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Abstract

Visual-textual grounding is a challenging task that involves associating language with visual
objects or scenes, and it has become a popular research area due to its importance in various
applications. Traditionally, visual-textual grounding has been solved by relying on informa-
tion from images and textual phrases. However, incorporating additional prior knowledge,
such as a graph, could potentially enhance the performance and accuracy of visual-textual
grounding models. The graph is a discrete structure that can represent any kind of informa-
tion that can be used to solve the grounding task.

In this Ph.D. thesis, a formal probabilistic framework is proposed to consider all three
modalities: image, text, and graph. The framework allows for the analysis of existing works
and the development of a novel approach to visual-textual grounding based on an innova-
tive factorization of probabilities. The adoption of the probabilistic approach is crucial for
accounting for the inherent uncertainties in solving the task.

In addition, this thesis presents twocontributions to improve the traditional visual-textual
grounding task. The first contribution regards a new loss function for training visual-textual
grounding models in a supervised setting. Indeed, the models in the literature are typically
constituted by two main components that focus on how to learn useful multi-modal fea-
tures for grounding and how to improve the predicted bounding box of the visual mention,
respectively. Finding the right learning balance between these two sub-tasks is not easy, and
the current models are not necessarily optimal with respect to this issue.

The second contribution consists of amodel tackling theweakly-supervised visual-textual
grounding. The proposed model is based on the principle of first predicting a rough align-
ment among phrases and boxes, adopting a module that does not require training, and then
refining those alignments using a learnable neural network. The model is trained to maxi-
mize themultimodal similarity between an image and a sentence describing that imagewhile
minimizing the multimodal similarity of the same sentence and a new unrelated image, care-
fully selected so as to help as much as possible during training.

The object detector plays a fundamental role in solving the visual-textual grounding task.
It should be able to identify many different objects and classify them correctly. Nevertheless,
increasing the number of objects to be recognized usually leads to a more challenging clas-
sification problem. The importance of the correct classification of an object is even greater
when considering the graph in the resolutionof the visual-textual grounding task. In fact, the
semantic information conveyed through the classes is crucial to identify the graph nodes that
best characterize the objects depicted in the image. In literature, themost common approach
is to use an object detector trained to detect 1600 different classes of objects. However, those
classes are noisy and impair the performance of the object detector. To solve this problem,

v



vi

this document proposes also a new set of clean labels to use for training object detectors on
the Visual Genome dataset.

To conclude, this thesis introduces a newobject detector that canbe conditionedbynodes
of the WordNet graph to search for objects in images. In particular, the conditioned object
detector can be deployed to estimate a component of the probability distribution factoriza-
tion designed thanks to the probabilistic framework.

Overall, this Ph.D. thesis contributes to the study of visual-textual grounding and pro-
vides tools and insights that have the potential for developing advanced approaches and ap-
plications within this domain.
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1
Introduction

According to Zou et al. [5], the number of computer vision researches published by year
increased from less than 100 in 1998 to slightly almost 3500 in 2021. Under this wave of
increasing interest from the research community, several ideas and approaches were specifi-
cally designed to solve vision and natural language problems, such as visual-textual ground-
ing [6, 7, 8, 9, 10, 11], visual question answering [12, 13, 14], visual-textual-knowledge entity
linking [15, 16, 17] and image-text retrieval [18, 19, 20, 21, 22].
The causes for these remarkable fast developments are mainly the following: (i) the con-

tinuous development of hardware that allows fast computations enables the use of complex
models capable of capturing detailed behavior; and (ii) the continuous availability of new
open-source datasets. However, comprehending both visual and textual modalities remains
nowadays a difficult task.

Among all the visual and language research areas, the research community has devoted
much effort to solve the visual-textual grounding task, also known as referring expression
grounding. The visual-textual grounding is a task in computer vision and natural language
processing that involves associating language with visual objects or scenes. It aims to ground
language in the visual world bymapping words or phrases in a sentence to specific objects or
regions in an image or video.

For example, given the image in Figure 1.1 and the sentence “A woman tries to volley a
tennis ball”, the visual-textual grounding task would involve identifying the location of the
woman in the image and highlighting the corresponding region of the tennis ball. This re-
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Sentence: “A woman tries to volley a tennis ball”.

Figure 1.1: Visual‐textual grounding example given the textual phrase “A woman tries to volley a tennis ball”. The word
“woman” refers to the rectangle in orange, while the words “tennis ball” refer to the rectangle in blue.

quires the system tounderstand themeaning of the sentence and touse visual cues to identify
the object in the image that corresponds to the word “woman” (i.e., rectangle in orange) and
the region that corresponds to the word “tennis ball” (i.e., rectangle in blue). Usually, the
region in the image is delimited by a square named “bounding box”, and the part of the sen-
tence that refers to it is called “query”. The textual phrase “volley a tennis ball” could also
be grounded to the corresponding region of the image depicting the racket. In this case, the
textual phrase involves the action performed by the woman, which implicitly refers to the
racket depicted in the image used to volley the tennis ball. Adopting a similar reasoning,
also the “volley” word could be grounded to the racket in the image, albeit in this case, the
implicit joint reasoning between image and text requires the understanding that the action
“volley” refers to the tennis ball. A general knowledge of the world is required to perform
this implicit grounding of the action. This document addresses the standard visual-textual
grounding problem, which grounds the noun phrases to the corresponding objects depicted
in the image, and it does not cover the aspect of grounding actions.

The visual-textual grounding task is important in many applications, such as image and
video captioning, visual question answering, and robotics, where machines must interact
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with the physical world and understand natural language commands or descriptions. It is a
challenging task because it requires both language understanding and visual perception and
often involves dealing with noisy and ambiguous data.

This document delves into the problem of visual-textual grounding. In the literature,
there are mainly two kinds of approaches to solve this problem, namely “two-stage” and
“one-stage” approaches. In the two-stage approach, the visual-textual grounding task is cast
as a sequence of two sub-tasks: an object detection task followed by a classification task.
The object detection task aims to find all the objects depicted in the image, while the visual-
textual grounding model, given the textual phrase, returns only the detected object in the
image that represents the best semantic match with the sentence. In the initial phase of re-
search on this problem, many works have followed this formulation, developing several ap-
proaches [6, 23], while more recent works have chosen to address the problem by a “one-
stage” approach model, in which the object detection and the classification problem are
solved jointly [24, 25].

In the “two-stage” approach, the visual-textual grounding model receives in input a set of
proposal bounding boxes previously extracted by an object proposals extractor, such as Edge
Boxes [26] and Selective Search [27], or by an object detector, such as Faster R-CNN [28],
Single ShotmultiboxDetector (SSD) [29], or YOLO [30, 31]. These proposals, jointly with
the given input textual sentence describing the content of the image, constitute the visual-
textual grounding model input. Usually, the model embeds the sentence in an embedding
representation that tries to capture its semantic content. Then, the model predicts, for each
proposal bounding box, a score that represents howmuch the content of the bounding box
is likely to be referred by the sentence. Often, the two-stage approach models predict new
coordinates for the best-predicted proposal in order to adjust the coordinates to better fit the
visual content according to the sentence semantic information.

In the one-stage approach, the visual-textual groundingmodel receives only an image and
a textual sentence in input. Then the model learns how to extract and fuse all the visual
and textual information to predict the best bounding box in output, according to the input
sentence. Even if this seems to be the best approach in order to reach the best results, due
to the small number of assumptions made by the model, it raises some major issues: (i) not
all the visual-textual grounding datasets are suitable for training an object detector due to
lack of images and/or because they are not densely annotated; (ii) the model requires a high
number of parameters, and because of that (iii) the training requires significant computing
resources.
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Figure 1.2: Differences between the supervised visual‐textual grounding and theweakly‐supervised visual‐textual ground‐
ing task. On the left, the standard visual‐textual grounding task is presented, where the dataset annotations contain the
link between queries and boxes. In contrast, on the right, the only available annotation is the information that links a
description with its own image and vice‐versa.

According to the literature, it is also possible to group the models according to the level
of supervision available during the model training phase. In the supervised category, models
are trained using all the region-phrase pairs [6, 7, 8, 9, 10, 11]. Figure 1.2, on the left, reports
and examples of all the annotations needed during training, which consist of: (i) bounding
boxes coordinates; (ii) textual phrases; and (iii) region-phrase matching.

In the weakly-supervised category, models during training do not use the whole informa-
tion available from the visual-textual grounding dataset. More in particular, during the train-
ing phase, the model is only given to know that a given textual phrase refers to some objects
depicted in an image. However, the model does not have access to the bounding box coordi-
nates or the region-phase match. Figure 1.2, on the right, presents the annotations available
under the weakly-supervised setting. In general, given the less information available during
model training, weakly-supervised approaches perform less than supervised ones.

Researchers have traditionally solved the visual-textual grounding problem by relying on
information from bounding boxes and textual queries. However, appropriately integrat-
ing additional prior knowledge could potentially enhance the performance and accuracy of
visual-textual grounding models. In this context, this Ph.D. thesis aims to augment the con-
ventional approach to solve this task. While the classicmethod involves two inputmodalities
(text and image), this document proposes incorporating a third modality in the form of a
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graph. The graph is a discrete structure that can represent any kind of information that can
be used to solve the grounding task.

The additionof the graph requires the reconciliationof the information conveyed through
the twomodalities (i.e., image and text)with the information conveyedwith the graphmodal-
ity. Thus, the model should align the graph’s nodes with the bounding boxes and textual
queries to solve the visual-textual grounding task.

To analyze the introduction of the newmodality, this document proposes a formal prob-
abilistic framework designed to consider all three modalities: image, text, and graph. The
adoption of the probabilistic approach is crucial for accounting for the inherent uncertain-
ties in solving the visual-textual grounding task. The framework allows the analysis of the
already published works, highlighting their strengths and weaknesses according to how the
modalities are adopted in the model.

The framework constitutes an important tool that can be employed to devise a novel ap-
proach to visual-textual grounding based on an innovative factorization of probabilities not
yet explored in the literature. Indeed, in this Ph.D. thesis, a new factorization of the distri-
bution with an estimation of each component will be proposed.

During thedevelopmentof theproposed framework, the traditional visual-textual ground-
ing task based on two modalities (i.e., image and text) was also studied for improvements.
In this direction, two contributions have been proposed. The first proposes a new loss for
training two-stage models in the supervised setting, while the latter contribution proposes a
two-stage model to solve the visual-textual grounding task in the weakly-supervised setting.

In the visual-textual grounding, particularly in the two-stage approach, it is evident that
the bounding boxes detected with the object detector play a fundamental role in solving the
problem. For this reason, the object detector should be able to identify and classifymany dif-
ferent objects correctly. Nevertheless, the increase in the number of objects to be recognized
usually leads to a more challenging classification problem. The importance of the correct
classification of an object is even greater when considering the graph in the resolution of
the visual-textual grounding task. In fact, the semantic information conveyed through the
classes is crucial to identify the graph nodes that best characterize the objects depicted in the
image.

The Bottom-Up Faster R-CNN [28] (BUA) object detector is the most commonly used
by themultimodal language-and-vision community because it is trained on a pre-defined set
of 1600 classes. Although the high number of classes allows the detection of many different
types of objects often referred by the textual phrase, the pre-defined set of class labels is very
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noisy. These noisy labelsmay result in a sub-optimal representational space and likely impair
the ability of the model to classify objects correctly. For this reason, in this Ph.D. thesis, a set
of less noisy labels is also proposed.

Overall, this Ph.D. thesis contributes to the study of visual-textual grounding and pro-
vides tools and insights that have the potential for developing advanced approaches and ap-
plications within this domain.

The document is structured as follows:

• Chapter 2 introduces background information essential to understand the ideas and
concepts presented in this document;

• Chapter 3 presents the visual-textual grounding State-of-the-Art;

• Chapter 4 formally presents the visual-textual grounding problem, the probabilistic
framework, and an innovative proposal to solve the visual-textual grounding task;

• Chapter 5 introduces a model that solves the standard visual-textual grounding task
in a supervised setting;

• Chapter 6 introduces a model that solves the standard visual-textual grounding task
in a weakly-supervised setting;

• Chapter 7 introduces two potential extensions of the presented approaches. In partic-
ular, Section 7.1 delves into the problemof object detectors proposing a set of cleaned
labels to adopt when training the object detectors on the Visual Genome [32] dataset.
Instead, Section 7.2 presents a new object detector that can be conditioned by nodes
of the WordNet [33] graph to search the objects in the images. In particular, this ap-
proach estimates a component of the new factorization presented in Chapter 4.

• Chapter 8 concludes the document and presents future works.



2
Background

This chapter will review some necessary background material concerning fundamental con-
cepts necessary to contextualize and understand the ideas presented in this manuscript. The
material will focus solely on the subset of notions required to understandmost of the discus-
sion in the rest of the dissertation.

2.1 Notation

In order to explain our work, the following notation will be used: (i) lower case symbols
for scalars, indexes, and assignation to random variables, e.g., n and x; (ii) italics upper case
symbols for sets and random variables, e.g., A and X ; (iii) upper case symbols for textual
sentences, e.g., S; (iv) bold lower case symbols for vectors and assignations to vectors of ran-
dom variables, e.g.,a andx; (v) bold upper case symbols formatrices, tensors, and vectors of
random variables, e.g.,A andZ ; (vi) the position within a tensor or vector is indicated with
numeric subscripts, e.g.,Aij with i, j ∈ N+; (vii) calligraphic symbols for domains, e.g.,Q.

2.2 Word Embeddings

Words are discrete entities that allow one to formulate textual phrases. However, neural net-
works that deal with natural language need continuous representations to learn and solve
many natural language processing tasks, such as information retrieval [34], document classi-
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fication [35], question answering [36], named entity recognition [37], and parsing [38]. In-
stead of treating words as atomic units where there is no notion of similarity between words,
as these are represented as indices in a vocabulary, natural language information can be repre-
sented as feature vectors in a semantic space. In this space, words are associated with contin-
uous real-valued vectors of fixed dimension, and words with semantically similar meanings
tend to have similar representations. More specifically, word embedding can be defined as a
learned representation of text where words that have the same meaning have a similar repre-
sentation. In the literature, there are several approaches for learning goodword embeddings.
Some usemachine learning [39, 40, 3] techniques while others use statistical approaches like
Latent Semantic Analysis (LSA) [41]. In the following, some famous and successful word
embeddings will be described.

2.2.1 Word2Vec and GloVe

Word2Vec, introduced by T. Mikolov in [39] and then updated in [40, 42], is a statistical
method for efficiently learning word embeddings from a text corpus. Word2Vec aims to
learn meaningful representations of words that capture semantic information. Two differ-
ent approaches are used: Continuous Bag-of-Words (CBOW) and Continuous Skip-Gram
Model. The first learns embeddings by predicting the current word based on its context,
while the latter learns by predicting the surrounding words given a current word. The con-
text is defined by a window of neighboring words and can be configured or fine-tuned. The
quality of these representations is measured in a word similarity task. The key benefit of
the approach is that high-quality word embeddings can be learned using low space and time
complexity, allowing larger embeddings to be learned frommuch larger corpora of text.

GloVe [3] is another approach to learning word embeddings. The main goal of GloVe is
to overcome Word2Vec problems related to the lack of statistical information. Rather than
using a window to define local context, GloVe constructs an explicit word co-occurrence
matrix using statistics across the whole text corpus. The result is a learning model that may
result in generally better word embeddings.

2.2.2 BERT Embeddings

Bidirectional Encoder Representations from Transformers (BERT) [43] is a language rep-
resentation model, designed to pre-train deep bidirectional word representations from the
unlabeled text. BERT uses deep transformer architecture instead of a traditional recurrent
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neural network, and it has many differences concerning traditional word embeddings. Dif-
ferently fromWord2Vec orGloVe, it producesmultiple embeddings for the samewordbased
on the context in which the word is used. For example, in the sentences “The head of the
body” and “The head of the department”, the word “head” produces different embeddings
in BERT for each sentence, while in either Word2Vec or Glove, such word is represented by
a single, unique vector. Another difference is given by the fact that BERT explicitly lever-
ages information involving the position of the word in the sentence, which enhances the
context dependence. This implies that the model input should be a sentence rather than a
single word. BERT can also be used in single-wordmode (asWord2Vec andGloVe), but this
breaks the advantage of generating context-dependent embeddings.

2.3 NLP and Part of Speech Tagging

Part of Speech (POS) tagging is a well-knownNatural Language Processing (NLP) problem
that consists of assigning to each word of a textual phrase the appropriate morphosyntac-
tic tag in its context of appearance [44]. Due to the intrinsic properties of natural languages,
those tags highly depends on the context inwhichwords appear. Inmost cases, words can be
disambiguated entirely taking into account an adequate context, although in others disam-
biguation is very difficult. According to the literature [44], existing taggers can be grouped
into three main categories according to the type of knowledge they use.

In the first category, there are systems that hardcode a set of rules written by linguists.
The number of rules used by such systems may reach up to several thousand rules and for
this reason, the model design requires a lot of time and effort.

In the second category, there are approaches relying on statisticalmethods todisambiguate
wordmeanings. Thesemodels usually encode information as a set of co-occurrence frequen-
cies estimated from the training corpus.

In the last category, there are machine learning approaches that use more complex infor-
mation than co-occurrence frequencies.

POS tags were originally introduced by Marcus Mitchell et al. [1] in the Penn Treebank
corpus, which is a comprehensive list of tags for english words. These tags include nouns,
adjectives, verb tenses, and also symbols. Figure 2.1 shows the tags along with their descrip-
tion.

Since then the research community has devotedmuch attention to this task and has devel-
oped several new approaches, such as Stanford Dependencies [45, 46, 47], Google universal



10

Figure 2.1: Part‐of‐speech set of English tags of the Penn Treebank corpus [1].

part-of-speech tags [48] and the Interset interlingua [49] for morphosyntactic tagsets. Uni-
versalDependencies (UD) [50, 2] is a recent approach that aims to achieve annotation consis-
tency among different languages, maintaining language-specific annotation when necessary.
Figure 2.2 reports new Universal POS tags.

Nowadays, thanks to the available open-sourcedatasets and thehuge interest inNLPareas,
severalNLP tools exist. Probably thebest knownof all of these is the StenfordCoreNLP[51],
despitemanyothers are also frequently adopted, like Flair [52], spaCy [53],UDPipe [54] and
Stanza [55].

2.4 Object Detection and Recognition Systems

Object detection (OD) and object recognition (OR) systems are essential formany common-
place tasks, including face detection, information retrieval from image and video databases,
surveillance applications, driver assistance, automation, and more in particular in computer
vision, it is a fundamental building block used to extract information from images. These
systems’ core functionality can be divided into two parts: finding objects in a picture by, for
example, drawing a bounding box around them (object detection), and then classifying the
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Figure 2.2: Universal part‐of‐speech tags (UPOS) [2].

objects using the classes it was taught on (object recognition). Because OD and OR are fre-
quently combined, and typically, the name of two tasks usually collapses into one of the two
depending on the relevance in the system.

Nowadays, object detector architectures are composed of two main components: the
backbone and the object detector head. The former takes in input an RGB image and pro-
cesses it to extract global features of the content of the image. The latter, starting from the
features generated by the backbone, aims to locate and classify the objects in the image.

Many object detectors exist [29, 31, 56, 28, 57, 58, 59, 60, 61, 62, 63, 64, 56, 65], that
differ according to their ability to detect objects in the image, the computing power required
for their use, and their ability to recognize a large set of different objects[66, 67]. An object
detector should be able to identify many different objects [23] and classify them correctly.
In the following sections, some common object detectors will be presented.

2.4.1 R-CNN, Fast R-CNN and Faster R-CNN

Region-based convolutional networks (R-CNN) [68] is one of the first object detectors ever
developed. It is composed of a two-stage architecture that is not trained end-to-end. In the
first step, the model deploys the Selective Search [27] algorithm to generate around 2000
category-independent region proposals for the input image, while in the last step, it classifies
each region using a Support Vector Machine (SVM) [69]. In particular, the SVM takes as
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input a vector of features extracted with a convolution neural network from each region
proposal.

The Fast R-CNN [70] model was built to address a few disadvantages of the R-CNN
model, such as the two-stage approach. This model takes as input an image and a set of
region proposals (ROIs) generated with Selective Search. Initially, all the RGB image is fed
to a convolutional neural network (like a backbone) that extracts the image features, from
which an ROI pooling layer extracts the features corresponding to each region proposals.
Then, Fast R-CNN adopts two fully connected neural networks: (i) to classify each region
proposal according to the pre-defined set of labels; and (ii) to refine the coordinates of each
region proposal to delimit better the object in the image.

The Faster R-CNN [28, 71], unlike the previous two models, does not use the Selective
Search algorithm and implements a new neural network, namely the Region Proposal net-
work (RPN), that aims to predict the region proposals. As for the Fast R-CNNmodel, the
proposals are fed to the ROI pooling layer that extracts feature representations for each pro-
posal. Then, each proposal is classified and its coordinates are refined through fully con-
nected neural networks. The model is trained end-to-end for both locating and classifying
the objects. In particular, the RPN layer is trained with the only objective of locating the
object in the image (i.e., binary classification).

2.4.2 Other Recent Object Detectors

YouOnly LookOnce (YOLO) [67, 31, 56] is a State-of-the-Art object detector that provides
high precision and speed. This model simultaneously detects bounding boxes and classifies
them according to its pre-defined set of classes adopting convolution neural networks. It is
trained to maximize its detection performances in an end-to-end manner.

Another State-of-the-Art model for object detection is Single Shot Detector (SSD) [29].
SSDdivides the image using a grid atmultiple resolutions and scales. Then, for each grid cell,
it detects and classifies all the objects in that region of the image. SSD, similar to YOLO, can
detect objects in a short amount of time.

RetinaNet [65] is another State-of-the-Art object detector that utilizes a focal loss func-
tion to address class imbalance during training. Focal loss applies a modulating term to the
cross entropy loss in order to focus learning on hard negative examples. RetinaNet is a single,
unified network composed of a backbone network and two task-specific subnetworks. The
backbone is responsible for computing a convolutional feature map over an entire input im-
age and is an off-the-self convolutional network, such as ResNet [72] and VGG [73]. The
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first subnet performs convolutional object classification on the backbone’s output, while the
second subnet performs convolutional bounding box regression to refine the coordinate of
the region proposal. The two subnetworks feature a simple design that the authors propose
specifically for one-stage detection.

2.5 WordNet

WordNet [33] is a large open-source lexical database of English words and their semantic
relationships. It was created at Princeton University and was first released in 1985. It con-
tains more than 155000words and more than 117000 synsets (sets of synonyms) organized
into a network of hierarchies, with each synset representing a distinct concept. WordNet has
beenused in various applications, including search engines, question-answering systems, and
machine-learning algorithms. It has also been extended to include languages besides English,
such as Spanish and Italian.

Thedatabase is structured in away that allowswords tobe grouped together basedon their
meanings and the relationships between them, such as synonyms, antonyms, hypernyms
(more general terms), hyponyms (more specific terms), and meronyms (parts of a whole).
This makes it a valuable resource for natural language processing tasks, such as text classifica-
tion, information retrieval, and machine translation.

WordNetwas created through a combination ofmanual effort and automated techniques.
The initial version of WordNet was developed by a team of researchers led by George A.
Miller, who manually identified and organized sets of synonyms, antonyms, and other se-
mantic relationships for a large number of words. To create WordNet, the researchers used
a method called “lexical sampling”, which involved selecting a small set of words from vari-
ous semantic domains (such as animals, plants, and household objects) and then identifying
and organizing their semantic relationships. This initial set of words and their relationships
formed the basis for expanding the database to include more words and concepts. As Word-
Net grew, automated techniques were developed to help identify and organize the semantic
relationships between words. These techniques included natural language processing algo-
rithms that could analyze large volumes of text to identify patterns in how words are used
together, as well as algorithms for clustering and grouping related words.

Over time, WordNet has been continually refined and expanded, with new words and
relationships added to the database based on ongoing research and feedback from users.
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3
RelatedWorks

This chapter reviews the literature and State-of-the-Art approaches adopted to solve the
visual-textual grounding task. Initially, the presentation will cover approaches adopting the
fully-supervised setting, while subsequently, it will cover approaches working on the weakly-
supervised setting. Then, the Visual-Textual-Knowledge Entity Linking (VTKEL) problem
will be introduced as very related to the visual-textual grounding problem tackled in this
Ph.D. thesis.

To solve the visual-grounding problem, usually, the models in the literature rely on con-
tinuous representations (i.e., features) of the textual phrases and bounding boxes. These
features, which aim to convey information about the queries and the objects depicted in the
bounding boxes, are used by themodel to predict which bounding box is related to the query
in input. Usually, the bounding boxes features are the output of an internal layer of the ob-
ject detector, while the textual features are calculated from the sequence ofwords composing
the query.

3.1 Supervised Visual Grounding

There is a vast literature about supervised visual-textual grounding. When considering the
fusion of the textual features and bounding box features, multiple strategies are employed.
Some approaches [74, 7] adoptmethods such asMulti-layer Perceptron (MLP), while others
adopt the cosine similarity for predicting alignment amongbounding boxes andqueries [75].

15
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More complex strategies, such as Canonical Correlation Analysis (CCA) [76, 77], Multi-
modal Compact Bilinear (MCB) [78], attentionmethodologies [79, 80, 6], and graph struc-
tures [81] are employed. H. Akbari et al. [80], instead of using bounding boxes to delimit
objects in the image, they present a unique approach that predicts the location of image
content referred by an input phrase through a heatmap, utilizing a multi-level multi-modal
attentionmechanism. Given a set of bounding box proposals and a textual sentence in input,
A. Rohrbach et al. [6] proposes a model capable of selecting the optimal query-region pair
through attention mechanics. The model assigns high attention to the bounding boxes that
best match the query in the context of a given textual phrase. A pre-trained object detector
is utilized for bounding box extraction.

Rather than emphasizing the fusion component, Z. Yu et al. [23] introduces a visual-
textual grounding model with diverse and discriminative bounding box proposals that per-
forms well without requiring a complex multi-modal fusion operator. In their work, they
address the problem of the quality of the bounding box proposals which occurs when the
two-stage approach is adopted. Indeed, if the bounding box proposals do not cover all the
objects referred by the textual phrase, there is no hope that the grounding model will asso-
ciate the correct regions of the images with the parts of the textual phrase. So, the core idea
of Z. Yu et al. approach is to deploy an object detector able to recognize and discriminate
many different objects depicted all over the image, even if the detection accuracy drops, and
to use those proposals during grounding.

Instead, to overcome the problemof the quality of the bounding box proposals, Z. Yang et
al. [24] designed a novel one-stage model. “if none of the candidates could cover the ground
truth region”, they argue, “there is no hope in the second stage to rank the right region to the
top”. So, they suggest a one-stage model that enables end-to-end joint optimization, focus-
ing on integrating the text query’s embedding into the YOLOv3 object detector, together
with spatial features. Following a similar approach, A. Sadhu et al. [25] proposed a one-
stage model focusing on the slightly different task of Zero-Shot Grounding, which includes
unseen nouns in phrases. They claim that a two-stage approach is an obstacle due to the
constrained generation of appropriate proposals. For this reason, they propose a one-stage
model which combines the detector network and the grounding system to predict classifica-
tion scores and bounding box regression parameters.

Lastly, H. Zhang et al. [8] adopts an entirely different methodology. Based on the varia-
tional Bayesian method, they capture context information by leveraging the reciprocal rela-
tion between the referent and its context.
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3.2 Weakly-Supervised Visual Grounding

In weakly-supervisedmethods, some approaches cast the problem as a retrieval task [82, 83],
while others adopt an encoder-decoder structure [84, 7, 85, 86, 6, 87], or employs a con-
trastive learning loss [9, 88, 89].

R. Hu et al. [82] proposed a model that returns bounding box proposals using an ob-
ject retrieval approach where visual and textual information are integrated with contextual,
spatial, and global visual features. While S. Datta et al. [83] proposed to learn to ground by
optimizing the model for the downstream task of caption-to-image retrieval. The assump-
tion is that to be able to solve the caption-to-image retrieval task, a model implicitly needs to
perform visual-textual grounding. This new way to cast the visual-textual grounding prob-
lem allows the authors to train the model in a supervised setting for the caption-to-image
retrieval task, and then deploy it to the visual-textual grounding task.

K. Chen et al. [7] tackled the weakly-supervised visual grounding problem by learning to
reconstruct the input. In doing so, the model uses the visual information contained in pro-
posals and the knowledge conveyed by the object detector. To attend to relevant features,
they introduce the knowledge base pooling (KBP) component that aims to return a score
between the query and the proposal’s classification label. Similarly, S. A. Javed et al. [84] pro-
posed a novel encoder-decoder framework for unsupervised visual-textual grounding, which
uses concept learning to obtain self-supervision. The model initially selects all nouns from
textual phrases through a POS tagger. These nouns are then used to train the model in an
encoder-decoder style. The encoder localizes the region (as a heatmap) representing the con-
cept in the batch, while the decoder reconstructs the concept through a classifier. F. Zhao et
al. [85] proposed a spatial transformers [90]. Spatial transformers are convolutional neural
networks that learn anew translation, scale, and rotation-invariant representationof features.
Initially, themodel reconstructs the input phrasewhile suppressing the reconstruction of dif-
ferent phrases for the same image, and then it predicts regions with similar spatial features.
Instead, A. Rohrbach et al. extended their model [6] also to solve the visual-textual ground-
ing task in a weakly-supervised setting. More in detail, their model extends their supervised
model with a new neural network that aims to reconstruct the textual query from the fea-
tures of the selected bounding box.

