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Abstract: The discovery of new oral antidiabetic drugs remains a priority in medicine. This research
aimed to evaluate the activity of the flavonoid baicalein and its natural glucuronide baicalin, compared
to the antidiabetic drug metformin, as potential antiglycation, anti–radical, and anti-α–glucosidase
agents, in order to assess their potential role in counteracting hyperglycemia-induced tissue damage.
The study considered: (i) the BSA assay, to detect the formation of advanced glycation end products
(AGEs), (ii) the GK peptide–ribose assay, which evaluates the cross–linking between the peptide
and ribose, and (iii) the carbonyl content assay to detect the total carbonyl content, as a biomarker
of tissue damage. In addition, to obtain a reliable picture of the antiglycation capacity of the in-
vestigated compounds, DPPH scavenging and oxygen radical absorbance capacity (ORAC) assays
were performed. Furthermore, the anti–α–glucosidase activity of baicalein and baicalin was detected.
Furthermore, to estimate cell permeability, preliminarily, the cytotoxicity of baicalein and baicalin
was evaluated in HT–29 human colon adenocarcinoma cells using the MTT assay. Successively, the
ability of the compounds to pass through the cytoplasmic membranes of HT–29 cells was detected as
a permeability screen to predict in vivo absorption, showing that baicalein passes into cells even if it
is quickly modified in various metabolites, being its main derivative baicalin. Otherwise, baicalin per
se did not pass through cell membranes. Data show that baicalein is the most active compound in
reducing glycation, α-glucosidase activity, and free radicals, while baicalin exhibited similar activities,
but did not inhibit the enzyme α–glucosidase.

Keywords: BSA; AGEs; cellular uptake; ROS; flavonoids; HT–29 cells; diabetes mellitus; oral
antidiabetic drugs

1. Introduction

Diabetes mellitus (DM) is the fourth leading cause of death in developed countries
and is an epidemic in many developing countries. Numerous factors are involved in the
aetiology of type 2 diabetes mellitus (T2DM), such as genetic predisposition, lifestyle, and
dyslipidemia [1,2]. In poorly controlled DM, chronic hyperglycemia accelerates the forma-
tion of advanced glycation end products (AGEs) and the overproduction of reactive oxygen
species (ROS) [3–6], increasing oxidative stress and glycation [7]. Furthermore, AGEs are
ingested through food and then absorbed into the organism [8]. Several investigations
have shown that AGEs and ROS are involved in a wide spectrum of pathologies, including
cardiovascular failure, rheumatoid arthritis, Alzheimer’s disease, and kidney disease [9–11].
Therefore, inhibition of glycation reactions and free radicals may be an effective approach
to counteract diabetes-associated diseases [12].

α–Glucosidase plays a key role in the regulation of blood sugar, and its inhibition
reduces glucose absorption from food carbohydrates, reducing the postprandial glycemic
peak [13]. Several authors have reported that acarbose, a well–known drug inhibitor
of α–glucosidase, improves glycaemia and increases the level of GLP–1 (glucagon–like
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peptide–1) [13,14]. However, acarbose treatment causes various gastrointestinal distur-
bances that may not be produced by plant–derived inhibitors [15,16]. Furthermore, the
discovery of new antihyperglycemic agents with multiple targets capable of reducing
glucose–induced damage, decreasing glycation, ROS, and α–glucosidase activity could be
relevant for patients with DM.

Baicalein (5,6,7–trihydroxyflavone) and baicalin (7–β–D–glucuronic acid of 5,6–
trihydroxyflavone, Figure 1) have been identified in various medicinal plants, mainly in the
roots of Scutellaria baicalensis G. (also known as the Chinese skull cap or Huang-Qin) and in
the bark of Oroxylum indicum [17]. Scutellaria baicalensis is one of the 50 fundamental herbs of
traditional Chinese medicine, widely used as an anti–inflammatory, antiviral, antibacterial,
and anticancer remedy [18,19]. Studies have reported that baicalein and baicalin have an-
tioxidant, anti–inflammatory, immune–stimulating, and antiviral activities [19–21]. Baicalin
could also act in various intestinal diseases, as it can suppress the PI3K/AKT signalling
pathway to inhibit the production of Bcl–2 proteins [22,23]. Previous studies have shown
that baicalein and baicalin exhibit potential antidiabetic activities [24]. In detail, baicalein
reduces oxidative stress, expressions of iNOS and TGF-β1, and NF–κB activation [25,26].
Furthermore, in both insulin deficiency and insulin–resistant rat models, baicalein showed
antiglycation and anti–inflammatory protective mechanisms by also reducing AGE forma-
tion [27]. However, other authors did not find inhibition of protein glycation induced by 50
mM D-fructose [28]. Thus, this point may require further investigation.
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Figure 1. Chemical structures of baicalein, baicalin, and metformin.

