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Abstract. The class of uniserial modules (i.e. modules whose submodules form a chain under
inclusion) is studied over a valuation domain R. The isomorphy classes of torsion uniserial
Ä-modules form a monoid Unis R under the Operation Tor. In this paper, certain submonoids
of Unis R are investigated, which consist of nonfinitely annihilated uniserials; these include all
the nonstandard uniserial modules. Some of the submonoids turn out to be Clifford semigroups
(i.e. unions of groups). Several results give Information about the structure of monoids and
about their group constituents.

The non-finitely annihilated uniserials are classified into six classes; this classification is
slightly different from the one for non-standard uniserials due to Bazzoni-Salce.
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Introduction

Throughout, R will denote a valuation domain, i.e. a commutative domain with l in
which the ideals form a chain under inclusion. Q ( /0 will stand for its field of
quotients (mostly viewed äs an -module), and P for its maximal ideal.

In recent publications on modules over valuation domains, a most interesting class
of modules has played an increasing role: the non-standard uniserials. The existence
of this class has been in doubt for a while, but since their existence over suitable
valuation domains has been established, their properties are thoroughly studied, and
we are getting a better grasp on them. Their peculiar behavior is füll of surprises.

An Ä-module U is said to be uniserial if its submodules form a chain under
inclusion. U is Standard if U s J/I for some submodules / < / of ß. Over suitable
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valuation domains, there do exist non-standard uniserial modules; these are
necessarily uncountably generated and torsion. For their existence see Shelah [S],
Fuchs-Saice [FS], Franzen-Göbel [FG], Bazzoni-Salce [BS1], and more recently,
Eklof [E], Osofsky [ ], [ 2], and Eklof-Shelah [ES]. Recent advances in the
structural study of non-standard uniserials have come about äs a result of three
papers [BS1]-[BS3] by Bazzoni-Salce where various features, in particular,
uniserial extensions and mutual epimorphisms have been studied extensively.

In the present paper, we initiate a totally different approach. It is motivated by
the observation that several aspects of non-standard uniserials over a valuation
domain can be better understood by focusing on the collection of the isomorphy
classes of all torsion uniserials rather than on the individual uniserial modules
themselves, and by studying the interrelations between these classes.

A natural vehicle for dealing with these problems is to equip the set of isomorphy
classes of uniserials over R with an algebraic structure. This can be done by exploiting
the idea that the isomorphy classes of torsion uniserials over R form a commutative
monoid Unis R under the Operation "Torf"; cf. Fuchs [F]. However, this monoid
turns out to be too large to be manageable. The Standard uniserials are easily
classified [FS, p. 142], so it it natural to concentrate on the non-standard ones. Since
the isomorphy classes of the non-standard uniserials do not form a subsemigroup in
Unis R, we have selected a class in between, and focus our attention on families of
subsemigroups of Unis R which collectively contain the isomorphy classes of all the
non-standard ones and which allow a more satisfactory and aesthetically more
pleasing formulation of the results. These uniserials are singled out by the condition
of not being annihilated by the annihilator of any of their elements (we shall call them
non-finitely annihilated).

The majority of our results deal with the collection of isomorphy classes of non-
finitely annihilated uniserials U in Unis R. Our goal of investigating this subset of
Unis R is accomplished by breaking it into disjoint pieces: with the aid of the newly
introduced concept of'level' or the prime ideal C/# associated with U. The isomorphy
classes of uniserials at a fixed level K form a Clifford semigroup Unis K (i.e. a union of
groups), and so do those with the same prime t/#. Moreover, the isomorphy classes of
uniserials whose elements have principal ideal annihilators form a subsemigroup
UnisK in Unis R which is likewise a Clifford semigroup. The abundance of Clifford
semigroups in Unis R is a pleasant surprise. Their structures will be described in more
details.

Another point of view furnishing more Information about Unis R stems from a
categorical approach: certain subsemigroups of Unis R can be regarded äs skeletons
of füll subcategories of the module category Mod-Ä. Category equivalences will be
established between certain subgroups and their cosets in Unis R at the same level.

The way our Clifford semigroups are built up from their group constituents
depeiids solely on the value group of the valuation domain R. But the structures of
these groups reflect completeness properties of R (in particular, the sizes of these
subgroups depend primarily on the so-called Gamma invariants, introduced in [ES],
measuring the deviation of certain quotients of R from almost maximality); many
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of these groups are trivial if there are non non-standard uniserials in the Clifford
semigroup considered. Our main objective is to analyze the interrelation between the
group constituents. Subsequent theorems will show that it suffices to find the
structure of some of them.

Our results are convincing evidence that there is more order in the hierarchy of
uniserials over a valuation domain than previously anticipated.

1. Preliminaries

For the following definitions see [FS] and [BS1].
Let U be a torsion uniserial jR-module, and Ο φ u e U. Setting / = Ann

u = {r e R | ru = 0} (called the annihilator ideal of u) and / = H (u) = {r'11 u e r U}
(called the height ideal of M), we say that C/is oftype [///] (the isomorphism class of
the Standard uniserial module ///), and write t (U) = [///]. The type t (U) does not
depend on the choice of Ο Φ u e C7; indeed, if Ο Φ v € f/is such that v = su (s e R), then
Ann v = s'1 7, H (v) = s'1 J, and J/I ^ s~lj/s~ll. Note that su Φ 0 exactly if s φ L

By definition oftype, technically t (U) = [<///] implies K R and J > R. However,
we will not always impose the condition I< R on the representative ///of the type of
a torsion uniserial module U. Actually, we will often use the symbol [//Λ] rather
than [aJjaR] to represent the type of a uniserial module whose elements have
principal ideal annihilators.

The definition of „type" for all uniserials is motivated by the fact that all
uniserials of type [///] can be obtained in a unified fashion s direct limits of the
same eollection of modules, using only different connecting maps. In fact, let
R< J^< ...< Jv< ... be a continuous well-ordered ascending chain of fractional
ideals whose union is J. Then J/I is just the direct limit of the uniserial modules
JV/I where the connecting maps ην: JV/I -» Jv+l/I are the canonical (i.e. induced
by the embedding of Jv in /v+1). Likewise, any non-standard uniserial of the same
type is the direct limit of the same set of modules, only the maps /v/7 -» «7v+1/7are
modified: the canonical ην is preceded by an automorphism av of/v/7; cf. [FS, p. 149].

With a uniserial module U (of type [///] one associates the following ideals
(see [FS]):

U* = {reR\rU< U}, t/# = \J Annw.
Οφ«€ΐ7

The ideals U* = /* and t/# = 7* are always prime. It is easily seen that for an ideal
/ of R, I* is the union of all proper ideals of R which are isomorphic to /; thus 7*
is the maximal ideal P if / is principal, otherwise 7* = \JreR\! r~*7 = (R: 7)7. An
ideal 7 of R is called archimedean if 7* = P.

Lemma 1.1. For an ideal I of R, we have

(i) 7?j»7 = 7 (i.e. I is an ideal over the localization of R at I*);

(ii) 7;7= R,*;
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(iii) R : (R : 7) = / unless P is not principal and I = Prfor some reR, in which case
R:(R:I) = Rr;

(iv) (R :/)* = /*;
(v) 7*7 = 7 if and only if I is not principal äs an Rr* -ideal;

(vi) RJ*: I = R : I provided that I is not principal äs an Rj*-ideal;

(vii) 7:7* = I provided that I is not isomorphic to 7*.

Proof. (i) is evident, since sl = I for s e R \7* .
(ii) Because of (i) it suffices to verify the inclusion 1:1 < RJ*. If reR satisfies

r"1/ < 7, then / < rl which amounts to r e R\I*9 i.e. r'1 e Äj*.
(iii) The inclusion R : (R : 7) > / is obvious; it implies the equality

R : (R : (R : /)) = R : I. If 7< /are ideals and if there is an r e R such that 7< Rr < /,
then r ~* e R : 7, but R:J. Hence in this case R : I > R : J. Such an r fails to exist only
in the indicated case. Hence the desired equality follows.

(iv) If r 7* then rl = 7, so from (R : 7) r~*7 =(R:I) r~lrl < R we obtain
(7* : 7) r"1 < R : I and r (R:I)*. This, along with (iii) implies the converse.

(v) See [FS, 1.4.8].
(vi) requires proof in one direction only. So assume aeRj*: 7, i.e. al < Rj*.

The inclusion al < R is obvious whenever a e R or a'1 e J? \7. In the remaining case
a""1 € 7, /* a"1 < Äj* 7=7, thus 7 = 7^* a""1 is a principal Äj*-ideal - this case has
been excluded. Hence a e R : L

(vii) The inclusion > being trivial, assume that r7* < 7 holds for some r E R.
Then 7* ̂  r~17. Since 7* is the union of proper ideals = 7, this can only happen if
R < r~llor 7* = r"1/. Now r e 7in the first case, and 7 ̂  7* in the second case. D

Lemma 1.2. For all (fractional) ideals I and L, (7L)* = 7* n L* holds true.

Proof. If L is principal, then the claim is immediate. Assume L is not principal.
The inclusion (7L)* < 7* n L* being obvious, suppose 7* < L*. Let reR satisfy
rIL = 77, Multiplying it by R : L we get rIL* = 77* . If IL* = I, then r7 = 7, so r <£ 7*.
Otherwise 7L* < 7, 7* = L*, and so by (1.1) (v) 7is principal over Rj*. In this case
IL £ L, and the assertion follows.