X. Liu et al. [86] proposed a reconstruction network based on an attention map. They
first extract subject, location, and context features for both language and visual modalities.
Language features are extracted bymeans of an attentionmechanism applied to the sentence
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encoded with a Bi-LSTM network. Visual features are extracted from object detector con-
volutional layers, along with context features consisting of the position of the proposal rel-
ative to the image and neighbors’ features. Through a reconstruction module, they learn
to ground by optimizing the reconstruction with respect to sentences, attributes, subject,
location, and context. Differently from previous works, A. Arbelle et al. [87] proposed a
framework that solves the visual-textual grounding task by adopting the concept of alpha
blending. Initially, given two images, the model composes a new image using pieces of both
images and generates an alpha mask that keeps track of the composition. This mixed image
is then fed into the encoder-decoder model, which also receives the two sentences associated
with the images, and the objective is to reconstruct the alpha mask that separates the two
images. At test time, the model interprets the input image as a composition of two images
and produces amask that separates the image regions concerning the two input queries, thus,
localizing regions.

Regarding contrastive learning approaches, T. Gupta et al. [9] proposed a visual-textual
grounding model that learns by contrastive examples. In particular, the model is trained to
maximize the compatibility function among positive query and image pairs while minimiz-
ing other negative query and image pairs. Negative queries are built with a language model
that substitutes nounwords in the true textual phrasewith contextually plausible but untrue
words. Similarly, Q. Wang et al. [88] proposed a multimodal alignment framework (MAF)
that joins the strengthpoints of contrastive learning anduses object detector annotations. In-
spiredby [89], they employ the Faster-RCNNobject detector trainedon theVisualGenome
dataset. Using a linear projection, they join proposal features with the word embedding of
eachproposal’s classification label. The textual features are extractedwith an attentionmech-
anism that attends to the visual features. The final attention score is themaximum similarity
obtained between the proposal and word features.

Other approaches embed the visual and textual features in the same embedding space [80,
91], sometimes enforcing preserving syntactic structures occurring in the textual phrase [92,
93, 83, 94]. H. Akbari et al. [80] addressed the problem of phrase localization by learning a
multi-level joint semantic embedding space for both textual and visualmodalities. Themulti-
level approach is implemented through an attention mechanism on top of multi-level visual
features and contextualized text embeddings. Inspired by previous works on visual saliency
that proved its effectiveness, V. Ramanishka et al. [91] applied the same approach to solve
the visual-textual grounding task. Both the models of H. Akbari et al. and V. Ramanishka
et al. output a heatmap. L. Wang et al. [92] proposed a new approach to generate joint em-
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beddings for visual and textual modalities. However, in the embedding space, the authors
enforce structure-preserving constraints which embed objects and images that share similar
meanings near each other. S. Fidler et al. [93, 83] aimed at semantic scene understanding by
incorporating both textual and visual information. Their model employs a natural language
processing (NLP) parser to deconstruct textual phrases into nouns and prepositions, subse-
quently utilized to produce potentials in a holistic scenemodel. F.Xiao et al. [94] proposed a
weakly-supervised approach that learns to visually ground phrases according to the linguistic
structures of the textual phrase in input. More in detail, theirmodel adopts anNLPparser to
detect the parent-sibling and sibling-sibling linguistic constraints, which are then enforced
in the visual modality.

Unlike the models presented before, J. Wang in et al. [89] proposes a method to solve
the visual-textual grounding task without even performing any training on the visual-textual
groundingmodel. Their core idea is to leverage several pre-trained object detectors to extract
bounding box information and then compare that information with the query in input in a
word embedding space. Objects detectors vary in number and type of categories.

Whilemost of the approaches in the literature consider 2D images, C.Kont et al. [95] pro-
posed a model that adopts RGB images with a depth channel (i.e., 3D). Their work, which
adopts indoor images, aims to detect the class of the 3D objects and match nouns with the
best referred visual objects. However, a limitation of their model is that it can classify only
21 different object classes.

Lastly, B. A. Plummer et al. [77] proposes a new approach, and at the same time, they
release a newopen-source dataset for visual-textual grounding, namely the Flickr30kEntities
dataset. Their proposed approach is based on Canonical Correlation Analysis (CCA) and
evaluates each region-phrase correspondence independently. In other words, their approach
does not consider the joint reasoning among all region-phrase pairs’ correspondences, which
is often performed by most works adopting the weakly-supervised approach.

3.3 Visual-Textual-Knowledge Entity Linking (VTKEL) Problem

The Visual-Textual-Knowledge Entity Linking problem is an area of research very related to
the visual-textual grounding problem. It is themost related research area to this Ph.D. thesis,
which aims to use additional information to solve the visual-textual grounding.

In the following works [15, 16, 17], the authors introduce the problem of aligning the
visual entities (i.e., the bounding boxes) and the textual entities (i.e., the noun of the textual
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phrase) with the nodes of the YAGO [96, 97, 98] knowledge graph. Always in these works,
the authors proposed a baseline, namely VT-LINKER, to solve the problem and extended
the Flickr30k Entities dataset with the ground truths alignment of queries and bounding
boxes with knowledge graph nodes. Their model proposal’s key idea is to move the align-
ment problem between bounding boxes and texts on the knowledge graph. More in detail,
initially, their model deploys anNLP parser (PIKES [99]) to solve the named-entity recogni-
tion task on the textual phrase. The parser returns the node of the YAGO knowledge graph
that most represent the entity expressed by the query. Then, the model adopts an object
detector to locate and classify all the objects depicted in an image. Thanks to the bounding
boxes classification labels and a predefined mapping function, the model retrieves the node
of YAGOmost related to the entity delimited by the bounding boxes. Finally, the alignment
is performed on YAGO by observing whether parent-child relationships exist between the
found nodes. If it exists then the corresponding visual and textual entities are also aligned.



4
The General Framework

This Ph.D. thesis aims to solve the visual-textual grounding task with additional prior in-
formation. While the classic method involves two input modalities (text and image), this
thesis proposes incorporating a thirdmodality in the form of a graph. The graph is a discrete
structure that can represent any kind of information that can be used to solve the grounding
task.

In the following, the visual-textual grounding task and aprobabilistic frameworkdesigned
touse additional knowledgewill be formally defined . Then, a comprehensive analysiswill be
provided demonstrating that the proposed framework can effectively frame existing works
in the literature as specific instances. In addition, it will be illustrated how the proposed
framework can be employed to devise a novel approach to visual-textual grounding based on
an innovative factorization of probabilities not yet explored in the literature.

4.1 Visual Grounding Formal Definition

Visual-textual grounding is the general task of locating the components of a structured de-
scription in an image. In order to solve this task, first, it is necessary to recognize all the objects
in the image and the components in the text. After, it needs to find the correct alignment
among the nouns and the objects.

Each object detected in the image is usually represented with a rectangle called bounding
box, while each component detected in the text is usually called query. The bounding box is

21
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determined by its position in the image and by its dimension, while the query is determined
by the position of the first character and the position of the last character in the input text.

Formally, given an image I ∈ I and a sentence S ∈ S the visual-textual grounding task
aims to learn a map γ : I × S → 2QS×BI , where QS is the domain of the noun phrases
definedonS, andBI is the domainof all the boundingboxes definedonI . So, given an image
I containing eobjects identified via the set of bounding boxesBI = {bi}ei=1, wherebi ∈ R4

is the vector of coordinates identifying a bounding box in I , and a sentence S containingm
noun phrases gathered in the setQS = {qj}mj=1, where qj ∈ N2 is a vector containing the
initial and final character positions in the sentence S, γ(I, S) returns a subset Γ ⊆ QS ×BI

where each couple (q, b) ∈ Γ associates the noun phrase q to the bounding box b. The
object detector detects the bounding boxesBI from a given image I while a natural language
parser extracts the queriesQS from a given sentence in S ∈ S .
In the supervised setting, the model during training can utilize all the information avail-

able, which consists of a training set of n examples defined asD = {(Ii, Si,Γgt
i )}ni=1, where

Γgt
i is the set of ground truth associations for the example i. In the weakly-supervised set-

ting, the training set of n examples is defined asD = {(Ii, Si)}ni=1. In other words, during
model training, only the information about sentence Si describing the image Ii is available,
while there is no information about which noun phrase q ∈ QS refers to each bounding box
b ∈ BI (i.e., Γgt

i ).
This document aims to include also a knowledge graph in the resolution of the visual-

textual grounding problem. The knowledge graph is defined as a directed graph KG =

(V,E,Φl,Φr,L,R)where:

• V : is the set of nodes, also called concepts in this document;

• E: is the set of direct edges between two nodes, also called relationships;

• Φl: is the function defined over edges that returns the start node of the edge:

Φl : E −→ V

• Φr: is the function defined over edges that returns the end node of the edge:

Φr : E −→ V
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• L: is the function that associates to each node its label inΘv;

L : V −→ Θv

• R: is the function that associates to each edge its label inΘe;

R : E −→ Θe

• Θv ∩Θe = 0 i.e., there are no labels common to both sets.

Given a node v ∈ V , the following are defined:

N+(v) = {u | u ∈ V, ∃ e ∈ E,Φr(e) = u ∧ Φl(e) = v},
N−(v) = {u | u ∈ V, ∃ e ∈ E,Φr(e) = v ∧ Φl(e) = u},

indegree =| N+(v) |,
outdegree =| N−(v) | .

The set of all neighborhoods of v ∈ V is defined as:

N (v) = {u | u ∈ N+(v) ∨ u ∈ N−(v)}.

4.2 General Formulation

This sectiondefines thenewgeneral framework intended to include graph information. More
in detail, this section proposes a probabilistic framework that aims to learn the function
γ : I × S ×KG → 2QS×BI×V , whereQS is the domain of the noun phrases defined on S,
BI is the domain of all the bounding boxes defined on I , andV is the domain of the vertices
V of the graph. In the rest of this chapter, when using the correct notation is not strictly
necessary,B will denoteBI , andQwill denoteQS.

LetB be a set of bounding boxes of an image I ,Q a set of textual queries occurring in the
image’s caption, andV the set of vertices of a knowledge graph. The framework is interested
in finding the alignments between the bounding boxes in B, the textual queries/mentions
inQ, and the nodes in V . Intuitively, the alignment ⟨b, q, v⟩ ∈ B ×Q× V represents the
fact that the bounding box b shows an object mentioned by the query q and is (of type) v.



24

Since there is an amount of uncertainty in predicting these alignments, there is the need
to develop a probabilistic framework that allows predicting the alignment ⟨b, q, v⟩ with an
associatedprobabilityP

(
X⟨b,q,v⟩

)
, whereX⟨b,q,v⟩ is a boolean randomvariable taking values

0 if the ⟨b, q, v⟩ are not aligned and 1 if they are aligned.

To consider the joint distribution on all the alignments inB×Q×V , the set of boolean
random variables is defined as XB,Q,V = {X⟨b,q,v⟩}⟨b,q,v⟩∈B×Q×V , and with xB,Q,V =

{x⟨b,q,v⟩}⟨b,q,v⟩∈B×Q×V it is denoted an assignment to all the variables in XB,Q,V . Notice
that every value x ofX corresponds to a subset of B × Q × V . When it is clear from the
context, all the indexes are omitted. In general, the framework estimates:

P (X = x) . (4.1)

Example 4.2.1 Consider a picture showing two people one of which is walking a dog with the
caption “John with Oscar: his wonderful golden retriever”. Thus B = {bper1, bper2, bdog}
andQ = {qjohn, qoscar, qgolden}. Furthermore, suppose thatV contains the three nodes, V =

{vman, vanimal, vdog}. In total, there are 27 triples, some of them are not very probable, and
others, instead yes. There is an amount of 227 possible alignments, where an alignment is a set
of triples (not a single triple). In this case, the alignment withmaximum probability should be:

{⟨bper1, qjohn, vman⟩ ⟨bdog, qoscar, vdog⟩ ⟨bdog, qgolden, vdog⟩}.

However, itmight be uncertain if John is actually the other person, so another possible alignment
is:

{⟨bper2, qjohn, vman⟩ ⟨bdog, qoscar, vdog⟩ ⟨bdog, qgolden, vdog⟩},

but this alignment is less probable because the other person is in the background and far from
the dog. However, it could be that the other person is indeed John himself reflecting in awindow.
Therefore, the mapping:

{⟨bper1, qjohn, vman⟩ {⟨bper2, qjohn, vman⟩ ⟨bdog, qoscar, vdog⟩ ⟨bdog, qgolden, vdog⟩},

has a non 0 probability. Another uncertain concerns the fact that Oscar is the name of the dog
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or the other person, so another possible mapping is:

{⟨bper1, qjohn, vman⟩ ⟨bper2, qoscar, vman⟩ ⟨bdog, qgolden, vdog⟩}.

And so on … it is possible to continue considering all the possible subsets of triples.

In the rest of the document, when it is not strictly necessary to use the correct notation,
given some set of random variablesX , the informal notation P (X) will be used to denote
P (X = x), leaving implicit the assignment x.

Although reasoningwith triples is very general, it turns out tobe less intuitive and, itmight
be convenient to consider pairs of media at a time, instead of triplets. This has a price, i.e.,
some possible alignments are lost. Let’s analyze the situation better.

4.2.1 The closure property

It is possible to consider the following restriction on the possible assignments ofX .

Definition 1 (Closure) An assignment x⟨b,q,v⟩ to X⟨b,q,v⟩ satisfies the closure condition if:
x⟨b,q,v′⟩ = 1, x⟨b,q′,v⟩ = 1, and x⟨b′,q,v⟩ = 1, implies that x⟨b,q,v⟩ = 1, for every b, b′ ∈ B,
q, q′ ∈ Q, and v, v′ ∈ V . More compactly, this can be written with the fact that each assign-
ment x should satisfy the following boolean formula:

X⟨b,q,v′⟩ ∧X⟨b,q′,v⟩ ∧X⟨b′,q,v⟩ → X⟨b,q,v⟩ (4.2)

Graphically the closure condition is shown in Figure 4.1. Under the closure hypothesis, a
more compact representation using three sets of random variables can be found:

XB,V = {X⟨b,v⟩}⟨b,v⟩∈B×V ,

XQ,V = {X⟨q,v⟩}⟨q,v⟩∈Q×V ,

XB,Q = {X⟨b,q⟩}⟨b,q⟩∈B×Q,

one for each pair of media (text, images, and knowledge graph). This is formally proved by
the following proposition.

Proposition 4.2.1 x satisfies (4.2) if and only if there are three assignments xB,V , xQ,V , and
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⟨b, q, v′⟩ ∧ ⟨b, q′, v⟩ ∧ ⟨b′, q, v⟩ → ⟨b, q, v⟩

Figure 4.1: The two graphs shown are equal. The second disposition better shows the property. The closure property
states that the triangle obtained from the edges of three triangles is also a triangle. In the picture, the three triangles (blue,
red and green) contribute to the construction of a fourth triangle with vertexes b, q and v

xB,Q toXB,V ,XQ,V andXB,Q respectively, such that:

x⟨b,q,v⟩ = x⟨b,v⟩ · x⟨q,v⟩ · x⟨b,q⟩, (4.3)

for all ⟨b, q, v⟩ ∈ B ×Q× V .

Proof 4.2.1 Suppose that x satisfies condition (4.2). Let’s define:

x⟨b,v⟩ = max
q

x⟨b,q,v⟩,

x⟨q,v⟩ = max
b

x⟨b,q,v⟩,

x⟨b,q⟩ = max
v

x⟨b,q,v⟩.

It will be proved that:

x⟨b,q,v⟩ = x⟨b,v⟩ · x⟨q,v⟩ · x⟨b,q⟩. (4.4)

Suppose that x⟨b,v⟩ = 0 then for all q ∈ Q, x⟨b,q,v⟩ = 0. Similar arguments holds for x⟨q,v⟩

and x⟨b,q⟩. This implies that if one among the factors are 0 then x⟨b,q,v⟩ is equal to 0. Suppose
that x⟨b,v⟩ = x⟨q,v⟩ = x⟨b,q⟩ = 1 then there are q′, b′ and v′ such that x⟨b,q′,v⟩ = x⟨b′,q,v⟩ =

x⟨b,q,v′⟩ = 1. From condition (4.2) it is obtained x⟨b,q,v⟩ = 1.
Vice-versa. Suppose that for all ⟨b, q, v⟩ ∈ B × Q × V , x⟨b,q,v⟩ = x⟨b,v⟩ · x⟨q,v⟩ · x⟨b,q⟩,
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and let’s prove condition (4.2). If x⟨b,q,v′⟩ = x⟨b,q′,v⟩ = x⟨b′,q,v⟩ = 1 then, by construction
of xBV , xQV and xBQ it is obtained that x⟨b,v⟩ = x⟨q,v⟩ = x⟨b,q⟩ = 1, and therefore, by
hypothesis x⟨b,q,v⟩ = 1.

Accepting the closure hypothesis, the entire probability distribution can be factorized on
the joint distribution of the random boolean variables, one for each pair in (B×V )∪ (Q×
V ) ∪ (B ×Q). In other words, it is needed an estimation of:

P (XB,V = xB,V , XQ,V = xQ,V , XB,Q = xB,Q) , (4.5)

that without any assumptions can be factored as follows:

P (XB,Q, XB,V , XQ,V ) = P (XB,Q | XB,V , XQ,V ) · P (XB,V , XQ,V ) . (4.6)

In the following section, it will be introduced some assumptions that will factorize the
probability distribution further.

4.2.2 Additional Independent Assumptions

Estimating (4.6) is prohibitive, given thenumber of variables involved. The knowledge graph
indeed can contain a huge number of nodes. If, for instance, WordNet is considered as a
knowledge graph, then |V | = 175, 979, which implies that a picture containing two bound-
ing boxes with a caption with two textual mentions results in more than 700000 boolean
variables. Therefore there is the need to consider a number of independent assumptions on
the variables inX , that allow a factorization of (4.6).

4.2.2.1 Independence ofXB,V fromXQ,V

Afirst independence assumption can be done by supposing that the alignment of the bound-
ing boxes to the nodes of the knowledge graph, (i.e., the bounding box classification) is in-
dependent of the alignment of the textual concepts with the nodes of the knowledge graph
(word sense disambiguation). This results in assuming that P (XB,V , XQ,V ) factorizes in
P (XB,V ) · Pr(XQ,V ). With this assumption, the following factorization of (4.6) is ob-
tained:

P (XB,Q, XB,V , XQ,V ) = P (XB,Q | XB,V , XQ,V ) · P (XB,V ) · P (XQ,V ) . (4.7)
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This assumption removes the possibility to use the information of one media to interpret
the othermedia. For instance, the possibility of using textual bias to help the classification of
the bounding boxes in the image is lost. In fact, suppose that the text contains the relatively
unambiguousword “dog”. This constitutes a bias in the classification of the bounding boxes
of the image, which could boost the label “dog” with respect to the other labels. When this
independence ofXB,V andXQ,V is considered, this boost is not possible.

4.2.2.2 Independence ofXb,V fromXb′,V (resp. ofXq,V fromXq′,V )

A further independence hypothesis among the elements ofXB,V (resp. XQ,V ) is based on
the fact that the labeling of each bounding box (resp. textual mention) with the knowledge
graph is independent of the alignments of the other bounding boxes (resp. textualmentions).
This means that it is possible to assume:

P (XB,V ) =
∏
b∈B

P (Xb,V ) , (4.8)

P (XQ,V ) =
∏
q∈Q

P (Xq,V ) , (4.9)

where for every b ∈ B,Xb,V denotes the set of random variables {X⟨b,v⟩}v∈V , and anal-
ogously for every q ∈ Q, Xq,V denotes the set of random variables {X⟨q,v⟩}v∈V . Starting
from the distribution 4.7, this new assumption results in the following factorization:

P (XB,Q, XB,V , XQ,V ) = P (XB,Q | XB,V , XQ,V ) ·
∏
b∈B

P (Xb,V ) ·
∏
q∈Q

P (Xq,V ) .

(4.10)

4.2.2.3 Conditional independence ofXB,Q

A further independence assumption can be obtained by assuming that the alignment of a
bounding box b with the textual mention q, depends only on the alignments of b and q

with the knowledge graph, and not from the alignments of the other textual concepts and
bounding boxes. This implies that the conditional probabilityP (XB,Q | XB,V , XQ,V ), can
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Approach Latent Query Bounding Boxes Queries Bounding Boxes
Variables Spatial Features Spatial Features Independencies Independencies

B. A. Plummer et al. [77] XB,V ,XQ,V $ $ " "

Z. Yang et al. [24] XB,V ,XQ,V " $ " $

DDPN [23] XB,V ,XQ,V $ " " $

GroundeR [6] XB,V ,XQ,V $ " " $

VT-LINKER [15] None $ $ " "

Table 4.1: Summary of the differences in the framework instantiations outlined in Section 4.3. The “checkmark” and the
“x” symbols refer to the presence or absence of the column item, respectively.

be factorized as follows: ∏
b∈B
q∈Q

P (Xb,q | Xb,V , Xq,V ) . (4.11)

With this further factorization the initial distribution (4.6) can be rewritten as:

P (XB,Q, XB,V , XQ,V ) =
∏
b∈B
q∈Q

P (Xb,q | Xb,V , Xq,V ) · P (Xb,V ) · P (Xq,V ) . (4.12)

4.3 A Probabilistic Perspective of SomeModels

This section presents somemodels in the literature under the probabilistic perspective given
by the framework presented in Section 4.2. In particular, the presentation of each model
focuses just on the factorization of the probability function, the visible and hidden random
variables, the explicit and implicit independent assumptions, and how each function is es-
timated. Table 4.1 presents a synthetic view of the differences in the framework instantia-
tions outlined in this section. Further detailed information on the approaches will not be
discussed in this section, and reference should be made to the respective original sources.

The following terminology will be used during the presentation:

1. the symbol∝ to represent the meaning of “proportional to”;

2. the function |·| to represent the cardinality of a set;

3. the functions ∥·∥1 and ∥·∥2 to represent the absolute value norm and the Euclidean
norm, respectively;
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4. the notation ind
= to indicate that equality under independence assumptions;

5. Concat represents the concatenation function, whileSoftmax refers to the softmax
function.

For some random variable X , the informal notation P (X) will be used to denote the
probability P (X = 1).

4.3.1 B. A. Plummer et al.

This section presents the model [77] that does not explicitly use the knowledge graph. Let
ZB = {Zb}b∈B andZQ = {Zq}q∈Q be two sets of observable continuous random vectors
associated with the bounding boxes inB and the queries inQ. This model can be seen as an
instantiation of the proposed framework inwhichXQ,V andXB,V are considered two latent
variables. Starting from the probability function 4.5 and considering the two new variables,
this approach estimates:

∫ ∫
P (XB,Q, XB,V , XQ,V | ZB, ZQ) dXB,V dXQ,V ,

= P (XB,Q | ZB, ZQ) ,

ind
=
∏
b∈B
q∈Q

P (Xb,q | Zb,Zq) ,

4.3.1.1 Estimating P (Xb,q | Zb,Zq)

This function maps the bounding box features Zb and the phrase features Zq to a com-
mon space using theCanonicalCorrelationAnalysis (CCA), where using the cosine distance
function it predicts the distance between a pair of points. Let (Wb,Wq) a pair of matrices
returned by the CCA, the probability function is estimated as:

P (Xb,q = 1 | Zb = zb,Zq = zq) ∝
∣∣∣∣ zbWb · zqWq

∥zbWb∥2 · ∥zqWq∥2

∣∣∣∣ ,
where zb and zq are the observable values ofZb andZq.
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4.3.2 Z. Yang et al.

This sectionpresents themodel [24]whichdoes not explicitly use the knowledge graph. This
model can be seen as an instantiation of the proposed framework in whichXQ,V andXB,V

are considered two sets of latent variables. Let ZI = {Z1,Z2,Z3} be a set of three observ-
able continuous random vectors associated with the image I in input at different resolution
scales, ZQ = {Zq}q∈Q be a set of observable continuous random vectors associated with
the queries in Q and ẐQ = {Ẑq}q∈Q be a set of observable continuous random vectors
representing the queries spatial features. Starting from the probability function 4.5 and con-
sidering the new variables, this approach estimates:∫ ∫

P
(
XB,Q, XB,V , XQ,V | ZI , ZQ, ẐQ

)
dXB,V dXQ,V ,

= P
(
XB,Q | ZI , ZQ, ẐQ

)
,

ind
=
∏
q∈Q

P
(
XB,q | ZI ,Zq, Ẑq

)
.

4.3.2.1 Estimating P
(
XB,q | ZI ,Zq, Ẑq

)
Let xB,q = {xb,q}b∈B be the set of assignations where only one bounding box b ∈ B

should grounded with the query q ∈ Q, the probability distribution is estimated with a
deep neural networkNN :

P
(
XB,q = xB,q | ZI = zI ,Zq = zq, Ẑq = ẑq

)
∝ Softmax (NN (zI , zq, ẑq)) ,

where zI = {z1, z2, z3},zq and ẑq are the observable values ofZI ,Zq and Ẑq, respectively.

4.3.3 Diversified andDiscriminative Proposal Networks model (DDPN)

This section presents the model [23] which does not explicitly use the knowledge graph.
Let ZB = {Zb}b∈B be a set of observable continuous random vectors associated with the
bounding boxes in B, ZQ = {Zq}q∈Q be a set of observable continuous random vectors
associated with the queries inQ and ẐB = {Ẑb}b∈B be a set of observable continuous ran-
dom vectors representing the bounding boxes spatial features. This model can be seen as an
instantiation of the proposed framework inwhichXQ,V andXB,V are considered two latent
variables. Starting from the probability function 4.5 and considering the new variables, this
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approach estimates:

∫ ∫
P
(
XB,Q, XB,V , XQ,V | ZB, ẐB, ZQ

)
dXB,V dXQ,V ,

= P
(
XB,Q | ZB, ẐB, ZQ

)
,

ind
=
∏
q∈Q

P
(
XB,q | ZB, ẐB,Zq

)
.

4.3.3.1 Estimating P
(
XB,q | ZB, ẐB,Zq

)
Let xB,q = {xb,q}b∈B be the set of assignations where only one bounding box b ∈ B

should grounded with the query q ∈ Q, the probability distribution is estimated with a
deep neural networkNN :

P
(
XB,q = xB,q | ZB = zB, ẐB = ẑB,Zq = zq

)
∝ Softmax (NN (Concat(zB, ẑB,Zq))) ,

where zB = {zb}b∈B , ẑB = {ẑb}b∈B , and zq are the observable values of ZB , ẐB andZq,
respectively. This implies:

P
(
Xb,q = 1 | ZB = zB, ẐB = ẑB,Zq = zq

)
∝ exp (NN (Concat(zb, ẑb, zq)))∑

i∈B exp (NN (Concat(zi, ẑi, zq)))
.

4.3.4 GroundeR

This section presents the model [6] which does not explicitly use the knowledge graph. Let
ZB = {Zb}b∈B be a set of observable continuous random vectors associated with the
bounding boxes in B, ZQ = {Zq}q∈Q be a set of observable continuous random vectors
associated with the queries inQ and ẐB = {Ẑb}b∈B be a set of observable continuous ran-
dom vectors representing the bounding boxes spatial features. This model can be seen as an
instantiation of the proposed framework inwhichXQ,V andXB,V are considered two latent
variables. Starting from the probability function 4.5 and considering the new variables, this
approach estimates:
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∫ ∫
P
(
XB,Q, XB,V , XQ,V | ZB, ẐB, ZQ

)
dXB,V dXQ,V ,

= P
(
XB,Q | ZB, ẐB, ZQ

)
,

ind
=
∏
q∈Q

P
(
XB,q | ZB, ẐB,Zq

)
.

4.3.4.1 Estimating P
(
XB,q | ZB, ẐB,Zq

)
Let xB,q = {xb,q}b∈B be the set of assignations where only one bounding box b ∈ B

should grounded with the query q ∈ Q, the probability distribution is estimated as:

P
(
XB,q = xB,q | ZB = zB, ẐB = ẑB,Zq = zq

)
∝ Softmax (NN (Concat (zB, ẑB) , zq)) ,

where zB = {zb}b∈B , ẑB = {ẑb}b∈B , and zq are the observable values of ZB , ẐB andZq,
respectively. This implies that:

P
(
Xb,q = 1 | ZB = zB, ẐB = ẑB,Zq = zq

)
∝ exp (NN (Concat(zb, ẑb), zq))∑

i∈B exp (NN (Concat(zi, ẑi), zq))
,

4.3.5 VT-LINKER

This sectionpresents the existing baselineVT-LINKERpresented in [15], inwhich the align-
ment between a queryq ∈ Q and a bounding boxb ∈ B is donewith an algorithm. Starting
from equation 4.12, this model estimates:

P (XB,Q, XB,V , XQ,V ) =
∏
b∈B
q∈Q

P (Xb,q | Xb,V , Xq,V ) · P (Xb,V ) · P (Xq,V )
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4.3.5.1 Estimating P (Xb,V )

This probability function is estimated using an object classifier in which, given a bounding
box b ∈ B, its predicted class corresponds to a unique node vb in the knowledge graph.
Then, for each bounding box, there is only a possible assignment x′

b,V to the knowledge
graph nodes that returns probability 1:

P (Xb,V = xb,V ) =

1, if xb,V = x
′

b,V ;

0, otherwise.

4.3.5.2 Estimating P (Xq,V )

This probability function is estimated using a named-entity recognition system which re-
turns, for each query q ∈ Q, the unique knowledge graph node vq that represents its infor-
mation. Then, similarly to the bounding box case, for each query, there is only a possible
assignment x′

q,V to the knowledge graph nodes that returns probability 1:

P (Xq,V = xq,V ) =

1, if xq,V = x
′
q,V ;

0, otherwise.

4.3.5.3 Estimating P (Xb,q | Xb,V , Xq,V )

This function is implemented with a fixed algorithm that checks if the type of the node rep-
resenting the query q ∈ Q, and the type of the node representing the bounding box b ∈ B,
are related to each other with a relation of sub-class. LetC (v) be the function that returns
the type of a node v ∈ V in the knowledge graph and⊑ the symbol indicating the sub-class
relation:

P (Xb,q = 1 | Xb,V , Xq,V ) =

1, ifC (vb) ⊑ C (vq) orC (vq) ⊑ C (vb) ;

0, otherwise.

