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Abstract
In this paper we present novel streaming algorithms for the k-center and the diameter estimation problems for general metric
spaces under the sliding window model. The key idea behind our algorithms is to maintain a small coreset which, at any
time, allows to compute a solution to the problem under consideration for the current window, whose quality can be made
arbitrarily close to the one of the best solution attainable by running a polynomial-time sequential algorithm on the entire
window. Remarkably, the size of our coresets is independent of the window length and can be upper bounded by a function of
the target number of centers (for the k-center problem), of the desired accuracy, and of the characteristics of the currentwindow,
namely its doubling dimension and aspect ratio. One of the major strengths of our algorithms is that they adapt obliviously
to these two latter characteristics. We also provide experimental evidence of the practical viability of the algorithms and their
superiority over the current state of the art.

Keywords K-center · Diameter estimation · Data streams · Sliding window model · Coreset · Doubling-dimension ·
Approximation algorithms

1 Introduction

In several modern application domains (e.g., social net-
works, online finance, online transaction systems), data are
generated in a continuous fashion, and at such a high rate
that their processing requires on-the-fly computation which
can afford to maintain only a small portion of the data
in memory. This computational scenario is captured by
the well-known streaming model, which has received ever-
increasing attention in the literature over the last two decades
[26,30,31,35,38]. In some prominent applications, it is also
important that older data in the stream (i.e., those outside
a sliding window containing the N most recent data items)
be considered “stale” and thus be disregarded in the com-
putation. As an example, consider the problem of detecting
fraudulent credit card use, where it is essential to detect a
change in the recent spending patterns. For this latter setting,
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an important variant of the streaming model, known as the
sliding window model, was introduced in [16].

In this paper, we design, analyze, and experiment with
novel streaming algorithms, under the slidingwindowmodel,
for two key problems in data analysis, namely, the k-center
and the diameter estimation problems. Let W be a set of
points from a metric space. The k-center problem requires
that, given a parameter k < |W |, a subset C ⊂ W of k cen-
ters be identified minimizing the radius rC (W ), defined as
themaximumdistance of any point ofW from its closest cen-
ter. This problem is a fundamental primitive in the realms of
clustering and facility location, with important applications
in a variety of domains such as database search, bioinfor-
matics, pattern recognition, networking, operation research,
and many more [4,25,40]. The diameter estimation problem
requires to compute (or approximate) the maximum distance
ΔW between two points ofW , which is a key indicator of the
spread of the data.

Our algorithms improve over the state of the art in several
directions, as described in Sect. 1.2.

1.1 Related work

In the standard static sequential setting, it is well known that
for general metric space the k-center problem is NP-hard,
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admits a 2-approximation algorithm, and, for any ε > 0, it
is not (2 − ε)-approximable unless P=NP [20].

The problem has also been studied in the fully dynamic
settingwhere the input pointset changes dynamically through
insertions of new points or deletions of existing points, and,
at any time, the algorithm must be able to return an accurate
solution for the current pointset in a time substantially smaller
than the time required to compute the solution from scratch.
In [13] the authors developed a (2+ ε)-approximation algo-
rithm for the fully dynamic k-center problem on general
metric spaces, with update time independent of the input
size. For a given query point x , the algorithm can establish
whether x is a center in constant time, and return the cluster
of x (i.e., all points whose closest center is x) in time pro-
portional to the cluster size. These results have been recently
improved in [21] for spaces of constant doubling dimension
using a navigating net data structure, and in [5] for general
metric spaces using a reduction to the fully-dynamic maxi-
mal independent set problem. However, we remark that these
fully dynamic algorithms store inmemory a number of points
linear with the size of the set of interest, as they rather target
good query time/approximation tradeoffs, irrespective of the
memory usage. For this reason they cannot be utilized in the
sliding window model, where the size of the working mem-
ory, which is the premium resource to be optimized, must be
substantially smaller than (and possibly independent of) the
size of the set of interest.

In the standard streaming model, McCutchen and Khuller
[33], and, independently, Guha [23], presented algorithms
which maintain a (2 + ε)-approximation to the k-center
problem for the entire set of points processed from the
beginning of the stream, using working memory polyno-
mial in k and 1/ε. In the more restrictive sliding window
model, which is the focus of this paper, Cohen-Addad et
al. [14] presented an algorithm which is able to compute a
(6+ε)-approximation to the k-center problem for the current
window, from only O

(
kε−1 logα

)
points stored in the work-

ing memory, where α is the aspect ratio of the entire stream,
that is, the ratio between the maximum and minimum dis-
tance between any two points of the stream. At any time, the
algorithm requires O

(
kε−1 logα

)
update time for handling

the new point arrived from the stream, and O
(
k2ε−1 logα

)

time to return the approximate solution for the current win-
dow. One of the practical limitations of this algorithm is that
it assumes prior knowledge of the aspect ratio α, thus the
algorithm is inapplicable for unknown or unbounded val-
ues of α. In the same paper, the authors also show that, for
general metric spaces, any algorithm for the 2-center prob-
lem that achieves an approximation ratio less than 4 requires
working memory of size Ω

(
N 1/3

)
, where N is the win-

dow length. In a recent unpublished manuscript, Kim [28]
improved the result in [14] for Euclidean spaces, by present-
ing an algorithmwhich attains a (2+2

√
3+ε)-approximation

through a coreset-based approach. The algorithmmakes cru-
cial use of specific properties of Euclidean spaces, hence,
it is not immediately portable to general spaces. The author
also claims that a (2 + ε)-approximation is achievable for
constant-dimensional Euclidean spaces, and that the algo-
rithm can be made oblivious to the aspect ratio α. However,
due to the missing details, it is not immediate to fully recon-
struct these stated improvements.