Metformin (1,1–dimethylbiguanide) is a first–line oral antihyperglycemic agent largely
used in T2DM due to its ability to decrease liver glucose production and improve insulin
activity in target tissues [29]. Therefore, metformin reduces glycaemia and increases glyox-
alase I activity, thus decreasing the methylglyoxal formation, a well–known precursor of
AGEs [30,31]. Furthermore, the authors reported the in vitro inhibitory effect of metformin
on protein glycation through various mechanisms [32–34].

This research aimed to investigate by a series of in vitro assays the activity of baicalein
and its natural glucuronide baicalin, compared to metformin, as potential antiglycation
agents and antiradical agents, in order to assess any possible role in counteracting tissue
damage linked to diabetes. Furthermore, the occurrence of specific hypoglycemic effects
was evaluated by investigating their anti–α–glucosidase activity. To complete the evaluation
of flavonoids also under a predictive pharmacokinetic aspect, the ability of baicalein and
baicalin to pass through HT–29 cell membranes was studied to estimate their bioavailability.

2. Results and Discussion
2.1. Proteine Glycation Inhibition

Glycated albumin could be considered a diagnostic indicator for DM and has been
proposed as a marker to evaluate atherosclerosis and coronary disease in diabetic pa-
tients [31]. To evaluate the capacity of the flavonoids baicalein and its natural 7–O–
glucuronide baicalin, and the drug metformin to inhibit protein glycation and fluorescent
AGE formation, three assays were used to evaluate different steps of glycation reactions
(Supplementary Figure S1). First, the BSA assay was performed to evaluate the ability of
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the selected compounds to reduce the AGE formation by the reaction between albumin
and glycation agents. Second, the GK peptide–ribose assay was performed to estimate the
ability of the compounds to inhibit peptide cross–linking; and third, the carbonyl content
assay was performed, which measures the binding of DNP to protein carbonyls to detect
the total amount of carbonyl–derived compounds in BSA–ribose glycation.

2.1.1. BSA Assay

Glucose, glyoxal, and ribose were used as glycation inducers to detect the formation
of AGEs in vitro. A nine-day course assay was performed showing that glucose, glyoxal,
and ribose have different glycation capacities (Figure 2).

Pharmaceutics 2022, 15, x  3 of 17 
 

 

2. Results and Discussion 

2.1. Proteine Glycation Inhibition 

Glycated albumin could be considered a diagnostic indicator for DM and has been 

proposed as a marker to evaluate atherosclerosis and coronary disease in diabetic patients 

[31]. To evaluate the capacity of the flavonoids baicalein and its natural 7–O–glucuronide 

baicalin, and the drug metformin to inhibit protein glycation and fluorescent AGE for-

mation, three assays were used to evaluate different steps of glycation reactions (Supple-

mentary Figure S1). First, the BSA assay was performed to evaluate the ability of the se-

lected compounds to reduce the AGE formation by the reaction between albumin and 

glycation agents. Second, the GK peptide–ribose assay was performed to estimate the abil-

ity of the compounds to inhibit peptide cross–linking; and third, the carbonyl content as-

say was performed, which measures the binding of DNP to protein carbonyls to detect 

the total amount of carbonyl–derived compounds in BSA–ribose glycation. 

2.1.1. BSA Assay 

Glucose, glyoxal, and ribose were used as glycation inducers to detect the formation 

of AGEs in vitro. A nine-day course assay was performed showing that glucose, glyoxal, 

and ribose have different glycation capacities (Figure 2). 

 

Figure 2. (A) Time course of AGE fluorescence during incubation of 50 mg/mL BSA with 0.1 M 

ribose, 0.003 M glyoxal and 0.8 M glucose. (B) Maximal AGE formation after 5 (ribose) and 7 days 

of incubation with the selected glycation agent. Data are the mean ± SEM of 3–6 experiments. * p < 

0.05 and **** p < 0.0001 versus BSA (control). Turkey’s analysis test shows significant differences 

between BSA+glucose versus BSA+glyoxal or BSA+ribose (p < 0.0001), or BSA+glyoxal versus 

BSA+Ribose (p< 0.01). 

Ribose was a powerful glycation agent with maximal AGE formation after 5 days of 

incubation with BSA (Figure 2A). Glyoxal induced maximal glycation after seven days of 

incubation, while glucose was a very weak glycation inducer, with a slight increase in 

fluorescence after seven-nine days (Figure 2A). Therefore, the experimental protocols 

Figure 2. (A) Time course of AGE fluorescence during incubation of 50 mg/mL BSA with 0.1 M ribose,
0.003 M glyoxal and 0.8 M glucose. (B) Maximal AGE formation after 5 (ribose) and 7 days of
incubation with the selected glycation agent. Data are the mean ± SEM of 3–6 experiments. * p < 0.05
and **** p < 0.0001 versus BSA (control). Turkey’s analysis test shows significant differences between
BSA+glucose versus BSA+glyoxal or BSA+ribose (p < 0.0001), or BSA+glyoxal versus BSA+Ribose
(p < 0.01).

