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Abstract: For a finite group G, we investigate the directed graph Γ(G), whose vertices are the non-hypercentral
elements of G and where there is an edge x 󳨃→ y if and only if [x,n y] = 1 for some n ∈ ℕ. We prove that Γ(G)
is always weakly connected and is strongly connected if G/Z∞(G) is neither Frobenius nor almost simple.
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1 Introduction
Let G be a finite group. The commuting graph of G has as vertices the non-central elements of G and two
distinct vertices are adjacent if and only if they commute in G. Commuting graphs arise naturally in many
different contexts and they have been intensively studied by various authors in recent years. The notion
was introduced by Brauer and Fowler in their seminal paper [2] showing that only finitely many groups
of even order can have a prescribed centralizer. Segev and Seitz [14] studied the connectivity properties
of the commuting graphs of finite simple groups, which turned out to be a key ingredient in their work on
the Margulis–Platonov conjecture on the normal subgroup structure of simple algebraic groups defined over
number fields. Specifically, they proved that if G is a finite simple classical group over a field of order greater
than 5, then the commuting graph is either disconnected or its diameter is at most 10. A similar result for
the commuting graphs of symmetric and alternating groups was established by Iranmanesh and Jafarzadeh
in [9], where they also conjectured that if the commuting graph of any finite group is connected, then its
diameter is bounded above by an absolute constant. This conjecture was subsequently refuted by Giudici
and Parker [5]. However, if G has trivial center, then a theorem of Morgan and Parker [10] states that the
diameter of each connected component is at most 10. Although it is still not known whether or not an upper
bound of 10 is optimal, it is worth noting that Parker [12] has proved that the commuting graph of a soluble
group has diameter at most 8.

The commuting graph of a group can be viewed through a different lens, which leads naturally to some
interesting generalizations. To do this, first let A be the class of abelian groups and let ΛA(G) be the graph
with vertex setG so that x and y are adjacent if andonly if the subgroup ⟨x, y⟩ofG is abelian. Clearly, every ver-
tex in the center Z(G) is connected to every other vertex in this graph (i.e. it is a universal vertex of the graph),
so it makes sense to consider the more restrictive graph ΓA(G), which is only defined on the non-central
elements of G. Then ΓA(G) is the commuting graph of G defined above. More generally, let F be a family of
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groups and consider the graph ΛF(G) on the elements of G, where distinct vertices x and y are adjacent if and
only if ⟨x, y⟩ is in F. As before, we would like to define the related graph ΓF(G) on G \ IF(G), where IF(G) is
the set of universal vertices of ΛF(G). If F = N is the class of nilpotent groups, then IF(G) coincides with the
hypercenter Z∞(G) of G which is the final term in the upper central series of G (see [1, Proposition 2.1])
and ΓF(G) is called the nilpotent graph. Similarly, if F = S is the class of soluble groups, then [7, Theo-
rem 1.1] implies that IF(G) = R(G) is the soluble radical and ΓF(G) is the soluble graph of G. Notice that
if Z(G) = 1, then the nilpotent graph ΓN(G) is connected if and only if the abelian graph ΓA(G) is connected
and diam(ΓA(G)) ≤ 2 ⋅ diam(ΓN(G)). Indeed, if x and y are nontrivial elements of G and ⟨x, y⟩ is nilpotent,
then ⟨x, y⟩ contains a nontrivial central element z and (x, z, y) is a path in ΓA(G).

The notion of commuting graph can be also generalized in a different direction. Let w be a word in the
free group F2 of rank 2. We may define a directed graph Λw(G) on the elements of G, where there is an edge
x 󳨃→ y if and only if w(x, y) = 1. Set

Ir,w(G) = {g ∈ G | w(g, x) = 1 for all x ∈ G},
Il,w(G) = {g ∈ G | w(x, g) = 1 for all x ∈ G},
Iw(G) = Ir,w(G) ∩ Il,w(G).

Noticing that Iw(G) is the set of universal vertices of Λw(G), we define the related graph Γw(G) on G \ Iw(G).
Set [x,0 y] = x and [x,i+1 y] = [[x,i y], y] for i ≥ 0. The word [x,n y] is called the n-th Engel word. We

will use the symbols Λn(G), Γn(G), Ir,n(G), Il,n(G) to denote the graphs Λw(G) and Γw(G) and the sets
Ir,w(G), Il,w(G), when w = [x,n y] is the n-Engel word. Notice that Γ1(G) coincides with the commuting graph
of G.

In this paper we want to study the graph Λ(G) = ⋃n>0 Λn(G), i.e. the graph whose vertices are the
elements of G and where there is an edge x 󳨃→ y if and only if [x,n y] = 1 for some 0 < n ∈ ℕ.

The union Il(G) = ⋃n Il,n(G) is the set of the left Engel elements and coincides with the Fitting subgroup
F(G) of G. The union Ir(G) = ⋃n Ir,n(G) is the set of the right Engel elements and coincides with the hyper-
center Z∞(G) of G (see e.g. [13, 12.3.7]). In particular, the elements of G that are connected to every other
vertex (both as starting and ending vertex of some edge) are the elements of Il(G) ∩ Ir(G) = Z∞(G). So itmakes
sense to consider the more restrictive graph Γ(G), which is only defined on the non-hypercentral elements
of G. We will call Γ(G) the Engel graph of G.

Our aim is to study the connectivity properties of the Engel graph. Since Γ(G) is a directed graph, we
may consider the strong connectivity and the weak connectivity. A directed graph is strongly connected if it
contains adirectedpath from x to y (and from y to x) for everypair of vertices (x, y). The strong components are
themaximal strongly connected subgraphs. Adirected graph isweakly connected if the undirectedunderlying
graph obtained by replacing all directed edges of the graph with undirected edges is a connected graph. Our
first main result is the following.

Theorem 1.1. If G is a finite group, then Γ(G) is weakly connected and its undirected diameter is at most 10.
The study of the strong connectivity of Γ(G) is more complicated. It can be easily proved that Γ(G) is strongly
connected if and only if Γ(G/Z∞(G)) is strongly connected (see Lemma 2.1) and that the Engel graph of
a Frobenius group is not strongly connected (Lemma 3.1). Our main result is the following.

