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Abstract: S100B is an astrocytic cytokine that has been shown to be involved in several neurodegener-
ative diseases. We used an astrocytoma cell line (U373 MG) silenced for S100B, and stimulated it with
amyloid beta-peptide (Aβ) as a known paradigm factor for astrocyte activation, and showed that
the ability of the cell (including the gene machinery) to express S100B is a prerequisite for inducing
reactive astrocytic features, such as ROS generation, NOS activation and cytotoxicity. Our results
showed that control astrocytoma cell line exhibited overexpression of S100B after Aβ treatment, and
subsequently cytotoxicity, increased ROS generation and NOS activation. In contrast, cells silenced
with S100B were essentially protected, consistently reducing cell death, significantly decreasing
oxygen radical generation and nitric oxide synthase activity. The conclusive aim of the present study
was to show a causative linkage between the cell expression of S100B and induction of astrocyte
activation processes, such as cytotoxicity, ROS and NOS activation.

Keywords: S100B; amyloid beta peptide; astrocytes

1. Introduction

Astrocytes are the first responders to noxious stimuli by undergoing cellular and
functional transition, commonly referred as astrocyte reactivity, aimed to isolate damaged
tissue and to enable the repair. The response comprises a change in astrocyte morphology
and viability, and induction of inflammatory mediators, which may be either neurotoxic
or neuroprotective. The molecular mechanisms inducing these alterations are not fully
elucidated [1–4]. Among these different events, cytotoxicity, reactive oxygen species (ROS)
generation and nitric oxide synthase (NOS) activation are widely regarded to constitute a
significant part the phenomenon [5].

The S100B is an astrocytic protein, also currently regarded as a reliable biomarker
of neural disorders, displaying characteristics shared with danger/damage-associated
molecular pattern (DAMP) molecules, which actively participate in the tissue reaction
to damage. In particular, intracellular levels of the protein, also when modulated in
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animal experimental models, have been shown to correlate with clinical symptoms and
pathological/biomolecular parameters in various neural disorders [6–8]. Interestingly,
S100B has also been shown to activate an inflammatory autocrine loop in astrocytes,
dependent on its transmembrane immunoglobulin-like receptor for advanced glycation
end-products (RAGE) and putatively involved in the propagation of reactive gliosis [9].

While it has been ascertained that S100B overexpression accompanies cytotoxicity,
ROS and NOS activation, reasonably as a part of astrocyte activation processes [6,8], this
study intends to demonstrate that the cell capability (including gene machinery) to express
S100B is a needed prerequisite to induce the phenomena. For this purpose, this study
uses an astrocyte cell line silenced for S100B and stimulated with amyloid beta (Aβ), as a
paradigm factor known to stimulate astrocyte activation and correlative phenomena [10].
Thus, the conclusive aim of the present study was to show a causative linkage between
the cell expression of S100B and the induction of astrocyte activation processes, such as
cytotoxicity, ROS and NOS activation.

2. Results

First, a series of experiments were performed to evaluate the experimental system.
Thus, we examined the concentration of Aβ most useful for standardizing our experi-
ments. Therefore, we evaluated cell viability in the control cells in the presence of 5, 10
and 25 µM Aβ for 24 and 48 h (Figure 1). The most useful concentration for evaluating
other experimental parameters resulted in being 10 µM, as also indicated by previous
papers [11,12].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 2 of 9 
 

 

oxygen species (ROS) generation and nitric oxide synthase (NOS) activation are widely 
regarded to constitute a significant part the phenomenon [5]. 

The S100B is an astrocytic protein, also currently regarded as a reliable biomarker of 
neural disorders, displaying characteristics shared with danger/damage-associated mo-
lecular pattern (DAMP) molecules, which actively participate in the tissue reaction to 
damage. In particular, intracellular levels of the protein, also when modulated in animal 
experimental models, have been shown to correlate with clinical symptoms and patho-
logical/biomolecular parameters in various neural disorders [6–8]. Interestingly, S100B 
has also been shown to activate an inflammatory autocrine loop in astrocytes, dependent 
on its transmembrane immunoglobulin-like receptor for advanced glycation 
end-products (RAGE) and putatively involved in the propagation of reactive gliosis [9]. 

While it has been ascertained that S100B overexpression accompanies cytotoxicity, 
ROS and NOS activation, reasonably as a part of astrocyte activation processes [6,8], this 
study intends to demonstrate that the cell capability (including gene machinery) to ex-
press S100B is a needed prerequisite to induce the phenomena. For this purpose, this 
study uses an astrocyte cell line silenced for S100B and stimulated with amyloid beta 
(Aβ), as a paradigm factor known to stimulate astrocyte activation and correlative phe-
nomena [10]. Thus, the conclusive aim of the present study was to show a causative 
linkage between the cell expression of S100B and the induction of astrocyte activation 
processes, such as cytotoxicity, ROS and NOS activation. 