4.4 An Innovative Probability Distribution Factorization

As seen from the previous Section 4.3, generally, the approaches in literature treat the knowl-
edge graph information as latent variables. Therefore, often models solve the visual-textual
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grounding by adopting a similar probability distribution, where only the method used to
estimate the distributions tends to change. Based on this observation, this section presents a
new model proposal to solve the visual-textual grounding task that adopts the probabilistic
framework presented in Section 4.2.

Let ZB = {Zb}b∈B and ẐB = {Ẑb}b∈B be two sets of observable continuous ran-
dom vectors associated with the bounding boxes inB. In particular,ZB is the set of bound-
ing boxes features, while ẐB is the set of the bounding boxes spatial features. Let ZQ =

{Zq}q∈Q and ẐQ = {Ẑq}q∈Q be two sets of observable continuous random vectors associ-
ated with the queries inQ. In particular,ZQ is the set of queries features, while ẐQ is the set
of the queries spatial features. Considering the new variables and the knowledge graphKG,
the following distribution should be estimated:

P
(
XB,Q, XB,V , XQ,V , | ZB, ẐB, ZQ, ẐQ, KG

)
,

which can be factorized as:

P
(
XB,Q, XB,V , XQ,V , | ZB, ẐB, ZQ, ẐQ, KG

)
= Ψ1 ·Ψ2 ·Ψ3,

where:

Ψ1 = P
(
XB,Q | XB,V , XQ,V , ZB, ẐB, ZQ, ẐQ, KG

)
,

Ψ2 = P
(
XB,V | XQ,V , ZB, ẐB, ZQ, ẐQ, KG

)
,

Ψ3 = P
(
XQ,V | ZB, ẐB, ZQ, ẐQ, KG

)
.

At this point, regarding the factor Ψ1 it can be supposed that XB,Q and KG are con-
ditionally independent given the variablesXB,V and , XQ,V , which is reasonable due to the
fact that the grounding should focusmore on the concepts referencedby the bounding boxes
and queries instead of all the KG:

Ψ1 = P
(
XB,Q | XB,V , XQ,V , ZB, ẐB, ZQ, ẐQ

)
.

In addition, regarding the factorsΨ2 andΨ3, it can be assumed thatXQ,V is independent
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from the bounding boxesZB and ẐB and thatXB,V is independent fromZQ and ẐQ:

Ψ2 = P
(
XB,V | XQ,V , ZB, ẐB, KG

)
,

Ψ3 = P
(
XQ,V | ZQ, ẐQ, KG

)
,

and that the bounding boxes are independent of each other in factorΨ2:

Ψ2 =
∏
b∈B

P
(
Xb,V | XQ,V ,Zb, Ẑb, KG

)
.

To conclude, supposing that the queries are independent of each other, the following
probability distribution factorization should be estimated:∏

q∈Q

P
(
XB,q | XB,V , Xq,V , ZB, ẐB,Zq, Ẑq

)
·
∏
b∈B

P
(
Xb,V | Xq,V ,Zb, Ẑb, KG

)
· P
(
Xq,V | Zq, Ẑq, KG

)
.

This new probability distribution factorization leads to a two-stage visual-textual ground-
ing approach, where estimating each component of the distribution is not straightforward.
In the following, an estimation for each component will be proposed.

4.4.0.1 Estimating P
(
Xq,V | Zq, Ẑq, KG

)
This probability function is estimated using a word sense disambiguator system which re-
turns, for each query q ∈ Q, the unique knowledge graph node vq that represents its in-
formation. Then, for each query, there is only a possible assignment x′

q,V to the knowledge
graph nodes that returns probability 1:

P
(
Xq,V = xq,V | Zq, Ẑq, KG

)
=

1, if xq,V = x
′
q,V ;

0, otherwise.

In the literature, there are several word sense disambiguator systems [100, 101], such as
EWISE [102] and EWISER [103].
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4.4.0.2 Estimating P
(
XB,q | XB,V , Xq,V , ZB, ẐB,Zq, Ẑq

)
Let xB,q = {xb,q}b∈B be the set of assignations where only one bounding box b ∈ B

should grounded with the query q ∈ Q, the probability distribution can be estimated using
a neural networkNN as:

P
(
XB,q = xB,q | XB,V = xB,V , Xq,V = xq,V , ZB = zB, ẐB = ẑB,Zq = zq, Ẑq = ẑq

)
∝ Softmax (NN (xB,V , xq,V , zB, ẑB, zq, ẑq)),

where zB = {zb}b∈B , ẑB = {ẑb}b∈B , zq, and ẑq are the observable values of ZB , ẐB ,Zq,
and Ẑq, respectively. This implies that:

P
(
Xb,q = xb,q | XB,V = xB,V , Xq,V = xq,V , ZB = zB, ẐB = ẑB,Zq = zq, Ẑq = ẑq

)
∝ exp (NN (xb,V , xq,V , zb, ẑb, zq, ẑq))∑

i∈B exp (NN (xi,V , xq,V , zi, ẑi, zq, ẑq))
,

This estimation resembles those presented in Section 4.3.3 and Section 4.3.4 with the
only exception of havingmore observable variables conditioning the resolution of the visual-
textual grounding task. Future works will extend approaches in the literature to include this
additional observable information.

4.4.0.3 Estimating P
(
Xb,V | Xq,V ,Zb, Ẑb, KG

)
This probability function can be estimated using an object detector that: (i) locates and
classifies the objects in the image conditioned byKG and the variablesXq,V ; and (ii) align
the bounding boxes to the knowledge graph nodes (i.e.,Xb,V ) according to their predicted
classes, as done inVT-LINKER (Section 4.3.5). Thus, when the bounding boxes are located
and classified, each predicted class corresponds to a unique node vb in the knowledge graph,
and for each bounding box, there is only a possible assignment x′

b,V to the knowledge graph
nodes that returns probability 1:

P
(
Xb,V = xb,V | Xq,V = xq,V ,Zb = zb, Ẑb = ẑb, KG

)
=

1, if xb,V = x
′

b,V ;

0, otherwise.

It is evident that the classes of the object detector are very important in determining the
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alignment with the nodes of the graph. Object detectors should find all objects in the image
and classify them correctly. However, the most common approach in the State-of-the-Art is
to use the Bottom-Up [66] object detector, which is a model trained to identify 1600 differ-
ent classes. These classes are the result of an automatic process that introduced some noise
on the set of classes that may result in a sub-optimal representational space and likely impair
the ability of the model to classify objects correctly. For this reason, Section 7.1 proposes a
new slim set of less noisy classes that allow for a better estimate of the class probabilities of
the bounding boxes.

A thorough search of the relevant literature yielded that an object detector that uses the
information of a graphKG and the variables xq,V to detect and classify the objects in the
images is still to be explored. For this reason, Section 7.2 proposes a method that can exploit
that information, and that can be used to estimate this last probability function.

4.5 Summary of the AssumptionsMade inModeling

The probabilistic framework presented in this chapter aims to learn the probability distribu-
tion that models the alignment among triples made of images’ regions, textual phrases, and
a knowledge graph’s nodes. Without any assumption, the estimation of this distribution is
prohibitive given the high number of variables involved. For this reason, several assumptions
were introduced in this chapter tomake its estimation feasible, although some generalization
of the approach has been sacrificed. The assumptions made in modeling the proposed prob-
ability distribution factorization are summarized below.

The first assumption regards the acceptance of the Closure 4.2 hypothesis, which makes
the frameworkmore intuitive and tractable, albeit sacrificing some possible alignments. The
Closure hypothesis states that the triangle obtained from the edges of three triangles is also a
triangle, which may not be true in the general case.

The second assumption states that the alignment among queries and bounding boxes are
conditionally independent from the knowledge graph given the alignment of the queries
and bounding boxes with the knowledge graph. This is reasonable due to the fact that the
grounding should focus more on the boxes and queries instead of the knowledge graph.

The third assumption regards the independence of the alignment of the textual concepts
with the knowledge graph from the alignment of the bounding boxes with the knowledge
graph. This assumption removes the possibility to use the image information to interpret
the textual information, although in some cases, visual information can be useful to disam-
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biguate words’ meanings.
To conclude, the last assumptions suppose that (i) the queries are always independent of

each other and that (i) the alignment of each bounding boxwith the knowledge graph is inde-
pendent of the others. The former assumption is reasonable in the visual-textual grounding
area of research, where the queries are usually independent of the others during evaluation.
Instead, the latter assumption removes the possibility of reasoning about all the objects ap-
pearing in the image when finding their alignment with the knowledge graph.
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5
A Better Loss for Visual-Textual Grounding

As presented in the introduction of this Ph.D. thesis, while developing the probabilistic
framework, the traditional visual-textual grounding task, which considers only two modali-
ties (i.e., image and text), was also studied. In particular, the first contribution in this direc-
tion is the proposal of a new training loss for training deep learningmodels in the supervised
setting.
In the last years, several works have addressed the visual-textual grounding problem by

proposingmore andmore large and complexmodels that try to capture visual-textual depen-
dencies better than before. These models are typically constituted by twomain components
that focus on how to learn useful multi-modal features for grounding and how to improve
the predicted bounding box of the visual mention, respectively. Finding the right learning
balance between these two sub-tasks is not easy, and the current models are not necessarily
optimal with respect to this issue.

More in detail, this chapter1 proposes a loss function based on bounding boxes classes
probabilities that: (i) improves the bounding boxes selection; (ii) improves the bounding
boxes coordinates prediction. The proposed model, although using a simple multi-modal
feature fusion component, is able to achieve higher accuracy than State-of-the-Art models
on twowidely adopted datasets, reaching a better learning balance between the two sub-tasks
mentioned above.

1Part of this work is published in [10].

41
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5.1 Introduction

The visual-textual grounding problem is defined as the task of locating the content of the
image referenced by a given sentence and it is a building block for many real-world applica-
tions and complex tasks. It is a challenging task, which requires a semantic understanding of
the image content and its textual description, requiring the ability to predict the parts of the
image content referred by a specific descriptive sentence. It can be formulated as an object
detection task followed by a classification task in which, given an input image and sentence,
the goal is to return only the detected object(s) in the image that represent(s) the best seman-
tic match with the sentence. In the initial phase of research on this problem, many works
have followed this formulation, developing the so-called two-stage approach models [6, 23],
while more recent works have chosen to address the problem by a one-stage approachmodel,
in which the object detection and the classification problem are solved jointly [24, 25].

In the literature, there are many works adopting increasingly improved object proposals
and increasingly complex architectures than before in order to capture visual and textual in-
formation. These models are typically constituted by two main components that focus on
how to learn useful multi-modal features for grounding and how to improve the predicted
boundingboxof the visualmention, respectively. Finding the right learningbalance between
these two sub-tasks is not easy, and the current models are not necessarily optimal with re-
spect to this issue. This chapter proposes amodel that, although using a simplemulti-modal
feature fusion component, is able to reach a higher accuracy than State-of-the-Art models
thanks to the adoption of a more effective loss function that reaches a better learning bal-
ance between the two sub-tasks mentioned above.

The main contributions can be summarized as follows: (i) the proposal of a new loss for
visual bounding box proposals, which also considers the object proposals’ semantic informa-
tion, differently from the works in the literature that just consider their shapes and spatial
positions in the image; (ii) the proposal of a new regression loss on the bounding boxes co-
ordinates, which is applied to a subset of all the proposals selected by considering the object
proposals’ semantic information. This loss differs from the one used by the approaches in
the literature, which only considers the proposal with the largest overlap with the ground
truth; (iii) this is the first approach that adopt the Complete Intersection over Union [104]
loss for the visual-textual grounding task; (iv) it is experimentally shown that the proposed
losses improve the performance of State-of-the-Art models.
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Figure 5.1: The two‐stage model architecture overview. (1) Initially, the image is processed by a pre‐trained Faster R‐CNN
object detector in order to extract all the proposals bounding boxes fromwhich (2) the spatial features are generated. Then,
the model (3) generates the textual features from the input noun phrase using the Textual Features Generator module by
first retrieving each word embedding and then using an LSTM network. Finally, the model (4) fuses together all the visual,
spatial, and textual features by the Fusion Operator, obtaining new features that are then used in the (5) Grounding and (6)
Bounding Box Offsets modules, respectively. The defined losses Lg (7) and Lc (8) are used in order to train the network
end‐to‐end on the components included in the light blue background.

5.2 ProblemDefinition

This chapter tackles the supervised visual-textual grounding task whose formal definition is
introduced in Section 4.1. Please, notice that the same noun phrase can be associated with
several different bounding boxes, as well as the same bounding box can be associated with
many different noun phrases. Following the current literature, in this chapter, it is assumed
that each noun phrase is associated with one and only one bounding box. A bounding box,
however, can identify more objects, e.g., several persons, in the case the noun phrase is “peo-
ple”.

Bear in mind that for model training, all the training set annotations can be used, which
consist of a set of n examples defined as D = {(Ii, Si,Γgt

i )}ni=1, where Γ
gt
i is the set of

ground truth associations, for example, i.
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5.3 TheModel Proposal

This section will first describe the model structure and then the training procedure that ex-
ploits the original part of this proposal, e.g., a loss function composed of novel sub-losses.

5.3.0.1 Model

The model proposal, outlined in Figure 5.1, follows a typical basic architecture for visual-
textual grounding tasks. It is based on a two-stage approach in which, initially, a pre-trained
object detector is used to extract, from a given image I , a set of e bounding box proposals
PI , jointlywith visual featuresHv. The features represent the internal object detector activa-
tion values before the classification and regression layers for bounding boxes. Moreover, the
model extracts the spatial featuresHs from the bounding box proposals. It is also assumed
that the object detector returns, for each bounding box proposal pi ∈ PI , a probability
distributionPrCls(pi) over a setCls of predefined classes, i.e., the probability for each class
ξ ∈ Cls that the content of the bounding box proposal pi belongs to ξ. This information
is typically returned by most of the object detectors, and it will be used to define the novel
loss terms.

Regarding the textual features extraction, given a noun phrase qj , all its wordsW qj are
initially embedded in a set of vectors Eqj . Then, the model applies a LSTM [105] neural
network to generate only one new embedding h⋆

j from the sequence of word embeddings
for each phrase qj . Once vector h⋆

j has been generated from the noun phrase qj , the model
performs a multi-modal feature fusion operation in order to combine the information con-
tained in h⋆

j with each of the bounding box proposals hv
z ∈ Hv. This operation is imple-

mented with a simple function that merges the multi-modal features together rather than
relying on a more complex operator, such as bilinear-pooling [78] or deeper neural network
architectures. Future works will use a more complex fusion operator that will lead to fur-
ther improvements. The multi-modal fusion component returns the set of new vectorial
representationsH ||.

Finally, the model predicts the probability Pjz that a given noun phrase qj is referred to
the bounding box proposal pz . Indeed, the representations of the bounding box proposal’s
features conditioned with the textual features can also be used to refine the bounding box
proposal’s coordinates generated by the object detector independently of the textual features.
Specifically, the model does not predict new bounding box coordinates but offsets the coor-
dinates.
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Technical details regarding the model are reported in Appendix B.1.

5.3.0.2 Training

This section presents the main novel contribution of this chapter, i.e., a loss function com-
posed of novel terms. The basic idea is to exploit the semantic information associated with
bounding box proposals, i.e., the probability distribution over classes of the content of a
bounding box returned by the object detector, in both the loss term concerning the ground-
ing and the loss termconcerning the refinementof theboundingbox coordinates. In fact, dif-
ferently frommost of the previous works that use the cross-entropy (CE) loss or the standard
Kullback–Leibler(KL) divergence loss for grounding, the model proposed in this chapter im-
plements aKLdivergence loss inwhich the ground truth probability is built also considering
PrCls(pi)with pi ∈ PI . Moreover, regarding the bounding boxes coordinates refinement,
differently from previous works that use the SmoothL1 loss, the model presented in this chap-
ter adopts the Complete Intersection over Union (CIoU) loss [104]. See Appendix A.3 for
more details about the Intersection over Union (IoU)metric and Appendix A.4 for more de-
tails about the CIoU metric. This is the first work adopting the CIoU loss to refine the final
bounding box coordinates. Another difference with respect to all the refinement losses avail-
able in the literature is that the proposed loss does not restrict the coordinates refinement
only to the best proposal coordinates, but extends the refinement to the subset of propos-
als that significantly overlap (according to a hyper-parameter) the ground truth, modulating
the refinement by the agreement between the class probability of the best proposal and the
class probability of the considered proposal. For the sake of presentation, the new loss terms
are defined in the following, referring to a single example. The total loss is then obtained by
summing up the contributions of all examples in the training set.

Given a training example (I, S,Γgt), and the bounding box proposals set PI , the pro-
posed loss functionL (for a single example) is defined as:

L = Lg(P ,PI ,Γ
gt) + λLc(PI ,Γ

gt),

whereLg is the loss used to “shape” the grounding distribution of proposals for each specific
query in input, i.e., the probability that a given proposal is associated with a given query,Lc

is the loss related to the refinement of the bounding boxes coordinates, and λ is a trade-off
parameter.

Specifically, given m the number of noun phrases and e the number of bounding box
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proposals, the entries (j ∈ [1, . . . ,m], z ∈ [1, . . . , e]) of matrixU are defined as:

Ujz = IoU(bgtj ,pz),

where (qgt
j , b

gt
j ) ∈ Γgt, the best bounding box proposal pj∗ is defined as:

j∗ = argmax
z∈[1,...,e]

Ujz,

and the entries (j ∈ [1, . . . ,m], z ∈ [1, . . . , e]) ofmatrixC containing the cosine similarity
scores among the predicted class probabilities of the bounding box proposals as:

Cjz = Sim (PrCls(pj∗), P rCls(pz)) ,

whereSim is the cosine similarity function. Given these definitions, the entries of the target
probabilityP target is defined as:

P target
jz =

U ∗
jz∑e

i=1 U
∗
ji

,

with:

U ∗
jz =

UjzCjz, if Ujz ≥ η

0, otherwise
,

and η is a predefined threshold, i.e., a hyper-parameter.

On the basis of the above definitions, the grounding loss is defined as:

Lg(P ,PI ,Γ
gt) =

1

m

m∑
j=1

KLdiv(Pj||P target
j ),

=
1

m

m∑
j=1

e∑
z=1

Pjz log

(
Pjz

P target
jz

)
,

where KLdiv is the KL divergence function, Pj (P target
j ) is the j-th row of P (P target),

andPjz is the model predicted probability that the noun phrase qj ∈ Q refers to the image
content localized by pz ∈ PI .
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Indeed, the grounding loss captures both the bounding box spatial information and the
semantic information determined by the bounding box classes. Whenever a bounding box
is located near the ground truth bounding box and its class probability distribution is similar
to the one of the best proposal pj∗, then the loss favors the prediction of the bounding box;
otherwise, the loss penalizes the bounding boxes according to their different probability dis-
tribution and spatial location. Previousworks exploiting theKLdivergence aim tomaximize
the probability of a bounding box proposal just considering their spatial location.

Now, the novel refinement loss will be defined. In order to do that, given a query qj , the
following subset Sj ⊆ PI of proposals need to be defined as:

Sj = {pz | pz ∈ PI ∧U ∗
jz ≥ 0},

which allows to define the lossLc as:

Lc(PI ,Γ
gt) =

1

m

m∑
j=1

∑
pz∈Sj

ÛjzLCIoU (pz, b
gt
j ),

where (qgt
j , b

gt
j ) ∈ Γgt, and

Ûjz =
U ∗

jz

maxz∈[1,e]U
∗
jz + ϵ

,

in which ϵ is a small value added to avoid division by 0, and maxz∈[1,e] is the maximum
function applied along the indexes z ∈ [1, e]. Intuitively, for each bounding box proposal
that overlaps with the ground truth (according to the parameter η), this loss refines the co-
ordinates proportionally to the “semantic” of the bounding box. Note that adopting the
normalized scores Ûjz , the model does not penalize the loss on the best bounding box pro-
posal j∗.

Bear in mind that this is the first work that proposes the exploitation of the probabilities
distributions over the object detector classes to address the supervised visual-textual ground-
ing task. However, in weakly-supervised visual-textual grounding, some approaches such as
[89] leverage the information of the bounding box class with the highest probability.
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5.4 Experimental Assessment

Themodel presented in this chapter is evaluated on twowidely adopted datasets (i.e., ReferIt
and Flickr30k Entities), considering several competing approaches in the literature, includ-
ing State-of-the-Art models. In addition to that, in order to prove the usefulness of the pro-
posed losses independently of the presented model architecture, the losses presented in this
chapter are also adopted in the DDPNmodel. The choice of this model was due to: (i) pub-
licly available code2; (ii) published results on both Flickr30k Entities and ReferIt datasets,
with State-of-the-Art results on ReferIt; and (iii) exploitation of the same object detector
used in this work.

5.4.1 Datasets and EvaluationMetric

Flickr30k Entities and ReferIt constitute the two most common datasets used in the litera-
ture, although other datasets have been used (e.g., [106, 107, 108, 109]). The Flickr30k En-
tities [77] dataset contains 32K images, 275K bounding boxes, 159K sentences, and 360K
noun phrases. The ReferIt [110] dataset contains 20K images, 99K bounding boxes, and
130K noun phrases. See Appendix A.1 for more details about the Flickr30k Entities dataset
and Appendix A.2 for more details about the ReferIt dataset.

For Flickr30k Entities, it is used the standard split for training, validation, and test set as
defined in [77], consisting of 30K, 1K, and 1K images, respectively. For ReferIt, it is used
9K images of training, 1K images of validation, and 10K images of test.

Following all work in the literature, if a nounphrase corresponds tomultiple ground truth
bounding boxes, the boxes aremerged and their union region is used as its ground truth. On
the contrary, a noun phrase with no associated bounding box was removed from the dataset.

Aligned with the works in the literature, the standardAccuracymetric is adopted. Given a
noun phrase, it considers a bounding box prediction to be correct if and only if the intersec-
tion over union value between the predicted bounding box and the ground truth bounding
box is at least 0.5. See Appendix A.3 for more details about the Intersection over Union
metric.

2The official code has been adapted: https://github.com/XiangChenchao/DDPN.

https://github.com/XiangChenchao/DDPN
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5.4.2 Model Selection and Implementation Details

To evaluate the proposed model on the test set of Flickr30k Entities and ReferIt datasets, it
is selected the epoch in which the model achieved the bestAccuracymetric on the validation
set. A grid search for the best hyper-parameters, mainly for the Flickr30kEntities dataset, has
been performed with the exception of the losses hyper-parameters visible in Section 5.4.3.2.
For the ReferIt dataset, the other hyper-parameters values selected on the Flickr30k Entities
dataset are used. The Adam optimizer is used, with the exponential learning rate scheduler
set to 0.9, and the following values for the learning rate: {0.05, 0.03, 0.01, 0.005, 0.001}, c :
{2048, 2053, 2060}, and η : {0.1, 0.3, 0.4, 0.45, 0.5, 0.55}. Other hyper-parameters are
fixed to single values. For the textual features: w = 300, t = 500, and the LSTM network
uses only one hidden layer of dimension t. For the image features, a fixed number e = 100

of proposals, with size v = 2048, are extracted from the ResNet-101’s layer pool5_flat for
each image, and s = 5. The best model Accuracy is achieved in both datasets at epoch 9 of
training with a learning rate set to 0.001 and c = 2053. For Flickr30k Entities, η = 0.3 and
λ = 1, while for ReferIt η = 0.5 and λ = 1.4. The code is publicly available on GitHub 3.
See Appendix B.2 for more details about the implementation of the model proposal.

5.4.3 Results

Table 5.1 reports the results obtained on the Flickr30k Entities dataset by the approach pre-
sented in this chapter and many other approaches presented in the literature, including the
most recent State-of-the-Art models reported at the bottom part of the table. Concerning
the model CMGN developed in [116], for the sake of a fair comparison, it is reported the
performance obtained using the same setting of this chapter. In fact, the complete version of
the CMGNmodel achieves anAccuracy of 76.74%, but exploiting query dependency infor-
mation that themodel presented in this chapter could exploit as well. The integration of this
information into the proposed model is left for future work. It can be noted that the pro-
posed approach significantly improves over competing approaches. Moreover, the DDPN
model where the losses proposed in this chapter are used (last row of the table) shows a sig-
nificant improvement in performance (1.03%) with respect to the original version.
Table 5.2 reports the results obtained on the ReferIt dataset by the proposed approach

and the subset of the competing approaches reported in Table 5.1 that can be applied to

3https://github.com/drigoni/Loss_VT_Grounding

https://github.com/drigoni/Loss_VT_Grounding
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Model Accuracy (%)

SCRC [82] 27.80
SMPL [111] 42.08

NonlinearSP [92] 43.89
GroundeR [6] 47.81
MCB [78] 48.69
RtP [77] 50.89

Similarity Network [112] 51.05
IGOP [113] 53.97

SPC+PPC [76] 55.49
SS+QRN [74] 55.99

SeqGROUND [114] 61.60
CITE [115] 61.89
QRC net [74] 65.14
YOLO [24] 68.69
DDPN [23] 73.30

CMGN [116]* 73.46
SL-CCRF [117] 74.69

The proposed model 75.55
DDPN [23] using the new losses 74.33

Table 5.1: Results obtained on Flickr30k test set. Accuracy indicates in percentage the standard accuracy metric. All
values are copied from the original articles. ”*” indicates that the reported model accuracy is referring to the version of
the model in their ablation study, since the complete model uses query dependency information that is not exploited in
this work.

this dataset, plus additional approaches that have been assessed on this dataset4. The model
proposed in this chapter improves theAccuracy value by 3.02%when compared to the State-
of-the-Art model (i.e., DDPN) for this dataset, representing a more significant gain than
the one obtained on Flickr30k Entities. On the other hand, adopting the proposed losses
in DDPN leads to the best performance, with an improvement over the original version of
3.66%. In the ReferIt dataset, each sentence corresponds to a single query independently
from the others. In contrast, in Flickr30k Entities, a sentence could contain more queries
that are semantically related among them. For this reason, models that apply complex multi-
modal feature fusion components that aim to capture information among the queries ex-
tracted by the sentence in input sometimes do not consider the ReferIt dataset. Thus, the
set of the models used as a comparison in the ReferIt dataset is not the same as in Flickr30k

4Some of them do not define an acronym, so the reference to the paper is used.
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Model Accuracy (%)

SCRC [82] 17.93
GroundeR [6] 26.93
MCB [78] 28.91
CITE [115] 34.13
IGOP [113] 34.70

[118] 36.18
QRC net [74] 44.10

[119] 44.20
YOLO [24] 59.30
DDPN [23] 63.00

The proposed model 66.02
DDPN [23] using the new losses 66.66

Table 5.2: Results obtained on ReferIt test set. Accuracy indicates in percentage the standard accuracy metric. All values
are reported from the original articles.

Entities, and these reasons could explain the higher gain inAccuracy obtained inReferIt than
Flickr30k Entities.

The Point Game Accuracy is also reported, which is recently used for a few models ad-
dressing the weakly-supervised task. It considers a prediction to be correct if and only if
the center of the predicted bounding box is contained in the ground truth bounding box. In
particular, the proposedmodel obtains 87.96%and 78.0%onFlickr30k Entities andReferIt,
respectively. These values are far better than the ones reported in the literature, and they sug-
gest that a significant subset of predictions that are considered to be wrong according to the
Accuracymetric, still refer to bounding boxes that have a significant overlap with the ground
truth.

More information about the computational complexity of the approaches considered in
this work is reported in Appendix B.3.

According to further experiments performed in Section 7.1 regarding the classes adopted
by the object detector considered in thiswork, i.e., theBottom-UpFasterR-CNN[28], these
contains visually equivalent categories such as “lady” and “woman”. These equivalent classes
share similar embedding features and similar probability distribution, aswhenever themodel
needs to predict a category for an object appearing in the image, the model needs to split its
predicted probabilities among all equivalent categories. The loss proposed in this chapter,
which is based on the similarity among class probabilities, may grasp these equivalent classes



52

andpenalize them less during training. Further experiments in this direction are left as future
works.

5.4.3.1 Qualitative Results

Figures 5.2,5.3, and 5.4 show qualitative examples predicted by the model proposed in this
chapter on the test set of both Flickr30k Entities andReferIt datasets. When the query refers
to a small object in the image, most of the time, the model predicts a very close bounding
box, but not enough to have the IoU score over the 0.5 value. This is the case for the query
“a tennis ball” in the figure 5.2. See Appendix B.4 for more examples of qualitative results.

Sentence: “A woman tries to volley a tennis ball”.

Figure 5.2: This picture reports a qualitative example of the proposed approach on the Flickr30k test image id: 23016347.
The ground truth bounding boxes associated with each query are reported in red. The prediction for the query “a tennis
ball” is evaluated as wrong, even if the bounding box is very close to the ground truth.

5.4.3.2 Ablation Study

The loss presented in this chapter is composed of two main components and two hyper-
parameters. Here, it is reported the contribution of each part of the loss using different
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Sentence: “girl with glasses and back top”.

Figure 5.3: This picture reports a qualitative example of the proposed approach on the ReferIt test image id: 14651. The
ground truth bounding box is reported in red. The complete sentence in input is reported at the bottom of the figure. The
predicted bounding box presents an intersection over union value with the ground truth of 0.08.

hyper-parameters values. A set of experiments are performed, where the grounding com-
ponent is alternatively the cross-entropy, the KL divergence, or the proposed semantic KL
divergence, and the regression component is alternatively the Smooth L1 or the proposed
semantic CIoU. Moreover, different values for the hyper-parameters are considered. The
obtained results (Table 5.3) show that the major contribution to the improvement is given
by the Complete IoU loss with semantic information, which improves the model Accuracy by
∼ 2.6% and∼ 3.9% on Flickr30k Entities andReferIt datasets, respectively. Significant im-
provements are also obtained by using the semantic KL divergence in place of cross-entropy
or the CIoU-Sem instead of the standard CIoU. Moreover, results show that the proposed
approach is not much sensitive with respect to the hyper-parameters values5, and, more im-
portantly, the Accuracy on the validation set indeed represents well the Accuracy on the test
set on both datasets.