Theorem 1.2. Suppose that G/Z∞(G) is not an almost simple group. Then Γ(G) is strongly connected if and only
if G/Z∞(G) is not a Frobenius group.
The case where G/Z∞(G) is an almost simple group is much more difficult to handle. Indeed, there are
infinitely many simple groups whose Engel graph is strongly connected, for example the alternating groups
An if n ≥ 6 (see Section 5.1), but also infinitely many simple groups whose Engel graph is not strongly con-
nected, for example PSL(2, q) when q is even and the Suzuki groups Sz(q) (see Section 5.3). An immediate
application of Lemma 3.2 is that if G is almost simple and Γ(soc(G)) is strongly connected, then Γ(G) is also
strongly connected. The converse is not always true: for example Γ(S5) is strongly connected, but Γ(A5) is not.

In the case where G is soluble and G/Z∞(G) is not a Frobenius group, we can also bound the diameter
of Γ(G).
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Theorem 1.3. Suppose that G is soluble and G/Z∞(G) is not a Frobenius group. Then diam Γ(G) ≤ 4. Further-
more, there exists a soluble group G such that diam Γ(G) = 4.
It is interesting to note that if Z∞(G) = 1 and G is not almost simple, then Γ(G) is strongly connected if and
only if Γ2(G) is strongly connected (see Theorem 3.12). This is no more true if the assumption Z∞(G) = 1 is
removed. For example, Γ3(GL(2, 3)) is strongly connected, but Γ2(GL(2, 3)) is not (see Remark 3.13).

The nilpotent graph and the Engel graph of G have the same vertex-set, G \ Z∞(G). As all elements of
a nilpotent group are (left and right) Engel, if g1 and g2 are adjacent in the nilpotent graph, then g1 󳨃→ g2
and g2 󳨃→ g1 in the Engel graph. So if the nilpotent graph of G is connected, then the Engel graph Γ(G) is
strongly connected. The converse is false, indeed if G is S4, and more in general a 2-Frobenius group, or Ap,
when p is a prime with p > 5, then the commuting graph of G is not connected (see [12]), and the same holds
for its nilpotent graph, as mentioned above. On the other hand, it follows from Theorem 1.2 and Section 5.1
that the Engel graph of G is strongly connected.

The paper is organized as follows. In Section 2we collect some preliminary results about the Engel graph
and prove Theorem 1.1. In Section 3 we prove Theorem 1.2. The proof of Theorem 1.3 will be completed
in Section 4. In Section 5 we analyze the Engel graph of some families of simple and almost simple groups.
Finally, in Section 6,with the help of some computer calculations,we prove that the Engel graph of a sporadic
simple group is strongly connected.

2 Preliminary results and proof of Theorem 1.1
In this and in the following sections we will use the symbols x 󳨃→ y and x 󳨃→n y to say there is an edge from x
to y in the graph Λ(G), or respectively Λn(G), and the symbols x 󴀀󴀤 y and x 󴀀󴀤n y to say that there is a direct
path in the graph Γ(G), or respectively Γn(G), joining x to y. Recall that Γ(G) and Γn(G) are the subgraphs
defined on the set of non-universal vertices of Λ(G) and Λn(G), respectively.
Lemma 2.1. The graph Γ(G) is weakly or strongly connected if and only if Γ(G/Z∞(G)) is weakly or strongly
connected.

Proof. If y is adjacent to x in Γ(G), then its image ȳ in G/Z∞(G) is adjacent to x̄ in Γ(G/Z∞(G)). Con-
versely, if ȳ ∈ G/Z∞(G) is adjacent to x̄ in Γ(G/Z∞(G)), then [y,n x] ∈ Z∞(G) = Zm(G) for some n and m.
Thus [y,n+m x] = [[y,n x],m x] = 1 and y is adjacent to x in Γ(G).
Lemma 2.2. Let x, y ∈ G.
(1) If [y,n x] = [y,m x] ̸= 1 for some 0 ≤ n < m, then y is not adjacent to x in Γ(G).
(2) If y ∈ F(G), then x 󳨃→ y for every x ∈ G.
(3) If y ∈ NG(⟨x⟩), then y 󳨃→2 x.

Proof. (1) Assume that 1 ̸= [y,n x] = [y,m x] for some 0 ≤ n < m and let z = [y,n x]. Then z = [z,m−n x] and
so z = [z,l(m−n) x] for every l ≥ 0. If [y,N x] = 1, then 1 = [y,n+N x,N(m−n−1) x] = [z,N(m−n) x] = z, which yields
a contradiction.

(2) It follows from the fact that the Fitting subgroup F = F(G) coincides with the set of the left Engel
elements of G.

(3) If y ∈ NG(⟨x⟩), then [y, x] ∈ ⟨x⟩ and it commutes with x, so [y,2 x] = 1.
The proof of Theorem 1.1 relies on the main result of [3], which states that the soluble graph of an insoluble
group is connected and its diameter is at most 5.

Proof of Theorem 1.1. By Lemma 2.1, we may assume that Z∞(G) = 1. If the soluble radical R(G) is nontriv-
ial, then F(G) ̸= 1 and Γ(G) is weakly connected by Lemma 2.2 (2). So we may assume R(G) = 1. Let x1, x2
be two distinct non-identical elements of G. If ⟨x1, x2⟩ is soluble, then there exists 1 ̸= f ∈ F(⟨x1, x2⟩) and
x1 󳨃→ f, x2 󳨃→ f . Since the soluble graph of G is connected with diameter at most 5 (see [3]), we deduce that
Γ(G) is weakly connected and its undirected diameter is at most 10, as claimed.
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Note that if Ω is a strong component of Γ(G) and a non-hypercentral element x ∈ G commutes with some
element of Ω, then x ∈ Ω. Thus the following result will be relevant for our proofs.
Theorem 2.3 ([6, Theorem 10.2.1]). If a finite group G admits a fixed-point-free automorphism of prime order,
then G is nilpotent.

We will also need the following result concerning Frobenius complements.