The annihilator

of a uniserial module U is an ideal ^4 of R. We distinguish between the cases when
there is or there is not an element u 6 U with Ann u = A. In the first alternative, we
shall call Ufinitely annihilated. Note that this is the case if and only if 7?j# ®R U is
finitely generated (i.e. principal) äs an 7?/*-module. The symbol "n.f.a." will be used
äs an abbreviation for non-finitely annihilated. (In the faithful case, this distinction
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has been introduced by Shores-Lewis [SL].) All torsion-free uniserials are finitely
annihilated (with annihilator 0). A non-standard uniserial is necessarily torsion and
n.f.a. The property of being n.f.a. is common to all uniserials of the same type.

Observe that a proper submodule of a n.f.a. uniserial has a larger annihilator.
However, it is not uncommon for proper quotients to have the same annihilator
(cf.(1.6)) - this simple fact will turn out most relevant in our study.

Lemma 1.3. IfUisa n.f.a. uniserial module of type [///] with annihilator A, then
(i) ./*</*;
(ii) Λ* = /*;
(iii) / is not a cyclic Rj*-module.

Proof. (i) (see [FS, VII]) Suppose r e J* \7*, i.e. r E R satisfies r U < U and does not
annihilate any nonzero u e U. Let a E U\r U. Since f/is n.f.a., there an s e R such that
sa = 0 but st/φθ. Hence srU<sRa = Q, thus by the choice of r, 5(7 = 0,
a contradiction.

(ii) If rf/tJ*, then from (I:J)r^J=(I'.J)J<I we obtain r ~ l ( I ' . J ) < 7: /,
and so rφ(I:J)*. On the other hand, if re/*, then rJ<J implies
/: / = Ann//7< Ann rJ/I = r'1 Ann/// = r"1 (7: /), and therefore r e (/: /)*.

(iii) If / = aRj* , then Ann (a + 1) = Ann U would be a contradiction. α

The following is an easy and most useful necessary and sufficient condition for
a uniserial to be n. f. a.

Lemma 1.4. A uniserial module of type [///] is n.f.a. if and only ifI*J = J.

Proof. First suppose J/I is n.fa. If 7* >/*, then for je/*\/* we have sJ~ /,
and thus 7*/ = /. If /* = /*, then again /*/ = /; in fact, otherwise / = aRj* for
some a E Q (see (1.1) (v)), in which case 7* = /*, a contradiction to (1.3) (iii).

Conversely, let 7*/=/, and by way of contradiction assume J/I is finitely
annihilated. Thus [FS,VII.2.2] implies 7* < /*. If 7*</* and re/*\7* then
7*/ < rJ < J, a contradiction. If 7* = /*, then choose x + IeJ/I with annihilator
7: /. There are yeJ and re/* such that χ = ry. For such a y we have Ann
(y + I) = r Ann (x-h7) = r(7:/) which is by (1.3)(ii) strictly smaller than 7:/.
This is impossible. α

The two threshold submodules of a uniserial U were introduced in [BS1]; they are
defined s follows:

and U°~ O^W'
rφJ* reJ*

where [/[r] = {ue U\ru = 0}. Manifestly, U0 is nothing eise than the kernel
of the localization map U -» Rj* ® U at the prime /*, while U° is equal to
t/[i/*] = {we U\ru = 0 for all re U*}. We always have U0 < U°. The upper
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threshold submodule U° will play a relevant role in the sequel. (In [BS1], they were
denoted C7C, Uc.)

For the proof of the following lemma we refer to [BS1, (2.2)].

Lemma 1.5. For a n.f.a. uniserial module U of type [J//] we have:

(i) U°=Uif and only ifJ* = Ann U;
(ii) U0=QexactlyifJ* = I*;

(iii) /* < /* implies U0 = U°. D

The relevance of threshold submodules is apparent from

Lemma 1.6. For a submodule V of a n.f.a. uniserial module U of type [///], the
following hold:

(i) V>U° implies Ann U/V> Ann £7;

(ii) V < U0 implies Ann U/ V = Ann £7;

(iii) Ann U/U° = Ann U if and only ifJ*U = U.

Proof. (i) V > U° means that U [ f ] < V for some r z J*. If u e U\r U, then Ann u
annihilates r [7= £7/£7[r] and thus U /V, but it cannot annihilate U.

(ii) If V< t/0, then F < [/[r] for some r e \/*. The existence of an epimorphism
U/V -^ i// E/ [r] s r (7 = U shows that Ann £7/F cannot be larger than Ann U.

(iii) [BS2,(1.1)] Suppose that J*U=U, and let rU < U° for some r E R. By
definition, every element of U° is annihilated by /*, thus r l//* = 0. Hence r t/ = 0
and Ann £7/ U° = Ann U. On the other band, if /* U < U, then choose aueU\J*U.
To show that Ann U/ U° > Ann U it suffices to verify that if su e U° for some s e R,
then s U < £7°, because then Ann U/ U° = Ann (u + £7°) > Ann u > Ann U. If v e ΛΜ,
then trivially sv e U°.If v e U\Ru, then u = rv for some r e R which is φ J*. Since /*
is a prime, for each / e /* there is a t'eJ* such that i = r t'. Now sw e t/° implies
tsv = ri'si; = t'su = 0, [7° being annihilated by t'. Hence sv is annihilated by J*,
and so sv e U°. α
Let us record here a simple result on the elements of U°.

Lemma 1.7. If U is a n.f.a. uniserial module, then

(i) H (M) iy /Ae samefor each non-zero u in £7°;

(ii) // {7° = 0, then for each u Φ 0 fAere exwte α ι/ Φ 0 such that H (u) < H (u1).

Proof. (i) Let / = Ann M, / = H( ) and ru = u' (reR \I). Since M e i7° means
that u is annihilated by every element of /*, it is clear that r φ J*. Therefore,
H(u') =* H(r ) = r^H( ) = r~V= J~H(u).
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(ii) Assume that / = Ann u and /= H (u). Now u 0 implies /</* = /* (see
(1.5)(ii)); choose reJ*\I and let u' = ru 0. Then H (u1) = H(ru) = r~lH(u)
= r~1J>J=H(u). n
A uniserial module U is said to be strongly n.f.a. if all non-zero quotients of U
have the same annihilator äs (7; it is barely n.f.a. if every proper quotient of U has
a larger annihilator. U is called equiannihilated if Ann U/U° = Ann C7. For the
proof of the following we refer to [BS1, (2.3)], the definition of barely n.f.a., and
[BS2, (1.1)], respectively.

Lemma 1.8. Let U be a n.f.a. uniserial module of type [///]. Then
(i) U is strongly n.f.a. if and only if J* = Ann £/;
(ii) U is barely n.f.a. if and only if U° = 0. D

In her thesis [So] Soileau has demonstrated that if U, V are uniserial modules,
then so are Tor? (t/, V} and U ® R V. Furthermore, for Standard uniserials, U = K/L
and V = ///, one has

Torf (K/L, J/I) * (IKn JL)/IL, K/L ® /// s Ä//(U + KI).
For the proofs of this, see [FS, p. 67]. As Tor commutes with direct limits, it is
easy to see that for all uniserial modules U and V we have:

Lemma 1.9. t (U) = \_K/L] and t (V) = [///] imply
(i) t (Tor (£/, F)) = [(/ JL)//L] and
(ii) t (U ® V) = IKJ/(LJ + 7)]. D

2. The level of a uniserial module
A most useful concept which we introduce here is the level of a uniserial module U.
This is a fractional ideal associated with U. We shall see that uniserial modules of
the same level share several relevant properties.

The level of a uniserial module U of type [///] (with /< R) is defined äs
Levt/ = A:= (j r~lJ.

reR\I

We set Lev U = / if U is of type [///?]. Lev U is well defined, äs it is independent of
the way the type of U is represented. Obviously, J<Kalways, and K = /if / = ß.
(We will see in (2.6) infra that K^J holds in most cases.) For example, let r e P.
Then LQv(J/rR) = r~lPJ9 so Lev (J/rR) = r~lJ if / is not principal and r'1 a'1 P
if / = a~lP is a principal ideal. Thus always Lev (J/K) = PJ.

The following result points out a property that distinguishes Lev U from the
other fractional ideals.

Lemma 2.1. Let K be the level of the n.f.a. uniserial module U. Then for a fractional
ideal L >: R we have
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Tor(L/R9 U)^U ifand only ifL > K.
froof. Let U be of type [///]. The exact sequence 0 -> R -> L -» L /R -> 0 induces
the exact sequence

o -> ΤΟΓ(Ζ,/Λ, u) -+ R® u^u ̂  L® U-^L/R®U-+ o.
First let L > K. To show that α is the zero map, choose l ® u (u e U) where

w.l.o.g. Ann u > I can be assumed. Since Ann u > Ann C7, there is an s e R \I such
su = 0 but $£/ Φ 0. Then s"1 e s"1/ < K< L implies that l ® u e R (g) l/maps upon
l (g) w = s"1 (g) su = 0.

Next let L< K. Then ZJ< /, for otherwise J < LI implies that for any r φΐ,
J< LI<Lr. Hence r~lJ< L and K< L would follow. Tor (L/ R, U) is of type
[/L//] by (l .9), and from LI < J we infer that it has a larger annihilator than U. n

The uniserial module U is said to be at the same level s or of higher (lower)
level than the uniserial module V according s Lev U = Lev V or Lev U > Lev V
(Lev U < Lev V). The level cannot increase by passing to a submodule or a quotient.
If U is a n.f.a. uniserial, then Lev V< Lev t/ for all proper submodules V of C7,
but for proper quotients equality may hold.