5For new datasets, λ = 1 and η = 0.5 are good starting points, although model selection may result in
better values.
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Sentence: “A teenage is on a surfboard”.

Figure 5.4: This picture reports a qualitative example of the proposed approach on the Flickr30k test image id:
6059154572. The ground truth bounding boxes associated with each query are reported in red. The complete sen‐
tence in input is reported at the bottom of the figure. All bounding boxes are predicted correctly.

5.5 RelatedWorks

This proposedwork is relatedmainly to twoareas of research, namely,Visual-TextualGround-
ing andVisual-Textual-KnowledgeEntityLinking (VTKEL).Moedetails regarding both the
Visual-Textual Grounding and the VTKEL problems are presented in Chapter 3. The work
presented in this chapter is the first to adopt the CIoU loss in order to refine the final bound-
ing boxes coordinates. Moreover, it is the first that extends the coordinates refinement to the
subset of proposals that significantly overlap the ground truth, modulating the refinement
by the agreement between the class probability of the best proposal and the class probability
of the considered proposal.
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5.6 Conclusion and FeatureWork

This chapter introduced the first contribution of this Ph.D. thesis regarding the resolution
of the traditional Visual-Textual Grounding task. More in detail, it introduced a novel loss
jointly with a simple two-stage approach model. The novel loss combines a grounding loss
and a bounding box coordinates refinement loss, both based on semantic information, i.e., a
probability distribution over a set of pre-defined classes, returned by the object detector. The
experimental assessment showed that the proposed approachwas able to reach a higher accu-
racy than State-of-the-Art models, even without using a more complex multi-modal feature
fusion component. Specifically, the proposed model results are compared to several models
in the literature over two commonly used datasets, Flickr30k Entities, and ReferIt. With re-
spect to the best State-of-the-Art approaches, on the Flickr30k Entities dataset, the proposed
approach obtained an improvement of 0.86%, while on the ReferIt dataset, it improved the
State-of-the-Art performance by 3.02%. Applying the proposed loss to the DDPN model
significantly improves its performance on both datasets, demonstrating the proposed loss
usefulness independently from the proposed model.

Since the model proposed in this chapter uses a simple multi-modal feature fusion com-
ponent, there is space for trivial improvements, including a more sophisticated multi-modal
feature fusion component, such as bilinear-pooling [78] and deeper architectures, as well as
the exploitation of dependencies among the queries contained by the input sentence. Future
workwill also address more sophisticated object detectors and the idea of including different
forms of information, such as a scene graph and prior knowledge.
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Losses Hyper-par. Flickr30k (%) ReferIt (%)

Gr. Reg. λ η Val. Test Val. Test

CE SmoothL1
0.8 / 71.25 71.82 64.24 61.81
1 / 71.08 71.61 64.19 61.29
1.2 / 71.18 71.21 64.65 61.64

KL SmoothL1

0.8 0.4 71.51 72.06 63.58 61.38
0.8 0.5 72.16 72.55 64.57 62.69
1 0.4 71.76 72.34 63.93 61.65
1 0.5 72.58 72.18 64.82 62.49

KL-Sem SmoothL1

0.8 0.4 72.22 72.72 64.38 61.78
0.8 0.5 72.42 72.41 64.99 62.12
1 0.4 72.54 72.88 65.04 62.47
1 0.5 72.34 72.83 65.45 62.72

CE CIoU-Sem

0.8 0.4 73.99 74.56 67.66 65.47
0.8 0.5 73.60 74.24 67.41 65.07
1 0.4 74.07 74.82 67.60 65.42
1 0.5 73.90 74.24 67.24 65.15

KL-Sem CIoU-Sem

0.6 0.5 75.17 75.38 68.23 66.31
0.8 0.5 75.27 75.67 68.70 66.12
1 0.5 75.41 75.53 68.72 66.52
1.2 0.5 75.23 75.34 68.88 66.37
1.4 0.5 75.13 75.36 68.97 66.02
1 0.3 75.60 75.55 68.64 66.49
1 0.4 75.40 75.64 68.56 66.54
1 0.6 74.48 74.68 68.02 65.31

Table 5.3: Accuracy obtained on Flicker30k Entities and ReferIt datasets as the losses functions and hyper‐parameters
values change. CE indicates the cross‐entropy loss, SmoothL1 indicates the Smooth L1 loss, KL‐Sem indicates the KL loss
with the semantic information and CIoU‐Sem indicate the Complete IoU loss with the semantic information. The baseline
model does not use the η parameter.
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Weakly-Supervised Visual-Textual
Grounding with Semantic Prior

Refinement

As presented in the introduction of this Ph.D. thesis, while developing the probabilistic
framework, the traditional visual-textual grounding task which considers only two modal-
ities (i.e., image and text) was also studied. The previous Chapter 5 presented a model with
a new loss to solve the visual-textual grounding task in a supervised setting. Instead, this
chapter1 proposes a new approach for solving the visual-textual grounding in the weakly-
supervised setting. Bear in mind that during model training there is no information avail-
able about the location of the object in the image, nor the ground truth alignment between
queries and bounding boxes. Thus, the loss presented in Chapter 5 cannot be applied in this
setting.

This chapter proposes a simple model dubbed Semantic Prior Refinement (SPR) model,
whose predictions are obtained by combining the output of two main modules: (i) the first
module, which does not require learning, aims to return, for each textual phrase, a rough
alignment with the corresponding bounding box referred by the phrase; (ii) the secondmod-
ule, composed by two sub-components which do require learning, refines the rough predic-

1D.Rigoni, L. Parolari, L. Serafini, A. Sperduti, andL. Ballan, “Weakly-SupervisedVisual-TextualGround-
ing with Semantic Prior Refinement”,Under Peer Review.

57



58

tion in the final phrase-bounding box alignments. The model is trained to maximize the
multimodal similarity between an image and a sentence while minimizing the multimodal
similarity of the same sentence and a newunrelated image, carefully selected to help themost
during training. Themodel performances on the Flickr30k Entities and the ReferIt datasets
are investigated. The proposed approach presents State-of-the-Art results in both datasets.
Moreover, thanks to the untrained component, it reaches competitive performances just us-
ing a small fraction of training examples.

6.1 Introduction

Visual-textual grounding, i.e., the task of finding region-phrase correspondences, requires a
joint understanding of both visual and textual modalities. Despite the outstanding advance-
ments in computer vision and natural language processing, it remains a hard task. According
to the amount of dataset annotations used for training themodel, this task can be tackled in a
fully supervised or weakly-supervised manner. In the first setting, the model is trained using
all the region-phrase pairs [6, 7, 8, 9, 10, 11], while in the second setting [87, 88, 9, 89, 85]
the only available annotation refers to image-sentence pairs. In other words, it is known
only which sentence describes each image in the dataset, but not the objects in the image
referred by the textual phrases composing the sentence. The differences between these two
approaches are visible in Figure 1.2. Under the fully supervised setting, the model requires
knowing the bounding box referred by the textual phrase, an extremely hard and expen-
sive annotation to collect. For this reason, this chapter focuses on solving the visual-textual
grounding task under a weakly-supervised setting.

A simplemodel is proposed, dubbedSemantic PriorRefinement (SPR)model, whose pre-
dictions are obtained by combining two modules: (i) the first, which does not require train-
ing, for each textual phrase returns a rough alignment with the bounding box referred by the
phrase, while (ii) the second, composed by two trained sub-components, refines the rough
predictions in the final phrase-bounding box alignments. Given a textual phrase and an im-
age as input, the model recognizes the most relevant objects in the image using a pre-trained
object detector and predicts as output the bounding box referred by the phrase. Specifically,
the rough alignment is based on the similarity score (i.e., concept similarity) between the
head of the textual phrase and the predicted label of the bounding boxes. Here, the key idea
is that the head of the phrase should be very similar (semantically speaking) to the content
of the bounding box and, thus, to its class.
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The model is trained to maximize the multimodal similarity between an image and a sen-
tence describing that imagewhileminimizing themultimodal similarity of the same sentence
and a new unrelated image, adequately selected. The model performances on the Flickr30k
Entities and theReferIt datasets are investigated, showing that it presents consistent and com-
petitive results in both datasets. Moreover, the model performance is evaluated in low-data
environments, showing that it can still achieve surprising results evenwhen trained with just
a tiny fraction of training examples

The main contributions can be summarized as follows: (i) it is proposed a new model
which is based on the novel idea of first predicting a rough alignment between the phrase and
a bounding box, and then refining the prediction; (ii) extensive experiments are conducted
on the popular Flickr30k Entities and ReferIt datasets, showing state-of-the-art results (in
the weakly-supervised setting); (iii) the proposed approach, even when trained on a small
fraction of the available examples (e.g., 10%), achieves consistently competitive results.

6.2 ProblemDefinition

The work presented in this chapter tackles the visual-textual grounding task whose formal
definition is introduced in Section 4.1. Following the setting adopted in Chapter 5, it is
assumed that each noun phrase is associated with one and only one bounding box, while a
bounding box, can identify more objects.

Bear in mind that in the weakly-supervised approach, the training set is defined as D =

{(Ii, Si)}ni=1, where n is the number of examples. In other words, during model training,
only the information about sentence Si describing the image Ii is available, while there is no
information about which noun phrase q ∈ QS refers to each bounding box b ∈ BI (i.e.,
Γgt
i ).
In this work, given an image I , a pre-trained object detector is deployed to extract the

set of bounding box proposals PI = {(ck,hk, lk)}pk=1 ⊂ BI that should contain all the
objects depicted in the image I , where ck ∈ R4 represents the coordinates of the bounding
box located in the image, hk ∈ Rv is the v-dimensional vector representing the bounding
box features, and lk ∈ Θ denotes the class with the highest probability (over the object
detector pre-defined set of categories Θ) that best represents the content of the bounding
box. The features are the internal object detector activation values of the hidden layer just
before the classification layers and the regression layer for the prediction of the bounding
boxes coordinates. Classes information is typically returned by most of the object detectors,
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and it will be used in Sec. 6.3.1 to define the concept similarity.
Hence, given an image I with a set of bounding box proposals PI defined on I , and a

sentence S ∈ S with a set of noun phrases QS ⊆ QS defined on S, then γ(I, S) returns
a subset Γ ⊆ QS × PI where each couple (q,p) ∈ Γ associates the noun phrase q to the
bounding box proposal p.

6.3 TheModel Proposal

This section presents the model proposal architecture and the novel contribution based on
the assumption of first predicting rough alignments between queries and bounding boxes,
and then refining those predictions using a trained module.

Figure 6.1: The model architecture overview. The model computes a first rough set of alignments by leveraging prior
knowledge from the object detector and word embedding (i.e., Concept Branch). A simple positional heuristic is injected
as an extra source of prior knowledge to reduce ambiguity for candidate alignments. Then, the visual and textual branches
(i.e., Trained Sub‐Components) match learned multimodal features to predict a second, refined set of alignments. The two
sets are then combined together by the Refined Predictions module to compute final scores for grounding.

Figure 6.1 depicts the Semantic Prior Refinement (SPR) model architecture, which is
composedmainly of twomodules. One is theConcept Branch (see Section 6.3.1), responsible
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for predicting a first rough set of region-phrase correspondences. Those alignments are ob-
tained through a process named “concept similarity” that captures the semantic information
conveyed by prior knowledge in object detector and word embedding. In particular, it com-
pares the word embeddings of the phrase’s head and the bounding box class to get unimodal
scores. No training is required. The information is matched by relying on two important as-
sumptions: (i) the proposal’s label semantically describes the bounding box content, (ii) and
the word embedding space represent the semantic similarity of the words. In addition, the
Concept Branch incorporates a simple positional heuristic that helps to reduce ambiguity for
candidate alignments.

The other module (see Section 6.3.2) is made by two sub-components, namely Visual
Branch and Textual Branch, and it is trained to learn a multimodal embedding space for
region-phrase correspondences given image-sentence pairs. Themultimodal representations
are constructed to maximize the similarity of region-phrase pairs when both come from the
same examplewhileminimizing the similarity between the regions from the positive example
and phrases from another example. The second refined set of alignments is obtained bymea-
suring the similarity between learned multimodal visual and textual features for the bound-
ing box proposal and noun phrase. The resulting scores are then combined by the prediction
refinement module (see Section 6.3.3) to produce final scores. The candidate alignment is
chosen to be the proposal with maximum similarity with the noun phrase.

6.3.1 Concept Branch

The Concept Branch (CB) is designed to face the most important problem in the weakly-
supervised visual grounding: the unavailability of region-phrase ground truths. The idea is
to use external sources of knowledge to fill this gap. The CB leverages a pre-trained object
detector to abstract the content of an image’s region through the bounding box classification
label, that is the concept expressing the content of the region. The bounding box classifica-
tion label is a common feature inmost object detectors allowing them to express the content
of the bounding box as a concept in the language domain. To understand the concept ex-
pressed by a textual phrase, an off-the-shelf NLP parser is deployed to extract the head of the
phrase [84]. In fact, the head of a textual phrase determines its syntactic category. Then,
by means of a pre-trained word embedding that convey prior knowledge on words, the CB
computes the similarity between the two concepts to obtain a rough score named “concept
similarity”. There is no training involved in this process; thus, the process is entirely inde-
pendent of training data and can be treated as prior knowledge.
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Although general enough to cover a vast set of cases, this method has some limitations.
First, the proposal’s classification may be noisy and incorrect, driving the CB to inaccurate
alignments. Second, the word embedding similarity may be biased and imprecisely capture
the semantic similarity betweenwords. Third, theCBproduces equal scoreswhen proposals
have the same label. See Appendix C.3 for more details about these limitations. In order to
deal with this issue, another source of prior knowledge based on spatial relations is adopted.
For proposals with the same label, relative positional information are extracted (e.g., top, left,
etc.). Then the relations are matched with a location extracted from the phrase by a simple
text search (e.g., “left” in “the woman on the left”).

Formally, given a set of p bounding box proposals PI , let EPI = {ePI
k }pk=1 be the cor-

responding set of g-dimensional vectorial embeddings, where each ePI
k is the embedding of

the bounding box class lk, for 1 ≤ k ≤ p. Given a noun phrase qj composed by a sequence
of L(qj) wordsW qj = [w

qj
1 . . . w

qj
L(qj)

], let Eqj = {eqj
i }L(qj)i=1 be the set of words embed-

ding of size g associated with each word in the noun phrase qj . The model also keeps track
of positional information. Inspired by [120], let stj ∈ R6 and svk ∈ R6 be twomulti-hot vec-
tors that encode locations in qj and relations in the k-th proposal, respectively (more details
in Section 6.4.2).

Then, the concept similarity score for each proposal is calculated as follows:

Sjk = fmask

(
ξj, e

PI
k , stj, s

v
k

)
=

fsim
(
ξj, e

PI
k

)
if (svk)

⊤ stj ≥ 0;

−1 otherwise.

where fsim is a similarity measure (such as the cosine similarity), and ξj is the word embed-
ding of the head of the noun phrase qj . fmask is a masking function that, whenever a spatial
reference is in thenounphrase, selects only the boundingboxes that are in the spatial position
indicated by the noun phrase in the image. In other words, if the word “bottom” appears in
the noun phrase, then fmask penalizes the bounding boxes in the middle and top regions of
the image. The new embedding ξj is the average of the word embedding representations of
the phrase’s head which are extracted using an NLP parser. Here, the key idea is to consider
only the most meaningful words which compose the textual phrase and to avoid the inclu-
sion of words that do not carry more meaning but are used to structure the sentence, such
as verbs and prepositions. Note that this part of the model’s architecture does not require
training.
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6.3.2 Visual and Textual Branches

Given the set of bounding box proposals PI detected in the image I by the object detector,
for each of them, the proposed model calculates the spatial featuresHs = {hs

k}
p
k=1 where

hs
k ∈ R5, as indicated in [10].
In contrast to the Concept Branch, the Visual andTextual branches adopt trainable word

embeddingsEPI
= {ePI

k }pk=1 andE
qj

= {eqj
i }L(qj)i=1 associated to theboundingbox classes

and to the words of the noun phrases, respectively. Initially, both visual and spatial features
are concatenated and then projected on a smaller dimensional space, thus leading to a set of
new vectorial representations H || = {h||

k}
p
k=1, with h

||
k = W ||(hs

k||hk

)
+ b||, where ||

indicates the concatenation operator, h||
k ∈ Rg,W || ∈ Rg×(5+v) is a matrix of weights, and

b|| ∈ Rg is a bias vector. The new representation is then summed to the word embedding of
the bounding box label to obtain the final visual featureshv

k = h
||
k + ePI

k , where hv
k ∈ Rg.

Given the setEqj of trainable word embeddings associated with the noun phrase qj , the
textual branch applies a function fenc to generate only one embedding ht

j ∈ Rτ for each
phrase qj . This textual features extraction is defined as ht

j = fenc(E
qj
).

Note that the embeddingsEPI andEqj are generated with trainable modules that share
the weights among each other (weights sharing). So, during training, the word embeddings
learn multimodal embeddings for the visual and textual information.

6.3.3 Refined Predictions

The prediction module is in charge of refining the rough predictions Sjk, i.e., the Concept
Branch predicted scores, using the visual hv

k and textual ht
j features. Initially, starting from

hv
k andht

j , the model predicts the probabilityPjk that a bounding box proposal of index k
is referred by the noun phrase qj as Pjk = fsim(h

v
k,h

t
j), where fsim is a similarity measure

between vectors. Please note that in this work, the cosine similarity function is adopted;
therefore,hv

k andht
j have the same vector dimension, i.e., g = τ .

Finally, the rough predictions are refined via the scoresPjk using an hyperparameter ω ∈
{x ∈ R | 0 ≤ x ≤ 1} as:

P̂jk = ω ∗ Pjk + (1− ω) ∗ Sjk.

The major benefit of this approach is that model predictions are not constrained to values
defined by concept similarity: they co-work for the final predictions.
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6.3.4 Loss Function

Inspired by [88], this work adopts a contrastive loss. The contrastive objective L aims to
learn the visual and textual features bymaximizing the similarity score between paired image-
sentence examples and minimizing the score between the negative examples.

Formally, given two training examples (I, S), (I ′, S′) ∈ D such that S ̸= S′ and I ̸= I ′,
the loss functionL is defined as:

L = − fpair(I, S)︸ ︷︷ ︸
Positive example

+ fpair(I
′, S)︸ ︷︷ ︸

Negative example

,

where fpair is the similarity function defined over the multimodal pair image-sentence, de-
fined as:

fpair(I, S) =
1

m

m∑
j=1

max
k

P̂jk∑p
i P̂ji

wherem is the number of queries in S and P̂jk is the predicted similarity between the noun
phrase qj and proposal pk. Basically, the goal of fpair is to aggregate the similarity scores of
all the region-phrase pairs, determining the degree to which the phrases correspondwith the
content of the image.

In contrast to what is done in [88] where for each positive example, several negative ex-
amples built from the batch are considered, this proposed approach adopts just a specific
negative example (I ′, S). The negative example is built from the example (I ′, S′), selected
from thebatchprecisely to be the onewhere the sentence S′ is themost similar to the sentence
S. This allows the model to focus on fine-grained region-phrase details that differ between
the two examples. Specifically, given a training example (I, S) ∈ B, the negative example is
selected as:

(I ′, S′) = argmax
(I′′,S′′)∈B′

fsim(ζ(S′′), ζ(S))

ζ(S) =
1

m

m∑
j=1

1

L(qj)

L(qj)∑
i=1

e
qj
i

where B′ = B\{(I, S)}. In other words, the similarity among sentences is measured in the
word embedding space.



65

6.4 Experimental Assessment

This section presents themodel results and evaluation protocol. The proposedmodel results
are evaluated considering several competing approaches in the literature, including State-of-
the-Art models.

6.4.1 Datasets and EvaluationMetrics

In this work, the presented approach is evaluated on both the Flickr30k Entities [77] and
ReferIt [107] datasets. The Flickr30k Entities dataset contains 32K images, 275Kbounding
boxes, 159K sentences, and 360K noun phrases. The ReferIt [107] dataset contains 20K
images, 99K bounding boxes, and 130K noun phrases. For Flickr30k Entities, it is used
the standard split for training, validation, and test set as defined in [77], consisting of 30K,
1K, and 1K images, respectively. For ReferIt it is used 9K images of training, 1K images of
validation, and 10K images of test. See Appendix A.1 for more details about the Flickr30k
Entities dataset andAppendixA.2 formore details about theReferIt dataset. Following com-
mon practice, if a noun phrase corresponds to multiple ground truth bounding boxes, the
boxes aremerged, and their union is used as ground truth. A noun phrase with no associated
bounding box was removed from the dataset.

Aligned with the works in the literature, the standard Accuracymetric is adopted. Given
a noun phrase, it considers a bounding box prediction to be correct if and only if the Inter-
section over Union (IoU) value between the predicted bounding box and the ground truth
bounding box is at least 0.5. See Appendix A.3 for more details about the IoU metric.

Moreover, thePointingGameAccuracy is also calculated for comparison purposes [80, 83,
91, 121]. Pointing Game Accuracy considers an example to be positive whether the center of
the predicted bounding box lies wherever inside the ground truth box.

6.4.2 Model Selection and Implementation

The model selected for evaluating the test set of the Flickr30k Entities and of the ReferIt
datasets is chosen on the epoch that better performs in terms of Accuracy in the validation
set. The best hyper-parameters on both Flickr30k Entities and ReferIt datasets are searched,
independently on the considered fractions of training data{5%, 10%, 50%, 100%}used for
learning. It is selected 10−5 for the learning rate among {10−3, 10−4, 10−5}, and GloVe [3]
is adopted as word embeddings. In both cases, the word embedding dimension was set to
τ = g = 300. In this work, fenc is implemented with a recurrent neural network. Both
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an RNN and an LSTM [105] neural network were considered, and the best performances
were obtained for the latter with hidden layer(s) of 300 units and 1 layer between {1, 2}.
The normalization of the bounding boxes’ spatial features with the dimension of the im-
age as done in [10] was also considered as a hyper-parameter. Normalization was selected
for ReferIt and unnormalized spatial features for Flickr30k Entities. The vector ht

j is the
τ -dimensional LSTM output of the last wordwqj

L(qj)
in the noun phrase qj . The bounding

box proposals PI are extracted with the Bottom-Up Attention [66] object detector with a
confidence score of 0.1 for Flickr30k2 Entities and 0.2 for ReferIt3. There are manymisspell
and confusion among class labels due to the automatic extraction of classes done by the ob-
ject detector trained on the Visual Genome [32] dataset. For this reason, this work employs
a spell checker4 to fix the errors. It is adopted a language parser5 to automatically extract the
noun phrases’ heads. The bounding box features have a dimension of v = 2048 and are ex-
tracted from the pool5_flat layer in ResNet-101. The cosine similarity is used as a similarity
measure fsim between vectors. The bestmodel performances are obtainedwith a batch size of
16 between {16, 32} and the prior ω = 0.4 selected among {0.1, 0.25, 0.4, 0.5, 0.75, 0.9}.
Vectorsstj andsvk are binary vectors of dimension 6, where each position in the vector has the
following meaning: [left, right, center, top, bottom,middle]. Whenever a spatial location is
present in the noun phrase qj , then the corresponding position in stj is set to value 1 and the
other to value 0. If no spatial location is present, then the vector is initialized with all values
1. The vector svk is always initialized with the positions of the bounding boxes. In particular,
the bounding boxes positions are set according to only the bounding boxes that share the
same class.

All experiments were performed in a cluster equipped with A5000 24GB GPUs. Each
experiment is trained on a single GPU and requires about 6 hours when themodel is trained
on ReferIt, and about 15 hours when trained on Flickr30k Entities. All the experiments
required about 2400GPU hours. The final model architecture is composed of about 241M
parameters, of which about 240M parameters compose the word embedding vocabularies.
Hence, the Concept Branchmodule is made of 120M frozen word embedding parameters.

2The same features of [88] are adopted.
3https://github.com/MILVLG/bottom-up-attention.pytorch
4https://pypi.org/project/pyspellchecker/
5SpaCy, version 3.4.1: https://spacy.io/

https://github.com/MILVLG/bottom-up-attention.pytorch
https://pypi.org/project/pyspellchecker/
https://spacy.io/
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Model
Flickr30k Entities (%) ReferIt (%)

Accuracy P. Accuracy Accuracy P. Accuracy

Top-Down Visual Saliency [91] - 50.1 - -
KACNet [7] 37.7 - 15.8 -
Semantic Self-Supervision [84] - 49.1 - 40.0
Anchored Transformer [85] 33.1 - 13.6 -
Multi-level Multimodal [80] - 57.9 - 48.4
Align2Ground [83] 11.5 71.0 - -
Counterfactual Resilience [122] 48.66 - - -
Multimodal Alignment Framework (MAF) [88] 61.4 - - -
Contrastive Learning [9] - 74.9 - -
Grounding By Separation [87] - 70.5 - 59.4
Relation-aware [121] 59.27 78.60 37.68 58.96
Contrastive Knowledge Distillation [123] 53.10 - 38.39 -

SPR + CLIP 56.89 77.06 40.99 57.48
SPRmodel 62.20 80.68 48.04 62.40

Table 6.1: Results on Flickr30k Entities and ReferIt test sets. Accuracy is the standard accuracy metric, while P. Accuracy
is the pointing game accuracy metric, both reported in percentage. The best values are shown in bold. The SPR model
presents State‐of‐the‐Art values for both Flickr30k Entities and ReferIt datasets.

6.4.3 Experiments

The proposedmodel is compared to several approaches in the literature on the Flickr30k En-
tities and ReferIt datasets. Themodel performance, when trained only with a small number
of training examples, is also assessed. Indeed, the untrained Concept Branchmodule should
give stability to the model even when it is trained on a small training set as it should help to
counter the overfitting trend that occurs with small datasets.

6.4.3.1 Full Training Set Scheme

This section reports the results obtained by the proposed model on whole datasets.
Table 6.1 compares the proposed model results to those of several approaches in the lit-

erature. The model presented in this chapter outperforms all other approaches on standard
Accuracy and Pointing Game Accuracy. In particular, in the Flickr30k Entities, the model’s
improvements over the State-of-the-Art are +0.8% in Accuracy and +2.08% in P. Accu-
racy. While on ReferIt, the improvements are+9.65% and+3%, respectively for both the
metrics.

To assess the soundness of thepresented approach, it is tested a variant of themodel that re-
places visual and textual branches, responsible for learning themultimodal embedding space,
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0.1 0.25 0.4 0.5 0.75 0.9

59.63%
61.66% 62.20% 61.51%

57.06% 55.99%

44.63%
46.57% 47.58% 47.96% 48.04%

45.61%

ω

Flickr30k Entities ReferIt

Figure 6.2: Accuracy results on Flickr30k Entities and ReferIt test sets varying the ω hyper‐parameter. Results were
obtained by training the model on 100% of the training set.

with CLIP’s multimodal embeddings (referred to “SPR +CLIP”) [124]. See Appendix C.1
for more details regarding the CLIP’s Embeddings.

As the results show, in Table 6.1, the full SPR model still outperforms the variant with
CLIP. This occurs because CLIP was trained to capture the multimodal coarse-grained in-
formation from image and sentence pairs, while in visual grounding, it is needed more fine-
grained details regarding the alignments region-query.

Thehyper-parameterω regulates theweight of theConcept Branchon thefinal predictions:
the higher the value, the less the Concept Branch affects final predictions. For this reason,
Figure 6.2 presents the Accuracy results obtained with the SPRmodel using different values
ofω: {0.1, 0.25, 0.4, 0.5, 0.75, 0.9}when themodel is trained on the entire training set. As
shown by the chart, ω greatly affects the model performance in both datasets6, allowing the
model to reach its peak of performance when ω = 0.4 in Flickr30k Entities and ω = 0.75

in ReferIt.
More information about the computational complexity of the approaches considered in

this work is reported in Appendix C.2.

6.4.3.2 Small Training Set Scheme

This section presents the results obtained with the SPR model on the datasets where only a
fraction of training examples are used for training.

6For new datasets, ω = 0.4 is a good starting point, although model selection may result in a better value
since this parameter is very sensitive to the adopted dataset.
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Figure 6.3: Accuracy results on Flickr30k Entities and ReferIt test set by the SPR model trained in low‐data environments.
The percentage refers to the fraction of the training set considered during training.

Concept Trained Rel. Posit. Flickr30k ReferIt
Branch Modules Information Entities (%) (%)

$ " $ 23.52 15.03

" $ $ 54.96 40.07

" $ " 55.02 42.69

" " $ 62.10 45.44

" " " 62.20 48.04

Table 6.2: Model Ablation. Accuracy of the model’s components. The Concept Branch contributes more to the final model
performances.

Figure 6.3 reports the SPR model Accuracy results. On Flickr30k Entities, the model is
able to obtain State-of-the-Art results even when trained with only 50% of the training data,
while onReferIt, evenwhen themodel is trainedwith 5%of the training examples, it achieves
State-of-the-Art performances.

As expected, the Concept Branch module, which does not require training, makes the
model training more stable and helps to counter the overfitting trend that occurs with small
datasets.

