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Synopsis

Brain tumors can alter not only functions located in the

perilesional area, but also the distal ones. Thus, the possibility
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to inform preoperatively surgeons about the state of

preservation/alteration of a network could be a powerful aid for a

better patient outcome. In this work we used independent

component analysis (ICA) to map resting state networks (RSNs)

at the single-subject level characterizing their alterations in

terms of cosine similarity spatial patterns. Comparing the

patient-specific spatial maps with those obtained for a group of

healthy controls, we defined the presence of an alteration for

each of the 44 analyzed RSNs.

INTRODUCTION

Brain tumors are considered an expansive source in terms of

diagnostic and treatment technologies needed to treat them1.

Gross total resection (GTR) is the gold standard in brain tumor

therapy leading to a better patient outcome and a prolonged

survival2. However, GTR needs to be balanced with brain

functions deficits3. Recents studies4,5,6 have proposed resting

state (rs) functional connectivity as a tool to map these

functions, but unfortunately they restrict the mapping to eloquent

functions located in the perilesional area, overlooking distal

regions that could be altered by brain tumors7. Here we propose

a whole brain approach, based on independent component

analysis (ICA), to identify altered or preserved resting state

networks (RSNs), without a priori localization of the lesion.

METHODS

Pre-surgical data were collected from 18 patients (8F/10M; age

57.88±18.09y) diagnosed with brain tumors. Healthy controls

(HC) consisted of 308 subjects (125F/183M; age 36.96±18.40y)

of the publicly available MPI-Leipzig Mind-Brain-Body dataset8.



Patients data were acquired on a 3T Siemens Biograph mMR

scanner. The imaging protocol included a T1-weighted 3D-

MPRAGE (TR/TE 2400/3.24ms; TI 1000ms; 1x1x1mm), a 3D-

FLAIR (TR/TE 3200/535ms; 1x1x1mm), rs-fMRI scans acquired

with EPI (TR/TE 1260/30ms; 3x3x3mm; 750 volumes; flip angle

68°; MBAccFactor 2; iPAT 0) and two spin echo-EPI

acquisitions with opposed phase encoding (TR/TE 4200/70ms;

3x3x3mm). The HC data acquisition protocol is described in8. In

brief, it included a T1-weighted 3D-MP2RAGE (TR/TE

5000/2.92ms; TI1/TI2 700/2500ms), rs-fMRI scans (TR/TE

1400/39.4ms; 2.3x2.3x2.3mm; 657 volumes; flip angle 69°;