Example 2.2. Let /, / be submodules of Q such that KR<J and /*/ = /.
Then /// and ///*/ are both n.fa. with the same annihilators and the same levels.
They are different whenever 7is a principal J?j*-ideal. In fact, by (1.4), ///is n.fa.
Now (1.2) implies that (/*/)* = /*, thus ///*/ is likewise n.fa. Evidently,
Ann///> Ann///*/, while the converse inclusion follows from the fact that
rJ < I implies rJ ̂  /*/. (2.3) (ii) will show that they have the same level.

From the definition it is clear that uniserial modules which are epimorphic images
of each other are of the same level.

In the balance of this section, we shall deal exclusively with n.fa. uniserial modules.
(Levels of finitely annihilated uniserials - which are not needed here - behave
differently.) A few useful elementary properties of the level of a n.fa. uniserial are
collected in the next two technical lemmas. We shall use the notation

Lemma 2.3. Let U be a n.f.a. uniserial module of type [///] with I< R<J and
Ann U = A. Then thefollowing hold for K = Lev U:

(i) *=Uo-M..ir#(«);
(ii) # =(£:/)/ = r1/;

(iii) #/ = /;

(iv) #* = /*;

(v) I*K~K.
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Proof. (i) follows at once from the definition by observing that if H(ü) = /, then
H(ru) = r"1/ for ru 0, i.e. for r L

(ii) If / is not principal, then R : I = 7"1, and so (Jr6Ävr r'1 J = (R: /)/. If / is
a principal ideal, say /= Ra (aeR), then K= \JpePa~lpJ = a~lj = (R: Rä)J
= (R : /) /; here we have used / > PJ >/*/=/ (see (1.4)).

(iii) Evidently, Ä7= Ure*\/ r~1//= (JreÄvr r^IJis equal to I*J. Again, (1.4)
implies that this product is /.

(iv) If t K*9 then tK = Jf, thus by (iii) we obtain tJ = tKI =KI=J. Hence
K* > J*. Analogously, #* < /* follows from (ii).

(v) If /* = /*, then by (1.4), we have J*J = J which implies I*K = J*K
= J*(R:I)J=(R:I)J=K.IfI*> J*, then (iv) implies I*K=K. n

Remark. If Uis äs in (2.3), its level remains K, even if C/is viewed äs an /^«-module.
All the Statements of (2.3) hold true whenever R : I is replaced by RJ* : L This is
essentially due to the inclusion relation /*</*.

Lemma 2.4. Under the hypotheses o/(2.3), we also have

(vi) K>Rj*,and

(vii) Ann (K/R^) = Ann U = Ann (K/I*) = Ann (KlR).

Proof. (vi) Since * = /* < /*, /Hs an jR^-module. l e K implies K > Rj*. Proper
inclusion will follow from (vii).

(vii) If / = Ra is a principal ideal, then K = a~iJ(sQe the proof of (2.3)(ii)). Thus
K/R s ///, which implies Ann U = Ann K/R = Ann K/P. Suppose now that / is
non-principal. From /* < R < Rf* we conclude that Ann K/I* ^ Ann K/R
^ Ann K/RJ*. Now if a e Ann U, i.e. aJ < /, then aK = a(R: /) / ̂  (R : I) I = /*
implies the inclusion Ann U < Ann ,£//*. On the other band, if a € R satisfies
aK<Rj*9 then aJ = aKI < IRj* = I, i.e. e Ann U. Consequently, the sets of
annihilators of K/R, K/Rj*, U, and K/I* must all be equal. In order to show that
K/Rj* and K/I* are n.fa., by (1.4) it is enough to note that I*K = K because of
(2.3)(v). D

Observe that, using the notations above, /: / = R: K follows from (vii).
A natural companion to the preceeding lemma is the following:

Lemma 2.5. Lei Ibea proper ideal ofR and K a submodule ofQ containing R^ such
that I* K ^ K. ThenforthefractionalidealJ^ Kl the uniserialmoduleJ/Iis n.fa. and
Lev(.///) = K.

Proof. Evidently, I*K=K implies /*/ = I*KI=KI~J, i.e. /// is n.fa. From
(2.3)(ii) we infer Lev(///) = Lev(KI/I) = (R:I)KI~ K, since (R: /)/equals R or
/*, according äs / is principal or not, and I*K~K. D
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If P is not a principal ideal, then choosing / = P, we see that every non-principal
fractional ideal K> R is the level of a n.f.a. uniserial.

Some additional Information on n. f. a. uniserials is s follows.

Lemma 2.6. Lei J/I be a n.f.a. uniserial module and L a fractional ideal.
(i) IfI*<L*, then J/I ® L = JL/IL is likewise n.f.a., and has the same annihilator

and the same level.
(ii) If Ann JL/IL = Ann J/I, then JLJIL is again n.f.a.

Proof. (i) Since J=KIby (2.3) (i ) where K= Lev///, (2.4) and (2.5) imply that
JLJIL = KILIIL must also be n.f a. with the same annihilator and the same level
K s ///.

(ii) If there existed an xy + IL with xeJ,yeL whose annihilator was equal to
Ann ///, then Ann (x + /) < Ann (xy + IL) = Ann (Jl/IL) = Ann /// would contra-
dict the hypothesis of /// being n. f. a. D

We can now easily describe the levels of n. f. a. uniserial modules.

Theorem 2.7. Lei V be a n.f.a. uniserial module of type [///] with I< R< J, and
sei K = Lev U. Then K~J except when U° = 0 and I is not principal s an R^-ideal.

Moreprecisely, K = a~ljfor some αφϋ/υ°φΟ; K = a'^Jfor some aeIifU°=0
and I = Rj*. In the exceptional case, K=J* or K = / : / according s J = / or not.

Proof. First assume £7° Φ 0. By (1.7) (i) K= H (u) for each nonzero ueU°. From
(2.3)(i) we infer that K = a~lJ for some a φ /, and thus K = J.

Next let {7°=0 and I = aRt* for some ael. Clearly, r φΐ is equivalent to
r = at~l for some tel*. Therefore, we have K= (Jrej?\/ r ~1J = a ~i((Jtei* *J)

It remains to consider the case in which U° = 0 and / ^ Rf*. Suppose by way of
contradiction that K £ /, i.e. K = a~lJ for some aeQ.ln view of (1.7)(ii), a must
then belong to /. Note that by (2.3) (iii) a~1JI= KI = /. Since / is not principal
s an j#-module, α-1Ι> RJ*. If a~~ίxφRI* for an jte/, then ax~le /* = /*,

thus a~*xJ>J (recall that U0 = 0 amounts to /* = /*, see (1.5)(ii)). This implies
a~iJI>J, a contradiction.

In case / = aJ for some a e /, by (2.3) (ii) we have K = J/"1 = a~lH~l = a"1/*
= a"1/* Conversely, if K = a"1/* (a e /), then J=KI= a~lJ*I= a"1/ in view
of(1.2)(v), since/^^*.

Let / ^ /. The inclusion K < J : I = p|r6 / r~Vis obvious. Proper inclusion would
imply the existence of an α e β \K such that / = KI <; al < /, contrary to / ^ /.
Hence £=/:/. n

The last result provides a f ll description of the levels. It shows that the only case
in which the level of a n.f a. uniserial module U of type [///] fails to be isomorphic
to / is when Uei%. (For the defmition of the class %> see Section 8).
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Next a necessary and sufficient condition is given in order that two uniserials be
of the same level.

Proposition 2.8. Lei Ut (i = l, 2) be n.f.a. uniserial modules, and let 1(1],)
where /*</*. Then thefollowing are equivalent:
1) Lev C/J = Lev t/2 ;

2) JJ2 = J2I19 Jf = Jf9 and ifjf = 7? < 72*, rten /2/2* = /2.

Proo/. 1) => 2) Write ^ = Levt/i (i = l, 2). By (2.3)(iii), we have /f = Ktli9 so
from ^ = #2 we deduce that /172 = /271. Furthermore, J*=K? = K2=J2
(see (2.3)(iv)). Let now Jf = I f < I f , then, by (2.3)(v), K2J? = K2. But by
(1.5)(ii)-(iii) /* < 7* implies l/2 > 0 in which case K2 ^ J2 holds owing to (2.6);
hence also J2 J2 = J2, and we are done.

2) => 1) From the equality /X72 = J2I^ we obtain
(*) JJ2(R : AHA : 72) = /^(Ä : /^( : 72) .
The left side of (*) becomes either K± or K^ 7* (according äs 72 is principal or not)
where, by our assumption 7* < 7* and by (2.3) (v), Kl 7* is equal to K^ . The right side
of (*) becomes either K2 or K2 1? (according äs 7 is principal or not). The last module
equals K2 whenever 7* = 7f or J2 < 7* . Hence only the case remains to be
considered in which J2 = 7* < 7* . But by virtue of (2.6) Jf < 7* (which is equivalent
to t/2°>0) implies that K2^J2, thus K2K2 = K2 by hypothesis. From
K* = Jf ^ I* we conclude that the right side #27* is equal to K2. n

Concerning the level of the torsion product of two uniserials, we prove the following
result and derive a most relevant corollary.

Proposition 2.9. Let U and V be n.f.a. uniserial modules such that Lev U < Lev V.
IfU*<V%, then T= Tor (i/, V) is n.f.a. and satisfies

Ann T = Ann (7, T# = C/# and Lev T = Lev U.

Proof. If we write Lev U = K Sind Lev V = K', then, by (2.3), we have t (U) = [#7/7],
t(V) = IK'LJL] for some ideals 7, L in Ä. In view of (1.9), Tor(C7, V) is of type
[Ä7L/7L], where (7L)* = 7* because of (1.2). Consequently, # = t/#. That
is n.fa. follows from (1.4). Furthermore, by (2.6) (i) 7*<L* implies Ann
(KIL/IL) = Ann #7/7, and thus Lev T = #.

