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Bosonic clouds with attractive interaction beyond

the local interaction approximation
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We study the properties of a Bose–Einstein condensed cloud of atoms with
negative scattering length confined in a harmonic trap. When a realistic non
local (finite range) effective interaction is taken into account, we find that,
besides the known low density metastable solution, a new branch of Bose
condensate appears at higher density. This state is self–bound but its density
can be quite low if the number N of atoms is not too big. The transition
between the two classes of solutions as a function of N can be either sharp or
smooth according to the ratio between the range of the attractive interaction
and the length of the trap. A tight trap leads to a smooth transition. In
addition to the energy and the shape of the cloud we study also the dynamics
of the system. In particular, we study the frequencies of collective oscillation
of the Bose condensate as a function of the number of atoms both in the local
and in the non local case. Moreover, we consider the dynamics of the cloud
when the external trap is switched off.

PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj

1. INTRODUCTION

In the standard treatment of Bosonic alkali atoms in a trap, a local
form (i.e. momentum independent) is assumed as effective interatomic
interaction1. This can not be completely correct when the scattering
cross section has a significant momentum dependence already at very low
momenta2. This is the case of 7Li, a particularly interesting case due to its
negative scattering length. This momentum dependence implies3 that the
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effective interaction is non local changing from attractive to repulsive at a
characteristic range re.

Recently we have studied4 the ground state of 7Li atoms with a non
local interaction in a harmonic trap Uext(r) =

1

2
mω2

0r
2 and we have shown

the existence of a new branch of states intermediate in density between the
known very dilute state and the collapsed high density state. Here we study
how the non locality affects the dynamics of the system. We assume that
the attractive potential has a finite range re and in addition we allow for
the presence of a repulsive contribution which is modeled as a local positive
term defined by a “high energy” scattering length aR > 0. The effective
interaction is then written in the following form4:

veff(k) =
4πh̄2

m
[aR + (aT − aR) f(kre)] , (1)

where f(x) = (1+x2)−1. We use interaction parameters appropriate for 7Li:
aT = −27 aB , re = 103 aB and aR = 6.6 aB (where aB is the Bohr radius).

2. CONDENSATE GROUND STATE

The ground state wavefunction of a cloud of N atoms is determined
by minimizing the Gross–Pitaevskii (GP) functional E [Ψ], where Ψ(r) is the
wavefunction of the condensate5. In the ground state Ψ(r) is positive definite
and spherically symmetric.

As a first step, we discuss an approximate variational approach to this
problem which already shows the main features of the exact solution. As a
trial wavefunction we choose a Gaussian with a single variational parameter
σ (standard deviation) which defines the size of the cloud in units of the
harmonic oscillator length aH = (h̄/(mω0))

1/2. With this choice, the energy
E(σ) can be analytically expressed in terms of elementary functions. The
extrema of E(σ) are obtained as solutions of an algebraic equation, which
gives the number of bosons as a function of the size σ0 of the cloud:

N = (1− σ4
0)
[

− γRσ
−1

0
− 1

3
τ1σ0 +

2

3
√
π
χτ2σ

3
0 −

2

3
χ2τ2σ

4
0g(χσ0)

]

−1

, (2)

where γR = (2/π)1/2aR/aH , τ1 = (2/π)1/2aH(aT − aR)/r
2
e , χ = 2−1/2aH/re,

τ2 = a2H(aT − aR)/r
3
e and g(x) = erfc(x) exp (x2) with erfc(x) = 1 − erf(x)

the complementary error function. This equation has either one or three
positive roots depending on the parameters and on number N of atoms in
the cloud. When three solutions are present, the intermediate one represents
an unstable state (i.e. a local maximum of the energy) while the other two
respectively describe a low density metastable solution and a minimum which
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Fig. 1. Mean radius of the condensate, in micron, as a function of the
number of bosons for 3 different traps. The lines with a end point represent
the results with local interaction.

represents the stable solution within GP approximation. The variational
results for three typical trap sizes are shown in Fig. 1, where the mean
radius is plotted as a function of N . For comparison, we also show the
radius of the cloud when a local interaction is assumed (re = 0 in Eq. (1)).
In this case there is a critical number Nc ≃ 0.67aH/aT of bosons beyond
which the cloud collapses1.

We have also computed the exact solution of the GP equation, obtained
by numerical integration of the corresponding self-consistent Schrödinger
equation. The variational approach is always very close to the exact
solution4. The effects of non-locality are always important for very tight
traps while for larger traps non-locality is important just when the radius of
the cloud rapidly drops for increasing N . This “transition” is discontinuous
for large traps, where the reentrant behavior of the curve shows the presence
of an unstable branch. By reducing the trap size, however, this discontinu-
ity is strongly reduced and, below about aH = 0.3µm, the unstable branch
disappears and there is a smooth evolution from a very dilute cloud to a less
dilute state with an increasing density as N grows.