For what concerns diameter estimation, it is shown in [23]
that, in the streaming setting, in order to approximate the
diameterwithin any factor strictly less than 2 for generalmet-
rics, a workingmemory at least proportional to the size of the
stream is required. For Euclidean spaces of low dimension
d, there is a streaming (1+ε)-approximate algorithm requir-
ing O

(
(1/ε)(d−1)/2

)
workingmemory [2], while for streams

of higher dimensionality [3] presents an algorithm returning
(
√
2 + ε)-approximate solutions using O

(
dε−3 log(1/ε)

)

working memory, and [27] presents an algorithm which can
approximate the diameter within a factor c >

√
2 using

O
(
dn1/(c

2−1) log n
)
workingmemory, where n is the size of

the stream. A naive 2-approximation for the diameter of the
entire stream is attainable in constant working memory by
simply accumulating the maximum distance of all points in
the stream from the first one. However, this approach cannot
be effectively used in the sliding window model, because of
the difficulty of maintaining the maximum distance from the
first point of each window.

In [14], a streaming algorithm under the sliding window
model is presented which, for any constant ε > 0, is able to
return a (3+ ε)-approximation to the diameter of the current
window in general metric spaces using working memory of
size O (log(α)/ε), where, again, α represents the aspect ratio
of the entire stream and must be known in advance. In the
same paper, the authors prove that, under reasonable assump-
tions, obtaining an approximation ratio less than 3 in general
spaces requires Ω

(
N 1/3

)
working memory, where N is the

length of the window. For Euclidean spaces of dimension
d, a (1 + ε)-approximation algorithm in the sliding window
model is presented in [18], which uses a working memory
of O

(
(1/ε)(d+1)/2 log3 N (logα + log log N + (1/ε))

)
bits.

For constant d, the working memory requirement has been
improved to O

(
(1/ε)(d+1)/2 log(α/ε)

)
[12].

For the smallest enclosing ball problem, which is closely
related to the diameter estimation, [3] presents a streaming
algorithm that can maintain a ((1+√

3)/2+ε)-approximate
solution using O

(
dε−3 log(1/ε)

)
working memory. In the

more restrictive sliding window model, only a (9.66 + ε)-
approximation is known [42] which uses sub-polynomial
working memory.

In the realm of large graph analytics, diameter approxi-
mation (under the shortest path metric) has been extensively
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addressed in the distributed setting (see [8,39] and references
therein).

Another relevant variation on the diameter estimation
problem is the computation of the α-effective diameter,
which is defined as the α-th quantile of the distances between
all pairs of elements. This conceptwas first introduced in [34]
as a noise-robust alternative to diameter in the context of
network analysis, but can be easily generalized to arbitrary
metric spaces. Recently, both [37] and [17] independently
presented sliding window algorithms for the effective diam-
eter estimation problem in general metric spaces.

Finally, the sliding window model has recently been
addressed in a large number of research papers, which pro-
vide algorithms for a wide variety of optimization problems,
including k-means and k-medians [6], diversity maximiza-
tion [7], k-center with outliers [17,37], submodular optimiza-
tion [19], and heavy hitters [41].

1.2 Our contribution

In thiswork,we present streaming algorithms for the k-center
and diameter estimation problems under the sliding win-
dow model. Our algorithms are coreset based, in the sense
that they maintain a small subset of representative points
embodying an accurate solution for the currentwindow.More
specifically, our algorithms rely on the data structures used in
[14] to obtain an initial reasonable estimate of the optimal k-
center radius, or the diameter, for the current window. These
structures are paired with additional ones which leverage the
initial estimate to maintain a coreset containing better repre-
sentatives for the points of the current window. The working
memory used by the algorithms is analyzed as a function of
k, of a precision parameter ε, related to the desired approxi-
mation guarantee, and of the doubling dimension and of the
aspect ratio of the current window. The doubling dimension,
which is formally defined in Sect. 2, generalizes the notion of
Euclidean dimensionality, and, as our results show, is related
to the increasing difficulty of approximating the solution to
the above problems when its value grows.

Consider a stream S of points from a metric space under
the sliding window model. Let ε > 0 denote a fixed, user-
defined, precision parameter, and let αW and DW denote,
respectively, the aspect ratio and the doubling dimension of
the current window W . The two main theoretical results in
this paper are the following:

– An algorithm that, at any time, is able to return a
(2 + ε)-approximate solution to the k-center problem
for the current window W , using working memory M =
O

(
k log(αW )(c/ε)DW

)
, where c > 1 is a suitable con-

stant, and αW and DW are, respectively, the aspect ratio
and the doubling dimension of W . The update time
required to handle each point is O

(
M + k2

)
, while the

query time to return the solution for the current window
is O

(
k2(log log(αW ) + (c/ε)DW )

)
. (See Theorem 5 for

detailed bounds.)
– An algorithm that, at any time, is able to return a lower
estimate to the diameter ΔW of the current window W ,
using working memory M = O

(
log(αW )(c/ε)DW

)
,

where c > 1 is a suitable constant, and αW and
DW are, respectively, the aspect ratio and the dou-
bling dimension of W . The update time required to
handle each point is O (M), while the query time is
O

(
(log log(αW ) + (c/ε)2DW )

)
, to ensure that the esti-

mate is within a factor (1 + ε) from ΔW , and it is
O

(
(log log(αW ) + (c/ε)DW )

)
, to ensure that the esti-

mate is within a factor (2+ε) fromΔW . (See Theorem 6
for detailed bounds.)

It is important to remark that our algorithms are fully obliv-
ious to both the aspect ratioαW and to the doublingdimension
DW , in the sense that these values are not used explicitly by
the algorithms but they are only employed to analyze their
space and time requirements. This is a crucial feature since, in
practice, estimates for αW and DW would be very difficult to
obtain. Moreover, as desirable in the sliding window model,
the amount of working memory used by the algorithms is
independent of the window length, and, for constant ε and
DW , they grow asymptotically only as a function of αW and
k (resp., only as a function of αW ), for the k-center (resp.,
diameter) problem.