Lemma 2.4 ([10, Lemma 2.1]). Suppose X is a Frobenius complement. Then every Sylow subgroup of X is cyclic
or generalized quaternion. If X has oddorder, thenany two elements of primeorder commuteand X ismetacyclic.
If X has even order, then X contains a unique involution.

3 Proof of Theorem 1.2
Lemma 3.1. If G = K ⋊ H is a Frobenius group with kernel K and complement H, then Γ(G) is not strongly
connected. In particular, for every nontrivial k ∈ K there is no element g ∈ G \ K with k 󳨃→ g.

Proof. Let k be a nontrivial element of K and assume that there exists g ∈ G \ K with k 󳨃→ g. Thus [k,n g] = 1
for some integer n. Take g ∈ G \ K such that n isminimal. Since g ∈ G \ K = ⋃k∈K Hk,without loss of generality
we can assume that g belongs to H. So z = [k,n−1 g] belongs to K, since K is normal, and it belongs to H, since
it centralizes g ∈ H and G is Frobenius. Therefore z = 1, a contradiction to the minimality of n.

For the remaining part of this section our aim is to prove that if G is neither Frobenius nor almost simple,
then Γ(G) is strongly connected. In the following wewill denote by ∆(G) the subgraph of Λ(G) induced by the
nontrivial elements of G. Clearly Γ(G) = ∆(G) if Z∞(G) = 1.
Lemma 3.2. Let N be a non-nilpotent normal subgroup of a finite group G. If ∆(N) is strongly connected, or,
more generally, if N \ {1} is contained in a strong component of ∆(G), then ∆(G) is strongly connected.
Proof. Let Ω be the strong component of ∆(G) containing N \ {1}. Let x be a nontrivial element of G and let
x̃ be an element of prime order in ⟨x⟩. Since N is not nilpotent, it follows from Theorem 2.3 that there exists
y ∈ N \ {1} such that [y, x̃] = 1. Clearly [x, x̃] = 1, and so x ∈ Ω.
Lemma 3.3. Suppose that N = G1G2 is the central product of two nontrivial finite groups. Then ∆(N) is strongly
connected and diam(N) ≤ 3.
Proof. Let g1 = x1y1, g2 = x2y2 be twonontrivial elements ofNwith x1, x2 ∈ G1, y1, y2 ∈ G2.Wemay assume
x1 ̸= 1. If y2 ̸= 1, then

g1 = x1y1, x1, y2, x2y2 = g2
is a path in ∆(N). Suppose y2 = 1. This implies x2 ̸= 1. If y1 ̸= 1, then

g1 = x1y1, y1, x2, x2y2 = g2
is a path in ∆(N). We remain with the case y1 = y2 = 1. Then, let 1 ̸= z ∈ G2. In this case

g1 = x1, z, x2 = g2
is a path in ∆(N).
In the following we will denote by F∗(G) the generalized Fitting subgroup of G.
Lemma 3.4. If G is not an almost simple group and F∗(G) > F(G), then ∆(G) is strongly connected.
Proof. Recall that F∗(G) = E(G)F(G) is the central product of the Fitting subgroup of G with the layer E(G)
of G. Since E(G) is the central product of the components, either F∗(G) is a non-abelian simple group or
∆(F∗(G)) is strongly connected by Lemma 3.3. In the first case G is almost simple, in the second ∆(G) is
strongly connected by Lemma 3.2.
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In the following, given two vertices x, y of the graph Γ(G), we will denote by d(x, y) the direct distance from
x to y in Γ(G).
Lemma 3.5. Let x, y be two distinct nontrivial elements of a finite group G. If Z∞(G) = 1, F(G) = F∗(G) and G is
not a Frobenius group, then the following hold:
(1) If d(x, y) > 3, then NG(⟨y⟩)F(G) (and consequently CG(⟨y⟩)F(G)) is a Frobenius group.
(2) If d(x, y) > 4 and yr is a power of y of order a prime r, then CG(yr) has odd order and it is metacyclic.
Proof. Assume d(x, y) > 3. If F(G) ∩ NG(⟨y⟩) ̸= 1, then there exists a nontrivial element g ∈ F(G) ∩ NG(⟨y⟩),
so by Lemma 2.2 (2) and (3),

x 󳨃→ g 󳨃→ y,

a contradiction. So F(G) ∩ NG(⟨y⟩) = 1. Assume, by contradiction, that NG(⟨y⟩)F(G) is not a Frobenius group.
Then there exists an element 1 ̸= g ∈ CF(G)(k) for some 1 ̸= k ∈ NG(⟨y⟩) and

x 󳨃→ g 󳨃→ k 󳨃→ y

against d(x, y) > 3.
Now assume d(x, y) > 4. In particular, d(x, yr) > 3. By (1), CG(yr) is a Frobenius complement. Assume

that |CG(yr)| is even and take an involution z ∈ CG(yr). As every nontrivial element of CG(yr) acts fixed-point-
freely on F, z is the unique involution of CG(yr). But then, for every g ∈ CG(yr), we have zg ∈ CG(yr), hence
zg = z. Since z acts fixed-point-freely on F(G), it inverts the elements of F(G) and F(G) is abelian. In particular,
F(G) = [F(G), z] as a set. We claim:

G = CG(z)F(G). (∗)
Indeed, let g ∈ G. As zg acts as involution on the Fitting subgroup F(G), it follows that [z, g] centralizes
F. Since CG(F∗(G)) ≤ F∗(G) = F(G), we have [z, g] ∈ F(G) = [z, F(G)]. Thus there exists an element f ∈ F(G)
such that [z, g] = [z, f]. So zg = zf , hence g ∈ CG(z)F(G). It follows that G = CG(z)F(G) is not a Frobenius
group. Since CG(z) ∩ F(G) = 1, there exists a nontrivial element g ∈ CG(z) such that CF(g) ̸= 1. Thus, for some
1 ̸= f ∈ CF(g), since y ∈ CG(yr) centralizes z, we have

x 󳨃→ f 󳨃→ g 󳨃→ z 󳨃→ y,

a contradiction. Thus CG(yr) is a Frobenius complement with odd order and our conclusion follows from
Lemma 2.4.