Ribose was a powerful glycation agent with maximal AGE formation after 5 days of
incubation with BSA (Figure 2A). Glyoxal induced maximal glycation after seven days
of incubation, while glucose was a very weak glycation inducer, with a slight increase in
fluorescence after seven-nine days (Figure 2A). Therefore, the experimental protocols were
set at five days for ribose and seven days for glyoxal and glucose; mean maximal glycation
values are reported in Figure 2B. Under these different conditions, the ability of baicalein,
baicalin, and metformin to reduce the formation of AGEs was studied (Figure 3).
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Figure 3. Baicalein (green bars), baicalin (yellow bars), and metformin (pink bars) inhibition of AGE
formation after 7(A,B) or 5 (C) days of incubation of 50 mg/mL BSA with 0.8 M glucose (A), 0.003 M
glyoxal (B), and 0.1 M ribose (C). Aminoguanidine (2.5 mM, AG) was the positive control. Data are
the mean ± SEM of 3–6 experiments. * p < 0.05, *** p < 0.001, *** p < 0.001, **** p < 0.0001 versus BSA
glycation (BSA + glycation agent).

In the glucose–BSA glycation test, both baicalein and baicalin significantly inhibited
AGE formation from the concentration of 5 µM, while metformin did not show any sig-
nificant inhibition (Figure 3A). Glyoxal-induced BSA glycation was inhibited by 10 µM
baicalein and 5 µM baicalin (Figure 3B). Finally, with ribose, which causes the highest glyca-
tion, both baicalein and baicalin maintained their ability to reduce glycated albumin from
the concentration of 5 µM, whereas metformin, as in the previous tests, did not achieve any
protection (Figure 3C). Previous research suggested that metformin could be a moderate
inhibitor of glycation, possibly due to its interaction with dicarbonyl compounds generated
during the glycation process [34]. However, the concentration used in the reported in vitro
study was elevated, as well as 1 mM, which is a very higher concentration, higher than the
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therapeutic level of the drug [33]. In fact, the therapeutic range is minor at 1.5 µM (max
5 µM), even if rarely, higher concentrations have been detected [35,36]. In our experimental
condition, metformin (1–100 µM) did not show a significant effect even if a slight inhibition
trend was observed (Figure 3).

2.1.2. GK Peptide–Ribose Assay

This investigation was performed to evaluate the ability of the compounds to reduce
peptide cross–linking, a process that occurs in the last phase of glycation. In the beginning,
GK glycation was detected each day for up to 4 days, showing that AGE formation reached
its maximum after 2 days (Figure S2). Therefore, the assay was performed after 2 days
of incubation. It should be noted that baicalein (1–100 µM) inhibited AGE formation in
a concentration–dependent manner (Figure 4). The IC50 was 49.7 ± 0.5 µM (pD2 = 4.3).
Interestingly, its glucuronide derivative baicalin, tested in the same baicalein concentration
range, only slightly and not significantly reduced the cross–linking of the GK peptide
(Figure 4). As expected, metformin was not active as a linking inhibitor, in agreement with
the results obtained with the BSA assay (Figure 4).
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Figure 4. Effects of baicalein (green bars), baicalin (yellow bars), and metformin (pink bars) on
GK cross–linking formation after 2 days of incubation of 26.7 mg/mL GK peptide (0.1 M) with
40 mg/mL ribose (0.27 M) reported as fluorescence (A) and percentage of control fluorescence
(B). Aminoguanidine (2.5 mM, AG) was the positive control. Data are the mean ± SEM of
3–6 experiments. * p < 0.05, ** p < 0.01, and **** p < 0.0001 versus GK cross–linking (GK + Ribose).