The main improvements of our algorithms with respect to
the state-of-the-art for general metric spaces [14] are:

– For the k-center problem, the approximation ratio drops
from 6 + ε to 2 + ε, with a moderate increase in the
workingmemory and update/query time requirements for
windows of low-dimension. Moreover, our result shows
that the aforementioned lower bound on the working
memory size, proved in [14], can be beaten when the
doubling dimension of the stream is small. In general,
the approximation ratio of our algorithm can be made
arbitrarily close to 2, which, under the hypothesis P�=NP,
is the best approximation attainable by any polynomial-
time sequential algorithmwhen run on the entire window
with unbounded memory,

– For the diameter estimation problem, the approximation
ratio drops from 3+ ε to 1+ ε, thus almost matching the
exact estimation, with amoderate increase in theworking
memory and update/query time requirements for win-
dows of low-dimension. (In fact, the query time can be
improved by settling for a (2+ ε)-approximation.) Thus,
our algorithmalmost provides an exact estimation,whose
computation would require time quadratic in the window
length.
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– Our algorithms, while oblivious to the doubling dimen-
sion of the window, afford a dimensionality-sensitive
analysis which yields sharper resource-accuracy trade-
offs. They are also oblivious to the aspect ratio of the
window, unlike the algorithms in [14] which require
explicit knowledge of the aspect ratio of the entire stream.
Note that this latter aspect ratio can be much larger than
the largest aspect ratio of any window.

Finally, to gauge the practicality of our approach, we
implemented our algorithms and the ones by [14], and com-
pared their performance. The experiments provide clear evi-
dence that, when endowed with similar amounts of working
memory, on real-world datasets almost always our algorithms
yield significantly better approximation with comparable
update and query times.

1.3 Novelty with respect to conference version

A preliminary version of this work appeared in the Pro-
ceedings of the 7th IEEE International Conference on Data
Science and Advanced Analytics, (DSAA 2020) [36]. The
novel contributions of this work with respect to the prelimi-
nary conference version are the following:

– strengthened analysis of the algorithms’ space and time
requirements, which now depend on the doubling dimen-
sion of the current window rather than on the doubling
dimension of the entire stream;

– a new technique to make the algorithms oblivious to the
aspect ratio of the metric;

– application of our clustering approach to the diameter
estimation problem, improving upon the results of [14];

– substantially richer experimental analysis.

1.4 Organization of the paper

The rest of the paper is organized as follows. Section 2 defines
the problems formally, and introduces a number of technical
notions which will be used throughout the paper. Section 3.1
contains the description and the analysis of the algorithm for
the k-center problem. In particular, Sects. 3.1 and3.2 describe
and analyze a simpler version of the algorithm assuming that
the aspect ratio of the entire stream be known. Section 3.3
showshow tomake the algorithmoblivious to the aspect ratio,
and how to weaken the dependence from the aspect ratio of
the entire stream to the one of current window. Section 4
describes and analyzes our algorithm for diameter estimation.
Section 5 presents the experimental results. Finally, Sect. 6
offers some concluding remarks.

2 Preliminaries

Consider a pointsetW from some metric space with distance
function dist(·, ·). For any point p ∈ W and any subset C ⊆
W we use the notation

dist(p,C) = min
q∈C dist(p, q),

and define the radius of C with respect to W as

rC (W ) = max
p∈W dist(p,C).

For a positive integer k < |W |, the k-center problem requires
to find a subset C ⊆ W of size k which minimizes rC (W ).
Note that any subset C ⊆ W of size k induces immediately
a partition of W into k clusters by assigning each point to
its closest center (with ties broken arbitrarily). We say that
rC (W ) is the radius of such a clustering, and define

OPTk,W = min
C⊆W ,|C|=k

rC (W )

to denote the radius achieved by an optimal solution to the
problem.

As recalled in the introduction, the well-known greedy
sequential algorithm by Gonzalez [20] (dubbed gon in the
rest of the paper), provides a 2-approximation to the k-center
problem running inO (|W |k) time. The following useful fact,
proved in [10, Lemma 1], states that gon, when run on any
subset T of the pointsetW , returns a clustering whose radius
cannot bemuch larger than the radius of an optimal clustering
of the entire pointset.

Fact 1 For any subset T ⊆ W, with |T | > k, let C be the
output of gonwhen run on T . We have rC (T ) ≤ 2 ·OPTk,W .

We also define the diameter of a pointset W as ΔW =
maxp,q∈W dist(p, q). The diameter can be computed exactly
in quadratic time and, it is easy to argue that, for an arbitrary
point p ∈ W ,

max
q∈W dist(p, q) ≤ ΔW ≤ 2max

q∈W dist(p, q),

whence

OPT1,W ≤ ΔW ≤ 2OPT1,W .

In the standard streaming framework [26,31] the computa-
tion is performed by a single processor with a small working
memory, and the input is provided as a continuous, possibly
unbounded, stream of objects (points, in our case), arriving
one at each time step, which is usually too large to fit in the
working memory. Under the sliding window model, at each
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time t , a solution to the problem of interest should be com-
putable for the pointset Wt represented by the last N points
arrived in the stream, where N , referred to as window length,
is a predetermined value known to the algorithm. More for-
mally, for each input point p, let t(p) denote its arrival time.
At any time t , we have that Wt = {p|0 ≤ t − t(p) < N }.1
Since N can still be much larger than the working memory
size, the challenging goal in this setting is to guarantee the
quality of the solution while storing an amount of data sub-
stantially smaller than the window length.

Consider a stream S of points from ametric spacewith dis-
tance function dist(·, ·), and with a sliding window of length
N . We define the aspect ratio α of S as the ratio between
the maximum distance and the minimum distance of any two
distinct points of S. Similarly, at any time t , we define the
aspect ratioαW of the current windowW as the ratio between
the maximum and the minimum distance of any two distinct
points of W . These values will play an important role in our
algorithms.

In this paper, we present streaming algorithms for the k-
center problem and for diameter estimation, under the sliding
windowmodel. Our algorithmsmaintain information about a
judiciously selected subset of points of the current window,
from which, at any time t , a succinct coreset T ⊆ W can
be extracted, so that a solution to the problem under consid-
eration can be efficiently computed by running a sequential
(approximation) algorithm on T . The quality of a coreset T
is regulated by a user-defined accuracy parameter ε > 0, as
captured by the following definition.

Definition 1 Given a pointset W and a value ε > 0, a subset
T ⊆ W is an ε-coreset for W (w.r.t. the k-center problem) if
maxp∈W dist(p, T ) ≤ εOPTk,W .

In other words, the property of an ε-coreset T of W is
that each point in W is “close” enough to some point in T ,
where closeness is defined as a function of ε and OPTk,W .
Our algorithms for both the k-center problem and diameter
estimation crucially rely on ε-coresets complying with the
above definition. (For the diameter estimation, the ε-coresets
employed will be w.r.t the 1-center problem.)