2. Results 
First, a series of experiments were performed to evaluate the experimental system. 

Thus, we examined the concentration of Aβ most useful for standardizing our experi-
ments. Therefore, we evaluated cell viability in the control cells in the presence of 5, 10 
and 25 μM Aβ for 24 and 48 h (Figure 1). The most useful concentration for evaluating 
other experimental parameters resulted in being 10 μM, as also indicated by previous 
papers [11,12]. 

 
Figure 1. Viability for control cells in the presence of different concentrations of Aβ: 5 (orange bars), 
10 (grey bars) and 25 (yellow bars) micromolar, after 24 h and 48 h of treatment. Viability is ex-
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Figure 1. Viability for control cells in the presence of different concentrations of Aβ: 5 (orange
bars), 10 (grey bars) and 25 (yellow bars) micromolar, after 24 h and 48 h of treatment. Viability is
expressed as a percentage compared with untreated cells (100%—blue bars). Data are presented as
the mean ± sd. Four replicates for each experimental group were considered. * p < 0.05, ** p < 0.01
*** p < 0.001 vs. control.

Next, S100B levels were evaluated in control and S100B-silenced cells after Aβ stimu-
lation (10 µM). Aβ induced overexpression of S100B in control cells, as expected [6,8]. This
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effect was particularly evident after 48 h of stimulation (nearly 40%, p < 0.05). No changes
in S100B levels were observed in silenced cells after Aβ treatment (Figure 2).
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Figure 2. S100B protein levels in control and S100B-silenced cells, after treatment with 10 µM Aβ

for 24 h (orange bars) and 48 h (black bars), or in the absence of Aβ (blue bars). Percentage values
were obtained as indicated in the Materials and Methods section, and expressed as % in respect to
the untreated control cells (100%). * p < 0.05 treated vs. untreated. The values of S100B expressed
as ng/mL (respectively for control and silenced cells) were 10.41 vs. 3.8 (untreated), 11.8 vs. 3.7,
(Aβ 24 h) and 15.00 vs. 3.9 (Aβ 48 h).

In order to dissect the possible role(s) of S100B on astrocyte machinery, cell viability
was first analyzed. Figure 3 shows that while control cells exhibited a significantly reduced
number of live cells after 24 and 48 h treatment with Aβ, with a percentage of dead cells at
20 and 35%, respectively, the silenced cells were consistently more resistant to cell death at
the same time points.

Since it is known that Aβ also exhibits a toxic cellular effect through oxidative stress,
which is regarded to constitute a crucial aspect of astrocyte activation [10], we assessed the
ROS generation and the enzymatic activity of NOS in our experimental model. Figure 4A,B
shows that Aβ that treatment at both 24 h and 48 h significantly increased both hydroxyl
radicals and NOS activity in control cells. Specifically, the percentage of ROS increased
to 150 and 200% after treatment for 24 and 48 h, respectively, while the effect on NOS
activity was significant after 48 h of treatment, reaching almost double values (0.65 mU/mg
protein) as compared to untreated cells (0.35 mU/mg protein). Silenced cells showed no
significant changes in either ROS or NOS activity, indicating that S100B synthesis is needed
for oxidative and inflammatory phenomena that might occur after Aβ stimulation.
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Figure 3. Cell viability for control and S100B-silenced cells after treatment with 10 µM Aβ, for 24 h
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(B) NOS activity (displayed as milliunits/milligrams of protein) for untreated cells (blue bars), treated
with 10 µM Aβ for 24 h (orange bars) and 48 h (black bars). * p < 0.05 and ** p < 0.001 vs. untreated.

3. Discussion

Astrocytes are the most widespread glial cells. In the case of AD pathogenesis, which
directly involves Aβ, they both internalize and degrade Aβ and prevent extracellular
plaque aggregation [10,13–16]. Activated astrocytes have been shown to markedly overex-
press S100B, also during AD [8,17], and most of these astrocytes overexpressing S100B are
closely associated with diffuse or neuritic Aβ plaques, thus being regarded as playing a
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significant role in pathogenic processes [18–20]. On the basis of these data, and of other
coherent data obtained in other neural disorders [6,8], the notion that the S100B overex-
pression is strictly linked to astrocyte reaction may be taken for granted. Along this line,
the present study offers information demonstrating that cell capability (including gene
machinery) to express S100B is a needed prerequisite for the effect of an inflammatory
inducers, such as Aβ, on cytotoxicity, ROS generation and NOS activation, which are also
regarded as hallmarks of astrocyte activation [5], since in S100B-silenced cells Aβ stimula-
tion was ineffective. This information unravels a crucial role of S100B in these phenomena,
identifying a causative linkage between S100B expression and the occurrence of these
phenomena participating in astrocyte reactivity. This may also be relevant in light of the
heterogeneous cell population of astrocytes, which are known not to uniformly express the
same molecular patterns [21,22].