2.1.3. Carbonyl–Protein Content Assay

The generation of ROS during glycation and glycoxidation is capable of oxidizing
the side chains of amino acid residues in protein to form carbonyl–protein derivatives,
which are well–known to mediate free radical–induced damage to various biological macro-
molecules [37]. Therefore, the carbonyl content is considered an indicator of glycation
and is used as a parameter to evaluate protein oxidation [38]. In this experimental step,
metformin was not investigated because its antiglycation activity was very low in previous
tests. Both baicalein and baicalin exhibited a detectable ability to reduce carbonyl increase
in the concentration range of 10–100 µM, and baicalin also inhibited carbonyl formation at
the lowest concentration tested of 5 µM. However, the inhibitory effects of both compounds
were not concentration dependent, resulting in approximately 15–25% (Figure 5). Recently,
some authors suggested that a sage methanol extract (0.25–1.00 mg/mL) significantly de-
creased BSA carbonyl formation [39], while other authors reported that single compounds,
such as rosmarinic acid and carnosic acid (6.25–400 µM), decreased carbonylation [38].
Previously, various flavonoids, including baicalein, have been reported to decrease protein
carbonylation in goat eye lenses [40].
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Figure 5. Effects of baicalein (green bars) and baicalin (yellow bars) on carbonyl content, detected
with 50 mg/mL BSA and 0.1 M ribose, reported as carbonyl content and expressed in nmol/mg
protein. Aminoguanidine (2.5 mM, AG) was the positive control. Data are the mean ± SEM of
3–6 experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001 versus maximal carbonyl
content (BSA + Ribose).

2.2. Free Radical Inhibition

Hyperglycemia and ROS increase the formation of AGEs through oxidative steps
(glycoxidation) [41]. For the evaluation of the antioxidant activity of the compounds under
examination, two assays were used: (i) the DPPH assay, for which the reduction of the
reference radical occurs by the transfer of a single electron to the radical molecule (single
electron transfer mechanism, SET) [42]; and (ii) the ORAC assay, for which the compounds
examined oxidize by donation of a hydrogen atom to radical molecules (hydrogen atom
transfer mechanism (HAT) [43].

2.2.1. DPPH• Assay

Figure 6A shows the antiradical activity of the two flavonoids and metformin tested in
the range of 0.1 to 500 µM. Ascorbic acid and N–acetylcysteine (NAC) were used as positive
controls. Both baicalein and baicalin showed an antioxidant capacity comparable to that
of the standard ascorbic acid, showing excellent scavenger activity. These compounds
reach their maximum effect at the highest concentrations (≥50 µM), while NAC showed a
lower potency, and metformin did not show any scavenging effect. Based on antiradical
profiles, it was possible to quantify antioxidant efficacy by calculating the EC50 values,
a parameter that indicates the effective substrate concentration that causes 50% of the
maximum antioxidant response [44]. Potency values expressed as pD2 (−log EC50) are
4.91 ± 0.01 for baicalein and 4.89 ± 0.03 for baicalin, comparable to those of ascorbic acid
(4.77 ± 0.04), and higher than those of NAC (4.38 ± 0.02, p < 0.05).
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Figure 6. Antiradical activity of baicalein, baicalin, and metformin detected with DPPH• (A) and
ORAC (B) assays. Positive controls: ascorbic acid and N–acetylcysteine (NAC). Data are the mean
± SEM of 3–6 experiments. **** p < 0.0001 versus positive controls. ORAC values are expressed as
TEAC (trolox equivalent antioxidant capacity, µmol TE/µmol compound).

2.2.2. ORAC Assay

Based on a different antiradical mechanism such as peroxyl radical scavenging capacity,
the ORAC assay was performed [45]. Baicalein and baicalin antiradical activities were
very similar and approximately ten times higher than metformin; the TEAC values were
5.41 ± 0.33, 5.90 ± 0.23, and 0.48 ± 0.10 µmol TE/µmol, respectively (Figure 6B). Ascorbic
acid and NAC, standard antioxidants (0.65 ± 0.01 and 1.45 ± 0.01 µmol TE/µmol), showed
lower activity than both flavonoids. The order of antioxidant activity was baicalin ≥
baicalein >> NAC > ascorbic acid ≥metformin.

The results obtained with DPPH• and ORAC assays agree with those of Gao et al.
who suggested that flavonoids with o–dihydroxyl structure in the A ring are effective
radical scavengers [20]. These can reduce the formation of AGEs by scavenging free
radicals produced in the early phase of the glycation process [46]. Thus, the quenching
of ROS by antioxidants such as baicalein and baicalin can contribute to the reduction of
AGE production.