The time and space performance of our algorithms will be
analyzed in terms of parameters k, N , α (or αW ), ε, and of the
dimensionality of the points in the current window. Since we
target the applicability of our algorithms to arbitrary metric
spaces, we will make use of the following, general notion of
dimensionality. Let W denote a set of points from a metric
space. For any x ∈ W and r > 0, let the ball of radius r
centered at x , denoted as B(x, r), be the subset of points of
W at distance at most r from x . The doubling dimension of
W is the smallest value D such that any ball B(x, r), with

1 For ease of notation, in what follows, we will omit the subscript in
Wt , if clear from the context.

x ∈ W , is contained in the union of at most 2D balls of
radius r/2 suitably centered at points of W . The following
important fact, which we will use in the analysis, was proved
in [24]:

Fact 2 Let W be a set of points from a metric space and
let Y ⊆ W be such that any two distinct points a, b ∈ Y
have pairwise distance dist(a, b) > r . If W has doubling
dimension D, then for every R ≥ r and any point x ∈ W,
we have |B(x, R) ∩ Y | ≤ (4R/r)D.

Aprominent feature of our algorithm is that it adapts auto-
matically to the doubling dimension D of the window, in the
sense that the algorithm does not require explicit knowledge
of D, and provides best performances for small values of D.
The characterization of datasets (or metric spaces) through
their doubling dimension has been used in the literature in
several contexts, including routing [29], clustering [1,10],
nearest neighbor search [15], machine learning [22], and
diversity maximization [9].

3 K-center problem

In this section, we present our (2+ε)-approximation stream-
ing algorithm for the k-center problem, under the sliding
window model. The section is organized as follows. A first
version of the algorithm, which assumes the knowledge of
the aspect ratioα of the entire stream, is presented in Sect. 3.1
and analyzed in Sect. 3.2. Subsequently, Sect. 3.3 shows how
to make the algorithm oblivious to α. Moreover, the depen-
dence of the algorithm’s space and time performance on the
aspect ratio will be restricted to the one of current window,
rather than to the one of the entire stream.

3.1 Algorithm

We consider the k-center problem for a target number k of
centers, an input stream S, and a window length N . Let
minDist andmaxDist denote, respectively, the minimum and
maximum distances between any two distinct points of S. To
simplify the presentation of the algorithm, we assume that
the values minDist and maxDist, hence the aspect ratio of S
α = maxDist/minDist are known to the algorithm.

For each point p we define its Time-To-Live (TTL),
denoted by TTL(p), as N − (t − t(p)), where t is the current
time. When p arrives (t = t(p)), its TTL is N , the window
length, and, from that time on, TTL(p) decreases of one unit
at every new arrival. To avoid repeated updates of the TTL
of points stored in the working memory, we assume that with
each point p in the working memory we store the value t(p),
which allows to immediately compute its TTL, given the
current time t and N . We say that a point p expires when it
leaves the current window W , that is, when TTL(p) = 0. In
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the analysis we will also consider points with negative TTL,
that is, points that have expired at some previous time step.

For a user-defined constant β > 0, let

Γ ={(1+β)i : 
log1+β minDist� ≤ i≤�log1+β maxDist
},

and note that |Γ | = O (log(α)/ log(1 + β)). As in [14], our
algorithm runs several parallel instances,where each instance
uses a different value γ ∈ Γ as a guess of the optimal radius
of a clustering of the current window. For each guess γ ,
the algorithm maintains two types of points belonging to
the current window W : validation points (v-points for short)
which enable to assesswhether γ is a constant approximation
to the optimal radius OPTk,W , and coreset points (c-points
for short) which are those fromwhich the coreset is extracted.

For each γ ∈ Γ , validation points are in turn organized
into three (not necessarily disjoint) sets, namely AVγ , RVγ

and OVγ . Coreset points are similarly partitioned into sets
Aγ , Rγ and Oγ . The sets of validation points serve the same
purpose as those used in [14]. In broad terms, the set AVγ

(attraction v-points), whose size is upper bounded by k + 2,
contains centers of clusters of radius at most 2γ , which cover
all points of W when γ is a valid guess for OPTk,W (that
is, OPTk,W ≤ γ ). We say that a point p is v-attracted by
v ∈ AVγ if dist(p, v) ≤ 2γ . The set RVγ (representa-
tive v-points) contains, for each v ∈ AVγ , its representative
repVγ (v), defined as the newest point (that is, the point
with the largest TTL) among those v-attracted by v. When v

expires, its representative repVγ (v) becomes an orphan, and
it is moved to the set OVγ (orphan v-points).

Let ε > 0 be a user-defined precision parameter. The three
sets of coreset points are used to refine the coverage provided
by the validationpoints, so tomake sure that, for valid guesses
of γ , they contain an ε-coreset for the current window. Let
δ = ε/(1 + β). The set Aγ (attraction c-points) contains
centers that refine the clusters around the attraction v-points
by reducing their radius by a factor O (δ). We say that a point
p is c-attracted by a ∈ Aγ if dist(p, a) ≤ δγ /2. The sets Rγ

and Oγ play, for c-points, the same role played by RVγ and
OVγ for v-points. Thus, the set Rγ (representative c-points)
contains a representative repCγ (a) for each a ∈ Aγ , which
is the newest point among those c-attracted by a. When a
expires, its representative repCγ (a) becomes an orphan and
it is moved to the set Oγ (orphan c-points).

Observe that a point q can be a representative for several
attraction v-points (resp., c-points). In that case, we assume
that a distinct copy of q is maintained in RVγ (resp., Rγ ), one
for each v ∈ AVγ (resp., a ∈ Aγ ) such that q = repVγ (v)

(resp., q = repCγ (a)).
At every time step, a number of points, including those that

expires at that step, are removed from the sets of validation
and coreset points, so to keep their sizes under control. The
interplay between validation and coreset points is the follow-

ing. At any time t , the validation points enable to identify a
suitable guess γ̂ which is within a constant factor from the
optimal valueOPTk,W . Then, the set Rγ̂ ∪Oγ̂ provides a good
coreset from which an accurate final solution to k-center for
W can be computed, using algorithm gon.