In detail, our study showed that Aβ peptide raises intracellular levels of S100B and
increases astrocyte cell death. Astrocyte activation is also known to induce an increase
in oxygen radicals and NOS activation [10], which in fact is observed after Aβ treatment.
These effects are abolished in S100B-silenced cells, where both survival and oxidative-
inflammatory mechanisms were not affected after Aβ treatment. Interestingly, also in
experimental animal models for multiple sclerosis, which are accompanied by an increase
in oxidative–inflammatory mechanisms, these parameters were significantly reduced after
treatment with drugs able to block the activity (pentamidine) or inhibit the astrocytic
synthesis of S100B protein (arundic acid) [23,24]. It should also be noted that, in addition to
multiple sclerosis, modulation of S100B has been shown to be relevant in the pathogenic
processes of a number of neural disorders involving astrocytes, such as the aforementioned
AD, Parkinson’s disease, amyotrophic lateral sclerosis, and acute traumatic and vascular
neural injury [6,8]. Thus, the indication that S100B expression is a prerequisite for astrocyte
activation processes may assume wide relevance.

Mechanisms accompanying S100B-induced effects on astrocytes are still undefined;
however, it may be relevant to this study that the overexpression of S100B is regarded to act
via the activation of nuclear factor NF-kB proinflammatory cascade [25,26], which is also
known to be involved in astrocyte processes induced by Aβ peptide [10,27,28]. However,
the cell mechanisms participating in these complex phenomena lie out the goal of this
brief communication and might be the object of future studies. Reasonably, the present
results are subject to criticism of the data obtained on cell lines, and cannot be uncritically
applied to all in vivo astrocyte populations, which are known to be heterogeneous and
subject to environmental interferences [21,22]. In this regard, since the issue of classifying
and defining astrocytes based on structure, biomarkers and function has always been a
matter of debate, it cannot be ruled out that the present results cannot be referred “tout
court” to all types of astrocytes. However, in general terms, these results indicate that
a downregulation of S100B in astrocytes activated by an inflammatory factor, such as
extracellular Aβ, restricts astrocyte reactivity, including oxidative stress.

4. Materials and Methods
4.1. Preparation of Aβ Peptide

Aβ peptide was purchased from Sigma-Aldrich (Sigma-Aldrich, St Louis, MO, USA.
Cat. Num. A9810). In accordance with previous papers, including our papers [11,12,29,30],
to maintain Aβ in a monomeric state, we first dissolved the peptide in 1,1,3,3-hexafluoro-
2-propanol (HFIP, Sigma-Aldrich, St. Louis, MO, USA), at a concentration of 1 mM. We
intended to focus our study to one state of Aβ (monomeric), since the goal of our study was
the reaction of astrocytes to an activating factor (in this case Aβ) in conditions when S100B
is expressed or silenced, more than the comparative interaction of different (momoneric
or oligomeric or polymeric) states of Aβ with the cell. After removal of the HFIP, the
monomeric peptide was dissolved in DMSO at a final concentration of 2.5 mM, and stored
at −80 ◦C until use (when it was diluted in PBS, according to the experimental design). In
all control experiments, DMSO was added to the cell cultures at the same concentrations as
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the peptide solutions. Thawing and dilution to the target concentration in the appropriate
culture medium was performed immediately before use.

Figure 1 shows that a 10 µM concentration offered a clearer effect on cell viability than
1 or 25 µM. Thus, we used this Aβ concentration (10 µM) for all experiments. In addition,
this concentration also showed most clear results in previous in vitro studies [11,12].

4.2. Cellular Lines and S100B Silencing

U373 MG (human astrocytoma) cells were purchased from Sigma-Aldrich (Sigma-
Aldrich, St. Louis, MO, USA. Cat. No. 08061901). The cells were cultured in Dulbecco’s
modified eagle’s medium (DMEM, Invitrogen Co., Carlsbad, CA, USA), with the addition of
1% penicillin/streptomycin and 10% fetal bovine serum (FBS). They were then maintained
at 37 ◦C in a humidified atmosphere with 5% CO2. The cells, once 60% confluence was
reached, were transfected with stealth S100B siRNA oligo (Invitrogen—Waltham, MA, USA.
Cat. Num. AM16708) or stealth-negative universal control (Invitrogen—Cat. Num.
12935300), using lipofectamine 2000 (Invitrogen—Cat. Num: 11668019), according to
the manufacturer’s instructions. After 24 h, the cells were moved to serum-free medium
and grown in this condition until use. Selective inhibition was confirmed after 2 weeks
of culture, and viability during the same period was equal to that of control cells. In all
experiments, the results obtained on S100B-silenced cells were compared to the negative
control cells (U373 MG transfected with negative control siRNA).

