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Abstract

Nowadays, the increasing dimension and complexity of real data problems pose hard

theoretical and practical challenges to researchers working in any field of science. The

study of complex non-linear, eventually non-observable, phenomena deserves the de-

velopment of new mathematical and statistical techniques able to explain the actual

empirical evidence, taking into account of different sources of information. On the other

hand, technological constraints may limit our capabilities to process massive multidi-

mensional datasets in a reasonable amount of time and not exceeding the available

memory space. For these reasons, the continuous development of new flexible models,

reliable estimation methods and efficient algorithms is of prominent importance from

an applied point of view. In this thesis, we try to address some of these methodological

issues, proposing two original contributions, an algorithmic one and a modelling one.

In the first part of this thesis, we consider the estimation of robust regression models

within a Bayesian inferential framework. In this case, we propose a new deterministic

variational approximation for general posterior distributions, which build upon alter-

native methods in the literature, improving their performances in terms of accuracy.

We then discuss several extensions and generalizations, so that to enlarge the range of

application of the proposed method.

In the second part of this thesis, we study a new quantile regression model for het-

erogeneous data gathered on spatial, possibly complex, domains. To this end, we adopt

a nonparametric penalized regression approach with differential regularization, which

allow us to incorporate additional spatial information in the form of a partial differen-

tial equation. Upon that, we develop a new computational estimation method and we

analyze the theoretical and empirical properties of the proposed estimator, showing its

comparative advantages with respect to state-of-the-art methods in the literature.





Sommario

Al giorno d’oggi, la crescente dimensionalità e complessità dei dati generati da problemi

applicativi reali pone nuove sfide teoriche e pratiche ai ricercatori che operano in qualsiasi

campo della scienza. Lo studio di fenomeni non lineari, e tal volta non osservabili,

richiede lo sviluppo di nuove tecniche matematiche e statistiche in grado di spiegare

l’evidenza empirica attuale tenendo conto di varie fonti d’informazione. D’altra parte,

vincoli tecnologici possono limitare le nostre capacità di elaborazione d’insiemi di dati

complessi in un tempo ragionevole e senza eccedere lo spazio di memoria disponibile.

Per queste ragioni, il continuo sviluppo di modelli flessibili, metodi di stima robusti e

algoritmi efficienti è di primaria importanza dal punto di vista applicativo. In questa

tesi, cerchiamo di affrontare alcuni di questi problemi metodologici, proponendo due

contributi originali, il primo algoritmico e il secondo modellistico.

Nella prima parte di questa tesi, viene considerata la stima di modelli di regressione

robusti in una cornice inferenziale Bayesiana. In questo caso, proponiamo una nuova

approssimazione variazionale deterministica per distribuzioni a posteriori generalizzate,

la quale, costruendo su metodi esistenti in letteratura, ne migliora le prestazioni in

termini di accuratezza. Discutiamo poi numerose estensioni e generalizzazioni, al fine

di ampliare lo spettro di applicazione di tale metodo.

Nella seconda parte di questa tesi, studiamo un nuovo modello di regressione quanti-

lica per dati raccolti su domini spaziali, possibilmente complessi. A tal fine, proponiamo

un approccio di regressione nonparametrica penalizzata con regolarizzazione differenzia-

le, la quale permette d’incorporare informazione spaziale aggiuntiva in forma di equazio-

ni alle derivate parziali. Sviluppiamo poi questo problema, sia in termini computazionali

che di analisi teorica ed empirica delle proprietà dello stimatore, mostrandone limiti e

vantaggi comparati rispetto a metodi alternativi presenti in letteratura.
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Notational conventions

Throughout this Ph.D. thesis, lower-case Roman and Greek letters denote scalars.

Lower-case Roman and Greek letters in boldface denote vectors. Unless specified oth-

erwise, they are always assumed to be column vectors. Upper-case Roman and Greek

letters in boldface denote matrices, whose entries are indicated with double-index sub-

scripts. Blackboard-bold Roman letters indicate numeric sets.

We now list and clarify some notational conventions adopted in this Ph.D. thesis.

Vectors and matrices

N (and N+) The set of natural (and positive) numbers.

R (and R+) The set of real (and positive) numbers.

Rd (and Rd
+) The set of real vectors of dimension d, for d ∈ N.

Rp×q The set of real matrices of dimension p× q, for p, q ∈ N.
ai and [a]i The i-th element of vector a ∈ Rq for i = 1, . . . , d.

Aij and [A]ij The (i, j)-th element of matric A ∈ Rp×q, for i = 1, . . . , p and j =

1, . . . , q.

a−i The vector of dimension d− 1 obtained removing the i-th element of

a ∈ Rd, for d ∈ N.
0 and 1 Vectors full of zeros and ones, respectively.

O Matrix full of zeros with generic dimensions.

I Identity matrix with generic dimensions.

a⊤ and A⊤ Transpose of a vector a ∈ Rd, or of a matrix A ∈ Rp×q.

A−1 Inverse of a non-singular matrix A ∈ Rd×d, which satisfies A−1A =

AA−1 = I.

stack(·) For column vectors a1, . . . ,an, stack(a1, . . . ,an) returns a unique

vector stacking by column all its arguments.

diag(·) For a vector a ∈ Rd, diag(a) returns a diagonal matrix with diagonal

equal to a.

blockdiag(·) For a sequence of square matricesA1, . . . ,An, blockdiag(A1, . . . ,An)

returns a block-diagonal matrix with diagonal blocks equal to

A1, . . . ,An.

vec(·) For a matrix A ∈ Rp×q, vec(A) returns the column vectorization of

A, that is a vector stacking all the columns of A from left to right.

xxi



xxii Notational conventions

trace(·) For a square matrix A ∈ Rd×d, trace(A) returns its trace
∑︁d

i=1Aii.

det(·) For a square matrix A ∈ Rd×d. det(A) returns its determinant.

∥ · ∥ Generic sign denoting the norm of a vector or matrix.

∥ · ∥p For a vector a ∈ Rd, ∥a∥p = (
∑︁d

j=1 |aj|p)1/p returns the ℓp norm of

a. For a matrix A ∈ Rp×q, ∥A∥p = (
∑︁p

i=1

∑︁q
j=1 |Aij|p)1/p returns

the ℓp norm of A.

∥ · ∥∞ For a vector a ∈ Rd, ∥a∥∞ = maxj |aj| returns the ℓ∞ norm of a.

For a vector A ∈ Rp×q, ∥A∥∞ = maxi,j |Aij| returns the ℓ∞ norm of

A.

⊗ For two matrices A ∈ Rp×q and B ∈ Rn×m, A ⊗ B returns the

pn× qm matrix obtained by the Kronecker product of A and B.

+,−,⊙, / Elementwise operations between vectors and matrices with compat-

ible dimensions.

Special symbols

≡ For any A and B, A ≡ B means “A is defined as B”.

← For any A and B, A← B means “A is updated to B”.

∝ For any A and B, A ∝ B means “A is proportional to B, up to a

multiplicative constant”.

≈ For any A and B, A ∝ B means “A is approximated by B”.

∼ For a random variable x and a distribution D, x ∼ D means “x is

distributed as D ”.

Hilbert spaces

Lp(Ω) Space of functions f : Ω→ R such that
∫︁
Ω
|f |p <∞, for p ∈ N.

Hp(Ω) Sobolev space of functions f ∈ L2(Ω) having p weak derivatives in

L2(Ω), for p ∈ N.
∥ · ∥V For any function f ∈ V , ∥f∥V returns a properly defined norm, or

seminorm, of f in V .

∇f For a scalar field f : Rd → R, ∇f = ∂f/∂x returns the gradient of

f .

∇2f For a scalar field f : Rd → R, ∇2f = ∂2f/∂x∂x⊤ returns the Hessian

of f .

∆f For a scalar field f : Rd → R, ∆f =
∑︁d

j=1 ∂
2f/∂x2j returns the

Laplacian of f .

div(f) For a vector field f : Rd → Rd, div(f) =
∑︁d

j=1 ∂fj/∂xj returns the

divergence of f .

Probability and statistics

π(·) A generic probability density function.

q(·) A generic approximate density function.

P(·) For a generic random event E, P(E) returns its probability.
E(·) For a generic random variable x, E(x) returns its expected value.



xxiii

Var(·) For a generic random variable x, Var(x) returns its variance. For

a generic d-dimensional random vector x, Var(x) returns its d × d
variance-covariance matrix.

Cov(·, ·) For two generic random variables x and y, Cov(x, y) returns their

covariance. For two generic p- and q-dimensional random vectors x

and y, Cov(x,y) returns their p× q cross-covariance matrix.

Special functions

I(·) and IA(·) For any set A, IA(x) = I(x ∈ A) is the indicator function of A, which

is equal to 1 if x ∈ A, zero otherwise.

ϕ(·) and ϕd(·) Probability density functions of a univariate and d-variate standard

Gaussian random variables.

Φ(·) and Φd(·) Cumulative density functions of a univariate and d-variate standard

Gaussian random variables.

ϕd(· ;µ,Σ) Probability density functions of a multivariate Gaussian random

variable with mean vector µ ∈ Rd and variance-covariance matrix

Σ ∈ Sd++.

δa(·) The Dirac delta function centered in the point a ∈ Ω, such that

f(a) =
∫︁
Ω
f(t)δa(t)dt, for any f : Ω→ R.

Γ(·) The Euler’s Gamma function. Γ(x) =
∫︁∞
0
tx−1e−tdt, x > 0.

B(·, ·) The Beta function. B(x, y) =
∫︁ 1

0
tx−1(1− t)y−1dt, x, y,> 0.

Kν(·) Modified Bessel function of the second kind.

logit(·) The logistic function, equal to logit(x) = log{x/(1− x)}, x ∈ (0, 1).

expit(·) The inverse of the logistic function, equal to expit(x) = ex/(1 + ex),

x ∈ R.
ρτ (·) The quantile check function, equal to ρτ (x) = x{τ − I(x < 0)} or

equivalently ρτ (x) =
1
2
|x|+ (τ − 1

2
)x, for x ∈ R and τ ∈ (0, 1).

Probability distributions

Nd(µ,Σ) Multivariate Gaussian with mean vector µ ∈ Rd and positive semi-

definite variance matrix Σ ∈ Rd×d.

Density function: π(x) = ϕd(x;µ,Σ), x ∈ Rp.

N(µ, σ2) Univariate Gaussian with mean µ ∈ R and variance σ2 > 0.

Density function: π(x) = ϕ(x;µ, σ2), x ∈ R.
t(µ, σ, ν) Student t distribution with degrees of freedom ν > 0, location µ ∈ R

and scale σ > 0. Density function:

π(x) = {1 + (x− µ)2/νσ2}−(ν+1)/2/
√
νB(1

2
, ν
2
), x ∈ R.

AL(µ, σ, τ) Asymmetric-Laplace with asymmetry parameter τ ∈ (0, 1), location

µ ∈ R and scale σ > 0.

Density function: π(x) = τ(1− τ) exp{−ρτ (x− µ)/σ}/σ, x ∈ R.
Exp(λ) Exponential with rate λ > 0.

Density function: π(x) = λ exp(−λx), x > 0.

IG(A,B) Inverse-Gamma with shape A > 0 and rate B > 0.



Density function: π(x) = BAx−A−1 exp(−B/x)/Γ(A), x > 0.

IN(µ, λ) Inverse-Gaussian distribution with location µ > 0, and scale λ > 0.

Density function: π(x) = exp{−λ(x− µ)2/2µ2x}(λ/2πx3)1/2, x > 0.

GIG(ν,A,B) Generalized-Inverse-Gaussian distribution with parameters ν > 0,

A > 0 and B > 0. Density function:

π(x) = (A/B)ν/2xν−1 exp{−1
2
(Ax+B/x)}/2Kν(

√
AB), x > 0.

U(A,B) Uniform distribution over [A,B].

Density function: π(x) = 1/|B − A|, x ∈ [A,B].

Be(π) Bernoulli distribution with π ∈ (0, 1).

Mass function: π(x) = πx(1− π)1−x, x ∈ {0, 1}.
Pois(λ) Poisson distribution with rate λ > 0.

Mass function: π(x) = λxe−λ/x!, x ∈ N.

Chapter-specific additional notation is described along with the Ph.D. thesis. Notation

overlapping between different chapters has to be intended chapter-specific.
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Introduction

Overview

In empirical studies, researchers are often interested in analyzing the behavior of a

response variable, given the information of a set of covariates, by specifying a regression

function for the conditional mean. However, it is generally recognized that the mean

provides little or no information about the conditional distribution of the response when

samples significantly deviate from standard assumptions, such as homoscedasticity and

Gaussianity. In particular, heteroscedasticity, skewness, lepto- or platy-kurtic tails are

characteristics often present in real data that can shadow the relationship between the

response variable and the covariates, as postulated by the conditional mean. Imposing

further restrictive parametric assumptions on the data generating mechanism could be

a solution; this is the answer, for instance, of generalized linear models, which replace

the Gaussian distribution with a more appropriate law belonging to the exponential

family. Robust procedures based on minimum risk criteria instead aim at providing

an adequate description of the characteristics of the conditional distribution without

relying on, possibly misspecified, parametric assumptions.

Among robust minimum risk procedures, quantile regression plays a fundamental role

in statistical theory and modeling. Its ability to flexibly describe non-trivial features of

the conditional distribution, along with robustness to outlier contamination and invari-

ance to monotone transformations, motivates the widespread popularity gained by con-

ditional quantile methods over the years, since their introduction by Koenker and Bas-

sett (1978). Moreover, the strict relationship between quantiles, estimating equations

and minimum risk procedures entails a rich theoretical characterization of the associ-

ated estimator and also highlights the connections with other popular risk based models,

such as expectiles (Newey and Powell, 1987; Efron, 1991), M-quantiles (Breckling and

Chambers, 1988) and support vector machines (Vapnik, 1998). On the other hand, the

non-regular properties of the quantile loss function, such as non-differentiability, piece-

wise flat curvature, and lack of conjugacy, pose severe obstacles to the estimation and

extension of quantile models in more general settings, including penalized, additive and

mixed models. Because of these features, regression quantiles constitute a remarkable

prototype of a non-regular, robust model defined through a minimum risk criterion,

which is worth investigating in order to improve existing inferential procedures and

propose new methodologies.
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4 Main contributions of the thesis

In this thesis, we present some new developments on additive and mixed effect regres-

sion models where the no probabilistic assumptions are made upon the data generating

mechanism of the response variable. We instead rely on risk based models where the

misfit between the estimates and the data is measured through a loss function, with a

particular focus on quantile regression. We then aim at providing some new inferential

and computational tools for handling non-linear, heterogeneous effects of the available

covariates on a response variable.

The organization of the thesis is the following. In Chapter 1, we introduce quantile

regression and related robust regression models, with a particular focus on computa-

tional methods based on data-augmentation, from both frequentist and Bayesian points

of view; the common notation adopted in the rest of the thesis is also introduced here.

In Chapter 2, we discuss the first original contribution of this work, which consists of

a new estimation algorithm for risk-based additive and mixed regression models. In

Chapter 3, we discuss the second contribution of the thesis, which is a new robust non-

parametric model for dealing with data collected over complex spatial domains with

possibly non-isotropic and non-stationary behaviors.

Main contributions of the thesis

The thesis is made by two main chapters. We now discuss the contributions of each of

them.

Non-conjugate regression via variational belief updating

After a brief review of the literature, Chapter 2 is devoted to propose a new variational

approximation method (Ormerod and Wand, 2010) for additive and mixed models de-

fined through a minimum risk criterion. We devote a particular attention to the Bayesian

formulation of the considered models, relying on the so-called Bayesian belief updating

literature (Bissiri et al., 2016). However, we show that such an approach is agnostic to

the inferential perspective we prefer and, thus, it can also be employed for estimation

and inference in frequentist mixed models.

The approximation we propose belongs to the (semi)parametric variational Bayes

paradigm and, in particular, builds upon the works of Knowles and Minka (2011), Tan

and Nott (2013) and Wand (2014) on variational message passing for Gaussian varia-

tional approximations. The corresponding coordinate ascent fixed-point algorithm we

develop only involves closed form algebraic operations and univariate numerical quadra-

tures, when no analytic solutions are available. This leads to a scalable optimization

routine for the estimation of a broad class of models, including generalized linear mixed

models. For instance, we here consider the estimation of quantile and expectile regres-

sion, support vector machines for both regression and classification problems, binomial

regression with logistic link, and Poisson regression with logaritmic link.
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One of the main benefits of our approach is to allow for non-differentiable loss func-

tions and non-conjugate priors, without requiring stochastic approximations or model-

specific data-augmentation strategies (Dempster et al., 1977). Indeed, our method di-

rectly approximates the posterior distribution of the parameters (or the marginal like-

lihood in the frequentist case) on the original parameter space. Under mild regularity

conditions, the proposed approach is theoretically guaranteed to improve the posterior

approximation of existing data-augmented mean field variational Bayes (Wand et al.,

2011; McLean and Wand, 2019) methods in the Kullback-Leibler metric.

Generalizations accounting for additive models, shrinkage priors, dynamic and spatial

models are also discussed, providing a unifying framework for statistical learning that

covers a wide range of applications.

The performances of our algorithm and approximation are then assessed through

an extensive simulation study and a read data application, in which we compare our

proposal with Markov chain Monte Carlo and conjugate mean field variational Bayes in

terms of posterior approximation accuracy, signal reconstruction, and execution time.

Chapter 2 is organized as follows. In Section 2.2, we introduce a first motivating

result and the general setting of parametric and semiparametric variational inference. In

Section 2.3, we describe the class of models we consider, we introduce our approximation

and its properties, and we deliver a pseudo-code formulation of our coordinate ascent

algorithm. In Section 2.4, we provide some remarkable examples of models that can be

handled within our approach; thus, for all of them, we provide the quantities needed

for implementing the proposed algorithm. In Section 2.5, we discuss some possible

extensions and different model specifications. In Section 2.6, we assess the quality of

the approximation via an extensive simulation study. Finally, in Section 2.7, we present

a real data problem concerned with the probabilistic load forecasting of the electric

power consumption in US.

Spatial quantile regression with differential regularization

In Chapter 3, we propose a nonparametric quantile regression model for spatially ref-

erenced data, extending spatial regression with differential regularization by Sangalli

et al. (2013) and Azzimonti et al. (2014). The proposed method allows us to incorpo-

rate external physical knowledge in the estimation of the conditional quantile surface,

whenever this information can be formulated as an elliptic partial differential equation

(PDE; Evans, 2010). Such a construction permits dealing with stationary and non-

stationary anisotropic diffusion effects, unidirectional flows, and mixed boundary condi-

tions. We can also handle complex planar domains characterized by strong concavities,

holes, and physical barriers.

The novelty of our methodology is threefold. First, we introduce a broad class of

physically-informed quantile regression models, based on a penalized loss criterion. In

doing this, we trade off a goodness-of-fit measure and a roughness penalization de-

pending on the PDE specification. Secondly, we propose an innovative functional
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expectation-maximization algorithm (Dempster et al., 1977) in order to estimate un-

known functional surfaces. The infinite-dimensional solution of such an optimization is

then discretized by means of finite element methods (see, e.g., Quarteroni, 2017), and a

model selection criterion based on such a discretized estimator is proposed. Finally, we

provide a theoretical characterization of both the infinite- and finite-dimensional PDE

quantile estimators, proving existence, consistency and asymptotic normality.

We then study the empirical performances of the proposed method by means of

extensive simulation experiments, in which we compare our model with alternative state-

of-the-art approaches in the literature. In doing so, we consider different scenarios in

terms of domain shape, quantile field characteristics and distributional features, so that

to provide a complete picture of the comparative advantages and limitations of our

methodology.

Chapter 3 is organized as follows. In Section 3.2, we introduce the spatial quantile re-

gression model with PDE regularization, along with the associated infinite-dimensional

estimation problem. In Section 3.3, we propose an appropriate functional estimation

algorithm, and we characterize its solution at each iteration. In Section 3.4, we in-

troduce the finite element method to discretize the infinite-dimensional estimator. In

Section 3.5, we study the large-sample properties of our estimators, proving consistency

and asymptotic normality under different assumptions. In Section 3.6, we extend the

pure nonparametric model to a semiparametric additive formulation, including the effect

of space-varying covariates. In Section 3.7, we present two simulation studies in which

we compare our method to alternative state-of-the-art approaches under different data

scenarios. Finally, in Section 3.8, we employ our method to analyze a benchmark data

set concerning rainfall measurements in Switzerland.



Chapter 1

Minimum risk estimation and

quantile regression

1.1 Minimum risk estimators

Let us suppose to be interested in the unknown parameter θ ∈ Θ, which describes some

latent feature of the random variable y ∈ Y , distributed according to the unknown

probability law Π, denoted by y ∼ Π. We further suppose that there exists a risk

function R : Θ → R+ such that the true value of θ, say θ0, can be expressed as the

minimizer

θ0 = argmin
θ∈Θ

R(θ), where R(θ) = E{L(y,θ)} =
∫︂
Y
L(y,θ)Π(dy), (1.1)

with L : Y ×Θ→ R+ denoting a loss function that measures the misfit between y and

θ. Thanks to this formulation, θ0 is uniquely determined by the loss function L and

the probability distribution Π.

In empirical studies we are almost never able to precisely determine Π, and thus

θ0 has to be estimated from a finite dimensional sample y1, . . . , yn randomly generated

from y ∼ Π. The sample counterpart of problem (1.1) can thus be defined as

θ̂ = argmin
θ∈Θ

Rn(θ), where Rn(θ) = En{L(y,θ)} =
1

n

n∑︂
i=1

L(yi,θ), (1.2)

where Rn(·) is the empirical risk and En(·) is the sample expectation calculated with

respect to the probability measure Πn, which assigns probability mass 1/n to each point

yi. The solution of the sample risk minimization, θ̂, is called M-estimator or minimum

risk estimator of θ0 (Boos and Stefanski, 2013). Within the class of M-estimators we

find, for example, the maximum likelihood method (Severini, 2000) and the generalized

method of moments (Hall, 2005).

Depending on the knowledge we have on the data generating mechanism, different loss

functions L can be considered for estimating the unknown parameter θ, or a suitable

reparametrization of it. Let us suppose, for instance, that the probability law Π(·)
7
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likely belongs to a known family of parametric distributions Π(·|θ) indexed by θ ∈ Θ

and having density function π(y|θ), that is there exists θ0 ∈ Θ such that

Π(·) = Π(· |θ0) ∈
{︁
Π(· |θ) : Π(dy|θ) = π(dy|θ) dy, θ ∈ Θ

}︁
.

Then, the most natural candidate for L(y,θ) is the negative log-likelihood function

L(y,θ) = − log π(y|θ), which leads to the so-called maximum likelihood estimator (Sev-

erini, 2000). Notice that, here and elsewhere, we use π(y|x) for indicating either the

density function of y indexed by the parameter x, or the conditional density function

of y given the random parameter x. This permits us to lighten the formulas and avoid

confusing changes of notation when moving between frequentist and Bayesian formula-

tions.

A different situation arises when it is not possible to specify a reasonable generative

model for y and, therefore, a proper likelihood for θ; in these cases, alternative loss

functions must be considered in order to obtain a robust, coherent inference on θ. For

example, the mean of y, say θ0 = E(y), can always be obtained by minimizing the risk

associated to the squared error loss L(y,θ) = (y − θ)2; then the induced estimator is

the solution of a least-squares problem and corresponds to the sample mean θ̂ = En(y).
Similarly, the median of y, say θ0 = inf{x ∈ R : P(y < x) = 1/2}, is associated to

the absolute error loss L(y,θ) = |y − θ|. More generally, the τ -th quantile of y, i.e.,

θ0 = inf{x ∈ R : P(y < x) ≥ τ}, corresponds to the asymmetrically weighted absolute

error loss L(y,θ) = 1
2
|y − θ| − (τ − 1

2
)(y − θ), for τ ∈ (0, 1).

Aside from extremely rare situations, in most of the cases M-estimators do not enjoy

closed form solutions and, thus, we must rely on iterative optimization methods to

solve the empirical risk problem in (1.2). Under classical differentiability conditions on

L, Newton-type algorithms provide an elegant and efficient answer to this problem by

iterating until convergence the updating formula

θ(k+1) ← θ(k) −
[︁
∇2

θRn(θ
(k))
]︁−1[︁∇θRn(θ

(k))
]︁
,

where ∇θRn(θ) = En
[︁
∇θL(y,θ)

]︁
and ∇2

θRn(θ) = En
[︁
∇2

θL(y,θ)
]︁
denote the gradient

vector and Hessian matrix of Rn. If the loss function L is convex and coercive, the

convergence of the sequence {θ(k)} to the global minimizer θ̂ is guaranteed (Nocedal

and Wright, 2006; Lange, 2010).

Moreover, under mild additional regularity assumptions (Stefanski and Boos, 2002),

the asymptotic M-estimator θ̂ is consistent and normally distributed:

√
n(θ̂ − θ0) d−→ Np(0p,G

−1),

where G = HJ−1H is called Godambe information matrix, H = E
[︁
∇2

θL(y,θ0)
]︁
is the

sensitivity matrix and J = Var
[︁
∇θL(y,θ0)

]︁
is the variability matrix. Approximations

of the sample distribution of θ̂ can thus be obtained by replacing H and J with their

empirical counterparts, say Hn = En
[︁
∇2

θL(y, θ̂)
]︁
and Jn = Varn

[︁
∇θL(y, θ̂)

]︁
, which

typically are made available as a side-product of Newton and quasi-Newton algorithms.
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A prevalent application of the M-estimation theory is concerned with regression mod-

els, providing a flexible, robust alternative to likelihood based regression under model

misspecification (Stefanski and Boos, 2002). Here, in particular, we consider linear re-

gression models predicting the response variable yi ∈ Y ⊆ R via a linear regression

function, also called linear predictor, ηi = x⊤
i β, where xi ∈ Rp is a vector of covariates

and β ∈ Rp is a vector of unknown coefficients to be estimated. The empirical risk

function then takes the form

Rn(β) =
1

n

n∑︂
i=1

L(yi,β) =
1

n

n∑︂
i=1

L(yi, ηi),

where the loss function L depends on the regression parameters β only through the

linear predictor ηi. Whenever L is twice differentiable with respect to ηi, the gradient

and Hessian of Rn(β) are given by

∇βRn(β) =
1

n

n∑︂
i=1

xi
∂L

∂ηi
, ∇2

βRn(β) =
1

n

n∑︂
i=1

xix
⊤
i

∂2L

∂η2i
.

Leveraging such a convenient gradient-Hessian structure, the Newton algorithm may be

efficiently employed by solving a sequence of weigthed least-squares problems, giving

rise to the so-called iteratively reweighted least-squares (McCullagh and Nelder, 1989)

algorithm for non-linear regression problems.

Notice that, if minimal differentiability conditions on L are not met, we can not

perform the estimation via Newton methods and, moreover, we need to rephrase the

standard asymptotic theory, since the first and second order derivatives ∂L/∂ηi and

∂2L/∂η2i no longer exist. This is the case, for instance, of the quantile regression esti-

mator, which is the main subject of the following sections and constitutes a benchmark

model of primary importance throughout this thesis.

1.2 Quantile regression in a nutshell

Quantile regression is a statistical model defined by the minimization of an asym-

metrically weighted absolute error loss and usually employed to explore the relation-

ship between the quantiles of a response variable and a set of available covariates.

Since quantiles provides a much richer description of a sample distribution than mean,

quantile-based methods offer an appealing alternative to classical least-squares regres-

sion and, more generally, to mean-based regression. We refer the reader to Koenker

(2005) and Koenker et al. (2018) for an exhaustive review of the literature.

In a quantile regression framework, the linear predictor ηi = x⊤
i β represents the τ -th

quantile of the conditional distribution of yi ∈ Y ⊆ R given xi ∈ Rp for τ ∈ (0, 1),

namely we assume ηi is such that P(yi ≤ ηi|xi) = τ for any i. The observed response

realizations yi are generated by an unknown absolute continuous distribution and are

conditionally independent given xi. Thus, the minimum risk estimator of β ∈ Rp for a
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linear quantile regression model is given by

β̂ = argmin
β∈Rp

Rn(β), Rn(β) =
1

n

n∑︂
i=1

L(yi, ηi) =
1

n

n∑︂
i=1

ρτ (yi − ηi), (1.3)

where

ρτ (x) = x{τ − I(x < 0)} = 1
2
|x|+ (τ − 1

2
)x (1.4)

is the quantile loss function, also called check function, or pinball loss, and I(·) denotes
the usual indicator function. For any choice of τ , the estimator (1.3) is not available in

closed form and, because of the non-differentiability of (1.4), it must be obtained via

non-smooth optimization methods.

For these reasons, since its introduction by Koenker and Bassett (1978), quantile

regression has always been strictly related to linear programming theory and non-smooth

convex analysis (Koenker, 2005). Actually, the quantile estimator β̂ may be alternatively

defined as the solution of the following linear programming problem

β̂, û, v̂ = argmin
β,u,v

{︁
τ1⊤

nu+ (1− τ)1⊤
nv
}︁

subject to
u+ v = y −Xβ,

u ≥ 0, v ≥ 0,
(1.5)

where y = (y1, . . . , yn)
⊤ is the response vector, X is the design matrix obtained stacking

by row all the vectors x⊤
i , while u and v represent the positive and negative parts of

the residual vector y−Xβ. We may say that, like the Euclidean geometry of the least-

squares estimator, the polyhedral nature of quantile regression plays a crucial role in

the theoretical characterization of such method; see, e.g., Portnoy and Koenker (1997).

Indeed, thanks to the minimum risk representation (1.3) and the linear programming

representation (1.5), the quantile estimator β̂ inherits the following properties (Koenker

and Bassett, 1978):

1. if X is full rank, there exists at least one solution β̂(h) such that β̂(h) = X−1
h yh,

where h ⊂ {1, . . . , n} a subset of indices of dimension p;

2. any solution β̂ belongs to the closed convex hull generated by all the solutions

having the form β̂(h) = X−1
h yh;

3. any solution β̂ is a global minimizer of (1.3);

4. β̂ is equivariant with respect to location and scale transformations of the response;

5. β̂ is equivariant with respect to non-singular linear transformations of the design.

Notice that Properties 1 and 2 implicitly state the non-uniqueness of the sample quan-

tile regression estimator β̂ which, though, exists finite thanks to the convexity and

coercitivity of the check function (1.4).

Moreover, under standard regularity conditions (see, e.g., Koenker, 2005, Chapter

4), β̂ is consistent and enjoys an asymptotic Gaussian distribution:

√
n(β̂ − β) d−→ Np(0p,G

−1),
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where, similarly to standard M-estimators, the asymptotic variance-covariance matrix

G−1 takes the sandwich form G−1 = τ(1− τ)D−1
1 D0D

−1
1 , with

D0 = lim
n→∞

1

n

n∑︂
i=1

xix
⊤
i , D1 = lim

n→∞

1

n

n∑︂
i=1

πixix
⊤
i .

Here, we denote by πi the true unknown density function of yi given xi evaluated at the

true conditional quantile x⊤
i β0.

1.2.1 Asymmetric-Laplace pseudo-likelihood

An alternative formulation of the quantile problem in (1.3) has been proposed by Yu and

Moyeed (2001), which showed that the check function ρτ (·) in (1.4) is the negative log-

kernel of an Asymmetric-Laplace distribution (Kotz et al., 2001). Then, the regression

quantiles in (1.3) can be rephrased as the maximum likelihood estimator relative to the

misspecified model

yi|θ ∼ AL(ηi, σ
2
ε , τ), ηi = x⊤

i β, i = 1, . . . , n, (1.6)

where ηi ∈ R is a location parameter, σ2
ε is a scale parameter, and τ ∈ (0, 1) is a

skewness parameter. The working probability density function of yi given xi implied by

model (1.6) is then given by

π(yi|θ) = τ(1− τ) exp
{︁
− ρτ (yi − ηi)/σ2

ε

}︁
/σ2

ε ,

where we denote by θ = (β, σ2
ε) the vector of unknown parameters in the model. As-

suming conditional independence, multiplying all the individual terms and taking the

logarithm, we obtain the log-likelihood function ℓ(θ;y) =
∑︁n

i=1 log π(yi|θ), which is

maximized at θ̂ = (β̂, σ̂2
ε), where β̂ is defined as at (1.3) and σ̂2

ε is given by

σ̂2
ε =

1

n

n∑︂
i=1

ρτ (yi − x⊤
i β̂). (1.7)

The introduction of the dispersion parameter σ2
ε does not affect the properties of the

quantile estimator β̂, but may provide useful insights relative to the residual variability

of εi = yi − x⊤
i β̂ measured in the quantile loss scale.

As recognized by Kozumi and Kobayashi (2011) and proved by Kotz et al. (2001),

any Asymmetric-Laplace density can be written as a location-scale convolution of a

Guassian density with an Exponential kernel, that is

τ(1− τ)
σ2
ε

exp{−ρτ (ε)/σ2
ε} =

∫︂ ∞

0

1√︁
2πσ2

εω
exp

{︃
− (ε− a1ω)2

2a22σ
2
εω

}︃
e−ω/σ

2
ε

σ2
ε

dω (1.8)

where a1 = (1−2τ)
τ(1−τ) and a22 = 2

τ(1−τ) are non-stochastic constants completely determined
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by the value of τ . As a consequence, the working model in (1.6) is stochastically equiv-

alent to the conditional Gaussian specification

yi|ωi;θ ∼ N(ηi + a1ωi, a
2
2σ

2
εωi), ωi|θ ∼ Exp(1/σ2

ε), i = 1, . . . , n, (1.9)

where N(µ, σ2) denotes the Gaussian distribution with mean µ ∈ R and variance σ2 >

0, whereas Exp(λ) denotes the Exponential distribution with mean 1/λ > 0. The

completed log-likelihood formulation relative to the augmented model (1.9) for the i-th

pair (yi, ωi) is then given by

log π(yi, ωi|θ) = −
3

2
log σ2

ε −
1

2
logωi −

ωi
σ2
ε

− (yi − ηi − a1ωi)2
2a22σ

2
εωi

, (1.10)

which, conditionally on ωi, exhibits a familiar quadratic expression.

The pseudo-likelihood formulation of the quantile estimation problem in (1.6) to-

gether with the conditional Gaussian representation (1.9) provide the basic ingredient

for the Bayesian formulation of quantile regression, which has been considered, among

others, by Yu and Moyeed (2001) and Kozumi and Kobayashi (2011).

1.2.2 Bayesian quantile regression

Bayesian inference is concerned with the updating of a subjective prior belief about the

parameter θ ∈ Θ to the posterior using the data information brought by the likelihood

function. Such an updating is made possible by the Bayes theorem, which provides a

practical rule to combine the prior π(θ) with the likelihood π(y|θ), that is

π(θ|y) = π(y,θ)

π(y)
=
π(θ)π(y|θ)

π(y)
. (1.11)

The numerator π(y,θ) = π(θ)π(y|θ) is the model joint density function and the de-

nominator

π(y) =

∫︂
Θ

π(y|θ)π(θ) dθ, (1.12)

is the marginal likelihood, also called the evidence of the model in the machine learning

literature. For most statistical models, the exact marginalization over Θ required by

π(y) is not available, as well as, an analytical expression for π(θ|y). For this reason, the
development of reliable and efficient integration techniques is one of the most important,

and maybe most challenging, objective of computational Bayesian statisticians.

A Bayesian specification of the quantile regression model in (1.3) can be obtained by

combining the Asymmetric-Laplace pseudo-likelihood in (1.6) with a prior distribution

for β and σ2
ε reflecting our subjective beliefs about the parameters. A standard choice

considered in literature is

β|σ2
ε ∼ Np(0p, σ

2
εσ

2
βR

−1), σ2
ε ∼ IG(Aε, Bε) (1.13)
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where IG(A,B) denotes the Inverse-Gamma distribution with shape A > 0 and rate

B > 0, while σ2
β > 0 is a fixed parameter controlling the prior variance of β, and R is

a non-stochastic positive semi-definite matrix controlling the prior correlation structure

of the β coefficients. Alternative prior specification can be considered for inducing

robustness, shrinkage or sparsity effects on the posterior estimates.

Assuming likelihood (1.6) and prior (1.13), the unnormalized posterior distribution

can be computed using the Bayes formula (1.11):

log π(y,θ) = − log Γ(Aε) + Aε logBε − (Aε − 1) log σ2
ε −Bε/σ

2
ε

− p
2
log(2πσ2

εσ
2
β)− 1

2
logdet(R)− 1

2
β⊤Rβ/σ2

εσ
2
β

+ n log τ(1− τ)− n log σ2
ε − 1⊤

n ρτ (y −Xβ)/σ2
ε .

(1.14)

From a frequentist point of view, the above log-posterior can also be interpreted as a

penalized log-likelihood function subject to a Ridge-type regularization for β (Hastie

et al., 2009).

Differently from Bayesian linear model, in the quantile regression framework, prior

and likelihood are not conjugate and, therefore, the normalizing constant π(y) is not

available in closed form. This fact, along with the non-differentiability of the log-

likelihood, may complicate posterior analysis and computations. A possible solution

has been suggested by Kozumi and Kobayashi (2011), which proposed to base the pos-

terior inference on the conditional Gaussian representation of the Asymmetric-Laplace

distribution (1.9). Doing so, the augmented posterior distribution factorizes as

π(ω,θ|y) = π(y,ω,θ)

π(y)
=
π(θ)π(ω|θ)π(y|ω,θ)

π(y)
∝ π(θ)

n∏︂
i=1

π(ωi|θ)π(yi|ωi,θ),

where θ represents the vector of global parameters we are interested in, whereas ω is

a vector of auxiliary local parameters. The resulting unnormalized log-posterior can be

written as

log π(y,ω,θ) = − log Γ(Aε) + Aε logBε − (Aε − 1) log σ2
ε −Bε/σ

2
ε

− p
2
log(2πσ2

εσ
2
β)− 1

2
logdet(R)− 1

2
β⊤Rβ/σ2

εσ
2
β

− n
2
log(2πa22)− 3

2
n log σ2

ε − 1
2
1⊤
n logω − 1⊤

nω/σ
2
ε

− 1
2
∥y −Xβ − a1ω∥2W/σ2

ε ,

(1.15)

where W = diag[1/ω]/a22 is a diagonal weighting matrix and ∥x∥2A = x⊤Ax is the

squared norm of x induced by the symmetric positive semi-definite matrix A. This

way, local conjugacy between likelihood and priors is restored and all the full-conditional

posterior densities of the parameters belong to standard families of probability distri-

butions (see, e.g., Kozumi and Kobayashi, 2011). A straightforward benefit of such a

representation is thus to facilitate the derivation of model-specific algorithms for point

estimation, posterior sampling and posterior approximation. Some remarkable examples

are presented and discussed in the next section.
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Asymptotic properties of Bayesian quantile regression based on the misspecified

Asymmetric-Laplace likelihood have been studied by Sriram et al. (2013), which prove

its frequentist consistency under mild regularity conditions.

1.3 Estimation methods

Historically, the first and most popular approach for quantile regression estimation was

to employ standard linear programming tools, such as simplex algorithms (Koenker and

Bassett, 1978) and primal-dual interior-point methods (Koenker and Ng, 2005; Portnoy

and Koenker, 1997), to solve the polyhedral problem (1.5). Such an approach has been

successfully employed for handling several generalizations of the basic quantile regression

model. Some examples are sparse and constrained quantile regression (Koenker and

Ng, 2005), high-dimensional quantile regression (Wang et al., 2012), quantile smoothing

spline with ℓ1 and ℓ2 penalties (Koenker et al., 1994; Ng, 1996; Bosch et al., 1995), and

spatial quantile smoothing with total variation regularization (Koenker and Mizera,

2004).

Despite its efficiency, stability and broad applicability, linear programming does not

provide any insights about variability and uncertainty of the estimates; moreover, it

involves a possibly high-dimensional constrained optimization which is not always easy

to generalize for other model specifications. For instance, these drawbacks pose severe

limits when it comes to estimate quantile mixed models for heterogeneous dependent

data (Geraci and Bottai, 2014; Geraci, 2014), or Bayesian quantile regression models

(Yu and Moyeed, 2001; Kozumi and Kobayashi, 2011).