6.5 Model Ablation

This section assesses the performance of the model’s components: (i) the untrained Concept
Branch, (ii) the trained visual and textual branches, (iii) and theRelative Positional Informa-
tion component.
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The model achieves the best results when both the Concept Branch and the trained mod-
ules jointly work to produce the final predictions, as shown in Table 6.2. The boost inAccu-
racy given by the Concept Branch is significant: +38.58% and+30.41% for Flickr30k Enti-
ties and ReferIt, respectively. As expected, the Relative Positional Information component
constantly improves the model accuracy by+0.1% on Flickr30k Entities and by+2.6% on
ReferIt. Further investigations showed that Flickr30k presents few spatial references in the
queries, which explains the difference in performance gains between the two datasets.

6.6 Qualitative Examples

(i) “white table bottom right” (ii) ”2nd bike from the right“

(iii) “a woman” (iv) “snowboard” (v) “vehicle to the right
of woman”

(vi) “farthest left dune
buggy”

Figure 6.4: Examples of predictions obtainedwith the presented approach. It is delimited in red the ground truth bounding
boxes, in green the final model prediction, and in light blue the best bounding box according to the Concept Branch.
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In this section, in Figure 6.4, it is presented some qualitative examples predicted by the
proposed approach. It is highlighted in red the ground truth bounding boxes, in green the
final model prediction, and in light blue the best bounding box according to the Concept
Branch.

In the image 6.4.(i), the concept branch is doing a good job identifying the table location
following spacial relation constraints. The trainednetwork then adjusts the roughprediction
selecting a bounding box that best encompasses the table. It’s worth noting that without the
trained visual and textual branches, this example would be misaligned. The image 6.4.(ii)
shows a limitation of the proposed approach: among several bike candidates, it follows the
prediction of the Concept Branch through spatial information and selects the rightmost one,
although, it is not correct. This happens because theRelative Positional Informationmodule
does not consider modifiers like “2nd” to the position “right”, and thus the model is guided
to the wrong alignment. Images 6.4.(iii)-(vi) depicts themodel’s efficacy in working on both
foreground and background objects, but also its limited ability to understand the context in
natural language queries. The example 6.4.(v) asks for “vehicle to the right of woman”, but
both the Concept Branch and the trained modules predict the woman. The misalignment is
due to the score returned by the Concept Branch to the head “woman” with the bounding
box classified as “woman”, which is higher than the score obtained with the head “vehicle”
and the bounding box “truck”.

6.7 RelatedWorks

The proposed approach is related mainly to the weakly-supervised visual-textual grounding
area of research. More details about the weakly-supervised Visual-Textual Grounding State-
of-the-Art are presented in Section 3.2. This is the first approach based on the principle of
first predicting a rough alignment among phrases and boxes adopting amodule that does not
require training, and then refining those alignments using a learnable neural network.

6.8 Discussion About Large LanguageModels

The design of the presented approach is well-suited for GloVe, Bottom-Up Attention, and
LSTM components. However, these approaches are no more State-of-the-Art. Modern ap-
proaches, such as Large Language Models (LLMs) like BERT [43], could improve the per-
formance of the proposedmodel. Indeed, LLMs take advantage of their effective contextual
capabilities to embed words in a sentence. In the proposed architecture, LLMs can replace:
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(i) the LSTM in the Textual Branch, and (ii) the current GloVe embeddings in the Concept
Branch. In both cases, the introduction of this new component is not straightforward, espe-
cially in theConcept Branch. In fact, the concept similarity scores are computed between the
head of the phrase and bounding box classes. Thus, it is not clear what context the LLMs
should consider during the embedding of class labels.

6.9 Conclusion and FutureWork

This chapter introduced the second contribution of this Ph.D. thesis regarding the resolu-
tion of the traditionalVisual-TextualGrounding task. More in detail, this chapter focuses on
solving the weakly-supervised setting. It proposed amodel based on the principle of first pre-
dicting a rough alignment among phrases and boxes adopting amodule that does not require
training, and then refining those alignments using a learnable neural network. The model is
trained to maximize the multimodal similarity between an image and a sentence describing
that image while minimizing the multimodal similarity of the same sentence and a new un-
related image, carefully selected so to help as much as possible during training. In light of
this, the proposed model achieved a State-of-the-Art performance on two well-established
datasets: the Flickr30k Entities and the ReferIt datasets. Moreover, thanks to the untrained
component, themodel can be trained just with a small fraction of training examples without
deterioration in results.

Future work aims to incorporate an attribute detectionmodule in both noun phrases and
bounding boxes, enabling the model to discriminate bounding boxes in a better way, thus
suggesting better phrase-boxes alignments. In addition to that, inspired by [121], future
works aim to extend the loss function to include a bounding box regression component,
that has been proven to help in achieving better accuracy values. Finally, inspired by [15],
future works aim to incorporate knowledge graph information in the model, enhancing the
Concept Branchmodule with more structured information.
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Potential Extensions of the Presented

Approaches

This chapter proposes twopotential extensions that can be adopted for solving visual-textual
grounding. The first proposal, which is presented in Section 7.1, regards the adoption of
a new set of class labels to adopt when using the Bottom-Up Faster R-CNN [28] (BUA)
object detector for detecting objects in the two-stage visual-textual grounding task. This
object detector is also adopted by the approaches presented in Chapter 5 and Chapter 6.
The new set of classes aims to reduce the noise in the original labels to improve the BUA’s
detection capabilities and thus, to improve the detection of the visual objects in the visual-
textual grounding.

The second proposal, which is resented in Section 7.2, is related to the probability func-
tionP

(
Xb,V | Xq,V ,Zb, Ẑb, KG

)
introduced in Section 4.4. To estimate this function, a

solution could be that of adopting an object detector that can use the information conveyed
through the set of variables Xq,V and the graph KG to locate and classify the objects de-
picted in the image. However, a thorough search of the relevant literature yielded that such
object detector has not yet been explored. For this reason, Section 7.2 proposes a new object
detector that exploits the graph information and that can be conditioned to search only the
objects related to a set of nodes (i.e.,Xq,V ) of interest. More in detail, it presents a method
to condition an existing object detector with the user’s intent, encoded as one or more con-
cepts from theWordNet graph, to find just those objects of interest. Albeit according to the

73
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probability function the whole graphKG can be observed, in the presented approach the
observation is restricted to only the subset of the graph which comprises the nodes related
by parent-child relation.

7.1 Cleaner Categories Improve Object Detection and Visual-Textual
Grounding

Object detection is the task of locating and classifying the objects depicted in an image [125].
This is a core task in the computer vision field that is used whenever there is the need to
localize and recognize objects in images, such as when an autonomous driving car needs to
recognize road signs, people, and objects in the streets.

Object detectors are a very important component for solving the visual-textual grounding
problem. However, more in general, object detectors are the cornerstone of multimodal
vision and language (V&L) tasks, which require joint reasoning over visual and linguistic
input.

The object detector should be able to identify many different objects and classify them
correctly. Nevertheless, the increase in the number of objects to be recognized usually leads
to a more challenging classification problem. The importance of the correct classification of
an object is even greater when considering the graph in the resolution of the visual-textual
grounding task. In fact, the semantic information conveyed through the classes is crucial
to identify the nodes of the graph that best characterize the objects depicted in the image.
Section 4.3.5 and Section 4.4 present an explicit example of the existing relation between
object detector classes and knowledge graph nodes, where each bounding box is associated
with a unique node vb in the knowledge graph according to its class.

TheBottom-UpFasterR-CNN[66] (BUA)object detector is one of themost commonly-
used black box object detectors in the field. Within the V&L literature, it is the defacto
standard feature extractor used to represent the visual input [126]. This object detector
is also the one adopted by the approaches presented in Chapter 5 and Chapter 6. BUA is
pre-trained on the Visual Genome dataset [32] to detect 1600 objects, e.g., “chair”, ”horse”,
“woman”, and also to predict their attributes, e.g., “wooden”, “brown”, “tall”. Both the
category and attribute set are derived from the freely annotated region descriptions in the
Visual Genome dataset, rather than using pre-defined categories like in ImageNet [127] or
COCO [128]. Anderson et al. [66] did attempt to filter the categories and attributes to
prevent near-duplicates, however, the resulting 1600 categories are still imperfect. There
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are synonymous categories (“wrist watch”, “wristwatch”), categories representing single and
plurals of the same concepts (“apple”, “apples”), ambiguous, difficult to differentiate, cate-
gories (“trousers”, “slacks”, “chinos”, “lift”), and categories that actually represent attributes
such as “yellow” or “black”. Having to predict these noisy categories is likely to prevent the
object detector from supporting downstream tasks well.

This section1 proposed a new set of categories that can be used to train the BUA object
detector on the Visual Genome dataset. The new set is the result of a cleaning process per-
formed manually by a native English speaker. Starting from the original 1600 noisy cate-
gories, the ambiguous categories were merged to build the final set of 878 clean categories.
Then, these clean categories are used to re-train the BUA object detector. In addition to
evaluating its object detection performance, the model’s feature embedding space and the
benefits of using its features in a downstream referring expression comprehension grounding
task are analyzed. In the performed experiments, the BUA model trained with the cleaned
categories detects objects better, and, examining its feature space representation, it learns a
better-clustered embedding space than the model trained with the original noisy categories.
The new embedding space produces better bounding boxes feature representations, which
in turn can improve performance on a downstream visual-textual grounding task.

The contributions of this section are summarized as follows:

1. starting from the 1600 noisy categories developed by [66], it is proposed a cleaner set
of 878 categories with less noise and fewer near-duplicates;

2. it is shown that a BUA detector trained on these cleaned categories improves object
detection performance and produces a better visual embedding space compared to
using the original noisy categories;

3. finally, it is shown that using the new detector as a black-box feature extractor can
improve performance on a downstream visual-textual grounding task.

7.1.1 Recap: Bottom-Up Faster R-CNN

The Bottom-Up [66] model is based on the Faster R-CNN [28] object detector devised
to recognize instances of objects belonging to a fixed set of pre-defined categories and lo-
calize them with bounding boxes. Faster R-CNN initially uses a vision backbone, such as

1Part of this work is published in [129].
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ResNet [72] or a VGGNet [73], to extract image features from the image. Then Faster R-
CNN applies a Region Proposal Network (RPN) over the input image, that predicts a set
of class-agnostic bounding box proposals for each position in the image. The RPN aims to
detect all the bounding boxes that contain an object, regardless of what the object is. Then,
for each detected bounding box proposal, Faster R-CNN predicts a class-aware probability
score and a refinement of the bounding box coordinates to better delimit the classified ob-
ject. The Faster R-CNN multi-task loss function contains four components, defined over
the classification and bounding box regression outputs for the Region Proposal Network
and the final bounding boxes refinement.

The BUA object detector initializes its Faster R-CNN backbone weights from a ResNet-
101 [72]model pre-trained on the ImageNet [127] dataset for solving the image classification
task. The model is trained on the Visual Genome [32] dataset to predict 1600 different ob-
jects. Since the Visual Genome dataset also annotates a set of attributes for each bounding
box in addition to the category it belongs to, the BUA model adds an additional trainable
module for predicting attributes (in addition to object categories) associatedwith eachobject
localized in the image. For this reason, the BUAmodel adds a multi-class loss component to
the original Faster R-CNN losses to train the attribute predictor module.

The 1600 categories used to train the BUAmodel were set by [66]. The Visual Genome
dataset annotations consist of image regions associatedwith region descriptions (natural lan-
guage strings) and the attributes of the object depicted in it. [66] extract category labels from
the region descriptions, but their procedure is underspecified (for example, it is unclear if
they used a part-of-speech tagger to extract nouns and adjectives as labels for objects and
attributes). They filtered the original set of 2500 object strings and 1000 attribute strings
based on object detection performance, resulting in a set of 1600 categories and a set of 400
attributes. However, the remaining set of categories is still noisy. It contains plurals and
singular of the same concepts, such as “dog” and “dogs”, overlapping categories such as “an-
imal”, “cat”, and “dog”. Moreover, it contains near-duplicate categories such as “motorcy-
cle” and “motorbike”, unhelpful distinctions like “lady” and “woman”, labels representing
attributes such as “yellow” and abstract notions like “front”. These noisy labels may result
in a sub-optimal representational space and likely impair the ability of the model to classify
objects correctly. Given that several labels equivalently express the same meaning, whenever
the model needs to predict a category for an object appearing in the image, the model needs
to split its predicted probabilities among all equivalent categories. This probability split oc-
curs not onlywhen two ormore categories express the samemeaning (e.g., “hamburger” and
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“burger”) but also when themeanings expressed by the categories overlap substantially, such
as the categories “pants”, “trousers”, and “slacks”.

7.1.2 Cleaning the Visual Genome Category Set

This section proposes a new set of categories to use for training the BUA object detector.
This new label set is the outcome of a cleaning process applied to the 1600 original categories
by the authors of this work, which include native English speakers. This process aimed to
combine ambiguous and low-frequency categories together. During the cleaning process,
the categories were joined together according to the following principles:

1. Plurals: singular and plurals categories, such as “giraffe” and “giraffes”. In most in-
stances, these annotations represent the same concept and should be treated as the
singular category. This led to 258 category merges.

2. Tokenization: categories with and without spaces, such as “wrist watch” and “wrist-
watch”, should be treated as the same category. This resulted in 29 category merges.

3. Synonyms, such as “microwave” and “microwave oven”, “hamburger” and “burger”,
express similar concepts withminor differences that are usually not important. Often,
as in “microwave oven”, these are compound phrases that can be identified automat-
ically, though it is important to verify them manually (e.g., “surf” and “surf board”
should not be merged).

4. Over-specific categorieswith substantial annotator disagreementwhere severalwords
are used interchangeably, e.g., “pants”, “trouser”, “sweatpants”, “jean”, “jeans”, and
“slacks”.

However, during the cleaning process, itwas not always clearwhen tomerge the categories
since: (i) some categories are inherently ambiguous, such as “home”. (ii) some categories are
abstract anddon’t have themeaning of a concrete object, such as “items”, “front”, “distance”,
“day”. (iii) some categories represent attributes rather than objects, such as “yellow” and
“black”

For some ambiguous labels like ‘lot’ or ‘lift’, visual inspectionof the labeled images showed
that within VG, these labels were used mostly to refer to one concept: “lot” usually showed
car parking and was merged with “parking lot”, similarly “lift” was merged with “ski lift”.
In other cases, no single meaning predominated and these labels were left unmerged (e.g.,
‘stand’ was notmergedwith either ‘baseball stand’ nor ‘tv stand’). The abstract and attribute
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categories were also left as they were. In this way, the adopted cleaning process defines a
surjective function that maps the original labels set to cleaner labels set.

The cleaning process produces a new set of 878 categories2 from the original 1600 cat-
egories (Appendix D.1). Figure 7.1 shows frequencies of objects appearing in the Visual
Genome training split, where objects are either labeled according to the original label set (in
blue) or the new cleaned label set (in orange). The new labels lead mostly to the removal
of many low-frequency categories in the long tail, rather than creating new very frequent
categories.
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Figure 7.1: LogLog plots of objects frequencies for each category. The frequencies are calculated on the training set
annotations. The distribution of the original categories is in blue, and the new categories are in orange. The cleaning
process did not generate high‐frequency categories and at the same time removed many low‐frequency categories.

7.1.3 Experimental Setup

ABUAobject detector is trainedmatching the procedure ofAnderson et al. [66], except that
the new clean categories are used as object labels instead of the original noisy categories.

2https://github.com/drigoni/bottom-up-attention.pytorch/blob/master/evaluation/
objects_vocab.txt

https://github.com/drigoni/bottom-up-attention.pytorch/blob/master/evaluation/objects_vocab.txt
https://github.com/drigoni/bottom-up-attention.pytorch/blob/master/evaluation/objects_vocab.txt
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7.1.3.1 Datasets and EvaluationMetrics

Following [66], the training and test data for the models is the Visual Genome (VG) [32]
dataset. It is a multipurpose dataset that contains annotations of images in the form of scene
graphs that form fine-grained descriptions of the image contents. It supplies a set of bound-
ing boxes appearing in the image, with labels such as objects and persons, together with their
attributes, such as color and appearance, and the relations between them. The originalVG la-
bels were converted to object labels by [66], as described in Section 7.1.1. Note that the BUA
model used in this work is trained only using the VG training split, unlike some pre-trained
models available, e.g., in the MILVLG repository, which uses both training and validation
splits for training.

To assess the object detectors’ performance, this work uses the Mean Average Precision
(AP) metric, which is the standard metric for measuring the accuracy of object detectors
such as Faster R-CNN [28]. All evaluation results presented in this section are obtained on
the VG test split. Average precision uses an Intersection over Union (IoU) threshold of 0.5
to determine whether the predicted bounding box is sufficiently similar to the gold region.
See Appendix A.3 formore details about the IoUmetric. The APmetric is distinguished be-
tween ‘macro’ and ‘micro’ (also known as ‘weighted’) AP: MacroAP weights each category
uniformly (macro-averaging class-wise precision) while MicroAP weights each category by
the number of items in the category (equivalent to micro-averaging over all items, regard-
less of class). MacroAP will emphasize the effect of small categories, while MicroAP will be
dominated by the most frequent categories.

Precision is indirectly affected by the number of categories in the label set: e.g., a random
baseline over 100 categories will perform worse than a baseline over 10 categories. Since
the objective of this section is to compare models with different numbers of categories, this
is an unavoidable confound. To mitigate against it, for the original model, which predicts
labels in the original label set, predictions are mapped to the clean label set. For example, if
the model predicts ‘motorcycle’ in the original label set, this prediction gets mapped to the
same category ID as the model’s ‘motorbike’ predictions, because these two labels have been
collapsed in the clean label set. This results in mapped predictions with the same number of
categories as the clean label set predictions, whichmeans that comparison between label sets
is fairer. However, this procedure also removes all errors due to confusing the two labels that
have been merged in clean (e.g., if the original gold label for the ‘motorcycle’ prediction was
‘motorbike’, this incorrect prediction is now counted as correct), whichmakes it a very strict



80

evaluation.

7.1.3.2 Random Baseline

The BUAdetector trained on the cleaned classes is also compared against a BUA detector
trained with a randomly merged category set. The randomly merged set was created by ran-
domly selecting pair of categories in the original set to combine until it reached the same
number of categories adopted in the clean set (i.e., 878). This procedure leads to a distribu-
tion of category sizes that is very similar to the clean label set, see Appendix D.1. However,
the randomly merged categories will include semantically very distinct objects, e.g., bananas
and motorcycles are in the same category. This allows one to separate the effect of having
cleaner categories from the effect of simply having fewer categories.

7.1.3.3 Implementation Details

For the development of this work, the code available in the MILVLG3 repository was used,
which is a Pytorch implementation of the originalCaffe4model. In particular, theMILVLG
code allows to train, evaluate, and extract bounding boxes from images using both theDetec-
tron2 framework5 as well as the original Caffemodel weights. When not explicitly indicated,
it is used BUA implemented with Detectron2. Between 10 and 100 bounding boxes are
extracted for each image in input. The default MILVG hyper-parameters were used, apart
from setting the batch size to 8, and training only on the training data split. when train-
ing on the new label set the same default hyper-parameters from the model trained on the
original 1600 categories are used. The object detectors are trained for 180K iterations. All
experiments were performed in a distributed parallel system using a V100 32GB GPU.6

7.1.4 Experiments

The experiments compare BUA models trained on the new smaller label set with the orig-
inal BUA model using the original label set. These two models are compared in terms of
performance on the original object detection task, the properties of the embedding space
learned by the detector, and the utility of the features in a visual-textual grounding task on

3https://github.com/MILVLG/bottom-up-attention.pytorch
4https://github.com/peteanderson80/bottom-up-attention
5https://github.com/facebookresearch/detectron2
6https://github.com/drigoni/bottom-up-attention.pytorch

https://github.com/MILVLG/bottom-up-attention.pytorch
https://github.com/peteanderson80/bottom-up-attention
https://github.com/facebookresearch/detectron2
https://github.com/drigoni/bottom-up-attention.pytorch
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Model Implementation Visual Genome (%)

MacroAP50↑ MicroAP50↑

BUAOriginal Caffe 9.37 15.14
BUAOriginal PyTorch 9.10 15.93

BUAOriginal→Clean-878 PyTorch 10.72 17.34
BUAClean PyTorch 11.01 17.60

BUAOriginal→Random-878 PyTorch 9.49 15.79
BUARandom PyTorch 9.46 15.61

Table 7.1: BUA object detection results on the Visual Genome dataset. The model trained on the clean categories,“
BUA Clean”, achieves better object detection performance than the model trained on the original categories. “BUA
Original→Clean‐878” and “BUAOriginal→Random‐878” are results frommodels trained on the originalcategories whose
predictions are mapped to clean and random label set respectively, to match label set size (878 labels in both cases)

the Flickr30k Entities dataset. It is expected the removal of label ambiguity in the new label
set to lead to better performance on object detection and visual-textual grounding.

7.1.4.1 Object Detection

Theobject detection is testedon theVisualGenome test set: seeTable 7.1. Themodel trained
on the new labels, BUA Clean, outperforms the BUAOriginal model by nearly two points
on macro and micro AP.

To check howmuch of this improvement is due to simply having a smaller label set, BUA
Clean and BUA Original are compared against the random (i.e., BUA Random) baseline
(where categories were iteratively merged to the same number of labels as the clean set) and
against the same original predictions, but with predicted labels mapped to the clean set (e.g.,
predictions for ‘egg’ and ‘eggs’ are mapped to the same label, as in the clean set). The BUA
Random results are slightly worse than the BUAOriginalmodel, indicating that fewer labels
on their own are not enough tomicro or macro AP.Mapping the original predictions to the
new labels improves bothmetrics, indicating that many of themistakes in the BUAOriginal
model are due to confusion between labels that aremerged in the clean set. However, perfor-
mance does not reach the level of BUAClean model, demonstrating that using better labels
at training time is important. Since this improvement is visible in bothmicro andmacro AP,
the new labels do not only improve frequent categories (reflected inMicroAP) or infrequent
categories (MacroAP).

Figure 7.2 shows how noise in the category set affects the prediction confidence of the
model. By ‘prediction confidence’, it is meant the probability assigned to the argmax cate-
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Figure 7.2: KDE plots for the probability values of the argmax category predicted by the model. The plots on the left
consider all the categories, the plots in the center consider just the categories that were not merged during the cleanup
process (i.e., “Untouched”), and the last plots on the right consider only the merged categories. Overall, the cleaned
categories lead to higher confidence values than the original categories.

gory predicted by the model when it detects an object. These maximum probability detec-
tions play an important role in determining which detections to use in downstream tasks.7

Results show that the BUA detector trained on the cleaned categories produces more high
confidence predictions than a detector trained on the original noisy categories. Closer in-
spection shows that this difference is due to higher confidence when predicting objects in
the new merged clean categories. This confirms the hypothesis that the original categories
result in probability mass being split across multiple synonymous labels, and this issue is
resolved by the new cleaned categories. The same behavior is not visible with random cate-
gories.(Appendix D.2).

These results support thehypothesis that noise and repetition in the original label setmake
it difficult to learn good distinguishing features between categories. They also imply that
it is necessary to retrain the object detector on cleaner labels to fully improve its detection
capabilities on downstream tasks.

The experiments also show differences in the performance of the BUAOriginal model as
implemented inCaffe andPytorch, despite the fact that Pytorch ismeant tobe a reimplemen-
tation of the Caffe version. Similar behavior will be visible in the visual-textual grounding
experiment later on, where the difference between the two implementations is more substan-
tial.

7.1.4.2 Feature Space Analysis

This section attempts to characterize the differences in feature space, given features from a
model trained with the clean label (i.e., Clean) set vs the original model (i.e., Original). The

7InV&Lpretraining, it is common touse the (10-100)most confident regions [126] detected in each image.
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K Th. All Neighbors (%) Filtered Neighbors (%)

Original Random Clean Original Random Clean

1 0.05 12.15±12.25 12.36±11.15 17.30±14.79 37.32±15.07 37.83±12.32 42.34±15.82
5 0.05 24.33±13.38 24.91±12.01 29.74±15.10 34.16±13.78 34.68±12.24 39.09±15.09
10 0.05 27.76±13.23 28.37±11.87 32.96±14.85 32.91±13.71 33.48±12.19 37.84±15.11

1 0.2 51.02±22.74 51.88±20.91 55.36±20.03 69.22±18.99 70.03±16.76 71.96±17.54
5 0.2 60.40±19.75 61.47±17.84 63.92±19.00 65.12±19.68 66.12±17.54 68.29±18.58
10 0.2 60.55±20.18 61.71±18.20 64.16±19.31 62.95±20.43 64.05±18.34 66.32±19.39

Table 7.2: Proportion of K‐nearest neighbors that share the same predicted category. Results were obtained with the
models trained on the original, the random, and the clean categories. Overall, at each value of K, the embedding space of
the model trained on clean categories is better clustered than those of models trained on the original and random labels.

features are from theResNet-101’s pool5_flat layer; these are themost common represen-
tation used for downstream tasks (e.g., visual-textual grounding). For each image in the VG
validation set, the features corresponding to the bounding box proposals are extracted. Two
confidence thresholds are tested: with th=0.05, the models return approximately 280000
bounding box feature vectors, whereas, with th=0.2, it only evaluates approximately 100000
features. (Different models return slightly different but comparable numbers of proposals.)

In order to be useful for downstream tasks, it is expected that bounding boxes that contain
similar objects should have similar features and the same predicted categories. This is tested
using nearest neighbors and cluster analyses.

Nearest Neighbors The local structure of the feature space can be examined using a
nearest neighbors analysis: for each point in the embedding space (i.e., bounding box fea-
tures), it is calculated the proportion of K (withK = 1, 5, and 10) nearest neighbors that
share the same category. This analysis is not affected by the different number of labels in
the several sets and therefore it allows one to fairly compare models’ embedding spaces. It is
expected the embedding space of the model trained with cleaner categories to be clustered
better than the other embedding spaces. In other words, it is expected that each point has
more neighbors that share the same category when using cleaned labels.

Table 7.2 reports the results of this analysis, considering features extracted with differ-
ent threshold values (i.e., 0.05 and 0.2) and considering either all features or only features
fromdifferent images (“FilteredNeighbors”). This step removes features thatmight be from
highly overlapping regions of the same image.

Overall, as expected, the bounding boxes extracted by the model trained on the cleaned
label set have higher proportions of nearest neighbors that share the same category. This
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Th. K Categories All Neighbors (%) Filtered Neighbors (%)

Original Clean Original Clean

0.05 1 All 12.15±12.25 17.30±14.79 37.32±15.07 42.34±15.82

0.05 1 Untouched 9.19±9.47 8.56±8.84 32.20±16.21 32.86±15.18

0.05 1 Merged 12.71±12.62 19.03±15.12 38.28±14.65 44.22±15.26

0.05 5 All 24.33±13.38 29.74±15.10 34.16±13.78 39.09±15.09

0.05 5 Untouched 19.71±12.27 20.35±11.77 28.62±24.39 29.48±13.68

0.05 5 Merged 25.19±13.40 31.60±14.99 35.19±13.41 40.99±14.63

0.05 10 All 27.76±13.23 32.96±14.85 32.91±13.71 37.84±15.11

0.05 10 Untouched 22.55±12.64 23.33±12.26 26.97±14.15 27.95±13.58

0.05 10 Merged 28.73±13.12 34.87±14.57 34.01±13.34 39.80±14.62

0.2 1 All 51.02±22.74 55.36±22.03 69.22±18.99 71.96±17.54

0.2 1 Untouched 43.34±21.95 41.37±21.45 62.26±23.11 60.92±22.20

0.2 1 Merged 52.14±22.64 57.29±21.40 70.23±18.09 73.48±16.22

0.2 5 All 60.40±19.75 63.92±19.00 65.12±19.68 68.29±18.58

0.2 5 Untouched 51.88±21.68 50.58±20.88 56.33±23.38 55.51±22.08

0.2 5 Merged 61.64±19.14 65.75±17.97 66.40±18.74 70.05±17.32

0.2 10 All 60.55±20.18 64.16±19.31 62.95±20.43 66.32±19.39

0.2 10 Untouched 50.83±22.63 49.92±21.42 52.89±23.80 52.12±22.38

0.2 10 Merged 61.97±19.39 66.12±18.15 64.42±19.46 68.28±18.09

Table 7.3: Proportion of K‐nearest neighbors that share the same predicted category, comparing models trained using
the original versus the clean categories. (See Table D.1 for a comparison with random categories.) “Th.” indicates the
threshold values adopted for bounding box extraction. “Merged” refers to original categories that are merged into one
new clean category. “Untouched” refers to those categories not merged with others during the cleaning process, and “All”
refers to all the categories. Overall, the clean features are better clustered than the original features.

difference is substantial and consistent across different values of K , thresholds. Table 7.3
shows that the improvement is due to better neighborhoods of features with merged labels,
and only in some cases better features of unmerged, original labels.

The random features (i.e., Random) present results very similar to those obtained with
the Original features, but with a small improvement. Surprisingly, this improvement is
most evident for features of categories that are the same betweenOriginal andRandom (Ap-
pendix D.3), rather than the categories that were merged in Random, suggesting that there
is an advantage to training on fewer labels overall.

Surprisingly, when features from the same image are ignored (Filtered Neighbors), the
percentage of neighbors who share the same category increases dramatically. This indicates
that BUA features tend to place visually similar regions (from the same image) close together,
regardless of their semantic content (their predicted object label).
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In conclusion, the analysis of the neighbors verified themain claim: when the BUAobject
detector is trained with the original noisy labels, it results in a sub-optimal representational
space that can be improved simply by retraining the model on cleaner labels set.

Distances This section examines the global structure of the feature space by looking at
the distances between items with the same label (intra-category) and the distances between
the category centroids (inter-category). Thehypothesis is that if the feature space is organized
by categories, then intra-category distances should be small, while inter-category distances
should be larger.