For large N the size of the cloud is remarkably independent of the
trap size suggesting that the atoms are in a self-bound configuration. We
have verified this effect by integrating numerically the time dependent GP
equation and by studying the dynamics of the cloud when the external trap
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is switched off. The condensate expands when N < Ncl ≃ 234. For larger N
the condensate oscillates around the minimum of the energy E(σ) in absence
of external trap (see also next section). Thus, within our representation of
the effective interatomic interaction, 234 is the minimum number needed to
get a self-bound low density cloud of 7Li atoms. Its average density is about
1016 at/cm3. This self-bound state might have a rather short life time due
to recombination precesses.

3. CONDENSATE COLLECTIVE OSCILLATIONS

The condensate undergoes density oscillations around the minimum σ0
of the energy E(σ). In the local case, it has been shown that the monopole
collective oscillation ω → 0 as N → Nc with a 1/4 power law6. It is interest-
ing to analyze what happens by including non locality. We use two schemes:
the numerical integration of the time–dependent GP equation and an ap-
proximate analytical study of the small oscillations around the minimum of
the energy function of the condensate.

Following Ref. 6, we associate with the collective motion a kinetic
energy of the form

T̄ =
1

2
mNṙ2 =

3

4

Nh̄

ω0

σ̇2 , (3)

where σ is again the standard deviation of the Gaussian trial wavefunction
in units of the harmonic oscillator length aH . The dynamics of the collective
excitations is determined by T̄ and by the quadratic part of the energy E
expanded in powers of (σ−σ0). Some elementary steps lead to a remarkably
simple expression for the monopole frequency. In the local case we find

ω = ω0

[

5− σ−4

0

]1/2
, (4)

where σ0 is related to N by N = (σ5
0−σ0)/γ with γ = (2/π)1/2aT /aH . From

Eq. (4) we verify that ω = 2ω0 for σ0 = 1, and ω → 0 for σ0 → 5−1/4 (i.e.
for N → Nc). Instead, in the non local case, the frequency reads

ω = ω0

[

3σ−4

0
+ 1 +N

(

4γRσ
−5

0
+

2

3
τ1σ

−3

0

− 2

3
χ2τ2g(χσ0)(1 + 2χ2σ2

0) +
4

3
√
π
χ3τ2σ0

)]1/2
, (5)

where σ0 is related to N and the interaction parameters by Eq. (2).
In Fig. 2 we show the monopole collective frequency of the condensate

as a function of N for 3 traps for non local, local and trap–off cases. This
figure can be easily obtained by using Eq. (2), Eq. (4) and Eq. (5). In
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Fig. 2. Monopole frequency of the condensate, in units of trap frequency,
as a function of the number of bosons for 3 different traps. From top to
bottom: aH = 0.6 µm, aH = 0.3 µm, aH = 0.1 µm (respectively, ω0 = 25.10
kHz, ω0 = 100.41 kHz, ω0 = 903.67 kHz). Note that in the trap off case
there is a well defined frequency only for N > 234.



L. Reatto, A. Parola and L. Salasnich

N ω (numerical) ω (analytical)

100 1.91 1.92
200 1.64 1.57
250 6.74 6.62
300 12.69 13.91
500 33.96 37.25
1000 75.70 77.85

Table 1
Numerical and analytical monopole frequency, in units of the trap frequency,
for different values of the number N of bosons. aH = 0.3 µm.

the non local case, for the larger trap (aH = 0.6 µm), where there is a
reentrant behavior, we see two branches: One branch starts from small N
and corresponds to the larger cloud. The frequency of this branch is very
close to the result given by the local approximation. In the second branch ω
starts from zero at the lowest limit of the reentrant behavior in Fig. 1 and it
raises rapidly as N1/2. For traps of intermediate size (aH = 0.3 µm in Fig.
2), ω has a dip in the transition region between the low density state and
the self bound state. For very small traps, there is only one branch and the
frequency increases smoothly with the number of bosons. As discussed in
the previous section, when the external trap is switched off the condensate
oscillates if N > Ncl ≃ 234. This frequency starts from 0 at Ncl and it
approaches the trap–on (non local) frequency by increasing N . As shown in
Table 1, there is good agreement between the variational monopole frequency
of Eq. (5) and the numerical one (non local case), obtained by solving the
time–dependent GP equation.

To conclude, we observe that it should be kept in mind that in the
large N limit our results are only qualitative because the GP equation itself
breaks down and interaction effects are expected to produce a depletion of
the condensate when ρ|aT |3 is not very small.
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