Our approach is described in detail by the following
pseudocode, which consists of three procedures: update(p)
describes the processing of each point p of the stream;
insertValidation(p, γ ) is invoked insideupdate(p)when
p must be added to AVγ ; finally, query(), if invoked at time
t , returns the coreset where algorithm gon can be run to
return the solution.

update(p)

1 for each γ ∈ Γ

2 for each expired v ∈ AVγ

3 AVγ = AVγ \ {v}
4 Move repVγ (v) from RVγ to OVγ

5 for each expired a ∈ Aγ

6 Aγ = Aγ \ {a}
7 Move repCγ (v) from Rγ to Oγ

8 Remove expired points from OVγ and Oγ

9 EV = {v ∈ AVγ : dist(p, v) ≤ 2γ }
10 E = {a ∈ Aγ : dist(p, a) ≤ δγ /2}
11 if EV == ∅
12 insertValidation(p, γ )

13 else
14 for each v ∈ EV
15 set repVγ (v) = p in RVγ

16 if E == ∅
17 Aγ = Aγ ∪ {p}
18 repCγ (p) = p
19 Rγ = Rγ ∪ {repCγ (p)}
20 else
21 for each a ∈ E
22 set repCγ (a) = p in Rγ

insertValidation(p, γ )

1 AVγ = AVγ ∪ {p}
2 repVγ (p) = p
3 RVγ = RVγ ∪ {repVγ (p)}
4 if |AVγ | > k + 1
5 vold = argminv∈AVγ

TTL(v)

6 AVγ = AVγ \ {vold }
7 Move repVγ (vold ) from RVγ to OVγ

8 if |AVγ | > k
9 tmin = minv∈AVγ TTL(v)

10 for each q ∈ Aγ ,
11 if TTL(q) < tmin
12 Aγ = Aγ \ {q}
13 Move repCγ (q) from Rγ to Oγ

14 Remove from OVγ and Oγ all q with TTL(q) < tmin

query()

1 for increasing values of γ ∈ Γ such that |AVγ | ≤ k
2 C = ∅
3 for each p ∈ AVγ ∪ OVγ ∪ RVγ

4 if (C = ∅) or (dist(p,C) > 2γ )

5 C = C ∪ {p}
6 if |C | ≤ k
7 return Rγ ∪ Oγ
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We remark that values of δ ≥ 4 would be uninterest-
ing since, in this case, the coreset points would not offer
any refinement over the coverage provided by the validation
points. Therefore, in what follows, we assume that ε and β

are fixed so that δ ≤ 4.

3.2 Algorithm analysis

Suppose that Procedure update(p) is applied to every point
p of the input stream S, upon arrival. In this section, we
show that, at any time, Procedure query (if invoked after
update(p) has finished processing the latest point p arrived)
returns an ε-coreset for the current window W , and that, by
runninggonon such a coreset, a (2+ε)-approximate solution
to the k-center problem forW is obtained. Moreover, we will
analyze the amount of working memory the time required to
process each point of the stream.

The following technical lemma states the main invariants
maintained by Procedure update, which will be crucial for
the analysis.

Lemma 1 For every γ ∈ Γ , the following invariants hold
at the end of each execution of Procedure update(p), with
respect to the window W containing p as its last point.

1. If |AVγ | ≤ k, then:

(a) maxq∈W dist(q, Rγ ∪ Oγ ) ≤ δγ ;
(b) maxq∈W dist(q, RVγ ∪ OVγ ) ≤ 4γ .

2. If |AVγ | > k, then:

(a) For every q ∈ W with dist(q, Rγ ∪ Oγ ) > δγ , then
TTL(q) < minv∈AVγ TTL(v).

(b) For every q ∈ W with dist(q, RVγ ∪ OVγ ) > 4γ ,
then TTL(q) < minv∈AVγ TTL(v).

Proof The proof for Invariants 1(b) and 2(b) follow the lines
of the argument in [14], but we include it for completeness.
For convenience, we subdivide the time in steps, where each
step processes a point of the stream. It is easy to see that the
invariants hold at the end of Step 0, which we consider as
the beginning of the stream before the first point arrives. We
suppose that the invariants hold at the end of Step t − 1, for
some t > 0, and show that they are maintained at the end
of Step t . In the proof, we assume the following ordering of
the activities of Step t : first, the point whose TTL goes to
0 expires and is thus excluded from the current window W ;
then, the new point p arrives and update(p) is executed;
and, finally, at the end of update(p), p is included in the
current window W . For each point q ∈ W we define its v-
attractor (resp., c-attractor) as the oldest attraction v-point
(resp., attraction c-point) which was at distance at most 2γ
(resp.≤ δγ /2) from q when q enteredW . For simplicity, we
define a number of checkpoints in the execution of Step t and

show that if the invariants hold prior to each checkpoint, they
also hold at the checkpoint. All the line numbers are, unless
explicitly specified, referred to procedure update.

Checkpoint 1: the invariants hold after the point with
TTL=0 expires. This is immediate to see, since we are only
removing a point from the window, but the point is not yet
removed from the sets stored in memory which it belongs to,
if any.

Checkpoint 2: the invariants hold after Line 10. If |AVγ | ≤
k before update(p) starts, it stays this way after Line 10,
since Lines 1-10 do not add new points to AVγ , thus we only
need to prove that Invariant 1 is maintained. We will do the
argument for 1(a), since the one for 1(b) is virtually identical.
If the expired point is o ∈ Oγ , its removal in Line 8 does not
affect the invariant. Indeed, if a point q violated 1(a) after the
expiration of o, it would imply that o and q shared the same c-
attractor, but, in this case, q would have expired before o and
could not belong toW . If instead, the expired point is a ∈ Aγ

then its representative repC(a) ismoved toOγ . Ifa represents
itself (i.e., a = repC(a)), then repC(a) will be also removed
from the orphans and the considerations made above apply,
otherwise the union Rγ ∪ Oγ remains unchanged. Note that
no point of Rγ can expire unless its c-attractor also expires
but, in this case, the point is moved to the orphan set, and
this corresponds to the case considered above when a =
repC(a) expires. Consider now the case when |AVγ | > k
before update(p) starts (note that it must necessarily be
|AVγ | = k + 1). If a v ∈ AVγ expired, v is removed from
AVγ hence |AVγ | = k after Line 10, hence it suffices to prove
that Invariant 1 holds. Note that all the points q such that
dist(q, Rγ ∪ Oγ ) > δγ already expired due to the fact that
2(a) holds at the beginning of update(p). Similarly, it can be
argued that all points q such that dist(q, RVγ ∪ OVγ ) > 4γ
already expired. Consider now the case |AVγ | = k + 1 after
Line 10, and let us first show that 2(a) holds. If a point q
violates 2(a) this implies that a point o ∈ Oγ with the same
c-attractor as q has expired, but then q must have expired
prior to o, hence it cannot belong to W . A similar argument
can be used to prove 2(b).