Corollary 3.6. Assume that Z∞(G) = 1 and G is neither a Frobenius group nor an almost simple group. Then all
the elements whose centralizer has even order belong to the same strong component of Γ(G).
Proof. It suffices to prove that if |x| = |y| = 2, then x 󴀀󴀤 y. This follows from Lemmas 3.4 and 3.5.

Lemma 3.7. Let X be a finite group. Assume that F∗(X) = F(X) and that X/F(X) ≅ St, where S is a finite non-
abelian simple group. Then ∆(X) is strongly connected.
Proof. The statement is trivially true if Z∞(G) ̸= 1. So we may assume Z∞(G) = 1.

It follows from the Brauer–Suzuki theorem that there is no simple group with generalized quaternion
Sylow 2-subgroups. In particular, by Lemma 2.4, X/F(X) cannot be isomorphic to a Frobenius complement
and consequently X is not a Frobenius group. By Corollary 3.6, all the involutions of X belong to the same
strong component, say Ω, of X. Moreover, if f is a nontrivial element of F(X) and z is an involution of X, then
f 󴀀󴀤 z by Lemma 3.5 and z 󳨃→ f by Lemma 2.2, so F(X) \ {1} ⊆ Ω.

We claim that for any odd prime p dividing |S|, Ω contains all the elements of X with order p. If t > 1,
then a Sylow p-subgroup of St cannot act fixed-point-freely on F(X), so any Sylow p-subgroup of X contains
an element in Ω, and, consequently, all the elements of this Sylow subgroup belong to Ω (using the fact that
the center of a Sylow subgroup is nontrivial). Assume t = 1 and that, by contradiction, there exists no element
of order p in Ω and let p be the smallest (odd) prime with this property. Let P be a Sylow p-subgroup of S.
Since P acts fixed-point-freely on F(X), it follows that P = ⟨u⟩ is cyclic. By Burnside’s Theorem [13, Theo-
rem 10.1.8], as S is not p-nilpotent, we have that P ̸≤ Z(NS(P)), so there exists an element v ∈ NS(P) \ CS(P).
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In particular, vCS(P) is a nontrivial element of NS(P)/CS(P) ≤ Aut(P), so its order divides φ(pn) = pn−1(p − 1)
and is coprime to p (since P ≤ CG(P)). But then there is a prime q dividing (|v|, p − 1) and so the minimality
of p implies that v is contained in Ω. Since v normalizes ⟨u⟩, we have v → u. On the other hand, u → f for
any f ∈ F(X), which means that u ∈ Ω and we have reached a contradiction.

Lemma 3.8. Assume Z∞(G) = 1, F(G) = F∗(G) and there exist x, y ∈ G with d(x, y) > 4. Let J/F(G) = F(G/F(G)).
Then |J/F(G)| is prime to |F(G)|.
Proof. Let s be a prime divisor of |F(G)| and let S be a Sylow s-subgroup of J. Take a power of y of prime order,
say yr. As F(G)S is normal in G, either yr acts fixed-point-freely on F(G)S, and so F(G)S is nilpotent hence
contained in F(G), or CF(G)S(yr) ̸= 1. Let g ∈ CF(G)S(yr) be a nontrivial element of prime power order. Thus
either g ∈ F(G), and

x 󳨃→ g 󳨃→ yr 󳨃→ y

or g is an s-element and it is contained in a Sylow s-subgroup containing S ∩ F(G) ̸= 1. Thus g is contained
in a nilpotent subgroup having nontrivial intersection with F(G), hence there exists a nontrivial element
f ∈ F(G) such that [f,n g] = 1. It follows that

x 󳨃→ f 󳨃→ g 󳨃→ yr 󳨃→ y

against the assumptions.

Lemma 3.9. Assume Z∞(G) = 1, F(G) = F∗(G) and there exist x, y ∈ G with d(x, y) > 4. Let J/F(G) = F(G/F(G)),
J∗/F(G) = F∗(G/F(G)) and Z/F(G) = Z(J/F(G)). Let yr be a power of y of prime order r. If G is not Frobenius and
J = J∗, then yr ∈ Z.
Proof. Suppose yr ∉ Z. As J/F(G) = F∗(G/F(G)), we have yr ∉ CG/F(G)(J/F(G)), and so yr does not centralize
a Sylow t-subgroup of J/F(G).

Assume by contradiction t = r and let R be a Sylow r-subgroup of J⟨yr⟩ containing yr. As yr does not
centralize an r-subgroup of J/F(G), it follows that yr is not central in R and the center of R provides another
element of order r that centralizes yr. Since, by Lemma 3.5, the Sylow subgroups of CG(yr) are cyclic, we get
a contradiction. Thus we have t ̸= r.

We now claim that there exists a Sylow t-subgroup T of J which is yr-invariant. Notice that yr acts on
J = ∏p TpF(G) and centralizes the r-Sylow subgroups. If r does not divide |F(G)|, then the action is coprime,
so there exists an invariant t-Sylow. If r divides |F(G)|, then yr belongs to a r-Sylow subgroup of F(G)⟨yr⟩, and
there exists a nontrivial element f of F(G) such that [f,n yr] = 1. Thus

x 󳨃→ f 󳨃→ yr 󳨃→ y,

a contradiction.
Let T be a Sylow t-subgroup of J which is yr-invariant. Note that yr acts faithfully on T.
LetV be aminimal normal subgroupofG. ThusV ≤ F(G).We claim that CG(V) ≤ F(G). Otherwise yr could

not act fixed-point-freely on CG(V), and consequently there would exist g ∈ CG(V) ∩ CG(yr) and thus, for any
1 ̸= v ∈ V,

x 󳨃→ v 󳨃→ g 󳨃→ yr 󳨃→ y.

Moreover, V is a faithful Q⟨yr⟩-module for every ⟨yr⟩-invariant subgroup Q of T. Indeed, CG(V) ≤ F(G)
and |F(G)| is prime to the order of T⟨yr⟩.