Corollary 2.10. JÄe torsion product oftwo n.f.a. uniserials ofthe same level is always
a n.f.a. uniserial of the same level. o

However, it can very well happen that the torsion product oftwo n. f. a. uniserials of
different levels is finitely annihilated. For instance, let the maximal ideal P be
non-principal and L (<P) a nonzero idempotent prime. Set U = a 1P/R,
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f/and Faren.fa. Inthiscase,Tor([7, F)is
of type KPRj^na^L^aRJ = [ L/a^J, thus it is annihilated by Ann (l + RL).

Let us point out that if U, V are n.f.a. uniserials and Γ = Tor (t/, F) satisfies
Annr=max(Ann£7, Ann F), then T is again n.f.a. In fact, if t (U) = [///]
and f (F) = [tf/L], then t (T) = l(IKnJL)/IL]. Hence ΑηηΓ= /L: (IKnJL)
= (IL:IK)v(IL:JL), and therefore either Ann(IK/IL) = AnnK/L or
Ann(JL//L) = AnnJ/7. The claim now follows from (2.6) (ii).

3. The semigroup Unis R
It is immediately seen that the isomorphy classes of torsion uniserial J?-modules form
a commutative semigroup under the Operation "Torf"; in fact, the commutativity of
Tor is obvious from jR being commutative, while associativity is a consequence of the
associative behavior of Tor over semi-hereditary rings (cf. Cartan-Eilenberg [CE]).
We shall denote this semigroup by Unis R. Since Torf (β/Γ, T) ^ T for all torsion
modules Γ, the isomorphy class of Q/R is the neutral element of Unis R9 hence
Unis JR is a monoid.

Though Unis R does not seem to carry much interessing structure, one can single
out in Unis R tractable pieces of interest.

The example after (2.10) shows that the isomorphy classes of n. f. a. uniserials do
not form a subsemigroup in Unis R; therefore we focus on certain subsets of n.f a.
uniserials. The isomorphy classes represented by the n. f. a. uniserials U of type [K/ R]
(with K running over the non-principal submodules of Q containing R) form a
submonoid Unis of Unis R; this is a simple consequence of (1.9). Unis consists of
those n.£a. uniserials whose elements have principal ideal annihilators. The n. f. a.
uniserials of type [AT/ ] for a fixed K form a subsemigroup in Unis ; we will show
that this is actually an abelian group (which we shall denote by Gp [ / ]; see (3.1)).

Recall that by a Clifford semigroup C is meant a semigroup which is the union of
pairwise disjoint groups G0 (σ G 5) indexed by a meet-semilattice S such that
(i) for every pair σ, τ e S with σ :> τ there is a 'bounding' homomorphism /ff)t:

G0 -> GT where /^ is the identity map and/^/^ =/ρ,τ holds for all ρ ̂  σ > τ;
(ii) multiplication is defined via cd = /tfft cfa^ d for c E Ga, d e Ga where τ is the meet

of ρ and σ in S and the last product is computed in Gt. (See [CP, p. 128].)

Theorem 3.1. Under the Operation Torf, the monoid UnisR is a commutative Clifford
semigroup with totally orderedindex set. The isomorphy classes of uniserials in Unis of
a fixed type [KIK\form an abelian group Gp[K/R] whose neutral element is the iso-
morphy class ofthe Standard uniserial K/ R. The bonding homomorphisms are all trivial.

Proof. That the uniserials of the fixed type [K/ R] in Unis form an abelian group
under "Tor" can be proved in the same way s it was done for divisible uniserials
in Fuchs-Shelah [FSh]. In fact, it is straightforward to show that if U is the direct
limit of the modules JV/R using the maps ην<χ,ν: JV/R -» Jv+i/R where ocv is an
automorphism ofJv/R (see Sectioii l above), then the inverse ofthe isomorphy class
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[t/] of U in UnisÄ can be represented by the direct limit of the same set of modules
replacing the av by their inverses.

Let [t/], [F] e UnisÄ be of types [Kl K] and [K'/ R], respectively, where K> K'.
Then there exists an reR such that rF=0, but ri/ . Choose w e f / with
Ann u = Rr. The exact sequence 0 -> Rr -* -> /Är -» 0 induces the exact
sequence.

0 -* Torf (Äw, F) s Tor?CR/£r, V} -+ Rr ®V^V -+ R® V.
The last map is trivial, since it sends r ® u to l ® rt? = 0 (r e R, v e F). We infer that
Tor (UM, F) s F. As the canonicalmap Tor(jRw, F) -* Tor (t/, F) is an isomorphism,
we obtain Tor (t/, F) s F. This completes the proof.

The fundamental subsets are the subsemigroups Unisf. For a submodule K of
Q containing R and for L e Spec R9 Unis* will denote the subset of Unis R consisting
of the isomorphy classes of those uniserials U which satisfy:
(i) t/isn.f.a.;
(ii)
(iii) C/# = L.
In view of (1.4), Unisf is empty unless LK = K; thus we shall always assume that
L > K* and consider UnisjjE* only if K* K = K. By (2.5), we always have K > RL. The
uniserial modules U in Unisf are of type [KI /I] where the ideal /satisfies 7* = L, and
therefore all the uniserials in Unisf are in a natural way ÄL-modules.

In general, the semigroup Unisf contains several groups. The existence (but not
the structure) of these groups is determined by the value group of R. One of these
groups is Gp[K/RL] whose elements are the n.f.a. uniserials of type [K/RL]. That
Gp[#/.RL] is in fact a group follows at once from the application of (3.1) to

In addition, we define Unis [KI/I] (with 7* = L) to be the subset of Unisf which
consists of the isomorphy classes of modules of type [ /7]. In case 7£ RL,
Unis [Ä7/7] becoines Gp [AT/HJ.

From these definitions and from (2.10) the following result is readily derived.

Proposition 3.2. Lei Lbea prime ideal ofR and K a submodule ofQ such that K> RL
andLK^K.
(i) Unisf is a monoid with [A/ÄJ äs neutral element.
(ii) The isomorphy classes of uniserials of type [ A/Ä J form a subgroup Gp [K/R J

of Unisf.
(iii) Unisf is the disjoint union ofGp [K/RJ and of subsets Unis [Ä7/7] with Iranging

over the isomorphy classes ofideals of R such that 7* = L, K > Rr and I £ RL:

Unisf - Gp [K/R J v (J Unis [#7/7] . D



260 S. Bazzoni, L. Fuchs, L. Salce

We illustrate this monoid in a particular Situation.

Exampie 3.3. Unis£ is the monoid consisting of the isomorphy classes of divisible
torsion uniserials where the annihilators / of elements satisfy 7* = L. In particular,
the monoid Unisp consists of the isomorphy classes of divisible uniserials with
archimedean annihilator ideals; it contains Gp IQ/ R] äs a subgroup.

4. Category equivalance between Gp [K/R,*] and Unis [KI/I]
The monoid Unis* (introduced in the preceding section) proves to be a very nicely
structured object: it can be thought of not only äs a monoid but also äs the skeleton
of a füll subcategory of Mod-R. More importantly, in view of (3.2), it breaks down
into disjoint pieces which turn out to be - äs we shall see - equivalent äs categories.

Adopting this point of view, in the decomposition (3.2)(iii) of Unisf both
Gp [ /JRJ and the Unis [Ä7/7] will be considered äs skeletons of füll subcategories
of Mod- , or, equivalently, of Mod-RL. The primary goal of this section is to
establish a category equivalence between these skeleton categories. Furthermore, we
want to show that Gp [K/RL] acts transitively and faithfully on each Unis [Ä7//].

To start with, we prove three lemmas encompassing results which play indis-
pensible roles in our functorial approach.

Lemma 4.1. Lei I be an ideal of R, KI/I a n.f.a. uniserial module of level K, and U
a uniserial module of type [K/Rf*~]. There is a natural isomorphism

these uniserial modules are of type

Proof. The exact sequence 0 -» / ->/ -> /// -> 0 induces the exact sequence
0 -» Tor(///,t/) ->/<g) V -+ J® U -+J/I® t / -»0.

If / = KI, then the map between the first two tensor products is the zero map, since by
(2.4) (vi) Ann^/Äj*) = /: /. Hence the stated isomorphism follows. The claim on
the type is a consequence of the second formula in (1.9), we just have to observe
that IKc\ RrJ=J and Rr l = /. o

Lemma 4.2. Let Vbean.f.a. uniserial module of type [ / ] , where l is not principal äs
an Rj*-ideal. There is a natural isomorphism

1 ® V^ Torf (A/"1//"1, V).
These uniserial modules are of type

Proof, If /is not principal äs an J?j*-ideal, then I"1 = Rr: /(see (1.1) (vi)). The claim
on the type follows from (1.9) and properties of ÄTlisted in (2.3). The exact sequence

0 -> 1 -» 1 -+ 1/!'1 ~> 0
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induces the long exact sequence

O-^Tor^F,^/-1//'1)^ ¥®Γι-+ Υ®ΚΓι -> V® (ΚΓ1/!'1) -> 0.

Το see that the map between the first two tensor products is the zero map,
let v <g> a 6 V ® Γ1 with υ e V and a e 7'1. Choose r e KI/ R such that Ann v > r'1/.
Clearly, raeKIa<KR = K = KI* = £7~17, thus there exist χ e ΚΓ1 and i e /with
ra^xi. Therefore, in the tensor product V® KI'1, v® a becomes equal to
v ® r~ixi = r"1 u? (x) je = 0. D

The final preparatory lemma is very simple.