2.3. Anti-α–glucosidase Activity

The inhibitory activity of baicalein and baicalin was studied using the α–glucosidase
assay, with pNPG as substrate and acarbose as positive control [47,48]. The absorbance
curves were detected during the 60 min reaction between enzyme (0.05 µM) and pNPG
(2 mM) alone and in the presence of different concentrations of baicalein (1–100 µM),
revealing a concentration-dependent inhibition of enzyme activity (Figure 7A). Interestingly,
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under the same conditions, baicalin did not induce any modification of the α–glucosidase
activity (Figure S3), suggesting that only the flavonoid aglycone could interact with the
enzyme catalytic task. This observation is consistent with a previous study showing for
baicalin an IC50 greater than 400 µM against rat α–glucosidase in vitro [49]. Therefore,
an in–depth study on the enzyme was performed only with baicalein, as a potential new
α–glucosidase inhibitor. Four α–glucosidase concentrations (0.035, 0.05, 0.07 and 0.1 µM)
were tested to study the type of inhibition induced by baicalein (Figure S4 and Figure 7B).
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Figure 7. (A) An example of kinetic curves of 0.05 µM α–glucosidase, using 2 mM pNPG as substrate,
in the presence of increasing concentrations of baicalein. (B) Inhibition of baicalein was studied
using four different concentrations of α–glucosidase: 0.035, 0.05, 0.07 and 0.1 µM. (C) Plot of enzyme
activity (v) versus α–glucosidase enzyme concentration. Data are reported as mean ± SEM of
3–6 experiments.

Always, baicalein exhibited concentration–dependent inhibition, even with lower
potency at higher enzyme concentrations (Figure 7B,C). Thus, the baicalein IC50 values
increased at higher enzyme concentrations (Table 1). Baicalein 50 µM inhibited 0.035 and
0.05 µM α–glucosidase activity of about 90% and 75%, respectively.
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Table 1. Inhibitory potency of baicalein with four different α–glucosidase concentrations.

Baicalein (IC50)
α-Glucosidase 10−5 M pD2

0.035 1.81 4.74 ± 0.02 a

0.05 2.41 4.62 ± 0.04 a

0.07 5.16 4.29 ± 0.07 a

0.10 55.49 3.26 ± 0.26 b

IC50: half maximal inhibitory concentration of enzyme activity. Data are obtained using the non-linear regression
of the normalized response of 4–5 experiments. pD2: −Log IC50. a,b Different superscript letters indicate significant
difference (p < 0.0001).

To study the type of interaction between α–glucosidase and baicalein, the plot of
enzyme activity (v) versus α–glucosidase enzyme concentration was obtained (Figure 7C),
suggesting a concentration–dependent reversible interaction since all straight lines obtained
at different concentrations of baicalein pass through the origin of the axes, and their
slope decreased with increasing concentrations of the inhibitor. Previous research showed
similar behavior for other natural compounds, for example, luteolin, morin, magnolol, and
α–mangostin [48,50–52]. Furthermore, the type of baicalein inhibition was also estimated
with Michaelis–Menten and Lineweaver–Burk plots (Figure 8A,B) obtained using different
substrate concentrations (0.5, 1.0, 1.5 and 2.0 mM pNPG), while maintaining constant
enzyme concentration (0.05 µM). The Lineweaver–Burk plot shows the intersection of
lines in the second quadrant, as a result of the change in both Vmax and Km at different
concentrations of baicalein, suggesting a mixed–type (mixture of competitive and non–
competitive) mechanism of enzyme inhibition. When applying a mixed–model inhibition,
Vmax was 0.0926 ∆OD/min, Km was 0.24 mM, and the baicalein inhibition constant (Ki) was
25.89 µM. The baicalein Ki is very similar to those reported by other authors: 45 µM [53],
44 µM [54], and 14.6 µM [49].
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Figure 8. Michaelis–Menten (A) and Lineaweaver–Burk (B) graphs of α–glucosidase activity with
different substrate concentrations (0.5–2.0 mM pNPG) in the presence of baicalein (1–100 µM). Data
are obtained from 4–5 experiments.

2.4. Cellular Uptake

The cytotoxicity assay was performed to see whether flavonoids could modify cell
proliferation in culture and to determine the baicalein concentrations that would be useful
to perform the uptake assay. The human colorectal adenocarcinoma (HT–29) cell line
is a suitable model for bioavailability measurements thanks to its similarities, both in
phenotype and in enzyme expression, with mature intestinal cells such as enterocytes [55].
Baicalein was tested from 0.1 to 50 µM after 24 h of incubation, displaying a slight inhibition
of HT–29 cell viability; pD2 = 4.44 ± 0.09, showing low cytotoxicity (Figure S5).
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Cellular Uptake of Baicalein in HT–29 Cells