Checkpoint 3: the invariants hold after Line 15. First, con-
sider the case EV = ∅. Then insertValidation(p, γ ) is
called to insert p in AVγ . If, at the end of this call, we have
|AVγ | ≤ k, then it was also |AVγ | ≤ k at the start of the call.
As a consequence, Invariant 1 must hold since, in this case,
the call does not delete any point. Otherwise, at the end of
insertValidation(p, γ ), it must be |AVγ | = k+1 and we
need to prove that Invariant 2 holds. Consider first 2(a). For
any point q whose distance from Rγ ∪ Oγ becomes > δγ ,
there must be an orphan o ∈ Oγ with the same c-attractor as
q, which has been deleted in Line 14 of insertValidation,
hence TTL(q) ≤ TTL(o) < minv∈AVγ TTL(v). A symmet-
rical argument applies to prove 2(b). In case EV �= ∅, we
replace each representative repV(v) of v ∈ EV , with the
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new point p. Note that both repV(v) and p are v-attracted
by the same point v, so, all points with the same v-attractor
as repV(v) are contained in the 4γ -ball centered in p, which
suffices to prove both Invariants 1 and 2.

Checkpoint 4: the invariants hold after Line 22. If E = ∅,
then no point is deleted in Lines 16-22, thus the two invariants
will hold. Otherwise, if E �= ∅, we replace each represen-
tative c-point repC(a), a ∈ E with the new point p. Since
repC(a) and p are c-attracted by the same point a, all points
with the same c-attractor as repC(a) are contained in the δγ -
ball centered in p, which suffices to prove that Invariants 1
and 2 hold.

Checkpoint 5: the invariants hold after the new point p
is inserted into the active window. If p has been inserted
into AVγ , then p has also been inserted into RVγ , hence
dist(p, RVγ ) = 0. Else, there exists a point v ∈ AVγ such
that dist(p, RV γ ) ≤ dist(p, v) + dist(v, RVγ ) ≤ 4γ . Sim-
ilarly, it must hold that either dist(p, Rγ ) = 0 (case E = ∅)
or dist(p, Rγ ) ≤ δγ (case E �= ∅), and the two invariants
follow. ��

Consider a time step t and let T be the set of points
returned by Procedure query invoked after the execution
of update(p), where p is the t-th point of the stream. Let
also W be the current window containing p as its last point.
We have:

Lemma 2 T is an ε-coreset for W w.r.t. the k-center problem.

Proof It can be easily seen that for any guess γ such that
either |AVγ | > k, or |AVγ | ≤ k and the set C computed
by query contains > k points, there at least k + 1 points
of W at pairwise distance > 2γ , which immediately implies
that γ < OPTk,W . Moreover, since Γ contains a guess γ ≥
maxDist ≥ OPTk,W , the procedure will always determine a
minimum guess γ̂ such that both |AVγ̂ | ≤ k and |C | ≤ k.
Then, since the values in Γ form a geometric progression of
common ratio (1+β), we obtain that γ̂ /(1+β) < OPTk,W .
Also, since |AVγ̂ | ≤ k, Invariant 1(a) of Lemma 1 ensures
that

max
p∈W dist(p, T ) < δγ̂ = εγ̂ /(1 + β) < ε · OPTk,W ,

and the lemma follows. ��
The next theorem establishes the approximation factor of

our algorithm.

Theorem 1 By running Algorithm gon on T we obtain a
(2+ε)-approximate solution for the k-center problem on W.

Proof LetCalg be the set of centers returned bygonwhen run
on T . Since T is a subset ofW , by Fact 1we have that for each
q ∈ T , dist(q,Calg) ≤ 2·OPTk,W .Moreover, since T is an ε-
coreset forW (Lemma 2) we have that for each p ∈ W there

is q ∈ T such that dist(p, q) ≤ ε · OPTk,W . By combining
these two observations and applying the triangle inequality,
we conclude that for each p ∈ W we have dist(p,Calg) ≤
(2 + ε) · OPTk,W . ��

The next two theorems establish the space and time
requirements of our algorithm.

Theorem 2 At any time t during the processing of the stream
S, the sets stored in the working memory (i.e., AVγ , RVγ ,
OVγ Aγ , Rγ , and Oγ , for every guess γ ) contain

O

(

k · log(α)

log(1 + β)

(
32(1 + β)

ε

)DW
)

points, overall, where DW is the doubling dimension of the
current window W.

Proof Consider an arbitrary time t . Since
|Γ | = O (log(α)/ log(1 + β)), it is sufficient to show that
for every γ ∈ Γ the aggregate size of the sets of validation
and coreset points is O

(
k · (32(1 + β)/ε)DW

)
.We first show

that |AVγ | ≤ k+1, |RVγ | ≤ k+1, |OVγ | ≤ k+1. The proof
argument is the same as the one used in [14], but we report it
for completeness. The bound on |AVγ | is explicitly enforced
by insertValidation which removes a point from AVγ as
soon as its size exceeds k + 1. The bound on RVγ follows
from the fact that the algorithmmakes sure that RVγ contains
exactly one representative for each v ∈ AVγ . Indeed, when
a point is removed from AVγ , its representative is moved to
OVγ .