As an alternative to linear programming, many authors proposed to solve the quantile

regression problem by using a convergent iteratively reweighted least squares algorithms

based on local quadratic approximations of the quantile loss function. Such an approach

has been explored by, e.g., Hunter and Lange (2000), Yue and Rue (2011) and Fasiolo

et al. (2021a). A different, but rather similar, possibility is to consider estimation meth-

ods based on the Asymmetric-Laplace pseudo-likelihood formulation in (1.6) and its

data-augmented representation (1.8). In the rest of this section, we review frequen-

tist and Bayesian estimating methods based this approach, which constitute a basic

ingredient for understanding the original contributions proposed in Chapter 2 and 3.

1.3.1 Expectation-maximization

The expectation-maximization algorithm (EM; Dempster et al., 1977; McCullagh and

Nelder, 1989) is a popular approach to the iterative maximization of complex log-

likelihood functions, for which other standard approaches, such as Newton algorithm,

can not be applied or may encounter nontrivial obstacles. For instance, in classical

quantile regression, the non-differentiability of the objective function (1.3) does not al-

low for a straightforward application of Newton and quasi-Newton algorithms, and we

need model-specific method to perform the optimization (see, e.g., the interior point

method by Koenker and Ng, 2005).
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The intuition behind the EM paradigm is closely related to the concepts of missing

information and completed data. We assume that the likelihood maximization is made

difficult by the fact that we observe only an incomplete realization from a joint model,

that, if completely observed, would exhibit a joint likelihood with a simple functional

form. The EM approach thus tries to exploit the relationship between the marginal and

completed likelihoods in order to iteratively search the maximum likelihood estimator.

More formally, let us denote by π(y,ω|θ) the joint density function for the completed

data {y,ω}, where y is the observed data vector and ω is the missing data vector; let

π(y|θ) be the marginal distribution of y obtained by integrating out ω from the above

joint density, that is

π(y|θ) =
∫︂
Ω

π(y,ω|θ) dω =

∫︂
Ω

π(y|ω;θ) π(ω|θ) dω.

Then, thanks to the Jensen inequality, if π(y,ω;θ) is log-concave in ω, we obtain

ℓ(θ;y) = E{log π(y,ω|θ)} ≤ logE{π(y,ω|θ)} = ℓ(θ;y), (1.16)

where the expectation is calculated with respect to the conditional distribution of ω

given y and ℓ(θ;y) is a function of θ and y bounding the log-likelihood ℓ(θ;y) from

below. EM thus prescribes to iteratively maximize ℓ(θ;y) in order to implicitly optimize

ℓ(θ;y). Given a current estimate of θ, say θ(k), each iteration of an EM algorithm

updates the actual guess θ(k) to the new value θ(k+1) by executing an expectation (E)

step and a maximization (M) step:

E-step ℓ(k)(θ;y)← E(k){log π(y,ω|θ)}, (1.17)

M-step θ(k+1) ← argmax
θ∈Θ

ℓ(k)(θ;y), (1.18)

where the expectation E(k)(·) is taken with respect to the conditional distribution

π(ω|y;θ(k)) obtained at the previous iteration of the algorithm.

As proved by Dempster et al. (1977) and further discussed by McLachlan and Kr-

ishnan (2008) and Lange (2010), each iteration of (1.17) and (1.18) produces a non-

decreasing increment of the likelihood, that is

ℓ(θ(k);y) ≤ ℓ(θ(k+1);y). (1.19)

Moreover, each sequence of EM estimators {θ(k)} almost surely converges in the limit to

a local maximizer of the likelihood. If ℓ(θ;y) is strongly convex in θ, and therefore its

optimum is unique, the global fixed point of the algorithm corresponds to the maximum

likelihood estimator θ̂.

In order to apply the EM principle to the Asymmetric-Laplace representation (1.6)

of quantile regression, we first need to obtain the conditional distribution of ω given

y in the augmented model (1.9). As proved by, e.g., Kozumi and Kobayashi (2011)

and Tian et al. (2014), conditionally on yi, each latent variable ωi is independent on ωj,
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j ̸= i, moreover, its conditional distribution is

ωi|yi;θ ∼ GIG

(︃
1

2
,
a21 + 2a22
a22σ

2
ε

,
(yi − x⊤

i β)
2

a22σ
2
ε

)︃
, (1.20)

or, equivalently,

ω−1
i |yi;θ ∼ IN

(︃
(a21 + 2a22)

1/2

|yi − x⊤
i β|

,
a21 + 2a22
a22σ

2
ε

)︃
,

where GIG(ν,A,B) denotes the Generalize-Inverse-Gaussian distribution, with parame-

ters ν,A,B > 0, whereas IN(µ, λ) denotes the Inverse-Gaussian distribution with mean

parameter µ > 0 and scale parameter λ > 0 (see, e.g., Jørgensen, 1982). Adopting the

notation µ
(k)
ωi = E(k)(ωi) and µ

(k)
1/ωi

= E(k)(1/ωi), defining εi = yi − x⊤
i β, and calculat-

ing the expectation of log π(yi, ωi|θ) with respect to π(ωi|yi;θ(k)), we obtain the lower

bound

ℓ(k)(θ;y) = −3n

2
log σ2

ε −
1

2a22σ
2
ε

n∑︂
i=1

{︂
ε2i µ

(k)
1/ωi
− 2a1 εi + (a21 + 2a22)µ

(k)
ωi

}︂
+ const,

which can be alternatively expressed as

ℓ(k)(θ;y) = −3n

2
log σ2

ε −
a21 + 2a22
2a22σ

2
ε

1⊤
nµ

(k)
ω −

1

2σ2
ε

(z(k) − η)⊤W(k)(z(k) − η) + const,

where W(k) = diag
[︁
µ

(k)
1/ω

]︁
/a22 is a diagonal weighting matrix, z(k) = y − a1/µ

(k)
1/ω is a

pseudo-data vector, and “const” is a constant term not depending on θ and σ2
ε . As

shown by Tian et al. (2014), the expectations µ(k)
ωi

and µ
(k)
1/ωi

can be calculated in closed

form as

µ(k)
ωi

=
{︁
µ
(k)
1/ωi

}︁−1
+

a22σ
2
ε
(k)

a21 + 2a22
, µ

(k)
1/ωi

=
(a21 + 2a22)

1/2

|yi − x⊤
i β

(k)|
.

This complete the specification of ℓ(k)(θ;y) and, thus, the E-step.

Assuming that all the diagonal elements of W(k) are strictly positive and bounded

away from∞, the M-step of the algorithm is analytically available and may be obtained

via the weighted least squares update

β(k+1) =
(︁
X⊤W(k)X

)︁−1
X⊤W(k)z(k). (1.21)

Similarly, the updated value of σ2
ε can be obtained by maximizing ℓ(k)(θ;y), or, al-

ternatively, by using the maximum likelihood estimator (1.7). This second solution is

typically to be preferred, since it leads to a faster convergence, preserving at the same

time the non-decreasing property of the EM sequence.

Algorithm 1 provides a pseudo-code description of the fundamental steps of the

quantile EM procedure outlined so far. Doing this, we consider a Bayesian, or penalized,

formulation of the quantile regression problem, with a Gaussian prior distribution β ∼
Np(0p, σ

2
εσ

2
βR

−1). At convergence, the algorithm provides a maximum a posteriori, or
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Algorithm 1 EM algorithm for quantile regression

Require: τ,y,X

Initialize β̂ and σ̂2
ε;

while convergence is not reached do

µ̂1/ω ← (a21 + 2a22)
1/2
/︁
|y −Xβ̂|;

Ŵ← diag
[︁
µ̂1/ω

]︁
/a22; ẑ← y − a1µ̂−1

1/ω;

β̂ ← (X⊤ŴX+R/σ2
β)

−1X⊤Ŵ ẑ;

σ̂2
ε ←

{︁
1
2
β̂⊤R β̂/σ2

β + 1⊤
n ρτ (y −Xβ̂)

}︁
/(p

2
+ n);

end while

penalized maximum likelihood estimate of β. The frequentist unpenalized version of the

algorithm can be recovered by setting σ2
β → ∞. The convergence may be assessed by

monitoring the relative change of the parameters and the Asymmetric-Laplace pseudo-

likelihood.

1.3.2 Gibbs sampling

Despite its simple, elegant formulation and its theoretical coherence, Bayesian inference

has been almost unexplored for practical applications since the recent development and

diffusion of high-performance computers. The intrinsic complexity of calculating mul-

tivariate integrals over high-dimensional spaces made Bayesian calculations unpractical

even for small data problems, with a moderate number of unknown parameters. A

revolutionary turning point for Bayesian computation was the introduction of Markov

chain Monte Carlo (MCMC) algorithms for posterior simulation. In its essence, MCMC

is a family of procedures to sample a sequence of dependent realizations {θ(k)} from a

stationary Markov chain, whose ergodic distribution converges in the limit to the true

posterior π(θ|y). Then, after a certain number of iterations needed for the chain to

reach the convergence, also called burnin period, the samples {θ(k)} can be used to

evaluate posterior integrals via Monte Carlo approximation:

E{m(θ)|y} =
∫︂
Θ

m(θ)π(θ|y) dθ ≈ 1

K

K∑︂
k=1

m(θ(k)).

Thanks to the ergodic theorem (Norris, 1998), the Monte Carlo estimator converges in

probability to the true expectation with an error that may be controlled by increasing

the number of simulated values.

Among other methods, the Gibbs sampling algorithm (Casella and George, 1992)

plays a crucial role in the MCMC literature and is still one of the most effective method

for posterior simulation when hierarchical Bayesian models with conjugate prior distri-

butions are of interest. Its application is particularly convenient for situations in which

the parameter vector θ may be partitioned in sub-blocks, say {θ1, . . . ,θH}, so that all

the associated full-conditional densities belong to notable probability families for which



18 Section 1.3 - Estimation methods

efficient sampling routines exist. Hereafter, we denote with π(θh|rest) = π(θh|θ−h,y)
the full-conditional density of θh, where “rest” denotes the conditioning set, containing

the data y and all the parameters except θh, say θ−h = θ\θh. After the (k)-th iteration

of the Gibbs sampling algorithm, a new value of θ is drawn by cycling over the following

conditional iteration

θ
(k+1)
h ∼ π(k)(θh|rest), h = 1, . . . , H.

In the case where the model is expanded by an additional set of working variables ω,

the Gibbs sampling scheme can be still applied by employing an additional conditional

step at each iteration, that is

θ
(k+1)
h ∼ π(k)(θh|rest), h = 1, . . . , H.

ω
(k+1)
i ∼ π(k)(ωi|rest), i = 1, . . . , n.

As for any MCMC algorithm, the first values of the chain must be discarded as burnin

period.

Similarly to the EM algorithm, Gibbs sampling can be conveniently employed for

Bayesian quantile regression problems leveraging the Asymmetric-Lalace likelihood (1.6)

and its augmented representation (1.9). For the sake of simplicity, we here consider only

Bayesian regression models with prior distributions of the form (1.13). Following Kozumi

and Kobayashi (2011), the full conditional distribution for the parameter β is given by

β | rest(k) ∼ Np(µ
(k)
β ,Σ

(k)
β ),

µ
(k)
β = Σ

(k)
β X⊤W(k)z(k)/σ2(k)

ε ,

Σ
(k)
β = σ2(k)

ε

(︁
X⊤W(k)X+R/σ2

β

)︁−1
,

(1.22)

where W(k) = diag
[︁
1/ω(k)

]︁
/a22 and z(k) = y − a1ω(k). The full-conditional distribution

for the parameter σ2
ε is given by

σ2
ε | rest(k) ∼ IG(A(k)

ε , B(k)
ε ),

A(k)
ε = Aε +

1
2
p+ 3

2
n,

B(k)
ε = Bε +

1
2

⃦⃦
β(k)

⃦⃦2
R
/σ2

β + 1⊤
nω

(k) + 1
2

⃦⃦
z(k) −Xβ(k)

⃦⃦2
W(k) ,

(1.23)

where ∥x∥2A = x⊤Ax is the squared norm of x induced by the symmetric positive semi-

definite matrix A. Whereas, the full-conditional distribution for the auxiliary variables

ω takes the form of a factorized Generalized-Inverse-Gaussian law, as provided in (1.20).

Hence, in order to sample from the augmented posterior π(ω,β, σ2
ε |y), we can em-

ploy the Gibbs sampling scheme summarized in Algorithm 2, which cycles over the

conditional distribution (1.20), (1.22) and (1.23).
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Algorithm 2 Gibbs sampling for quantile regression

Require: τ,y,X

Initialize β and σ2
ε ;

while convergence is not reached do

Âω ← (a21 + 2a22)/a
2
2σ

2
ε ; B̂ω ← ∥y −Xβ∥22/a22σ2

ε ; ω ∼ GIG(1
2
, Âω, B̂ω);

Ŵ← diag
[︁
1/ω

]︁
/a22; ẑ← y − a1ω;

Σ̂β ← σ2
ε(X

⊤ŴX+R/σ2
β)

−1; µ̂β ← Σ̂βX
⊤Ŵ ẑ/σ2

ε ; β ∼ Np(µ̂β, Σ̂β);

B̂ε ← Bε +
1
2
β⊤Rβ/σ2

β + 1⊤
nω + 1

2
1⊤
n (y − a1ω −Xβ)2/a22ω

Âε ← Aε +
p
2
+ 3

2
n; σ2

ε ∼ IG(Aε̂, Bε̂)

end while

1.3.3 Mean field variational Bayes

Variational methods are a family of deterministic techniques for making approximate

inference in complex statistical models depending on a set of stochastic latent param-

eters. Even though, in principle, the use of variational methods is not exclusive of

Bayesian statistics, they are mostly employed for posterior approximation of Bayesian

hierarchical models, as an efficient alternative to expensive simulation-based methods,

such as MCMC. Thereby, for the sake of exposition, we here focus our treatment on

variational approximations in a Bayesian context.

Following the so-called density transformation approach (Ormerod and Wand, 2010),

variational approximate inference on the true posterior is made by replacing π(θ|y) with
a convenient density function q(θ) belonging to a tractable functional space Q. The

optimal approximating distribution q∗(θ) is then selected by minimizing some measure

of divergence between q(θ) and π(θ|y), i.e.

q∗(θ) = argmin
q∈Q

D{q(θ) ∥ π(θ|y)}. (1.24)

Different choices of divergence measure D and functional space Q give rise to alternative

variational approximations. Among others, its worth mentioning mean field variational

Bayes (Ormerod and Wand, 2010; Blei et al., 2017), Gaussian variational approxima-

tion (Ormerod and Wand, 2012) and expectation-propagation (Minka, 2005).

Specifically, we here consider the family of variational Bayes techniques, which is

by far the most common form of variational approximation in literature (see Bishop,

2006; Ormerod and Wand, 2010; Blei et al., 2017). Within the variational Bayes

paradigm, the optimal variational density q∗(θ) is defined as the minimizer of the

Kullback-Leibler (KL) divergence

KL{q(θ) ∥ π(θ|y)} = −
∫︂
Θ

q(θ) log

{︃
π(θ|y)
q(θ)

}︃
dθ, (1.25)
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Figure 1.1: Graphical representation of the variational Bayes search of the optimal
density q∗(θ) within the functional space Q under two scenarios: (left) π(θ|y) ∈ Q,
(right) π(θ|y) /∈ Q.

or, equivalently, as the maximizer of the lower bound on the marginal log-likelihood,

also called evidence lower bound (ELBO),

ℓ{y; q(θ)} =
∫︂
Θ

q(θ) log

{︃
π(y,θ)

q(θ)

}︃
dθ. (1.26)

For any choice of q(θ), the gap between the Kullback-Leibler divergence and the evidence

lower bound is constant and corresponds to the marginal log-likelihood, or evidence of

the model, say

log π(y) = ℓ(y) = ℓ{y; q(θ)}+KL{q(θ) ∥ π(θ|y)}. (1.27)

Hence, recalling that KL{q(θ) ∥ π(θ|y)} ≥ 0 for any density q(θ), equating 0 almost

surely if and only if q(θ) = π(θ|y) (Kullback and Leibler, 1951), we have

ℓ{y; q(θ)} ≤ ℓ(y),

which motivates the name lower bound on the marginal log-likelihood for the quan-

tity (1.26).

The second ingredient of variational inference is the choice of the functional space

Q. Notice that, if π(θ|y) ∈ Q, the unique minimizer of the Kullback-Leibler divergence

will correspond to the target posterior q∗(θ) = π(θ|y), which guarantees the coherence

of the variational Bayes approach under the exact identification of the posterior space.

If, otherwise, π(θ|y) /∈ Q, as it is almost always the case in practical situations, the

optimal variational Bayes posterior q∗(θ) corresponds to the projection of π(θ|y) onto
the functional space Q measured in the Kullback-Leibler metric. Figure 1.1 provide a

graphical representation of these two scenarios.

Hence, the choice of Q must be guided by a trade-off between accuracy and com-

plexity of the solution, that is: the more general and precise the approximation, the
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less tractable the computations. In this, time constraints, computational resources and

memory space must be taken into account when specifying Q and designing a corre-

sponding variational optimization algorithm. Tractability of variational methods may

be achieved by imposing a suitable factorization of the approximated posterior over

a pre-specified partition of the parameter vector, so that to disentangle the complex

dependence structures induced by the posterior distribution. Such an approach gives

rise the mean field variational Bayes (MFVB) method, which is characterized by the

product restriction

Q =

{︃
q(θ) : q(θ) =

H∏︂
h=1

qh(θh)

}︃
, (1.28)

for {θ1, . . . ,θH} being a partition of θ. Very fine partitions impose restrictive poste-

rior independence; on the other hand, too conservative partitions would not afford the

tractability of the optimization.

Starting from a posterior guess q(k)(θ), exploiting factorization (1.28) and maxi-

mizing the evidence lower bound with respect to qh(θh), the optimal coordinate-wise

approximation for the h-th sub-vector θh takes the nonparametric form

q
(k+1)
h (θh) ∝ exp

[︁
E(k)

−h{log π(θh|rest)}
]︁
, h = 1, . . . , H, (1.29)

where π(θh|rest) is the full-conditional density of θh and E(k)
−h(·) denotes the variational

expectation calculated with respect to the density q
(k)
−h(θ−h) =

∏︁
ℓ̸=h q

(k)
ℓ (θℓ). The it-

erative refinement of the variational posterior q(k)(θ) through (1.29) gives rise to the

coordinate ascent variational inference (CAVI) algorithm for MFVB approximate infer-

ence. For a detailed proof of this and related results on MFVB inference, we refer the

reader to Bishop (2006), Ormerod and Wand (2010) and Blei et al. (2017).

MFVB shares many properties and similarities with both EM algorithm and Gibbs

sampling. It is based on a conditioning principle which leverages the structure of the

posterior full-conditional densities, allowing for closed form updates under conjugate

priors. As a consequence, it can be easily extended to accommodate for augmented

models π(ω,θ|y) with mean field approximation q(ω,θ) =
∏︁n

i=1 qi(ωi)
∏︁H

h=1 qh(θh). In

such cases, the coordinate updates of q
(k+1)
i (ωi) and q

(k+1)
h (θh) are given by

q
(k+1)
h (θh) ∝ exp

[︁
E(k)

−θh
{log π(θh|rest)}

]︁
, h = 1, . . . , H,

q
(k+1)
i (ωi) ∝ exp

[︁
E(k)

−ωi{log π(ωi|rest)}
]︁
, i = 1, . . . , n.

CAVI then provides a stable optimization routine, which almost surely converges to a

local optimum of the objective functional; moreover, each iteration of the algorithm

produces a non-increasing sequence of lower bound values, that is

ℓ{y; q(k)(θ)} ≤ ℓ{y; q(k+1)(θ)}. (1.30)

A straightforward implementation of the mean field principle for Bayesian quantile

regression models with Asymmetric-Laplace likelihoods have been provided by Wand
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et al. (2011) and McLean and Wand (2019). In the following, we give a sketch of their

results under the minimal product restriction

π(θ|y) ≈ q(ω,β, σ2
ε) = q(ω) q(β) q(σ2

ε),

which leads to the induced factorization q(ω) =
∏︁n

i=1 q(ωi). Then, thanks to the analytic

expression of the full-conditional distribution (1.22), the optimal update for q∗(β) at

the (k + 1)-th iteration of the CAVI algorithm is q(k+1)(β) ∼ Np(µ
(k)
β ,Σ

(k)
β ), with mean

and variance

µ
(k)
β = µ

(k)

1/σ2
ε
Σ

(k)
β X⊤W(k)z(k), Σ

(k)
β =

{︁
µ
(k)

1/σ2
ε

}︁−1(︁
X⊤W(k)X+R/σ2

β

)︁−1
, (1.31)

where W(k) = diag
[︁
µ

(k)
1/ω

]︁
/a22 and z(k) = y − a1/µ(k)

1/ω. From full-conditional distribu-

tion (1.23), we can derive the optimal density q(k+1)(σ2
ε) ∼ IG(A

(k)
ε , B

(k)
ε ), which has

variational parameters

A(k)
ε = Aε +

1
2
p+ 3

2
n, B(k)

ε = Bε + C
(k)
1 + C

(k)
2 , (1.32)

and

C
(k)
1 = 1

2

{︂⃦⃦
µ

(k)
β

⃦⃦2
R
+ trace

[︁
RΣ

(k)
β

]︁}︂
/σ2

β,

C
(k)
2 = 1

2

{︂
µ

(k)⊤
1/ω µ

(k)

ε2 − 2λ1⊤
nµ

(k)
ε + (a21 + 2a22)1

⊤
nµ

(k)
1/ω

}︂
/a22,

with µ
(k)
ε = y−Xµ

(k)
β and µ

(k)

ε2 =
{︁
µ

(k)
ε

}︁2
+trace

{︁
XΣ

(k)
β X⊤}︁. Finally, taking the vari-

ational expectation of the log-density associated to full-conditional distribution (1.20),

we get the approximation q(k+1)(ωi) ∼ GIG(1
2
, A

(k)
ωi , B

(k)
ωi ), i = 1, . . . , n, where

A(k)
ωi

= µ
(k)

1/σ2
ε
(a21 + 2a22)/a

2
2, B(k)

ωi
= µ

(k)

1/σ2
ε
µ
(k)

ε2i
/a22. (1.33)

Form such an approximation, we can also calculate the expectations µ
(k)
ωi = E(k)

q (ωi) and

µ
(k)
1/ωi

= E(k)
q (1/ωi) using closed form results for GIG distributions (Jørgensen, 1982).

Finally, exploiting the closed form of the variational distributions in (1.31), (1.32)

and (1.33), we can analytically evaluate the evidence lower bound, that is

ℓ(y; q(k)) = − 1
2
µ
(k)

1/σ2
ε

{︁
µ

(k)⊤
1/ω µ

(k)

ε2 − 2a11
⊤
nµ

(k)
ε + (a21 + 2a22)1

⊤
nµ

(k)
ω

}︁
/a22

+ n
2
logA(k)

ω + 1⊤
n

{︁
(A(k)

ω B
(k)
ω )1/2 − 1

2
A(k)
ω µ

(k)
ω − 1

2
B(k)
ω ⊙ µ(k)

1/ω

}︁
+ 1

2
logdet(Σ

(k)
β )− 1

2
µ
(k)

1/σ2
ε

{︁
∥µ(k)

β ∥2R + tr(RΣ
(k)
β )
}︁
/σ2

β

− log
{︁
Γ(Aε)/Γ(Aε +

p
2
+ 3

2
n)
}︁
+ Aε log(Bε/B

(k)
ε )

− (p
2
+ 3

2
n) logB(k)

ε − (Bε −B(k)
ε )µ

(k)

1/σ2
ε
+ const,

where const = −n
2
log(2πa22)− p

2
log σ2

β− 1
2
logdet(R)+ p

2
is a constant term not depending

on the parameters and on the variational distributions.
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Algorithm 3 MFVB algorithm for quantile regression

Require: τ,y,X, σ2
β, Aε, Bε

Initialize µ̂β, Σ̂β, µ̂1/σ2
ε
, µ̂ω, µ̂1/ω, µ̂ε, µ̂ε2 ;

while convergence is not reached do

µ̂1/ω ← (a21 + 2a22)
1/2
/︁
µ̂

1/2

ε2 ; µ̂ω ← µ̂−1
1/ω + µ̂−1

1/σ2
ε
a22/(a

2
1 + 2a22);

Ŵ← diag
[︁
µ̂1/ω

]︁
/a22; ẑ← y − a1µ̂−1

1/ω;

Σ̂β ← µ̂−1
1/σ2

ε
(X⊤ŴX+R/σ2

β)
−1; µ̂β ← µ̂1/σ2

ε
Σ̂βX

⊤Ŵ ẑ;

µ̂ε ← y −Xµ̂β; µ̂ε2 ← µ̂2
ε + diag

[︁
XΣ̂βX

⊤]︁;
C1 ← 1

2

{︁
µ̂⊤
βRµ̂β + trace

[︁
RΣ̂β]

}︁
/σ2

β;

C2 ← 1
2

{︁
µ̂⊤

1/ωµ̂ε2 − 2λ1⊤
n µ̂ε + (λ2 + 2δ2)1⊤

n µ̂ω
}︁
/δ2;

Âε ← Aε +
p
2
+ 3

2
n; B̂ε ← Bε + C1 + C2; µ̂1/σ2

ε
← B̂ε/Âε;

end while

The recursive execution of the closed form updates in (1.31), (1.32) and (1.33) give

rise to the CAVI routine summarized in Algorithm 3.





Chapter 2

Non-conjugate regression via

variational belief updating

2.1 Introduction

The increasing prevalence of big volume and velocity data, eventually coming from dif-

ferent data sources, entails a great opportunity but also a major challenge of modern

data analysis and, in particular, of Bayesian statistics. The computational burden re-

quired by Markov chain Monte Carlo simulation, that is the state-of-the-art approach to

Bayesian inference (Gelman et al., 2013), is often not compatible with time constraints

and memory limits. Therefore, in the last two decades many efforts have been spent

to develop alternative estimation methods not involving posterior simulation. In this

context, optimization-based algorithms play an important role because of their ability

to provide a reasonably good approximation of the posterior, while keeping a high level

of efficiency. Within this family, two remarkable examples are the Laplace approxima-

tion (Wolfinger, 1994), along with its integrated nested generalization (Rue et al., 2009),

and the variational inference approach, which includes, among others, local variational

approximation (Jaakkola and Jordan, 2000), mean field variational Bayes (Ormerod

and Wand, 2010; Blei et al., 2017), expectation propagation (Minka, 2013; Bishop,

2006, Chapter 10), black-box stochastic variational inference (Ranganath et al., 2014;

Kucukelbir et al., 2017; Ong et al., 2018), and natural gradient stochastic variational

inference (Hoffman et al., 2013; Khan and Lin, 2017; Khan and Rue, 2021). All of these

are mainly concerned with the estimation of hierarchical Bayesian models with a reg-

ular likelihood function, often belonging to the exponential family. For instance, both

Laplace approximation and stochastic variational inference require for the log-likelihood

function to be differentiable with continuity from one to three times, depending on the

implementation. Local variational approximations leverage the concept of convex du-

ality and require for the log-likelihood to have Lipschitz continuous gradient. On the

other hand, mean field variational Bayes and expectation propagation are employed

when the hierarchical model can be described through a Bayesian factor graph with

locally conjugate nodes, like for the Gibbs sampling algorithm.

25
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The joint lack of smoothness and conjugacy constitutes one of the main issues when it

comes to approximating a posterior density, and, in particular, when the parameters of

interest do not index a known family of probability distributions but, instead, are defined

according to a minimum risk criterion. In these cases, the minimal regularity conditions

for an estimation problem to be well-defined may not be satisfied, as it happens for

support vector machines (Vapnik, 1998), quantile and expectile regression (Koenker,

2005).

The present work aims to introduce a unified variational methodology, alternative

to data-augmented methods, for approximating the general posterior distribution of a

Bayesian regression model, which combines our subjective prior beliefs with the infor-

mation coming from an empirical risk function. Doing this, we take the subjective

perspective introduced by Bissiri et al. (2016), which proved the theoretical coherence

of updating a prior to the posterior using the negative loss as if it was the kernel of

a proper log-likelihood. In this context, we also mention the work of Alquier et al.

(2016) and Alquier and Ridgway (2020), which investigated both the finite- and large-

sample properties of variational approximations to Gibbs posteriors, while Wang and

Blei (2019a) established the frequentist consistency and asymptotic normality of varia-

tional Bayes under model misspecification.

The range of applications of the proposed method virtually permits dealing with

all the standard regression and classification models predicting the response variable

through a linear predictor, including generalized linear models. Here, particular at-

tention is devoted to loss functions characterized by a non-regular behavior and for

which standard Bayesian approximation techniques can not be directly employed, or

may suffer severe drawbacks. Our approach combines the efficiency and modularity of

mean field variational Bayes with Gaussian variational approximations to deal with pa-

rameters not having a conjugate distribution. Previously, a similar strategy, known as

semiparametric variational Bayes (Knowles and Minka, 2011; Wand, 2014; Rohde and

Wand, 2016), has been used for the estimation of Bayesian generalized linear models,

heteroscedastic regression models and Gaussian process regression by, e.g., Ormerod and

Wand (2012), Tan and Nott (2013), Wand (2014), Luts and Wand (2015), Menictas and

Wand (2015), and Khan and Lin (2017).

2.2 Motivating problems and results

2.2.1 Variational data-augmentation

Data-augmentation is a powerful tool that permits representing complex pseudo-likelihood

functions as the marginal density of a joint model, that is only partially observed (see

Chapter 1). This technique, first formalized and popularized by Dempster et al. (1977),

has been successfully used in a number of different contexts for the estimation of com-

plex statistical models. Some examples are finite-mixture models (Frühwirth-Schnatter,

2006), probit regression (Albert and Chib, 1993), logit regression (Polson et al., 2013),

quantile regression (Kozumi and Kobayashi, 2011), support vector machines (Polson
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and Scott, 2011), sparse regression (Carvalho et al., 2010; Griffin and Brown, 2011;

Bhattacharya et al., 2015).

Such an approach provides several benefits: it often restores the conjugacy between

likelihood and priors, it may regularize non-smooth optimization problems, it opens

the door to several iterative estimation algorithms with closed-form updating formulas,

and, finally, it provides a fascinating probabilistic interpretation in terms of missing

information and completed data. On the other hand, data augmentation and related

methods often suffer significant drawbacks related to the enlarging of the parameter

space with a number of unknown variables that is proportional to the sample size. In-

deed, it is well recognized how EM, MCMC and MFVB algorithms based on augmented

representations of the original likelihood are typically prone to slow convergence, poor

mixing, strong autocorrelation, stacking on local optima, and an increasing computa-

tional inefficiency at the growing of the sample size; see, e.g., Lewandowski et al. (2010)

for EM, Duan et al. (2018) and Johndrow et al. (2019) for MCMC, Neville et al. (2014)

and Loaiza-Maya et al. (2022) for MFVB.

In the variational literature, pitfalls related to data-augmentation methods have been

empirically studied by Neville et al. (2014), which also provided a geometrical interpre-

tation and a theoretical analysis of marginal and augmented variational approximations

under simple statistical models. Being aware of the risks entailed by data-augmentation,

many authors proposed alternative methods to circumvent these problems, improving

standard approximations while maintaining computational tractability. Some examples

are given by Fasano et al. (2022) and Loaiza-Maya et al. (2022).

In this context, it is worth understanding if and how there is a convenience working

with augmented models instead of relying on a marginal formulation. To this end,

we assume that (i) both the marginal and the completed models are available, (ii) a

variational approximation can be produced both for the marginal and the joint models,

and (iii) there is no interest in estimating the unknown distribution of the missing data.

Under these assumptions, we compare the posterior approximation accuracy obtained

under the marginal and the joint variational approximations using the Kullback-Leibler

divergence. We then provide a general theoretical result which establishes the sub-

optimality of variational approximations based on data-augmented models.

Let us assume that the (pseudo-)likelihood function π(y|θ) can be expressed as the

convolution of an augmented likelihood π(y|ω,θ) with a mixing density π(ω|θ), which
may be improper, namely

π(y|θ) =
∫︂
Ω

π(y|ω,θ) π(ω|θ) dω, (2.1)

where ω ∈ Ω is a non-observed latent vector.

Let us suppose that the interest of the analysis is to estimate the marginal posterior

distribution for the parameters θ ∈ Θ, while ω ∈ Ω can be considered as a vector of

nuisance latent variables. The augmented representation (2.1) is here considered as a

computational tool employed to simplify the calculations within approprietely designed

model-specific estimation algorithms.
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We define the marginal and the augmented approximations, respectively, qm(θ) ∈ Qm

and qa(ω,θ) ∈ Qa. Further, we define qa(θ) =
∫︁
Ω
qa(ω,θ) dω as the marginal density

obtained by integrating out ω from the augmented approximation qa(ω,θ). Then,

following a variational Bayes methodology, the optimal densities q∗m(θ) and q
∗
a(ω,θ) are

obtained by minimizing the following Kullback-Leibler divergences

q∗m(θ) = argmin
q∈Qm

KL{q(θ) ∥ π(θ|y)}, q∗a(ω,θ) = argmin
q∈Qa

KL{q(ω,θ) ∥ π(ω,θ|y)}.
(2.2)

Here, we assume for q∗m(θ) and q∗a(ω,θ) to be the global minimizers of the respective

optimization problems. Henceforth, we do not consider possible local minima.

In order to establish some connection between these two approximations, along with

the respective divergences, some compatibility assumption has to be imposed over Qm

and Qa.

Assumption 1 (Compatibility). We say that Qa is a density space compatible with

Qm if any marginal distribution qa(θ) induced by the marginalization of ω ∈ Ω from

qa(ω,θ) belongs to Qm. That is

Qa =

{︃
qa(ω,θ) : qa(θ) =

∫︂
Ω

qa(ω,θ) dω ∈ Qm

}︃
.

For instance, if we assume for qm(θ) to be a Gaussian density, also qa(θ) should be

a Gaussian density in order to keep the compatibility condition satisfied. Similarly,

if we do not specify any parametric assumption, but instead we assume a mean field

factorization qm(θ) =
∏︁

k qm(θk) over a given partition of θ, because of the compatibility,

also qa(θ) =
∏︁

k qa(θk) will factorize according to the same partition.

Under this hypothesis, we can characterize the behavior of the Kullback-Leibler di-

vergence under the marginal and augmented approximation schemes using the following

results.

Theorem 2.1. Let Qm and Qa be compatible spaces as defined in Assumption 1. Let

q∗m(θ) ∈ Qm and q∗a(ω,θ) ∈ Qa be the optimal approximating distributions defined as

in (2.2). Then, we have

KL{q∗m(θ) ∥ π(θ|y)} ≤ KL{q∗a(θ) ∥ π(θ|y)} ≤ KL{q∗a(ω,θ) ∥ π(ω,θ|y)}. (2.3)

Proof. Let us start by considering the first inequality in Theorem 2.1. Let q∗a(ω,θ) ∈ Qa,

q∗a(θ) ∈ Qm and q∗m(θ) ∈ Qm be the optimal variational approximations defined in (2.2).

Since q∗m(θ) is the global minimum of the Kullback-Leibler divergence calculated with

respect to the marginal space Qm, we have

KL{q∗m(θ) ∥ π(θ|y)} ≤ KL{q̃m(θ) ∥ π(θ|y)},

for any density function q̃m(θ) ∈ Qm and, in particular, for q̃m(θ) = q∗a(θ) ∈ Qm. This

proves the first inequality in Theorem 2.1.
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Let us move to the second inequality. Let qa(ω|θ) = qa(ω,θ)/qa(θ) be the conditional

density function of ω given θ with respect to the qa-measure. Then, from the Jensen

inequality follows that

log π(θ|y) = log

∫︂
Ω

qa(ω|θ)
{︃
π(ω,θ|y)
qa(ω|θ)

}︃
dω ≥

∫︂
Ω

qa(ω|θ) log
{︃
π(ω,θ|y)
qa(ω|θ)

}︃
dω.

Thus, by substitution, we end up with∫︂
Θ

qa(θ) log

{︃
π(θ|y)
qa(θ)

}︃
dθ =

∫︂
Θ

qa(θ)
[︁
log π(θ|y)− log qa(θ)

]︁
dθ

≥
∫︂
Θ

qa(θ)

[︃ ∫︂
Ω

qa(ω|θ) log
{︃
π(ω,θ|y)
qa(ω|θ)

}︃
dω − log qa(θ)

]︃
dθ.

(2.4)

Now, because of the identity

log qa(θ) =

[︃ ∫︂
Ω

qa(ω|θ) dω
]︃

⏞ ⏟⏟ ⏞
=1

log qa(θ) =

∫︂
Ω

qa(ω|θ) log q(θ) dω,

the last integral in (2.4) becomes∫︂
Θ

qa(θ)

[︃ ∫︂
Ω

qa(ω|θ) log
{︃
π(ω,θ|y)
qa(ω|θ)

}︃
dω −

∫︂
Ω

q(ω|θ) log qa(θ) dω
]︃
dθ

=

∫︂∫︂
Ω×Θ

qa(ω|θ) qa(θ)
[︃
log

{︃
π(ω,θ|y)
qa(ω|θ)

}︃
− log qa(θ)

]︃
dω dθ

=

∫︂∫︂
Θ×Ω

qa(ω|θ) qa(θ) log
{︃

π(ω,θ|y)
qa(ω|θ) qa(θ)

}︃
dω dθ

=

∫︂∫︂
Θ×Ω

qa(ω,θ) log

{︃
π(ω,θ|y)
qa(ω,θ)

}︃
dω dθ.

(2.5)

Observing that the left integral in (2.4) corresponds to the negative Kullback-Leibler di-

vergence−KL{qa(θ) ∥ π(θ|y)}, while the last integral in (2.5) corresponds to−KL{qa(ω,θ) ∥
π(ω,θ|y)}, we have

KL{qa(θ) ∥ π(θ|y)} ≤ KL{qa(ω,θ) ∥ π(ω,θ|y)}.

This concludes the proof of Theorem 2.1.

Remark 2.2. Inequalities (2.4) and (2.5) hold only under the compatibility Assumption 1

made upon Qm and Qa, which permits to write qa(ω|θ) as a proper conditional distribu-

tion generated by qa(ω,θ) and qa(θ). Whenever the compatibility is not satisfied there

are no guarantees that Theorem 2.1 still holds.

In the following, we show this fact by using a counterexample.

Example 2.1. Let us consider a generic augmented space Qa such that π(ω,θ|y) ∈ Qa.

On the opposite, we consider Qm such that π(θ|y) /∈ Qm. This way, Qa and Qm are



30 Section 2.2 - Motivating problems and results

not compatible by construction, since there exists at least one element of Qa whose

marginal density does not belong to Qm, namely π(θ|y) =
∫︁
Ω
π(ω,θ) dω. Recall that

the Kullback-Leibler divergence is always non-negative, i.e. KL(q ∥ π) ≥ 0, and reaches

0 if and only if q = π almost everywhere, namely KL(π ∥ π) = 0. Then, there exists

at least one element of Qa such that KL{qa(ω,θ) ∥ π(ω,θ|y)} = 0, which corresponds

to qa(ω,θ) = π(ω,θ|y), whereas KL{qm(θ) ∥ π(θ|y)} > 0 for any qm(θ) ∈ Qm, since

π(θ|y) /∈ Qm. This means that

KL{qm(θ) ∥ π(θ|y)}⏞ ⏟⏟ ⏞
> 0

≰ KL{π(ω,θ|y) ∥ π(ω,θ|y)}⏞ ⏟⏟ ⏞
= 0

, ∀ qm(θ) ∈ Qm,

which contradicts the inequality in Theorem 2.1.

In order to better contextualize Theorem 2.1, we provide the following corollary, which

characterizes the inequalities in (2.3) separating the strict inequality cases from the

equality ones.