Lemma 4.3. Let Ibe a proper ideal ofR, 7* = L, andKasubmodule ofQ containing RL
such that LK = K. For a uniserial module Woftype\K\L\ we have: W\L\ < W° and

is oftype

Proof. As noted in (l .3) (i), £* < L, so obviously W\L~\ < W° = PF[£*]. Since
W\L\ s RJL, the claim follows. D

The preceding results can be interpreted s Statements concerning three functors
acting between three skeleton categories: Unis[ 7/7], Gp[^/7?L], and Unis[ '/L],
where 7* = L. In fact, (4.1) shows that Φ =^^(^7/7,*) s 7® * is a functor
assigning to [ t/] e Gp IK/RJ the object [Tort (KI/I9 1/)] e Unis [£7/7] ,
while (4.2) asserts that the functor Tor^AT/"1//"1, *) = /-1 ® * associates
[7""1 ® F] e Unis [ T/L] with [F] e Unis [£7/7]. Furthermore, the correspondence
[PF] h+ [PF/ iF[L]] induces a functor Π: Unis [£/L] -* Gp [£/7*J. This leads us to
the following commutative diagram of functors between f ll skeleton subcategories
of Mod-7?L:

Unis [£7/7]

Ύοτ(ΚΓι/Γ\ *) s 7"1 ® * \v / /I

Unis[£/L]

where !P denotes the composition map Π ο [7"1 ® *].

We can now state and prove the main result of this section.

Theorem 4.4. Suppose that I < R, 7* = L, £ > RL $ 7 are MC/I ώα* L£ = £. ΓΑβΛ Φ
& α category equivalence between skeletons of f ll subcategories Unis [£7/7] and
Gp[£/.RL] ofMod-R (or, equivalently, ofMod-RL). Ψ is the inverse ofΦ.
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Proof. What we have to prove is that, given [C7] e Gp[ T/ L], we have (Ψ ο Φ)
[t/] = [t/], i.e.
(1) (ί/®7®7-1)/(ί/®7®7-1)[Ζ,]^ t/,
and that, given [F] e Unis [#7/7], [K] = (Φ ο ψ) [F] holds, i.e.
(2) ((F®7-1)/(F®7-1)[L])®7^ F.

To verify (1), note that, since RL ̂  /, the left hand side is isomorphic to
(U ® L) l ( U ® L) [L]. From the exact sequence 0 -» L -> Λ -*· Λ/7, -> 0 we derive the
exact sequence

0 -» Tor(C7, A/L) -» (7 ® L -+ U -» J7/LJ7 -» 0 .
Here the image of Tor(U9R/L) in t/® L is exactly (£7® !/)[!/]. Furthermore,
U/LU = 0, since #L = K. Hence the desired isomorphism (1) follows.

The proof of (2) is more delicate. Manifestly, the left hand side is isomorphic to
(F® 7"1 ® 7)/((F® 7~1)[L] ® 7), since / is flat s an -module. The canonical
homomorphism

φ : F® Γ1®! -+ V

sends t;® a"1® z e F ® 7"1 ® / to va~lie V (ve V,aeR\I,ieI). Clearly, ψ is
surjective, since Im v? = V L = F (recall that KIL = KI). Thus it suffices to verify
that Ker ψ = (F ® 7""1) [L]) ® /. A typical element of the module (F ® 7-1) [L] is
of the form r (l + /) ® l (r e R), hence a typical element of (F ® 7"1) [L]) ® 7 has
the form (r (l + 7) ® 1) ® i(iel). Obviously, ir(l + 7) = 0, whence we conclude
(F®7~1)[L])®7^Kerip. Conversely if va~1i = 0 in F (a'1 e 7~1,/67),
then a^/eAnnt;. But Annt; =y~17 for someye/, hence ja^iel. Since jφR
can be assumed, we obtain

v ® a~l ® ι = (l + 7) ® l ® ya'1 i € (F ® 7~1)[L]) ® 7,
completing the proof. D

Note that the category equivalence stated in (4.4) holds true even if RL £ 7. Indeed,
in this case Unis[iT7/7] coincides with Gp[ T/7?L], and Φ and Ψ are the identity
functors (Ψ is now just the functor obtained by tensoring with 7"1 £ 7?L which maps
Gp[ T/7?J onto itself).

It is a basic observation that the group Gp[#/7iJ operates, via the functor Tor,
on the skeleton category Unis[jK7/7], if 7 is an ideal such that 7* = L, i.e. if
Unis [#7/7] £ Unisf. In fact, if Fis n.f.a. of type [#7/7] and t/is of type [#/7?L],
then Tor(F, U) is also of type [#7/7]. Using the lemmas at the beginning of this
section, we can easily verify the following theorem.

Theorem 4.5. IfLisa prime ideal of R, and Kisa submodule ofQ such that K > RL
and LK » K, then the group Gp[#/7?J operates via Tor transitwely and faithfully
on Unis [#7/7], for each ideal l of R such that I* « L.
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Proof. Note that LK = K implies that K* <> L. We must show that, given [F] and
[F'] in Unis [ ///J, there exists an [i/0] € Gp [K/R^ such that Tor(F, (70) s F'.
Let [Κ] = Φ[ϋ] and [F'] = Φ[£/']. Then, by (4.1), F s Tor(#///, i/) and
F'sTor(J /7, C/')· Let CT1 denote the uniserial module such that
Tor(C7, CT1) s #/*L (thus [IT1] is the inverse of [t/] in GplK/RJ), and
let 170 = Tor(l/; CT1). Then

Tor(i7, i70)
= Tor (U, Tor (i/; i/'1)) s Tor (C/; Tor (i/, t/'1) s Tor (ET, #/,RL) s i/'.

Therefore we have:

V s Tor(KIII,U') s Tor(*7/7, Tor(C7, i/0)) s Tor(Tor(#7/7, t/), t/0)

To show that Gp [#/JRL] acts faithfully, we must convince ourselves that U ̂  U1 in
Gp [J£/ J implies U ® Ι φ U' ® L But this is clear, since (4.4) guarantees that Φ
is injective. D

5. Unis* s union of two groups

In the endeavor of Unding adequate tools elucidating the monoid structure of Unis*
(for prime ideals L with LK = K\ one is naturally led to the consideration of the set
of isomorphy classes of fractional ideals / such that /* = L. Here again, we try to
equip this set with an algebraic Operation.

For a prime ideal L of R, let GL denote the set of isomorphy classes [I] of sub-
modules 7 of β such that 7* = L and 7 ̂  RL. It should not bother us that the
exclusion of [ j from GL may result in GL being empty; this exclusion is unavoidable
if we want to ensure that in all other cases GL becomes an abelian group (which has an
important role in the description of Unisf).

For example, we have G0 = {[0]}. GP consists of the isomorphy classes of all
nonprincipal archimedean ideals.

Lemma 5.1. Given Ο Φ L e Spec R, GL is empty if and only if L2 < L.

Proof. GL = 0 if and only if each ideal 7 with 7* = L is a principal HL-ideal. It is
readily seen that this is equivalent to L being a principal JRL-ideal, so the claim
follows. α

Proposition 5.2. IfQ^Le Spec R and GL Φ 0, then GL is an abelian group under the
multiplication [7] [/] = [//]. Its neutral element is [£].

Proof. Multiplication is obviously well defined. Let 7 and / be submodules of β with
/* = £ = /*. From (1.2) we obtain that (//)* = L, so GL is a commutative
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semigroup under multiplication. If/is not principal s an L-ideal, then IL = /and
[L] is the neutral element in GL. By (l .2) and (l.l)(iv) we have the equalities 7/"1 = L
and (7"1)* = /* = £. D

Not unexpectedly, the structure of GL depends only on the value group of RL.
This dependence is illustrated by the next proposition which improves on
Theorem l in [B].

Proposition 5.3. Lei L be aprime ideal of R. GL is either empty or isomorphic to the
group P/Γ, where Γ is the value group of RL and f denotes its completion (in the
order topology).

Proof. It is well known (see e.g. [FS, 1.3.2]) that there exists a natural bijection
Θ between the set of ideals of RL and the set of filters of the positive cone Γ+of Γ.
Under this correspondence, the archimedean ideals of RL correspond to the Cauchy
filters (i.e. those filters which represent elements of the completion /*). We claim that

[/]->«(/) +r
is a desired isomorphism from GL to f / Γ . In fact, since / s /' if and only if / = s Γ for
some s € RL, [/] = [/'] is equivalent to 0(7) = y + <9(/') with γ (e Γ) the value of s.
Hence the correspondence is well defined and injective; it is clearly surjective, since
so is Θ. Finally, it is a group homomorphism, because the product //' is sent by Θ
into the filter Θ (/) + Θ (/') of Γ. D

As a very special case, let us mention that if L is a prime ideal of R with an immediate
predecessor L < L in Spec R, and if GL φ 0, then GL is isomorphic to a proper
quotient of the additive group IR of the real numbers, hence it is divisible. In fact,
it is easy to see that every element of GL can be represented by an archimedean ideal of
RL/L'. Now RL/L' is a valuation domain with archimedean value group. therefore this
value group is isomorphic to a subgroup S of the additive group of the real numbers.
Moreover, by the hypothesis GL Φ 0, S is not discrete, hence its completion coincides
with IR. Consequently, by (5.3), GL is isomorphic to IR/S.

If GL = 0, then Unisf = Gp[^/ L]. If GL = {[0]}, then Unisf is the disjoint
union of Gp [K/R^ and Unis[ T/L]. For various examples of non-zero groups GP
we refer to Bazzoni [B].