4.3. Human S100B ELISA Assay

The S100B assay was determined in cell lysates and standards using the enzyme-linked
immunosorbent assay (ELISA) kit, following the manufacturer’s protocols (human S100B
ELISA Kit, Abcam, Cambridge, UK. Cat. Num. ab234573). We used the quantitative ELISA
assay, which is highly standardized for S100B measurements, also in relationship to the
wide clinical use, instead of other semi-quantitative assays, such as the Western blot assay,
since we were interested in the final quantification of the protein and not in any possible
characterization of the molecule. Briefly, the S100B standards (at a concentration of 0.63,
1.25, 2.5, 5, 10 and 20 ng/mL) or the samples of unknown concentration (50 µL of 0.5 mg
protein/mL cell lysate) were added, in triplicate, to the wells pre-coated with the S100B
antibody. The plate, after the addition of the antibody cocktail, was read at 450 nm with a
microplate reader. The concentration of S100B in the samples was calculated in ng/mL by
interpolating the absorbance values of the standard curve, and expressed as a percentage
value compared to untreated control cells.

To prepare cell lysates, approximately 5,000,000 cells were used. Briefly, the cells
were washed twice with cold PBS and then the pellets were lysed using the cell extraction
buffer (Thermofisher—Waltham, MA, USA. Cat. Num. FNN0011). Then, the samples were
centrifuged at 13,000 rpm for 10 min at 4 ◦C and the supernatants were collected. Protein
concentration was determined using a protein assay (Bio-Rad, Hercules, CA, USA, Cat.
Num. 5000002) in 96-well microplates, using a calibration line of BSA.

4.4. Direct Toxicity Study

For viability determination, cells were plated in 96-well plates at a density of
10,000 cells/well, and incubated for 24 h and 48 h in the absence (untreated) and pres-
ence of 10 µM Aβ. Cell viability was assessed using the MTS assay (CellTiter 96 Aqueous
One Solution Cell Proliferation Assay, Promega, Madison, WI, USA. Cat. Num. G3582).
The assay provided a measure of the normal metabolic state of the cells by recording the
absorbance of each well with a microplate photometer (BioTek™ Elx800-Box 998; BioTek
Instruments, Winooski, VT, USA) at a wavelength of 490 nm. Results are expressed as a
percentage of cell viability compared to control cells (100%).
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4.5. Quantification of Intracellular Levels of ROS

ROS generation was directly represented as a percentage relative to the control as the
fluorescence intensity normalized to the number of cells.

Cells were plated in 96 black/clear-bottom wells (Greiner Bio-One, Kremsmünster,
Austria) for the determination of reactive oxygen species. For detection after different
treatments, a detector kit (DCFDA-Cellular ROS Detection Assay—Abcam, Cambridge, UK.
Cat. Num. CB-P048-K) was used, initially non-fluorescent, which in the presence of ROS, is
oxidized and its intensity, directly proportional to the amount of ROS, was measured in
end-point mode at Ex/Em = 485/535 nm, using a BioTek Cytation cell imaging microplate
reader (BioTek U.S., Winooski, VT, USA).

ROS generation was then represented as a percentage of the control as fluorescence
intensity normalized to the number of cells.

4.6. NOS Activity

NOS enzyme activity was directly measured using the NOS Activity Assay Kit (BioVi-
sion, Kampenhout, Belgium. Cat. Num K2094), according to the manufacturer’s instruc-
tions. Briefly, 2× 106 cells were lysed with 300 µL of cold NOS lysis buffer (provided by the
Kit) containing protease inhibitor cocktail, and centrifuged at 10,000× g at 4 ◦C for 10 min.
On the collected supernatant, the protein concentration was calculated using the Bio-Rad
Protein Assay (see above).

On a 96-well plate, 50 mL of sample (0.25 mg/mL protein) cell lysate and 5 µL NOS
(positive control) were added. Subsequently, 40 µL of the reaction mixture (supplied by
the kit) and 50 µL of the Griess reagent were added to each well. The optical density was
measured at 540 nm with a microplate reader. A standard calibration solution (0, 250, 500,
750, 1000 pmol/well) of nitrite standard was used to generate the calibration curve. The
activity of nitric oxide synthase was determined as B/TxC = mU/mg protein, where B is the
amount of nitrite in the sample well from the standard curve, T is the reaction time (60 min)
and C is the amount of protein.

4.7. Statistical Analysis

Every experiment was replicated at a minimum of three times and with at least seven
replays per group. All results are displayed as the means ± SEM. Data were analyzed by a
one-way ANOVA with the Newman–Keuls post hoc test, by using the PrismTM 8:0 software
(GraphPad, San Diego, CA, USA). Differences were considered significant at p < 0.05.
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