Since CV (⟨yr⟩) is trivial, by [12, Lemma 2.5] we deduce that T is a 2-group and that every abelian char-
acteristic subgroup of T is centralized by yr. Since CG(yr) has odd order, we get a contradiction.
Proposition 3.10. Assume Z∞(G) = 1, F(G) = F∗(G) and there exist x, y ∈ G with d(x, y) > 4. Let J/F(G) =
F(G/F(G)) and J∗/F(G) = F∗(G/F(G)). If J = J∗, then G is a Frobenius group.

Proof. We use the notation introduced in the previous lemma. Since yr ∈ Z, in particular yr belongs to the
center of a Sylow r-subgroup R of J. Thus R ≤ CG(yr) is cyclic, and ⟨yr⟩ is a characteristic subgroup of R. Now,
RF(G) is normal in G and ⟨yr⟩F(G) is a characteristic subgroup of RF(G). Thus ⟨yr⟩F(G) is normal in G. By
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the Frattini argument, as yr has order prime to F(G),
G = NG(⟨yr⟩)(⟨yr⟩F(G)) = NG(⟨yr⟩)F(G),

hence G is Frobenius by Lemma 3.5.

The first part of Theorem 1.3 follows directly from Lemma 2.1 and Proposition 3.10.

Corollary 3.11. If G is soluble and G/Z∞(G) is not a Frobenius group, then Γ(G) is strongly connected and has
diameter at most 4.

Now we are ready to prove our main result.

Proof of Theorem 1.2. Let G be a finite group such that the factor G/Z∞(G) is not an almost simple group.
By Lemma 2.1, we can assume that Z∞(G) = 1. In Lemma 3.1 we have seen that if G is a Frobenius group,
then Γ(G) is not strongly connected. So we are left to prove that if G is neither almost simple nor Frobenius,
then Γ(G) is strongly connected. By Lemma 3.4 and Proposition 3.10 we are reduced to the case where
F∗(G) = F(G) and J ̸= J∗. If J = F(G), then ∆(J∗) is connected by Lemma 3.7. In this case Γ(G) is strongly
connected by Lemma 3.2.

So we are left with the case J > F(G). Since J is not nilpotent, by Lemma 3.2 it is sufficient to prove that
J \ {1} is contained in a strong component of Γ(G).

If J is not a Frobenius group, then Γ(J) is strongly connected, by Proposition 3.10, and we are done. So J
is a Frobenius group. Let P/J be a Sylow 2-subgroup of J∗/J. Note that P/F is a central product of a Sylow
2-subgroup of E(G/F(G)) and J/F(G).

We distinguish two cases:
(a) 2 divides |F(G)|. In this case P is neither Frobenius nor almost simple, so, by Proposition 3.10, Γ(P) is

strongly connected. As a consequence J \ {1} is contained in a strong component of Γ(G).
(b) 2 does not divide |F(G)|. In this case F(G) has a complement L in P and any element of L has centralizer

of even order, since P/F(G) is a central product of a Sylow 2-subgroup of E(G/F(G)) and J/F(G). As G
is neither Frobenius nor almost simple, from Corollary 3.6 it follows that J \ {1} is contained in a strong
component of Γ(G), as claimed.

Indeed, a stronger statement can be claimed.

Theorem 3.12. Suppose Z∞(G) = 1. If Γ2(G) is not strongly connected, then G is either almost simple or
Frobenius.

Proof. The proof of Theorem 1.2 relies on the following observations:∙ If [x, y] = 1, then x 󳨃→ y.∙ If x ∈ NG(⟨y⟩), then [x,2 y] = 1, hence x 󳨃→ y.∙ If y ∈ F(G), then x 󳨃→ y.
Clearly if either [x, y] = 1 or x ∈ NG(⟨y⟩), then x 󳨃→2 y. If z ∈ Z(F(G)), then [x,2 z] = 1, so x, z, y is a path
in Γ2(G) for any y ∈ F(G).
Remark 3.13. The previous theorem is no more true if the assumption Z∞(G) = 1 is removed. Consider for
example G = GL(2, 3). We have Z∞(G) = Z(G) ≅ C2 and G/Z(G) ≅ S4. By Lemma 3.11, Γ(G) is strongly con-
nected. However, if x has order 3 or 6 and x 󳨃→2 y, then y has order 3 or 6. Indeed, there are nine (non-central)
elements g ∈ G with x 󳨃→ g: the three elements of order 3 or 6 different from x in the unique cyclic subgroup
of G of order 6 containing x, and six elements of order 4. If g is one of these six elements of order 4, then[x,3 g] = 1 but [x,2 g] ̸= 1. So Γ3(G) is connected, but Γ2(G) is not.
4 An example
The aim of this section is to complete the proof of Theorem 1.3: we will present a family of soluble groups G
such that the diameter of Γ(G) is 4.
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We select q a power of an odd prime such that the prime r, with r ≥ 3, divides q − 1 exactly. Let𝔽 = GF(qr)
and let β the Frobenius automorphism of 𝔽 of order r. Note that r2 divides exactly qr − 1 (see [8, Lemma
8.1 (e)]). Let t be a prime that divides qr−1

q−1 but not q − 1. As an example we may take q = 7, r = 3, t = 19. Let
z := (e 0

0 e
) ∈ GL(2,𝔽),

with |e| = r2. and let
c := (1 0

0 f
) ∈ GL(2,𝔽),

with |f| = t. Recall that β induces an automorphism of the affine group AGL(2, qr) ≅ F ⋊ GL(2, qr), with
F ≅ 𝔽2. We also denote this induced automorphism by β. Note that β normalizes F, ⟨z⟩ and ⟨c⟩. Consider
x = zβ in the semidirect product AGL(2, qr) ⋊ ⟨β⟩ and let

G = F ⋊ D with D = ⟨x, c⟩.
Lemma 4.1. The element xr has order r, commuteswith c andacts fixed-point-freely on F.Moreover, cx = cq ̸= c.
Proof. We have

xr = (zβ)r = z1+q+⋅⋅⋅+qr−1 = (e1+q+⋅⋅⋅+qr−1 0
0 e1+q+⋅⋅⋅+qr−1) .