The HT–29 cell line was used to study the ability of baicalein and baicalin to pass
through the cellular membrane and therefore permeate into cells, estimating their bioavail-
ability. The amount of compounds at extracellular and intracellular levels was detected
by high–performance liquid chromatography (HPLC), equipped with a UV diode array
detector. Preliminarily, cellular uptake was estimated by adding baicalein in a concentration
range from 1 to 50 µM to the cell medium. Unexpectedly, after 30 min–3 h of incubation, it
was observed that baicalein was no longer measurable and only three metabolites were
detectable. In detail, the major component detected was the glucuronide derivative baicalin
(Figure 9: peak 1, baicalin), both at the extra– and intracellular levels. Figure 10A shows
that intracellular uptake increased with increasing baicalein concentrations in cell medium
(3 h of incubation). Based on these data, subsequent tests were performed using baicalein
at 5 µM, a concentration with low inhibitory activity on cell viability (−25% of the control).
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Figure 9. HPLC chromatographic analysis of compounds detected in HT–29 cells after 3 h of
incubation of 5 µM baicalein. Chromatograms of the intracellular, extracellular, and standard contents
are reported. The panels on the right show the UV spectra of the peaks revealed during the analysis.
Peak 1 has been identified as baicalein-7-glucuronide (baicalin), while peaks 2 and 3 are unknown
metabolites. Standard baicalein peak 4, Rt 6.53 min; baicalin standard, peak 1, Rt 3.83 min.
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Figure 10. Intracellular baicalin content measured in HT–29 cells after 3 h of incubation with baicalein
(1–50 µM, (A)), and baicalein and baicalin at 5 µM (B). Each value represents the mean ± SEM of at
least 3 experiments. ** p < 0.01, *** p < 0.001 and **** p < 0.0001 versus intracellular baicalin content
detected using baicalein 1 µM (A) or baicalein 5 µM (B).

After incubation with 5 µM baicalein, the glucuronide baicalin was identified both
at the intracellular level: 0.60 ± 0.20 nmol/mg protein and at the extracellular level:
0.91 ± 0.24 µM. The results showed that the flavonoid baicalein is capable of passing
through the HT–29 cell membranes and can also undergo a biotransformation process that
leads to various metabolites (Figures 9 and 10). The main metabolite has been identified
as baicalein–7–glucuronide, the conjugated form of baicalein (phase II metabolism) that
corresponds to baicalin. Otherwise, 5 µM baicalin was only slightly taken up in the
intracellular compartment (0.069 ± 0.001 nmol/mg protein, Figure 10B). Baicalin remained
for the most part in the extracellular compartment (3.02 ± 0.29 µM), showing a low ability
to cross cell membranes. These data agree with various types of research that have indicated
the conspicuous intestinal and liver metabolism of baicalein into baicalin through UDP–
glucuronosyltransferases and the low bioavailability of baicalin [56–59].

3. Materials and Methods
3.1. Reagents

Acarbose, 2,2′–azobis(2–amidinopropane)–dihydrochloride (AAPH), baicalein (5,6,7–
trihydroxyflavone), baicalin (7–β–D–glucuronic acid of 5,6–trihydroxyflavone), bovine
serum albumin (BSA), 3–[4,5–dimethylthiazol–2–yl]–2,5 diphenyl tetrazolium bromide
(MTT), 1,1–diphenyl–2–picrylhydrazil (DPPH•), α–glucosidase (EC 3.2.1.20, Saccharomyces
cerevisiae type I, 10 U/mg protein), 6–hydroxy–2,5,7,8–tetramethylchroman–2–carboxylic
acid (trolox), metformin, p–nitrophenyl–α–D–glucopyranoside (pNPG) and, generally, all
chemicals and solvents were purchased from Merck KGaA, Darmstadt, Germany. Other-
wise, the N–acetyl–glycyl–lysine methyl ester (GK) peptide was obtained from Bachem
(Bachem AG, Bubendorf, Switzerland). The purity of the reference standards was 97%,
while other chemicals were of at least analytical grade.

3.2. Protein Glycation Inhibition
3.2.1. BSA Assay

Glycated BSA was obtained according to a previously reported method [48,60]. Briefly,
AGEs were detected using BSA (50 mg/mL, pH 7.4), as protein substrate, and glucose
(0.8 M), glyoxal (0.003 M) or ribose (0.1 M), as glycation agents. Each inhibitor was tested in
the range of concentrations of 1–100 µM by adding to substrate solutions and incubation at
37 ◦C for a time of 5 (ribose) or 7 (glucose and glyoxal) days. The fluorescence intensity was
measured at an excitation wavelength of 355 nm and an emission wavelength of 460 nm
with a PerkinElmer Victor Nivo microplate reader (Waltham, MA, USA). Inhibition of AGE
formation was calculated as the fluorescence difference between glycation under the control
condition and in the presence of each inhibitor. Aminoguanidine (2.5 mM, AG) was used
as a positive control [61].
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3.2.2. GK Peptide–ribose Assay

The N–acetyl–glycyl–lysine methyl ester (GK) peptide–ribose assay was performed
with some modifications to a published method [62]. Briefly, GK peptide (27 mg/mL),
a synthetic model peptide, was incubated with 40 mg/mL (0.27 M) D–ribose in sodium
phosphate buffer (pH 7.4) and test samples were added at final concentrations ranging
from 1.0–100 µM. After 48 h of incubation, fluorescence was read at 355 and 460 nm for exci-
tation and emission wavelengths, respectively, with a PerkinElmer Victor Nivo microplate
reader (Waltham, MA, USA). The fluorescence measurement allows the calculation of GK
peptide glycation inhibition as a percentage difference between the control condition and
glycation in the presence of the inhibitor. Aminoguanidine (2.5 mM, AG) was used as a
positive control.