Forwhat concerns the boundon |OVγ |, letv1, v2, . . .be an
enumeration of the points inserted in AVγ at any time during
the algorithm, ordered by arrival time. We now show that for
every i ≥ 1 we have TTL(vi+k+1) > TTL(repVγ (vi )) ≥
TTL(vi ). Consider two cases. If vi expires before vi+k+1

enters the window, then TTL(vi+k+1) > TTL(repVγ (vi ))

because repVγ (vi ) must have entered the window before vi
expired. Otherwise, upon insertion of vi+k+1 in AVγ , there
are k + 1 points in AVγ , so the algorithm deletes vi as it
is the oldest point in AVγ . Then, again TTL(vi+k+1) >

TTL(repVγ (vi )) because repVγ (vi ) must have entered the
window before vi is deleted. At time t , let v j be the last
point that was removed from AVγ , either because expired
or deleted. By the property proved above, any point which
has been representative of v j−(k+1) has a TTL smaller
than TTL(v j ), thus it cannot be in memory at time t
because it either expired or has been deleted by Line 14 of
insertValidation. This shows that |OVγ | ≤ k + 1.

Next, we show that |Aγ ∪ Rγ ∪Oγ | ≤ 6(k+1)(32/δ)DW ,
where DW is the doubling dimension of the current win-
dow W . From the proof above we know that there are at
most k + 1 points in each of the sets AVγ , RVγ and OVγ .
By construction, we also know that the distance between
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any two points of Aγ is ≥ δγ /2. We show that the points
of Aγ are enclosed in at most 2(k + 1) balls of radius
4γ . Consider two cases. If |AVγ | ≤ k, by Invariant 1(b)
we have maxq∈W dist(q, RVγ ∪ OVγ ) ≤ 4γ , hence each
q ∈ Aγ is within one of the at most 2(k + 1) balls of
radius 4γ centered at the points of RVγ ∪ OVγ . Instead,
if |AVγ | = k + 1, then by Invariant 2(b) we have that for
each q ∈ W with TTL(q) ≥ minv∈AVγ TTL(v) it holds
that maxq∈W dist(q, RVγ ∪ OVγ ) ≤ 4γ . Recall that after
we insert a new point in AVγ , if the size exceeds k we delete
from |Aγ ∪Rγ ∪Oγ | all the points with TTL smaller than the
smallest TTL of a point in AVγ . Then after each execution of
the procedureupdate, if |AVγ | = k+1, each point in Aγ has
TTL greater than the oldest point in AV . Thus, each q ∈ Aγ

is within a ball of radius 4γ from some point in RVγ ∪OVγ .
By Fact 2, in each of these 2(k + 1) balls, there can be at
most (32/δ)DW points of Aγ , so |Aγ | ≤ 2(k + 1)(32/δ)DW .
Moreover, at any given time |Rγ | = |Aγ |, since the algorithm
makes sure that Rγ contains exactly one representative for
each a ∈ Aγ .

Let k′ = 2(k + 1)(32/δ)DW be the above upper bound
on the size of Aγ . We are left to show that |Oγ | ≤ k′. Let
a1, a2, . . . be an enumeration of the points inserted in Aγ at
any time during the algorithm, ordered by arrival time. We
now show that for every i ≥ 1 we have TTL(ai+k′+1) >

TTL(repCγ (ai )) ≥ TTL(ai ). It must hold that ai expires
or gets deleted before ai+k′+1 enters the window, or other-
wise, upon insertion of the new point ai+k′+1, there would be
k′ + 1 points in Aγ , which is impossible since k′ is an upper
bound to |Aγ |. Then, TTL(ai+k′+1) > TTL(repCγ (ai ))
because repCγ (ai ) must have entered the window before ai
expired or got deleted, which means that repCγ (ai ) must
have entered the window before ai+k′+1 enters the window.
Let a j be the last point that was removed from Aγ , either
because expired or deleted. By the property proved above,
any point which has been representative of a j−(k′+1) has a
TTL smaller than TTL(v j ), thus it cannot be in memory at
time t because it either expired or has been deleted by Line
16 of insertValidation. This shows that there can be at
most k′ points in Oγ . ��
Theorem 3 Procedure update(p) runs in time

O

(

k · log(α)

log(1 + β)

(
32(1 + β)

ε

)DW
)

,

while Procedure query() runs in time

O

(

k2 · log(α)

log(1 + β)
+ k ·

(
32(1 + β)

ε

)DW
)

,

where DW is the doubling dimension of the current window
W.

Proof The time complexity of update(p) is dominated by
the construction of the sets EV and E for each γ (Lines 9 and
10), which requires time linear in |AVγ |+|Aγ |. The claimed
bound follows by Theorem 2. For what concerns query, we
observe that, as shown in the proof of Theorem 2

|AVγ | + |RVγ | + |OVγ | = O (k) ,

hence the identification of the minimum guess γ̂ such that
both |AVγ̂ | ≤ k and |C | ≤ k can be easily accomplished
in O

(
k2 log(α)/ log(1 + β)

)
time. Finally, once γ̂ has been

found, returning Rγ̂ ∪ Oγ̂ takes time proportional to their
size, which is O

(
k(32(1 + β)/ε)DW

)
as argued in the proof

of Theorem 2. ��
We remark that the first term in the running time of Procedure
query() canbe improved toO

(
k2 log(log(α)/ log(1 + β))

)
,

by using binary search over the values of Γ .
The following theorem summarizes the main features of

our algorithm.

Theorem 4 Consider a stream S of points from a metric
space under the sliding window model. Let α be the aspect
ratio of S, and let DW be the doubling dimension of the
current window W. For fixed parameters ε, β > 0, at
any time t our algorithm for the k-center problem requires
working memory of size M = O(k · (log(α)/ log(1 + β))

(32(1 + β)/ε)DW ), processes each point p ∈ S in time
O (M), and is able to return a (2 + ε)-approximation
to the k-center problem for W in time
O

(
k2 · (

log(log(α)/ log(1 + β)) + (32(1 + β)/ε)DW
))
.

Proof The theorem is an immediate consequence of Theo-
rems 1, 2 and 3, and of the observation that computing the
final solution on the coreset of size O

(
k(32(1 + β)/ε)DW

)
,

returned by query requires time O
(
k2(32(1 + β)/ε)DW

)
.

��
We remark that the amount of working memory required by
the algorithm to analyze the entire stream S will depend on
the maximum value of DW , which is upper bounded by the
doubling dimension of the entire stream but can in fact be
substantially smaller.