Corollary 2.3. Under the same assumptions of Theorem 2.1, the equality case

KL{q∗m(θ) ∥ π(θ|y)} = KL{q∗a(θ) ∥ π(θ|y)} = KL{q∗a(ω,θ) ∥ π(ω,θ|y)}

holds if, and only if, π(ω|θ,y) q∗a(θ) ∈ Qa for q∗a(θ) ∈ Qm and, moreover, q∗a(ω,θ) =

π(ω|θ,y) q∗a(θ). On the opposite, if π(ω|θ,y) q∗a(θ) /∈ Qa, we have

KL{q∗m(θ) ∥ π(θ|y)} < KL{q∗a(θ) ∥ π(θ|y)} < KL{q∗a(ω,θ) ∥ π(ω,θ|y)}.

Proof. (⇒) Let consider the augmented variational approximation of the form qa(ω,θ) =

π(ω|θ,y) qa(θ). Then, the Kullback-Leibler divergence in the augmented space is

KL{π(ω|θ,y) qa(θ) ∥ π(ω,θ|y)} =

= −
∫︂∫︂

Θ×Ω

π(ω|θ,y) qa(θ) log
{︃

π(ω,θ|y)
π(ω|θ,y) qa(θ)

}︃
dω dθ

= −
∫︂∫︂

Θ×Ω

π(ω|θ,y) qa(θ) log
{︃
π(θ|y)
qa(θ)

}︃
dω dθ

= −
∫︂
Θ

[︃ ∫︂
Ω

π(ω|θ,y) dω
]︃
qa(θ) log

{︃
π(θ|y)
qa(θ)

}︃
dθ

= −
∫︂
Θ

qa(θ) log

{︃
π(θ|y)
qa(θ)

}︃
dθ = KL{qa(θ) ∥ π(θ|y)}

The optimal approximation q∗a(ω,θ) = π(ω|θ,y) q∗a(θ) is thus the solution to the follow-

ing variational problem q∗a(θ) = argminqa∈Qm
KL{qa(θ) ∥ π(θ|y)} which, by definition,

corresponds to q∗m(θ).

(⇐) Let us consider the variational approximation qa(ω,θ) = qa(ω|θ) qa(θ) such that

qa(θ) ∈ Qm and qa(ω|θ) ∈ Qc, where Qc denotes the space of variational conditional

densities qa(ω|θ) such that qa(ω,θ) ∈ Qm. Thus, the optimal variational distribution
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q∗a(ω,θ) is the solution of the following optimization problem

min
q(ω,θ)∈Qa

KL{qa(ω,θ) ∥ π(ω,θ|y)}

= min
qa(θ)∈Qm

[︃
min

qa(ω|θ)∈Qc
KL{qa(ω|θ) qa(θ) ∥ π(ω|θ,y)π(θ|y)}

]︃
.

The later Kullback-Leibler divergence may also be written as

KL{qa(ω|θ) qa(θ) ∥ π(ω|θ,y)π(θ|y)}

= −
∫︂∫︂

Θ×Ω

qa(ω|θ) qa(θ) log
{︃
π(ω|θ,y) π(θ|y)
qa(ω|θ) qa(θ)

}︃
dθ dω

= −
∫︂
Θ

qa(θ)

[︃ ∫︂
Ω

qa(ω|θ) log
{︃
π(ω|θ,y)
qa(ω|θ)

}︃
dω

]︃
dθ −

∫︂
Θ

qa(θ) log

{︃
π(θ|y)
qa(θ)

}︃
dθ

=

∫︂
Θ

qa(θ)KL{qa(ω|θ) ∥ π(ω|θ,y)} dθ +KL{qa(θ) ∥ π(θ|y)}

= Eqa
[︁
KL{qa(ω|θ) ∥ π(ω|θ,y)}

]︁
+KL{qa(θ) ∥ π(θ|y)}.

This reformulation is useful to highlight the fact that minimizing KL{qa(ω|θ) qa(θ) ∥
π(ω,θ|y)} with respect to qa(ω|θ) is equivalent to minimizing KL{qa(ω|θ) ∥ π(ω|θ,y)}
with respect to qa(ω|θ) keeping qa(θ) fixed. Therefore, if π(ω|θ,y) ∈ Qc, q∗a(ω|θ) =

π(ω|θ,y) is the unique minimizer of KL{qa(ω|θ) ∥ π(ω|θ,y)} and, furthermore, we

have KL{π(ω|θ,y) ∥ π(ω|θ,y)} = 0 (Kullback and Leibler, 1951). On the other

hand, if π(ω|θ,y) /∈ Qc, KL{qa(ω|θ) ∥ π(ω|θ,y)} > 0 for any qa(ω|θ) ∈ Qc and

also KL{qa(ω,θ) ∥ π(ω,θ|y)} > KL{qa(θ) ∥ π(θ|y)}. This concludes the proof.

Starting from the right inequality in (2.3), Theorem 2.1 states that the divergence

in the augmented space is always higher (or equal) than the divergence in the marginal

space. The difference between the two can then be interpreted as the loss of information

required for approximating a larger model keeping fixed the available set of data.

On the other hand, the left-hand side inequality (2.3) in Theorem 2.1 establishes

that a loss of information in the augmented parameter space, i.e. Ω × Θ, also reflects

on a worsening of the approximation in the marginal space of interest, i.e. Θ. So

that, under Assumption 1, marginal approximations dominate data-augmentation based

approximations in the Kullback-Leibler metric.

Corollary 2.3 then states that the equivalence in the Kullback-Leibler metric may be

reached if, and only if, the augmented approximation q∗a(ω,θ) takes the form q∗a(ω,θ) =

q∗a(ω|θ) q∗a(θ), where q∗a(ω|θ) = π(ω|θ,y) is actually the true full-conditional density

function of ω given θ and y. Similar observations have already been studied in literature,

even if in a less general form (see, e.g., Theorem 1 and Corollary 1 by Loaiza-Maya et al.,

2022), and they are at the base of some recent variational approximations for models

with many latent variables (Loaiza-Maya et al., 2022; Fasano et al., 2022).

These facts motivate the development of methods alternative to data-augmented

mean field variational Bayes algorithms for posterior approximation, especially once
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different approaches lead to approximations having the same functional form.

2.2.2 Parametric variational Bayes

When the priors are not conjugate with the likelihood under study and, thus, mean

field approximations do not enjoy closed form solutions, variational Bayes approxima-

tion can still be employed by imposing additional restrictions on the functional space

Q. Specifically, parametric variational inference circumvents the lack of conjugacy by

imposing the parametric restriction

Q =
{︂
q(θ) : q(θ) = q(θ; ξ), ξ ∈ Ξ

}︂
, (2.6)

for some user-specified family q(θ; ξ) indexed by the variational parameter vector ξ ∈ Ξ.

The optimal variational approximation q∗(θ) can then be obtained by solving

q∗(θ) = argmax
q∈Q

ℓ{y; q(θ; ξ)}.

If q(θ; ξ) is uniquely identified by its parameter vector ξ, the optimization above can

be equivalently expressed into finding the optimal value ξ̂, such that

ξ̂ = argmax
ξ∈Ξ

ℓ(y; ξ), (2.7)

where ℓ(y; ξ) = ℓ{y; q(θ; ξ)}. Under mild regularity conditions, the optimization (2.7)

can be performed via general purpose optimizers, like quasi-Newton algorithms (Nocedal

and Wright, 2006), conjugate gradient (Honkela et al., 2010; Rohde and Wand, 2016)

and stochastic search (Hoffman et al., 2013; Kucukelbir et al., 2017).

In the special case of variational densities belonging to the Exponential Family (EF)

with canonical parameter ξ, denoted by q(θ; ξ) ∼ EF(ξ), Knowles and Minka (2011)

and Wand (2014) proposed an alternative, and more efficient, maximization scheme

based on a fixed-point variational message passing procedure. Specifically, we consider

the exponential family variational approximation

q(θ; ξ) = H(θ) exp
{︁
ξ⊤T (θ)− A(ξ)

}︁
,

where ξ is the vector of canonical parameters, H(θ) is the base measure, T (θ) is the nat-

ural sufficient statistics and A(ξ) is a twice differentiable, convex, log-partition function.

Then, according to Knowles and Minka (2011) and Tan and Nott (2013), the optimal

variational message passing iteration for climbing the evidence lower bound (1.26) is

given by

ξ(k+1) ←
[︁
Var(k)q {T (θ)}

]︁−1[︁∇ξ E(k)
q {log π(y,θ)}

]︁
. (2.8)

As pointed out by Tan and Nott (2013) and Rohde and Wand (2016), the updating

formula (2.8) constitutes a fixed-point iteration, which iteratively solve the first order

equation ∇ξ ℓ(y; ξ) = 0. Under local convexity assumptions on log π(y,θ), (2.8) is
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guaranteed to converge to a local stationary point of ℓ(y; ξ) with a local convergence

rate which depends on the curvature of the evidence lower bound in a neighborhood of

the maximum.

Let us now consider the Gaussian variational approximation q(θ; ξ) ≡ ϕ(θ;µ,Σ),

where the canonical parameter is defined by ξ = (ξ⊤1 , ξ
⊤
2 )

⊤, with ξ1 = Σ−1µ and

ξ2 = −1
2
vech(−2Σ−1). Then, following Wand (2014) and Rohde and Wand (2016),

employing the parametrization (µ,Σ) ↦→ (ξ1, ξ2), calculating the variational message

passing update (2.8), and reparametrizing back to (ξ1, ξ2) ↦→ (µ,Σ), the optimal update

for µ and Σ is given by

µ(k+1) ← µ(k) −
[︁
H(k)

]︁−1
g(k), Σ(k+1) ← −

[︁
H(k)

]︁−1
. (2.9)

Here, g(k) = ∇µ ℓ(y;µ
(k),Σ(k)) and H(k) = ∇2

µ ℓ(y;µ
(k),Σ(k)) denote the gradient and

Hessian of ℓ(y;µ,Σ) calculated with respect to µ and evaluated at the current estimates

of µ and Σ. It is worth noting that, under suitable differentiability conditions on the

log-likelihood function ℓ(θ;y) = log π(y|θ), the above gradient and Hessian may be

calculated as

g(k) = ∇µ E(k)
q {log π(y,θ)} = E(k)

q

{︁
∇θ log π(y,θ)

}︁
,

H(k) = ∇2
µ E(k)

q {log π(y,θ)} = E(k)
q

{︁
∇2

θ log π(y,θ)
}︁
;

see, e.g., Opper and Archambeau (2009), Ormerod and Wand (2012) and Tan and Nott

(2013). This fact highlights a different interpretation on (2.9), which can be viewed

as a variational implementation of the Newton-Rapson algorithm used for finding the

maximum likelihood estimator of θ.

In the variational literature, formula (2.9) is also known as Knowles-Minka-Wand up-

date, from the authors that firstly connected such an updating rule with the variational

message passing theory (Knowles and Minka, 2011; Wand, 2014).

Differently from conjugate mean field variational Bayes, the Newton-like step (2.9)

does not guarantee for the semiparametric variational Bayes optimization scheme to con-

verge monotonically to the maximum. For this reason, in this work we take a slightly dif-

ferent approach, employing a modified update for µ, that scales the searching direction

d(k) = −
[︁
H(k)

]︁−1g(k) with a step-size parameter ρ ∈ (0, 1], that is µ(k+1) ← µ(k)+ρd(k).

The step-length ρ can then be determined using an efficient line-search algorithm that

enforces the Armijo-Wolfe conditions to be satisfied (Nocedal and Wright, 2006). This

improvement has two main advantages: first, it stabilizes the iterative optimization,

preventing the risk of jumping too far from the optimum; second, it helps in scaling

up the convergence speed, adaptively calibrating the step-size to the shape of the lower

bound surface.

For Bayesian models where only a subset of the parameters have a non-conjugate

prior, mean field variational Bayes and parametric variational approximations can be

combined within a unified semiparametric variational algorithm. More formally, let

θ = (ϕ,ψ) be a partition of the parameter vector, with sub-partitions ϕ = (ϕ1, . . . ,ϕNϕ)
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and ψ = (ψ1, . . . ,ψNψ
). Then, assuming the factorization

Q =

{︄
q(θ) : q(θ) =

Nϕ∏︂
h=1

qh(ϕh)

Nψ∏︂
ℓ=1

qℓ(ψℓ; ξℓ), ξℓ ∈ Ξℓ

}︄
,

and the parametric restriction q(ψℓ; ξℓ) ∼ EF(ξℓ), the optimal variational approxima-

tion q∗(θ) may be obtained iterating until convergence the coordinatewise optimization

q
(k+1)
h (ϕh)← exp

[︁
E(k)

−ϕh
{log π(ϕh|rest)}

]︁
, h = 1, . . . , Nϕ,

ξ
(k+1)
ℓ ←

[︁
Var(k)q {Tℓ(ψℓ)}

]︁−1[︁∇ξℓ E
(k)
q {log π(y,θ)}

]︁
, ℓ = 1, . . . , Nψ.

This approach has been employed by Tan and Nott (2013) for the estimation of gen-

eralized linear mixed models with a partially non-centered parametrization, by Wand

(2014) and Menictas and Wand (2015) for the estimation of heteroscedastic regression

models, and by Luts and Ormerod (2014) for the estimation of regression models for

counting data.

2.3 Approximate belief updating

We now suppose to be interested in the unknown parameter θ ∈ Θ, which describes

some latent features of the random variable y ∈ Y ⊆ R. Let y ∼ Π be distributed

according to the probability law Π defined over Y . Then, we define θ as the minimizer

of the risk

R(θ) = E{L(y,θ)} =
∫︂
Y
L(y,θ)Π(dy), (2.10)

with L : Y ×Θ→ R+ denoting a loss function measuring the misfit between y and θ.

Differently from classical M-estimation framework discussed in Chapter 1, here we are

interested in combining a risk-based description of the data behavior with a subjective

prior distribution on θ. In a Bayesian vein, we represent our subjective beliefs about

θ through the prior distribution π(θ). Then, when we observe a random sample y =

(y1, . . . , yn)
⊤ ∈ Yn generated by y ∼ Π, the prior π(θ) can be coherently updated to

the posterior π(θ|y) by means of the generalized Bayes formula (Bissiri et al., 2016):

π(θ|y) ∝ π(θ) π(y|θ) = π(θ) exp{−nRn(θ)/α}, (2.11)

where π(y|θ) = exp{−nRn(θ)/α} denotes the pseudo-likelihood function induced by

the empirical risk Rn(θ) = En{L(y,θ)}, which approximates the integral in (2.10). The

parameter 1/α > 0 controls the weight of the risk function relative to the prior and

is often called temperature in the Gibbs posterior and PAC Bayes literature (Alquier

et al., 2016).

Whenever a proper log-likelihood is considered for the specification of the loss L(y,θ),

the most natural candidate for the temperature parameter is α = 1. In all the other

cases, the elicitation of α is more delicate and, to some extent, arbitrary. The choice of α
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can be driven by inferential considerations, for example, calibrating α to guarantee some

frequentist coverage level of the posterior confidence intervals. This selection problem

has been faced, among others, by Germain et al. (2016) and Bissiri et al. (2016). Despite

the practical and theoretical importance of choosing an appropriate value for α, this is

not the main concern of this work. For this reason, hereafter, we will consider α as it

was selected in advance either by an arbitrary decision of the researcher, or by using

some objective selection criteria.

The generalized Bayes update (2.11) is particularly important when it comes to

estimating robust regression models for an arbitrary loss function L(y,θ), not being

necessarily associated with the kernel of a probability density function. In what follows

we leverage this representation for dealing with a wide range of mixed prediction models

within the same theoretical framework.

2.3.1 Model specification

Supervised mixed regression and classification models aim at predicting the response

variable yi ∈ Y through a deterministic transformation of the covariate vectors xi ∈ Rp

and zi ∈ Rd, for i = 1, . . . , n. To this end, we define the linear predictor ηi = x⊤
i β+z⊤i u,

with β ∈ Rp and u ∈ Rd being the fixed- and random-effect regression parameters,

respectively. We assume for β and u to be the maximizers of the negative empirical

risk function, i.e. the pseudo log-likelihood,

log π(y|θ) = −n
α
Rn(θ) = −

1

α

n∑︂
i=1

L(yi,θ) = −
n

α
log σ2

ε −
1

ασ2
ε

n∑︂
i=1

ψ(yi, ηi), (2.12)

where ψ : Y × R → R+ is a continuous function measuring the misfit between the i-th

data point yi and the corresponding linear predictor ηi; σ
2
ε is a dispersion parameter

measuring the variability of the marginal prediction error calculated in the loss scale; α

is a fixed temperature parameter calibrating the relative weight of the risk function.

In the same vein as generalized linear models, which are based upon the specification

of an exponential family, a linear predictor and a link function, the risk formulation in

(2.12) encapsulates a large number of regression models defined by a loss function and

a linear predictor. Moreover, for an appropriate specification of ψ, generalized linear

models can be included in our model specification and σ2
ε can be interpreted as the

dispersion parameter of an exponential dispersion family. More details are outlined in

Section 2.4.

We complete the model specification by introducing a prior distribution that reflects

our subjective beliefs about the parameter vector θ = (β,u, σ2
u, σ

2
ε):

β ∼ Np

(︁
0p, σ

2
βIp
)︁
, σ2

ε ∼ IG(Aε, Bε),

u|σ2
u ∼ Nd

(︁
0d, σ

2
uR

−1
)︁
, σ2

u ∼ IG(Au, Bu),
(2.13)

where σ2
β, Aε, Bε, Au, Bu > 0 are fixed user-specified prior parameters; σ2

u > 0 is an

unknown scale parameter controlling the marginal variability of the random effect vector
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u; whileR ∈ Rd×d is a non-stochastic positive semi-definite matrix determining the prior

conditional correlation structure among the elements of u.

For models where σ2
ε is not required, its prior distribution can be set as a Dirac

delta function centered in 1, i.e. π(σ2
ε) = δ1(σ

2
ε). In this way, we obtain a formulation

coherent with the limiting case E(σ2
ε) → 1, Var(σ2

ε) → 0, which corresponds to an

Inverse-Gamma distribution with parameters Aε →∞, Bε →∞.

Alternative prior distributions for the regression parameters β and u in (2.13) may

be considered, including more involved hierarchical structures, sparse and robust distri-

butions, as well as spatial and temporal dependence. In the same way, the specification

of the prior laws for the scale parameters σ2
ε and σ2

u in (2.13) may be generalized to

account for alternative distributions, weakly informative and non-informative priors.

This choice is particularly delicate in mixed regression modelling, and it has been ex-

tensively discussed by Gelman (2006), which we refer to for further details. Just for a

matter of exposition, we here consider only prior laws of the form (2.13), and we defer

to Section 2.5 for a deeper discussion on model extensions and generalizations.

As proved by Bissiri et al. (2016), the most rational way to update our prior knowl-

edge about θ using the information coming from the empirical risk (2.10) is to combine

prior and pseudo-likelihood through the Bayes theorem, as in Equation (2.11). The

resulting generalized posterior density is then given by

π(β,u, σ2
u, σ

2
ε |y) ∝ π(y|β,u, σ2

ε)π(β) π(u|σ2
u) π(σ

2
u) π(σ

2
ε). (2.14)

Typically, such a posterior can not be normalized analytically, even when the pseudo-

likelihood is conditionally conjugate with the prior distributions. For this reason, an

efficient and general approximation algorithm is needed to perform posterior inference

on (2.14) without changing the approximation scheme every time that a new ψ-function

is considered.

2.3.2 Variational approximation

For approximating the conditional density function (2.14) we rely on a semiparametric

variational approach; we thus impose the minimal product restriction

π(β,u, σ2
u, σ

2
ε |y) ≈ q(β,u, σ2

u, σ
2
ε) = q(β,u) q(σ2

u, σ
2
ε),

which leads to the induced factorization q(σ2
u, σ

2
ε) = q(σ2

u) q(σ
2
ε), because of the con-

ditional independence structure of the posterior distribution. Furthermore, we restrict

the density q(β,u) ∼ Nm(µ̂, Σ̂) to be multivariate Gaussian with mean vector and

covariance matrix

µ̂ =

[︃
µ̂β
µ̂u

]︃
, Σ̂ =

[︄
Σ̂ββ Σ̂βu

Σ̂uβ Σ̂uu

]︄
,

where the subscripts refer to the p- and d-dimensional sub–blocks corresponding to β

and u, so that µ̂β ∈ Rp, Σ̂ββ ∈ Rp×p and Σ̂βu ∈ Rp×d. We denote with m = p + d the
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total number of regression parameters in the model. Such a parametric assumption leads

to a Gaussian variational distribution for the linear predictor, that is q(η) ∼ Nn(η̂, V̂)

with mean and variance

Eq(η) = η̂ = Cµ̂, Varq(η) = V̂ = CΣ̂C⊤.

Here, C =
[︁
X, Z

]︁
is the n × m completed design matrix having i-th row equal to

c⊤i = (x⊤
i , z

⊤
i ). Moreover, we denote by ν̂2 the vector containing the diagonal elements

of V̂, that is ν̂2i = V̂ ii.

As shown in Appendix A.2, a direct application of the variational formulas (1.29) and

(2.9) gives rise to the optimal variational updates summarized in the following optimal

distributions:

� q(k+1)(σ2
ε) ∼ IG(A

(k)
ε , B

(k)
ε ) where

A(k)
ε ← Aε + n/α, B(k)

ε ← Bε + 1⊤
nΨ

(k)
0 /α;

� q(k+1)(σ2
u) ∼ IG(A

(k)
u , B

(k)
u ) where

A(k)
u ← Au + d/2, B(k)

u ← Bu +
1
2
µ(k)⊤
u Rµ(k)

u + 1
2
trace

[︁
RΣ(k)

uu

]︁
;

� q(k+1)(β,u) ∼ Nm(µ
(k),Σ(k)) with µ(k) and Σ(k) being the fixed-point of the

Knowles-Minka-Wand recursion (2.9). Thanks to Proposition A.2 in Appendix A.1,

the gradient vector g(k) and the Hessian matrix H(k) for our model specification

take the form
g(k) = −R̄(k)

µ(k) − µ(k)

1/σ2
ε
C⊤Ψ

(k)
1 /α,

H(k) = −R̄(k) − µ(k)

1/σ2
ε
C⊤diag

[︁
Ψ

(k)
2

]︁
C/α,

(2.15)

where R̄
(k)

= blockdiag
[︁
σ−2
β Ip, µ

(k)

1/σ2
u
R
]︁
, µ

(k)

1/σ2
u
= E(k)

q (1/σ2
u) and µ

(k)

1/σ2
ε
= E(k)

q (1/σ2
ε).

Here, the i-th element of the n-dimensional vector Ψ(k)
r = (Ψ

(k)
r,1 , . . . ,Ψ

(k)
r,n)⊤ is defined as

Ψ
(k)
r,i = Ψr(yi, η

(k)
i , ν

(k)
i ) = E(k)

q

{︁
ψr(yi, ηi)

}︁
, r = 0, 1, 2, i = 1, . . . , n, (2.16)

where ψr(y, η) is the r-th order weak derivative of ψ(y, η) with respect to η. The

existence and regularity properties of Ψr are provided in the following theorem.

Theorem 2.4. Let ψ(y, η) be a function such that, for any y ∈ Y and r = 1, . . . , R, the

r-th order weak derivative ψr(y, η) is well-defined. Then, the following statements hold:

(1) Ψr has infinitely many continuous derivatives with respect to η and ν;

(2) if ψr is continuous in η, then Ψr(y, η, ν)→ ψr(y, η) as ν → 0;

(3) if ψ0 is convex in η, then Ψ0 is jointly convex with respect to η and ν;

(4) if ψ0 is convex in η, then ψ0(y, η) ≤ Ψ0(y, η, ν) for any ν ≥ 0.
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Proof. Theorem 2.4 follows as a consequence of Proposition A.1 in Appendix A.1.

Remark 2.5. Theorem 2.4 does not require the loss function ψ to satisfy classical reg-

ularity assumptions, like differentiability, since the weak derivative ψr may exist even

though ψ is not r-times differentiable all over its domain. This fact permits us to employ

our variational approximation even for models with non-regular loss functions.

It is worth noting that, for any dimension of p and d, only univariate numerical

integrations are required in the calculation of (2.15), since

Ψr(y, η, ν) =

∫︂ +∞

−∞
ψr(y, x)ϕ(η; η, ν

2) dx.

This fact leads to a scalable optimization routine, not depending on cumbersome high-

dimensional integration problems. Clearly, efficiency and stability in the calculation

of (2.15) highly depend on the algorithm used for evaluating the n expectations in

(2.16). In our experience, whenever no analytic solutions are available, adaptive Gauss-

Hermite quadrature (Liu and Pierce, 1994) leads to fast calculations and robust results.

Further, it is worth emphasizing the generality of the formulas in (2.15), that, to-

gether with (2.9), goes far beyond the few examples presented in the following section,

for which we found simple analytic solutions. It indeed includes, as special cases, the

algorithms proposed by e.g. Tan and Nott (2013), Wand (2014) and Luts and Ormerod

(2014) for logistic, Poisson and Negative-Binomial regression models. Moreover, it is

strongly connected with the Gaussian variational approximation proposed by Ormerod

and Wand (2012) for estimating frequentist generalized mixed models.

The last ingredient of our variational method is the objective function, say the evi-

dence lower bound on the marginal log-likelihood, which, at the (k + 1)-th iteration of

the algorithm, takes the closed form expression

ℓ(y; q(k+1)) =

− µ(k)

1/σ2
ε
1⊤
nΨ

(k)
0 /α + 1

2
logdet(Σ(k))− 1

2
µ(k)⊤R̄

(k)
µ(k) − 1

2
trace

[︁
R̄

(k)
Σ(k)

]︁
− log

{︁
Γ(Au)/Γ(A

(k)
u )
}︁
+ Au log(Bu/B

(k)
u )− d

2
logB(k)

u − (Bu −B(k)
u )µ

(k)

1/σ2
u

− log
{︁
Γ(Aε)/Γ(A

(k)
ε )
}︁
+ Aε log(Bε/B

(k)
ε )− n

α
logB(k)

ε − (Bε −B(k)
ε )µ

(k)

1/σ2
ε

+ const,

(2.17)

for R̄
(k)

= blockdiag
[︁
σ−2
β Ip, µ

(k)

1/σ2
u
R
]︁
. Here, “const” denotes a constant additive term

not depending on the variational distributions. See Appendix A.2 for the outline of the

derivation of the lower bound formula (2.17).

Remark 2.6. Let us assume that all the variational parameters in (2.17) but µ and Σ

are fixed. Then, Proposition 2.4 guarantees the joint differentiability and concavity of

ℓ(y; q) as a function of µ and Σ. Therefore, under the assumptions of Proposition A.1

the updating iteration (2.9) locally converges to a global maximum of the evidence lower

bound (2.17). See, e.g., Rohde and Wand (2016) and Lange (2010), Chapter 12.
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2.3.3 Optimization algorithm

The recursive refinement of the optimal distributions gives rise to the coordinate ascent

variational inference routine summarized in Algorithm 4. We assess the algorithm con-

vergence by looking at the relative change of the variational parameters and the lower

bound (2.17). A well-behaved variational Bayes algorithm is expected to produce a

non-decreasing sequence of lower bound values, thereby, providing a practical role for

monitoring the convergence and detecting pathological behaviors of the algorithm. At

the end of the estimation process, the evidence lower bound can also be used for model

selection purposes, being a variational approximation of the true marginal log-likelihood.

Algorithm 4 SVB algorithm for variational inference in model (2.12) with prior (2.13)

Require: α,y,X

Require: σ2
β, Au, Bu, Aε, Bε

Initialize Âε, B̂ε, Âu, B̂u, µ̂, Σ̂;

while convergence is not reached do

Evaluate Ψ̂0, Ψ̂1, Ψ̂2; O(nm2)

Âε ← Aε + n/α; B̂ε ← Bε + 1⊤
n Ψ̂0/α; O(n)

Âu ← Au + d/2; B̂u ← Bu +
1
2

{︁
µ̂⊤
uR µ̂u + trace

[︁
RΣ̂uu

]︁}︁
; O(d2)

µ̂1/σ2
u
← Âu/B̂u; µ̂1/σ2

ε
← Âε/B̂ε; O(1)

R̄← blockdiag
[︁
σ−2
β Ip, µ̂1/σ2

u
R
]︁
; O(p+ d2)

ĝ← − R̄µ̂− µ̂1/σ2
ε
C⊤Ψ̂1/α; O(nm)

Ĥ← − R̄− µ̂1/σ2
ε
C⊤diag

[︁
Ψ̂2

]︁
C/α; O(nm2)

ρ← LineSearch(ĝ, Ĥ); Σ̂← −Ĥ−1; µ̂← µ̂− ρ Ĥ−1ĝ; O(m3)

end while

In Algorithm 4, the notation LineSearch(ĝ, Ĥ) is used to denote a function taking

as arguments the actual objective function ℓ, the gradient vector ĝ and Hessian matrix

Ĥ and returning the selected step-size parameter ρ ∈ (0, 1] as an output. Such a

routine can be easily implemented using an iterative backtracking method (Nocedal

and Wright, 2006) until the step–length satisfies some minimal requirements, such as

the Armijo-Wolfe conditions.

Assuming for X, Z and R to be dense matrices, the number of flops required by one

iteration of the algorithm is of order O(nm2 +m3), which is equivalent to expectation-

maximization, Gibbs sampling and mean field variational Bayes when applied to models

of the form (2.12). However, if some sparsity patterns are observed, efficient sparse linear

algebra routines may help in calculating Ĥ
−1

and Ĥ
−1
ĝ, turning down the complexity

of the algorithm to a lower order. In such cases, the computational gain depends on the

specific sparsity patterns and implementation details. Notice that we are here assuming

that the calculation of Ψr is dominated by the evaluation of η̂i = c⊤i µ̂ and ν̂2i = c⊤i Σ̂ ci,

i = 1, . . . , n, that is of order O(nm2). In our experience, this assumption is satisfied
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for all the statistical models we tried, even when no analytic solutions are available and

numerical quadrature is required.

An important feature of the computational framework described above is that it is

shared across all the linear models defined through minimum-risk criteria. What distin-

guishes different models is the specification of the Ψ-vectors, which bring the individual

information about the local behavior of the expected loss function, similarly as the gra-

dient and Hessian of the log-likelihood do in the classical penalized re-weighted iterated

least squares algorithm. However, differently from standard gradient-based methods,

we do not require the loss function to be differentiable, since the weak derivatives of ψ

may exist even though the proper derivatives of ψ are not well-defined. Moreover, from

Proposition 2.4 it follows that Ψ0, Ψ1, Ψ2 are smooth functions of µ̂ and Σ̂, since the

convolution of any function with a Gaussian kernel produces a smooth transformation.

More details and proofs can be found in Appendix A.1.

For a stable numerical implementation, we suggest truncating the values of Ψ2 from

below to a small positive constant, say 10−6, to prevent some elements of the vector

to approach zero. In our numerical experiments, this correction never had a significant

impact on the final solution, but often helped the convergence in the very early epochs

of the iterative optimization routine.

2.4 Relevant models

As pointed out in Section 2.3, Algorithm 4 provides a general recipe for performing

variational inference on a wide range of Bayesian models. In this section, we present

some remarkable examples coming from both machine learning and statistical literature.

In particular, we show how to specify the Ψ-vectors for different settings ranging from

quantile and expectile regression (Sections 2.4.1 and 2.4.2) to support vector machines

(Section 2.4.3 and 2.4.4). Finally, we move to the exponential family case (Section 2.4.5)

for discussing the estimation of generalized linear models. In doing this, we make an

extensive use of non-standard integration results summarized in Appendix A.1, which

constitute the key results for calculating the necessary Ψ-functions in closed form.

2.4.1 Quantile regression

As introduced in Chapter 1, quantile regression (Koenker and Bassett, 1978; Koenker,

2005) is a statistical model which aims at estimating the τ -th conditional quantile of yi
given the available covariates xi and zi. Here we consider the Bayesian mixed model

generalization of classical quantile regression by specifying the linear predictor, i.e., the

quantile regression function, as ηi = x⊤
i β+ z⊤i u where β is a vector of fixed effects and

u is a vector of random effects.

Previously, Bayesian quantile regression has been considered by Yu and Moyeed

(2001), which proposed a Metropolis-Hastings algorithm for Markov chain Monte Carlo

inference; Kozumi and Kobayashi (2011) instead proposed a Gibbs sampling method

(Algorithm 2) for efficient posterior sampling; while Wand et al. (2011) and McLean
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Figure 2.1: Quantile regression (τ = 0.75): ψr and Ψr functions for different values
of η and ν. From left to right: r = 0, 1, 2.

and Wand (2019) implemented a mean field variational Bayes procedure (Algorithm 3)

for approximate inference on Asymmetric-Laplace likelihood models. Frequentist lin-

ear mixed quantile regression models have been considered by Geraci and Bottai (2014)

and Geraci (2014), which proposed to evaluate the marginal pseudo-likelihood via adap-

tive Gaussian and Laplace quadrature.

Here, we take a different approach employing a semiparametric variational Bayes

approximation and using Algorithm 4 to estimate quantile regression as a particular

instance of the model defined in (2.12). Recalling the definition of the minimum risk

criterion in (1.3), the ψ-function for the quantile regression model can be set as

ψ(y, η) = (y − η){τ − I(y ≤ η)}. (2.18)

The specification of Algorithm 4 is then completed by providing the explicit solution

for the Ψ-functions defined in (2.16).

Proposition 2.7. The Ψ-functions for the quantile regression model are

Ψ0(y, η, ν) = (y − η)
{︁
Φ(y; η, ν2) + τ − 1

}︁
+ ν2 ϕ(y; η, ν2),

Ψ1(y, η, ν) = 1− τ − Φ(y; η, ν2),

Ψ2(y, η, ν) = ϕ(y; η, ν2).

Proof. Consider the quantile check loss ψ(y, η) = ψ̃(y−η) along with its first and second

weak derivatives:

ψ̃0(x) =
1
2
|x|+ (τ − 1

2
)x = x{τ − I(x < 0)},

ψ̃1(x) =
1
2
sign(x) + (τ − 1

2
) = τ − I(x < 0),

ψ̃2(x) = δ0(x).
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Then, taking the expectation with respect to x ∼ N(µ, ν2), we get

E
{︁
ψ̃0(x)

}︁
= τE(x)− E{x I(x < 0)} = µ{τ − Φ(0;µ, ν2)}+ ν2 ϕ(0;µ, ν2),

E
{︁
ψ̃1(x)

}︁
= τ − E{I(x < 0)} = τ − Φ(0;µ, ν2),

E
{︁
ψ̃2(x)

}︁
= E{δ0(x)} = ϕ(0;µ, ν2).

Substituting µ = y−η and simplifying the results, we obtain the closed form expressions

for Ψr, r = 0, 1, 2, provided in Proposition 2.7.

As shown in Figure 2.1, the check function (2.18) is a piecewise linear loss weighting pos-

itive and negative errors differently. This characteristic is maintained by the variational

loss introduced in Proposition 2.7, which has an asymmetric linear tail behavior, but an

almost quadratic smooth trajectory in a neighborhood of the minimum. The variational

convolution in (2.16) thus introduces a smoothing effect that regularizes the behavior of

Ψ and its derivatives, even though the proper derivatives of ψ are not well-defined. Fig-

ure 2.1 thus provides an intuitive, graphical representation of the properties of Ψ stated

in Theorem 2.4, such as smoothness, convexity, majorization of ψ and convergence to

ψ as ν → 0.

2.4.2 Expectile regression

Expectile regression (Newey and Powell, 1987; Efron, 1991) is a statistical model alter-

native to Quantile Regression, which replaces the minimization of an asymmetrically

weighted sum of absolute errors with an asymmetric squared error criterion. The Ex-

pectile Regression loss is then given by

ψ(y, η) = (y − η)2|τ − I(y ≤ η)|. (2.19)

The linear predictor ηi = x⊤
i β + z⊤i u minimizing the expectile risk is called conditional

τ -expectile of yi given xi and zi. Expectiles provide a generalization of the mean in

the same way as quantiles provide an extension of the median, indeed, for τ = 0.5, we

obtain ψ(y, η) = (y − η)2.
Expectiles arise to be particularly important in financial applications when it comes

to measuring risks. Indeed, differently from the quantile check function (2.18), the

expetile loss (2.19) leads to a coherent subadditive elicitable risk measure, as proved

by Bellini and Bignozzi (2015) and Ziegel (2016).

Classical Bayesian inference on expectile regression models can be performed via

Metropolis-Hastings simulation from the posterior distribution using as working likeli-

hood an Asymmetric-Gaussian model. See, for example, the works of Sobotka and Kneib

(2012), Xing and Qian (2017) and Waldmann et al. (2017). To the best of our knowledge,

no conditionally conjugate stochastic representation of the Asymmetric-Gaussian model

have been proposed in the literature. Therefore, expectation-maximization, Gibbs sam-

pling, or mean field variational Bayes algorithms are not available as an alternative

to Metropolis-Hastings .
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Figure 2.2: Expectile regression (τ = 0.75): ψr and Ψr functions for different values
of η and ν. From left to right: r = 0, 1, 2.

Like for the models presented so far, we can adopt Algorithm 4 in order to estimate

the approximate posterior distribution of the conditional τ -expectile of yi. To do so we

consider the specification of the Ψ-functions (Figure 2.2) outlined in Proposition 2.8.

Proposition 2.8. The Ψ-functions for the expectile regression model are

Ψ0(y, η, ν) =
1
2

{︁
(y − η)2 + ν2

}︁{︁
(1− τ)− (1− 2τ) Φ(y; η, ν2)

}︁
− 1

2
(1− 2τ)(y − η)ν2 ϕ(y; η, ν2),

Ψ1(y, η, ν) = −(y − η)
{︁
(1− τ)− (1− 2τ) Φ(y; η, ν2)

}︁
+ (1− 2τ) ν2 ϕ(y; η, ν2),

Ψ2(y, η, ν) = (1− τ)− (1− 2τ) Φ(y; η, ν2).

Proof. Consider the expectile loss ψ(y, η) = ψ̃(y − η), along with its first and second

weak derivatives:

ψ̃0(x) =
1
2
x2|τ − I(x < 0)| = 1

2
x2
{︁
τ + (1− 2τ)I(x < 0)

}︁
,

ψ̃1(x) = x |τ − I(x < 0)| = x
{︁
τ + (1− 2τ)I(x < 0)

}︁
,

ψ̃2(x) = |τ − I(x < 0)| = τ + (1− 2τ) I(x < 0).

Here, we use the identity |τ−I(x < 0)| = τ+(1−2τ)I(x < 0), which permits to simplify

the following calculations. Next, we marginalize out x by assuming the distribution

x ∼ N(µ, ν2), leading to

E
{︁
ψ̃0(x)

}︁
= 1

2
τE(x2) + 1

2
(1− 2τ)E

{︁
x2 I(x < 0)

}︁
= 1

2
τ(µ2 + ν2) + 1

2
(1− 2τ)

{︁
(µ2 + ν2)Φ(0;µ, ν2)− µν2ϕ(0;µ, ν2)

}︁
= 1

2
(µ2 + ν2)

{︁
τ + (1− 2τ)Φ(0;µ, ν2)

}︁
− 1

2
(1− 2τ)µν2ϕ(0;µ, ν2).
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In the same way, we get

E
{︁
ψ̃1(x)

}︁
= τE(x) + (1− 2τ)E

{︁
x I(x < 0)

}︁
= τµ+ (1− 2τ)

{︁
µΦ(0;µ, ν2)− ν2ϕ(0;µ, ν2)

}︁
= µ

{︁
τ + (1− 2τ)Φ(0;µ, ν2)

}︁
− (1− 2τ)ν2ϕ(0;µ, ν2),

and

E
{︁
ψ̃2(x)

}︁
= τ + (1− 2τ)E

{︁
I(x < 0)

}︁
= τ + (1− 2τ) Φ(0;µ, ν2).

Substituting µ = y−η and simplifying the results, we obtain the closed form expressions

for Ψr, r = 0, 1, 2, provided in Proposition 2.8.

As shown in Figure 2.2, the variational loss averaging mapping ψ to Ψ helps to regularize

the derivatives of the original loss (2.19), producing a new objective function having

continuous derivatives up to the second order.