3.2.3. Carbonyl Content Assay

The total protein–bound carbonyl content was determined by derivatization of the
carbonyl group with 2,4–dinitrophenylhydrazine (DNPH), which leads to the formation of a
stable dinitrophenylhydrazone product [63], which was monitored spectrophotometrically
at 375 nm with a PerkinElmer Victor Nivo microplate reader (Waltham, MA, USA). Glycated
BSA samples were mixed with DNPH solution (10 mM in 2.0 M HCl) for 1 h at 37 ◦C in
the dark. The proteins were precipitated with 20% trichloroacetic acid. The mixture was
centrifuged at 10,000× g rpm, 10 min at 4 ◦C, to obtain a pellet and the supernatant
was removed. DNPH was removed by extracting the pellet twice using a solution of
ethyl acetate/ethanol (1:1). Lastly, the pellet was dissolved in guanidine hydrochloride
(6 M) before reading the absorbance at 375 nm. The concentration of DNPH derivatized
proteins was determined by the molar extinction coefficient of 22,000 M−1 cm−1 [64]. The
protein concentration was measured using a BCA assay [65], and the protein carbonyl
concentration was expressed as nmol/mg of protein. Aminoguanidine (2.5 mM, AG) was
used as a positive control.

3.3. Free Radical Inhibition
3.3.1. DPPH• Assay

The free radical scavenging activity of the samples was measured using the DPPH•

method [66]. Sample solutions were prepared and added to 70 µM DPPH•; the mixtures
were kept in the dark for 60 min and absorbance was read at 517 nm using a Beckman
Coulter DU 8005 spectrophotometer (Fullerton, CA, USA). The radical scavenging capacity
was expressed as a percentage effect.

3.3.2. ORAC Assay

The radical oxygen absorption capacity (ORAC) assay was performed as previously
described [67]. Briefly, trolox was prepared in phosphate buffer over a concentration range
of 6.25 to 50 µM. In 24–well plates, 1.5 mL of fluorescein (0.08 µM) was added, followed
by 250 µL of trolox for the control, 250 µL of buffer for the blank, and 250 µL of each
inhibitor (5.0 µM). After 10 min of incubation, at 37 ◦C, 250 µL of 0.15 M AAPH was added.
Successively, the PerkinElmer Victor Nivo microplate reader (Waltham, MA, USA) was
settled for a fluorescence kinetic reading at 37 ◦C for one hour, with excitation and emission
wavelengths, respectively, of 485 and 530 nm. The results were expressed in TEAC (trolox
equivalent antioxidant capacity, TE µmol/µmol compound).

3.4. α– Glucosidase Inhibition

The inhibitory activity of baicalein and baicalin was studied using the yeastα–glucosidase
assay, using pNPG as a substrate. The enzyme acts by hydrolyzing pNPG into α–D–
glucopyranoside and p–nitrophenol (yellow); the reaction was detected at different inhibitor
concentrations by variation in chromatic intensity [47,48]. Acarbose (1.25 M) was used as a
positive control. Each sample was incubated with several α–glucosidase concentrations
(0.035, 0.05, 0.07 and 0.1 µM) in PBS solutions (pH 6.8) for 10 min, at 37 ◦C. The reaction
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started with the addition of pNPG. Absorbance values were detected at 405 nm for 60 min,
using a PerkinElmer Victor Nivo microplate reader spectrophotometer (Waltham, MA,
USA). The half–maximal inhibitory concentration (IC50) was estimated by the plot of rela-
tive enzyme activity versus inhibitor concentration. The type of enzyme inhibition exerted
by baicalein was evaluated from kinetic studies using different substrate concentrations
(0.5, 1.0, 1,5 and 2.0 mM pNPG) through the Michaelis–Menten and Lineweaver–Burk plots.

3.5. Cellular Uptake
3.5.1. MTT Assay

Cell viability was assessed with the MTT assay [46]. HT–29 cells were seeded in a
96–well plate at a density of 5000 cells in each well and allowed to grow overnight. The
cells were treated with various concentrations of the substances. After 24 h of incubation,
an aliquot of MTT solution was added to each well, to reach the final concentration of
500 µg/mL. Subsequently, after the MTT reduction by cellular enzymes, the medium
was removed and the insoluble formazan salts were solubilized with 2–propanol. The
absorbance of each purple formazan solution was measured using a PerkinElmer Victor
Nivo microplate reader (Waltham, MA, USA), at a wavelength of 520 nm.