Since |e| = r2 and r2 does not divides qr−1
q−1 , it follows that x

r has order r and acts fixed-point-freely on F. The
other information in the statement can easily be verified.

By the previous lemma, |G| = q2r ⋅ t ⋅ r2 (so in particular |G| = 76 ⋅ 19 ⋅ 32 if q = 7, r = 3, t = 19).
Lemma 4.2. The following statements hold:
(1) CG(x) = ⟨x⟩.
(2) CG(xr) = D.
(3) Let C = ⟨c⟩. Then [F, C] is a nontrivial subgroup of F normalized by D and [F, C]D is a Frobenius group.

Proof. (1) Let g = fd ∈ CG(x) for some f ∈ F and d ∈ D. So, 1 = [fd, x] = [f, x]d[d, x], and therefore [f, x] = 1
and [d, x] = 1. Since x acts fixed-point-freely on F, we deduce f = 1. Moreover, we have cx = cq ̸= c, hence
CG(x) = CD(x) = ⟨x⟩.

(2) Arguing as before, since xr acts fixed-point-freely on F, we deduce CG(xr) = CD(xr) = D.
(3) Since C ⊴ D, it follows that [F, C] is normalized by D. Notice that [F, C] is precisely the eigenspace

of c corresponding to the eigenvalue f . In particular, [F, C] is a 1-dimensional𝔽-subspace of F. Let 1 ̸= d ∈ D.
If r divides |d|, then xr ∈ ⟨d⟩, so C[F,C](d) ≤ C[F,C](xr) ≤ CF(xr) = 1. If r does not divide |d|, then ⟨d⟩ = ⟨c⟩,
so C[F,C](d) = C[F,C](c) = 1.
We denote by Bi({x}) the set of vertices of Γ(G) having distance at most i from x. Note that Z∞(G) = 1 and G
is not a Frobenius group, since c fixes a nontrivial element of F. So Corollary 3.11 yields that the diameter
of Γ(G) is at most 4. We will show that diam(Γ(G)) = 4, by proving, in Lemma 4.5, that B3({x}) ̸= G \ {1}.
Lemma 4.3. We have B1({xi}) = ⟨x⟩ \ {1} for every i prime to r.
Proof. Let g ∈ B1({x}). Then [g,n x] = 1 for some positive integer n. Choose n as small as possible. If n > 1,
then let s = [g,n−1 x]. It follows s ∈ G󸀠 ∩ CG(x) = FC ∩ ⟨x⟩ = 1, a contradiction with the minimality of n. So
n = 1, and g ∈ CG(x) = ⟨x⟩. The same arguments apply whenever xi is a generator of ⟨x⟩.
Lemma 4.4. We have B2({x}) = D \ {1}.
Proof. By Lemma4.3, we have B2({x}) ⊆ ⟨x⟩∪B1({xr}). Assume, by contradiction, that there exists an element
g ∈ B1({xr}) that does not belong to D = CG(xr). Then [g,n xr] = 1 for some n ≥ 2 and [g,n−1 xr] ∈ CG(xr) = D.
Choose the smallest m with the property that [g,m xr] ∈ D and note that m ≥ 1. Let us set w = [g,m−1 xr]. So,
w ∉ D while [w, xr] ∈ D. Write w = fd ∈ G = FD, for some f ∈ F and d ∈ D. Then [w, xr] = [f, xr]d[d, xr] ∈ D
implies [f, xr] ∈ D ∩ F = 1. So f ∈ CG(xr) ∩ F = 1 and hence w ∈ D, a contradiction.
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Lemma 4.5. We have [F, C] \ {1} ̸⊆ B3({x}).
Proof. By the previous lemmas, if y ∈ B3({x}) ∩ [F, C], then y 󳨃→ d, for some nontrivial element d ∈ D. But, by
Lemma 3.1, this is impossible since [F, C]D is a Frobenius group.

5 Almost simple groups

5.1 Alternating group

In this subsection we investigate the strong connectivity of the alternating groups. One of the tools that we
can use is the knowledge of the connected components of the prime graph of a finite simple group [15]. Recall
that the prime graph of a finite group G is the graph whose vertices are the primes dividing the order of G and
where two vertices p and q are joined by an edge if and only if G contains an element of order p ⋅ q.
Lemma 5.1. If n ≥ 6, then (1, 3, 5)(1, . . . , n)(1, 3, 5)−1(1, . . . , n)−1 = (1, 3, 5)(2, n, 4).
Theorem 5.2. If n ≥ 5, then Γ(An) is strongly connected if and only if n ̸= 5. Moreover, the following holds:∙ If n ≥ 7, then Γ2(An) is strongly connected.∙ Γ3(A6) is strongly connected, but Γ2(A6) is not.
Proof. Let G = An. All the elements of order 2 belong to the same strong component of Γ1(G) (see [9]
or [10, first lines of the proof of Theorem 7.1]). Let Ω be the strong component of Γ2(G) containing all
the elements of order 2 and let π1(G) be the connected component of the prime graph of G containing 2.
Clearly Ω contains also all the elements whose order is divisible by a prime q ∈ π1(G), as every element
commutes with its own powers. Suppose n ≥ 8. By [15, Table I] either the prime graph of G is connected or
there exists a prime p such that n ∈ {p, p + 1, p + 2} and π(G) = π1(G) ∪ {p}. In the first case we can imme-
diately conclude that Γ2(G) is connected. In the second case, we need to prove that if |x| = p, then x ∈ Ω.
By Lemma 5.1, there exists a 3-cycle y with [x, y, y] = 1, so x 󴀀󴀤2 y, with y ∈ Ω. Moreover, there exists an
element z of order p−1

2 which normalizes ⟨x⟩. In particular, z ∈ Ω and z 󳨃→2 x.
Assume n = 7. Again all the elements of even order of G belong to the same strong component Ω of Γ2(G).