2.4.3 Support vector classification

Support vector classifiers Vapnik, 1998 are a family of statistical models which predict

the binary response variable yi ∈ Y = {−1,+1} using the decision function sign(ηi)

with ηi = x⊤
i β + z⊤i u. The support vector estimation problem attempt to find the

optimal decision function in the covariate space by pushing further apart observations

with different labeling. In doing so, it maximizes the margin, namely the distance in

the covariate space, between the sets {i : yi = −1} and {i : yi = +1}.
In terms of the minimum risk formalization, the loss function characterizing the

support vector estimation problem is the so-called Hinge loss, that is defined as

ψ(y, η) = 2max(0, 1− yη). (2.20)

Regularized non-linear support vector machines may be included in our model spec-

ification by representing the random effect covariate vector zi as a sequence of basis

functions. In this way, we can jointly learn the posterior distribution of the basis co-

efficients and the smoothing parameter, 1/σ2
u, controlling the amount of regularization

needed to prevent overfitting phenomena.

A complete Bayesian treatment of the support vector estimation problem has been

discussed by Polson and Scott (2011), which introduced a popular data-augmentation

technique to represent the Hinge pseudo-likelihood as a location-scale mixture of Gaus-

sian distributions, similarly to the quantile regression representation (1.8). The authors

then proposed a Gibbs sampler and an expectation-maximization algorithm to esti-

mate the model parameters. Luts and Ormerod (2014) considered a similar approach

and leveraged the conditional conjugacy of the augmented model to approximate the

posterior distribution with a mean field variational Bayes approach.
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Figure 2.3: Support vector classification: ψr and Ψr functions for different values
of η and ν. From left to right: r = 0, 1, 2.

Unlike existing methods, the major advantage of the semiparametric variational

Bayes approach proposed in Section 2.3 consists of avoiding to transform the pseudo-

likelihood and to introduce additional auxiliary variables in the model specification. In-

stead, we use an approximation scheme which does not transform the loss function (2.20)

and the associated posterior distribution. Then, all the parameters in the model can

be estimated using Algorithm 4 and specifying the Ψ-vectors according to the following

proposition.

Proposition 2.9. The Ψ-functions for the support vector classification model are

Ψ0(y, η, ν) = 2
{︁
(1− yη) Φ(1; yη, ν2) + ν2 ϕ(1; yη, ν2)

}︁
,

Ψ1(y, η, ν) = −2yΦ(1; yη, ν2),
Ψ2(y, η, ν) = 2ϕ(1; yη, ν2).

Proof. By the definition of hinge loss function, we have that ψ(y, η) = ψ̃(1− yη), where
the first three weak derivatives of ψ̃(·) are

ψ̃0(x) = |x|+ x = 2{x− x I(x < 0)},
ψ̃1(x) = sign(x) + 1 = 2{1− I(x < 0)},
ψ̃2(x) = 2 δ0(x).

Here, we use the identities 2max(0, x) = |x| + x, |x| = x − 2xI(x < 0), sign(x) =

1− 2 I(x < 0). Let x ∼ N(µ, ν2), then, applying Propositions A.3 and A.4, we have

E
{︁
ψ̃0(x)

}︁
= 2E(x)− 2E{x I(x < 0)} = 2µ{1− Φ(0;µ, ν2)}+ 2ν2ϕ(0;µ, ν2),

E
{︁
ψ̃1(x)

}︁
= 2− 2E{I(x < 0)} = 2{1− Φ(0;µ, ν2)},

E
{︁
ψ̃2(x)

}︁
= E{δ0(x)} = 2ϕ(0;µ, ν2).

Now, defining µ = 1− yη, we have

Φ(0;µ, ν) = 1− Φ(1; yη, ν2), ϕ(0;µ, ν) = ϕ(1; yη, ν2),
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Figure 2.4: Support vector regression (ϵ = 1): ψr and Ψr functions for different
values of η and ν. From left to right: r = 0, 1, 2.

Simplifying the results, we obtain the closed form expressions for Ψr, r = 0, 1, 2, provided

in Proposition 2.9. This concludes the proof.

Figure 2.3 shows the behavior of both ψ and Ψ along with their first and second weak

derivatives for different values of the variational parameters.

2.4.4 Support vector regression

Support vector regression (Vapnik, 1998) is a robust prediction model which extends the

maximum margin approach to regression problem. This finds the best linear predictor

ηi = x⊤
i β + z⊤i u to fit the data yi ∈ Y = R by estimating the parameters β and u in

such a way to minimize the ϵ-insensitive loss (2.21), which, in our model specification,

corresponds to the ψ-function

ψsvr(y, η) = 2max(0, |y − η| − ϵ). (2.21)

Either frequentist and Bayesian estimation procedures have been developed for Sup-

port Vector Regression models. Among others, Zhu et al. (2012) and Zhu et al. (2014)

adopted a double data-augmentation strategy to develop an expectation-maximization

algorithm for penalized pseudo-likelihood maximization and a Gibbs sampling algorithm

for posterior simulation. Mean field variational Bayes may be used as well for posterior

approximation in the augmented parameter space, even though we are not aware of

any work proposing such a method in the literature. In this context, our proposal is to

directly approximate the marginal posterior distribution (2.14) using Algorithm 4 and

defining the Ψ-functions (Figure 2.4) according to the following proposition.

Proposition 2.10. The Ψ-functions for the support vector regression model are

Ψ0(y, η, ν) = 2
{︁
(y−ϵ − η) Φ(y+ϵ ; η, ν2) + ν2 ϕ(y+ϵ ; η, ν

2)

+ (y+ϵ − η) Φ(y−ϵ ; η, ν2) + ν2 ϕ(y−ϵ ; η, ν
2)
}︁

Ψ1(y, η, ν) = 2{1− Φ(y+ϵ ; η, ν
2)− Φ(y−ϵ ; η, ν

2)},
Ψ2(y, η, ν) = 2{ϕ(y+ϵ ; η, ν2) + ϕ(y−ϵ ; η, ν

2)},
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where y+ϵ = y + ϵ and y−ϵ = y − ϵ, for ϵ ≥ 0.

Proof. By the definition of ϵ-insensitive loss function, we have that ψ(y, η) = ψ̃(y − η),
where the first three weak derivatives of ψ̃(·) are

ψ̃0(x) = |x− ϵ|+ (x− ϵ) + |x+ ϵ| − (x+ ϵ),

ψ̃1(x) = sign(x− ϵ) + sign(x+ ϵ),

ψ̃2(x) = 2δ0(x− ϵ) + 2δ0(x+ ϵ).

Let x ∼ N(µ, ν2) and use, again, Proposition A.4 for calculating

E |x− ϵ|+ E(x− ϵ) = 2(µ− ϵ){1− Φ(−ϵ;µ, ν2)}+ 2σ2ϕ(−ϵ;µ, ν2),
E |x+ ϵ| − E(x+ ϵ) = 2(µ+ ϵ){1− Φ(+ϵ;µ, ν2)}+ 2σ2ϕ(+ϵ;µ, ν2).

These lead to the expected value

E
{︁
ψ̃svr

0 (x)
}︁
= 2
[︁
(µ− ϵ){1− Φ(−ϵ;µ, ν2)}+ ν2ϕ(−ϵ;µ, ν2)

+ (µ+ ϵ){1− Φ(+ϵ;µ, ν2)}+ ν2ϕ(+ϵ;µ, ν2)
]︁
.

Similarly, using sign(x) = 1− 2 I(x < 0), we have

E
{︁
ψ̃1(x)

}︁
= 2− 2E{I(x < ϵ)} − 2E{I(x < −ϵ)}
= 2− 2Φ(+ϵ;µ, ν2)− 2Φ(−ϵ;µ, ν2),

and

E
{︁
ψ̃2(x)

}︁
= 2E{δ+ϵ(x)}+ 2E{δ−ϵ(x)}
= 2ϕ(+ϵ;µ, ν2) + 2ϕ(−ϵ;µ, ν2).

Substituting µ = y−η and simplifying the results, we obtain the closed form expressions

for Ψr, r = 0, 1, 2, provided in Proposition 2.10.

Figure 2.4 shows the behavior of both ψ and Ψ along with their first and second weak

derivatives for different values of the variational parameters.

2.4.5 Exponential family

The exponential family is a wide class of distributions that includes, among others,

the Gaussian, Gamma, Binomial and Poisson probability laws. It constitutes the the-

oretical foundation of generalized linear models (McCullagh and Nelder, 1989) and is

characterized by a probability density function of the form

π(yi|ξi) = H(yi) exp
{︁
yi ξi − A(ξi)

}︁
, i = 1, . . . , n,
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Figure 2.5: Poisson regression: ψr and Ψr functions for different values of η and ν.
From left to right: r = 0, 1, 2.

Figure 2.6: Logistic regression: ψr and Ψr functions for different values of η and ν.
From left to right: r = 0, 1, 2.

where ξi is the so-called canonical parameter, A(·) and H(·) are, respectively, the log-

partition function and the base measure specific to the members of the family. The

canonical parameter ξi is then linked with the linear predictor through the equation

g−1(ηi) = A′(ξi), where g(·) is a bijective link function and A′(·) is the first order

derivative of the convex, two times differentiable map A(·).
Assuming for simplicity that a canonical link function is considered, i.e. g−1(·) =

A′(·) and ξi = ηi, the ψ-loss associated to the exponential family log-likelihood takes

the form

ψ(y, η) = −yη + A(η).

The variational expectations Ψef
r , r = 0, 1, 2, are thus given by

Ψ0(y, η̂, ν̂) = −y η̂ + Eq
{︁
A(η)

}︁
,

Ψ1(y, η̂, ν̂) = −y + Eq
{︁
A′(η)

}︁
,

Ψ2(y, η̂, ν̂) = Eq
{︁
A′′(η)

}︁
.

Depending on the shape of A(·), the integrals Eq{A(η)}, Eq{A′(η)} and Eq{A′′(η)} may

be computed analytically or approximated via univariate quadrature. For instance, in
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the Poisson regression model, where A(η) = exp(η), the explicit solutions

Eq{A(η)} = Eq{A′(η)} = Eq{A′′(η)} = exp(η̂ + ν̂2/2),

are available. Differently, in Binomial regression with logistic link function, where

A(η) = log(1 + eη), we may employ an adaptive Gauss-Hermite quadrature for an

efficient and stable calculation, as discussed in the supplementary material of Ormerod

and Wand (2012).

There exists a huge literature on both frequentist and Bayesian generalized linear

mixed models. From a variational perspective, the most relevant contributions related

to our work are: Ormerod and Wand (2012) (frequentist variational approximations for

Poisson and Bernoulli mixed models), Tan and Nott (2013) (variational message pass-

ing for generalized linear mixed models), Wand (2014) (simplified multivariate normal

updated for non-conjugate variational message passing), Luts and Wand (2015) (semi-

parametric variational Bayes for count response data). Further, we suggest the books

of Ruppert et al. (2003), Gelman and Hill (2006), Wood (2017) for a comprehensive

treatment of the theory of generalized linear mixed models and their semiparametric

additive extensions.

2.5 Possible extensions

The semiparametric variational Bayes methodology discussed so far can be easily ex-

tended to accommodate more structured model specifications, including, e.g., additive

models, inducing shrinkage priors, dynamic linear models and spatial random fields.

In this Section we present a brief discussion about each one of these generalizations,

showing how to modify and use Algorithm 4 for the estimation of a wide class of flexible

models.

The present exposition is inspired by Hodges (2014), which we refer to for an ex-

haustive treatment of the models introduced in the following.

2.5.1 Additive models

Additive models (Wood, 2017) are a straightforward generalization of model (2.12),

which permits dealing with multiple heterogeneous random effects u1, . . . ,uH within

the same linear predictor. This way, for each observation we have

ηi = x⊤
i β +

H∑︂
h=1

z⊤i,huh, uh|σ2
h ∼ Ndh(0dh , σ

2
hR

−1
h ), σ2

h ∼ IG(Ah, Bh), (2.22)

with zi,h ∈ Rdh , uh ∈ Rdh , h = 1, . . . , H, i = 1, . . . , n. The total number of random

effects is d = d1 + · · ·+ dH .

The model specified in (2.22) can be represented in a more compact way as ηi =

x⊤
i β + z⊤i u where zi = (z⊤i,1, . . . , z

⊤
i,H)

⊤ ∈ Rd and u = (u⊤
1 , . . . ,u

⊤
H)

⊤ ∈ Rd. Then, we
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may use Algorithm 4 for performing parameter estimation. The only difference we have

to account for is concerned with the presence of multiple variance parameters σ2
1, . . . , σ

2
H .

However, under the mean field factorization

q(β,u, σ2
1, . . . , σ

2
H , σ

2
ε) = q(β,u) q(σ2

1)× · · · × q(σ2
H) q(σ

2
ε),

we are able to explicitly calculate the optimal variational approximation at the (k+1)-

th iteration of the algorithm, say q(k+1)(σ2
h), h = 1, . . . , H, that is an Inverse-Gamma

density with variational parameters

A
(k)
h ← Ah + dh/2, B

(k)
h ← Bh +

1
2
µ

(k)⊤
h Rhµ

(k)
h + 1

2
trace

[︁
RhΣ

(k)
hh

]︁
Such a modified algorithm still maintains the same computational complexity of Algo-

rithm 4 and all the updates are available in closed form.

2.5.2 Inducing shrinkage priors

The automatic identification of non-relevant covariates is an omnipresent issue in statis-

tics. From a Bayesian point of view, this challenge has been faced with a number of

different approaches, which are all concerned with the specification of a convenient prior

distribution. In principle, we wish to define a prior law able to operate an aggressive

shrinkage toward zero for the non-relevant effects, while not introducing much bias on

the estimates of the relevant coefficients.

According to the recent literature on continuous shrinkage prior, we propose to extend

model (2.13) according to the following Gaussian scale-mixture specification:

u|λ2, δ2 ∼ Nd(0d, δ
2Λ2), Λ2 = diag(λ2), λ ∼ π(λ), δ ∼ π(δ),

where λ is a vector of local scale parameters and δ is a global scale parameter. Depending

on the particular specification of π(λ) and π(δ) different models are obtained and,

as a consequence, also different variational approximations arise. See, among others,

the Bayesian Lasso (Park and Casella, 2008), the Horseshoe (Carvalho et al., 2010),

the Normal-Exponential-Gamma (Griffin and Brown, 2011), the generalized double-

Pareto (Armagan et al., 2013), the adaptive Bayesian Lasso (Leng et al., 2014), and the

Dirichlet-Laplace (Bhattacharya et al., 2015) models.

Assuming for the approximate posterior distribution the mean field factorization

q(β,u,λ2, δ2, σ2
ε) = q(β,u) q(λ2) q(δ2) q(σ2

ε),

the optimal densities q(k+1)(β,u) and q(k+1)(σ2
ε) maintain the same structure described

in Section 2.3, where µ
(k)

1/σ2
u
R in Equation (2.15) is replaced by diag

[︁
µ
(k)

1/δ2 µ
(k)

1/λ2

]︁
. How-

ever, using such a factorization, the approximating densities q(k+1)(λ2) and q(k+1)(δ2)

might not enjoy analytic solutions, even in the case of conjugate prior distributions for

π(u|λ, δ), π(λ) and π(δ). Though, reliable and stable approximations may be obtained
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by employing clever integration strategies, as shown by, e.g., Neville et al. (2014) in the

Horseshoe, Normal-Exponential-Gamma and generalized double Pareto models.

2.5.3 Dynamic linear models

Dynamic linear models (Triantafyllopoulos, 2021) generalize the static specification (2.12)

by introducing a latent transition equation that determines the evolution of the random

effects over time, that is

ηi = x⊤
i β + z⊤i ui, ui+1 = Tui + vi, vi|σ2

u ∼ Nd(0d, σ
2
uR

−1),

with i = 1, . . . , n denoting the time index. We complete the model by specifying the

initial distribution u0 ∼ Nd(µ0,Σ0). Here, T is a d× d transition matrix, R is a d× d
precision matrix, while vi is a d× 1 vector of latent innovations.

Stacking all the random effects by column, i.e. u = (u⊤
1 , . . . ,u

⊤
i , . . . ,u

⊤
n )

⊤ ∈ Rnd,

we obtain a prior law for u that is a rank-deficient Gaussian distribution with block-

tridiagonal precision matrix. Moreover, we can express the linear predictor as ηi =

x⊤
i β + (ei ⊗ zi)

⊤u, where ei is the i-th column of an n-dimensional identity matrix

and ⊗ denotes the Kronecker product. This joint representation (Chan and Jeliazkov,

2009) allows us to approximate the posterior distribution by employing Algorithm 4.

Kalman filter and smoother routines (Durbin and Koopman, 2012) can then be used for

an efficient numerical evaluation of µ(k) and Σ(k).

Since in the dynamic specification the dimension of the latent states grows together

with the number of observed data, also the asymptotic computational complexity of the

algorithm increases. Assuming for simplicity that no fixed covariates are included, i.e.

m = d, the complexity of the algorithm is dominated by Kalman filter and smoother,

which require O(nm3) flops each.

2.5.4 Spatial random fields

Latent Gaussian random fields (Rue et al., 2009) are the standard tool in Bayesian

hierarchical modelling for dealing with spatially correlated data. Let us assume that

the observations have been gathered on a set of n spatial locations p1, . . . ,pn, which lie

in the spatial domain Γ. Then, we can account for spatial dependence in the data by

specifying the following mixed model for the linear predictor:

ηi = x⊤
i β + u(pi), u(·) ∼ Gaussian random field over Γ.

Depending on the shape of the domain Γ and on the assumptions made upon u(·),
different models arise.

For instance, if Γ is a finite discrete spatial domain, like an areal map or a finite

network, common specifications for u = (u(p1), . . . , u(pn)) are simultaneous and con-

ditional autoregressive models (Cressie, 2015), or Gaussian Markov random fields (Rue

and Held, 2005). All of these lead to a multivariate Gaussian prior distribution u|σ2
u ∼
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Nn(0n, σ
2
uR

−1), where the form and the sparsity pattern of the precision matrix R are

determined by the selected model.

Gaussian random fields over continuous domains can be dealt as well by approximat-

ing u(·) with a penalized basis expansion: u(·) ≈ u⊤z(·). Here, z(·) = (z1(·), . . . , zd(·))⊤
is a vector of locally supported basis functions defined over Γ, while u|σ2

u ∼ Nd(0d, σ
2
uR

−1)

is a Gaussian Markov random field with sparse precision R. In the literature this rep-

resentation is used, e.g., for discretizing a wide class of Wittle-Matérn fields implicitly

defined as the solution to a fractional stochastic partial differential equation (Lindgren

et al., 2011, 2022).

Both the discrete and the continuous cases fit in formulation (2.13) and, hence, they

can be efficiently estimated using Algorithm 4. Doing this, a careful management of

sparse linear algebra routines is necessary for avoiding the explicit inversion of high-

dimensional sparse matrices.

2.5.5 Frequentist mixed models

In the Bayesian literature, variational approximations have been successfully employed

in a wide range of applications and for a broad class of models. Their accuracy, efficiency

and broad applicability made them very popular in the Bayesian community; however,

their usage in frequentist statistics is still limited, and their finite- and large-sample

properties are mostly unexplored.

An interesting extension of the variational approach proposed in Section 2.3 is to

consider the estimation of mixed effect models within a frequentist inferential framework.

Consider, for instance, the mixed model

y|u;θ ∼ π(y|u;θ), u|θ ∼ Nd(0d, σ
2
uR

−1),

where π(y|u;θ) = exp{−nRn(u,θ)/α} is the pseudo-likelihood function defined as

in (2.12), u is a vector of random effects, and θ = (β, σ2
ε , σ

2
u) is a vector of fixed

parameters. Then, the maximum pseudo-likelihood estimator of θ, say θ̂, is defined as

the maximizer of the marginal log-likelihood

ℓ(θ;y) = log

∫︂
Rd
π(y,u|θ) du = log

∫︂
Rd
π(y|u;θ) π(u|θ) du. (2.23)

Except for trivial cases, (2.23) is not available in closed form, as well as its maximizier,

which must be computed via iterative optimization and numerical integration. Indeed,

the evaluation of ℓ(θ;y) inherits all the difficulties entailed by the integration of a

posterior distribution in a Bayesian setting. Furthermore, classical approaches, such

as restricted maximum likelihood (Patterson and Thompson, 1971), penalized quasi-

likelihood (Breslow and Clayton, 1993), or Laplace approximation (Wolfinger, 1994),

can not be applied whenever the risk function Rn(·) does not satisfy second order differ-

entiability conditions. A remarkable example is given by the work of Geraci and Bottai

(2014) and Geraci (2014), which proposed to estimate frequentist linear quantile mixed
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models by using a careful combination of multivariate quadrature and non-smooth op-

timization.

However, by the Jensen inequality, for any probability density function q(u) ∈ Q,
we have

ℓ(θ;y) ≥ ℓ(θ;y, q) =

∫︂
Rd
q(u) log

π(y,u|θ)
q(u)

du;

thus, an alternative estimator of θ may be defined following a variational approach

and, in particular, adopting a Gaussian variational approximation (Ormerod and Wand,

2012). Doing so, we consider the parametric density transformation q(u) ≡ q(u;µ,Σ) ∼
Nd(µ,Σ), and we define the corresponding variational estimator as

θ̃, µ̃, Σ̃ = argmax
θ,µ,Σ

ℓ(θ,µ,Σ;y),

where ℓ(θ,µ,Σ;y) ≡ ℓ{θ;y, q(u;µ,Σ)}.
Under the same hypothesis of Theorem 2.4, the lower bound ℓ(θ,µ,Σ;y) is a smooth

concave function with respect to β,µ,Σ. Thus, in this new formulation, the estimator

of θ, µ and Σ may be obtained by standard numerical optimization algorithms or, alter-

natively, by using a fixed-point algorithm, like the one we proposed in Section 2.3.3. In

this context, an opportune modification of Algorithm 4 may be interpreted as a gener-

alized variational implementation of the EM algorithm, which cycles over the following

steps

V-step: update µ(k) and Σ(k);

E-step: ℓ(k)(θ;y)← E(k)
q {log π(y,u|θ)};

M-step: update θ(k+1) so that ℓ(k)(θ(k);y) ≤ ℓ(k)(θ(k+1);y);

where E(k)
q (·) denotes the expectation calculated with respect to the density q(k)(u) =

q(u;µ(k),Σ(k)).

Such an approach has been proposed by Ormerod and Wand (2012) for the estima-

tion of binary and Poisson linear mixed models, while Hall et al. (2011a,b) studied the

asymptotic properties of the resulting estimator for a simple random intercept Pois-

son regression model. Further theoretical developments in the asymptotic analysis of

variational tempered posterior distributions and variational misspecified models have

been studied by Alquier et al. (2016), Alquier and Ridgway (2020), Wang and Blei

(2019b), Wang and Blei (2019c).

2.6 Simulation studies

In the following numerical examples we only consider synthetic datasets in order to

reliably assess the empirical qualities of the semiparametric variational Bayes (SVB)

approach discussed in Section 2.3. The models we consider for this analysis are: quantile
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regression (QR), expectile regression (ER), support vector regression (SVR), support

vector classification (SVC) and logistic regression (Logit).

The performances of our method are then compared with alternative approaches de-

veloped in the literature; for all the models, we approximate the posterior via Markov

chain Monte Carlo (MCMC), conjugate mean field variational Bayes (MFVB), or Laplace

approximation when MFVB is not available. Here, MCMC is used as a proxy of the

true posterior distribution. Except for expectile regression, all the other models con-

sidered here enjoy a conditional Gaussian representation, thereby MCMC and MFVB

algorithms are based upon a data-augmentation strategy similar to that shown in Sec-

tion 1.3 for quantile regression. For the Laplace approximation, the optimal densities

are obtained in a transformed space such that all the parameters in the model belong

in an unconstrained support. See Table 2.1 for the detailed references for all the models

and estimation methods considered.

All the numerical routines used for the estimation have been implemented in Julia

(Version 1.7.1). The simulations have been performed on a Dell XPS 15 laptop with

4.7 gigahertz processor and 32 gigabytes of random access memory.

2.6.1 Performance measures

The simulations we propose rely on regression tasks, where an underling regression

function f(x) is estimated using a semiparametric model. To evaluate the ability of our

method in reconstructing the original signal, we calculate the integrated absolute error

(IAE) between the estimated and the true curve, that is defined as

IAE(f̂) =

∫︂ 1

0

|f̂(x)− f(x)| dx. (2.24)

Table 2.1: References for the estimation algorithms used in the estimation of the
models considered along all the simulation studies in Section 2.6.

Model Method Reference

Expectile regression MCMC Waldmann et al. (2017)
Laplace Standard BFGS optimization

Quantile regression MCMC Kozumi and Kobayashi (2011)
MFVB Wand et al. (2011)

Support vector regression MCMC Extension of Polson and Scott (2011)
MFVB Extension of Luts and Ormerod (2014)

Support vector classification MCMC Polson and Scott (2011)
MFVB Luts and Ormerod (2014)

Logistic regression MCMC Polson et al. (2013)
MFVB Durante and Rigon (2019)
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For the quantile/expectile model, we compare the predictions with the true underling

quantile/expectile. For support vector regression, instead, we compare the prediction

with the true mean function. For the support vector classification, we compare the true

decision function with the estimated one. While for logistic regression, we compare the

true and estimated probability of success.

The posterior approximation accuracy is quantified by means of four accuracy mea-

sures: the relative absolute error (RAE) on the posterior mean vector and on the pos-

terior variance-covariance, the average marginal accuracy score (Acc) and the evidence

lower bound (ELBO) obtained at the end of the optimization. The absolute relative

errors are calculated as

RAE(µ̂) = ∥µ̂− µ∥∞
/︁
∥µ∥∞, RAE(Σ̂) = ∥Σ̂−Σ∥∞

/︁
∥Σ∥∞, (2.25)

where µ and Σ denote the true mean vector and variance matrix, evaluated via Monte

Carlo approximation. Then, the average accuracy score is given by

Acc(q∗) =
1

K

K∑︂
k=1

Acck(q
∗
k), Acck(q

∗
k) = 1− 1

2

∫︂ +∞

−∞
|q∗k(ϑk)− p(ϑk|y)| dϑk, (2.26)

where K is the total number of regression parameters in the model and ϑk is the k-

th element of the parameter vector ϑ. All these metrics are normalized and can be

interpreted as proportions lying in [0, 1].

In addition to the accuracy measures described so far, we also gathered the execution

time in seconds and the number of iterations needed for all the algorithms to reach the

convergence.

2.6.2 First simulation setup: semiparametric regression

In this first simulation study, the synthetic data are generated according to the non-

linear model

yi|xi ∼

⎧⎪⎪⎨⎪⎪⎩
N(µi, σ

2
i ) for quantile and expectile regression,

t(µi, σ, ν) for support vector regression,

Be(πi) for logistic and support vector classification,

(2.27)

where

µi = f(xi), log(σi) = g(xi), logit(πi) = h(xi), xi ∼ U(0, 1),

are deterministic non-linear functions, t(µ, σ, ν) is the t distribution with location µ ∈ R,
scale σ > 0 and degrees of freedom ν > 0, Be(π) is the Bernoulli distribution with

probability parameter π ∈ (0, 1), U(0, 1) is the Uniform distribution on the interval

[0, 1] and logit(x) = log{x/(1− x)} is the inverse of the logistic transformation. Three

specifications are considered for the non-linear functions in (2.27), named A, B, C. These
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Table 2.2: Non-linear functions characterizing the three simulation settings de-
scribed in the text.

Setting Non-linear functions

A f(x) = 1.6 sin(3πx2)
g(x) = −0.6 + 0.5 cos(4πx)
h(x) = 1.74 sin(3πx2)− 1.076

B f(x) = −1.02x+ 0.018x2 + 0.4ϕ(x; 0.38, 0.08) + 0.08ϕ(x; 0.75, 0.03)
g(x) = −0.25 + 0.15x2 − 0.5ϕ(x; 0.2, 0.1)
h(x) = −1.357x+ 0.024x2 + 0.532ϕ(x; 0.38, 0.08) + 0.106ϕ(x; 0.75, 0.03)− 0.003

C f(x) = sin(3πx3) + 1.02x+ 0.01x2 + 0.4ϕ(x; 0.38, 0.08)
g(x) = −0.4 + 0.3x2 + cos(3πx)− 0.5ϕ(x; 0.2, 0.1)
h(x) = 0.91 sin(3πx3) + 0.929x+ 0.009x2 + 0.364ϕ(x; 0.38, 0.08)− 1.076

are shown in Table 2.2. For each setting, we generated 100 independent datasets having

the same number of observations, n = 500.

For all the considered scenarios, we model the linear predictor ηi = x⊤
i β + z⊤i u

using a mixed model based penalized spline. The covariate vectors xi = (1, xi)
⊤ and

zi = (z1(xi), . . . , zd(xi))
⊤ represent an orthogonalized O’Sullivan spline basis expan-

sion (Wand and Ormerod, 2008), with corresponding fixed and random effect coefficients

β = (β0, β1)
⊤ and u = (u1, . . . , ud)

⊤. The dimension of the basis expansion is d = 40.

The prior distributions of β, u, σ2
ε , σ

2
u are specified as in equation (2.13), where σ2

β = 106,

Aε = Au = 2.0001 and Bε = Bu = 1.0001. These correspond to Inverse-Gamma dis-

tributions having mean E(σ2
ε) = E(σ2

u) = 1 and variance Var(σ2
ε) = Var(σ2

u) = 103. In

each setting, for the heteroscedastic data we estimate quantile and expectile regression

models with τ = 0.9; for the homoscedastic t-distributed data we estimate a support

vector regression model with ϵ = 0.01; for the Bernoulli data we estimate logistic and

support vector classification models. Algorithm 4 is stopped when the relative change

of both the lower bound and the variational parameters fall bellow 10−4.

Table 2.3 reports the accuracy measures described in Section 2.6.1 for each model,

algorithm and setting. Only one dataset is considered for such an analysis. In terms of

prediction accuracy and signal reconstruction (fifth column), semiparametric variational

Bayes, mean field variational Bayes and Laplace approximation perform quite similarly.

However, in terms of posterior approximation accuracy the situation is different. The

evidence lower bound (fourth column) of semiparametric variational Bayes is always

higher than mean field variational Bayes, indicating a better approximation of the joint

posterior density. This also reflects on the average accuracy score (last column), indeed

semiparametric variational Bayes outperforms mean field variational Bayes in almost all

the simulations and for all the considered models, while being slightly less precise than

Laplace approximation for expectile regression.

The improvement of semiparametric variational Bayes over mean field approximation

is mainly due to a more precise quantification of the posterior variance of the regression

coefficients, as can be seen by looking at the relative absolute errors in Table 2.3 (sixth
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Table 2.3: Performance measure comparison between SVB, MFVB and Laplace
approximation based on the 3 simulation setting outlined in the text and in Table 2.2.

Setting Model Method ELBO IAE(f) RAE(µ) RAE(Σ) Acc(q)

A ER Laplace 0.4757 0.0651 0.2114 0.9743
SVB 249.3842 0.4450 0.1282 0.2466 0.9687

QR MFVB -626.4552 0.7423 0.2833 0.5066 0.7809
SVB -621.0120 0.7402 0.0498 0.2412 0.8760

SVR MFVB -547.6501 0.1265 0.1543 0.3785 0.8903
SVB -544.8723 0.1280 0.0267 0.1346 0.9324

SVC MFVB -666.3824 0.0340 0.2958 0.7426 0.7537
SVB -664.1825 0.0300 0.1372 0.5491 0.8565

Logit MFVB -334.9531 0.0619 0.0430 0.2558 0.9568
SVB -334.8914 0.0608 0.0315 0.1993 0.9570

B ER Laplace 0.5350 0.0347 0.1762 0.9678
SVB 217.1924 0.5126 0.0479 0.1839 0.9669

QR MFVB -656.9304 0.8259 0.1201 0.4614 0.8488
SVB -652.4221 0.8261 0.0360 0.1990 0.9136

SVR MFVB -552.2767 0.1399 0.1625 0.4148 0.8724
SVB -549.2169 0.1398 0.0258 0.1490 0.9139

SVC MFVB -573.2292 0.1080 0.1767 0.4468 0.8731
SVB -571.7809 0.1080 0.1051 0.3035 0.8915

Logit MFVB -307.3833 0.0438 0.1293 0.3642 0.9318
SVB -307.1958 0.0424 0.1021 0.2995 0.9444

C ER Laplace 0.7467 0.1233 0.4780 0.9456
SVB 89.9416 0.7107 0.1983 0.5413 0.9277

QR MFVB -776.0003 1.0132 0.1453 0.5421 0.8220
SVB -771.6341 1.0200 0.0619 0.2812 0.8668

SVR MFVB -638.7977 0.1105 0.0558 0.3575 0.8964
SVB -636.0827 0.1139 0.0218 0.1610 0.9372

SVC MFVB -578.2343 0.0260 0.1806 0.4983 0.8328
SVB -575.9832 0.0260 0.0918 0.3328 0.8785

Logit MFVB -291.6064 0.0347 0.0407 0.2926 0.9520
SVB -291.3853 0.0342 0.3261 0.1977 0.9567

and seventh columns). This fact is also highlighted by Figures 2.7 and 2.8, which

show the predictive distribution and the marginal posterior density functions for some

parameters in the model. Both figures refer to a quantile regression model estimated

over one dataset from simulation setting A. Mean field variational Bayes systematically

overshrinks the posterior variability producing narrow credibility bands for the estimated

curve, see Figure 2.7. On the other hand, semiparametric variational Bayes tends to

mimic in a more accurate way the Markov chain Monte Carlo posterior (Figure 2.8),

producing reliable credibility intervals and prediction bands (Figure 2.7).

As we discussed in Section 2.2, under suitable conditions, the evidence lower bound
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Figure 2.7: Posterior pointwise predictions (solid lines) and credibility bands
(dashed lines) for the 90% quantile regression model described in the text. The esti-
mates are obtained using a dataset from simulation setting A. (left) MFVB against
MCMC. (right) SVB against MCMC.

for a marginal variational approach is always higher than the evidence lower bound

obtained with data-augmented mean field approximation (Table 2.3 and Figure 2.8).

This fact constitutes an empirical evidence in favor of Theorem 2.1, since Assumption 1

is satisfied and the inequality ℓ{y; q∗svb(θ)} ≥ ℓ{y; q∗mfvb(θ)} implies

KL{q∗svb(θ) ∥ π(θ|y)} ≤ KL{q∗mfvb(θ) ∥ π(θ|y)}.

To verify that Assumption 1 is accommodated, we just observe that both the approx-

imations q∗svb(θ) and q∗mfvb(θ) factorize according to the same partition, i.e. q(θ) =

q(β,u)q(σ2
u)q(σ

2
ε), and they take the same functional form, i.e. q(β,u) is Gaussian,

while q(σ2
u) and q(σ

2
ε) are Inverse-Gamma.

Figure 2.9 summarizes the results obtained by replicating the analysis described so

far over a set of 100 datasets for each simulation setting. Coherently with the previous

findings, semiparametric variational Bayes uniformly outperforms conjugate mean field

variational Bayes in terms of marginal posterior approximation (first row). On the

other hand, semiparametric variational inference has a slightly worse accuracy score

than Laplace approximation for the expectile regression model. Still, this loss in the

marginal accuracy for the expectile model does not have a significant impact on the

relative errors for the posterior mean and variance, which are statistically equivalent for

the two approximations (third and fourth rows). The performance in terms of signal

reconstruction is almost equivalent among different approximation methods (second

row).

For what concerns the computational complexity, both the number of iterations and

the execution times obtained with the proposed approach are competitive with the

alternatives methods in literature (fifth and sixth rows, Figure 2.9). This evidence is

consistent with the theoretical computational complexity derived for Algorithm 4, i.e.

O(nm2 + m3), that is the same as Laplace approximation and data-augmented mean
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Figure 2.8: Top left: evidence lower bound evolution over the algorithm iterations.
Others: optimal posterior density functions of the parameters in the 90% quantile
regression model described in the text. The estimates are obtained using one dataset
from simulation setting A. The solid blue line is for MCMC, the dashed red one for
SVB and the dash-dotted green one for MFVB. The percentages denote the corre-
spondent marginal accuracy scores defined in (2.26).
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Figure 2.9: Boxplots of the summary statistics for the simulation study described
in the text (Section 2.6.1 and 2.6.2). Each column corresponds to a model. Each
row corresponds to a performance index. Within each panel, we find three groups of
paired boxplot which correspond to the three simulation settings, i.e., A, B, C (see
Equation 2.27 and Table 2.2). Each boxplot is calculated over 100 replications, i.e.
100 simulated datasets.
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field variational Bayes for the models considered here.

2.6.3 Second simulation setup: random intercept models

In this second simulation study, we assess the relative quality of the proposed variational

approximation for a random intercept model when the sample size and the number of

parameters change. We consider two simulation setups: in the first one, setting A,

the number of parameters is fixed and the sample dimension grows; in the second one,

setting B, the sample size is kept fixed and the number of parameters increases.

In both the scenarios, the considered data generating mechanism is analogous to the

one presented in (2.27): we have a heteroscedastic Gaussian model for quantile and

expectile regression, a homoschedastic t distributed model for support vector regres-

sion, and a Bernoulli model for support vector classification and logistic regression. In

formulas,

yij|xij ∼

⎧⎪⎪⎨⎪⎪⎩
N(µij, σ

2
ij) for quantile and expectile regression,

t(µij, σ, ν) for support vector regression,

Be(πij) for logistic and support vector classification.

A random intercept specification is considered for µij, σij and πij, that is

µij = β0 + β1xij + uj, log(σij) = γ0 + γ1xij + vj, logit(πij) = µij,

where the indices i = 1, . . . , n and j = 1, . . . , d identify, respectively, the i-th subject and

the j-th group under study. The fixed effect parameters β0, β1 and γ0, γ1 are generated

according to a N(0, 1/2) distribution, the random intercepts u1, . . . , ud and v1, . . . , vd
are generated according to a N(0, 1/4) distribution, while σ = 1/10 and ν = 4.

In simulation setting A, the considered sample sizes are n = 250, 500, 1000, 2000, 4000,

and the fixed number of groups is d = 20. In simulation setting B, the fixed sample

size is n = 500 and the random intercept groups are d = 5, 10, 25, 50, 100. For each

simulation setting, sample dimension and number of groups, we generate 100 datasets

using the sampling design described so far.

For the estimation, we specify the linear predictor as ηij = x⊤
ijβ + z⊤iju, where x⊤

ij =

(1, xij) is a covariate vector and z⊤ij is a 1 × d selection vector associated to the j-th

group, whose j-th entry is equal to 1 and all the others are 0.

The prior distributions of β,u, σ2
ε , σ

2
u are specified as in equation (2.13), where σ2

β =

104, Aε = Au = 2.0001 and Bε = Bu = 1.0001. For the heteroscedastic data, we

estimate quantile and expectile regression models with τ = 0.9: for the homoscedastic

t-distributed data, we estimate a support vector regression model with ϵ = 0.01; for

the Bernoulli data, we estimate a support vector classification model and a logistic

regression.

In Figure 2.10, we show the boxplots of the average accuracy scores (2.26) calculated

over a bunch of 100 datasets per each scenario, both under simulation setting A (left)
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Figure 2.10: Sampling distribution of the marginal accuracy score defined in (2.26)
for the simulation setup described in Section 2.6.3. Each row corresponds to a model,
each column corresponds to a simulation setting. The left column is for setting A, the
right column is for setting B.

and B (right). As we might expect, at the increase of the sample dimension (setting

A), the accuracy scores improve both for semiparametric and mean field variational

approximations. The opposite happens when the sample size is kept fixed and the

number of groups, i.e., the number of parameters, grows (setting B). Furthermore, we

observe a clear dominance of semiparametric variational Bayes over conjugate mean field

variational Bayes in all the considered simulation setups, except for expectile regression,

which is compared with Laplace approximation. Such a behavior confirms our findings

in Section 2.6.2.