Table 7.4 reports the inter and intra-categorydistances for features fromthemodels trained
with the original, clean, and random labels. Intra-category distance is the average Euclidean
distance between features with the same predicted label, while inter-category distance is the
average Euclidean distance between the centroids of each category (all averages are macro-
averages over categories). Results show that the Clean labels lead to categories that are clus-
tered more closely together, evident in a lower average intra-category distance, compared to
both the Original and Random labels. Counter to the hypothesis made at the beginning of
this section, inter-category distance is lower when using Clean labels, especially compared to
theOriginal labels, and also slightly lower thanRandom labels. This indicates that the global
feature space is also more compact overall. Surprisingly, across all feature spaces (Original,
Clean, andRandom) the intra-categorydistances are higher than the inter-categorydistances,
suggesting that features from different categories are highly intermingled.

In order to control for label set and category size, the original features are mapped to the
clean (i.e., “Orig.→Clean-878”) or random (i.e., “Orig.→Random-878”) set of categories,
ensuring the same number of points in each label category, as well as the same number of
labels. This results in a higher intra-category average distance, compared to the original cat-
egories, which indicates that features frommerged labels are not mapped to nearby parts of
the space. Notably, the clean mapping leads to only very slightly lower intra-category dis-
tances compared to the randommapping.

Overall, the analysis of the local neighborhoods shows a positive effect of the clean label
set, with more neighbors with the same label. However, the analysis of the global feature
space suggests that the BUA features are not well separated according to object semantics,
regardless of the label set used.
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Analysis Orig. Orig.→Clean-878 Clean Orig.→Random-878 Random

Intra-Category 49.69 52.10 45.37 52.96 47.77
±8.64 ±8.10 ±6.98 ±8.63 ±7.87

Inter-Category 47.97 NA 39.76 NA 40.19
±5.31 ±4.94 ±5.87

Table 7.4: Intra‐category (average pairwise of points with the same label) and inter‐category (average distance between
categegory/label centroid) Euclidean distances in different feature spaces. Results were obtained with the models trained
on original (i.e Orig.), clean, and random label sets. The model trained on cleaner labels presents lower distances in both
the intra‐categories and the inter‐categories analysis.

7.1.4.3 Visual-Textual Grounding Results

This section investigates theutility of the features extractedwith theBUAmodel in the visual-
textual grounding task on the Flickr30k Entities dataset. See Appendix A.1 for more details
about the Flickr30k Entities dataset. The expectation is that features extractedwith themod-
els trained on the new categories will be more coherent and useful than those extracted with
the model trained on the original set of categories, leading to better performance on this
downstream task.

In this section, the Bilinear Attention Network (BAN) [4] model is used as the visual-
textual grounding model, which, even if no longer State-of-the-Art, obtains relatively good
results on the Flickr30k Entities dataset. The advantage of using the BAN model is that it
is a simple model that uses a straightforward fusion component to merge the text and visual
information, and that requires only the Flickr30k Entities dataset for training (other models
that achieve higher scores are pre-trained on much larger data sets and have more complex
architecture [11, 130, 131, 132, 133]). BAN implements a simple architecture8 that uses
only the 2048-dimensional bounding box features extracted from the object detector as the
visual input features; it does not use the label predicted from the features. On the text side,
the model initializes each word with its GloVe [3] embedding and uses a GRU [134] to gen-
erate a representation for the sentence. The visual and textual representations are then fused
together through a bilinear attention networks. The simple fusion component allows one to
see the effect of different visual feature spacesmore clearly. The code provided by the authors
is used9, and no hyper-parameters were changed from the original model. The experiments
were performed using an A5000 24GB GPU.

Table 7.5 reports the results obtained in the visual-textual grounding task by the BAN
8The model is composed of about 19M trainable neurons.
9https://github.com/jnhwkim/ban-vqa

https://github.com/jnhwkim/ban-vqa
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Features Threshold Test Set (%) N. Bounding Boxes

R@1 ↑ R@5 ↑ R@10 ↑ UB↑ Min Max Test

BAN [4] 0.2 69.80 84.22 86.35 87.45 10 91 30 034

Original 0.2 73.32 84.21 85.67 86.53 2 89 20 916
Clean 0.2 73.41 85.08 86.52 87.31 2 93 21 923

Original 0.1 74.72 86.06 88.71 90.70 5 100 36 792
Clean 0.1 75.43 86.76 89.56 91.22 7 100 36 719

Original 0.05 75.41 85.46 88.86 92.38 12 100 59 256
Clean 0.05 75.75 85.88 89.52 92.67 11 100 56 731

Table 7.5: Visual Grounding results obtained with the Bilinear Attention Networks (BAN) [4] model on the Flickr30k
Entities dataset. “R@K” refers to the Recall metric with the top K predictions, while “UB” refers to the upper bound
results that can be achieved with the bounding boxes extracted with the indicated threshold. The features extracted with
the model trained on the clean labels set consistently perform better than the original features.

model trained using the features extracted by both the models trained on the original (i.e.,
Original) and new cleaner (i.e., Clean) label sets. Whenever BAN is trained using the Clean
features, the performance of themodel increases compared to the BANmodel trained on the
Original features. The improvement is small but consistent across bounding box thresholds
and recall levels.

The results also show that the BUA PyTorch implementation of the BANmodel always
achieves better performance than theCaffe implementation, evenwith fewerboundingboxes.
This result implies that the implementation code used to train the object detector strongly
impacts the results of the visual-textual grounding task, although, in the object detection
task, there is only a small improvement10.
In conclusion, the results obtained with the BANmodel on the visual-textual grounding

task suggest that the BUAmodel trained using a cleaner set of labels presents not only a well-
clustered embedding space but also a more useful features representations able to improve
downstream tasks.

7.1.5 RelatedWork

Thework proposed in this section relates to (i) work that adopts the Bottom-Upmodel [66]
for the detection of objects depicted in images, especially for multimodal downstream tasks,

10The extracted features used in theBANpaper are notmade available by the authors. However, some ‘repro-
ducibility’ features (slightly different) were made available by third users (https://github.com/jnhwkim/
ban-vqa/issues/44) who successfully reproduced the main paper results.

https://github.com/jnhwkim/ban-vqa/issues/44
https://github.com/jnhwkim/ban-vqa/issues/44
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and (ii) work that addresses learning neural networks with noisy labels. More details regard-
ing the Bottom-Up model are presented in Section 7.1.1.

7.1.5.1 Bottom-Up for Object Detection

Many object detectors exist, that differ according to their ability to detect objects in the im-
age, the computing power required for their use, and their ability to recognize a large set of
different objects [66, 67]. An object detector should be able to identify many different ob-
jects [23] and classify them correctly. The appeal of BUA features lies in part in the large
number of object categories. Nevertheless, the increase in the number of objects to be recog-
nized leads to a more challenging classification problem.

Starting with [66], in which the extracted object detector bounding boxes were used as in-
put to a Visual Question Answering (VQA) model, much work on VQA adopted the BUA
model as object detector [135, 136, 137, 138, 139, 140, 141, 142]. BUA features have also
been used for the Visual-Textual Grounding task [23, 10, 4, 88, 123, 4]. In addition, many
recent large pre-trained Vision and Language models use BUA features as their visual repre-
sentations [143, 144, 145, 146, 147, 148, 149]. These models are used as the starting point
for a wide variety of multimodal tasks, including image description, VQA, natural language
visual reasoning, visual-textual grounding, etc [150, 151, 126].

All these works directly depend on the quality of the objects detected by the BUAmodel.
Incorrect identification and/or classification of objects may have major repercussions in the
resolution of downstream tasks,making it important to analyze inmore detail the labels used
to train the BUAmodel.

7.1.5.2 Noisy Label Sets

Thiswork, aiming to improve data quality by improving label quality, is related to the branch
of research area addressingnoisy label effects duringneural network training. However,most
of the work presented in this section addresses the problem of badly labeled data, i.e., noise
at the instance level (see [152] for a recent survey).

The work presented in this section is interested in the problem of bad or noisy labels,
rather than noisy data. [153] show that their framework for estimating noise in data labeling
can also identify ‘ontological issues’ with the labels themselves. Removing duplicate labels
during training improves performance on ImageNet classification, in line with the object
detection improvement found in this work. [154] identify and correct label issues in Ima-
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geNet for better, more robust model evaluation and comparison; removing ‘arbitrary’ label
distinctions ensures models are not rewarded for overfitting to spurious noise.

[155] aims to discover a ‘basic level’ label set, i.e., the labels corresponding to the human
default or basic level categories, by merging labels that are often confused. They find that
training an image classifier on these categories can improve downstream image captioning
and VQA.

7.1.6 Conclusion and FutureWork

This section introduced a new set of 878 category labels to retrain the BUA model, which
refines the originally noisy 1600 categories by merging labels that are synonymous or have
highly related meanings. The effect of using the cleaner label set in terms of performance on
the original object detection task is investigated, showing that the model trained on the new
set of labels improves its object detection capabilities. Also, it was analyzed the embedding
space in the object detector trained on the cleaned categories and showed that it is better
clustered than the embedding space derived from the original categories. Finally, this section
evaluated the utility of the new model as a black-box feature extractor for a downstream
visual-textual grounding task with the Bilinear AttentionNetworkmodel. The results show
that features from the new object detector can consistently improve the BANmodel across
commonly used object detection thresholds.

Future work involves studying the effect of using the improved label set on large pre-
trained language-and-vision models, such as VILBERT [147] and LXMERT [146]. Since
these models use the bounding box category labels predicted by the object detector in their
loss function, in addition to using the features as their visual input, removing label noise
should benefit these models. Future work also aims to integrate the object detector trained
on the new cleaned classes in the models presented in Chapter 5 and Chapter 6.

In this section, the noisy categories are merged using a skilled human annotator, which
may have introduced some unwanted human bias or error into the cleaning process. Never-
theless, the proposed approach highlights the advantage of using improved label sets, both
for core object detection and downstreammultimodal task performance. Futurework could
generate alternative cleaned categories by merging similar ones, e.g., using a framework sim-
ilar to Confidence Learning [153].
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7.2 Object Search by a Concept-Conditioned Object Detector

Theobject detection task aims tofind all objects of a given set of object categories shown in an
image. Inmany situations, however, a user looks at apicturewith the intent offindingobjects
of one ormore types, which are expressed by any noun, and not restricted to a predefined set
of categories (see Figure 7.3). This task is called the “Find-That” task.

A practical example is given by an image object extraction task where a user aims to auto-
matically extract from a stream of images all the occurrences of one or more specific objects
(entities), e.g., all the cats and dogs contained in the images. Notice that some images may
neither contain cats nor dogs, while others may contain both of them or just only cat(s) or
dog(s). For this task, the intent of the user is known a priori, although it may range across
a large set of possible intents. Because of that, the intent can be used to condition an object
detector to obtain a better recognition rate, and thus a better final performance.

The task described above differs from visual-textual grounding textual expressions [6, 7, 8,
9, 10], as visual-textual grounding has the objective of finding a precise object referred by a
textual noun phrase, while the “Find-That” task is interested in finding all the objects related
to a set of given intents/categories. More distinctions are underlined in the Related Works
Section 7.2.5.

Abaselinemethod to solve the “Find-That” task is by using an object detector that extracts
all the objects in the image and then filters the results according to the specified categories.
This last step is not trivial as a user can express her/his interest using nouns that are not in
the categories supported by the object detector. Therefore, such a baseline method should
use a filtering procedure, which does reconcile the noun specified by the user with the set
of supported categories. In such a baseline, the object detector is independent of the user’s
intent, and it may return many undesired object categories.

This section11 proposes a method to condition an object detector with the user’s intent,
represented by one or more concepts of WordNet [33], to drive the localization and classifi-
cation of only desirable objects. See Section 2.5 for more details about the WordNet graph.
Hence, there is the need to modify the object detector so that it takes in input also a set of
nouns and focuses its attention only on objects of the categories directly or indirectly spec-
ified by the nouns. WordNet allows the reconciliation of the user’s intent with the set of
supported categories, it handles the synonymous and the problem of multiple meanings as-

11D. Rigoni, L. Serafini, and A. Sperduti, “Object Search by a Concept-Conditioned Object Detector”,
Under Peer Review.
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Figure 7.3: Main differences between the standard object detector and the conditioned object detector approach. (Left) A
scenario involving a standard object detector detecting all the objects in the image. (Right) A scenario involving a concept‐
conditioned object detector, which given the image in input jointly with the user’s intent, directly returns only the objects
of interest, thus eventually avoiding mistakes, as the missed cat on the top right of the image by the standard object
detector.

sociated with the same word (polysemy) that would be present with textual inputs.

Figure 7.4 highlights the main difference between the baseline described above (top), and
the proposed approach involving a concept-conditioned object detector (bottom). Starting
from the image, a standard object detector detects all the objects depicted in the image and
passes them to an ad-hoc post-processing algorithm, which selects only the objects classi-
fied with categories that are represented by the WordNet concepts in input. Section 7.2.2
elaborates on howWordNet concepts can be matched with the object detector pre-defined
categories, which is an important component for the Post-processing Selection component
of the model. The proposed concept-conditioned object detector takes in input also a set
of concepts, and applies the object detection and filtering phase to a combination of im-
age and Concept Set Encoding component. The integration is implemented by the Fusion
Block, which fuses the visual features returned by the model Backbonewith the concepts em-
beddings. Then the multimodal features are used in the Object Detector Head to locate and
classify all the objects of interest.

With this new approach, however, new datasets are needed to train these models, with
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Figure 7.4: Operational setting adopted in this work for finding all the objects contained in an image that represents the
user’s intent. (Top) A standard object detector, given an image as the only input, detects all the objects which, through the
Post‐processing Selection algorithm, are filtered accordingly to the WordNet concepts. (Bottom) The concept‐conditioned
object detectors take in input also the WordNet Concepts. The Concept Set Encoding encodes in an embedding space the
set of WordNet concepts. The Fusion Block fuses the visual features returned by the model Backbone with the concepts
features. Then the multimodal features are used in the Object Detector Head to locate and classify all the objects of
interest.

inputs made of WordNet concepts, as well as images. In this section, it is proposed an effec-
tive strategy to generate WordNet concepts from already existing object detection datasets,
removing the need to create new ad-hoc datasets from scratch.

Overall, the contributions of this section can be summarized as follows: (i) it presents a
novel approach to focusedobject search in an image by conditioning existing object detectors
with the user’s search intent, represented as a set of WordNet concepts. The proposed ap-
proach can be implemented with minor changes to a standard object detector software, e.g.,
it does not require themodification or addition of any object detector loss; (ii) this is the first
work that proposes conditioned object detectors in which the user’s intent is represented as
a set of WordNet concepts. The set approach allows the user to search multiple objects at
the same time, while the WordNet graph allows the user to express a query using concepts
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that are not directly associated with the set of pre-defined categories supported by the object
detector; (iii) it proposes an effective strategy to generateWordNet concepts from already ex-
istingobject detectiondatasets, removing theneed to create newad-hocdatasets fromscratch
for training concept-conditioned object detectors; (iv) it is empirically shown, on twowidely
used object detection datasets, COCO and Visual Genome, and several object detection ar-
chitectures, that the proposed concept-conditioned object detector approach performs bet-
ter than the standard baseline.

7.2.1 Problem Formulation

Figure 7.5: A toy example that highlights the difficulties in retrieving the dataset categories given the concepts in input.
Given the user’s intent “dandy”, which refers to the concept colored in yellow in the WordNet graph (dandy.n.01), there
are two ancestor concepts, i.e., “man.n.01” and “person.n.01”, that are associated with the dataset pre‐defined categories
“MAN” and “PERSON”, respectively.

Before giving a formal definition of the problem, there is the need to clarify an issue about
the “intent” of the user, i.e., the expected output from an object detector that takes in input
a set of concepts (fromWordNet). In fact, given a set of input concepts, it is not straightfor-
ward how to retrieve the categories that are represented by those concepts. Although it can
be considered safe to assume that any object detector pre-defined category can be mapped
to a corresponding concept in WordNet, Figure 7.5 presents a toy example that highlights
the main difficulties: (i) WordNet concepts may have multiple concepts as parents; hence,
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given a concept, the set of all its ancestors potentially could result in a very large set of con-
cepts; (ii) since the object detector’s pre-defined categories can be related to each other, e.g.,
the category “PERSON” is related to the category “MAN”, concepts associated with the
pre-defined categories can also be related by parent-child relations in the WordNet graph.

Therefore, given a concept, a first approach could be to select all the pre-defined categories
whose concepts are equal or ancestors of at least a concept in input. In the example, this
means that the selected objects should be classified as “MAN” and “PERSON”. However,
maybe the user is interested in finding only objects belonging to the “MEN” category and
not objects also classified as “PERSON”. In that case, the alternative approach would be to
select only the category whose WordNet concept is the closest (parent) to the concept in
input. In the example, this implies the selection of only the objects classified as “MAN”,
discarding all the objects classified as “PERSON”. In general, one could think of an “intent”
that is defined by the intended concept depth, i.e., how far to travel the WordNet graph to
retrieve the object detector categories. To cope with this issue, in the following, the problem
is formally defined by also specifying a concept depth.

Let L be the set of categories supported by an object detector, S the set of concepts in
WordNet, f : L → S a function that associates to each category of the object detector a
unique concept inWordNet. For every d ∈ N let fd : L → 2S be the function that maps a
label l ∈ L of the object detector into the set of WordNet concepts defined as:

f 0(l) = {f(l)},

fd+1(l) = fd(l) ∪

s ∈ S

∣∣∣∣∣∣
∃s′ ∈ fd(l) such that s′

is a parent concept of s in
WordNet.

 .

LetG(I) = {(ri, li)}ni=1 be the set of all objects that appears in image I of any category in
L. ri ∈ R4 and li ∈ L are the bounding box and the category label, respectively, of the i-th
object. Then, given a pair (I, S) composed of an image and a set S of WordNet concepts,
and a concept depth d, the defined task produces the set:

F (I, S, d) = {(r, l) | (r, l) ∈ G(I) ∧ S ∩ fd(l) ̸= ∅}.

Please, notice that the standard object detector task can be defined in the proposed frame-
work as F (I, f(L), 0).
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7.2.2 Definition of a Baseline

As a baseline for solving the “Find-That” task, a standard object detector coupled with an
ad-hoc post-processing algorithm (i.e., Figure 7.4, Post Processing Selection component) that
selects only the subset of objects compatible with the user’s interest is considered.

Thus, the baseline can be formalized as in the following. Given an image I , if PB(I) =

{(ri, li)}np

i=1 is the set of np objects predicted by an object detector, the baseline method
estimates F (I, S, d) by FB(I, S, d), as:

FB(I, S, d) = {(r, l) | (r, l) ∈ PB(I) ∧ S ∩ fd(l) ̸= ∅}.

The post-processing algorithm checks if S ∩ fd(l) ̸= ∅.

7.2.3 Improving on the Baseline: The newModel Proposal

The baseline can be improved by exploiting an object detector conditioned by the input
WordNet concepts. Given an image jointly with a set of WordNet concepts in input, dur-
ing training, the object detector learns to detect only the desired objects. Hence, implicitly
the model tries to learn a mapping function from the set of WordNet concepts to the cat-
egories of the object detector. This helps in improving the quality of proposals that the
Post-processing Selection component receives in input.

Formally, given an image I and a set S of concepts, if PC(I, S) = {ri, li} is the set
of objects predicted by a concept-conditioned object detector, F (I, S, d) is estimated by
FC(I, S, d), where:

FC(I, S, d) = {(r, l) | (r, l) ∈ PC(I, S) ∧ S ∩ fd(l) ̸= ∅}.

In the following,more details on the architecture of the concept-conditioned object detector
are given, as well as on the corresponding training procedure.

7.2.3.1 Model Architecture

Figure 7.6 presents an in-depth zoom on theConcept-Conditioned Object Detector block pre-
sented in Figure 7.4. It illustrates the proposed architecture that exploits the information
given by theWordNet concepts during object detection. In fact, both an Image and a set of
WordNet Concepts are provided in input to the model. The blocks that are components of a
standard object detector, i.e., components that are definedby ameta-architecture (e.g., Faster
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Figure 7.6: Overview of the concept‐conditioned object detector. The Imagewith theWordNet Concepts are used as input
to the model. The Backbone extracts the visual features from the image, while the Concept Set Encoding encodes in an
embedding space the set ofWordNet concepts in input. The concepts in input are highlighted in red in theWordNet block.
Finally, the Fusion Block fuses the visual and concept features together and gives them as input to the Object Detector
Head, which predicts the Boxes Coordinates and the Boxes Categories in output.

R-CNNorRetinaNet) and a backbone (e.g., ResNet-50 orResNet-101), are depicted using
the red color, while the background in light-blue color delimits the new blocks added to con-
dition the object detector with concepts. The Backbone extracts the visual features from the
image, while the Concept Set Encoding encodes in an embedding space the set of WordNet
concepts in input. Finally, the Fusion Block fuses the visual and concept features together
and sends them as input to the Object Detector Head, which predicts the Boxes Coordinates
and the Boxes Categories in output.

7.2.3.2 Model Training

The model training can be performed by a standard end-to-end gradient-based procedure,
however, the main issue is the lack of datasets compliant with the task definition, i.e., ex-
amples in the form ((I, S), F (I, S, d)). For this reason, in this section, it is proposed an
automatic procedure to derive an ad-hoc datasetDF starting from an existing datasetD for
object detection, which contains ground truth annotations for each object contained in each
image I , i.e.,G(I).

In order to define (I, S) and F (I, S, d), one needs to specify the “intent” S at concept
depth d. This can be done recursively, starting from the base case d = 0, i.e., S0, and then
defining Sd+1 starting from Sd. Let’s start by defining S0. Given an image I inD, it can be
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automatically generated the power set ξ(I) ofG(I), i.e., the set of all the possible combina-
tions of ground truths. Then, for each E ∈ ξ(I), the set LE = {l | (r, l) ∈ E} of all
categories appearing inE is defined. At this point ∀l ∈ LE :

S0 = {f 0(l)}, Sd+1 = {fd+1(l)}.

It could be disputed that the above procedure is not correct in the case in which a child of
a concept does not find a match with a pre-defined object detection category. For example,
consider the concept “siamese cat” and an object detector that only supports the category
“CAT”. In this case, since f(“CAT”) returns the concept “cat”, i.e., a parent of “siamese
cat”, one may run the risk of generating an example involving an image that portrays a cat
that is not a siamese cat jointly with the concept “siamese cat”. However, such a query could
actually be placed by a user that is not aware, as she/he shouldn’t be, of the pre-defined object
detection categories, and returning a bounding box containing a non-siamese cat is the best
approximation that the object detector can do. It is a problem of the object detector: the
more pre-defined categories the object detector can deal with, the better the performance of
the system will be.

The power set approach ξ(I)described above, however, generates an exponential number
of training examples, and in practice, it is not a viable approach. For this reason, in this work,
ξ(I) and Sd are sampled to obtain a reasonable amount of training examples. Specifically,
given an image I with its ground truth annotations G(I), the procedure that synthesizes
the concepts in input starts by sampling uniformly from ξ(I) a subset ξ̂(I) of its members.
The reduced set of concepts Ŝ0 is then obtained from ξ̂(I). Starting from Ŝ0, the reduced
set of concepts Ŝd+1 is obtained by sampling the set Sd+1. Specifically, a concept for each
object to search in the image is sampled uniformly. For example, given Figure 7.3, input
three concepts are provided as input: one concept for the object labeled as “BOWL” and
two sampled concepts associated with the objects labeled as “CAT”, i.e., one for each cat
occurring in the image.

7.2.4 Experimental Assessment

The conditionedobject detectors are evaluatedondatasets generated starting fromtwowidely
adopted datasets (i.e., COCO and Visual Genome), considering two object detector meta-
architectures (i.e., RetinaNet [65] and DynamicHead [58]) and several backbones, such as
ResNet-50, ResNet-101, and Swin-Tiny.



98

See Appendix E.3 for the models’ implementation details, Appendix E.2 for the model
selection performed in this work, and Appendix E.7 to inspect some qualitative examples
made by both standard and concept-conditioned object detectors.

7.2.4.1 Datasets and EvaluationMetrics

TheCOCOdataset [128] is an 80-class commonobject detection dataset. It is used the 2017
version of the dataset. Since the COCO test set ground truths are not publicly available
online, in this work, the available validation set is used to generate the test set, and 5K images
are randomly selected from the training set to generate the validation set. In this section, the
COCO test set always refers to the original COCO validation set. Moreover, the COCO
validation set refers to the 5K examples sampled from the original COCO training set, and
the COCO training set refers to the examples left after sampling.

The Visual Genome [32] dataset consists of 108077 images with 1600 classes. Every split
of data is available online with its ground truth annotations. Hence, on this dataset, it is
adopted the splits available online for training, validating, and testing the models. See Ap-
pendix E.1 for more details on the datasets considered in this section.
The procedure presented in Section 7.2.3.2 allows the generation of new datasets to train

and evaluate concept-conditioned models when deployed for searching all the objects con-
tained in the images, as well as just a subset of objects as specified by the input concepts.
More in detail, for each original dataset, two more datasets (with all their splits) are gener-
ated. The first dataset aims to evaluate the object detector when searching for all the objects
in the images. In other words, for each image, I , the set S is composed of at least one con-
cept related to each ground truth inG(I). The second dataset, dubbed “Focused”, aims to
evaluate the object detector when searching for only a subset of objects in the images. For
each example ((I, G(I)), the procedure presented in Section 7.2.3.2 generates the example
((I, S), F (I, S, d)), which focuses on just a subset of all the objectsG(I).

Note that the examples to use in input to themodel during training are generated at “run-
time”, while during evaluation, the results are computed on a pre-calculated set of examples
(i.e., validation and test sets are fixed for each dataset).

The following metrics are adopted to evaluate models’ performances: (i) mean Average
Precision (AP): this metric is the mean Average Precision per class defined by the COCO
dataset12, and (ii) AP50: this metric is the mean Average Precision per class, defined by the

12https://cocodataset.org/\protect#\relaxdetection-eval

https://cocodataset.org/\protect #\relax detection-eval
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COCO dataset, that evaluates the AP metric only considering the Intersection over Union
(IoU) threshold of 0.5. See Appendix A.3 for more details about the IoUmetric. These are
standardobject detectionmetrics that, in the end, allow for a fair comparisonof theproposed
model on theobject detection task todemonstrate the effectiveness of theproposed approach
over standard object detectors.

7.2.4.2 Object Detector Architectures and Backbones

Theproposed approach is evaluated considering twoobject detectors, namelyRetinaNet [65]
and DynamiHead [58]. To assess the effectiveness of the proposed approach, each model is
evaluated consideringmore backbones: ResNet-50 [72], ResNet-101, and Swin-Tiny [156].
Eachmodel adopts the Feature PyramidNetwork [157] to extract image features at different
resolutions. See Appendix E.3 for an overview of the number of neurons constituting each
model.

Each object detector model is modified to be conditioned with the concepts, i.e., “Con-
cept RetinaNet” and “Concept DynamicHead” are the proposed models that can exploit
the user’s intent during object detection.

7.2.4.3 Comparing Standard and Concept-Conditioned Object Detectors
before Filtering

In this section, it is investigated the benefit of leveraging the user’s intent directly in the object
detector architectures. It is done by considering the quality of the output of the detectors,
before filtering, i.e., the Post-processing Selection component. Moreover, this section assesses
concept-conditioned object detectors and standard object detectors in detecting all the ob-
jects depicted in the images, i.e.,G(I). For concept-conditionedmodels, the set ofWordNet
concepts used to condition the object detection process is built appropriately to include a
concept for each object present in the image ground truth annotations.

Table 7.6 presents the results obtained by the object detectors when they are deployed for
searching all the objects contained in COCO and in Visual Genome datasets. AP (%) refers
to the object detection mean Average Precision, while AP50 (%) refers to the object detec-
tion mean Average Precision with IoU ≥ 0.5. The models conditioned with the concepts
are highlighted with the dove gray color. In addition, the APmetric is also evaluated by con-
sidering several bounding box dimensions. The threshold values are defined by the COCO
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dataset13: (i) Small refers to bounding boxes whose area is less than 322 pixels; (ii)Medium
refers to bounding boxes whose area is less than 962 pixels and larger than 322; and (iii)Large
refers to bounding boxes whose area is larger than 962 pixels. All refers to the case in which
the evaluation is performed considering all the bounding boxes. In COCO, approximately
41%of the boxes are small size, approximately 34%of the boxes aremedium size, and approx-
imately 24% of boxes are large size.

Noticeably, the proposed concept-conditioned models, exploiting the user’s intent, al-
ways perform better than standard object detectors when they are deployed for searching
all the objects depicted in an image. Concept DynamicHead achieves the best outcomes in
both datasets with ResNet as the backbone. Overall, the improvements given by Concept
DynamicHead over the standard DynamicHead models are higher than the improvement
of Concept RetinaNet over standard RetinaNet. On COCO, the larger AP improvement
(6.1%) is given by Concept DynamicHead (50.2%) over DynamicHead (44.1%), both with
ResNet-101/50. Even on Visual Genome, the same architecture and backbone give the best
improvements (3.9% for ResNet-101).
Unexpectedly, the DynamicHead model coupled with the ResNet-50 and ResNet-101

backbones performs similarly. Given the higher neural network expressivity given by the
Resnet-101 over ResNet-50, allowed by the largest number of parameters that amounts to
57.8M, themodel outcomes should be better than those ofResNet-50. This is likely due to a
non-exhaustivemodel selection performed onCOCOandVisualGenome, which is detailed
in Appendix E.2.

Regarding theAPmetric evaluated according to theboundingboxes dimension (i.e., Small,
Medium, andLarge columns), it is visible that the concept-conditionedmodels benefitmostly
in detecting small objects in COCO and large objects in Visual Genome.

In conclusion, it is evident that whenever the user’s intent is exploited to condition the ob-
ject detector architectures, their detection performance always increases. More results adopt-
ing the Post-processing Selection component in searching for all the objects in the image are
detailed in Appendix E.5.