A 3-cycle commutes with a double-transposition, so Ω contains all the 3-cycles, as well as all the products of
two disjoint 3-cycles. Moreover, (2, 5)(3, 4) 󳨃→2 (1, 2, 3, 4, 5) and (1, 2, 3, 4, 5) 󳨃→2 (3, 5)(6, 7) so Ω contains
all the 5-cycles. Finally, (1, 2, 3, 4, 5, 6, 7) 󳨃→2 (1, 4)(3, 7) and (2, 3, 5)(4, 7, 6) 󳨃→2 (1, 2, 3, 4, 5, 6, 7). So,
Γ2(A7) is strongly connected

Now, let n = 6. If x = (1, 2, 3, 4, 5)and x 󳨃→2 y, then y ∈ ⟨x⟩and therefore Γ2(G) is not strongly connected.
But x 󳨃→3 (2, 4)(5, 6) and (2, 5)(3, 4) 󳨃→3 x. So there is a strong component Ω of Γ3(G) containing all the
elements of G of even order and all the 5-cycles. The other elements of G are conjugated in Aut(G) to (1, 2, 3)
so to conclude it suffices to notice that (2, 3)(5, 6) 󳨃→2 (1, 2, 3) and (1, 2, 3) 󳨃→2 (1, 2)(3, 4).

Finally, assume n = 5. If x = (1, 2, 3, 4, 5) and x 󳨃→ y, then y ∈ ⟨x⟩ and therefore Γ(G) is not strongly
connected.

5.2 Symmetric groups

Theaimof this subsection is toprove that if n ≥ 5, then Γ2(Sn) is strongly connected.When n ≥ 7, this couldbe
immediately deduced combining Lemma 3.2 with Theorem 5.2. We prefer to give an easy and self-contained
proof.

Lemma 5.3. If x = (a, b) and y = (c, d) are two transpositions in Sn, then x 󴀀󴀤1 y.
Proof. It suffices to notice that either [x, y] = 1 or there exists a transposition z = (e, f)with the property that[x, z] = [y, z] = 1.
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Lemma 5.4. Let 1 ̸= x ∈ Sn. Write x = σ1 ⋅ ⋅ ⋅ σr as product of disjoint cycles (including possibly cycles of length 1)
in such a way that |σ1| ≤ ⋅ ⋅ ⋅ ≤ |σr|. If |σr| ≤ n − 2, there exists a transposition u such that x 󴀀󴀤1 u and u 󴀀󴀤1 x.
Proof. Let y = σ1 ⋅ ⋅ ⋅ σr−1. If y ̸= 1, then set u = (a, b) with {a, b} ⊆ supp(σr), so that [x, y] = 1 and [y, u] = 1.
Otherwise, take u = (a, b) with {a, b} ∩ supp(σr) = 0.
Lemma 5.5. If 1 ̸= x ∈ Sn, then there exists an involution u such that u 󴀀󴀤2 x.
Proof. Note that x is conjugate to x−1 and consequently NG(⟨x⟩) contains an involution.
Lemma 5.6. If m ≥ 4, then(1, 3) ⋅ (1, 2, 3, . . . ,m) ⋅ (1, 3) ⋅ (1, 2, 3, . . . ,m)−1 = (1, 3)(2,m)
and consequently [(1, 2, 3, . . . ,m), (1, 3), (1, 3)] = 1.
Theorem 5.7. If n ≥ 5, then Γ2(Sn) is strongly connected.
Proof. By Lemmas 5.3 and 5.4, all the elements of G that are neither a (n − 1)-cycle nor a n-cycle belong
to the same strong component of Γ1(G), and consequently, to the same strong component, say Ω, of Γ2(G).
Suppose that x is an r-cycle, with r ∈ {n − 1, n}. By Lemma 5.6, x 󴀀󴀤2 u for a suitable involution u. Combining
this with Lemma 5.5, we conclude x ∈ Ω.
5.3 Simple groups whose Engel graph is not strongly connected

It follows from the previous subsections that there are infinitely many simple and almost simple groups with
a strongly connected Engel graph. Now our aim is to prove that there exist also infinitely many simple groups
whose Engel graph is not strongly connected. We first need a preliminary lemma.

Lemma 5.8. Let y be contained in a subgroup K ≤ G with the property that
(1) NG(K) = K,
(2) y ∈ Kg if and only if Kg = K.
Then x ∉ K implies x ̸󳨃→ y.

Proof. Note that conditions (1) and (2) imply that y−g ∈ K if and only if g ∈ K. Assume x 󳨃→ y, so that[x,n y] = 1 for some n ≥ 1, and let m be the minimal integer such that [x,m y] ∈ K. Assume m > 0. We set
w = [x,m−1 y]. Then from [x,m y] = [w, y] = y−wy ∈ K and y ∈ K, we deduce that y−w ∈ K. So, w ∈ K, against
the minimality of m. It follows that m = 0, that is x ∈ K.
Theorem 5.9. Let G = PSL(2, q) with q = 2f . Then Γ(G) is not strongly connected.
Proof. Note that the order of an element of G can be∙ 2,∙ a divisor of q − 1,∙ a divisor of q + 1.
Now let x ̸= 1 be an element whose order divides q + 1. We are going to prove that if x 󳨃→ y, then |y| divides
q + 1. Let y be a nontrivial element of G.
(a) Assume |y| = 2 and let P be a Sylow 2-subgroup of G, with y ∈ P. Then P ≅ Cf2 and K = NG(P) ≅ P ⋊ Cq−1

is a maximal subgroup of G. We may apply Lemma 5.8 to conclude that x ̸󳨃→ y.
(b) Assume that |y| = t divides q − 1 and set K = NG(⟨y⟩). Then K is amaximal subgroupofG and K ≅ D2(q−1).

Again we apply Lemma 5.8 to conclude that x ̸󳨃→ y.

Theorem 5.10. Let G = Sz(q) with q = 22t+1 and t ≥ 1. Then Γ(G) is not strongly connected.
Proof. If g ∈ G then the order of G can be∙ 2 or 4,∙ a divisor of q − 1,
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∙ a divisor of q + √2q + 1,∙ a divisor of q − √2q + 1.
Now let x ̸= 1 be an element whose order divides q + √2q + 1. We are going to prove that if x 󳨃→ y, for a non-
trivial element y ∈ G, then |y| divides q + √2q + 1.
(a) If |y| is 2 or 4, then y is contained in a unique Borel maximal subgroup, since the intersection of two

distinct such subgroups does not contain 2-elements. Therefore by Lemma 5.8 we conclude x ̸󳨃→ y.
(b) If |y|divides q −1, letK =NG(CG(y)). This is amaximal subgroupof dihedral type, so it is self-normalizing.