For what concerns the computation efficiency, Figure 2.11 provides the boxplots of

the log10-transformed execution times measured for each model considered in simulation
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Figure 2.11: Sampling distribution of the log10-transformed execution time mea-
sured in seconds for the simulation setup described in Section 2.6.3. Each row corre-
sponds to a model, each column corresponds to a simulation setting. The left column
is for setting A, the right column is for setting B.

settings A and B. In both the scenarios, the execution time increase with the dimension

of the problem, or in terms of sample size, or in terms of number of random effect

parameters. For all the models and scenarios, our semiparametric variational routine

reaches a computational time relative to or lower than the mean field competitor. The

only exception is logistic regression, for which our algorithm systematically takes more

time than mean field coordinate ascent, while maintaining the same computational

complexity. This is due to the fact that we do not have closed form integration results

for the Ψ functions in the logistic regression case (see Section 2.4.5), and we need to rely

on numerical quadrature techniques. Therefore, each iteration of the algorithm requires

a higher, but fixed, number of operations than conjugate mean field variational Bayes.
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Figure 2.12: Pairwise scatter-plots of the power load consumption (in MWh) against
the available covariates in the dataset, that are: (first row) the time (in days), the day
of the year, the day of the week, (second row) the lagged power load, the temperature
(in Celsius scale) and the smoothed temperature (in Celsius scale).

2.7 Probabilistic Load Forecasting

In this section, we present a real data problem concerning the forecast of the global elec-

tricity load consumption. In such a context, the data are usually highly dominated by

non-stationary trends, multiple seasonal cycles of different lengths, like daily, weekly and

monthly patterns, heteroscedasticity and by the presence of extreme values. Therefore,

for the management of the power supply, it is of critical importance to understand and

predict the behavior of the distribution of the load consumption, especially during excep-

tional events. To this end, a nonparametric density forecasting approach can be taken

by pooling the information coming from several quantile estimates. Each conditional

quantile can then be expressed as a non-linear function of the available meteorological,

economic and social information, for example, using an additive model specification.

Here we consider the data used in the load forecasting track of the Global Energy

Competition 2014 (GEFCom2014, Hong et al., 2016), which have already been analyzed

by, e.g., Gaillard et al. (2016) and Fasiolo et al. (2021a). The dataset collects the half-

hourly load consumption and temperatures over the period going from January 2005

to December 2011. Our aim is then to estimate in a semiparametric way 19 equally

spaced conditional quantiles between τ = 0.05 and τ = 0.95. This way, we provide

an approximation of the conditional distribution of the load consumption at each time

without imposing any parametric assumption. As Fasiolo et al. (2021a), we only consider

the time interval between 11:30 and 12:00 a.m., but a similar analysis can be performed

for all the remaining periods of the day, as it is common in literature. Figure 2.12

portrays how the observed power load is associated with some relevant covariates in the

dataset.
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Figure 2.13: Distribution of the accuracy scores for the 19 estimated quantiles. For
each quantile level, the boxplot is calculated over the individual accuracy scores of
the 72 regression parameters in the model.

The τ -quantile of the power load, namely Loadt, is then modelled according to an

additive specification, as described in Section 2.5.1. We only consider here the variables

selected by Gaillard et al. (2016) and used also by Fasiolo et al. (2021a), obtaining so

the linear predictor:

ηi = β0 + f 4
1 (timei) + f 7

2 (week dayi) + f 20
3 (year cyclei)

+ f 10
4 (lagged loadi) + f 15

5 (temperaturei) + f 15
6 (smooth tempi),

where f rh(x) = u⊤
h zh(x) is an orthogonal O’Sullivan spline basis expansion of rank r

(Wand and Ormerod, 2008), having coefficients uh = (uh,1, . . . , uh,r)
⊤ and basis func-

tions zh(x) = (zh,1(x), . . . , zh,r(x))
⊤; week dayi is a variable indicating the day of the

week; temperaturei is the hourly temperature; smooth tempi is the smoothed tempera-

ture, obtained as a moving average of the current and previous values of the temperature

calculated using a weighting proportion of 0.05 and 0.95, respectively; year cyclei is a

cyclic variable indicating the position within the year; lagged loadi is the power load

observed at the same time of the previous day; and timei is a trend variable indicating

the time point.

We set diffuse prior distributions for all the parameters in the model, that is: σ2
β =

106, Aε = 2.0001, Bε = 1.0001, Ah = 2.0001, Bh = 1.0001, h = 1, . . . , 5. The parameters

are then estimated using Markov chain Monte Carlo (Kozumi and Kobayashi, 2011),

mean field variational Bayes (Wand et al., 2011) and semiparametric variational Bayes

(Algorithm 4).

The outcome of our analysis confirms an excellent performance of the proposed semi-

parametric variational approach in approximating the Monte Carlo posterior, as shown

in Figures 2.13 and 2.14. The accuracy scores for all the considered quantile levels are all

very close to 1 and almost always exceed 0.9 for semiparametric variational Bayes. On

the other hand, mean field variational Bayes has a median accuracy centered around 0.7,



66 Section 2.7 - Probabilistic Load Forecasting

−0.1

0.0

0.1

0.2

0.3

2005 2006 2007 2008 2009 2010 2011 2012

Year

M
ar

gi
na

l e
ffe

ct

Trend effect

−0.2

0.0

0.2

0.4

Jan Mar May Jul Sep Nov

Day of the year

M
ar

gi
na

l e
ffe

ct

Yearly cycle effect

−0.25

0.00

0.25

0.50

Sun Mon Tue Wed Thu Fri Sat

Day of the week

M
ar

gi
na

l e
ffe

ct

Weekly cycle effect

0.4

0.8

1.2

1.6

2 3 4 5 6

Lagged load

M
ar

gi
na

l e
ffe

ct

Autoregressive effect

−1

0

1

0 10 20 30

Temperature

M
ar

gi
na

l e
ffe

ct

Temperature effect

0.00

0.25

0.50

0.75

10 20 30

Smoothed temperature

M
ar

gi
na

l e
ffe

ct

Smoothed temperature effect

−0.1

0.0

0.1

0.2

0.3

2005 2006 2007 2008 2009 2010 2011 2012

Year

M
ar

gi
na

l e
ffe

ct

Trend effect

−0.2

0.0

0.2

0.4

Jan Mar May Jul Sep Nov

Day of the year

M
ar

gi
na

l e
ffe

ct

Yearly cycle effect

−0.25

0.00

0.25

0.50

Sun Mon Tue Wed Thu Fri Sat

Day of the week

M
ar

gi
na

l e
ffe

ct

Weekly cycle effect

0.4

0.8

1.2

1.6

2 3 4 5 6

Lagged load

M
ar

gi
na

l e
ffe

ct

Autoregressive effect

−1

0

1

0 10 20 30

Temperature

M
ar

gi
na

l e
ffe

ct

Temperature effect

0.00

0.25

0.50

0.75

10 20 30

Smoothed temperature

M
ar

gi
na

l e
ffe

ct

Smoothed temperature effect

Figure 2.14: Estimated non-linear marginal effects (and credibility bands) for the
available covariates in the analysis of 95% conditional quantile of the power load in
the GEFCom2014 dataset. Top rows: MCMC estimated effects (blue curves) against
MFVB estimated effects (orange curves). Bottom rows: MCMC estimated effects
(blue curves) against SVB estimated effects (red curves).

with many values falling below 0.6, especially for the most extreme quantiles. There-

fore, also in a real data example, semiparametric variational Bayes strongly outperforms

conjugate mean field approximation.

The goodness of the approximation of our semiparametric variational approach is

also confirmed by a graphical analysis of the estimated non-linear marginal effects of the

covariates shown in Figure 2.14. The estimated curves, as well as the credibility bands,

obtained using an exact Markov chain Monte Carlo approach or our semiparametric

variational inference method are almost indistinguishable, even for extreme quantile
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levels.





Chapter 3

Spatial quantile regression with

differential regularization

3.1 Introduction

In this work we are interested in modelling the heterogeneous effects of complex spatial

phenomena on the quantiles of a response variable. Spatial anisotropy, flows, exter-

nal perturbations and non-stationarity effects are well known sources of dependence in

spatial data, whose impact can largely differ across quantiles. In addition, boundary

constraints and non-trivial geometries of the sampling domain may introduce additional

levels of complexity. An interesting example is given by meteorological and climate

data. Temperature, pressure and precipitations often manifest local anisotropy and are

influenced by wind streams and local characteristics of the geographical morphology.

The presence of mountains, woods, or lakes, for instance, plays an important role in

determining the regional behavior of weather. Moreover, such kind of data typically

manifests a heteroscedastic skewed distribution, with local changes in space and time.

Modelling these complex features is of prominent interest in a number of scientific fields,

like physics, engineering, ecology, biology and, of course, spatial statistics.

In the spatial and quantile regression literature many authors studied the problem

of estimating nonparametric and semiparametric regression models in one- and two-

dimensional domains. For example, Koenker et al. (1994) and Ng (1996) considered

quantile smoothing spline models with total variation regularization, and they proposed

a linear programming algorithm for parameter estimation. Bosch et al. (1995) studied

quantile regression with cubic smoothing spline, and estimated the parameters with

an interior point algorithm. He et al. (1998) generalized the quantile smoothing ap-

proach to a bivariate setting, introducing a tensor product basis expansion. Koenker

and Mizera (2004) extended the total variation regularization method to spatial re-

gression quantiles by combining the so-called penalized triogram basis expansion with

a linear programming algorithm. Univariate and bivariate quantile smoothing splines

based on linear programming and interior point methods are implemented in the R pack-

age quantreg (Koenker, 2021). Alternative approaches to non-linear quantile regression

69
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are the local linear estimator by Yu and Jones (1998) and Hallin et al. (2009), and the

reproducing kernel Hilbert space estimator by Li et al. (2007). More recently, Fasi-

olo et al. (2021a) proposed a fast calibrated framework for estimating additive and

mixed quantile regression models, which is implemented in the R package qgam (Fasiolo

et al., 2021b). This leverages and extends the capabilities of the popular R package

mgcv (Wood, 2017), enabling a wide range of univariate and bivariate smoothers in a

quantile regression context. In particular, we mention thin plate spline smoothing (see,

e.g., Wood, 2003) and soap film smoothing (Wood et al., 2008), which are state-of-the-

art smoothers for non-linear regression over unbounded and complex planar domains,

respectively. Among spatial smoothers, it is also worth mentioning the bivariate pe-

nalized spline approach by, e.g., Ramsay (2002), Lai and Wang (2013) and Wang et al.

(2020), which demonstrated a high degree of flexibility in handling spatial fields over

domains with a complex boundary structure.

We here propose a nonparametric quantile regression model for spatially referenced

data. In particular, we extend spatial regression with differential regularization by San-

galli et al. (2013), and Azzimonti et al. (2014), in order to estimate the conditional

quantile of a spatially distributed response variable. The proposed method allows us

to incorporate external physical knowledge in the estimation of the conditional quantile

surface, whenever this information can be formulated as an elliptic partial differential

equation (PDE; Evans, 2010). Such construction permits dealing with stationary and

non-stationary anisotropic diffusion effects, unidirectional flows, and mixed boundary

conditions. We can also handle complex planar domains characterized by strong con-

cavities, holes, and physical barriers. An additional benefit of our approach is to allow

for several extensions along different directions. For instance, we could consider data

with space-time dependence, data gathered on smooth manifolds, data observed over

areal regions; see, e.g., Sangalli (2021) for a comprehensive review of theory, extensions

and applications of spatial regression methods with PDE regularization.

The novelty of our methodology is threefold. First, we introduce a broad class of

physically-informed quantile regression models, based on a penalized loss criterion. In

doing this, we trade off a goodness-of-fit measure and a roughness penalization depend-

ing on the PDE specification. Secondly, we propose an innovative parameter estima-

tion algorithm following the expectation-maximization (EM) approach (Dempster et al.,

1977). The infinite-dimensional solution of such an optimization is then discretized by

means of finite element methods (see, e.g., Quarteroni, 2017). Finally, we provide a

theoretical characterization of both the infinite- and finite-dimensional PDE quantile

estimators, proving existence, consistency and asymptotic normality.

3.2 Spatial quantile regression model

Consider n spatial locations p1, . . . ,pn collected over the bounded region Ω ⊂ R2,

with regular boundary ∂Ω ∈ C2(R). At each site pi we observe a realization yi,

i = 1, . . . , n, of a real random variable. We assume y1, . . . , yn are independent given
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the spatial locations, and yi has an absolutely continuous distribution with probability

density function πyi|pi(y), cumulative density function Πyi|pi(y), and quantile function

Qyi|pi(τ) = Π−1
yi|pi(τ) = inf{y ∈ R : Πyi|pi(y) ≥ τ}, for any probability level τ ∈ (0, 1).

We further assume the following nonparametric spatial model for the τ -quantile of yi

Qyi|pi(τ) = f(pi), pi ∈ Ω, i = 1, . . . , n, (3.1)

where f : Ω → R is an unknown smooth deterministic field. Our aim is to estimate f ,

taking advantage of the available problem-specific information.

3.2.1 Problem-specific information and PDE specification

We here assume to have problem-specific prior knowledge about the phenomenon of

interest, that can be described in terms of a PDE. Specifically, we consider linear second-

order elliptic PDEs of the form

Lf = u in Ω, (3.2)

with squared integrable forcing term u : Ω→ R and diffusion-transport-reaction opera-

tor L, defined as

Lf = −div(K∇f) + b · ∇f + cf. (3.3)

Specifically, K ∈ R2×2 denotes a symmetric positive definite diffusion tensor, b ∈ R2

is a transport vector and c ≥ 0 is a reaction term. Further, we denote by div(·) the

divergence of a vector field, by ∇ the gradient of a scalar field, and by “·” the standard

scalar product, so that

div(K∇f) =
2∑︂

i,j=1

Kij
∂

∂pi

∂f

∂pj
and b · ∇f =

2∑︂
j=1

bj
∂f

∂pj
.

The PDE coefficients (i.e., K,b, c and u) may vary over the domain, as smooth functions

of p ∈ Ω. This permits to characterize a wide class of possibly non-stationary fields,

manifesting different local behaviors. For instance, with the diffusion tensor K we

can model non-stationary anisotropic diffusion effects; with the transport term b we

can model non-stationary unidirectional effects, like flows over the domain; with the

reaction term c we can model local shrinking effects. Finally, with the forcing term u

we can model local perturbation of the field f from its homogeneous state; when u = 0,

equation (3.2) is said homogeneous.

In a PDE-based description of a spatial phenomenon, a second fundamental ingredi-

ent is the specification of the boundary conditions, that is

Bf = γ on ∂Ω, (3.4)

which describes the behavior of f on the boundary. Here, B is an appropriate differ-

ential operator, and γ : ∂Ω → R is a smooth non-homogeneous term on the boundary.
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Different types of boundary conditions can be imposed; for the sake of simplicity, we

here consider only Neumann boundaries, which are the most natural choice for linear

second order PDEs. In particular, we specify the first order differential operator on the

border of the domain

Bf = K∇f · ν on ∂Ω, (3.5)

where ν denotes the outward normal vector of ∂Ω. Depending on the problem at hand,

other types of mixed boundary conditions can be used to model the boundary behavior

of the phenomenon under study, including Dirichlet and Robin conditions; see, e.g., the

work of Azzimonti et al. (2014) for the use of such conditions on simpler linear regression

models with PDE regularization.

3.2.2 Infinite-dimensional estimation problem

Building on the work of Sangalli et al. (2013) and Azzimonti et al. (2014), we propose

to estimate the unknown spatial field f corresponding to the τ -quantile by minimizing

the penalized loss functional

Jτ,λ(f) =
1

n

n∑︂
i=1

ρτ{yi − f(pi)}+
λ

2

∫︂
Ω

(Lf − u)2, (3.6)

where λ > 0 is a smoothing parameter, and ρτ (x) = 1
2
|x| + (τ − 1

2
)x is the so-called

quantile check function, or pinball loss (Koenker and Bassett, 1978). The penalized

objective functional (3.6) trades off an appropriate goodness-of-fit criterion, the sum

of quantile loss functions, and a prior information criterion, the L2 norm of the PDE

misfit Lf − u. The first term permits to center the estimate on the correct quantile

location, the regularization term instead penalizes the departures from the domain-

specific characterization of the physical problem, so as to shrink the estimates toward

the solution space of the PDE considered.

When no physical information is available, except that f has to be smooth, we can

use a simple stationary and isotropic PDE specification in order to penalize the local

curvature of the field f . Namely, we can consider the diffusion equation ∆f = 0,

where ∆f = ∂2f/∂p21 + ∂2f/∂p22 is the Laplacian of f . The resulting regularization

term,
∫︁
Ω
(∆f)2, is a possible generalization of the univariate smoothing spline penalties

to bivariate smoothing problems. See, e.g., Ramsay (2002), Wood et al. (2008) and

Sangalli et al. (2013). This Laplacian regularization corresponds to a particular case

of differential regularization considered in (3.6), where the PDE parameters are set to

K = I, b = 0, c = 0 and u = 0, where I denotes the identity matrix with appropriate

dimensions.

Some regularity conditions on f should now be introduced to guarantee the existence

the quantities defined so far. We denote by Hd(Ω) the Sobolev space of order d, that is

the space of functions in L2(Ω) having d weak derivatives in L2(Ω). Formally,

Hd(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω), ∀|α| ≤ d},
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where Dαf is the α-th weak derivative of f . The appropriate functional embedding for

the estimation problem in (3.6) is the space Fγ(Ω), defined as

Fγ(Ω) = {f ∈ H2(Ω) : Bf = γ on ∂Ω}.

Because of the Sobolev embedding theorem, any function f ∈ Fγ is continuous, since

Fγ(Ω) ⊂ H2(Ω) ⊂ C(Ω̄) for Ω ⊂ R2, where C(Ω̄) is the set of continuous functions

over the closure Ω̄ = Ω ∪ ∂Ω. Thereby, assuming f ∈ Fγ, the point-wise evaluation

of f at the observed spatial locations in (3.6) is well-defined, as well as the differential

operators in (3.3) and (3.5).

Under the previous assumptions, the estimation problem takes the following formu-

lation.

Problem 1. Find f̂ ∈ Fγ such that J(f̂) = inff∈Fγ J(f).

Let us denote by Vγ(Ω) = {f̂ ∈ Fγ(Ω) : J(f̂) = inff∈Fγ J(f)} the space collecting all the
fields f̂ minimizing the objective functional (3.6), i.e., solving Problem 1. The existence

of Vγ is guaranteed by the following proposition.

Proposition 3.1. The solution space Vγ is a non-empty, closed, convex set. Moreover,

any field f̂ ∈ Vγ is a global minimum of the functional (3.6).

Proof. We first recall that any continuous convex function defined over a convex domain

attains its minimum values within its domain (see, e.g., Lange, 2013, Proposition 6.5.1).

Then, proving the first statement in Proposition 3.1 is equivalent to showing that Fγ is

a closed, convex space, and J(f) is a continuous, convex functional.

The closure and convexity of Fγ(Ω) = {f ∈ H2(Ω) : Bf = γ on ∂Ω} follows from

the vector space structure of H2(Ω) and from the linearity of the differential operator

B, that is

B{ϕf + (1− ϕ)g} = ϕBf + (1− ϕ)Bg = ϕγ + (1− ϕ)γ = γ, ∀ϕ ∈ [0, 1].

The continuity and convexity of J(f) follow from the continuity and convexity of the

quantile loss ρτ{yi−f(pi)} (see, e.g., Koenker and Bassett, 1978) and the regularization

term
∫︁
Ω
(Lf − u)2 (see, e.g., Azzimonti et al., 2014).

Finally, we prove that Vγ(Ω) is a closed, convex set. To do so, we define the sublevel

set of J(f) by

Vγ(Ω, t) =
{︁
f ∈ Fγ(Ω) : J(f) ≤ t

}︁
,

for any t such that Vγ(Ω, t) is non-empty. Let f, g ∈ Vγ(Ω, t) and consider the convex

combination

J{ϕf + (1− ϕ)g} ≤ ϕJ(f) + (1− ϕ)J(g) ≤ ϕt+ (1− ϕ)t = t, ∀ϕ ∈ [0, 1].

This implies the closure and convexity of Vγ(Ω, t) for any t since J(f) is a continuous

functional. The closure and convexity of Vγ(Ω) immediately follows by noting that

Vγ(Ω) =
{︁
f ∈ Fγ(Ω) : J(f̂) = inf J(f)

}︁
= Vγ

(︁
Ω, inf J(f)

)︁
.
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This concludes the proof.

Differently from the strictly convex optimization criteria discussed, e.g., by Sangalli

et al. (2013) and Azzimonti et al. (2014) for simple linear models, or by Wilhelm and

Sangalli (2016) for generalized linear models, in the quantile regression framework the

solution to Problem 1 is not guaranteed to be unique for finite samples. However, it

is worth nothing that all the estimators minimizing (3.6) are global minimizers and,

therefore, reach the same value of the penalized loss functional (3.6). In the parametric

quantile regression literature, this is a known property that naturally arises by exploiting

the alternative representation of Problem 1 in terms of linear programming. For more

details in the parametric context, we refer the reader to Koenker and Bassett (1978)

and Koenker (2005).

The elements belonging to Vγ can also be characterized by means of a first-order

necessary condition. This leverages on the convexity and continuity of the functional

J(f) without requiring any further regularity properties, such as uniform differentiability

of the loss function. The main idea is to exploit the behavior of directional derivatives

of (3.6) in a neighborhood of its minimum, and to use standard convex analysis results

to ensure optimality (Rockafellar, 1997). Intuitively, any departure from the optimum

must yield an increment of the functional and thereby leads to a non-negative effect on

its directional derivatives. This is formally stated in the following proposition

Proposition 3.2. Let f̂ ∈ Vγ be a minimum of (3.6). Then, f̂ satisfies

− 1

n

n∑︂
i=1

ψ(pi) dρτ
{︁
yi − f̂(pi),−ψ(pi)

}︁
≥ −λ

∫︂
Ω

(Lψ)(Lf̂ − u), ∀ψ ∈ F0,

where dρτ (v, w) is the directional derivative of ρτ (·) calculated in v ∈ R along the direc-

tion w ∈ R, defined as

dρτ (v, w) =

{︄
τ − I(v < 0), if v ̸= 0,

τ − I(w < 0), if v = 0.

Proof. Let f̂ ∈ Vγ be a minimizer of functional (3.6). For any t ≥ 0 and ψ ∈ F0, we

have J(f̂) ≤ J(f̂ + tψ). Hence, taking the limit for t ↓ 0, we get that the Gateaux

directional derivative of J(f̂) along the direction ψ must be non-negative:

∂ψJ(f̂) =
∂

∂t
J(f̂ + tψ)

⃓⃓⃓⃓
t=0

= lim
t↓0

J(f̂ + tψ)− J(f̂)
t

≥ 0. (3.7)

Whenever J(·) is a differentiable functional, the above condition collapses into the first

order equation ∂ψJ(f̂) = 0 for any ψ ∈ F0. This is the case, for instance, for generalized

linear models with PDE regularization (Wilhelm and Sangalli, 2016).
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Result 3.2 is a particular case of inequality (3.7), obtained when the functional form

of J(·) is explicitly considered. That is

∂ψJ(f̂) =
1

n

n∑︂
i=1

∂ψρτ (yi − f̂(pi)) +
λ

2
∂ψ

∫︂
Ω

(Lf̂ − u)2 ≥ 0.

As shown by, e.g., Azzimonti et al. (2014), the directional derivative for the penalty

term is given by

∂ψ

∫︂
Ω

(Lf̂ − u)2 = 2

∫︂
Ω

(Lψ)(Lf̂ − u).

On the other hand, the directional derivative for the quantile loss term (Koenker, 2005)

is

∂ψρτ{yi − f(pi)} = −ψ(pi) dρτ
{︁
yi − f̂(pi),−ψ(pi)

}︁
.

Finally, the Gateaux derivative of J(·) is

∂ψJ(f̂) = −
1

n

n∑︂
i=1

ψ(pi) dρτ
{︁
yi − f̂(pi),−ψ(pi)

}︁
+ λ

∫︂
Ω

(Lψ)(Lf̂ − u) ≥ 0.

This concludes the proof.

Proposition 3.2 characterizes the elements of the solution space Vγ. However, it does

not provide any direct way to find an explicit solution to the minimization of (3.6). The

quantile estimator in Problem 1 must then be computed via iterative algorithms, like

the one proposed in Section 3.3.

3.3 Functional EM algorithm

As commented at the end of the previous section, the theoretical characterization of

Problem 1, given in Proposition 3.2, does not provide a direct way to find an estimator

f̂ ∈ Vγ, which must instead be computed via numerical methods. The approach here

followed is to employ an EM algorithm (Dempster et al., 1977; McLachlan and Krishnan,

2008) in order to approximate the optimization Problem 1 by a sequence of simpler

problems, having closed form solutions. The optimizers of such sequence of problems

converge in the limit to an element of the space Vγ, because of the monotonic convergence

property of the EM algorithm (see Section 1.3.1).

3.3.1 Algorithm derivation

We here give a sketch of the derivation of our functional EM algorithm, while refer-

ring to Appendix B.1 for further technical details. First, we recall the result by Yu

and Moyeed (2001), which states the equivalence between the negative log-likelihood

of an Asymmetric-Laplace model (Kotz et al., 2001) with the quantile check function

in (3.6). This suggests that solving Problem 1 corresponds to maximize the penalized
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log-likelihood functional assuming for the regression model the following non-Gaussian

specification:

yi = f(pi) + εi, εi ∼ AL(0, σ2
ε , τ), i = 1, . . . , n, (3.8)

where AL(µ, σ, τ) denotes the Asymmetric-Laplace law with, location µ ∈ R, scale σ > 0

and shape τ ∈ (0, 1). The working probability density function of εi is then given by

π(εi|θ) = τ(1− τ) exp
{︁
− ρτ (εi)/σ2

ε

}︁
/σ2

ε ,

and is such that
∫︁ 0

−∞ π(ε|θ) dε = τ . As a consequence, the penalized log-likelihood

for the unknown parameter θ = (f, σ2
ε) ∈ Fγ × R+ induced by the misspecified model

specification (3.8) corresponds to

ℓλ(θ;y) =
n∑︂
i=1

ℓ(θ; yi)−
λn

2σ2
ε

∫︂
Ω

(Lf − u)2, (3.9)

where ℓ(θ; yi) denotes the i-th unpenalized contribution of the Laplace log-likelihood,

being ℓ(θ; yi) = − log σ2
ε − ρτ{yi − f(pi)}/σ2

ε .

We then take advantage of the location-scale mixture representation of the Laplace

distribution introduced in Section 1.2.1 (see also Kotz et al., 2001), which permits to

write the i-th error component in model (3.8) as a Gaussian random variable with

hierarchical conditional distribution

εi|ωi;θ ∼ N

(︃
(1− 2τ)ωi
τ(1− τ) ,

2σ2
εωi

τ(1− τ)

)︃
, ωi|θ ∼ Exp(1/σ2

ε), i = 1, . . . , n, (3.10)

where N(µ, σ2) is the univariate Gaussian law with mean µ ∈ R and variance σ2 > 0,

while Exp(µ) is the Exponential law with mean 1/µ > 0.

Combining the completed log-likelihood functional relative to the model (3.8) and

(3.10) with the PDE regularization term in (3.6), we obtain the penalized completed

log-likelihood

ℓλ(θ;ω,y) =
n∑︂
i=1

ℓ(θ;ωi, yi)−
λn

2σ2
ε

∫︂
Ω

(Lf − u)2,

where the i-th augmented data contribution is equal to

ℓ(θ;ωi, yi) = −
3

2
log σ2

ε −
1

2
logωi −

ωi
σ2
ε

− τ(1− τ)
4σ2

εωi

{︃
yi − f(pi)−

(1− 2τ)

τ(1− τ)ωi
}︃2

.

Provided that exp{ℓ(θ; yi)} =
∫︁∞
0

exp{ℓ(θ;ωi, yi)} dωi (see, e.g., Kotz et al., 2001), the

penalized log-likelihood functional (3.9) can be maximized via EM algorithm (see, e.g.,

Section 1.3.1), iterating until convergence the expectation (E) and maximization (M)

steps. At the (k+1)-th iteration of the procedure, the parameter estimates are updated
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as follows:

E-step: ℓ
(k)
λ (θ;y) = E(k){ℓλ(θ;ω,y)},

M-step: θ(k+1) = argmin
θ∈Θ

ℓ
(k)
λ (θ;y),

with Θ = Fγ×R+. The expectation in the E-step is taken with respect to the conditional

distribution of ω1, . . . , ωn given the observations y1, . . . , yn, keeping fixed the values of

the spatial field f (k) and of the scale parameter σ2(k)
ε obtained at the k-th iteration of

the algorithm.

As shown by, e.g., Kozumi and Kobayashi (2011) and Tian et al. (2014) and discussed

in Section 1.3.1, a posteriori each latent factor ωi is independently distributed according

to a Generalized-Inverse-Gaussian probability law, as in (1.20). We can thus use the

linearity of the expected value, exploit the analytic integration of ωi, and discard all

the additive terms not depending on the unknown f and σ2
ε , in order to obtain a closed

form expression for the expected penalized log-likelihood functional ℓ
(k)
λ (θ;y). Hence,

at the (k)-th iteration of the algorithm, we have

ℓ
(k)
λ (θ;y) = −3

2
n log σ2

ε −
(a21 + 2a22)

2a22σ
2
ε

1⊤
nµ

(k)
ω −

n

2σ2
ε

J̃
(k)

λ (f), (3.11)

where J
(k)
λ (f) is a quadratic functional of f not depending on σ2

ε :

J
(k)
λ (f) =

1

n
(z(k) − fn)

⊤W(k)(z(k) − fn) + λ

∫︂
Ω

(Lf − u)2. (3.12)

Here, z(k) = y − (1 − 2τ)|y − f
(k)
n | is a vector of working observations and W(k) =

diag(w(k)) is a working weight matrix such that 1/w(k) = 2|y− f
(k)
n |. Hereafter, we use

the notation fn = (f(p1), . . . , f(pn))
⊤ to indicate the vector containing the evaluation

of any spatial field f at the n spatial locations p1, . . . ,pn.

As suggested by the expression in (3.11), maximizing ℓ
(k)
λ (θ;y) with respect to f is

equivalent to minimizing the quadratic functional J
(k)
λ (f). Moreover, such an optimiza-

tion does not depend on the value of σ2
ε , therefore the exact optimization in the M-step

of the algorithm is achieved by first profiling out f and, then, using the new value of

f (k) to obtain the scale parameter σ
2(k)
ε . The update for σ2

ε can hence be evaluated by

maximizing either

ℓ
(k)
λ (σ2

ε ;y) = ℓ
(k)
λ (θ;y)

⃓⃓
f=f (k)

, or ℓ
(k)
λ (σ2

ε ;y) = ℓλ(θ;y)
⃓⃓
f=f (k)

;

both the alternatives lead to a genuine EM update with closed form solution, that are

σ2(k)
ε = argmax

σ2
ε∈R+

ℓ
(k)
λ (σ2

ε ;y) =
2

3n

{︃
(a21 + 2a22)

2a22
1⊤
nµ

(k)
ω +

n

2
J
(k)
λ (f (k))

}︃
,

σ2(k)
ε = argmax

σ2
ε∈R+

ℓ
(k)
λ (σ2

ε ;y) =
1

n

n∑︂
i=1

ρτ
{︁
yi − f (k)(pi)

}︁
+
λ

2

∫︂
Ω

(Lf (k) − u).
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However, the second estimator is preferable in terms of efficiency and algorithm conver-

gence rate, being the exact solution to the original maximum likelihood problem.

It is worth noting that functional (3.12) in the M-step of the algorithm is well-

defined only in the case where all elements of the vector 1/w(k) = 2|y − f
(k)
n | are non-

zero. Otherwise, the calculation of W(k) might produce diagonal entries approaching∞.

Moreover, the M-step still involves an optimization over an infinite-dimensional space.

However, differently from original Problem 1, the minimization of (3.12) is convex and

quadratic, and thus can be appropriately solved by extending the procedure discussed

in Sangalli et al. (2013) and Azzimonti et al. (2014) for simple linear regression models.

The infinite-weight issue and the characterization of the infinite-dimensional formulation

of the M-step of the algorithm are the main topics of the next section.

As a final remark, we observe that the value of the penalized log-likelihood func-

tional (3.9) increases at each iteration of the EM algorithm, or at least it does not

increase, yielding a stable monotonic convergence to a stationary point. Any solution

thus belongs to Vγ thanks to the convexity and coercitivity of functional (3.6). See, e.g.,

Lange (2013), Chapters 9 and 12, for more details.

3.3.2 Constrained formulation

In the previous section we introduced an infinite-weight problem: there exist the pos-

sibility that some elements of 1/w(k) numerically approach zero. As a consequence,

the corresponding entries of w(k) might diverge, causing numerical instabilities in the

calculation and optimization of functional (3.12). Such a behavior has already been ob-

served in the analysis of Bayesian support vector machines by Polson and Scott (2011).

As argued also in Polson and Scott (2011), values of 1/w(k) numerically close to zero

do not indicate a pathological behavior of the algorithm. Actually, they arise in cor-

respondence of support vector points, that are observations for which the complemen-

tary slackness conditions are active constraints in the Karush-Kuhn-Tucker formulation

of support vector machines (Bishop, 2006, Chapter 7). See Section 3 of Polson and

Scott (2011) for more details. In the quantile regression context we observe a similar

phenomenon, that is related to the activation of some implicit constraints that arise

when Problem 1 is rephrased in terms of linear programming (see, e.g., Koenker, 2005).

Intuitively, if 1/w
(k)
i → 0, then the i-th squared pseudo-residual w

(k)
i {z(k)i − f(pi)}2

will receive an infinite weight since w
(k)
i → ∞. This behavior implicitly enforces the

constraint z
(k)
i − f(pi) = 0 to be satisfied. A way to solve this issue, and overcome po-

tential numerical instabilities, is to explicitly take into account the constraint induced

by 1/w
(k)
i = 0. To this end, we decouple the contribution of the unconstrained and

constrained parts of the optimization, defining the partition z(k) = {z(k)s , z
(k)
−s}, where

z
(k)
s = {z(k)i : 1/w

(k)
i = 0} and z

(k)
−s = {z(k)i : 1/w

(k)
i > 0}. Under this setting, the

objective functional (3.12) becomes

J
(k)
−s (f) =

1

n
(z(k) − fn)

⊤
−sW

(k)
−s (z

(k) − fn)−s + λ

∫︂
Ω

(Lf − u)2,
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which is always well-defined, since we are no longer dividing by zero. Moreover, we

define the constraint (z(k) − fn)s = 0. Then, the M-step of the EM algorithm can be

alternatively stated as follows.

Problem 2. Find f̃ ∈ Fγ such that J
(k)
−s (f̃) = inff∈Fγ J

(k)
−s (f) subject to (z(k)− f̃n)s = 0.

Because of the Lagrange multiplier theorem (see, e.g., Nocedal and Wright, 2006, Chap-

ter 13), searching a solution to Problem 2 is equivalent to minimizing the Lagrangian

functional

L(k)(f,η) = J
(k)
−s (f) + η

⊤(z(k) − fn)s, (3.13)

where η ∈ R|s| is a vector of Lagrange multipliers and |s| is the number of active

constraints. Hence, we can directly optimize (3.13) with respect to η and f , without

imposing any explicit constraint.

In order to characterize the minimum of (3.13) in a variational formulation, we

introduce the field g = Lf − u ∈ L2(Ω), which represents the misfit of the PDE. We

define the bilinear forms R1(·, ·) and R0(·, ·) and the linear operator F (·) as follows

R1(ϕ, ψ) =

∫︂
Ω

[︁
(K∇ϕ) · ∇ψ + (b · ∇ϕ)ψ + cϕψ

]︁
,

R0(ϕ, ψ) =

∫︂
Ω

ϕψ, F (ϕ) =

∫︂
Ω

uϕ+

∫︂
∂Ω

γϕ,

(3.14)

for any pair of functions ϕ, ψ ∈ H1(Ω). As we mention in Section 3.2, we here assume

for simplicity Neumann boundary conditions, but similar formulas arise when Dirichlet

or Robin conditions are imposed; see, e.g., the works of Azzimonti et al. (2014) and

Arnone et al. (2019) for the linear regression case. Assuming that all these quantities

are well-defined, the minimizer of the Lagrangian functional (3.13) satisfies the following

proposition.

Proposition 3.3. Let (f̃ , η̃) ∈ Fγ × R|s| be a minimum of L(k)(f,η) in (3.13) and let

g̃ = Lf̃ − u ∈ H1(Ω). Then, (f̃ , g̃, η̃) is the solution of the following system of first

order equations

1
n
(ψn)

⊤
−sW

(k)
−s (fn)−s − (ψn)

⊤
s η̃ + λR1(ψ, g̃) =

1
n
(ψn)

⊤
−sW

(k)
−sz

(k)
−s ,

R1(f̃ , ϕ)−R0(g̃, ϕ) = F (ϕ),

(z(k) − f̃n)s = 0,

(3.15)

for any pair of test functions ϕ, ψ ∈ F0.

Proof. Let L(f,η) = J−s(f)+η
⊤(z− fn)s be the Lagrangian functional associated with

the constrained optimization in Problem 2 and let (f̃ , η̃) ∈ Fγ × R|s| be a minimizer of

L(f,η). Then, because of the Lagrange multiplier theorem, (f̃ , η̃) must satisfy the first

order conditions

∂

∂η
L(f̃ , η̃) = 0, and

∂

∂t
L(f̃ + tψ, η̃)

⃓⃓⃓⃓
t=0

= 0, ∀ ψ ∈ F0.
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The first equation just enforces the constraints, being

∂

∂η
L(f̃ , η̃) = ∂

∂η

{︁
η̃⊤(z− f̃n)s

}︁
= (z− fn)s = 0.

The second equation requires that the Gateaux directional derivatives of L(f,η) with
respect to f get nullified in all the possible directions ψ ∈ F0.

Observing that L(f,η) is quadratic in f , taking the directional derivative and equat-

ing to zero, we obtain the first order variational equation

1

n
(ψn)

⊤
−sW−s (f̃n)−s + λ

∫︂
Ω

(Lψ)(Lf̃) =

=
1

n
(ψn)

⊤
−sW−s z−s + (ψn)

⊤
−sη̃ + λ

∫︂
Ω

(Lψ)u,

(3.16)

which must hold for any ψ ∈ F0. We denote by G(ψ, f̃) and T (f̃) the left and right

sides of the above equation (3.16), respectively; in this way, we can write the first order

condition in the equivalent form

G(ψ, f̃) = T (ψ), ∀ψ ∈ F0. (3.17)

If the parameters of the PDE are such that, for any u ∈ L2(Ω), there exists a unique

solution f of the PDE Lf = u, which, moreover, satisfies f ∈ H2(Ω) (Assumption 2 in

Azzimonti et al., 2014), then G(·, ·) is a symmetric, continuous, coercive bilinear map,

and T (·) is a continuous linear operator (Theorem 2 in Azzimonti et al., 2014). As a

consequence, thanks to the Lax-Milgram lemma (see, e.g., Quarteroni, 2017, Section

3.4.1), there exists a unique solution f̃ ∈ Fγ to equation (3.17).

In order to obtain the first order optimality conditions as stated in Proposition 3.3, we

now exploit the following equivalent weak variational formulation of the Euler-Lagrange

equation (3.16):

1

n
(ψn)

⊤
−sW−s (f̃n)−s + λ

∫︂
Ω

(Lψ)g̃ =
1

n
(ψn)

⊤
−sW−s z−s + (ψn)

⊤
−sη̃,∫︂

Ω

(Lf̃)ϕ−
∫︂
Ω

g̃ϕ =

∫︂
Ω

uϕ,

(3.18)

which must hold for any pair of test functions ψ, ϕ ∈ F0, where g̃ = Lf̃ − u. Hence,

integrating by parts
∫︁
Ω
(Lψ)g̃ and

∫︁
Ω
(Lf̃)ϕ, and using the definition of R1(·, ·), R0(·, ·)

and F (·) in (3.14) we can recognize the weak variational formulation in Proposition (3.3).