During model training, the maximum concept depth d value considered during the Word-
Net sampling process plays a fundamental role in the proposed approach. High-depth values
force the model to learn more relations among categories and WordNet concepts, making
the task that the model has to solve more difficult. Conversely, a low-depth value makes the

13Bounding box dimensions defined by the COCO dataset: https://cocodataset.org/
#detection-eval

https://cocodataset.org/#detection-eval
https://cocodataset.org/#detection-eval
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Depth Value AP (%) AP50 (%) N. of Concepts
0 39.8 62.1 80
1 39.4 61.3 954
2 39.5 61.5 2586
3 39.2 61.1 5054
4 39.4 61.1 7274

Table 7.7: Object detection results on COCO test set varying the concept depth values used for generating the WordNet
concepts. The values are obtained using the proposed concept‐conditioned RetinaNet model with ResNet‐50.

learning task easier while constraining the generalization of the proposed approach to only
a small set of concepts.

Table 7.7 highlights the impact of employing different depth values on the conditioned
models. The resultswere obtainedwithRetinaNet, usingResNet-50 as thebackbone, on the
COCO test set. AP and AP50 are the metrics adopted for the evaluation of the models. In
this experiment, the concepts are not sampled, so depth value 0 refers to examples involving
concepts in S0, depth value 1 refers to examples involving concepts in S1, and so on. As can
be seen from the table, the best AP result is obtained with a depth value of 0, and there is no
abrupt deterioration in the results, increasing the depth value from 0 to 4. More in detail,
from the depth value of 0 to 1, the deterioration in the AP metric amounts to 0.4%, the
same value with respect to depth 4. The largest drop in performance is observed for depth
3, where it reaches 0.6%. Notice that the number of concepts the user can adopt to express
her/his intent grows significantly from depth 0 to depth 4.
In conclusion, these results suggest that in the COCO dataset, it is possible to generalize

themodel to theuse of7274differentWordNet concepts tradingoff someof the effectiveness
of the model.

7.2.4.4 Searching for a Subset of Objects

This section compares concept-conditioned object detectors and standard object detectors,
coupled with the Post-processing Selection component, to search for just a subset of objects
depicted in the images and consistent with the input concepts. To this aim, all the models
are assessed on the datasets generated as explained in Section 7.2.3.2 that is dub “Focused
COCO” and “Focused Visual Genome”.

Table 7.8 presents the obtained results. From this table, it can be seen that the proposed
conditionedmodels outperform standard object detectors in all architectures andbackbones



103

M
et
aA

rc
hi
te
ct
ur
e

Ba
ck
bo

ne
Fo
cu
se
d
C
O
C
O
(A
P%

)
Fo
cu
se
d
Vi
su
al
G
en
om

e(
A
P%

)

A
P(
%
)

A
P5

0
(%
)

A
P(
%
)

A
P5

0
(%
)

A
ll

Sm
al
l

M
ed
iu
m

La
rg
e

A
ll

A
ll

Sm
al
l

M
ed
iu
m

La
rg
e

A
ll

R
et
in
aN

et
R
es
N
et
-5
0

40
.6

25
.9

43
.6

5
2
.1

6
3
.3

6
.9

4
.2

6
.7

9
.1

1
3
.5

C
on

ce
pt

R
et
in
aN

et
R
es
N
et
-5
0

42
.1

29
.0

45
.1

5
3.
8

6
5
.9

7.
3

4.
1

7.
3

9.
6

1
4
.8

R
et
in
aN

et
R
es
N
et
-1
01

43
.1

27
.3

46
.9

5
5
.1

6
5
.8

7
.3

4
.3

7
.4

9
.7

1
4
.3

C
on

ce
pt

R
et
in
aN

et
R
es
N
et
-1
01

43
.9

29
.3

47
.9

5
5.
5

6
7
.5

7.
4

4.
5

7.
3

9.
7

1
4
.8

D
yn
am

icH
ea
d

R
es
N
et
-5
0

49
.0

31
.7

51
.9

6
2
.7

6
9
.2

1
0
.7

5
.6

1
0
.4

1
4
.1

1
8
.8

C
on

ce
pt

D
yn
am

icH
ea
d

R
es
N
et
-5
0

52
.1

35
.9

55
.0

6
6.
5

7
3
.7

1
3
.2

7.
4

1
3
.0

1
7
.6

2
4
.3

D
yn
am

icH
ea
d

R
es
N
et
-1
01

49
.2

32
.0

52
.6

6
2
.6

6
9
.3

1
0
.9

5
.4

1
0
.5

1
4
.6

1
9
.3

C
on

ce
pt

D
yn
am

icH
ea
d

R
es
N
et
-1
01

52
.2

35
.9

55
.3

6
6.
6

7
3
.7

1
3
.7

7.
7

1
3
.3

1
8
.3

2
5
.1

D
yn
am

icH
ea
d

Sw
in
-T
in
y

54
.3

37
.7

57
.2

6
7
.4

7
4
.5

1
2
.7

6
.6

1
2
.0

1
7
.0

2
1
.9

C
on

ce
pt

D
yn
am

icH
ea
d

Sw
in
-T
in
y

56
.5

40
.5

59
.3

6
9.
7

7
7
.9

1
4
.7

8.
5

1
4
.6

1
9
.3

2
6
.9

Ta
bl
e
7.
8:
O
bj
ec
td
et
ec
tio
n
re
su
lts
on
Fo
cu
se
d
CO
CO

an
d
Fo
cu
se
d
V
isu
al
G
en
om
e
da
ta
se
ts
w
ith

d
=

1
,c
on
sid
er
in
g
se
ve
ra
lb
ou
nd
in
g
bo
x
di
m
en
sio
ns
.A

P
(%
)r
ef
er
s
to
th
e

ob
je
ct
de
te
cti
on

m
ea
n
Av

er
ag
e
Pr
ec
isi
on
,w
hi
le
AP

50
(%
)r
ef
er
s
to
th
e
ob
je
ct
de
te
cti
on

m
ea
n
Av

er
ag
e
Pr
ec
isi
on
w
ith

Io
U
≥
0
.5
.T
he
m
od
el
s
co
nd
iti
on
ed
w
ith
th
e
co
nc
ep
ts
ar
e

hi
gh
lig
ht
ed
w
ith
th
e
do
ve
gr
ay
co
lo
r.



104

combinations.
Both datasets achieve the best AP results by deploying DynamicHead with ResNet back-

bones. On Focused COCO, the larger AP improvement (3.1%) is given by Concept Dy-
namicHead (52.1%) over DynamicHead (49.0%), both with ResNet-50. While, on Visual
Genome, the larger AP improvement (2.8%) is given by Concept DynamicHead (13.7%)
overDynamicHead (10.9%), bothwithResNet-101. In general, the improvements achieved
on the Focused COCO dataset by the conditionedmodels are higher than those achieved in
the Focused Visual Genome.

In conclusion, conditioning the object detectionwith the user’s intent generally improves
the detection performance of an object detector that adopts a post-processing procedure for
selecting the boxes of interest.

See Appendix E.6 to explore results by class.

7.2.5 RelatedWorks

This work is mainly related to the object detection area of research, as object detectors can
be adapted for solving the proposed “Find-That” task. According to the works in literature,
only Fornoni et al. [158] proposed a work that is similar to this work. The authors aim
to condition object detectors with prior information (as done in this section), emphasizing
mainly object detectors with efficient constraints (mobile). They re-use existing object de-
tector code with minor changes, and they also developed a procedure to generate the user’s
prior intent from the ground truths available in existing object detection datasets. However,
there is a significant difference in how the user’s intent is represented. In [158], the object de-
tector is modified to consider an input composed of images and categories augmented with
spatial information needed to constrain the object search in the image. The categories are
those defined by the dataset, and their model is conditioned with a vector of ones (to search)
and zeroes (not to search) for each class (i.e., an 80-dimension vector for COCO). In the ap-
proach proposed in this section, the model is conditioned in input with WordNet concepts
instead of categories, and the concepts are not augmented with the spatial location infor-
mation, even if the model can be easily extended to do so. Hence, their approach does not
tackle the mismatch problem between the concepts expressed by the user and the classes of
the object detector, thus solving an easier problem compared to the proposed task addressed
in this section. In addition, since the target label is provided as an input to their proposed
conditional model, their approach only aims to localize the objects in the image. For this rea-
son, their evaluation is category-agnostic. Instead, in the work proposed in this section, the
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concept-conditioned models aim to locate and correctly classify the objects depicted in the
image. Thus, the evaluation performed is category-aware. A direct experimental comparison
versus the above approach is not possible since: (i) their approach uses different prior infor-
mation than that used in this section (i.e., category vectors of ones and zeros versus Word-
Net embeddings); (ii) their evaluation setting (online style) significantly differs from that
adopted in this work (fixed test set); (iii) their code is not available online, making impossible
an evaluation in a setting comparable with the one used in this section.

This work is also related to other research areas, as often object detection is used as a build-
ing block for solving many other downstream tasks, such as Referring Expression [6, 7, 8,
9, 10, 11], also known as Visual-Textual Grounding, Visual Question Answering [12, 13,
14], Visual-Textual-Knowledge Entity Linking (VTKEL) [15, 16, 17] and Image-Text Re-
trieval [18, 159, 160, 19]. Note that the proposed approach could be deployed to solve the
VTKEL problem, conditioning the object detector with the entities of the knowledge graph.
See Chapter 3 for both the Visual-Textual Grounding and VTKEL State-of-the-Art.

The defined “Find-That’ task resembles the referring expression task, although there are
substantial differences. First of all, the user’s intent needs to be represented as a textual
phrase, while in the model proposed in this section, the user’s intent is expressed with one
or more WordNet [33] concepts. Secondly, following the current State-of-the-Art, refer-
ring expression models predict only the bounding box that best matches the textual phrase
in the output. For this reason, when the user’s intent concerns multiple different objects
depicted in the image, multiple independent queries should be performed to retrieve all ob-
jects of interest. In addition, when the user’s intent concerns multiple objects of the same
type, the referring expression approach is no longer suitable. Lastly, for training, referring
expression models need to use detailed datasets comprising images, boxes coordinate, tex-
tual phrases, and the ground truth of the corresponding bounding box in the image for each
phrase. These annotations are difficult to collect, so the referring expression datasets contain
fewer examples than those of detection. Appendix E.8 reports a more detailed comparison.

7.2.6 Conclusion and FutureWorks

This section proposed a novel approach to focused object search in an image by conditioning
existing object detectors with the user’s search intent, represented as a set of WordNet con-
cepts. The proposed approach can be implementedwithminor changes to a standard object
detector, it does not require themodification or addition of any object detector loss and con-
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tributes to the estimation of the probability distribution P
(
Xb,V | Xq,V ,Zb, Ẑb, KG

)
presented in Section 4.4.

The proposed concept-conditioned object detector can be trained on existing datasets for
object detection without the need to add or modify existing annotations to consider the
WordNet concepts. The approach is tested for searching all objects on COCO and Visual
Genome datasets and also for searching just subsets of objects using the newly defined Fo-
cused COCO and Focused Visual Genome datasets. Several object detector architectures
and backbones are considered, showing that the proposed concept-conditioned object de-
tector approach performs better than the standard object detector baseline.

Since concept-conditioned models adopt pre-computed WordNet embedding represen-
tations, future work aims to evaluate the model performance using different embeddings
weights and to improve the fusion of the multimodal information in the object detector ar-
chitecture. Future work will also extend the WordNet concepts with entities that belong
to heterogeneous knowledge graphs, such as YAGO [96, 97, 98]. Finally, future work aims
to integrate this model within a word sense disambiguation system, with the goal of solving
multimodal text-image tasks, such as visual question answering and visual-textual ground-
ing.



8
Conclusions and Future Works

In conclusion, this Ph.D. thesis aims to improve visual-textual grounding tasks by introduc-
ing a novel approach that incorporates a thirdmodality, in the form of a graph, alongside the
traditional image and text modalities. This graph-based approach is expected to enhance the
performance and accuracy of the visual-textual grounding models.

For this reason, Chapter 4 presented a formal probabilistic framework developed to an-
alyze the integration of the three modalities and to deal with the inherent uncertainties in
solving visual-textual grounding tasks. The framework allows the analysis of the already pub-
lishedworks, highlighting their strengths andweaknesses according tohow themodalities are
adopted in the model. Moreover, it constitutes an important tool that can be employed to
devise a novel approach to visual-textual grounding based on an innovative factorization of
probabilities not yet explored in the literature.

Furthermore, this thesis also investigates improvements to the traditional two-modality
visual-textual grounding task. Two contributions are proposed. The first, introduced in
Chapter 5, presents a new loss function for training two-stage models in a supervised set-
ting. The novel loss combines a grounding loss and a bounding box coordinates refinement
loss, both based on the probability distribution over the set of pre-defined classes returned
by the object detector. Experiments have proven that when a model adopts the new loss,
it reaches better results. Nevertheless, the work proposed in Chapter 5 has also some limita-
tions, such as the fact that it adopts a simplemulti-modal feature fusion component and that
the new loss function relies on the cosine similarity to calculate the similarity between the

107
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predicted class probabilities of the bounding boxes (i.e., matrixC defined in Section 5.3.0.2).
Futureworks aim to adoptmore sophisticatedmulti-modal feature fusion components, such
as bilinear-pooling [78], and to explore different similarity functions such as the Jeffreys di-
vergence [161]

The second contribution, introduced in Chapter 6, presents a two-stage model tackling
the weakly-supervised visual-textual grounding. The proposed model is based on the princi-
ple of first predicting a rough alignment among phrases and boxes adopting a module that
does not require training, and then refining those alignments using a learnable neural net-
work. The model is trained to maximize the multimodal similarity between an image and
a sentence describing that image while minimizing the multimodal similarity of the same
sentence and a new unrelated image, carefully selected to help as much as possible during
training. In light of this, the approach presented a State-of-the-Art performance on twowell-
established visual-textual grounding datasets. However, the module that does not require
training is sensible to the pre-trained GloVe [3] embeddings which are used to initialize its
weights. Indeed, the less the pre-training embeddings are able to gather the semantic infor-
mation between pairs of words, the less accurate this module’s predictions will be. Future
works in this direction will adopt more recent embeddings such as those of BERT [43].

Chapter 7 introduced two potential extensions of the presented approaches. More in par-
ticular, in Section 7.1, this thesis addresses the issue of noisy class labels in the commonly
used Bottom-Up Faster R-CNNobject detector, proposing a set of less noisy labels. Indeed,
the object detector classes are important for solving the visual-textual grounding problem,
especially when considering graph information. The results have shown that the object de-
tector trained on the new cleaned labels performs better than the object detector trained on
the noisy set of labels. Moreover, the utility of the newmodel is evaluated as a black-box fea-
ture extractor for a downstream visual-textual grounding task with the Bilinear Attention
Network model (BAN) [4]. The results show that features from the new object detector
can consistently improve theBANmodel across commonly used object detection thresholds.
However, the new set of labels is made by a skilled human annotator, which may have intro-
duced some unwanted human bias or error into the cleaning process. Future works could
generate alternative cleaned categories by merging similar ones, e.g., using a framework sim-
ilar to Confidence Learning [153].

Last but not least, Section 7.2 introduced a novel approach to focused object search in
an image by conditioning existing object detectors with the user’s search intent, represented
as a set of WordNet concepts. The proposed approach can be implemented with minor
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changes to a standard object detector, it does not require themodification or addition of any
object detector loss and contributes to the estimation of the novel probability factorization
presented in Section 4.4. According to the evaluation performed, the proposed concept-
conditioned object detectors achieve better results than standard object detectors. However,
the proposed concept-conditioned models consider only the subset of the WordNet graph
defined by nodes related by the parent-child relations. Future works aim to use additional
relations as well.

Overall, the research presented in this Ph.D. thesis contributes to the understanding and
advancement of visual-textual grounding techniques. The tools and insights offered in this
document hold the potential to facilitate the development of more accurate and efficient
visual-textual grounding models.

Future works aim to fully estimate the probability factorization presented in Section 4.4,
solving the visual-textual grounding by adopting the loss function introduced in Chapter 5,
the concept-conditioned object detector presented in Section 7.2, and the clean set of classes
proposed in Section 7.1. In addition, future works aim to incorporate the conditioned ob-
ject detector presented in Section 7.2 into the model presented in Chapter 6, aspiring to
generate better bounding boxes proposal than those generated with the Bottom-Up Faster
R-CNN. Moreover, future works aim to integrate the object detector trained on the new
cleaned classes in the models presented in Chapter 5 and Chapter 6. To conclude, other fu-
ture works aim to use the framework presented in Chapter 4 to design and estimate a new
novel probability distribution factorization to adopt in solving the visual-textual grounding
task.
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Appendix A
Visual-Textual Grounding Datasets and

Metrics

This appendixpresents themaindatasets and evaluationmetrics adopted in the visual-textual
grounding area of research. Follow the description of both the Flickr30k Entities [77] and
ReferIt [110] datasets, and the definition of the Intersection over Union and Complete In-
tersection over Union [104] metrics.

A.1 Flickr30k Entities

The Flickr30k Entities dataset [77] is a widely used benchmark dataset in computer vision
and natural language processing research for the task of visual-textual grounding, which in-
volves associatingwords or phrases in natural languagewith corresponding objects or regions
in visual data. The dataset consists of 31.783 images, each of which is accompanied by five
captions that describe the image in natural language. Each caption includes a variable num-
ber of noun phrases that are associated with a set of bounding boxes ground truth coordi-
nates.

Specifically, each caption in the dataset is annotated with a set of entity mentions, where
eachmention is associatedwith aboundingbox indicating the region in the image that the en-
tity refers to. The dataset contains 275K bounding boxes, 159K sentences, and 360K noun
phrases. The standard split for training, validation, and test set as defined in [77], consisting
of 30K, 1K, and 1K images, respectively.
The dataset has been used in numerous research studies and has contributed to significant

advances in the field of visual-textual grounding and multimodal understanding.
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A.2 ReferIt

TheReferIt [110]GameEntities dataset consists of 20.000 images fromtheMSCOCO[128]
dataset, each of which is accompanied by a set of referring expressions that describe specific
objects or regions in the image. More in detail, the dataset contains 99Kbounding boxes and
130K noun phrases, which were collected using an online game where players were asked to
refer to objects in the images using natural language.

Each referring expression in the dataset is annotated with a bounding box indicating the
region in the image that the expression refers to. The dataset also includes information about
the annotator who provided each expression, including their nationality, native language,
and proficiency in English. The standard split for training, validation, and test set as defined
in [77], consisting of 9K, 1K, and 10K images, respectively.
The ReferIt Game Entities dataset is commonly used for training and evaluating models

for the visual-textual grounding task, and has been used in numerous research studies. It
has also led to significant advances in the development of models that can understand and
interpret natural language expressions in the context of visual data.

This dataset differs from Flickr30k Entities since it does not contain sentences, meaning
thenounphrases aremutually independent. For this reason, the State-of-the-Artmodels that
depend on a sentence linking all the noun phrases, since they use a feature fusion operator
that assumes the presence of the input sentence containing all the noun phrases, cannot be
applied to it.

A.3 Intersection over Union (IoU)

Given a pair of bounding box coordinates (bi, bj) with bi, bj ∈ R4, the Intersection over
Union, also known as Jaccard index, is an evaluation metric used mainly in object detection
tasks, which aims to evaluate how much the two bounding boxes refer to the same content
in the image. It is defined as:

IoU(bi, bj) =
|bi ∩ bj|
|bi ∪ bj|

, (A.1)

where |bi ∩ bj| is the area of the box obtained by the intersection of boxes bi and bj , while
|bi ∪ bj| is the area of the box obtained by the union of boxes bi and bj . It is invariant
to the bounding boxes sizes, and it returns values that are strictly contained in the interval
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[0, 1] ⊂ R, where 1means that the two bounding boxes refer to the same image area, while
a score of 0 means that the two bounding boxes do not overlap at all. The fact that two
bounding boxes that do not overlap have IoU score equal to 0, is the major issue of this
metric: the zero value does not represent how much the two bounding boxes are far from
each other. For this reason, in its standard definition, the IoU function is mainly used as an
evaluation metric rather than as a component of a loss function for learning.

A.4 Complete Intersection over Union

In order to solve the issue of IoU when considering it as a loss function, [104] proposed the
Complete IoU loss that is defined as:

LCIoU (bi, bj) = S (bi, bj) +D (bi, bj) + V (bi, bj) (A.2)

S (bi, bj) = 1− IoU(bi, bj); (A.3)

D (bi, bj) =
ρ (pi,pj)

2

c2
; (A.4)

V (bi, bj) = α
4

π2

(
arctan

wtj
htj

− arctan
wti
hti

)
(A.5)

where bi and bj with bi, bj ∈ R4 are two bounding boxes, pi andpj are their central points,
IoU(bi, bj) is the standard IoU, ρ is the euclidean distance between the given points, c is
the diagonal length of the convex hull of the two bounding boxes, α is a trade-off parameter,
wti and hti are the width and the height of the bounding box bi, respectively. Differently
from the standard IoU, the Complete IoU is formulated in such a way to return meaningful
values, leveraging the bounding boxes geometric shapes, even when two bounding boxes are
not overlapped.
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Appendix B
A Better Loss for Visual-Textual

Grounding

Follows the appendix of the work proposed in Chapter 5.

B.1 Model

The model follows a typical basic architecture for visual-textual grounding tasks. It is based
on a two-stage approach in which, initially, a pre-trained object detector is used to extract,
from a given image I , a set of e bounding box proposals PI = {pi}ei=1, where pi ∈ R4,
jointly with features Hv = {hv

i }ei=1, where hv
i ∈ Rd, where d is the number of returned

features. The features represent the internal object detector activation values before the
classification layers and regression layer for bounding boxes. Moreover, the model extracts
the spatial featuresHs = {hs

i}ei=1, where hs
i ∈ R5 from all the bounding boxes proposals.

Specifically, the spatial features for the proposal pi are defined as:

hs
i =

[
x1

wt
,
y1

ht
,
x2

wt
,
y2

ht
,
(x2− x1)× (y2− y1)

wt× ht

]
, (B.1)

where (x1, y1) refers to the top-left bounding box corner, (x2, y2) refers to the bottom-
right bounding box corner, wt and ht are the width and height of the image, respectively.
It is also assumed that the object detector returns, for each pi, a probability distribution
PrCls(pi) over a set Cls of predefined classes, i.e., the probability for each class ξ ∈ Cls

that the content of the bounding box pi belongs to ξ.
Regarding the textual features extraction, given a noun phrase qj , initially all its words

W qj = {wqj
i }li=1 are embedded in a set of vectorsEqj = {eqj

i }li=1 where e
qj
i ∈ Rw, where
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w is the size of the embedding. Then, the model applies an LSTM [105] neural network
to generate from the sequence of word embeddings only one new embedding h⋆

j for each
phrase qj . This textual features extraction is defined as:

h⋆
j = L1 (LSTM(Eqj)) , (B.2)

whereh⋆
j ∈ Rt is the LSTMoutput of the last word in the noun phrase qj , andL1 is the L1

normalization function.

Once vectorh⋆
j has been generated from the noun phrase qj , the model performs amulti-

modal feature fusion operation in order to combine the information contained in h⋆
j with

each of the bounding box proposals hv
z . For this operation, a simple function that merges

the multi-modal features together is used, rather than relying on a more complex operator,
such as bilinear-pooling or deep neural network architectures. Themulti-modal fusion com-
ponent returns the set of newvectorial representationsH || = {h||

jz}j∈[1,...,m],z∈[1,...,e], where
vectorsh||

jz are defined as:

h
||
jz = LR

(
W || (h⋆

j ||hs
z ||L1(hv

z)
)
+ b||

)
, (B.3)

where || indicates the concatenation operator, h||
jz ∈ Rc, LR indicates the leaky-relu activa-

tion function,W || ∈ Rc×(t+s+v) is a matrix of weights, and b|| ∈ Rc is a bias vector.

Finally, the model predicts the probabilityPjz that a given noun phrase qj is referred to a
proposal bounding box pz as:

Pjz =
exp(W g × h

||
jz + bg)∑e

i=1 exp (W
g × h

||
ji + bg)

, (B.4)

whereW g ∈ R1×c and bg ∈ R are weights.

Indeed, the representationsh||
jz of the proposals bounding box features conditionedwith

the textual features can also be used to refine the proposal bounding box coordinates, which
are generated by the object detector independently by the textual features. Specifically, the
model does not predict new bounding box coordinates, but offsets for the coordinates de-
fined as:

ojz = W B × h
||
jz + bB, (B.5)

whereW B ∈ R4×c and bB ∈ R4 are a matrix of weights and a bias vector, respectively. The
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final predicted bounding boxes coordinates are then obtained as the sum of the proposal
bounding boxes coordinates with the predicted offsets.

B.2 Implementation Details

Themodel extracts thewords’ vocabulary using the SpaCy [53] framework for both datasets.
Each word embedding is initialized using the GloVe [3] pre-trained weights, which the pro-
posed model does not train, while the remaining weights are initialized with Xavier [162].
To compare objectively the experimental results with State-of-the-Art models, the same ob-
ject detector adopted in [23] is used, which consists of a Faster R-CNN pre-trained object
detector [66] on the Visual Genome [32] dataset that uses ResNet-101 as backbone model1.
The features associated with each bounding box are extracted from the ResNet-101’s layer
pool5_flat. Following [23], the object detector returns for each bounding box proposal a
probability distribution over 1600 classes. Other object detectors or bounding box propos-
als could have been applied, which would have led to further improvements, however, this
research direction is not related to the aim of this work. The model adopts the normalized
bounding boxes coordinates with the following representation:

b =

[
x1 + x2

2
,
y1 + y2

2
, bwt, bht

]
, (B.6)

where bwt and bht are the width and height of the bounding box, respectively.
Regarding the parameter alpha in Eq. A.5, it is used the value specified in [104] which

is identified by a specific formula. The proposed model comprises 10M trainable neurons
and a variable number of untrained neurons (i.e., freezed) according to the dataset’s word
vocabulary. For Flickr30k Entities the are 6Mof untrained neurons, while for ReferIt there
are 2Muntrained neurons.

Regarding the application of the proposed losses to the DDPN [23] model, the authors’
official code of the object detector was used to extract the bounding boxes proposals with
their probabilities, and then their DDPN model was re-implemented in PyTorch. Specif-
ically, their model was implemented following the architecture and the hyper-parameters
reported in their article, because the official implementation, as reported in the official repos-
itory2, presents a slightly different architecture that leads to different results. On the re-

1The ResNet-101 weights were pre-trained on COCO for initialization.
2https://github.com/XiangChenchao/DDPN

https://github.com/XiangChenchao/DDPN
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implementedmodel, maintaining the same architecture and hyper-parameters, the new pro-
posed losses where implemented.

B.3 Computational Complexity

Computational complexity among differentmodels is a crucial aspect when comparing their
performance. However, in the original research papers of themodels considered in thiswork,
the necessary information to fully understand the models’ dimensions and compute power
requirements is oftenmissing. This lack of informationmakes it challenging to compare the
model’s sizes to each other directly, especially when the author’s code is not made publicly
available online. This problem becomes evenmore pronouncedwhen considering both one-
stage and two-stage approaches for solving the visual-textual grounding problem. Two-stage
approaches utilize object detectors as pre-processingphase, while in one-stage approaches the
object detector is included in the grounding model. Each object detector can have varying
computational demands and performance according to its hyper-parameters (e.g., the num-
ber of objects to consider before the NMS component), thus adding another layer of com-
plexity to themodel comparison. However, for the sake of clarity, in the following, we report
the size of the grounding models that have this information available. The proposed model
comprises 10M trainable neurons and a variable number of untrained neurons (i.e., freezed)
according to the dataset’s word vocabulary. For Flickr30k Entities the vocabulary consist of
6Mof untrained neurons, while for ReferIt there are 2Muntrained neurons. DDPN [23] is
composed of 24Mof trainable neurons, also when adopting the new proposed losses. QRC
net [74], YOLO [24], and the model proposed by F. Wu et al. [118] are based on the one-
stage setting, and thus, it is more likely that they are composed of more trainable neurons
compared to the others approaches based on the two-stage setting.

B.4 Qualitative Results

Figures B.1-B.12 report some qualitative results obtained by the proposed approach in both
Flickr30kEntities andReferIt datasets. FiguresB.1, B.2, B.3, B.4, B.5, B.6 are examples of the
Flickr30kEntities test set images, while FiguresB.7, B.8, B.9, B.10, B.11, B.12 are examples of
theReferIt test set. It canbe seen that in both the datasets, very often the predicted bounding
boxes that have an intersection over union value under 0.5, are still close to the ground truths
bounding boxes. Only in Figure B.5, the model predicts a bounding box for the query “one
hand” that is located very far from its ground truth.
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Figure B.1: Qualitative result obtained by the proposed approach on the Flickr30k Entities test set. All bounding boxes
are predicted correctly.

Figure B.2: Qualitative result obtained by the proposed approach on the Flickr30k Entities test set. The bounding boxes
aligned with the queries “the seat of a red motorbike” and “the side of the street” present an intersection over union value
with their ground truths that is lower than 0.5.
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Figure B.3: Qualitative result obtained by the proposed approach on the Flickr30k Entities test set. The bounding boxes
alignedwith the queries “A group of people” and “bamboo rafts” present an intersection over union valuewith their ground
truths that are lower than 0.5.

Figure B.4: Qualitative result obtained by the proposed approach on the Flickr30k Entities test set. The bounding box
aligned with the query “a bull” presents an intersection over union value with its ground truth that is lower than 0.5.
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Figure B.5: Qualitative result obtained by the proposed approach on the Flickr30k Entities test set. The bounding boxes
aligned with the queries “shirt” and “one hand” present an intersection over union value with their ground truths that are
lower than 0.5.
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Figure B.6: Qualitative result obtained by the proposed approach on the Flickr30k Entities test set. All bounding boxes
are predicted correctly.

