endangered 
animals, such as jaguars or the green macaws. 

Main threats for spider monkeys are deforestation, unsustainable agricultural 
practices, cattle, and mining. A combination of such factors has led to the loss and 
fragmentation of spider monkey habitat and a severe reduction in the population 
size of this primate. 

To support conservation programs for spider monkey and its ecosystems, a 
UAS-based monitoring plan was developed in 2014 by Drone & GIS enterprise 
(Quito). By considering context and resources, particular attention was dedicated 
to the hardware and software setup: a low-cost fixed-wing UAV was identified 
and adopted for aerial surveys (E384 by Event38); it was equipped with a low-
cost RGB camera (Samsung NX1000, 16 mm lens). To perform aerial surveys as 
well spatial analyses, GCS Mission Planner and QGIS open-source software were 
used; Pix4Dmapper® was selected to perform SfM elaborations (Fig. 3). 

In addition, to perform aerial surveys in a morphologically complex area, a 
DTM (30 m resolution) from the Shuttle Radar Topography Mission was integrated 
in the flight plans. By using QGIS, different areas of interests of about 500 ha 
each were analyzed and selected for UAV aerial surveys. Each area of 500 ha is 
completely covered by three UAV mission plans. For the flight plan, an altitude 
of 250 m a.s.l. and a speed of 15 m/s were set; to obtain reliable orthophotos 



 

  

 

 Fig. 3: Open-source software showing: (a) geographic analysis and definition of areas 
of interest in QGIS environment, and (b) specific parameters for UAV survey with 

Mission Planner 
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and DSM output by SfM, standard frame overlaps were configured for image 
acquisition during the flight (sidelap 70 per cent; overlap 75 per cent). By setting 
these parameters, three UAV surveys were performed obtaining about 6.7 cm of 
ground sampling resolution, during 30 minutes of flight. The main characteristics 
are summarized in Table 2. 

Results from processing and analyzing UAV dataset allowed to clearly 
identify and to map important deforestation hotspots and important processes of 
ecosystem degradation within the study area (Fig. 4). 



 

 Fig. 4: High-resolution ortophoto obtained after photrammetric analysis, 
showing deforestation hotspots 
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Table 2: Main Settings and Parameters for UAV Aerial Survey 

Flight 1 Flight 2 Flight 3 
Ground resolution: 6.72 cm 6.72 cm 6.72 cm 
Distance between images: 61.3 m 61.3 m 61.3 m 
Pictures: 264 264 302 
Flight time: 29:14 minutes 30:04 minutes 38:06 minutes 
Photo interval (est): 4.09 sec 4.09 sec 4.09 sec 

Such results are paramount for spider monkey habitat conservation as well 
for agroecosystem management to be shared with local indigenous farmers. It is 
noteworthy that by using a fixed-wing UAV in favorable weather conditions, it 
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was possible to perform 1,200 ha of data acquisition in one single day, at ultra-
high spatial resolution imaging. On the other hand, by considering the weather 
conditions, such as cloud cover over tropical forests of Ecuador, usable high-
resolution images (0.3 m) from commercial satellites are rare. Therefore, the use 
of a fixed-wing UAV capable of acquiring spatial data of a large portion of surface 
represents an opportunity for biodiversity and ecosystem monitoring. 

6.6.	 Opportunities and Perspectives for the 
Agroecology Transition 

Despite the recent and the actual proliferation of UAS for different applications 
in farming systems, it seems there are important further steps to globally fulfill, or 
to make substantial advances, in new pathways towards agroecological transition. 
At present, agricultural activities are drastically shaping about 37.4 per cent (56.1 
M km2) of all land surfaces on Earth (150 M km2), making farmlands the widest 
human-modified ecosystem (FAO, 2016; 2017). Magnitude and extension of multi-
scalar impacts of agriculture are widely documented in scientific literature: land 
use and land-cover changes, contamination and degradation of soil and freshwater 
systems, loss of genetic and functional diversity (biosphere integrity), alteration 
of global biogeochemical flows, and increase in anthropogenic greenhouse gases 
(Campbell et al., 2017; Kissinger et al., 2012; Shindell, 2016; Steffen et al., 
2016). To face the global challenges and to significantly increase sustainability of 
agriculture at different geographic scales – from ecosystem to landscape as far as 
the biosphere scale – dramatic changes to approach and to manage agrosystems 
are required. At present, a unique opportunity window for driving agriculture 
toward a sustainable model of farming and natural resources management is 
embodied by the agroecological approach (Altieri et al., 2017). It represents a 
paradigm shift of conceiving agriculture by adopting a holistic approach for food 
production, supporting and valorising ecological functions and processes, and bio-
cultural diversity and socio-economic values of agroecosystems (Wezel, 2009; 
Altieri, 1989). By such a conceptual and applicative framework, agroecology is 
ever more marking new pathways for investigating complexity of agroecosystems 
worldwide, in order to increase functional diversity, to control biogeochemical 
fluxes into a close-loop system, and to pursue socio-economic sustainability of 
agricultural production as well (Altieri, 1989; Wezel et al., 2009). 

In this framework, the systemic approach of geographical information 
science (GIScience) combined with the use of GeoICT and UAS offers a twofold 
opportunity for understanding ecological complexity and, therefore, to design 
and manage agroecosystems: firstly, it is able to integrate different biophysical, 
ecological, hydrological, anthropic, and socio-economic dynamics into spatially 
explicit analyses and modeling about the complex interactions of socio-
environmental systems; secondly, it includes participatory methodologies which 
may represent powerful tools in supporting local community empowerment, 
public decision making processes, policy support, and planning in agroecosystem 
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design and management (Walsh, S.J., Crews-Meyer, 2002; Goodchild, 2007; 
Goodchild et al., 2007). 
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