Let us first consider the explicit formulas∫︂
Ω

(Lψ)g̃ =

∫︂
Ω

[︁
− div(K∇ψ)g̃ + (b · ∇ψ)g̃ + cψg̃

]︁
, ∀ψ ∈ F0,∫︂

Ω

(Lf̃)ϕ =

∫︂
Ω

[︁
− div(K∇f̃)ϕ+ (b · ∇f̃)ϕ+ cf̃ϕ

]︁
, ∀ϕ ∈ F0.
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Assuming g̃ = Lf̃ − u ∈ H1(Ω), using the first Green identity, the non-homogeneous

Neumann boundary conditions for f̃ and the homogeneous boundary conditions for ψ,

we get

−
∫︂
Ω

div(K∇ψ)g̃ =
∫︂
Ω

(K∇ψ) · ∇g̃,

−
∫︂
Ω

div(K∇f̃)ϕ =

∫︂
Ω

(K∇f̃) · ∇ϕ−
∫︂
∂Ω

γϕ,

which lead to the identities∫︂
Ω

(Lψ)g̃ = R1(ψ, g̃) and

∫︂
Ω

(Lf̃)ϕ = R1(f̃ , ϕ)−
∫︂
∂Ω

γϕ

The proof is concluded by the noting that the above equations combined with the

variational system in (3.18) give rise the final result in (3.15).

Such a variational formulation of Problem 2 is the cornerstone to derivation of the finite

element discretization we propose in Section 3.4.

3.4 Finite element discretization

In order to tackle the infinite-dimensional problem as stated in the weak formula-

tion (3.15), we study a numerical solution within a proper finite-dimensional subspace.

We consider a regular triangularization Th of the original spatial domain with character-

istic size h, where h is the maximum length of the triangle edges. In this way, Ω can be

represented by the union of all triangles in Th, leading to the approximated domain Ωh

with polygonal boundary ∂Ωh. The discretization Th, also called mesh, is a fundamen-

tal tool in numerical analysis and engineering that permits to describe the geometry of

possibly very complex domains, characterized by strong concavities, holes, or a curved

nature.

3.4.1 Finite element basis expansion

Denote by Pr(τ ) the space of polynomial functions of order r over the triangle T ∈ Th
and define by F rγ (Ωh) ⊂ H1(Ωh) ∩ C(Ω̄h) the finite-dimensional subspace

F rγ (Ωh) = {fh ∈ C(Ω̄h) : fh|T ∈ Pr(T ) ∀T ∈ Th, Bfh = γh on ∂Ωh}.

where γh is the local r-th order polynomial interpolation of γ. Starting from the trian-

gular discretization Th, we can thus define locally supported polynomial functions that

provide a basis ψ1, . . . , ψNh for the F rγ (Ωh). If we consider piecewise linear functions,

the elements of the basis expansion ψ1, . . . , ψNh have a one-to-one correspondence with

the nodes of the mesh ξ1, . . . , ξNh , that are the vertices of the triangles. A graphical

representation is provided in Figure 3.1. The evaluation of the i-th basis on the j-th
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Figure 3.1: A linear finite element basis function on a triangular mesh.

node is given by ψi(ξj) = δij, where δij is the Kronecker delta with δij = 1 if i = j and

δij = 0 if i ̸= j, for any i, j ∈ {1, . . . , Nh}. Hence, any surface fh ∈ Fγ,h ≡ F1
γ (Ωh) is

uniquely determined by its values at the nodes:

fh(p) =

Nh∑︂
j=1

fh(ξj)ψj(p) = f⊤ψ(p),

where ψ(p) = (ψ1(p), . . . , ψNh(p))
⊤ is the basis vector at the point p ∈ Ω, while

f = (fh(ξ1), . . . , fh(ξNh))
⊤ is the coefficient vector of the basis expansion.

It is worth highlighting that the mesh can be constructed independently of the n data

locations p1, . . . ,pn. In fact, in some applications, this may be very useful, especially

when the data locations have a spatial distribution which is far from been uniform over

the domain, since a coarse mesh composed by triangles with very different dimensions

and sharp angles may lead to numerical instabilities and poor approximations (see, e.g.,

Quarteroni, 2017). This may be the case, for instance, when the data are characterized

by clustering effects or regional sparsity. In these situations, a regular mesh can be

constructed using only a subset of the data locations and filling the remaining spatial

regions with an almost uniform discretization, so that to improve the numerical stability

of the solution and the accuracy of the approximation.

3.4.2 Finite-dimensional estimator

Let Ψ be the matrix evaluation of the Nh basis functions at the n data locations:

Ψ =

⎡⎢⎣ ψ(p1)
⊤

...

ψ(pn)
⊤

⎤⎥⎦ =

⎡⎢⎣ ψ1(p1) · · · ψNh(p1)
...

...

ψ1(pn) · · · ψNh(pn)

⎤⎥⎦ ,
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so that, for any fh ∈ Fγ,h, we have fn = Ψf . Let R1 be the Nh ×Nh matrix evaluation

of the bilinear form R1(·, ·) over the finite element basis:

R1 =

∫︂
Ωh

[︁
(∇ψ)K(∇ψ)⊤ + (∇ψ)(bψ⊤) + cψψ⊤]︁,

where ∇ψ is the Jacobian matrix of the vector field ψ. Similarly, we define the mass

matrix R0 =
∫︁
Ωh
ψψ⊤, being the discretization of R0(·, ·). The notation u =

∫︁
Ωh
uhψ

and γ =
∫︁
∂Ωh

γhψ represent the discretization of F (·). Then the finite element approxi-

mation of the system (3.15) in Proposition 3.3 is presented in the following proposition.

Proposition 3.4. The finite element estimator (f̃ , g̃, η̃) ∈ RNh × RNh × R|s| is the

solution of the linear system⎡⎢⎣ 1
n
Ψ⊤

−sW
(k)
−sΨ−s λR⊤

1 Ψ⊤
s

λR1 −λR0 O

Ψs O O

⎤⎥⎦
⎡⎣ f̃

g̃

η̃

⎤⎦ =

⎡⎢⎣ 1
n
Ψ⊤

−sW
(k)
−sz

(k)
−s

λ(u+ γ)

z
(k)
s

⎤⎥⎦ . (3.19)

Proof. From Proposition 3.3, any solution (f̃h, g̃h, η̃) in the finite element space must

satisfy the system of equations

1
n
(ψn)

⊤
−sW

(k)
−s (f̃n)−s − (ψn)

⊤
s η̃ + λR1(ψh, g̃h) =

1
n
(ψn)

⊤
−sW

(k)
−sz

(k)
−s ,

R1(f̃h, ϕh)−R0(g̃h, ϕh) = F (ϕh),

z(k)s − (f̃n)−s = 0,

for any ψh, ϕh ∈ F0,h. Thanks to the finite element discretization, we have

(ψn)−s = Ψ−sψ, (f̃n)−s = Ψ−sf̃ , (f̃n)−s = Ψsf̃ ,

R0(ψh, g̃h) = ψ
⊤R⊤

0 g̃, R1(f̃h, ϕh) = f⊤R⊤
1 ϕ, F (ϕh) = (u+ γ)⊤ϕ,

therefore the above system can be written as

1
n
ψ⊤Ψ⊤

−sW
(k)
−sΨ−sf̃ −ψ⊤Ψ⊤

s η̃ + λψ⊤R⊤
1 g̃ = 1

n
ψ⊤Ψ⊤

−sW
(k)
−sz

(k)
−s ,

f̃⊤R⊤
1 ϕ− g̃⊤R0ϕ = (u+ γ)⊤ϕ,

z(k)s −Ψsf̃ = 0,

for any pair of vectors ψ,ϕ ∈ RNh . Since any function fh ∈ Fγ,h is uniquely determined

by its values on the nodes, i.e. by its coefficient vector, solving the above system is

equivalent to finding (f̃ , g̃, η̃) ∈ RNh × RNh × R|s| such that

1
n
Ψ⊤

−sW
(k)
−sΨ−sf̃ −Ψ⊤

s η̃ + λR⊤
1 g̃ = 1

n
Ψ⊤

−sW
(k)
−sz

(k),

R1f̃ −R0g̃ = u+ γ,

z(k)s −Ψsf̃ = 0,

which corresponds to (3.19). This concludes the proof.
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The system (3.19) in Proposition 3.4 admits closed form solution that can be expressed

as
f̃ = (A(k))−1d(k) + (A(k))−1Ψ⊤

s (B
(k))−1

{︁
z(k)s −Ψs(A

(k))−1d(k)
}︁
,

g̃ = R−1
0 (R1f̃ − u− γ),

η̃ = (B(k))−1
{︁
z(k)s −Ψs(A

(k))−1d(k)
}︁
.

(3.20)

Here, we use the matrix notation

A(k) = 1
n
Ψ⊤

−sW
(k)
−sΨ−s + λP,

B(k) = Ψs(A
(k))−1Ψ⊤

s ,

d(k) = 1
n
Ψ⊤

−sW
(k)
−sz

(k)
−s + λh,

where P = R⊤
1 R

−1
0 R1 is the Nh ×Nh penalty matrix that discretizes the penalty term

in (3.6) and h = R⊤
1 R

−1
0 (u+γ) is theNh×1 bias vector induced by the non-homogeneous

terms of equations (3.2) and (3.4). Moreover, (A(k))−1d(k) is the solution of the uncon-

strained optimization problem

min
f∈RNh

J
(k)
−s
(︁
f⊤ψ

)︁
= min

fh∈Fγ,h
J
(k)
−s (fh).

The constrained estimator f̃ is then obtained by projecting the unconstrained solution

(A(k))−1d(k) onto the null space
{︁
f ∈ RNh : z

(k)
s −Ψsf = 0

}︁
.

Remark 3.5. If A(k) is non-singular and Ψs has full row rank, i.e., if B(k) is non-singular,

the estimator (f̃ , g̃, η̃) is the unique solution to the linear system (3.19) in Proposi-

tion 3.4 (Nocedal and Wright, 2006, Chapter 16).

Remark 3.6. Because of the monotonic convergence of the EM algorithm (Lange, 2013,

Chapters 9 and 12), in the limit for k → ∞, the finite element estimator f̃h = f̃⊤ψ

converges to f̂h = f̂⊤ψ, which is the minimizer of J(fh) for fh ∈ Fγ,h.
The above results, and in particular Propositions 3.3 and 3.4, may be generalized in

order to accommodate for additive and semiparamtric models, when also a set of fixed

covariates is available, as we show in Section 3.6.

3.4.3 Finite-dimensional EM algorithm

Thanks to Proposition 3.4, we have all the ingredients to define a numerical routine

approximating the quantile estimator defined in Problem 1. Algorithm 5 provides a

pseudo-code description of the resulting EM algorithm with finite-element approxima-

tion of the spatial field f .

Notice that in the numerical treatment of the constraint Problem 2, it is not possible

to precisely determine the set of indices s = {i : |yi− fh(pi)| = 0, i = 1, . . . , n} because
of rounding errors introduced by numerical approximations. Instead, we here consider

the alternative definition s = {i : |yi − fh(pi)| ≤ ϵ, i = 1, . . . , n}, where ϵ is a small

tolerance parameter. In our numerical experiments we set ϵ = 10−6.
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Algorithm 5 Functional EM algorithm for nonparametric spatial quantile regression

Require: τ, λ,y,Ψ,R0,R1

Initialize f̂ , ĝ, η̂ and σ̂2
ε;

while convergence is not reached do

s← {i : |yi −ψ⊤
i f̂ | ≤ ϵ, i = 1, . . . , n};

ŵ−s ← 1
2
|y −Ψf̂ |−1

−s; Ŵ−s ← diag(ŵ−s);

ẑ−s ← y−s − (1− 2τ)|y −Ψf̂ |−s; ẑs ← ys;

Solve

⎡⎢⎣
1
n
Ψ⊤

−sŴ−sΨ−s λR⊤
1 Ψ⊤

s

λR1 −λR0 O

Ψs O O

⎤⎥⎦
⎡⎢⎣ f̂

ĝ

η̂

⎤⎥⎦ =

⎡⎢⎣
1
n
Ψ⊤

−sŴ−sz−s

λ(u+ γ)

zs

⎤⎥⎦;
σ̂2
ε ← 1

n
1⊤
n ρτ (y −Ψf̂) + λ

2
ĝ⊤R0 ĝ;

end while

3.4.4 Smoothing parameter selection

A classical issue in penalized nonparametric regression modelling is the selection of the

smoothing parameter λ, which controls the amount of regularization enforced on the

estimates. In this work we select the value of λ that minimizes the approximated Gen-

eralized Cross-Validation (GCV) score. We rely on the definition of GCV for quantile

regression problems used by Nychka et al. (1995), Yuan (2006), and Li et al. (2007),

which in our case takes the form

GCV(λ) =
n∑︂
i=1

ρτ{yi − f̂h(pi)}
n− df

, (3.21)

where df denotes a measure of the effective degrees of freedom induced by the smoother

f̂h. Notice that the GCV score (3.21) depends on the smoothing parameter through

f̂h ≡ f̂h(λ) and df ≡ df(λ), which are implicit functions of λ.

In order to derive a closed-form expression for the effective degrees of freedom, as

defined by Nychka et al. (1995), we first need to provide a convenient representation for

the estimated surface at the n observed locations f̂n. To this purpose we recall that, at

the end of the optimization, the discrete quantile estimator f̂ in (3.20) can be written as

a linear transformation of the pseudo-data vector ẑ. Therefore, f̂n is a linear smoother

and can be written as

f̂n = S ẑ+ r, (3.22)

for an appropriate smoothing matrix S and a correspondent residual vector r. In par-

ticular, the smoothing matrix is partitioned as S =
[︁
S−s, Ss

]︁
, where

S−s = Ψ(I−A−1Ψ⊤
s B

−1Ψs)A
−1Ψ−sW−s⏞ ⏟⏟ ⏞

n×(n−|s|)

, Ss = ΨA−1Ψ⊤
s B

−1⏞ ⏟⏟ ⏞
n×|s|

, (3.23)
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and the residual vector is given by

r = λΨA−1Ψ⊤
s B

−1ΨsA
−1R⊤

1 R
−1
0 (u+ γ). (3.24)

In this way we take advantage of the decomposition between unconstrained and con-

strained terms, namely Sẑ + r = S−sẑ−s + Ssẑs + r, generalizing the classical results

for restricted least squares estimators (Greene and Seaks, 1991) to penalized smoothing

problems.

Because of the linearity of (3.22), we can use the definition of effective degrees of

freedom discussed, e.g., in Silverman (1985) and used by, e.g., Nychka et al. (1995),

which is df = tr(S), where tr(·) is the trace of a matrix. After some simplifications (see

Section B.1 of the online supplement material), the equivalent degrees of freedom take

the explicit expression

df = |s|+ tr
{︁
A−1(I−Ψ⊤

s B
−1ΨsA

−1)( 1
n
Ψ⊤

−sW
−1
−sΨ−s)

}︁
. (3.25)

The latter formulation generalizes the definition of degrees of freedom for penalized

linear smoothers by Wahba (1990) to penalized linear smoothers subject to equality

constraints. Indeed if no active constraints were present, the set {i ∈ N : 1/wi = 0, 1 ≤
i ≤ n} would be empty and, therefore, we would obtain

df = tr
{︁
A−1( 1

n
Ψ⊤W−1Ψ)

}︁
,

which is actually the standard definition of effective degrees of freedom for penalized

weighted regression problems.

3.5 Large sample properties

We here study the asymptotic properties of both the infinite- and finite-dimensional

quantile estimators. Doing so, we denote by f0 ∈ Fγ the true τ -quantile field of Yi given

pi and we define g0 = Lf0 − u ∈ L2(Ω) as the misfit of the PDE relative to f0.

3.5.1 Infinite-dimensional estimator

In order to ensure the identifiability of the estimator in Problem 1 and to establish its

large-sample properties, we need to make some assumptions on the probability density

function of yi given pi (Assumption 2), on the spatial distribution of the points pi over

Ω (Assumption 3) and on the asymptotic behavior of λ = λn (Assumption 4) for n going

to infinity. We denote by Πn
p the empirical bivariate cumulative density function of the

probability measure that assigns mass 1/n to each point pi. Let Πp be the limiting

distribution of the sequence Πn
p and let dn = supp∈Ω |Πp(p)−Πn

p(p)| be the maximum

difference between Πp and Πn
p.

Assumption 2. There exist h1, h2 such that, for any p ∈ Ω, 0 < h1 < πy|p(f0(p)) <

h2 <∞.
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Assumption 3. The sequence dn converges to 0 in probability, i.e. Πn
p uniformly con-

verges to Πp. Moreover, Πp has probability density function πp ∈ C∞(Ω̄) such that, for

all p ∈ Ω, 0 < k1 < πp(p) < k2 <∞, for some constants k1, k2.

Assumption 4. The smoothing parameter λ = λn is such that dn/λn → 0 and λn → 0.

Assumption 5. The coefficients of the PDE (3.2), i.e., K, b and c, are such that for

any forcing term u ∈ L2(Ω) there exists a unique solution of the PDE, which, moreover,

belongs to H2(Ω)

Assumption 2 ensures the existence of a well-behaved asymptotic estimator, preventing

the quantile field f0 lying in a region with almost null probability mass. Assumption 3

guarantees that the locations p1, . . . ,pn cover all the domain Ω with probability 1 for n

going to infinity. Assumption 4 establishes the convergence speed of λn to 0 as n goes to

infinity, in such a way to control the asymptotic behavior of the bias of the estimator.

Assumption 5 provide the sufficient regularity conditions to guarantee the equivalence

between the norms ∥Lf∥L2 and ∥f∥H2 , which is fundamental to control the bias and

variance of the infinite-dimensional estimator in an asymptotic regime.

Under Assumptions 2–5, we can now study the convergence of the asymptotic mean

squared error (MSE) of the infinite-dimensional estimator f̂ . The following theorem

shows that the nonparametric quantile estimator f̂ is consistent in the L2 norm under

different Sobolev regularity conditions of the underlying true field, f0 ∈ H2(Ω) and

f0 ∈ H4(Ω). Moreover, the MSE of f̂ nearly achieves the optimal convergence rate for

nonparametric estimators but for an infinitesimal factor δ > 0, as small as desired.

Theorem 3.7. Under Assumptions 2–5, if f0 ∈ H2(Ω) and Bf0 = γ, setting λ = λn =

n−2/3, we have MSEL2(f̂) = O
(︁
n−2/3+ϵ

)︁
, for ϵ > 0 as small as desired. If, in addition,

g0 ∈ H2(Ω), setting λ = λn = n−2/5, we have MSEL2(f̂) = O
(︁
n−4/5+ϵ/2

)︁
.

Proof. See Section B.2 of the online supplementary material of this article.

The proof of Theorem 3.7 builds upon the work of Arnone et al. (2022a), which stud-

ied the asymptotic bias, variance and consistency of spatial linear regression with PDE

regularization and Dirichlet boundary conditions. Instead, we here generalize such an

approach to quantile regression model with PDE regularization and Neumann bound-

aries.

3.5.2 Finite-dimensional estimator

We denote by f0 and g0 the evaluation vectors of f0 and g0 at the mesh knots ξ1, . . . , ξNh .

Furthermore, we define the Nh ×Nh matrices

D0,n =
1

n

n∑︂
i=1

ψ(pi)ψ(pi)
⊤, D1,n =

1

n

n∑︂
i=1

πyi|pi(f0(pi))ψ(pi)ψ(pi)
⊤,
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where the subscript n highlights the dependence on the sample size. We here assume

that the number of bases Nh and the triangulation Th are fixed, and that the discretiza-

tion is sufficiently fine to accurately describe the global and local characteristics of the

underlying spatial quantile field.

A sufficient set of regularity conditions that guarantee the convergence of the dis-

cretized estimator to its asymptotic distribution is the following.

Assumption 6. Either the knots of the triangulation are a subset of the data loca-

tions, i.e., {ξ1, . . . , ξNh} ⊂ {p1, . . . ,pn}, or, for n large enough, there is at least one

observation in the support of each basis function ψ1, . . . , ψNh.

Assumption 7. There exist positive definite matrices D0 and D1 such that D0,n → D0

and D1,n → D1 as n→∞.

Assumption 6, along with Assumption 2, gives a sufficient condition for the non-singularity

of the matrices D0,n and D1,n. Assumption 7 guarantees the existence of a non-singular

limit for the matrices D0,n and D1,n. Under Assumptions 2, 6, 7, we can now study

the convergence of the finite-element estimator f̂ toward f0 conditionally on the mesh

knots ξ1, . . . , ξNh . The following theorem establishes the asymptotic normality of the

finite-dimensional estimator f̂ and it shows that the MSE of f̂ reaches the optimal rate

of convergence for parametric estimators.

Theorem 3.8. Under Assumptions 2, 6 and 7, if λ = λn = O(n−1/2) with
√
nλn → λ0,

then the τ -quantile estimator f̂ has asymptotic distribution

√
n(f̂ − f0)

d−→ NNh(µ,Σ),

where µ = −λ0D−1
1 R⊤

1 g0 and Σ = τ(1 − τ)D−1
1 D0D

−1
1 . Moreover, under the same

assumptions, MSEn(f̂) = O(n−1). Finally, if λ = λn = o(n−1/2),
√
n(f̂ − f0) is asymp-

totically unbiased.

Proof. See Appendix B.2.

Remark 3.9. For n large but finite and λ = λn = O(n−1/2), a better approximation of

the distribution of
√
n(f̂ − f0) is given by the Gaussian law NNh(µn,Σn) with mean and

variance

µn = −√nλ(D1,n + λP)−1R⊤
1 g0,

Σn = τ(1− τ)(D1,n + λP)−1D0,n(D1,n + λP)−1.

See the supplementary material for more details.

3.6 Inclusion of covariates

The nonparametric quantile regression method described in Section 3.4 of the main

paper can be extended to include the effects of space-varying covariates, in a semi-

parametric regression framework. Let X be a n × q design matrix with i-th row
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x⊤
i = (xi1, . . . , xiq), the vector of covariates observed at the location pi. We then

consider the additive model formulation

Qyi|xi,pi(τ) = x⊤
i β + f(pi), i = 1, . . . , n,

where β ∈ Rq is an unknown vector of regression coefficients. We can obtain the

semiparametric quantile estimator (β̂, f̂) by minimizing the functional

Jτ,λ(β, f) =
1

n

n∑︂
i=1

ρτ
{︁
yi − x⊤

i β − f(pi)
}︁
+
λ

2

∫︂
Ω

(Lf − u)2,

with respect to β ∈ Rq and f ∈ Fγ.
The EM algorithm proposed in Section 3.3 can be adapted to this new model specifi-

cation. Aside from the presence of an additional component in the linear predictor, the

E-step does not change, as well as the constrained formulation of the M-step. Defining

z(k) = y− (1− 2τ)|y−Xβ(k) − f
(k)
n |, where 1/w(k) = 2|y−Xβ(k) − f

(k)
n |, the estimator

of β and f at a new iteration of the algorithm is updated by optimizing with respect to

β and f the quadratic functional

J
(k)
−s (β, f) =

1

n
(z(k) −Xβ − fn)

⊤
−sW

(k)
−s (z

(k) −Xβ − fn)−s + λ

∫︂
Ω

(Lf − u),

under the constraint (z(k) −Xβ − fn)s = 0, where W
(k)
−s = diag(w

(k)
−s ). The solution of

such a minimization problem is then characterized by the following proposition.

Proposition 3.10. Let (β̃, f̃ , η̃) ∈ Rq × Fγ × R|s| be a minimum of the Lagrangian

functional

L(k)(β, f,η) = J
(k)
−s (β, f) + η

⊤(z(k) −Xβ − fn)s, (3.26)

and let g̃ = Lf̃ − u ∈ H1(Ω). Then (β̃, f̃ , g̃, η̃) must satisfy the following system of first

order equations

− 1
n
X⊤

−sW
(k)
−s (z

(k) −Xβ̃ − f̃n)−s −X⊤
s η̃ = 0,

− 1
n
(ψn)

⊤
−sW

(k)
−s (z

(k) −Xβ̃ − fn)−s − (ψn)
⊤
s η̃ + λR1(ψ, g̃) = 0,

R1(f̃ , ϕ)−R0(g̃, ϕ) = F (ϕ),

(z(k) −Xβ − fn)s = 0,

(3.27)

for any pair of test functions ϕ, ψ ∈ F0.

Proof. Let L(β, f,η) = J−s(β, f) + η
⊤(z − Xβ − fn)s be the Lagrangian functional

defined in (3.26). Let (β̃, f̃ , η̃) ∈ Rq × Fγ × R|s| be a minimizer of L(β, f,η). Then,

(β̃, f̃ , η̃) must satisfy the first order equations

∂

∂η
L(β̃, f̃ , η̃) = 0,

∂

∂β
L(β̃, f̃ , η̃) = 0,

∂

∂t
L(β̃, f̃ + tψ, η̃)

⃓⃓⃓⃓
t=0

= 0,
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for any ψ ∈ F0. The first two equations take the form

∂

∂η
L(β̃, f̃ , η̃) = (z−Xβ − fn)s = 0,

∂

∂β
L(β̃, f̃ , η̃) = − 1

n
X⊤

−sW−s(z−Xβ − fn)−s −X⊤
s η̃ = 0.

Moreover, thanks to the Lax-Milgram lemma (see, e.g., Quarteroni, 2017), if Assumption

2 in Azzimonti et al. (2014) is satisfied, the Lagrangian functional L(η, f,β) has a unique
minimizer, which satisfies the Euler-Lagrange equation

− 1
n
(ψn)

⊤
−sW−s(z−Xβ̃ + f̃n)−s − (ψn)

⊤
−sη̃ + λ

∫︂
Ω

(Lψ)(Lf̃ − u) = 0,

for any (β̃, η̃) ∈ Rq × R|s| and ψ ∈ F0. This is equivalent to the system

− 1
n
(ψn)

⊤
−sW−s(z−Xβ̃ + f̃n)−s + λ

∫︂
Ω

(Lψ)g̃ = (ψn)
⊤
−sη̃ + λ

∫︂
Ω

(Lψ)u,∫︂
Ω

(Lf̃)ϕ−
∫︂
Ω

g̃ϕ =

∫︂
Ω

uϕ,

for any pair of test functions ϕ, ψ ∈ F0. Hence, as in the proof of Proposition 3.3, we can

integrate by parts and use the definition of R1(·, ·), R0(·, ·) and F (·) in (3.14) to obtain

the weak variational formulation in Proposition 3.10. This concludes the proof.

Analogously to the pure non-parametric case, after introducing the finite element dis-

cretization, the variational formulation (3.27) in Proposition 3.10 can be approximated

by the linear system⎡⎢⎢⎢⎣
1
n
X⊤

−sW
(k)
−sX−s

1
n
X⊤

−sW
(k)
−sΨ−s O X⊤

s
1
n
Ψ⊤

−sW
(k)
−sX−s

1
n
Ψ⊤

−sW
(k)
−sΨ−s λR⊤

1 Ψ⊤
s

O λR1 −λR0 O

Xs Ψs O O

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
β̃

f̃

g̃

η̃

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1
n
X⊤

−sW
(k)
−sz

(k)
−s

1
n
Ψ⊤

−sW
(k)
−sz

(k)
−s

λ(u+ γ)

z
(k)
s

⎤⎥⎥⎥⎦ .
(3.28)

The resulting EM routine based on such a representation is summarized in the pseudo-

code description of Algorithm 6.

In order to present the explicit solution of system (3.28), we introduce the com-

pleted design matrix Ψ̄ =
[︁
X, Ψ

]︁
. Further, let Ā

(k)
= Ψ̄

⊤
−sW

(k)
−sΨ̄−s + λP̄, B̄

(k)
=

Ψ̄s(Ā
(k)
)−1Ψ̄

⊤
s and d̄

(k)
= Ψ̄−sW

(k)
−sz

(k)
−s + λh̄, where

P̄ =

[︃
O O

O R⊤
1 R

−1
0 R1

]︃
, h̄ =

[︃
0

R⊤
1 R

−1
0 (u+ γ)

]︃
, (3.29)
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Algorithm 6 Functional EM algorithm for semiparametric spatial quantile regression

Require: τ, λ,y,Ψ,R0,R1

Initialize f̂ , ĝ, η̂ and σ̂2
ε;

while convergence is not reached do

s← {i : |yi − x⊤
i β̂ −ψ⊤

i f̂ | ≤ ϵ, i = 1, . . . , n};
ŵ−s ← 1

2
|y −Xβ̂ −Ψf̂ |−1

−s; Ŵ−s ← diag(ŵ−s);

ẑ−s ← y−s − (1− 2τ)|y −Xβ̂ −Ψf̂ |−s; ẑs ← ys;

A11 ←
[︄

1
n
X⊤

−sŴ−sX−s
1
n
X⊤

−sŴ−sΨ−s
1
n
Ψ⊤

−sŴ−sX−s
1
n
Ψ⊤

−sŴ−sΨ−s

]︄
; b2 ←

[︄
1
n
X⊤

−sŴ−sz−s
1
n
Ψ⊤

−sŴ−sz−s

]︄
;

A21 ←
[︄

O λR1

Xs Ψs

]︄
; A22 ←

[︄
−λR0 O

O O

]︄
; b2 ←

[︄
λ(u+ γ)

zs

]︄
;

Solve

[︄
A11 A⊤

21

A21 A22

]︄
x =

[︄
b1

b2

]︄
; β̂ ← x1; f̂ ← x2; ĝ← x3; η̂ ← x4;

σ̂2
ε ← 1

n
1⊤
n ρτ (y −Xβ̂ −Ψf̂) + λ

2
ĝ⊤R0 ĝ;

end while

are the completed penalty matrix and vector, respectively. Then, similarly to the pure

nonparametric finite element estimator (3.20), we have[︃
β̃

f̃

]︃
= (Ā

(k)
)−1d̄

(k)
+ (Ā

(k)
)−1Ψ̄

⊤
s (B̄

(k)
)−1
{︁
z(k)s − Ψ̄s(Ā

(k)
)−1d̄

(k)}︁
,

g̃ = R−1
0 (R1f̃ − u− γ), η̃ = (B̄

(k)
)−1
{︁
z(k)s − C̄(Ā

(k)
)−1d̄

(k)}︁
.

(3.30)

If Ā and B̄ are non-singular matrices, the discrete estimator solving the linear sys-

tem (3.28) exists and is unique (Nocedal and Wright, 2006, Chapter 16).

Similarly to what proposed in Section 3.4.4, the smoothing parameter λ can be

selected by minimizing the GCV score, which in this case is given by

GCV(λ) =
n∑︂
i=1

ρτ
{︁
yi − x⊤

i β̂ − f̂h(pi)
}︁

n− df
,

with effective degrees of freedom dfc. As a consequence of the linearity of the estimator

(β̂, f̂) = (β̃, f̃) in (3.30) with respect to z, we have

df = |s|+ tr
{︁
Ā

−1
(I− Ψ̄

⊤
s B̄

−1
Ψ̄sĀ

−1
)( 1
n
Ψ̄

⊤
−sW

−1
−sΨ−s)

}︁
.

The derivation of dfc is analogous to what presented in Section 3.4.4, and further detailed

in Appendix B.1 for the pure non-parametric model.
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3.7 Simulation studies

In this section we present the results of two simulation studies, in order to assess the

performance of the proposed method and to compare it with alternative existing ap-

proaches. We consider heteroscedastic data generating models, defined as

yi ∼ N(µi, σ
2
i ), µi = µ(pi), σi = σ(pi), pi ∈ Ω, i = 1, . . . , n, (3.31)

with a spatial mean surface µ : Ω → R and a standard deviation surface σ : Ω → R+.

In the first simulation, we consider three combinations of mean and standard deviation

surfaces defined over a non trivial horseshoe domain. In the second simulation setup we

consider an anisotropic specification of the mean and standard deviation fields, defined

upon a simple square domain.

In each scenario, we independently simulate 100 datasets with 500 observations each,

according to the generative model (3.31). We then estimate 5 quantile surfaces, corre-

sponding to levels α = 0.1, 0.25, 0.5, 0.75, 0.95. We compare

� SQR-PDE: the proposed spatial quantile regression with the second order differ-

ential regularization
∫︁
Ω
{div(K∇f)}2 and homogeneous Neumann boundary con-

ditions;

� SOAP: quantile version of the soap film smoothing by Wood et al. (2008) and Fa-

siolo et al. (2021a);

� H-SOAP: quantile soap film smoothing with location-scale calibration for the het-

eroscedasticity by Fasiolo et al. (2021a);

� TPS: quantile version of thin plate spline smoothing by Wood (2003) and Fasiolo

et al. (2021a);

� H-TPS: quantile thin plate spline smoothing with location-scale calibration for the

heteroscedasticity by (Fasiolo et al., 2021a);

� QSS: quantile smoothing splines with total variation regularization by Koenker

and Mizera (2004).

SQR-PDE is implemented using the R parkage fdaPDE (Arnone et al., 2022b); SOAP,

H-SOAP, TPS and H-TPS are all implemented in the R package qgam (Fasiolo et al.,

2021b); QSS is implemented in the R package quantreg (Koenker, 2021).

The methods are compared in terms of root mean squared error (RMSE), computed

as RMSE =
{︁ ∫︁

Ω
(f − f̂)2/|Ω|

}︁
1/2, where the integral is approximated by a sum over a

fine regular grid that covers the domain Ω, and |Ω| is the area of Ω.

3.7.1 First simulation setup: field over irregular domain

In our first simulation setup we consider three scenarios, to which we refer as A, B, C,

respectively; where the data are generated according to the heteroscedastic Gaussian
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Figure 3.2: Horseshoe domain for the first simulation study. First row: mean
surface, data locations, triangular discretization of the domain. Second row: standard
deviation surfaces corresponding to three simulation settings A, B and C.

model (3.31), defined over the horseshoe domain proposed by Ramsay (2002). For the

mean surface µ(·) we consider the test function proposed by Wood et al. (2008), while

a different standard deviation surface σ(·) is used for each scenario. The true mean and

standard deviation fields are shown in Figure 3.2.

We estimate the quantile fields using the methods mentioned before. Since no

anisotropy or flows are appreciable in the synthetic data, we consider an isotropic Lapla-

cian regularization for the SQR-PDE model, i.e. K = I. The results for the three sce-

narios and the five quantile levels are shown in Figure 3.3 and 3.4. The proposed method

(SQR-PDE) has comparable or better performances in terms of RMSE than SOAP in

each simulation setting (Figure 3.3). Moreover, these methods outperform TPS and

QSS. This effect is due to a proper management of the domain constraints of SQR-PDE

and SOAP. TPS and QSS, instead, smooth the estimated quantile surface not only

within the domain but also across the boundaries, causing undesired over-smoothing

effects in a neighborhood of the interior boundary (Figure 3.4).

3.7.2 Second simulation setup: anisotropic field over regular

domain

In the second simulation setup, we generate µ(·) and σ(·) as Gaussian random fields with

anisotropic Matérn covariance function over the square domain Ω = [0, 1]2, parametrized
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Figure 3.3: Boxplots of the RMSE over 100 replicates of the estimated spatial
quantile fields in the first simulation setup. Each column corresponds to a quantile
level (10%, 25%, 50%, 75%, 90%). Each row corresponds to a simulation setting (A,
B, C).

as

C(dij; τ, ρ, ν) = τ 2
21−ν

Γ(ν)

(︃
2
√
ν dij
ρ

)︃
νKν

(︃
2
√
ν dij
ρ

)︃
,

where d2ij = (pi − pj)
⊤A (pi − pj) is the squared Mahalanobis distance between pi

and pj calculated with respect to the anisotropy tensor A ∈ R2×2, which determines

the direction and intensity of the anisotropic effect; the parameters involved in the

covariance function are, respectively, the marginal variance τ 2 > 0, the covariance range

ρ > 0, and the smoothing parameter ν > 0. In particular, for the mean surface, we

set τ 2 = 1, ρ = 0.3, and ν = 2. For the standard deviation surface, we set τ 2 = 0.3,

ρ = 0.6, and ν = 2. The anisotropic tensor is specified according to the form: Aij = 1 if

i = j and Aij = ϕ if i ̸= j, where the parameter ϕ ∈ (−1,+1) control the direction and

intensity of the anisotropic effect. Specifically, we consider three scenarios, A, B and C,

with an increasing level of anisotropy, namely ϕA = 0, ϕB = −0.3, ϕC = −0.6.
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Figure 3.4: Estimated 10%-quantile surfaces for one dataset generated in the first
simulation setup, setting C.

We use the function RFsimulate of the R package RandomFields (Schlather et al.,

2017) to simulate the mean and standard deviation fields on a fine grid covering Ω

(see Figure 3.5). Estimation of quantile fields is performed with the same methods

considered in the first simulation setup. In particular, for SQR-PDE, we consider two

specifications for the differential regularization:

� SQR-PDE(I): spatial quantile regression with isotropic Laplacian regularization,

i.e., K = I;

� SQR-PDE(K): spatial quantile regression with anisotropic diffusion regulariza-

tion, i.e. K ̸= I.

In order to determine the optimal diffusion tensor K for SQR-PDE(K), we use the pa-

rameter cascading algorithm proposed by Bernardi et al. (2018) in the context of spatial
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Figure 3.5: Square domain for the second simulation setup. First row: mean surfaces
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smoothing with anisotropic PDE regularization. The complete estimation procedure for

the anisotropic quantile model then involves two steps. In the first one, we estimate the

diffusion tensor K by minimizing a squared error loss criterion (Bernardi et al., 2018)

using the R package fdaPDE (Arnone et al., 2022b). At this stage of the procedure no

quantile regression is considered, assuming that the anisotropic effect is homogeneous

over the mean and all quantile surfaces. In the second step, we estimate the quantile

field using the anisotropic penalty induced by the tensor K, estimated in the first step.

The RMSE for the considered scenarios, quantile levels, and estimating methods

are shown in Figure 3.6. As anisotropy increases, SQR-PDE models improve their

performances compared with other methods. In scenario A, where no anisotropy is

present, both anisotropic and isotropic SQR-PDE perform similarly to other methods,

and slightly worse than SOAP and TPS. When some moderate anisotropic effects are

present, like in scenario B, the RMSE of SQR-PDE improves and becomes comparable

with SOAP and TPS. Moreover, in this scenario, anisotropic SQR-PDE always reaches a

lower error than isotropic SQR-PDE. Such an effect is more evident when the anisotropy

is stronger, like in scenario C. Here, anisotropic SQR-PDE performs significantly better
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Figure 3.6: Boxplots of the RMSE over 100 replicates of the estimated spatial
quantile fields in the second simulation setup. Each column corresponds to a quantile
level (10%, 25%, 50%, 75%, 90%). Each row corresponds to a simulation setting (A,
B, C). The colors correspond to different families of estimating methods.

than all other methods, confirming that a careful specification of the PDE regularization

may have a relevant impact on model fit, especially when the phenomenon under study

presents non-trivial spatial characteristics. Figure 3.7 shows the estimated quantile

fields for one dataset generated under simulation setting C.

In Section 3.8 we adopt an anisotropic SQR-PDE model for the analysis of a real

data example, which is characterized by a strong anisotropic effect and a heteroscedastic,

locally skewed spatial distribution.

3.8 Switzerland rainfall data

We apply the proposed spatial quantile regression method to the Switzerland rainfall

data (Figure 3.8), which collect 467 rainfall measurements (in 1/10 mm units) recorded
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Figure 3.7: Estimated 90%-quantile surfaces for one dataset generated in the second
simulation setup, setting C.

on May 8, 1986. This dataset has already been analyzed in, e.g., Dubois et al. (2003)

and Bernardi et al. (2018). In their works the authors estimated the underlying spatial

field employing several geostatistical approaches and taking into account the macro-

scopic south-west north-east directional anisotropy characterizing the spatial mean of

the underlying data generating process. The cited works are restricted to mean field es-

timation. In our work, we instead explore quantile levels, therefore obtaining additional

insights and exploring areas of exceedingly high or low precipitation.

Indeed, meteorological data are not solely characterized by a spatially varying mean.

Precipitations, temperatures, pressure, humidity, and possibly other climatic variables,

often present distributions manifesting heteroscedasticity and local skewness, as well as

fat tails and extreme values. This is the case also for the Switzerland rainfall data, for

which we can observe a highly heteroscedastic spatial distribution, where regions show-

ing higher precipitation levels also have higher variability. For the sake of illustration,

we replicate here the analysis proposed by Bernardi et al. (2018), which developed an
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dots are proportional to the rainfall intensity. Right: residual versus fitted value plot
and normal quantile-quantile plot of the residuals. The fitted values and the residu-
als are obtained by using the anisotropic spatial regression model by Bernardi et al.
(2018).

anisotropic spatial regression model based on a PDE regularization term. The results

are showed in Figure 3.8. We observe an increase of the residual variability as the es-

timated mean grows, which indeed provides evidence against the usual hypothesis of

homoscedastic errors. Furthermore, the normal quantile-quantile plot of the residuals

highlights strong deviations from the hypothesis of normal errors, since the distribution

of the residuals has heavier tails than the Gaussian probability law. Similar interpre-

tations arise also when adopting different models for the underlying spatial field, like

spatial regression based on kriging, radial basis expansions, and neural networks, among

others. See Dubois et al. (2003) for a detailed discussion on the usage of these and other

methods in the analysis of the Switzerland rainfall data.