Next we focus our attention on the monoid Unis*, in particular, on the
complement HL of Gp[J£/ L] in Unisf. Assume HL is not empty, i.e. GL Φ 0. We
know that HL is the union of its subsets Unis[ 7//] for all [/] e GL. One of these
is Unis [K/L] which is evidently a subgroup; to emphasize this fact, let us denote it by
Gp[K/L]. One can find another group in HL: the isomorphy classes of Standard
uniserials Kill form a subgroup St£ with identity [K/L] such that St* s GL. It is
clear that the correspondence [/] H» [ 7/J] is a bijection between GL and Stf. It is an
isomorphism, since (1.9) implies Tor(KI/I, ΚΓ/Γ) s ΚΙΓ/ΙΓ.
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About the algebraic structure of HL an explicit Information can be given by the
following stunning result.

Theorem 5.4. Lei L be aprime ideal of R, L2 = L, and K a submodule ofQ such that
K>RL and KL = K. The disjoint union HL ofthe dasses Unis [#///], with [/] ranging
over GL, is an abelian group. Moreover, it is the direct product of two subgroups,

HL = Gp[*/L]xStf

where Gp [K/L] s Gp [K/RL] and Stf s GL.

Proof. By (5.1), HL is not empty. The subgroups Gp[jK/L], Stf of HL intersect
obviously only in [Jf/L], thus Gp[^/L] χ Stf is a subgroup of HL. In order to
justify our claim, we have to prove that every uniserial V of type [/£///] (with
[/] € GL) is contained in this direct product. From (4.2) we conclude that
\Ίοι(ΚΓιΙΓ\ K)] € Gp [AT/L], and owing to (4.1), Tor( 7//, Tor^/'1//'1, K))
= Ύοτ(ΚΙ*/Ι*9 V)^I* ®V^V.

To verify the second Statement, consider the map [t/] ι-> [L®Kt/] from
GP^K/RL] into Gp[£/L]. The diagram in Section 4 shows that this is just the
composite of Φ with 7"1 ® * whose inverse is Π, so it is a bijection. In order
to prove that it preserves multiplication, we have to convince ourselves that
Tor(L ® U, L ® U') is isomorphic to L ® Tor(C7, (7'), for uniserial modules (7, i/'
of type [ΑΓ/ J. But this is straightforward to verify by using the associativity ofthe
functor Tor and the isomorphism L ® U ̂  Tor (K/L, U) for uniserial modules C7 of
type [K/RjJ], which was proved in (4.1). The second isomorphism has been
established above. D

Consequently, the semigroup Unisf is either a group or the disjoint union of two
groups. In order to be more specific about the way these two groups interact within
the monoid Unisf, let us introduce the monoid Stf* s the union of the group Stf
with [K/RL~] (acting s neutral element) attached. Combining (3.2) and (5.4) we have
at once:

Theorem 5.5. Suppose that L is a prime ideal of R, L2 = L, and K is a submodule
ofQ such that K> RL and KL = K. Then the monoidUnis* is the direct product ofthe
group Gp [K/RL~] and the monoid Stf*:

Unisf = Gp [ / J x Stf*. α

We close this section with a rather trivial but pertinent consequence of (5.4):
Unis [KI/I] is precisely the orbit of the isomorphy class of the Standard uniserial
module KI/Iunder the group GplK/R^ in Unisf; furthermore, Gp[K/RJ acts
faithfully on the set Unis[A7//].
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6. Localizing Unis*

Localization at a prime ideal L is the functor RL ®R * from Mod-R to Mod-ÄL;
we know that it carries uniserial modules into uniserials. Hearing in mind that the
objects in Mod-Jf?L can also be viewed äs objects in Mod-Ä, it is clear that this functor
induces a map of Unis R into itself. In particular, äs the isomorphy class of the tensor
product of RL with a uniserial module U (where [t/] eUnisp) belongs to Unis*,
this map carries Unis* into Unis*. Localization proves to be a decisive tool in relating
Unisp (in case P > L ^ K*) to Unis*. More importantly, localization at L gives rise
to a morphism from Gp [K/R] into Gp [ /ÄJ, which surprisingly, turns out to be
an isomorphism. (Caution should be exercised in case KK*< Kin which Gp [KjRK*}
fails to exist.) Consequently, the groups Gp [K/R^ in Unis R are just replicas of
Gp [KlR] under natural isomorphisms. This together with the fact (shown by (5.5))
that the existence of n.Ca. uniserials of level K is already determined by uniserials of
type [K/RL] is a strong indication that the structure Unis R is not äs complex after all
äs one expects and, definitely, it is most worthy of further study.

It is convenient to Start our investigation into the localization process with a simple
lemma which describes more explicitly how localizatzion acts on certain uniserials.

Lemma 6.1. IfL is a prime ideal ofR and Visa uniserial R-module with 17* < L, then
the localization map U -> JRL ® U gives rise to the exact sequence

0 -> Torf(RL/R9 U)-> U -* RL®U -+Q.

Proof. The exact sequence 0 -* R -» RL -» RL/R -* 0 induces the exact sequence

0 -> Tor(RL/R9 U) -» U -* RL ® U -> (RL/R) <S> U -> 0.

The last tensor product has to vanish, since the annihilators of the elements in RL/R
are in R \L, while s U = U for each s e R \L. Evidently, the kernel of the localization
map is the submodule (Jr^L t/[r] of U. o

A closer look at the localization process leads us to the following conclusion.

Lemma 6.2. Assume L is a prime ideal ofR, and Kisa submodule ofQ such that K> RL
and KL = K. Localizations of the elements of the monoid Unisf (of the group
Gp [KJR]) at L commute with the semigroup Operation, i.e., for [17], [£/'] e Unisf we
have

RL ® Torf (U, i/') S Torf (RL ®U,RL® U').

Proof. In order to apply (6.1), we have to ascertain that U*<*L (and the same for U');
but this is clear from U* = K*. (6.1) yields an exact sequence

0
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Tensor it with U' to obtain the exact sequence

0 -+ Tor(Tor(ÄL/Ä, £7), U') -> Tor(i7, U') -> Tor(RL ® £7, U')

The comparison of this sequence with the localization exact sequence of Tor({7, t/'):

0 -> Tor(RL/R, Tor(*7, (70) -> Tor(t/, t/') -> *L ® Tor(C7, t/') -» 0

yields a natural isomorphism

£L (g) Tor(t7, (7') s Tor(,RL ® t/, i/') .

Tensoring both sides with RL, from this isomorphism along with RL ® RL = ÄL we
derive the desired conclusion.

What we have just proved amounts to saying that the localization functor
U -* RL ® U ata prime ideal L induces a homomorphism from the monoid Unis*
into the monoid Unisf. Its restriction to Gp[K/R] behaves in a straightforward
manner:

Theorem 6.3. Lei L be prime ideal of R, L2 = L, and K a submodule ofQ such that
RL< K and LK = K, Then the correspondence

induced by the localization map at L is a group isomorphism.

Pr0ö/. Note that JLfif = ^TimpliesthatÄLÄ^= ^soforauniserialC/oftype^/^we
have t (RL (g) U) = [KIRL~\. Thus yL is a map between the indicated groups. That it is
a group homomorphism is an immediate consequence of (6.2).

The proof of (6.1) shows that, for a given [i/] eGp[K/R], we have
RL®U^ U/U[L]. By [BS2, Thm 3.7], all elongations of non-standard uniserials
U 1 1/ [L] by the same (/[L] s RJR are isomorphic (the same for Standard uniserials
is trivial). Consequently, yL is monic. In order to verify that it is epic äs well, we must
find, for each [F] € Gp [#/^L], an elongation U -> Fby RL/R; then £/is necessarily
of type [ / ] and has the same annihilator äs V. By [BS2], such an elongation exists
if and only if either R:RL> *, or R : RL = K* and KK* = K. In the present case,
R:RL = L9 so that the desired U does exist. Note that U/UiL] £ K, hence

o

We proceed to study the influence of the localization on the monoid Unisp. Needless
to say, it suffices to investigate how it effects the various categories
where /* = P > K* and K > Rt*.
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Proposition 6.4. Lei K> Rr and I* = P > K*, so that Unis[Ä7/7] < Unis*-. For
a prime ideal L satisfying P > L > K* and KL = K, the following diagram is
commutative:

Proof. Since 7* = P, we can assume, without loss of generality, that /> L. Recall
that,if[C7] e Unis [#///], then <P[t/] = [U® I~l/(U®
[t/] into the isomorphy class of

(u® rli(u® /-^[P]) ®RL^u®r*
The denominator on the right band side vanishes, since (U® /""^[P] = R/P.
The conclusion now follows from the fact that I> L implies I~1RL = RL, thus
U®I~i®RL^U®RL. D

It is clear that what we have proved gives also füll Information about how the
localization at L effects Unisf , where P > L' > L; in fact, it is enough to apply the
preceding results, starting with the ring RL, rather than R. We can now conclude that
localization at the prime L'(<L) carries Unisf onto the group Gp[K/RL,]. Thus

Proposition 6.5. If L > L are prime Ideals, R<K<Q and KL = KL = K, then
the localization map — ® RL> induces a homomorphism of the monoid
Unisf = Gp [K/RL] x Stf * onto the group Gp[K/RL,~\. This map, restricted to
Gp[AT/ÄL], is an isomorphism, and it acts trivially on Stf *. D

7. Clifford semigroups in Unis R

Having investigated the structures of the monoid Unisf and their behavior under
the localization process, we would like to find out how the individual semigroups
Unisf fit in larger subsemigroups of Unis R. To this end, we introduce two kinds of
subsemigroups, Unis* and UnisL, by fixing the level K and by fixing the prime
L associated with the annihilators of elements, respectively. Amazingly, both of
them will prove to be Clifford semigroups with totally ordered sets of subgroups.