3.5.2. HT–29 Uptake Assay

To evaluate the cellular uptake of compounds, a previously described method was
used [68]. Briefly, HT–29 cells were seeded in a 6–well plate at a density of 500,000 cells in
each well in a complete medium and allowed to grow until confluence for 48 h, at 37 ◦C
(Figure 11). The culture medium was then removed and the cells were treated with each
compound (5 µM). After incubation, an aliquot of the extracellular solution was taken from
each well and stored at −20 ◦C for further analysis. The medium was then removed, the
cells were washed with PBS and prepared for the following steps: (i) protein quantification,
cells were lysed with 200 µL of lysis buffer and the wells were washed with 200 µL of
PBS; and (ii) evaluation of cell uptake, cells were gently scraped with PBS, centrifuged
at 1250× g rpm for 5 min, and added with 500 µL of 80% v/v methanolic solution in
water/0,1% v/v acetic acid to extract intracellular content. The samples were kept on ice for
15 min, then sonicated and centrifuged at 20,000× g rpm for 10 min. Precipitated proteins
were excluded, while supernatant solutions were collected for chromatographic analysis.
The lysates and intracellular solutions were stored at −20 ◦C for HPLC–DAD analysis
(Figure 11). The peaks were identified by comparing the chromatogram relative to the
intracellular and extracellular contents with the chromatogram of each analytical standard.
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3.5.3. High-Performance Liquid Chromatography (HPLC–DAD) Analysis

Chromatographic analyses were performed with an HPLC instrument (Waters Corpo-
ration, Milford, DE, USA) equipped with a 1525 binary HPLC pump and a 2998 photodiode
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array detector. A Symmetry® RP C18 column, 4.6 × 75 mm, 3.5 µm column (Waters,
Milford, USA) was used. As previously reported [69], a linear methanolic gradient was
applied from 20 to 80% v/v in 12 min (A: water with 0.1% v/v acetic acid, and B: methanol
with 0.1% v/v acetic acid), with a flow rate of 1 mL/min. Peaks were detected in the
range of 210–400 nm. All samples were filtered with membrane filters (0.22 µm pore size,
Millipore, Merck KGaA, Darmstadt, Germany) and then injected (10 µL). Standard stock
solutions were prepared in methanol. The amount of each compound was calculated using
a standard calibration curve. The protein content of the lysate was detected using the
Lowry protein assay [70], to express the results as nmol/mg protein.

3.6. Statistical Analysis

Data are expressed as mean ± SEM of at least three independent experiments. The
sigmoid curve fitting and statistical evaluations were performed using GraphPad Prism 9
(San Diego, CA, USA). Statistical comparisons among three or more groups were performed
using one–way ANOVA, followed by Dunnett’s multiple comparison test or Tukey’s test.
The level of significance was established at p < 0.05.

4. Conclusions

This research shows that both baicalein and baicalin have appreciable antiglycation
and antiradical activities comparable to each other. On the contrary, the drug metformin
shows only modest antiradical activity, without the capacity to decrease glycation reactions.
Furthermore, baicalein, but not baicalin, inhibits α–glucosidase activity. Therefore, the
natural compound baicalein exhibits antiglycation, antioxidant and anti–α–glucosidase
activities, while baicalin does not cause any enzyme inhibition. Baicalein exhibits a mixed–
type reversible inhibition on α–glucosidase, showing a Ki of 25.89 µM. Natural compounds
baicalein and baicalin show favorable antidiabetic properties, supporting their intake
through diets or even plant-based preparations.

In particular, the predicted favorable absorption profile of baicalein makes this nat-
ural flavonoid a promising candidate for further investigations about the possibility of
developing a formulation of baicalein, finding the appropriate dose and pharmaceutical
preparation, to be used in the prevention of hyperglycemia–related diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14102141/s1, Figure S1: Scheme of AGE formation
and protein carbonylation; Figure S2: GK–peptide kinetic curve obtained by measuring the fluores-
cence intensity at 355 nm excitation and 460 nm emission wavelengths over several days of incubation
with 0.1 M ribose; Figure S3: An example of kinetic curves of 0.05 µM α–glucosidase and 2 mM pNPG
in the presence of increasing concentrations of baicalin; Figure S4: Enzyme kinetics observed with
different concentrations of α–glucosidase and 2 mM pNPG (A). Graph “v versus (α–glucosidase)” (B);
Figure S5: Effects of baicalein on the viability of human colon adenocarcinoma (HT–29) cells.
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