The local specification of quantile regression makes it appropriate in the presence of

heteroscedasticity. Furthermore, in this data analysis it is clear that our interest lies

more in the tails of the distribution, which might be severely different from shifted mean

surfaces, due to heteroscedasticity.

The model we here propose for the Switzerland rainfall data is a spatial quantile

regression with stationary anisotropic PDE regularization by
∫︁
Ω
{div(K∇f)}2. Specif-

ically, as described in the second simulation setup (Section 3.7.2), we use a two stage

procedure where we first estimate the anisotropic diffusion tensor K, as in Bernardi

et al. (2018), and then we estimate the spatial field f , for different quantile levels. We

argue that an anisotropic diffusion tensor common to all quantile surfaces is appropriate.

Indeed, there is no empirical evidence to suggest an heterogeneous effect of the spatial

anisotropy over the probability distribution of the rainfall, i.e., over different quantiles.
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Figure 3.9: Estimated mean and τ -quantile fields for the Switzerland rainfall data.

Figure 3.9 shows the estimated mean and quantile surfaces at different quantile lev-

els. In addition to a clear anisotropic effect on the mean, some interesting differences

can be observed when comparing quantile and mean surfaces. The shape of the esti-

mated quantile surfaces differs from that of the mean surface and across quantiles, with

differences that are particularly evident over some (localized) regions. This indicates

that some regions might expect more heterogenous patterns of rainfall than others, and

more extreme events, even in the presence of similar mean rainfall. The median surface

is very smooth when compared to the mean surface. This is an indication that there

exist local outliers and skewness, that make the mean surface less smooth than it should

be. The mean surface might also be misleading, for instance suggesting excessively low

precipitations in certain areas. Surfaces corresponding to percentiles more in the tails

of the distribution are less smooth, as could be reasonably expected, capturing local

changes in the tail of the distribution and identifying areas where more extreme events

shall be expected. The 90% percentile, for instance, is characterized by several spikes

in correspondence to regions manifesting a high mean level of precipitations, a further
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indication of the fact that limiting the analysis to the mean surface might indeed be

rather misleading.





Conclusions

Discussion and future research directions

This thesis has focused on two distinct contributions which are concerned with the

estimation of misspecified robust statistical models combining the available prior infor-

mation with a misfit criterion induced by a risk function. Both Bayesian and frequentist

approaches have been explored, with a particular attention to data-augmentation and

expectation-maximization methods.

Non-conjugate regression via variational belief updating

In Chapter 2, we developed a new variational approximation method for estimating risk-

based regression models under a Bayesian belief updating setup (Bissiri et al., 2016).

Doing this, we built upon the works of Knowles and Minka (2011), Tan and Nott (2013)

and Wand (2014), and we proposed a general variational coordinate ascent algorithm

that applies for a broad range of statistical models, including generalized linear mixed

models, quantile and expectile mixed models, and support vector machines.

The benefits of our approach are threefold. It is general and does not depend on

model specific data-augmentation strategies. It allows for non-conjugate and struc-

tured prior distributions. It is a global approximation that preserves convexity and

tail behavior of the original loss function, while leading to a natural regularization of

non-smooth pseudo-likelihoods. Moreover, under suitable compatibility conditions, our

marginal approach is guaranteed to dominate alternative data-augmented variational

approximations in the Kullback-Leibler metric.

From an empirical point of view, we demonstrated the potentials of the proposed

method by comparing it with alternative Markov chain Monte Carlo and conjugate mean

field variational Bayes algorithms through extensive simulation studies and a real data

application. In all the considered empirical experiments, our semiparametric variational

Bayes approximation achieved good-to-excellent results in approximating the true target

posterior. Moreover, it outperformed the accuracy of conjugate mean field variational

Bayes over several dimensions, while keeping the same computational complexity and a

similar execution time.

A final innovation of this work concerns with loss smoothing for non-regular mini-

mization problems. This practice is often employed when it comes to optimizing non-

smooth risk functions and consists of replacing an originally non-regular loss with a tilted

one. The new objective function will be almost equal to the original one except for local
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corrections introduced to guarantee the uniform differentiability all over the function

support. This way, many efficient routines are made available for the optimization, like

Newton and quasi-Newton algorithms. Some examples in the quantile regression liter-

ature can be found, among others, in the works of Hunter and Lange (2000), Yue and

Rue (2011), Oh et al. (2011) and Fasiolo et al. (2021a). As we discussed in Section 2.4,

the variational loss averaging induced by our procedure actually provides a new recipe

for constructing smooth majorizing objective functions starting from non-differentiable

losses. However, differently from other existing smoothing methods based on geometric

considerations, our strategy is based upon a statistical argument with a straightfor-

ward probabilistic interpretation, similarly to the expectation-maximization algorithm.

Moreover, our proposal comes together with a practical rule for determining the local

degree of smoothing induced by the approximation, which is in turn determined by the

posterior variance of the i-th linear predictor. This leads to a different smoothing factor

for each observation, allowing for adaptive calibration of the new loss.

As we already discussed in Section 2.5, many extensions to the basic approach are

allowed, including models for multiple random effects, inducing shrinkage priors, dy-

namic and spatial processes. Other extensions not covered here, which might be of

significant interest for practical applications, include nested random effects Nolan and

Wand (2020); Nolan et al. (2020), heteroscedastic models Menictas and Wand (2015),

multivariate generalized linear models Hughes et al. (2023).

We argue that frequentist mixed regression models can be dealt as well with our ap-

proach by a careful combination of expectation-maximization algorithm and Gaussian

variational approximations, as in Ormerod and Wand (2010) and Ormerod and Wand

(2012). This would be extremely useful for those models that do not enjoy the classical

regularity conditions needed for implementing the Laplace approximation and would

give an efficient alternative to cumbersome Monte Carlo integration (Geraci and Bottai,

2007) and multivariate quadrature methods (Geraci and Bottai, 2014). Along this line,

it would be interesting to study the asymptotic property of Gaussian variational ap-

proximations for general risk-based mixed models by extending the works of Hall et al.

(2011a) and Hall et al. (2011b) on variational random intercept Poisson models.

A final generalization worth to be investigated is concerned with the exploration of

flexible parametric approximations alternative to the Gaussian variational approach.

Indeed, it is nowadays well-recognized in literature that often posterior distributions

of mixed regression models may strongly deviate from Gaussianity. This may happen,

for instance, when the linear predictor is not well specified, when the number of ran-

dom effects is relative to or even higher than the sample size, or when we are dealing

with strongly unbalanced binary or categorical data; see, e.g., the works by Durante

(2019), Fasano et al. (2022) and Fasano and Durante (2022). Hence, we are planning to

extend our Gaussian variational approach considering the family of flexible skew-normal

variational approximations proposed by Ormerod (2011).
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Spatial quantile regression with differential regularization

In Chapter 3, we presented a new spatial quantile regression model with PDE regu-

larization, which can be used to model the conditional distribution of complex spatial

phenomena. A remarkable benefit of our model formulation is its generality, which per-

mits us to naturally combine the capabilities of quantile regression (Koenker, 2005) with

the flexibility of a structured PDE description of spatial phenomena (Sangalli, 2021).

In this way, we can jointly handle distributional features, such as heteroscedasticity and

local skewness, along with spatial features, such as boundary constraints, anisotropic

diffusion effects, unidirectional flows and local shrinkage effects.

We then proposed an innovative functional expectation-maximization algorithm for

parameter and field estimation, and we characterized its iterative solution by means

of an exact variational constrained formulation. We then approximated the resulting

functional estimator using finite elements methods. Doing so, we obtained a numerical

routine which approach the optimal finite-dimensional quantile estimator by solving a

sequence of high-dimensional sparse linear systems. Starting from the finite element

discretization, we also developed an approximated Generalized Cross-Validation crite-

rion to select the optimal smoothing parameter taking into account of the differential

penalty and of the implicit constrained formulation of the estimation problem.

We then investigated the large-sample properties of our penalized estimator, proving

the consistency of the infinite-dimensional estimator and determining the asymptotic

distribution of the finite-dimensional estimator conditioned on a fixed triangularization

of the domain. We are still working on a third asymptotic result, which studies the

behavior of the finite-dimensional estimator for a discretization of the domain getting

finer and finer at the growing of the sample size. Our conjecture is that there exists

a rate of growth linking the mesh dimension and the sample size, which permits to

achieving the L2-consistency of the asymptotic spatial quantile estimator even in this

scenario.

Finally, we showed how to generalize the pure nonparametric spatial quantile esti-

mator to a semiparametric formulation, which jointly models the effect of space-varying

covariates and a nonparametric spatial field. The estimation algorithm and selection

procedure have been generalized as well.

The proposed methods have very good empirical performances and comparative ad-

vantages with respect to state-of-the-art alternatives, as shown by extensive simulation

studies and the analysis of a real dataset. In particular, the considered scenarios high-

light the importance of accounting for complex domain structures, for deviation from

isotropic stationary fields, and for spatially heterogeneous characteristics of the distribu-

tion, such as heteroscedasticity or local skewness. The proposed method offers increas-

ingly large advantages with respect to the available alternatives as the data complexity

increases, in terms of domain shape or field characteristics.

An additional benefit of our model formulation is its generality, which permits to

naturally accommodating for several extensions, different sampling schemes and PDE

models. For instance, data recorded over areal regions can be handled by extending
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the proposal by Azzimonti et al. (2015) in the context of spatial linear models. Data

observed in space and changing over time, as well as spatially varying functional data,

could be handled by considering space-time PDEs, as shown by Bernardi et al. (2017)

and Arnone et al. (2019) for spatial linear models.

Another fascinating possibility is to adapt our PDE-based spatial quantile regression

model to data lying on a curved domain. In this context, the necessary theoretical

background is provided by the works of Ettinger et al. (2016) and Lila et al. (2016)

for spatial linear regression over two-dimensional Riemannian manifolds. This could be

naturally integrated into our quantile regression framework, permitting, for instance,

the application of our method to data observed over the globe. More generally, such

an extension might be of significant interest for several applications, in mechanical and

space engineering, as well as in life sciences.

Another relevant research direction is concerned with the joint modelling of multiple

quantiles. Inspired by the recent works of Schnabel and Eilers (2013), Frumento and

Bottai (2016) and Frumento et al. (2021) on varying coefficient modelling, we might

extend our methodology in order to jointly estimate a whole family of quantile fields,

as smooth functions of the confidence level τ . Such an approach, together with a care-

ful management of the natural non-crossing constraints, could be beneficial to borrow

information across quantiles and improve the approximation of the whole conditional

distribution. In this context, the heteroscedastic quantile model by He et al. (1998) and

the constrained quantile curves by Bondell et al. (2010) provide two remarkable exam-

ples of non-crossing approaches that are worth investigating and possibly extending to

the proposed spatial regression with PDE regularization.
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Appendix A

A.1 Integration results

The calculation of non-standard expected values is the main challenge in variational

Bayesian inference. Here, we face this issue with a careful combination of integral sim-

plification, analytic solution and efficient univariate numerical quadrature. The results

in this section are then introduced in order to characterize and simplify the most com-

plex integration tasks encountered in this article, but may also provide useful insights

for future works not necessarily restricted to the variational approach.

In the rest of this section, we will make use of the following notation: g : R→ R is a

measurable function, having integrable n-th order weak derivative gn up to the order N .

We recall that gn is defined as the measurable function satisfying the integral equation∫︂ b

a

dn

dxn
φ(x) g(x) dx = (−1)n

∫︂ b

a

φ(x) gn(x) dx,

for any infinitely differentiable function φ : [a, b]→ R such that φ(a) = φ(b) = 0. If g is

n times differentiable, then gn = dng/dxn. We denote with Hn : R→ R the n-th order

Hermite polynomial, which is the solution of the differential equation

dn

dzn
ϕ(z) = (−1)nHn(z)ϕ(z), z ∈ R, n ∈ N.

In particular, we recall that H0(z) = 1, H1(z) = z and H2(z) = z2 − 1. Finally, we

introduce the notation (x)n for n = 0, 1, 2, that is (x)0 = 1, (x)1 = x and (x)2 = xx⊤.

Most of the non-analytic integral encountered in our work take the following func-

tional forms

Fn(g,a,µ,Σ) =

∫︂
Rd
gn(a

⊤x)ϕd(x;µ,Σ) dx, (A.1)

Gn(g,a,µ,Σ) =

∫︂
Rd
g(a⊤x) (x)n ϕd(x;µ,Σ) dx, (A.2)

Hn(g,a,µ,Σ) =

∫︂ +∞

−∞
g
(︂
a⊤µ+

√
a⊤Σa z

)︂
Hn(z)ϕ(z) dz, (A.3)

where a ∈ Rd. Such integrals are assumed to be well-defined at least for n = 0, 1, 2.

The main properties of functionals (A.1), (A.2), (A.3) are then provided in the follwing
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propositions.

Proposition A.1. Let g : R → R be a function such that gn and Fn exist up to the

order N . Then:

(1) Fn has infinitely many continuous derivatives with respect to µ and Σ;

(2) if gn is continuous, then Fn(g,a,µ,Σ)→ gn(a
⊤µ) as a⊤Σa→ 0;

(3) if g is convex in x, then F0 is jointly convex with respect to a⊤µ and
√
a⊤Σa;

(4) if g is convex in x, then g(a⊤µ) ≤ F0(g,a,µ,Σ).

Proposition A.2. Let n = (n1, . . . , nd) ∈ Nd be a multi-index vector with rank n =

n1 + · · · + nd. Then, if F0, . . . ,Fn are well-defined, the n-th order mixed derivative of

F0 with respect to µ is

∂nF0

∂µn1
1 . . . ∂µndd

=

(︄
d∏︂
j=1

a
nj
j

)︄
Fn.

Proposition A.3. Assuming that Fn, Gn and Hn are well-defined for n = 0, 1, 2, then

we have

G0 = F0 = H0, G1 = µH0 +
Σa√
a⊤Σa

H1,

G2 = (µµ⊤ +Σ)H0 +
Σaµ⊤ + µa⊤Σ√

a⊤Σa
H1 +

Σaa⊤Σ

a⊤Σa
H2.

Proposition A.4. Let Hn = Hn(g̃,a,µ,Σ) with g̃(·) = I(b,c](·), where b, c ∈ R such

that b < c. Then, Hn is well-defined and is equal to

Hn =

{︄
Φ(z+)− Φ(z−) if n = 0,

(−1)
[︁
Hn−1(z

+)ϕ(z+)−Hn−1(z
−)ϕ(z−)

]︁
if n > 0,

where z− =
b− a⊤µ√
a⊤Σa

and z+ =
b− a⊤µ√
a⊤Σa

.

Proposition 2.4, introduces some fundamental properties of the functional Fn and pro-

vides mild regularity conditions for our variational problems to be well-defined. Those

conditions essentially imply that g(·) is a measurable, convex, sub-exponential loss func-

tion. Actually, such properties are satisfied by almost all the most popular loss functions

used for classification and regression tasks, going from the Hinge loss for support vector

machine to the exponential family negative log-likelihoods for generalized linear models.

Proposition A.2 characterizes the recursive relation connecting the derivatives of F0

with Fn. This allows to simplify the formulation of the first and second order necessary

conditions needed for optimizing F0 with respect to µ and Σ.

Proposition A.3 permits to rephrase a wide class of complicate multidimensional

integrals in terms of univariate expectations, that are way more feasible to solve than

multivariate ones.
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Finally, Proposition A.4, together with Proposition A.3, provides a closed form so-

lution to the integrals Hn, n = 0, 1, 2, for a class of functions g(·) that arises to be

very useful when calculating the truncated moments of a multivariate Gaussian random

vector subjected to linear constraints. Specifically, we use such results for deriving a

variational approximation algorithm with closed form updating formulas for support

vector machine, quantile and expectile regression. For more details refer to Section 2.4

and Appendix B.

A specialized version of Proposition A.3 has been used by Hall et al. (2020) for devel-

oping an expectation-propagation algorithm in the context of binary mixed regression.

Previously, the works of Ormerod and Wand (2012) and Tan and Nott (2013) helped

to clarify the potential of similar integral transformation techniques for calculating the

marginal likelihood of possibly complicated generalized linear mixed models. Indeed,

due to the curse of dimensionality, any multidimensional-to-unidimensional integral col-

lapsing has the double advantage to allow for a more accurate numerical evaluation

with an exponentially lower computation cost. Here, we extend this approach in or-

der to make inference on a larger class of models that includes, as remarkable cases,

generalized linear mixed models.

Remark A.5. The properties of the Ψ-functions described in Section 2.3 all derive from

the observation that Ψr(y,a
⊤µ,a⊤Σa) = Fr(ψ(y, ·),a,µ,Σ), for r = 0, 1, 2 and for

any y ∈ Y . In particular, Theorem 2.4 directly follows from Proposition A.1, that is

proved in the following section.

Proof of Proposition A.1

(1) The differentiability of Fn with respect to µ andΣ is guaranteed by the derivation

under integral sign theorem and by the fact that ϕ(·;µ, σ2) is an analytic function having

infinitely many continuous derivatives with respect to µ and σ. In fact, defining the

scalar variable x = a⊤x ∼ N(µ, σ2), with µ = a⊤µ and σ2 = a⊤Σa, we have

Fn =

∫︂
Rd
gn(a

⊤x)ϕd(x;µ,Σ) dx =

∫︂ +∞

−∞
gn(x)ϕ(x;µ, σ

2) dx

and
∂ r

∂µr
∂ s

∂σs

∫︂ +∞

−∞
gn(x)ϕ(x;µ, σ

2) dx =

∫︂ +∞

−∞
gn(x)

∂ r

∂µr
∂ s

∂σs
ϕ(x;µ, σ2) dx,

for any non-negative integer r and s.

(2) Let xk ∼ Nd(µ,Σk) be a sequence of random variables such that a⊤Σk a→ 0 as

k →∞. Then, we have

lim
k→∞

E |a⊤xk − a⊤µ|2 = lim
k→∞

(a⊤Σk a) = 0,

which leads to a⊤xk
L2

→ a⊤µ and a⊤xk
p→ a⊤µ. Since the convergence in probabil-

ity is closed with respect to continuous transformations, if gn is continuous, we get
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gn(a
⊤xk)

p→ gn(a
⊤µ). Hence, E{gn(a⊤xk)} → gn(a

⊤µ) as k → ∞, which concludes

the proof.

(3) For what regards the joint convexity of F0, we consider the transformation µ =

a⊤µ and σ2 = a⊤Σa. Recall that any smooth function is convex whenever its Hessian

matrix is positive semidefinite, namely F0 is jointly convex in µ and σ if and only if

∇2F0 =

⎡⎣ ∂2µµF0 ∂2µσF0

∂2σµF0 ∂2σσF0

⎤⎦ ⪰ 0.

Using the definition of weak derivatives of g together with a location-scale change of

variable, we can write

∂2µµF0 =
∂2F0

∂µ∂µ
=

∫︂ +∞

−∞
g2(µ+ σz)ϕ(z) dz,

∂2µσF0 =
∂2F0

∂µ∂σ
=

∫︂ +∞

−∞
g2(µ+ σz) z ϕ(z) dz,

∂2σσF0 =
∂2F0

∂σ∂σ
=

∫︂ +∞

−∞
g2(µ+ σz) z2ϕ(z) dz.

Recall that g2(x) ≥ 0 for any x ∈ R, because of the convexity of g. Next, let us define

f1(z) = 1, f2(z) = z and h(z) = g2(µ+ σz)ϕ(z). In this way, the above derivatives may

be written as

∂2F0

∂µ∂µ
= ⟨f1, f1⟩H,

∂2F0

∂µ∂σ
= ⟨f1, f2⟩H,

∂2F0

∂σ∂σ
= ⟨f2, f2⟩H

where H is a positive measure having density function h(·), i.e. H(dx) = h(x) dx, while

⟨·, ·⟩H and ∥ · ∥H are, respectively, the inner product and the norm induced by H:

⟨f1, f2⟩H =

∫︂ +∞

−∞
f1(x) f2(x)H(dx), ∥f∥2H =

∫︂ +∞

−∞
|f(x)|2H(dx).

Then, thanks to the Holder inequality, we get |⟨f1, f2⟩H| ≤ ∥f1∥H ∥f2∥H, namely |∂2µσF0|2 ≤
(∂2µµF0)(∂

2
σσF0). Which implies that ∇2F0 is a proper covariance matrix with positive

semidefinite signature and, thereby, F0 is a convex function with respect to µ and σ.

(4) The lower bound g(a⊤µ) ≤ F0(g,a,µ,Σ) immediately follows from the Jensen

inequality: g{a⊤E(x)} ≤ E{g(a⊤x)}. This concludes the proof. □

Proof of Proposition A.2

Let consider the Gaussian random variable x = a⊤x ∼ N(a⊤µ,a⊤Σa), with x ∼
Nd(µ,Σ), so that the following d-dimensional integral collapses into a univariate integral:

F0 =

∫︂
Rd
g(a⊤x)ϕd(x;µ,Σ) dx =

∫︂ +∞

−∞
g(x)ϕ(x;a⊤µ,a⊤Σa) dx.
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In order to prove the statement in Proposition A.2 we use an induction argument.

Let us start from the initial step deriving under integral sign with respect to µj:

∂F0

∂µj
=

∫︂ +∞

−∞

g(x)√
a⊤Σa

∂

∂µj
ϕ

(︃
x− a⊤µ√
a⊤Σa

)︃
dx

= − aj√
a⊤Σa

∫︂ +∞

−∞

g(x)√
a⊤Σa

dϕ

dz

(︃
x− a⊤µ√
a⊤Σa

)︃
dx.

Because of the location-scale representation of the Gaussian distribution, we can write

x = a⊤µ+
√
a⊤Σa z, where z ∼ N(0, 1) and dy =

√
a⊤Σa dz; in this way, we have

∂F0

∂µj
= − aj√

a⊤Σa

∫︂ +∞

−∞
g
(︂
a⊤µ+

√
a⊤Σa z

)︂ d

dz
ϕ(z) dz.

Observing that dnϕ/dzn vanishes in the limit as |z| → ∞ for any n ∈ N, we are allowed
to integrate by parts with respect to z and apply the definition of weak derivative of g,

obtaining
∂F0

∂µj
= aj

∫︂ +∞

−∞
g1

(︂
a⊤µ+

√
a⊤Σa z

)︂
ϕ(z) dz,

where

dg
(︂
a⊤µ+

√
a⊤Σa z

)︂
=
√
a⊤Σa g1

(︂
a⊤µ+

√
a⊤Σa z

)︂
dz.

For concluding the first step of the proof, we just need to back-transform z to x:

∂F0

∂µj
= aj

∫︂ +∞

−∞
g1(x)ϕ(x;a

⊤µ,a⊤Σa) dx = aj E
{︁
g1(a

⊤x)
}︁
,

which satisfies the formula in Proposition A.2 for n = ej.

Let us move to the induction step. We consider the n-th order mixed derivative of

F0 and we derive again under integral sign with respect to µj:

∂

∂µj

∂nF0

∂µn1
1 . . . ∂µndd

=

(︄
d∏︂
j=1

a
nj
j

)︄∫︂ +∞

−∞
gn(x)

∂

∂µj
ϕ(x;a⊤µ,a⊤Σa) dy.

Following the same arguments used for the initial step, sequentially applying derivation,

transformation, integration by parts and back-transformation, we get that the right hand
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side integral becomes∫︂ +∞

−∞

gn(x)√
a⊤Σa

∂

∂µj
ϕ

(︃
x− a⊤µ√
a⊤Σa

)︃
dx =

= − aj√
a⊤Σa

∫︂ +∞

−∞

gn(x)√
a⊤Σa

d

dz
ϕ

(︃
x− a⊤µ√
a⊤Σa

)︃
dx

= − aj√
a⊤Σa

∫︂ +∞

−∞
gn

(︂
a⊤µ+

√
a⊤Σa z

)︂ d

dz
ϕ(z) dz

= aj

∫︂ +∞

−∞
gn+1

(︂
a⊤µ+

√
a⊤Σa z

)︂
ϕ(z) dz

= aj

∫︂ +∞

−∞

gn+1(x)√
a⊤Σa

ϕ

(︃
x− a⊤µ√
a⊤Σa

)︃
dx.

This leads to

∂n+1F0

∂µn1
1 · · ·µ

nj+1
1 · · · ∂µndd

=

(︄
a
nj+1
j

∏︂
k ̸=j

ankk

)︄∫︂ +∞

−∞

gn+1(x)√
a⊤Σa

ϕ

(︃
x− a⊤µ√
a⊤Σa

)︃
dy.

This concludes the induction step and thus the proof. □

Proof of Proposition A.3

In order to prove Proposition A.3, we need to introduce some intermediate results.

Lemma A.6 (Lemma 1 from Hall et al. (2020)). Let x ∼ Nd(0d, Id) and a1,a2,a3 ∈ Rd,

then ∫︂
Rd
g(a⊤

1 x)ϕd(x) dx = H0,

∫︂
Rd
g(a⊤

1 x) (a
⊤
2 x)ϕd(x) dx =

(a⊤
1 a2)

∥a1∥
H1,∫︂

Rd
g(a⊤

1 x)(a
⊤
2 x)(a

⊤
3 x)ϕd(x) dx = (a⊤

2 a3)H0 +
(a⊤

1 a2)(a
⊤
1 a3)

∥a1∥2
H2.

where Hn = Hn(g,a1,0d, Id).

Proof. See the proof of Lemma 1 in the supplement material of Hall et al. (2020).

Lemma A.7. Let Gn = Gn(g,a,0d, Id) and Hn = Hn(g,a,0d, Id) for n = 0, 1, 2, then

G0 = H0, G1 =
a

∥a∥ H1, G2 = IdH0 +
aa⊤

∥a∥2 H2.

Proof. Let us consider a particular application of Lemma A.6, assuming a1 = a,

a2 = ei, a3 = ej, where ei is the i–th column of an identity matrix. Then, for

Gn = Gn(g,a,0d, Id), we have

G0 =
∫︂
Rd
g(a⊤x)ϕd(x) dx =

∫︂ +∞

−∞
g(∥a∥z)ϕ(z) dz = H0(g,a,0d, Id).
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The same result applies for the j-th component of the vector G1, being

[G1]j =
∫︂
Rd
g(a⊤x) (e⊤j x)ϕd(x) dx

=
a⊤ej
∥a∥

∫︂ +∞

−∞
g(∥a∥z) z ϕ(z) dz = a⊤ej

∥a∥ H1(g,a,0d, Id).

Finally, let us consider the (i, j)-th element of the matrix G2, that is

[G2]ij =
∫︂
Rd
g(a⊤x) (e⊤i x) (e

⊤
j x)ϕd(x) dx

= (e⊤i ej)

∫︂ +∞

−∞
g(∥a∥z)ϕ(z) dz + (a⊤ei)(a

⊤ej)

∥a∥2
∫︂ +∞

−∞
g(∥a∥z)(z2 − 1)ϕ(z) dz

= (e⊤i ej)H0(g,a,0d, Id) +
(a⊤ei)(a

⊤ej)

∥a∥2 H2(g,a,0d, Id).

This concludes the proof of Lemma A.7.

Now, we have all the ingredients to complete the proof of Proposition A.3. Firstly,

let us consider the change of variable x = µ+Lz and its inverse map z = L−1(x−µ),
where L is the lower-triangular Cholesky factor of Σ, i.e. Σ = LL⊤, so that the volume

element transforms as dx = |Σ|1/2dz. Therefore,

Gn =

∫︂
Rd
(x)n g(a⊤x)ϕd(x;µ,Σ) dx =

∫︂
Rd
(µ+ Lz)n g(a⊤µ+ a⊤Lz)ϕd(z) dz.

In particular, we have

G0 =
∫︂
Rd
g(a⊤µ+ a⊤Lz)ϕd(z) dz = H̃0,

G1 =
∫︂
Rd
(µ+ Lz) g(a⊤µ+ a⊤Lz)ϕd(z) dz = µ H̃0 + L H̃1,

G2 =
∫︂
Rd
(µ+ Lz)(µ+ Lz)⊤ g(a⊤µ+ a⊤Lz)ϕd(z) dz

= µµ⊤H̃0 + µ H̃
⊤
1 L

⊤ + L H̃1µ
⊤ + L H̃2 L

⊤,
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where the functional H̃n =
∫︁
Rd(z)

n g(a⊤µ+a⊤Lz)ϕd(z) dx can be obtained by means

of Lemma A.7. Hence, due to the identity ∥L⊤a∥ =
√
a⊤Σa, we get

H̃0 =

∫︂ +∞

−∞
g
(︁
a⊤µ+ ∥L⊤ a∥ z

)︁
ϕ(z) dz = H0,

H̃1 =
L⊤a

∥L⊤a∥

∫︂ +∞

−∞
g
(︁
a⊤µ+ ∥L⊤a∥ z

)︁
z ϕ(z) dz =

L⊤a

∥L⊤a∥ H1,

H̃2 = Id

∫︂ +∞

−∞
g
(︁
a⊤µ+ ∥L⊤a∥ z

)︁
Hn(z)ϕ(z) dz

+
L⊤aa⊤L

∥L⊤a∥2
∫︂ +∞

−∞
g
(︁
a⊤µ+ ∥L⊤a∥ z

)︁
(z2 − 1)ϕ(z) dz = IdH0 +

L⊤aa⊤L

∥L⊤a∥2 H2.

Finally, we note that

L H̃1 =
LL⊤a

∥L⊤a∥ H1 =
Σa√
a⊤Σa

H1,

L H̃2 L
⊤ = LL⊤H0 +

LL⊤aa⊤LL⊤

∥L⊤a∥2 H2 = ΣH0 +
Σaa⊤Σ

a⊤Σa
H2.

This concludes the proof of Proposition A.3. □

Proof of Proposition A.4

Assuming g(·) = I(b,c](·), the functional Hn(g,a,µ,Σ) simplifies as

Hn(g,a,µ,Σ) =

∫︂ +∞

−∞
g
(︂
a⊤µ+

√
a⊤Σa z

)︂
Hn(z)ϕ(z) dz

=

∫︂ +∞

−∞
I(b,c)

(︂
a⊤µ+

√
a⊤Σa z

)︂
Hn(z)ϕ(z) dz

=

∫︂ +∞

−∞
I
(︃
b− a⊤µ√
a⊤Σa

< z <
c− a⊤µ√
a⊤Σa

)︃
Hn(z)ϕ(z) dz,

that is a univariate definite integral with lower and upper bounds z− and z+. Then,

using the recurrent identity

H0(z) = 1, Hn(z)ϕ(z) = −
d

dz
Hn−1(z)ϕ(z), n ≥ 1,

and integrating with respect to z, we obtain

∫︂ z+

z−
Hn(z)ϕ(z) dz =

{︄[︁
Φ(z)

]︁z+
z−

if n = 0,

(−1)
[︁
Hn−1(z)ϕ(z)

]︁z+
z−

if n ≥ 1,

which concludes the proof. □
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A.2 Optimal distributions and evidence lower bound

In this section we derive the explicit solutions of the optimal variational distributions

q∗(σ2
ε), q

∗(σ2
u) and q

∗(β,u) presented in Section 2.3. Moreover, we prove the statements

in Propositions 2.7–2.8, that are concerned with the calculation of the Ψ-functions for

the model specifications considered in Section 2.4.

Optimal distribution of σ2ε

We consider the pseudo-likelihood model for the i-th observation

log π(yi|θ) = −
1

α
log σ2

ε −
1

α
ψ(yi, ηi)/σ

2
ε ,

and we recall the prior law σ2
ε ∼ IG(Aε, Bε). Then, the Gibbs full-conditional dis-

tribution of σ2
ε can be easily obtained by standard calculations and corresponds to

an Inverse-Gamma distribution IG(Ãε, B̃ε), with parameters Ãε = Aε +
n
α
and B̃ε =

Bε+
1
α

∑︁n
i=1 ψ(yi, ηi). Now, computing the partial expectation of the log-full-conditional

distribution, we obtain the optimal density q∗(σ2
ε) ∝ exp

{︁
E−σ2

ε
(log π(σ2

ε | rest))
}︁
, that

is

log q∗(σ2
ε) = −(Aε + n/α + 1) log σ2

ε −
{︃
Bε +

1

α

n∑︂
i=1

Eq(ψ(yi, ηi))
}︃
/σ2

ε + const

= −(Aε + n/α + 1) log σ2
ε −

{︃
Bε +

1

α

n∑︂
i=1

Ψ0(yi, η̂i, ν̂i)

}︃
/σ2

ε + const.

The latter is the kernel of an Inverse-Gamma distribution IG(Âε, B̂ε) where Ψ0(yi, η̂i, ν̂i) =

Eq{ψ(yi, ηi)}. Then, the proof is concluded. □

Optimal distribution of σ2u

We consider the joint prior model for (u, σ2
u), which is

u | σ2
u ∼ Nd(0d, σ

2
uR

−1), σ2
u ∼ IG(Au, Bu).

Standard calculations leads to an Inverse-Gamma full-conditional distribution of σ2
u,

that is IG(Ãu, B̃u) with parameters Ãu = Au +
d
2
and B̃u = Bu +

1
2
u⊤Ru. Compute

then the partial variational expectation of the log-full-conditional density in order to

find the optimal approximation q∗(σ2
u) ∝ exp

{︁
E−σ2

u
(log π(σ2

u | rest))
}︁
:

log q(σ2
u) = −(Au + d/2 + 1) log σ2

u −
{︂
Bu +

1
2
Eq(u⊤Ru)

}︂
/σ2

u + const

Notice that the latter is the kernel of an Inverse-Gamma random variable IG(Âu, B̂u)

and Eq(u⊤Ru) = µ̂⊤
uR µ̂u + trace(RΣ̂uu). This concludes the proof. □
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Optimal distribution of (β,u)

The evidence lower bound (2.17) as a function of µ and Σ can be expressed as

ℓ(y; q,µ,Σ) = Eq{log π(y,θ)} − Eq{log q(θ)}
= f(µ,Σ) + 1

2
logdet(Σ) + const,

where f(µ,Σ) = Eq{log π(y,θ)} is a smooth function of µ and Σ, strongly convex

with respect to µ, because of Proposition 2.4 and the specification of model (2.12)–

(2.13). Since also logdet(Σ) is smooth and concave, the lower bound is a well-behaved

function whose maximum must satisfy the following first order equations ∂f/∂µ = 0

and ∂f/∂Σ = 1
2
Σ−1, where ∂f/∂Σ denotes the m×m matrix having (i, j) entry equal

to (∂f/∂Σ)ij = ∂f/∂Σij. By definition, g(µ,Σ) = ∂f/∂µ, while H(µ,Σ) = 1
2
(∂f/∂Σ)

(see, for instance, Rohde and Wand, 2016 and Ormerod, 2011). Therefore, if a good

starting value is provided, any contractive fixed-point algorithm climbing the lower

bound surface has a limiting point corresponding to a local maximum.

Now, recall that g(µ,Σ) and H(µ,Σ) are the gradient and Hessian of f(µ,Σ) cal-

culated with respect to µ and define K = blockdiag
{︁
σ−2
β Ip, µ̂1/σ2

u
R
}︁
, thus we have

f(µ,Σ) = −µ̂1/σ2
ε
1⊤
n Ψ̂0/α− 1

2
µ⊤Kµ− 1

2
trace(KΣ) + const,

g(µ,Σ) = −µ̂1/σ2
ε
∇µ

{︁
1⊤
n Ψ̂0

}︁
/α−Kµ,

H(µ,Σ) = −µ̂1/σ2
ε
∇2

µ

{︁
1⊤
n Ψ̂0

}︁
/α−K.

Defining Ψr(yi, η̂i, ν̂i) = Fr(ψ(yi, ·), ci,µ,Σ) and applying Proposition A.2 in Appendix

A, we obtain the gradient and Hessian

∇µ

{︁
1⊤
n Ψ̂0

}︁
=

n∑︂
i=1

∂η̂i
∂µ

Ψ̂1,i =
n∑︂
i=1

ciΨ̂1,i = C⊤Ψ̂1,

∇2
µ

{︁
1⊤
n Ψ̂0

}︁
=

n∑︂
i=1

∂η̂i
∂µ

∂η̂i
∂µ⊤ Ψ̂2,i =

n∑︂
i=1

cic
⊤
i Ψ̂2,i = C⊤diag

[︁
Ψ̂2

]︁
C.

This concludes the proof. □

Derivation of the evidence lower bound

First, consider the definition of the evidence lower bound and notice that it can be

written in terms of a sum of expected values calculated with respect to the q-density as:

ℓ(y; q) =

∫︂
Θ

q(θ) log

{︃
π(y,θ)

q(θ)

}︃
dθ = Eq{log π(y,θ)} − Eq{log q(θ)}
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where log π(y,θ) = log π(y|θ) + log π(θ). From the model specification, we have

log π(y,θ) =
n∑︂
i=1

log π(yi|θ) + log π(β,u|σ2
u) + log π(σ2

u) + log p(σ2
ε).

Similarly, for the variational density we have:

log q(θ) = log q(β,u) + log q(σ2
u) + log q(σ2

ε).

Therefore, the lower bound can be decomposed as a sum of terms associated to different

parameter blocks:

ℓ(y; q) =
n∑︂
i=1

Eq
[︁
log p(yi|θ)

]︁
⏞ ⏟⏟ ⏞

T1

+Eq
[︃
log

p(β,u|σ2
u)

q(β,u)

]︃
⏞ ⏟⏟ ⏞

T2

+Eq
[︃
log

p(σ2
u)

q(σ2
u)

]︃
⏞ ⏟⏟ ⏞

T3

+Eq
[︃
log

p(σ2
ε)

q(σ2
ε)

]︃
⏞ ⏟⏟ ⏞

T4

.

We can thus evaluate each term separately and sum up the individual contributions Tk,

k = 1, . . . , 4. The first term of the lower bound is the variational expectation of the

pseudo log-likelihood function:

T1 = Eq
[︃
− n

α
log σ2

ε −
1

α

n∑︂
i=1

ψ(yi, ηi)/σ
2
ε

]︃
= −n

α
µ̂log σ2

ε
− 1

α
µ̂1/σ2

ε

n∑︂
i=1

Ψ0(yi, η̂i, ν̂i).

The second term is the expected contribution of ϑ = (β,u) to the lower bound:

T2 = Eq
[︂
− p

2
log(2π)− p

2
log σ2

β − 1
2
β⊤β/σ2

β

− p
2
log(2π)− d

2
log σ2

u +
1
2
logdet(R)− 1

2
u⊤Ru/σ2

u

+ p+d
2

log(2π) + 1
2
logdet(Σ̂) + 1

2
(ϑ− µ̂)⊤Σ̂−1

(ϑ− µ̂)
]︂

= −p
2
log σ2

β − d
2
µ̂log σ2

u
+ 1

2
logdet(R)− 1

2
Eq
[︁
β⊤β/σ2

β + u
⊤Ru/σ2

u

]︁
+ 1

2
logdet(Σ̂) + Eq

[︁
(ϑ− µ̂)⊤Σ̂−1

(ϑ− µ̂)
]︁

= −p
2
log σ2

β − d
2
µ̂log σ2

u
+ 1

2
logdet(R)− 1

2
µ̂⊤Kµ̂

− 1
2
trace(KΣ̂) + 1

2
logdet(Σ̂) + p+d

2
,

where we used the following identities:

Eq
[︁
β⊤β/σ2

β + u
⊤Ru/σ2

u

]︁
= µ̂⊤K µ̂+ trace(KΣ̂),

Eq
[︁
(ϑ− µ̂)⊤Σ̂−1

(ϑ− µ̂)
]︁
= p+ d.
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The third term is the expected contribution of σ2
u to the lower bound:

T3 = Eq
[︂
Au logBu − log Γ(Au)− (Au + 1) log σ2

u −Bu/σ
2
u

− (Au +
d
2
) log B̂u + log Γ(Au +

d
2
) + (Au +

d
2
+ 1) log σ2

u + B̂u/σ
2
u

]︂
= Eq

[︂
Au log(Bu/B̂u)− log

{︁
Γ(Au)/Γ(Au +

d
2
)
}︁

− d
2
log B̂u +

d
2
log σ2

u −
{︁
Bu − B̂u

}︁
/σ2

u

]︂
= Au log(Bu/B̂u)− log

{︁
Γ(Au)/Γ(Au +

d
2
)
}︁

− d
2

{︁
log B̂u − µ̂log σ2

u

}︁
−
{︁
Bu − B̂u

}︁
µ̂1/σ2

u
.