UnisK will denote the set of isomorphy classes of n. f. a. uniserial modules U in
Unis R of a fixed level K. (2.10) guarantees that this is a subsemigroup of Unis R:

Proposition 7.1. Lei K be a non-principal submodule ofQ9K> R.

(i) Unis* is a subsemigroup of Unis R, which is a monoid with [K/ R] äs neutral
element.
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(ii) Unis* is the disjoint union ofthe subsemigroups Unis* where L ranges over the sei
of the prime ideals such that LK = K:

Unis* = U Unisf. D
LK = K

We want to examine Unis* more carefully. Manifestly, the isomorphy classes of
the Standard uniserials in Unis* form a submonoid which we shall denote by StK*.
We are now prepared to prove one of our structure theorems.

Theorem 7.2. For a non-principal submodule of ß, K > R, Unis* is a commutative
Clifford semigroup over a totally ordered Index sei, where the bonding homomorphisms
are either isomorphisms or projections onto a directfactorfollowedby an isomorphism.

Moreover, Unis* is the direct product of a group and a Clifford semigroup:

Proof. Given K, define the index set äs S = {QL, aL\LeSpQcR,LK^= K], where
a total order is defined by declaring QL > aL and aL > QL, whenever L > L'. Set
GQ]L = Gp [K/RL] and GOL = Gp [KIRL~\ x Stf with bonding homomorphisms
GQL -> G9Ly GOL -> G8L, acting äs follows: [(/] i-> [L ® R J7] and [£/] H* [RL, ®K £7],
respectively . Thus the first homomorphism is the embedding of Gp [.K/RjJ] in the first
factor of GffL, while the second maps Gp[AT/ÄL] isomorphically onto Gp[K/RL,]
and acts trivially on St*; hence it is the projection onto the first factor followed
by an isomorphism. An appeal to (4.1) and (6.5) shows that we obtain a Clifford
semigroup indeed.

The subsemigroup St** is itself a Clifford semigroup, which is the union of the
Clifford semigroups St** (L e Spec R, LK - K) with trivial bonding homomor-
phisms. The claim on the direct decomposition is an immediate consequence of
the first one, by taking into account the action of [K/ R] via Tor on the classes of
Standard uniserials in Unis*,

Corollary 7.3. There exists a non-standard uniserial R-module oflevel K ifand only if
Gp [K/ R] 0. R admits a non-standard uniserial module exactly if the Clifford
semigroup UnisÄ contains non-trivial groups.

Proof. The first assertion is evident from (7.2), while the second follows from
(3.1).

Next we group together the semigroups Unis* in a different way: keeping L fixed.
Accordingly, for a fixed prime ideal L ofR, we consider all uniserials of type [Kill"]
with K ranging over the set of fractional ideals > RL such that LK~K and / is an
ideal of R with /* = L. All these uniserials are n.Ca. Their isomorphy classes form
a subsemigroup Uni«^ of Unis R. In fact, if the uniserials (7, Kare of types [£///]
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and [ATT//'], respectively, where /* = £, = /'* then Tor (U, V) is of type
[(JSTT/n JO/')///'] where (//')* = L. Evidently, we have

Proposition 7.4. For a prime ideal L,
(i) UnisL is a subsemigroup /Unis R, and [β/^iJ ™ ^ts neutral element.
(ii) UnisL is the disjoint union of subsemigroups Unisf for submodules ofQ such that

K>RLandLK = K:
UnisL= \J Unisf. D

KL = K

Visibly, Unisf is the intersection of Unis* and UnisL.

The next theorem is an analogue of (7.2). Before stating it, note that the isomorphy
classes of uniserials of types [ T/ L] with LK = K form a (Clifford) semigroup
Unis L which is the union of the groups Gp [_KIRL~\ with LK = K. GL* will denote the
group GL with an additional neutral element adjoined. GL* is isomorphic to
Stf* for each K> RL with KL = K.

Theorem 7.5. For a non-zero prime ideal L of R, the monoid UnisL is a commutative
Clifford semigroup where the bonding homomorphisms are either isomorphisms or
projections onto a direct factor followed by an isomorphism.

In addition, we have:
UnisL s Unis jL χ GL*.

Proof. For a given L, define the index set T= {ρκ,σκ\Κ> RL9LK= K}9 and
set ρκ>σκ for all K9 and ρκ>ρκ' and σκ>σκ' whenever K>K'. Let
GQK = Gp [K/RL] and Οσκ = Gp [.K/R^ χ Stf with bonding homomorphisms
GOK -* GffK, GffK -+ GOK> acting s follows: [t/] H-> [L ®R C7] and
[t/] h-> [Tot(K'/RL9 7)], respectively, while GQK -* G^' is trivial. (Thus the first
homomorphism maps isomorphically onto the first factor, while the second one
acts trivially on the first factor and maps Stf isomorphically onto Stf; recall that
both are £ GL.) A glance at (5.5) shows that this construction leads to UnisL. The
direct decomposition of UnisL is straightforward. D

Let us point out that (7.2) and (7.5) show that the set of isomorphy classes of n.fa.
uniserials is the disjoint union of numerous groups. The structure of these groups
is determined by the groups Gp [K/R~\ (for all non-principal submodules K of g)
and by the groups GL (for all primes L).

8. The six classes of n.£a. uniserials
Bazzoni and Salce [BS2] distinguish six different classes % (i = l,..., 6) of non-
standard uniserials, and show that in the constructible universe L none of these
classes is empty. Eklof [E] derives that the same holds in ZFC. Osofsky [ l]
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constructs valuation domains in ZFC for which none of these six classes is empty.
These classes are äs follows (A Stands for Ann U):

*1

%
%
^4

%

K

0 = A = 17* < l/#

0 < A = £/* < J7#

0 < A < (7* < 17#

0 < A < 17* < 17#

0 < A < t / * = i/#

0 < A < 17* = C/#

0<C/ 0 = C/°=(7

0<t / 0 = {7°=(7

0 < t/o = U° < U

Q<U0 = U°<U
Q = U0<U°<U

Q=U0=U°<U

divisible, strongly non-standard

bounded, strongly non-standard

Ann U/U°>AnnU
Ann U/U° = Ann U (equiannihilated)

U/U° non-standard, equiannihilated

barely non-standard, equiannihilated

The classes and ̂  are divided into subclasses

and

respectively. If Ue %4, then U/Ke^4 for 0< #< t/° and £// 1/° e <^6. If Ue *56,
then C// C/° = t// C7 [P] 6 ̂ 6 . The modules t/ € ̂ T64 are quotients of modules in ̂ 4,
the modules Ue<%65 are quotients of modules in % but not in <^4, while those in ̂ 66
are not proper quotients of uniserial modules.

It seems inevitable to change this classification into a more systematic one which
embraces the n. f. a. uniserials äs well and relies on properties which turned out to have
the greatest impact.

Given a n. f. a. uniserial module £/, we divide the submodules V of U into two
subsets (upper and lower) äs follows:

* = {V< U\Ann(U/V) > Ann U}
and

^={F< £7|Ann(t//F) = Annt/}.
Evidently, U e ̂  and 0 6 JSf , so neither of these is empty. (This is actually a Dedekind
cut in the totally ordered set of submodules.) We need the following simple fact:

Lemma 8.1. The upper threshold submodule £7° is either the maximum of & or the
minimum of*lt.If& (W) contains U°, then <% (&) has no minimum (maximum).

Proof. If t/0 = C/°, then the claim follows from (1.6). So assume U0< U° and let
u€U°\U0. Set H (u) = / and Ann u = /. By definition, ueU° means Ann u ̂  /*,
and u<tU0 means Annu^J*, thus Annw = /*. Hence 7s/*. By (1.3),
/* / = I*J = / whence we infer from (1.6)(iii) that U°e 5g.
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By an elongation of a uniserial modale U is meant an epimorphism φ-.W-^U where
W is a uniserial module; the elongation φ: W -*> U is proper if φ is not an iso-
morphism. We shall call i/ elongable if it admits a proper elongation <I>:W-+U such
that Ann FF = Ann U. Elongations of non-standard uniserials have been studied by
Bazzoni-Salce [BS2].

Lemma 8.2. If φ: W -* U is an elongation of the n.f.a. uniserial U, then W is
equiannihilated if and only if U is.

Proof. From (8.1) it is evident that the complete inverse image of U° under φ has
to be W°. The claim now follows from the isomorphism W/W°^ U/U°. D

The next result gives detailed Information about the elongations of a n.f a. uniserial
module. (Cp. [BS2].)

Lemma 8.3. Lei U be a n.f.a. uniserial module of type [///].

(i) If U is equiannihilated, then it has a n.f.a. elongation φ:\¥-+υ where W is oftype
[///(/: /)], has the same annihilator s U and is no longer elongable.

(ii) I f U i s not equiannihilated, then it has proper n.f.a. elongations oftypes [//£] with
L > /(/ : /), which have the same annihilator s U. In case U is Standard, there is
a finitely annihilated elongation of U of type [///(/: /)], which has the same
annihilator s U.

Proof. We first show that the smallest ideal /' of R for which Ann///' = Ann///
is /(/ : /). Evidently, /' < /(/ : /) implies /':/</:/. On the other band, /(/:/)</
implies /:/>/':/=/(/:/):/>/:/.

By (1.2) and (1.3)(ii) we have (/(/:/))* = /* n (/:/)* = /*, so (1.4) shows that
///(/:/) is n.f.a. exactly if /*/= /, i.e. if ///is equiannihilated. This proves (i).