Figure B.7: Qualitative result obtained by the proposed approach on the ReferIt test set. The bounding box is predicted
correctly.
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Figure B.8: Qualitative result obtained by the proposed approach on the ReferIt test set. The bounding box is predicted
correctly.

Figure B.9: Qualitative result obtained by the proposed approach on the ReferIt test set. The bounding box is predicted
correctly.
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Figure B.10: Qualitative result obtained by the proposed approach on the ReferIt test set. The predicted bounding box
presents an intersection over union value with the ground truth of 0.30.

Figure B.11: Qualitative result obtained by the proposed approach on the ReferIt test set. The predicted bounding box
presents an intersection over union value with the ground truth of 0.08.
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Figure B.12: Qualitative result obtained by the proposed approach on the ReferIt test set. The bounding box is predicted
correctly.
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Appendix C
Weakly-Supervised Visual-Textual
Grounding with Semantic Prior

Refinement

Follows the appendix of the work proposed in Chapter 6.

C.1 CLIP’s Embeddings

This section explores theperformanceof theproposedmodel replacing representation learned
by the visual and textual branch with CLIP’s multimodal representations [124]. Two ex-
periments are conducted. In the first, the proposal and query representations are replaced
with CLIP’s frozen embeddings. In the second, it is applied a non-linear transformation to
CLIP’s embeddings and trained the model. The OpenAI CLIP’s implementation1 is used
with the ResNet-101 backbone. As Table C.1 shows, the proposed model does not bene-
fit from CLIP’s embedding. Such outcome may be related to how CLIP is trained, as it is
not explicitly meant to work with fine-grained information such as the alignments between
objects in the image and their textual references.

C.2 Computational Complexity

Computational complexity among differentmodels is a crucial aspect when comparing their
performance. However, as reported in Appendix B.3 regarding the models’ computational
complexity, also in this case in the original research papers of the models considered in this

1https://github.com/openai/CLIP
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Model Flickr30k Entities(%) ReferIt (%)

CLIP w/o Projection 49.65 38.99
CLIP 56.89 40.99

The proposed model (without CLIP) 62.20 48.03

Table C.1: Accuracy results on Flickr30k Entities and ReferIt test sets, leveraging CLIP’s multimodal embeddings. In CLIP
w/o Projection, the visual and textual branches simply return CLIP encoded representations of proposals and queries, while
CLIP applies a non‐linear transformation to CLIP encoded representations to match the same size of the proposedmodel’s
multimodal space.

Figure C.1: Examples of incorrectly captured similarity in word embedding space. GloVe [3] is used to compute the word
embeddings. The similarity measure sim is the cosine similarity.

work, the necessary information to fully understand the models’ dimensions and compute
power requirements is often missing. However, for the sake of clarity, in the following,
we report the size of the grounding models that have this information available. The SPR
model comprises 241M neurons, of which 240M neurons refer to the two word vocabu-
laries. The word vocabulary composing the Concept Branch is made of 120M untrained
neurons, while the neurons of the other vocabulary are trainable. Multimodal Alignment
Framework (MAF) [88] is made of 120M trainable neurons. All the considered models are
two-stage approaches.
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Figure C.2: Examples of how the Concept Branch benefits from the spatial positional information. The 3 × 3 square
represents the positional information expressible through employed spatial knowledge, i.e. “left”, “center”, “right” for the
horizontal axis and “top”, “middle”, “bottom” for the vertical axis. For the query, the spatial location is computed by a simple
text search. For proposals, spatial relations are computed relating to bounding box centers. A proposal is penalized when
no spatial relations are shared with the spatial location.

C.3 Limitations

The Concept Branchmodule allows the proposed model to reach state-of-the-art results also
when trained on small training sets. However, although itmakes themodel trainingmore ro-
bust, it is sensible to the pre-trainedword embeddings which are used to initialize its weights.
The accuracy of theConcept Branch predictions depends on the semantic information that is
gathered by the pre-training embeddings between pairs of words. If the pre-training embed-
dings are unable to gather sufficient semantic information, then the accuracy of the Concept
Branch predictions will decrease. Figure C.1 provides two examples of incorrectly captured
similarity in word embeddings. On the left side of the figure, the words “adult” and “child”
have a higher similarity compared to “adult” and “man”. As a result, the Concept Branch
suggests the wrong alignment. On the right side of the figure, the correct bounding box is
labeled as “person”, although it may not be the most precise. However, the Concept Branch
suggests a different alignment due to the higher similarity between the words “man” and
“woman”.

One issue that instead ariseswith object detector classification iswhen the boundingboxes
are classified with the same label, which can lead to ambiguity in the predictions made by
the Concept Branch. This occurs because the similarity between the query and the labels is
identical. In such situations, the model leverages positional relative knowledge to address
the problem by directing attention to candidates that share at least one positional reference
with the query. Figure C.2 illustrates how this straightforward positional heuristic can be
employed to overcome this challenge.
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Finally, since the proposed model is based on the proposals predicted by a pre-trained
object detector, it suffers from the errors made in the prediction of the bounding boxes and
their classes. In fact, to associate an object in the image with its textual reference, the object
must first be localized by the object detector.



Appendix D
Cleaner categories improve object

detection and visual-textual grounding

Follows the appendix of the work proposed in Section 7.1.

D.1 Frequencies by Categories

Section7.1 introducedboth the set of clean and randomcategories deriving from the original
ones. The original label set is defined by 1600 categories, while both the new clean and the
randomsets are definedby878 categories. FigureD.1 shows frequencies of objects appearing
in theVisualGenome training split, where objects are either labeled according to the original
label set (in blue), the new cleaned label set (in orange), or the random label set (in brown).
The new label sets lead mostly to the removal of many low-frequency categories in the long
tail, rather than creating new very frequent categories. Surprisingly, the random procedure
that generated the random label set also removed the long tail of low-frequencies categories.
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Figure D.1: LogLog plots of objects frequencies for each category. The frequencies are calculated on the training set
annotations. The distribution of the original categories is in blue, the new categories are in orange, and the random
categories are in brown. The cleaning process did not generate high‐frequency categories and at the same time removed
many low‐frequency categories for both cleaner and random label sets.
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D.2 Prediction Confidence

In Figure D.2 it is reported the KDE plots for the probability values of the argmax category
predicted by the original, clean, and random label sets.

The BUA detector trained on the cleaned categories produces more high confidence pre-
dictions than a detector trained on the original noisy categories. Closer inspection shows
that this difference is due to higher confidence when predicting objects in the new merged
clean categories. However, this is not the case for BUA trained on random categories, which
presents the same confidence as the model trained on the original categories.
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Figure D.2: KDE plots for the probability values of the argmax category predicted by the model. The plots on the left
consider all the categories, the plots in the center consider just the categories that not merge during the cleanup process
(i.e., “Untouched”), and the last plots on the right consider only the merged categories. Overall, the cleaned categories
lead to higher confidence values than the original categories, while there is no difference between original and random
categories.

D.3 Nearest Neighbors Analysis on Random Labels

This section performs the nearest neighbors analysis on the random labels focusing on the
“Merged”, “Untouched”, and “All” categories. Table D.1 reports the results of this analysis,
considering features extracted with different threshold values (i.e., 0.05 and 0.2) and consid-
ering either all features or only features from different images (“Filtered Neighbors”). This
step removes features that might be from highly overlapping regions of the same image.
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Th. K Categories All Neighbors (%) Filtered Neighbors (%)

Original Random Original Random

0.05 1 All 12.15±12.25 12.36±11.15 37.32±15.07 37.83±12.32

0.05 1 Untouched 10.06±11.91 10.32±12.13 35.81±13.91 36.33±14.03

0.05 1 Merged 13.16±12.29 11.35±10.50 38.05±15.55 38.56±12.90

0.05 5 All 24.33±24.38 24.91±12.01 34.16±13.78 34.68±12.24

0.05 5 Untouched 22.66±12.60 23.12±12.61 33.09±12.88 33.54±12.78

0.05 5 Merged 25.13±13.66 25.77±11.61 34.68±14.16 35.23±11.93

0.05 10 All 27.76±13.23 28.37±11.87 32.91±13.71 33.48±12.19

0.05 10 Untouched 26.40±12.34 26.98±12.04 31.89±12.78 32.42±12.71

0.05 10 Merged 28.42±13.60 29.04±11.55 33.39±14.12 33.99±11.89

0.2 1 All 51.02±22.74 51.88±20.91 69.22±18.99 70.03±16.76

0.2 1 Untouched 45.05±21.50 46.30±21.68 65.93±17.39 66.70±17.10

0.2 1 Merged 53.84±22.73 54.70±19.93 70.98±19.37 71.72±16.33

0.2 5 All 60.40±19.75 61.47±17.84 65.12±19.68 66.12±17.54

0.2 5 Untouched 56.60±18.22 57.61±17.99 61.87±18.10 62.75±17.67

0.2 5 Merged 62.33±20.20 63.42±17.45 66.79±20.22 67.82±17.23

0.2 10 All 60.55±20.18 61.71±18.20 62.95±20.43 64.05±18.34

0.2 10 Untouched 57.05±18.44 58.14±18.24 59.76±18.69 60.69±18.39

0.2 10 Merged 62.31±20.78 63.51±17.91 64.56±21.06 65.75±18.07

Table D.1: Proportion of K‐nearest neighbors that share the same predicted category, comparing models trained using
the original versus random categories (cf. Table 7.3). The random features present small improvements over the original
features, suggesting that there is a small advantage in training with fewer labels; however clean labels help more.

The random features present results very similar to those obtained with the original fea-
tures, but with a small improvement. In other words, there is an advantage to training on
fewer labels overall. However, the improvement given by clean labels is much greater than
that obtained with the random labels, strengthening the importance of training BUA with
clean categories.
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Appendix E
Object Search by a Concept-Conditioned

Object Detector

Follows the appendix of the work proposed in Section 7.2.

E.1 Dataset Statistics

Frequency of Classes
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Figure E.1: Frequencies of the classes appearing in the test set of both COCO and Focused COCO datasets. The COCO
test set refers to the original COCO validation set.

The Visual Genome [32] dataset consists of 108077 images with an average width of 500
pixels. Each bounding box is classified with a class belonging to a set of 1600 categories ex-
tracted in thework ofRanjay et al. [66]. Every split of data is available onlinewith its ground
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Statistic COCO Visual Genome Focused COCO Focused Visual Genome

Test Valid Test Test Valid Test

Number of images 5000 5000 5000 5000 5000 5000

Average number of bounding boxes 7.4 30.4 30.2 4.8 16.8 16.7
Max number of bounding boxes 63 154 118 56 116 99
Min number of bounding boxes 0 0 0 0 0 0

Average number of unique classes 2.9 16.5 16.4 1.9 9.1 8.9
Max number of unique classes 14 43 43 12 35 34
Min number of unique classes 0 0 0 0 0 0

Average N. of concepts 7.4 30.4 30.2 4.8 16.4 16.3
MaxN. of concepts 63 154 118 56 115 96
MinN. of concepts 0 0 0 0 0 0

Table E.1: Statistics per image about the datasets augmented with concepts adopted in this work. The COCO test set
refers to the original COCO validation set. The training set examples are generated at “run‐time” during training.

truth annotations. Hence, on this dataset, the online splits are adopted to generate the sets
used for training, validating, and testing the proposed approaches. The 1600 categories are
derived from textual phrases, and even if they are the results of a sophisticated cleaning pro-
cess as reported in [66], they are still noisy and sometimes ambiguous. For example, there
are categories representing the same meaning but written in different ways, categories rep-
resenting single and plurals of the same concepts such as “MAN” and “MEN”, ambiguous
categories such as “LADY”, and also classes that represent attributes as “YELLOW”.

The test set of bothCOCOandFocusedCOCOdatasets are not publicly available online,
and as explained in Section 7.2.4.1, the original validation set was used for testing.

Table E.1 reports the statistics of the dataset considered in this work. Figure E.1 reports
the frequencies of the classes appearing in the test set of both COCO and Focused COCO
datasets. As the results show, the Focused COCO derived by the original test set resembles
the distribution of the COCO original test set.

E.2 Model Selection

Given the large computational power required for training the object detectors, the search
for the best hyper-parameters was performed only on the COCO dataset. Thus, the best
hyper-parameters selected onCOCO are adopted “as-is” for training the object detectors on
the Visual Genome dataset. The model hyper-parameters tuning is performed by training
on the train set and validating on the validation set (the one randomly sampled from the
training set. See Section 7.2.4.1 for more details.). The evaluation results presented in this
work are always obtained on the test set (i.e., the original validation set).
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All models are trained for 90K iterations and are then tested on the validation set. Hyper-
parameters related to concepts are tuned usingRetinaNet [65], withResNet-50 and Feature
Pyramid Network (FPN) [157], on the COCO dataset.
Regarding the Fusion Block, three approaches o fuse the concept embeddings with the vi-

sual features are tried. In particular, it is tried to add, multiply and concatenate the concept
embeddings with the visual features. The best AP results were obtained by adopting the con-
catenation approach. The best learning rate to use during training is searched among the fol-
lowing values: [0.01, 0.001, 0.0001, 0.00005]. With DynamicHead architectures, the best
results were achievedwith a value of 0.0001, while withRetinaNet architectures, the best re-
sults were achieved with a learning rate value of 0.01. Also, the addition of more expressive-
ness to theConcept Set Encoding networkwas investigated, but the best results were obtained
with the configuration reported in Appendix E.3.

E.3 Implementation Details

Formodel training, all ResNet [72] backbones are initialized with the pre-trained ImageNet
[163] weights. The Swin-Tiny backbone is initialized with the weights provided by the
authors1. As concept embedding, the 150-dimensional Holographic [164] embeddings2

trained onWordNet for 500 epochs is adopted. Theseweights are frozen duringmodel train-
ing. The batch size is fixed to 16 examples in training all models. The Concept Set Encoding
module employs a Deep Sets [165] network. Each 150-dimensional concept embedding is
mapped to a new 256-dimensional representation using a multilayer perceptron with two
layers and ReLU activation functions. The first layer has a dimension of 150 neurons, while
the second layer has a dimension of256neurons. Finally, all the concepts’ representations are
summed and transformed into a new representation with a multilayer perceptron with two
256-dimensional layers and ReLU activation functions. The Fusion Block concatenates the
embedding of the concepts, in output from the Concept Set Encoding, to the visual features
in output from the model Backbone. Each object detector category is mapped3 to its corre-
sponding WordNet synset using the Python NLTK4 package. When NLTK failed to find
the concept associated with some categories, the linking was done manually with the synset
that most represented the category meaning. Were not explicitly indicated, all the concepts

1https://github.com/microsoft/DynamicHead
2https://github.com/drigoni/WordNet_Embeddings
3This implements the f function.
4https://www.nltk.org/

https://github.com/microsoft/DynamicHead
https://github.com/drigoni/WordNet_Embeddings
https://www.nltk.org/
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sampling procedures are done at a maximum depth of d = 1. The proposed models are
implemented using the Detectron2 framework5. All the experiments were performed in a
distributed parallel system using several A100 40GB GPUs6. Table E.2 presents the num-
ber of parameters composing each model. In particular, the table reports the number of
parameters forming the backbone, the size of the concept vocabulary, and the number of
parameters composing the head of themodel. The head of themodel is in charge of locating
and classifying the objects in the image, and for this reason, its dimension depends on the
number of classes to predict. In other words, the size of the model’s head changes according
to the dataset. Fusion Strategy refers to the function applied to fuse the visual and concept
information. More details are reported in Appendix E.4.

E.4 Further Analysis on Fusion Block

The block that fuses information from the visual modality with information from the con-
cepts modality (i.e., Fusion Block) plays a key role in the construction of the conditioned
object detector. The best results were obtained with the concatenation (i.e., “Concat.”) of
the features, which implies a largerObject Detector Head’s input (i.e., slightly more neurons)
that could explain the improvement in the object detector capabilities.

To discern if that is the case, in the following, it is reported the results obtained using the
“Addition” strategy, which sums the visual and concept features without increasing the size
of theObject Detector Head, i.e., the same number of parameters. Appendix E.3 reports the
number of neurons constituting each model.

Table E.3 presents the results obtained following the evaluation setting of Section 7.2.4.3,
while Table E.4 presents the results obtained following the setting of Section 7.2.4.4. For
these experiments, it is considered the architecture DynamicHead with ResNet-101 as the
backbone.

In both settings, it can be observed that theConcept-ConditionedDynamicHeadmodels
adopting the “Addition” fusion strategy performs much better than the standard Dynamic-
Headmodels. On the other hand, the “Addition” strategy is not as competitive as the “Con-
catenation” strategy.

In conclusion, these results demonstrate that, albeitmoreneuronshelp the object detector
performance, the major results’ improvement is given by the concepts in input.

5https://github.com/facebookresearch/detectron2
6Code available at: https://github.com/drigoni/Concept-Conditioned-Object-Detector

https://github.com/facebookresearch/detectron2
https://github.com/drigoni/Concept-Conditioned-Object-Detector
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E.5 ComparingStandardandConcept-ConditionedObjectDetectorswith
Filtering

Bear in mind that the experimental setting adopted in this section does not reflect the scope
of thework presented in Section 7.2. Indeed, the scope of thework introduced in Section 7.2
is to highlight the importance of conditioning object detectors for searching only a subset of
objects appearing in a stream of images. While, this section focuses on the specific case in
which object detectors, coupled with the Post-processing Selection component, are deployed
to search all the objects depicted in the image, i.e., G(I). In other words, assuming that it
is available at priori the set of concepts related to all the objects in the image, one would like
to answer the following question: do object detectors get better at detecting all objects when
coupled with the post-processing algorithm?

Table E.5 presents the results obtained in this new setting. In both datasets, the concept-
conditioned object detectors perform always better than standard object detectors. More
specifically, the average improvements obtained with Concept DynamicHead compared to
DynamicHead are higher than those obtained with Concept RetinaNet compared to Reti-
Nanet.

Overall, also in this setting, the proposed concept-conditioned models using the user’s
intent always perform better than standard object detectors.

E.6 Object Detection Results by Class

Given the proven improvement due to the use of concepts, this section analyses the results
obtained by class. The goal is to see if some concepts influence some classesmore than others.

Figure E.2 presents the APmetric values obtained per class in the FocusedCOCOdataset
byDynamicHeadwith Swin-Tiny, coupled with the Post-processing Selection component. In
other words, the models search for a subset of objects in the image. The figure shows that
the Concept-Conditioned DynamicHead model obtains higher results than the standard
DynamicHeadmodel inmost classes. However, it presents lower results only in a small num-
ber of classes, such as “HAIR DRIER” and “KNIFE”. Future works will investigate these
classes more in detail.
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Figure E.2: Results obtained on the Focused COCO test set for each category using the Post‐processing Selection. The
bars in blue refer to the values obtained with the model DynamicHead and Swin‐Tiny as the backbone. The bars in red
refer to the values obtained with the model Concept DynamicHead and Swin‐Tiny as the backbone. AP refers to the AP
metric.

E.7 Qualitative Results

Figure E.3 presents some qualitative examples predictedwith the proposedmodel and a stan-
dard object detector. It is highlighted with red lines the ground truth bounding boxes and
with light blue dashed lines theboundingboxes predictedby themodel. The columnon the
left reports the prediction of DynamicHead, while the center and right columns present the
predictions obtained with the proposed Concept DynamicHead given the concepts high-
lighted under the images. The left and center columns use annotations from the COCO
dataset (i.e., all the image ground truth), while the right column uses the Focused COCO
annotations (i.e., it focuses the detection on a subset of objects).

The standardobject detector focuses its attentiononall theobjects in the images and some-
times is not able to detect the most important bounding boxes, like the “KEYBOARD” in
the first row and the “COW” in the last row. On the contrary, the concept-conditioned
object detector focuses its attention only on those bounding boxes that express concepts in
input, improving the bounding boxes’ detection performance and decreasing the number of
detected boxes when compared to standard object detectors. On the right column, it is high-
lighted the use case of the proposedmodel, which is when the object detector is used to focus
the detection only on a subset of objects depicted in the image. An interesting mismatch be-
tween concepts and object detector classes is given by the second image in the right column.
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Given the concept “male.n.01” the object detector focuses its detection on the bounding
box depicting the woman and classifies it as “PERSON”. Clearly, the concept in input was
focusing only on males, but the object detector class that most approximate that concept is
“PERSON”, as ”MALE” is not a COCO class. In fact, also the ground truth bounding box
is classified as “PERSON”.

E.8 Comparing the ProposedModel to Visual-Textual GroundingModel

In this section, it is elaborated more on the comparison of the proposed model to a visual-
textual grounding (i.e., referring expression) model.

As presented in Section 7.2.5, the referring expression task presents several points of dif-
ference from the approach proposed in Section 7.2, which are summarized below. First of all,
the user’s intent needs to be represented as a textual phrase, while in the proposed approach,
the user’s intent is expressed with one or moreWordNet [33] concepts. Secondly, following
the current State-of-the-Art, referring expressionmodels predict only the bounding box that
best matches the textual phrase in the output. For this reason, when the user’s intent con-
cerns multiple different objects depicted in the image, multiple independent queries should
be performed to retrieve all objects of interest. In addition, when the user’s intent concerns
multiple objects of the same type, the referring expression approach is no longer suitable.
Lastly, for training, referring expression models need to use detailed datasets comprising im-
ages, boxes coordinate, textual phrases, and the ground truth of the corresponding bounding
box in the image for each phrase. These annotations are difficult to collect, so the referring
expression datasets contain fewer examples than those of detection.

Still, given all these differences, Fornoni et al. [158] performed a comparison between an
SSD [29] object detector coupled with ResNet-101 and a One-Stage BERT referring expres-
sion recognition model [24]. In particular, the SSD model’s results were filtered according
to the class expressed by the query in input, as it is done in the baseline proposed in Sec-
tion 7.2. To summarize, Fornoni et al. verified that the referring expression model has poor
generalization ability and underperforms a simple post-processing baseline. More details are
reported in Section 4.4 ReferIt and post-processing baselines for SLD of the Fornoni et al.
main manuscript [158].

These results further motivate the necessity of conditioning object detectors with prior
information and thus support the idea presented in this proposed work.
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Statistic COCO Visual Genome Focused COCO Focused Visual Genome

Test Valid Test Test Valid Test

Number of images 5000 5000 5000 5000 5000 5000

Average number of bounding boxes 7.4 30.4 30.2 4.8 16.8 16.7
Max number of bounding boxes 63 154 118 56 116 99
Min number of bounding boxes 0 0 0 0 0 0

Average number of unique classes 2.9 16.5 16.4 1.9 9.1 8.9
Max number of unique classes 14 43 43 12 35 34
Min number of unique classes 0 0 0 0 0 0

Average number of concepts 2.9 16.3 16.2 1.9 8.7 8.5
Max number of concepts 14 42 43 12 34 34
Min number of concepts 0 0 0 0 0 0

Table E.6: Statistics per image about the datasets generated with the new sampling strategy. Note that only the statistics
of the concepts have changed. The COCO test set refers to the original COCO validation set. The training set examples
are generated at “run‐time” during training.

E.9 Concept Sampling Impact

During themodel training and the creation of the new datasets with concepts, two sampling
processes take place. The former aims to reduce the exponential number of examples deriv-
ing by the powerset approach ξ(I) (i.e., ξ̂(I)), while the latter aims to sample Sd to obtain
a reasonable amount of concepts. More details regarding the model training are reported in
Section 7.2.3.2.

This section reports the results obtained by changing the sampling process applied to Sd

to obtain Ŝd
7. Insteadof sampling one concept for eachobject to search in the image (as done

in Section 7.2), the model’s performances are analyzed when in input is provided a concept
for each type of object to search in the image. This is a more generic setting than before, as
the prior information concerns only the types of objects to search for and not the number
of occurrences of the same object in the image. For example, given Figure 7.3 of Section 7.2,
in this new setting, two concepts are provided in input: one concept for the object labeled as
“BOWL” and one sampled concept associated with the objects labeled as “CAT”. Following
the same example, all the experiments previously performed (i.e., the sampling strategy used
in Section 7.2) provided as input three concepts, one for “BOWL” and two sampled concepts
for “CAT”, i.e., one for each cat appearing in the image.

Of course, the new sampling strategy is also adopted for generating new test sets. More
in detail, the new “Focused” datasets adopted in this section are built starting from the “Fo-
cused” datasets presented in Section 7.2, where only one concept is kept for each type of

7Only Concept-Conditioned Object Detectors need new training.
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object. This implies that new datasets have the same ground truth as the starting datasets
and that the only differences are in the concepts. Going back to the previous example, given
the two concepts related to the two cats appearing in the image, only one concept is sampled
and adopted as input for searching for both cats in the picture. Table E.6 reports the statis-
tics of the new datasets generated with the new sampling strategy. It is evident, that only the
statistics about the concepts have varied.

E.9.1 ComparingStandardandConcept-ConditionedObjectDetectorsbe-
fore Filtering

Table E.7 presents the results obtained by the object detectors when they are deployed for
searching all the objects contained in COCO and in Visual Genome datasets, as done in
Section 7.2.4.3. As the results show, there is the same trend highlighted in Table 7.6 of Sec-
tion 7.2: when the object detector is conditioned with concepts, it improves the ability to
localize the objects in the image. On COCO, the larger AP improvement (5.2%) is given by
Concept DynamicHead (49.3%) over DynamicHead (44.1%), both with ResNet-101. Even
on Visual Genome, the same architecture and backbone give the best improvements (3.5%).

Table E.8 highlights the impact of employing different depth values on the proposed con-
ditioned models adopting the new sampling strategy. The results were obtained with Reti-
naNet, using ResNet-50 as the backbone, on the COCO test set. As can be seen from the
table, the best AP result is obtained with a depth value of 0, and there is no abrupt deterio-
ration in the results, increasing the depth value from 0 to 4. More in detail, from the depth
value of 0 to 1, the biggest deterioration in the APmetric amounts to 1%, although from the
depth value of 1 to 4, the deterioration amounts to 0.5% In conclusion, these results suggest
that in the COCO dataset, it is possible to generalize the model to the use of 7274 different
WordNet concepts trading off some of the effectiveness of the model.

E.9.2 Searching for a Subset of Objects

In this section, concept-conditioned object detectors are compared against standard object
detectors, both coupledwith the Post-processing Selection component, to search for just a sub-
set of objects depicted in the images and consistent with the input concepts. This evaluation
setting complies with that of Section 7.2.4.4. Both Focused COCO and Focused Visual
Genome are new versions of datasets generated following the new sampling strategy.

This table shows that concept-conditioned models outperform standard object detectors
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Depth Value AP (%) AP50 (%) N. of Concepts

0 39.4 60.9 80
1 38.4 59.4 954
2 38.1 58.5 2586
3 37.7 58.0 5054
4 37.9 58.2 7274

Table E.8: Object detection results using the new sampling strategy varying the concept depth values used for generating
the WordNet concepts. The values are obtained using the proposed concept‐conditioned RetinaNet model with ResNet‐
50.

inmost of all architecture and backbones combinations, with the only exception ofConcept
RetinaNetwithResNet-101on theFocusedVisualGenomedataset. Again, these results can
be linked to the model selection absent on the Visual Genome.

Both datasets achieve the best AP results by deployingDynamicHeadwith the Swin-Tiny
backbone. On Focused COCO, the larger AP improvement (2%) is given by Concept Dy-
namicHead (51.0%) over DynamicHead (49.0%), both with ResNet-50. While, on Visual
Genome, the largerAP improvement (2.3%) is givenbyConceptDynamicHead (13.0%)over
DynamicHead (10.7%), both with ResNet-101. However, in this case, the improvements
achieved on the Focused Visual Genome dataset by the conditioned models are higher than
those achieved in the Focused COCO. Note that only on Focused Visual Genome, Con-
cept RetinaNet performs slightly worse than the standard version, which could be explained
by the non-exhaustive search of hyper-parameters performed during model selection. Ap-
pendix E.2 reports more details about the model selection.

In conclusion, even using this new sampling strategy, conditioning the object detection
with the user’s intent improves the detection performance of an object detector.
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Object Detection Task on COCO Find-That Task on COCO Find-That Task on Focused COCO

{
“computer_keyboard.n.01”,

“domestic_cat.n.01”

}
{“computer_keyboard.n.01”}

{
“cuckoo_clock.n.01”, “grownup.n.01”,

“chestnut.n.06”, “clock.n.01”

}{ “electric_clock.n.01”, “clock.n.01”,
“male.n.02”

}

{ “settee.n.02”,
“television_receiver.n.01”,

“wheelchair.n.01”

}
{“armchair.n.01”}

{“beef.n.01”} {“charolais.n.01”}

Figure E.3: Examples of predictions obtained with the proposed model. It is delimited with red lines the ground truth
bounding boxes and with light blue dashed lines the model’s predictions.
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Appendix F
Publications

This document presents the results of the research activities performed throughout the du-
ration of the doctorate program, which has led to a series of publications at international
conferences summarized below.

F.1 International Conferences

• D. Rigoni, D. Elliott, and S. Frank, “Cleaner Categories Improve Object Detection
and Visual-Textual Grounding”, in Image Analysis: 23rd Scandinavian Conference,
SCIA 2023, Sirkka, Finland, April 18–21, 2023, Proceedings, Part I (pp. 412-442).
Cham: Springer Nature Switzerland.

• D. Rigoni, L. Serafini, and A. Sperduti, “A better loss for visual-textual grounding”,
in Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, 2022,
pp. 49–57.

F.2 Under Peer Review

• D. Rigoni, L. Serafini, and A. Sperduti, “Object Search by a Concept-Conditioned
Object Detector”,Under Peer Review.

• D. Rigoni, L. Parolari, L. Serafini, A. Sperduti, and L. Ballan, “Weakly-Supervised
Visual-Textual Grounding with Semantic Prior Refinement”,Under Peer Review.
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