We have ⟨y⟩ ⊴ K. If y ∈ Kg with Kg ̸= K, then ⟨y⟩ ⊴ Kg since it is the unique subgroup of Kg of order |y|.
Therefore ⟨y⟩ ⊴ ⟨K, Kg⟩ = G, which is impossible, so K respects the requirements of Lemma5.8 and x ̸󳨃→ y.

(c) If |y| divides q − √2q + 1, let K = NG(CG(y)). Note that K is a maximal subgroup of type Cq−√2q+1 ⋊ C4
and so it is self-normalizing. Since ⟨y⟩ is the unique subgroup of K of order |y|, we can argue as in (b) and
conclude x ̸󳨃→ y.

6 Some computations
Combining the available information about the connected components of the prime graph of G (see [15]) with
some direct computations with GAP [16], we checked that Γ(G) is strongly connected if G is a sporadic simple
group, although its commuting graph Γ1(G) is not (notice that by Lemma 3.2 this implies that Γ(Aut(G))
is also strongly connected). Indeed, let π1(G) be the connected components of the prime graph of G which
contains 2. By [10, Lemma 6.1], there is a unique connected component of the commuting graph Γ1(G) con-
taining all the elements of even order, and consequently there is a strong component of Γ(G) containing all
the elements whose order is divisible by a prime p ∈ π1(G). In particular, Γ(G) is strongly connected if for any
prime divisor q of |G| with q ̸∈ π1(G), there exists a subgroup H of G whose order is divisible by q and some
prime in π1(G) and such that Γ(H) is strongly connected.

For example, the prime graph of J2 has two connected components, π1(J2) = {2, 3, 5} and {7}, so it suf-
fices to notice that J2 contains a subgroup H ≅ PSL(2, 7) and to check with GAP that Γ(PSL(2, 7)) is strongly
connected.

Similarly if G = M, then 41, 59 and 71 are the only prime divisors of G not contained in π1(G); since
M contains subgroups isomorphic to PSL(2, 41), PSL(2, 59) and PSL(2, 71) (see [4] and [11]), we reduce to
check that the Engel graphs of these subgroups are strongly connected.

Another case worthmentioning is G = J1. In that case the prime divisors of |G| not contained in π1(G) are
7, 11, 19.However,G contains amaximal subgroupM1 ≅ 23 : 7 : 3 andamaximal subgroupM2 ≅ PSL(2, 11)
and Γ(M1), Γ(M2) are strongly connected. There is also a maximal subgroup isomorphic to 19:6 and conse-
quently, by Lemma2.2, Γ(G) contains and edge froman element of order 6 to an element of order 19. Hence to
prove that Γ(G) is strongly connected it suffices to prove that there is an edge x 󳨃→ y, with |x| = 19 and |y| ̸= 19.
Whenwe checkedwhether this is true, we found an unexpected phenomenon: there exists g of order 19 such
that g 󳨃→ y only if y ∈ ⟨g⟩, but g2 has a different behavior, since there are 38 involutions z with g 󳨃→ z.

The four sporadic groups {J4, Ly, F󸀠24, B}aremoredifficult to handle. In these cases themethodsdescribed
above do not allow to deduce that there is an edge x 󳨃→ y with |x| = p and |y| divisible by a prime in π1(G),
when (G, p) ∈ {(J4, 29), (J4, 43), (Ly, 37), (Ly, 67), (F󸀠24, 29), (B, 47)}, since Γ(H) turns out to be disconnected
for every subgroupH of Gwhose order is divisible by p. In that case the following remark is of great help. As it
can easily be verified, if g1, g2 are elements of an arbitrary group and |g2| = 2, then [g1,n g2] = [g1, g2](−2)n−1 .
In our case, testing the commutators between a randomly chosen element of order p anda random involution,
we produce pair (x, y) with |x| = p, |y| = 2 and [x,3 y] = [x, y]4 = 1.

We also usedGAP to check that if p is and odd primewith p ≤ 109, then the graph Γ(PSL(2, p)) is strongly
connected if and only if p ∉ {13, 29, 37, 53, 61, 101, 109}, i.e. if and only if p ̸= 5mod8. We aim to investi-
gate whether this is the general behavior in a subsequent paper. It is interesting to notice that G = PSL(2, 47)
is the smallest simple group we know, with the property that Γ4(G) is strongly connected, but Γ3(G) is not.
If G = PSL(2, 127), then Γ7(G) is strongly connected, but Γ6(G) is not.
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To perform these computations we wrote a function “eng” defined on the elements of G. This func-
tion, given two nontrivial elements x, y ∈ G, recursively evaluates the commutators [x, y], [x,2 y] . . . and
stops when either [x,n y] = 1 or [x,n1 y] = [x,n2 y] ̸= 1 with n1 ̸= n2. The first component eng(x, y)[1] of
the output of eng(x, y) is either the trivial element, if [x,n y] = 1 for some positive integer, or a nontrivial
element z with the property that z = [x,n1 y] = [x,n2 y] with n1 ̸= n2. The second component eng(x, y)[2]
keeps track of the commutators that have been evaluated during the procedure. From Lemma 2.2 (1) it fol-
lows that if 1 ̸= [x,n1 y] = [x,n2 y] with n1 ̸= n2, then x is not adjacent to y. Therefore, x 󳨃→ y if and only if
eng(x, y)[1] = Identity(Group(x, y)). In particular, x 󳨃→n y if and only if eng[1] = Identity(Group(x, y)) and
Size(eng(x, y)[2]) ≤ n.
eng:=function(x,y)

local z,s;

s:=[Identity(Group(x,y))];z:=Comm(x,y);

while (z in s)=false do

Add(s,z);

z:=Comm(z,y);

od;

return[z, s];

end;
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