To verify (ii), Start with an element a e I* \J* (which exists by (1.6)(ii) and (1.4))
and form the exact sequence 0 -» Ra -» R -* R/Ra -» 0; it induces the exact sequence

0 -» Tor(RIRa,U) -> Ra ® U -* R ® U^ U -+ R/Ra® U -* 0.

Since aU = U, (1.9) teils us that the last tensor product vanishes. Thus this sequence
becomes 0 -> I/al -» Ra <g> U Λ U -> 0. As Ι/αϊ Φ Ο, φ: Ra ® U -» U is a desired
proper elongation of U. If t/is Standard, i.e. s ///, then φ : ///(/ : /) -» ί/is a proper
elongation with the only change that ///(/:/) becomes finitely annihilated:
(/(/ : /))* = /* and //* < /. α

Remark. It is worth while pointing out that the ideal /(/: /) in (8.3) coincides with
the ideal //*; this fact follows from (2.3). In fact, if .Kdenotes the level of ///, then
£/ = /, I:J~R:K9 and #* = /* imply /(/:/) = KI(I:J) = KI(R:K) = K*I
( s K is not principal).
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The following corollary to the preceding lemma will be useful in subsequent
considerations.

Proposition 8.4. A n.f.a. uniserial oftype [///] is not elongable if and only ifl* = /*
and 77* = /.

Proof. By (8.3) a n.f.a. uniserial of type [J/7] is not elongable if and only if it is
equiannihilated and /(/:/) = /. By (1.2) and (1.3)(ii) we have /* = /*, and the
claim follows from the preceding Remark. D

We are now ready to specify the division of the class of n.f. a. uniserials into six
mutually disjoint classes. Intuitively* the following properties are likely to have
a great deal of influence on the behavior of uniserials and are therefore chosen s the
basis of division: 1. the location of the threshold submodule [7°; 2. being equi-
annihilated or not; 3. elongable or not. This leads to twelve classes of which six are
empty for the following reasons. Two classes are empty because U° = U implies that
C/cannot be equiannihilated. Two classes are empty, since t/must be equiannihilated
in case f/°= 0. Finally, two additional classes are empty, since by (8.3)(ii) non-
equiannihilated uniserials are elongable. (9.4) will show that the remaining six classes
are in general not empty. The non-empty ones are listed in the following table.

*i
^
n
*i
n
n

location of U°
0<£/°= £7

0< U°< U
0<U°<U
0< 17° < U
0 = L / ° < U
0 = U°< U

equiannihilation

AnnC//C/°>AnnC/

Annt//t/°>Ann(7

Annl//f70 = Anni7

Annt//i70=AnnC/

Annt/ / f /°=Annf/

Αηη£//*7°=Αηηί7

elongable?

yes

yes

yes

no

yes

no

remarks

strongly n. f. a.

barely n.f a.

barely n.f a.

For a n. f. a. uniserial U oftype [///], the properties listed in the third and fourth
columns translate into relations between /and /; cf. (1.6)(iii), and (8.4), (1.5)(ii).

n
*2

n

n
n
*6

equiannihilation

/*/</

/*/</

/*/=/

/*/=/

/*/=/

/*/«/

elongable

/*/</

/*/</

/*/</

/*/«/

/*/</

y*/=/

7* related to 7*

7*<7*

/*<7*

jr*<7*

y# = 7#

/* = 7*
/* = 7*

remarks
AnnC/=/*

7^7*, 0= U0<U°
/S /.
/**/* f.
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The proof of (8.1) shows that if U0 < U° then / s /* so /* = /*, which implies, by
(1.5)(ii), that t/0=0. Hence Ue1$. Conversely, if C/e¥£ then (8.4) shows that
/* = /* and 77* = 7, so again U0 = 0 and 7 s /* (since C/° Φ 0).

In case /* = 7*, the existence of proper elongations means 7*7<7 which is,
in view of (l.l)(v), equivalent to 7 s T?/*.

Theorem 8.5. Wfe Aat?e thefollowing indusions:

«l, *2 C *£ *3 C *$; ^4 C *£ *5 C *£ ^64,*65 C *£ *66 C *6·

Proof. Compare the tables above. α

9. The six classes V\ and Unisfc
Since we have gathered a fairly large amount of Information about various
subsemigroups in Unis 7?, we can tackle the problem of relating the classification of
the n.fa. uniserial modules into the six classes fj (l <* i < 6) mentioned in Section 8
with the structure of the monoid Unisf .

We proceed s follows. For a fixed level K (where s usual K is a submodule of
Q properly containing 7?), we consider all the submonoids Unisf of Unis* with
L ranging over the set of prime ideals of R containing K*. We then verify that for a
fixed L > K*9 all the n.fa. uniserials whose isomorphy classes belong to Unisf are
members of the same class ̂  for some / <; 3. Significantly, the index / depends only
on K. Then we concentrate on the monoid Unisf» [in case KK* = K~\ which behaves
in a totally different way. Whenever Gp [ΛΓ/7?Κ»] Φ 0, Unisf* contains uniserials
from all the classes f£, f$ and possibly from i^ (in case ΟΑ*Φ Ο).

We start with the characterization of the levels of n.fa. uniserial modules in the
various classes yj .

Theorem 9.1. Lei U a n.f.a. uniserial module of type [//7] with KR<J, and

(i) If U E ̂  (z 2S 4), then K = a^Jfor some a φ L
(ii) IfUei^, then K = a~lJfor some ael.
(iii) IfUei^, then K£J. More precisely, K = a"1/* for some a e I or K = / : 7

according s I ̂ J or I^J.

Proof. This follows immediately from (2.6) once we observe that (i) C/e iPJ for ι ̂  4
if and only if ί/°Φ 0; (ii) ί/e fj if and only if (7°= 0 and 7 is principal s an
TZj.-module; (iii) Uei^ exactly if i7°== 0 and 7 is not a principal jRj»-module. α

Let us turn our attention to the monoids Unisf for L > K*. We are in a position to
obtain a complete picture of the class membership of the isomorphy classes of
uniserials in these semigroups.
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Theorem 9.2. Lei Kbea module with R < K < Q, and L > K* aprime ideal. All the
uniserials in Unis* belang to the same class ̂  (i <, 3).

More specifically,
(i) Unisf ci^if and only ifR:K=K*;

(ii) Unisf c ̂  // and only ifR:K<K* and KK* < K;
(iii) Unisf c i^ if and only ifR:K<K* and KK* = K.

Proof. L>K* implies that Unisf exists. If f/eUnisf is of type [///], then by
(2.3) (iv) /* = L implies I* > /*, which is equivalent to U € ̂  for some i < 3 (see last
table in Section 8).

We always have A = 7 : / = R : K (cf . (2.4) (vii)) and Λ : K < #* (since R < K and
(l.l)(iv)). Because of (l .8) (i), t/ is strongly n.f.a. if and only if A = /* = #*. Hence
i/6 fj if and only if tf : # = K*.

In the remaining cases R:K< K*. By (l .6) (iii) U is equiannihilated if and only if
JJ* = /. From (2.3)(ii)-(iii) we can easily verify that this is equivalent to KK* = K.
Hence (ii) and (iii) are obvious. D

It remains to examine the monoid Unisf* which exists exactly if KK* = K.

Theorem 9.3. Lei Kbe a submodule of Q such that R<K<Q and KK* = K. Then

(i)

(ii)

(iii) Unis [#7/7] c i^for all ideah I such that K* = I*£I£RI*.

Proof. Let C/e Unisf* be a uniserial module of type [//T]. U* = K* = U* implies
that U belongs to ̂  for some i = 4, 5, 6.

The last table in Section 8 shows that Uei$ implies 7^7*. In the present
Situation, this means t (U) = [J5T/JST*], i.e. [t/] € Gp [#/#*]. If 17 € fj, then 7 s J?,,.
Hence [ί7]€θρ[Α:/Λκ*] and the claim in (ii) is evident. Finally, Ue% must
represent the remaining case in which [C/] e Unis [#7/7] for an ideal 7 such that

Evidently, a uniserial in Gp [#/#*] maps homomorphically onto a uniserial in
Gp[K/RK*]. Hence modules in f£ are quotients of modules in i£, and modules
in ̂  have elongations in i^.

Finally, we examine when the classes ̂  are not empty. For uniserials in the first
four classes, we can restrict our consideration to the existence of uniserials with
principal annihilators (since t/° φ 0).
^ is never empty: it contains all divisible uniserials (their types are [β/Λ]).
*£ is not empty if and only if there exists a nonzero prime L < P; the type is

necessarily [s~lRL/K] with seL.
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^ is not empty exactly if there exists a nonzero idempotent prime L < P.
A possible type is [s~*L/R] with seL.

%, and i^l are not empty if and only if there exists an idempotent nonzero prime L.
In these cases, possible types are [s~lLIL\ and [s~~1L/RL], respectively.

i^ is not empty exactly if there exists an idempotent nonzero prime L for which GL
is a non-trivial group (equivalently, the quotient group of the value group of R
modulo the convex subgroup associated with the prime L is incomplete).

To sum up:

Proposition 9.4. For a valuation domain R, each ofthe classes ̂  (i < 5) is non-empty
if and only if there exists a nonzero idempotent prime idealLdifferentfrom P. ̂  is non-
empty exactly if the value group of RL is not completefor some nonzero idempotent
prime ideal L. D

Exaniples. 1) If R is a discrete valuation domain, then i^ is the only not empty class.
2) R archimedean not discrete implies that i^9 1/\ and i^ are not empty, while

^2»^3 are empty; %> is not empty precisely if the value group is isomorphic to a proper
subgroup of the reals.

3) R discrete of rank n > l implies that ^, ̂  are not empty, while i^9 %, i^9
and i^ are empty.
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