The fourth term is the expected contribution of σ2
ε to the lower bound:

T4 = Eq
[︂
Aε logBε − log Γ(Aε)− (Aε + 1) log σ2

ε −Bε/σ
2
ε

− (Aε +
n
α
) log B̂ε + log Γ(Aε +

n
α
) + (Aε +

n
α
+ 1) log σ2

ε + B̂ε/σ
2
ε

]︂
= Aε log(Bε/B̂ε)− log

{︁
Γ(Aε)/Γ(Aε +

n
α
)
}︁

− n
α

{︁
log B̂ε − µ̂log σ2

ε

}︁
−
{︁
Bε − B̂ε

}︁
µ̂1/σ2

ε
.

In the end, summing up the individual contributions T1, T2, T3, T4 and simplifying the

redundant components we obtain the final result. □
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B.1 EM algorithm and discretization

EM algorithm derivation

Let us consider the (unpenalized) log-likelihood for the i-th completed data pair (yi, ωi)

induced by the augmented representation (3.10), that is

ℓ(θ;ωi, yi) = −
3

2
log σ2

ε −
1

2
logωi −

ωi
σ2
ε

− {εi − a1ωi}
2

2a22σ
2
εωi

= −3

2
n log σ2

ε −
1

2
logωi −

ωi
σ2
ε

− 1

2a22σ
2
ε

{︂
ε2i /ωi − 2a1εi + a21ωi

}︂
= −3

2
n log σ2

ε −
1

2
logωi −

1

2a22σ
2
ε

{︂
ε2i /ωi − 2a1εi + (a21 + 2a22)ωi

}︂
where εi = yi − f(pi) is the i-th residual, while a1 = 1−2τ

τ(1−τ) and a22 = 2
τ(1−τ) denote

non-stochastic constants, which only depend on the quantile level τ . The E-step of the

EM algorithm thus prescribes to calculate E(k){ℓ(θ;ωi, yi)}, that is the expectation of

ℓ(θ;ωi, yi) calculated with respect to the conditional distribution ω|yi;θ evaluated in

θ = θ(k). Doing this, using the linearity of the expectation, we obtain

E(k){ℓ(θ, ωi; yi)} = −
3

2
log σ2

ε −
1

2
µ
(k)
logωi

− 1

2a22σ
2
ε

{︂
µ
(k)
1/ωi

ε2i − 2a1εi + (a21 + 2a22)µ
(k)
ωi

}︂
= −3

2
log σ2

ε −
1

2
µ
(k)
logωi

− 1

2

µ
(k)
1/ωi

a22σ
2
ε

ε2i +
a1
a22σ

2
ε

εi −
1

2

(a21 + 2a22)

a22σ
2
ε

µ(k)
ωi
,

where µ
(k)
ωi = E(k)(ωi), µ

(k)
1/ωi

= E(k)(1/ωi) and µ
(k)
logωi

= E(k)(logωi).

The explicit solution for such expectations may be obtained by exploiting the proper-

ties of the conditional law ωi given yi and θ
(k), which is proportional to the Generalized-

Inverse-Gaussian (GIG) distribution

ωi|yi;θ(k) ∼ GIG

(︃
1

2
,
a21 + 2a22

a22σ
2
ε
(k)

,
{yi − f (k)(pi)}2

a22σ
2
ε
(k)

)︃
.

This distribution can be easily obtained by discarding all the terms not depending on

ωi in ℓ(θ;ωi, yi) and noting that the remainder is a function of ωi proportional to a GIG

121



122 Appendix

log-density; refer to, e.g., Kozumi and Kobayashi (2011) and Tian et al. (2014) for more

details. Now, thanks to standard properties of the GIG distribution (Jørgensen, 1982),

we have

µ(k)
ωi

=
{︁
µ
(k)
1/ωi

}︁−1 +
a22σ

2
ε
(k)

a21 + 2a22
, µ

(k)
1/ωi

=
(a21 + 2a22)

1/2

|yi − f (k)(pi)|
.

Therefore, defining w
(k)
i = µ

(k)
1/ωi

/a22 and z
(k)
i = yi− a1/µ(k)

1/ωi
, summing all the individual

contributions to the expected likelihood and the differential penalty in (3.6), we end up

with

ℓ
(k)
λ (θ;y) =

n∑︂
i=1

E(k){ℓ(θ, ωi; yi)} −
λn

2σ2
ε

∫︂
Ω

(Lf − u)2

= − 3

2
n log σ2

ε −
1

2

n∑︂
i=1

µ
(k)
logωi

− 1

2σ2
ε

n∑︂
i=1

(a21 + 2a22)

a22
µ(k)
ωi

− 1

2σ2
ε

n∑︂
i=1

w
(k)
i

{︁
z
(k)
i − f(pi)

}︁
2 − λn

2σ2
ε

∫︂
Ω

(Lf − u)2.

Equivalently, we can write

ℓ
(k)
λ (θ;y) = −3

2
n log σ2

ε −
(a21 + 2a22)

2a22σ
2
ε

1⊤
nµ

(k)
ω −

n

2σ2
ε

J̃
(k)

λ (f),

where J̃
(k)

λ (f) is a quadratic functional not depending on σ2
ε :

J̃
(k)

λ (f) =
1

n
(z(k) − fn)

⊤W(k)(z(k) − fn) + λ

∫︂
Ω

(Lf − u)2.

This concludes the derivation.

Finite element approximation

Derivation of Equation (3.20)

Let us start by considering the finite element system in Proposition 3.4 written in

extended form: ⎧⎪⎪⎨⎪⎪⎩
1
n
Ψ⊤

−sW−sΨ−sf̃ + λR⊤
1 g̃ +Ψ⊤

s η̃ = 1
n
Ψ⊤

−sW−sz−s,

λR1f̃ − λR0g̃ = λ(u+ γ),

(z−Ψf̃)s = 0.

(B.1)

Solving the second equation with respect to g̃, we have

g̃ = R−1
0 (R1f̃ − u− γ) = R−1

0 R1f̃ −R−1
0 (u+ γ).
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If we substitute the expression for g̃ in the first equation in (B.1), we get

(Ψ⊤
−sW−sΨ−s + λR⊤

1 R
−1
0 R1) f̃ = Ψ⊤

−sW−sz−s + λR⊤
1 R

−1
0 (u+ γ)−Ψ⊤

s η̃.

We then use the definition ofA = Ψ⊤
−sW−sΨ−s+λR

⊤
1 R

−1
0 R1, we denote d = Ψ⊤

−sW−sz−s+

λR−1
0 (u + γ) and we solve for f̃ , obtaining f̃ = A−1(d −Ψ⊤

s η̃). By plugging this ex-

pression for f̃ in (B.1) and solving for η̃, we get

ΨsA
−1(d−Ψ⊤

s η̃) = zs ⇒ η̃ = (ΨsA
−1Ψ⊤

s )
−1(ΨsA

−1d− zs).

Finally, we use the notation B = ΨsA
−1Ψ⊤

s and we substitute the above expression for

η̃ in f̃ = A−1(d−Ψ⊤
s η̃):

f̃ = A−1(d−Ψ⊤
s η̃)

= A−1
[︁
d−Ψ⊤

s B
−1(ΨsA

−1d− zs)
]︁

= A−1d+A−1Ψ⊤
s B

−1(zs −ΨsA
−1d).

This concludes the proof.

Derivation of Equation (3.25)

The linear predictor is obtained by pre-multiplying the coefficient vector f̃ by its design

matrix Ψ, namely

f̃n = Ψf̃

= ΨA−1d+ΨA−1Ψ⊤
s B

−1(zs −ΨsA
−1d)

= ΨA−1d−ΨA−1Ψ⊤
s B

−1ΨsA
−1d+ΨA−1Ψ⊤

s B
−1zs

= ΨA−1(I−Ψ⊤
s B

−1ΨsA
−1)d+ΨA−1Ψ⊤

s B
−1zs.

If we let C = I−Ψ⊤
s B

−1ΨsA
−1, then

f̃n = ΨA−1Cd+ΨA−1Ψ⊤
s B

−1zs

= ΨA−1C{Ψ⊤
−sW−sz−s + λR−1

0 (u+ γ)}+ΨA−1Ψ⊤
s B

−1zs

= ΨA−1CΨ⊤
−sW−sz−s +ΨA−1Ψ⊤

s B
−1zs + λΨA−1CR⊤

1 R
−1
0 (u+ γ)

= S−sz−s + Sszs + r,

where

S−s = ΨA−1CΨ⊤
−sW−s,

Ss = ΨA−1Ψ⊤
s B

−1,

r = λΨA−1CR⊤
1 R

−1
0 (u+ γ).

Therefore, the smoothing matrix S =
[︁
S−s, Ss

]︁
is defined according to a block-

structure, separating the constrained and unconstrained smoothing factors.
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The effective degrees of freedom is defined as df = tr(S). In particular, the trace of

S is equal to

tr(S) = tr

[︃
Ψ−sA

−1CΨ⊤
−sW−s Ψ−sA

−1Ψ⊤
s B

−1

ΨsA
−1CΨ⊤

−sW−s ΨsA
−1Ψ⊤

s B
−1

]︃
= tr

(︁
Ψ−sA

−1CΨ⊤
−sW−s

)︁
+ tr

(︁
ΨsA

−1Ψ⊤
s B

−1
)︁

= tr
(︁
A−1CΨ⊤

−sW−sΨ−s
)︁
+ tr

(︁
ΨsA

−1Ψ⊤
s B

−1
)︁

= tr
(︁
A−1CΨ⊤

−sW−sΨ−s
)︁
+ tr

(︁
BB−1

)︁
= tr

(︁
A−1CΨ⊤

−sW−sΨ−s
)︁
+ |s|.

This concludes the derivation.

Derivation of Equation (3.30)

Let us recall the definition of Ac, Bc and dc, that are

Ac = C⊤
−sW−sC−s + λP, Bc = CsA

−1C⊤
s , dc = C−sW−sz−s + λhc

where C is the completed design matrix, while Pc and hc are defined in (3.29). Then,

using g̃ = R−1
0 R1f̃ +R−1

0 (u+ γ), the system in (3.30) can be formulated as[︃
Ac C⊤

s

C⊤
s O

]︃ [︃
θ̃c
η̃

]︃
=

[︃
dc
zs

]︃
Solving the system with respect to θ̃c, we get

θ̃c = A−1
c (dc −C⊤

s η̃).

Thus, the solution for η̃ is

η̃ = (CsA
−1
c C⊤

s )
−1(zs −CsA

−1
c dc),

which leads to

θ̃c = A−1
c (dc −C⊤

s B
−1
c (zs −CsA

−1
c dc)).

This concludes the proof.

B.2 Large sample properties

Proof of Theorem 3.7

In order to prove Theorems 3.7, we first need to rephrase Problem 1 in a more tractable

way. The key idea is to represent the convex functional (3.6) as the sum of a quadratic

functional plus a negligible term vanishing in the limit when n goes to infinity. Then,

the asymptotic properties of f̂ may be derived by adapting existing results for penalized
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nonparametric estimators based on quadratic variational problems. Similar approaches

have been used by Pollard (1991) and Knight (1998) (least absolute regression), Knight

and Fu (2000) (lasso type estimators), Kato (2009) (linear quantile regression and gen-

eral argmin processes).

Let fi = f(pi) be the evaluation of f at pi, let εi = yi−f0(pi) be the true i-th quantile

residual, let πεi|pi(ε) = πyi|pi(f0,i + ε) and Πεi|pi(ε) = Πyi|pi(f0,i + ε) be, respectively,

the probability and cumulative density functions of εi given pi. Furthermore, we denote

πi = πεi|pi(0) = πyi|pi(f0,i). Then, we introduce the reparametrization δ = f − f0 ∈ F0

and the relative estimator δ̂ = f̂ − f0 ∈ F0, which can be found by minimizing the

functional

J∗
n(δ) =

1

n

n∑︂
i=1

[︂
ρτ (εi − δi)− ρτ (εi)

]︂
⏞ ⏟⏟ ⏞

= Sn(δ)

+
λ

2

∫︂
Ω

[︂
(Lδ)2 + 2(Lδ)g0 + g20

]︂
⏞ ⏟⏟ ⏞

= P (δ)

. (B.2)

Here, Sn(δ) is a loss function that measures the misfit between εi and δi, and P (δ) is a

regularization term which only depends on δ, on Ω and on the PDE specification.

We recall the definition of L2(Ω) inner product and norm

⟨ψ, f⟩L2 =

∫︂
Ω

ψf, ∥f∥L2 =
√︁
⟨f, f⟩L2 , ∀ψ, f ∈ L2(Ω).

We recall the definition of H2(Ω) norm

∥f∥H2 =

(︄
2∑︂

α=0

∥Dαf∥2L2

)︄1/2

, ∀f ∈ H2(Ω).

We define the discrete inner product ⟨ψ, f⟩n and the induced norm ∥f∥n as

⟨ψ, f⟩n =
1

n

n∑︂
i=1

ψifi =

∫︂
Ω

ψf dΠn
p, ∥f∥n =

√︁
⟨f, f⟩n.

Furthermore, we define the dicretized L2(Ω) space, say L2
n(Ω), as the Hilbert space

endowed with the inner product ⟨·, ·⟩n, the norm ∥ · ∥n and such that any function

f ∈ L2
n(Ω) satisfies ∥f∥n < ∞. The space L2

n(Ω) is then the finite-sample approx-

imation of L2(Ω) induced by the empirical distribution Πn
p. Recall that, thanks to

Assumption 3, Πn
p uniformly converges to Πp, and

⃓⃓ ∫︁
Ω
f 2 d(Πp − Πn

p)
⃓⃓ p→ 0, meaning

that ∥f∥n p→
∫︁
Ω
f 2 dΠp.

Lemma B.1. Under Assumptions 2 and 3, we have

Sn(δ) =
1

n

n∑︂
i=1

∫︂ δi

0

[︁
Πyi|pi(t)− τ

]︁
dt− 1

n

n∑︂
i=1

δixi, (B.3)
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where x1, . . . , xn is a sequence of independent, bounded random variables such that

E(xi) = 0 and E(x2i ) <∞.

Proof. Let S(εi, δi) = ρτ (εi−δi)−ρτ (εi) be the i-th data contribution to the loss function

Sn(δ) and recall the identity ρτ (x) =
1
2
|x|+ (τ − 1

2
)x. Then, Sn(δ) may be written as

Sn(δ) =
1

n

n∑︂
i=1

S(εi, δi) =
1

n

n∑︂
i=1

{︂
1
2

(︁
|εi − δi| − |εi|

)︁
−
(︁
τ − 1

2

)︁
δi

}︂
.

From this representation, it is easy to show that −|δi| ≤ |εi − δi| − |εi| ≤ +|δi|, hence,
for any |δi| <∞, the random function S(εi, δi) is bounded by

|S(εi, δi)| ≤
(︁
1
2
+ |τ − 1

2
|
)︁
|δi| ≤ |δi|,

and it thus has finite first and second moments.

In order to determine the mean of Sn(δ), we first recall the decomposition proposed

by, e.g., Pollard (1991), Knight (1998) and Knight and Fu (2000), that is

S(εi, δi) =
1
2

(︁
|εi − δi| − |εi|

)︁
−
(︁
τ − 1

2

)︁
δi

= 1
2
(εi − δi) sign(εi − δi)− 1

2
εi sign(εi)−

(︁
τ − 1

2

)︁
δi

= 1
2
(εi − δi)

[︁
sign(εi − δi)− sign(εi)

]︁
+ 1

2
δi sign(εi)−

(︁
τ − 1

2

)︁
δi

=

∫︂ δi

0

[︁
I(εi < t)− I(εi < 0)

]︁
dt− δi

[︁
τ − I(εi < 0)

]︁
,

where sign(εi) is the sign function, equal to 0 if εi = 0, −1 if εi < 0, and +1 if εi > 0.

Taking the expectation, we get

E{S(εi, δi)} =
∫︂ δi

0

[︁
P(εi < t)− P(εi < 0)

]︁
dt− δi

[︁
τ − P(εi < 0)

]︁
=

∫︂ δi

0

[︁
P(εi < t)− τ

]︁
dt,

since P(εi < 0) = P(yi < f0,i) = τ . The variance is finite as well and can be bounded

above by the inequality

Var{S(εi, δi)} ≤ E
{︁
|S(εi, δi)|2

}︁
≤ |δi|2.

Then, the finite-sample mean and variance of Sn(δ) are given by

E{Sn(δ)} =
1

n

n∑︂
i=1

∫︂ δi

0

[︁
Πεi|pi(t)− τ

]︁
dt, Var{Sn(δ)} ≤

1

n2

n∑︂
i=1

δ2i =
∥δ∥2n
n

,

where Πεi|pi(t) = P(εi < t) and Var{Sn(δ)} = O(n−1∥δ∥2n). As a consequence, we may

write Sn(δ) as the sum of a deterministic term, E{Sn(δ)}, and a zero mean stochastic
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term of order Op(n
−1/2∥δ∥n):

Sn(δ) = E{Sn(δ)}+
[︁
Sn(δ)− E{Sn(δ)}

]︁
=

1

n

n∑︂
i=1

∫︂ δi

0

[︁
Πεi|pi(t)− τ

]︁
dt− 1

n

n∑︂
i=1

δixi,

where x1, . . . , xn is a sequence of independent random variables such that E(xi) = 0 and

E(x2i ) <∞. This concludes the proof.

Let us denote by
n
= the equality over the pi point locations, that is, for any pair of

functions δ, ψ, δ
n
= ψ if and only if δ(pi) = ψ(pi) for all i = 1, . . . , n.

Remark B.2. Let us denote S̄n(δ) = E{Sn(δ)}, which is a non-negative, differentiable,

strictly convex, coercive functional in δ ∈ L2
n(Ω) attaining its minimum at δ

n
= 0. Indeed,

for any ψ ∈ L2
n(Ω), and in particular for ψ ∈ H2(Ω) ⊂ L2(Ω) ∩ C(Ω̄), we have

S̄n(δ)
⃓⃓⃓
δ=0

=
1

n

n∑︂
i=1

∫︂ δi

0

[ Πεi|pi(t)− τ ] dt
⃓⃓⃓
δ=0

= 0,

∂ψS̄n(δ)
⃓⃓⃓
δ=0

=
1

n

n∑︂
i=1

ψi[ Πεi|pi(δi)− τ ]
⃓⃓⃓
δ=0

= 0,

∂2ψS̄n(δ)
⃓⃓⃓
δ=0

=
1

n

n∑︂
i=1

ψ2
i πεi|pi(δi)

⃓⃓⃓
δ=0

=
1

n

n∑︂
i=1

ψ2
i πi > 0,

where ∂ψ and ∂2ψ denote the first and second order directional derivatives along ψ. The

last inequality follows by Assumption 2. Moreover, thanks to the law of large numbers,

Sn(δ)
p→ S̄(δ) for n → ∞, where δ = 0 is the unique minimizer of S̄(δ) with S̄(0) = 0,

∂ψS̄(0) = 0 and ∂2ψS̄(0) =
∫︁
Ω
πψ2 dΠp ≥ h1k1∥ψ∥2L2 > 0 (see Assumptions 2 and 3).

Remark B.3. Because of Lemma B.1, for any δ ∈ L2
n(Ω), the second order Taylor

expansion of Sn(δ) in a neighborhood of δ
n
= 0 is

Sn(δ) =

[︄
1

2n

n∑︂
i=1

πiδ
2
i

]︄
(1 + o(1))− 1

n

n∑︂
i=1

δixi.

The reparametrized objective functional (B.2) can thus be expressed as

J∗
n(δ) =

1

n

n∑︂
i=1

∫︂ δi

0

[︁
Πεi|pi(t)− τ

]︁
dt− 1

n

n∑︂
i=1

δixi +
λ

2

∫︂
Ω

[︂
(Lδ)2 + 2(Lδ)g0 + g20

]︂
=

[︄
1

2n

n∑︂
i=1

πiδ
2
i

]︄
(1 + o(1))− 1

n

n∑︂
i=1

δixi +
λ

2

∫︂
Ω

[︂
(Lδ)2 + 2(Lδ)g0 + g20

]︂
.
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Therefore, for any ψ ∈ F0, the estimator δ̂ must satisfy the first order condition

1

n

n∑︂
i=1

ψi
[︁
Πεi|pi(δ̂i)− τ

]︁
− 1

n

n∑︂
i=1

ψixi + λ

∫︂
Ω

[︂
(Lψ)(Lδ̂) + (Lψ)g0

]︂
= 0.

By expanding Πεi|pi(δi) − Πεi|pi(0) = πεi|pi(0) δi + o(|δi|) with a first order Taylor ap-

proximation around δi = 0, we get[︄
1

n

n∑︂
i=1

πiψiδ̂i

]︄
(1 + o(1))− 1

n

n∑︂
i=1

ψixi + λ

∫︂
Ω

[︂
(Lψ)(Lδ̂) + (Lψ)g0

]︂
= 0,

which is equivalent to the following first order equation in the original parametrization

f = δ + f0:[︄
1

n

n∑︂
i=1

πiψi(f̂ i − f0,i)
]︄
(1 + o(1))− 1

n

n∑︂
i=1

ψixi + λ

∫︂
Ω

(Lψ)(Lf̂ − u) = 0, (B.4)

and, because of the linearity of (B.4), the quantile estimator f̂ may be decomposed in

the additive form f̂ = f̂ ∗ + ŵ, where f̂ ∗ ∈ Fγ and ŵ ∈ F0 solve, respectively,[︄
1

n

n∑︂
i=1

πiψi(f̂
∗
i − f0,i)

]︄
(1 + o(1)) + λ

∫︂
Ω

(Lψ)(Lf̂ ∗ − u) = 0, (B.5)[︄
1

n

n∑︂
i=1

πiψiŵi

]︄
(1 + o(1))− 1

n

n∑︂
i=1

ψixi + λ

∫︂
Ω

(Lψ)(Lŵ) = 0, (B.6)

for all ψ ∈ F0. Equation (B.5) is purely deterministic and only involves the probability

density function πy|p(·), the true quantile field f0(·), and the non-homogeneous regular-

ization terms u and γ. Equation (B.6) instead solves a noisy problem, which involves

the random variables x1, . . . , xn and a homogeneous regularization term. Therefore, f̂ ∗

is purely deterministic, while ŵ is such that E(ŵ) = 0. As a consequence, E(f̂) = f̂ ∗

and Var(f̂) = Var(ŵ). Thanks to this fact, we can split the bias and variance analysis

of the estimator. Actually, the bias only depends on (B.5), whereas the variance only

depends on (B.6).

Asymptotic bias

Now we study the asymptotic behavior of the bias of the estimator

B = f0 − E(f̂) = f0 − f̂ ∗ ∈ F0(Ω)

with respect to the number of observations n and the smoothing parameter λ. Doing

this, we consider different Sobolev regularity cases for f0, namely f0 ∈ H2(Ω) and

f0 ∈ H4(Ω). We further make use of the of fractional Sobolev spaces Hθ(Ω), with non-

integer θ > 0, where Hθ(Ω) is the interpolation between Hk(Ω) and L2(Ω), with integer
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k > θ. We also consider the adjoint operator L∗, defined as

L∗g = −div(K∇g)− b · ∇g + (c− div(b))g.

Finally, we recall the following result by Cox (1984).

Lemma B.4. Under Assumption 3, if ∂Ω ∈ C2(R), for all h, g ∈ H2(Ω), there exists a

constant c > 0 such that⃓⃓⃓⃓ ∫︂
Ω

hg dΠp −
1

n

n∑︂
i=1

h(pi)g(pi)

⃓⃓⃓⃓
=

⃓⃓⃓⃓ ∫︂
Ω

hg d(Πp − Πn
p)

⃓⃓⃓⃓
≤ c dn∥h∥H2∥g∥H2

where dn = supp∈Ω |Πp(p)− Πn
p(p)|.

Lemma B.5. Under Assumptions 2–5, for n sufficiently large, if f0 ∈ H2(Ω) and

Bf0 = γ, then ∥Bias(f̂)∥L2 = O(λ1/2). Moreover, if Bf0 = γ and g0 ∈ H2(Ω), then

∥Bias(f̂)∥L2 = O(λ) and ∥Bias(f̂)∥H2 = O(λ1/2).

Proof. As shown in the derivation of the system (B.5)–(B.6), finding f̂ ∗ is equivalent to

solving the first order equation

λ

∫︂
Ω

(Lψ)(Lf̂ ∗ − u) = 1

n

n∑︂
i=1

πiψi

[︂
f0,i − f̂ ∗

i

]︂
(1 + o(1)),

for all ψ ∈ F0. Let us express such an equation in terms of B = f0 − f̂ ∗:

λ

∫︂
Ω

(Lψ)(LB) = λ

∫︂
Ω

(Lψ)g0 −
[︄
1

n

n∑︂
i=1

πiψiBi
]︄
(1 + o(1)).

We add
∫︁
Ω
πψB dΠp on both sides, obtaining

λ

∫︂
Ω

(Lψ)(LB) +
∫︂
Ω

πψB dΠp = λ

∫︂
Ω

(Lψ)g0 +

[︃ ∫︂
Ω

πψB d(Πp − Πn
p)

]︃
(1 + o(1)).

Such an equation must hold for any ψ ∈ F0 and, in particular, for ψ = B. Hence, thanks
to Assumptions 2 and 3, we get∫︂

Ω

πB2 dΠp ≥ h1

∫︂
Ω

B2 dΠp ≥ k1h1

∫︂
Ω

B2 = k1h1∥B∥2L2 ,

which leads to

λ∥LB∥2L2 + c1∥B∥2L2 ≤ λ

∫︂
Ω

(LB)g0 +
[︃ ∫︂

Ω

πB2d(Πp − Πn
p)

]︃
(1 + o(1)),

where c1 = k1h1. The second term on the right-hand side may be upper-bounded by[︃ ∫︂
Ω

πB2d(Πp − Πn
p)

]︃
(1 + o(1)) ≤ c h2dn∥B∥2H2
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for some positive constant c independent on B and n. Moreover, thanks to the H2-

regularity and the equivalence between the norms ∥Lψ∥L2 and ∥ψ∥H2 for any ψ ∈ F0,

there exists a constant cl only depending on Ω and L such that cl∥B∥2H2 ≤ ∥LB∥2L2 .

Using these two inequalities, we obtain

λcl∥B∥2H2 + c1∥B∥2L2 ≤ λ

∫︂
Ω

(LB)g0 + c h2dn∥B∥2H2 .

Because of Assumption 4, for n large enough that dn/λ ≤ cl/(2ch2), we can write

λcl∥B∥2H2 + c1∥B∥2L2 ≤ λ

∫︂
Ω

(LB)g0 +
λcl
2
∥B∥2H2 ,

and hence
λcl
2
∥B∥2H2 + c1∥B∥2L2 ≤ λ

∫︂
Ω

(LB)g0.

Furthermore, using inequality (13) by Arnone et al. (2022a), we get

λcl
2
∥B∥2H2 + c1∥B∥2L2 ≤ λ

cl
∥g0∥2L2 +

λcl
4
∥B∥2H2 ,

which implies, for n sufficiently large, that ∥B∥L2 ≤ Cλ1/2 with C independent on n

and λ.

Now, assuming g0 = Lf0−u ∈ H2(Ω), thanks to inequality (14) and (15) by Arnone

et al. (2022a), we have

λcl
2
∥B∥2H2 + c1∥B∥2L2 ≤ λ

∫︂
Ω

(L∗g0)B + λ

∫︂
∂Ω

g0(K∇B) · ν, (B.7)

λ

∫︂
Ω

(L∗g0)B ≤
λ2

2c1
∥L∗g0∥2L2 +

c1
2
∥B∥2L2 . (B.8)

Since g0 ∈ H2(Ω), both ∥L∗g0∥2L2 and ∥g0∥2H1 are finite. Then, thanks to the Neumann

boundary conditions, K∇B · ν = 0 on ∂Ω, and inequalities (B.7) and (B.8), we obtain

λcl
2
∥B∥2H2 +

c1
2
∥B∥2L2 ≤ λ2

2c1
∥L∗g0∥2L2 ,

which implies ∥B∥L2 = O(λ) and ∥B∥H2 = O(λ1/2). This concludes the proof.

Asymptotic variance

In the following lemma, we study the convergence rate of the variance of the estimator

in Problem (1) as a function of n and λ.

Lemma B.6. Under Assumptions 2–5, for all 0 < ϵ ≤ 1/2 and n sufficiently large,

VarL2(f̂) = O
(︁
n−1λ−1/2−ϵ)︁ with a constant diving to +∞ where ϵ→ 0.
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Proof. We recall that minimizing (B.6) is equivalent to finding ŵ ∈ F0 such that

λ

∫︂
Ω

(Lψ)(Lŵ) +

[︄
1

n

n∑︂
i=1

πiψiŵi

]︄
(1 + o(1)) =

1

n

n∑︂
i=1

ψixi, ∀ψ ∈ F0,

or equivalently

λ

∫︂
Ω

(Lψ)(Lŵ) +

∫︂
Ω

πψŵ dΠp =
1

n

n∑︂
i=1

ψixi +

[︃ ∫︂
Ω

πψŵ d(Πp − Πn
p)

]︃
(1 + o(1)), (B.9)

We define the following inner product on F0:

⟨ϕ, ψ⟩λ = λ

∫︂
Ω

(Lϕ)(Lψ) +

∫︂
Ω

πϕψ dΠp, ∀ϕ, ψ ∈ F0,

which is equivalent to the H2-inner product. We denote by ∥ · ∥λ the norm induced by

⟨·, ·⟩λ. Since, thanks to Assumption 5, the norms ∥L · ∥L2 and ∥ · ∥H2 are equivalent on

F0, there exists a constant cl such that

∥ψ∥2H2 ≤ 1

cl
∥Lψ∥2L2 ≤ 1

λcl

(︃
λ∥Lψ∥2L2 +

∫︂
Ω

πψ2 dΠp

)︃
=

1

λcl
∥ψ∥2λ.

Let us define T1 and T2 as follows:

T1(ψ) =

∫︂
Ω

πψŵ d(Πp − Πn
p), T2(ψ) =

1

n

n∑︂
i=1

ψixi.

Thanks to the Sobolev embedding theorems, for each ϵ > 0 and θ = 1 + 2ϵ, we have

T ∈ Hθ,∗(Ω), where Hθ,∗(Ω) denotes the dual space of Hθ(Ω). We also denote by ⟨·, ·⟩θ,∗
and ∥ · ∥θ,∗ the natural inner product and norm on Hθ,∗(Ω), respectively. Therefore, we

can rephrase equation (B.9) as

⟨ψ, ŵ⟩λ = T1(ψ)(1 + o(1)) + T2(ψ), ∀ψ ∈ F0.

Then, thanks to inequality (19) and (20) by Arnone et al. (2022a), we have

∥ŵ∥λ ≤ sup
ψ∈F0

T1(ψ)

∥ψ∥λ
(1 + o(1)) + sup

ψ∈F0

T2(ψ)

∥ψ∥λ
≤ c1dnλ

−1∥ŵ∥λ(1 + o(1)) + c2λ
−θ/4∥T2∥θ,∗,

for some positive constants c1 and c2 independent on n and λ. Thus, since dnλ
−1 → 0,

for n large enough, we obtain the upper bound

∥ŵ∥2λ ≤ cλ−θ/2∥T2∥2θ,∗ ⇒ E
(︂
∥ŵ∥2λ

)︂
≤ cλ−θ/2 E

(︂
∥T2∥2θ,∗

)︂
. (B.10)
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Now, from the definition of T2, we can write

T2 =
1

n

n∑︂
i=1

xiδpi ,

where δpi is the Dirac delta in pi, which belongs to Hθ,∗(Ω) because of the Sobolev

embedding theorems. Recalling that x1, . . . , xn are zero mean, uncorrelated, bounded

random variables with variance E(x2i ) <∞, we have

E
(︂
∥T2∥2θ,∗

)︂
= E

(︂
⟨T2, T2⟩θ,∗

)︂
= E

(︃
1

n2

n∑︂
i=1

n∑︂
j=1

xixj⟨δpiδpj⟩θ,∗
)︃

=
1

n2

n∑︂
i=1

E(xixj)∥δpi∥2θ,∗ =
1

n2

n∑︂
i=1

E(x2i )∥δpi∥2θ,∗ ≤
c

n
s2n

where c = maxi=1,...,n ∥δpi∥2θ,∗ <∞ and s2n = 1
n

∑︁n
i=1 E(x2i ). Then, from inequality (B.10)

and recalling that ∥ŵ∥L2 ≤ k−1
1 ∥ŵ∥λ, we have

Var
(︂
∥ŵ∥L2

)︂
≤ E

(︂
∥ŵ∥2L2

)︂
≤ 1

k21
E
(︂
∥ŵ∥2λ

)︂
≤ c s2n
k21nλ

θ/2
= O

(︃
s2n

nλθ/2

)︃
.

This concludes the proof.

Asymptotic mean squared error

Finally, using Lemmas B.5 and B.6, we can study the behavior of the asymptotic Mean

Squared Error (MSE) of the estimator in Problem 1, that is

MSEL2(f̂) = ∥Bias(f̂)∥2L2 +VarL2(f̂).

Thanks to Lemmas B.5 and B.6, if f0 ∈ H2(Ω), we have

MSEL2(f̂) = O(λ) +O(n−1) +O
(︁
n−1λ−1/2−ϵ)︁,

which is minimized when λ = λn = n−2/3, leading to MSEL2(f̂) = O
(︁
n−2/3+ϵ

)︁
. More-

over, if f0 ∈ H4(Ω), i.e. g0 ∈ H2(Ω), and Bf0 = γ, we have

MSEL2(f̂) = O(λ2) +O(n−1) +O
(︁
n−1λ−1/2−ϵ)︁,

which is minimized for λ = λn = n−2/5, leading to MSEL2(f̂) = O
(︁
n−4/5+ϵ

)︁
. This

concludes the proof of Theorem 3.7. □
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Proof of Theorem 3.8

Let Jh(f) = J(fh) be the finite element discretization of the objective functional (3.6)

with fh = f⊤ψ ∈ Fγ,h, which is given by

Jh(f) =
1

n

n∑︂
i=1

ρτ (yi − f⊤ψi) +
λ

2
Ph(f).

The function Ph(f) ≡ P (fh) denotes the discretization of the differential penalization

P (f) ≡
∫︁
Ω
(Lf − u) and corresponds to

Ph(f) = (R1f − u− γ)⊤R−1
0 (R1f − u− γ),

Following the convexity argument proposed by, e.g., Pollard (1991), Knight (1998)

and Knight and Fu (2000) in the context of parametric linear quantile regression, we

introduce the true quantile residual εi = yi − ψ⊤
i f0 and the reparametrization δh =

ψ⊤δ = ψ⊤(f − f0) ∈ F0,h. Notice that ψ⊤f0 is the finite element interpolation of f0
on the mesh knots. Similarly, ψ⊤g0 is the interpolation of g0; moreover, thanks to the

second identity in (3.20), we have g0 = R−1
0 (R1f0−u− γ). Furthermore, we define the

reparametrized objective function

J∗
h(δ) = Sh(δ) +

λ

2
P ∗
h (δ),

where

Sh(δ) =
1

n

n∑︂
i=1

[︂
ρτ (εi −ψ⊤

i δ)− ρτ (εi)
]︂
,

and

P ∗
h (δ) =

[︁
R1(δ + f0)− u− γ

]︁⊤R−1
0

[︁
R1(δ + f0)− u− γ

]︁
= (R1δ)

⊤R−1
0 (R1δ) + 2(R1δ)

⊤g0 + g⊤
0 R0g0

= δ⊤P δ + 2 δ⊤R⊤
1 g0 + g⊤

0 R0g0.

It is easy to verify that minimizing J∗
h(·) with respect to δ is equivalent to minimizing

Jh(·) with respect to f , that is δ̂ = f̂ − f0. Therefore, we can use the asymptotic

properties of δ̂ to infer the limiting behavior of f̂ .

Thanks to the fact that πy|p(f0(p)) is absolutely continuous and bounded (Assump-

tion 2), the matrices D0,n and D1,n are positive definite (Assumptions 6) and their

asymptotic limits are finite (Assumptions 7), for n large enough, we can use Theorem 1

by Knight (1998), obtaining

Sh(δ) =
1
2
δ⊤D1,n δ − 1√

n
δ⊤xn + op(1),
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where xn ∼ NNh(0, τ(1 − τ)D0,n). Combining such an asymptotic expansion of Sh(δ)

with the penalty term P ∗
h (δ), we can write

J∗
h(δ) =

1
2
δ⊤(D1,n + λP) δ − δ⊤

(︂
1√
n
xn − λR⊤

1 g0

)︂
+ λ

2
g⊤
0 R0g0 + op(1).

Thanks to the non-singularity of D1,n, J
∗
h(δ) is strictly convex and its asymptotic min-

imizer is unique. Therefore, using Corollary 1 by Knight (1998),
√
n δ̂ =

√
n(f̂ − f0)

converges in distribution to the solution of the asymptotic first order equation

√
n(D1,n + λP)δ = (xn −

√
nλR⊤

1 g0).

Then, for n sufficiently large, we have

√
n(f̂ − f0) = (D1,n + λP)−1(xn −

√
nλR⊤

1 g0) + op(1), (B.11)

In order to obtain a non-exploding bias for (B.11), we require that
√
nλ =

√
nλn → λ0

for some finite value λ0 > 0. Under this condition, the large-sample bias and variance

of the estimator f̂ are

Biasn(f̂) = −λ(D1,n + λP)−1R⊤
1 g0 + o(n−1/2),

Varn(f̂) =
1
n
τ(1− τ)(D1,n + λP)−1D0,n(D1,n + λP)−1 + o(n−1).

Following Ferraccioli et al. (2022), we expand the bias term with a second order Taylor

approximation for λ around 0, which leads to

Biasn(f̂) = −λ
(︁
D−1

1,n − λD−1
1,nPD−1

1,n +O(λ2)
)︁
R⊤

1 g0 + o(n−1/2),

that is Biasn(f̂) = O(λ) + o(n−1/2). In the same way, the variance can be expanded as

Varn(f̂) =
1
n
τ(1− τ)

(︁
D−1

1,nD0,nD
−1
1,n − 2λD−1

1,nPD−1
1,nD0,nD

−1
1,n +O(λ2)

)︁
+ o(n−1),

which leads to Varn(f̂) = O(n−1) + O(λn−1). Considering the Taylor expansions of

Biasn(f̂) and Varn(f̂), using the linearity of estimator (B.11), and setting
√
nλn → λ0,

the asymptotic distribution of f̂ becomes

√
n(f̂ − f0)

d−→ N
(︁
− λ0D−1

1 R⊤
1 g0, τ(1− τ)D−1

1 D0D
−1
1

)︁
.

If we further assume that λ = λn = o(n−1/2), that is λ0 = 0, the estimator
√
n(f̂ − f0)

is asymptotically unbiased.

Finally, we prove the consistency of the estimator f̂ by studying the limiting behavior

of the mean squared error (MSE) and leveraging the results obtained for Biasn(f̂) and

Varn(f̂):

MSEn(f̂) = Varn(f̂) + Biasn(f̂) Biasn(f̂)
⊤ = O(λ2) +O(n−1) +O(λn−1).
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Then, the proof is concluded by noting that, for any λ = λn = O(n−1/2), we obtain a

convergent MSE with limiting rate O(n−1). □
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