MBAccFactor 4) and two spin echo acquisitions (TR/TE

2200/52ms; 2.3x2.3x2.3mm). Imaging data of both groups

underwent an analogous structural and functional pre-

processing. For each patient, 3D-FLAIR image was employed to

manually segment the tumor. Structural pre-processing was

applied to the T1w image for the oncological dataset, and to a

pseudo-T1w image, obtained by multiplying the T1w 3D-

MP2RAGE image with its second inversion time, for the HC

group. The following steps were performed: bias field correction

(N4BiasFieldCorrection9), skull-stripping (MASS10), non-linear

registration11 to the symmetric MNI 2009c atlas12 excluding the

tumor mask as suggested in13. Functional pre-processing of rs-

fMRI data included slice timing14, distortion (TOPUP15) and

motion correction (MCFLIRT16) and non-linear registration to

the symmetric MNI atlas17. Functional pre-processed data were

then analyzed with the GIFT toolbox (http://trendscenter.org

/software/gift/). To achieve a functional parcellation of the main

RSNs, we performed a group-level spatial-ICA with a high

number (180) of independent components (ICs) as in18 on a



subset of 140 HC. We visually inspected the spatial maps and

the power spectra of the group 180 ICs18,19 and selected 44

RSNs. The RSNs were then grouped into 9 categories

according to their functional properties: visual (VIS),

sensorimotor (SM), auditory (AUD), cingolo-opercularis (CO),

dorsal-attention (DA), fronto-parietal (FP), default-mode (DMN),

cognitive-control (CC), frontal (FR). Starting from the group ICs

we computed RSNs subject-specific spatial maps using the

group-information guided ICA (GIG-ICA) back-reconstruction

algorithm20. For each patient/control and each RSN, the

alteration was evaluated with the cosine similarity measure

(CSM), computed between the group and the individual map

within the RSN group mask thresholded with a z-score of 1. To

assess the significance of the RSNs alteration, we performed a

statistical test based on the generation of 50000 random

permutations (H0: no difference between the HC group and

patient, significance level=0.1). For each permutation we

compared the CSM distribution of 130 out of 140 HC against the

single-patient CSM value, using a 3 standard deviations

threshold to reject H0. Furthermore, the spatial overlap between

the tumor and the altered RSN maps was calculated normalizing

them by the extension of each RSN separately.

RESULTS AND DISCUSSION

For each patient, figure 2 shows which of the RSNs resulted to

be altered. Globally, the VIS was altered in 66.67% of all

patients, the SM in 0%, the AUD in 0%, the CO in 33.33%, the

DA in 38.89%, the FP in 83.33%, the DMN in 44.44%, the CC in

83.33%, the FR in 44.44%. Figure 3 shows the spatial map of a

representative RSN, obtainedin HC at the group level, and at

the subject level for three patients with different alteration



grades: patient 1 had no alteration, patient 3 a medium level and

patient 18 a high level. Especially for patient 18, it is clear how

the presence of the tumor alters the RSN spatial pattern also in

distal areas. As reported in fig 4, the spatial overlap between the

tumor and the RSNs resulted to be small (range: 0-0.44),

confirming that the alteration is not only due to the presence of

the lesion in the perilesional area but also at distance.

CONCLUSION

The CSM resulted to be a sensitive index to highlight the

variations in RSNs spatial patterns.The proposed ICA-based

approach is able to detect these alterations to better

characterize the functional connectivity at the whole brain level

in brain tumors patients resulting in an additive aid in the pre-

surgical planning.
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Figure 1: Scheme of the processing pipeline: HC data

underwent both structural and functional pre-processing, spatial

group-ICA with 180 ICs and GIG-ICA back-reconstruction at the

subject level from which the CSM was obtained both at subject

level and at the group level; patients data underwent both

structural and functional pre-processing and GIG-ICA back-

reconstruction to obtain the CSM at the subject level.

Figure 2: Table showing on the x-axis the 44 ICs divided in the 9

categories (VIS, SMN, AUD, CON, DAN, FPN, DMN, CCN,

FRN) and on the y-axis the patient ID. The figure shows the

presence (in red) or not (in white) of the alteration for each

patient.

Figure 3: Coronal views of the 3D-FLAIR tumor mask (in blue)

with the CSM spatial patterns (in hot scale) of RSN 110
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assigned to the CO category, superimposed on the T1w image

in the MNI space. The spatial maps are displayed for three

different patients (first column) and for the HC (second column).

For visualization issues, z-score values range from 0 to 5 for the

patients and from 5 to 30 for the HC, even though the analyses

were carried out taking a z-score threshold for the HC maps to

1.

Figure 4: Table showing on the x-axis the 44 ICs divided in the 9

categories (VIS, SMN, AUD, CON, DAN, FPN, DMN, CCN,

FRN) and on the y-axis the patient ID. The figure shows the

logarithmic values of the spatial overlap between the tumor and

the altered RSN maps, normalized by the extension of each

RSN separately.

Proc. Intl. Soc. Mag. Reson. Med. 28 (2020)

3994

https://cds.ismrm.org/protected/20MProceedings/PDFfiles/images/6089/ISMRM2020-006089_Fig4.png
https://cds.ismrm.org/protected/20MProceedings/PDFfiles/images/6089/ISMRM2020-006089_Fig4.png