3.3 Obliviousness to˛

For convenience, the algorithm presented in Sect. 3.1
assumed explicit knowledge of the aspect ratio α of the entire
stream S. In this section, we show how to make the algo-
rithm oblivious to the aspect ratio, while keeping the same
approximation quality, time and space requirements. In fact,
the analysis will also show that the dependence on α of the
time and space requirements of the oblivious algorithm can
be weakened into a dependence on the value αW the aspect
ratio restricted to the current window W .
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We observe that the knowledge of α required by the
algorithm presented in Sect. 3.1 serves solely the purpose
of identifying a spectrum of feasible values for the opti-
mal cluster radius. This is reflected in the definition of Γ ,
which contains a geometric progression of values spanning
the interval between the minimum and maximum distance of
any two points of the stream. In the oblivious version, at any
time t the algorithmmaintains an analogous set Γt , spanning
an interval delimited by a lower bound and an upper bound
to the radius of the optimal clustering for the current window
W .

Let p1, p2, . . . be an enumeration of all points of the
stream S based on the arrival order. At every time t > k,
let rt be the minimum pairwise distance between the last
k + 1 points of the stream (pt−k, . . . , pt−1, pt ). It is easy
to see that, for the current window W , OPTk,W ≥ rt/2. We
require that, together with the other structures, the algorithm
stores the last k + 1 points arrived and maintains the value
rt , which can be computed with an extra O

(
k2

)
operations

per step.
We also require that the algorithm maintains a tight upper

bound on the diameter ΔW of the current window W . More
precisely, we require that the algorithmmaintains, at any time
t , a value Mt such that Mt ≥ ΔW , with Mt = Θ (ΔW ). To
ease presentation, let us assume for now that Mt is available.
At the end of this subsection, we will show how to augment
the algorithm so that Mt can indeed be efficiently computed
at each step.

Let the values β, ε and δ = ε/(1 + β) be defined as in
Secti. 3.1, and recall that we assumed that δ ≤ 4 since larger
values of δ are uninteresting for our algorithm. We define

Γt = {(1 + β)i : 
log1+β rt/2� ≤ i ≤ �log1+β 2Mt/δ
},

and observe that the definition of Γt is independent of α.
The structure of the α-oblivious algorithm is identical to the
one presented in the previous subsections, except that at each
time t , the set of guessesΓt substitutes the fixed set of guesses
Γ . The following claim shows that at any step t , it is suffi-
cient that the algorithm maintains structures for guesses γ

belonging to Γt .

Claim Consider the non-oblivious algorithm presented in
Sect. 3.1. At any time t , Procedure query()would be correct
if the sets AVγ , RVγ , OVγ , Aγ , Rγ , and Oγ satisfying the
invariants stated in Lemma 1 were available only for γ ∈ Γt .

Proof We show that, even if available, the sets of valida-
tion and coreset points for values of γ outside Γt would
never provide the final coreset returned by query(). Con-
sider a value γ < minΓt ≤ rt/2, and observe that the last
k + 1 points of the stream, namely pt−k, . . . , pt−1, pt , are
all at pairwise distance at least rt > 2γ . Therefore, the non-
oblivious algorithm would insert all of these points in AVγ ,

hence |AVγ | = k+1 and the value γ would not be considered
in the outer loop of query(). Let γmax = maxΓt ≥ 2Mt/δ.
We show that at time t , when query() considers γmax it
must find |AVγmax | ≤ k and a set C of size at most k,
since otherwise there would exist k + 1 points at distance
> 2γmax ≥ 4Mt/δ ≥ Mt , which is impossible since Mt is
an upper bound to the diameter ΔW , where W is the cur-
rent window up to point pt . Thus, Procedure query() surely
returns a coreset for a value γ ≤ γmax. ��

Wenowshowhow tomodify the algorithm so that,without
the knowledge of α, at the end of each step t it is able tomain-
tain the sets AVγ , RVγ , OVγ , Aγ , Rγ , and Oγ satisfying the
invariants stated in Lemma 1, limited to the guesses γ ∈ Γt .
Suppose that this is the case for up to some time t−1 > k and
consider the arrival of pt . First, the algorithm computes the
new values rt (as described above) and Mt (to be described
later), and removes all sets relative to values ofγ ∈ Γt−1−Γt .
Then, if rt < rt−1, for each γ ∈ Γt with γ < minΓt−1,
the algorithm sets AVγ = {pt−k−1, . . . , pt−1} = RVγ =
Aγ = Rγ and OVγ = Oγ = ∅. It is easy to argue that,
for these values of γ , these sets satisfy the invariants of
Lemma 1 at the end of step t − 1. Also, if Mt > Mt−1,
then for each γ ∈ Γt with γ > maxΓt−1, the algorithm sets
AVγ = {pt−1} = RVγ = Aγ = Rγ and OVγ = Oγ = ∅.
Again, for these values of γ , the sets satisfy the invariants of
Lemma 1 at the end of step t−1, since for every point q in the
window at that time we have dist(q, RVγ ) = dist(q, Rγ ) =
dist(q, pt−1) ≤ Mt−1 ≤ δγ /2 ≤ 2γ ≤ 4γ , since we are
assuming δ ≤ 4.

At this point, for every γ ∈ Γt the algorithm has available
sets AVγ , RVγ , OVγ , Aγ , Rγ , and Oγ which satisfy the
invariants of Lemma 1 at the end of step t − 1. Then, it is
sufficient to run update(pt ) to complete step t .

Computation of Mt It remains to show how to compute
Mt at each step. To this purpose, we require that, for every
γ ∈ Γt , a separate concurrent process to the main algorithm
described above maintains a set of validation points for k =
1, which we refer to as AV (1)

γ , RV (1)
γ , OV (1)

γ . Clearly, for
each step t ≤ k + 1, maintaining these three sets and an
upper bound Mt to ΔW is trivial. Suppose now that these
sets are available at the end of some step t − 1 > k, for
every γ ∈ Γt−1. and consider the arrival of pt . We operate
as follows. We first compute rt . Then, for each γ = (1+β)i ,
with i ≥ 
log1+β rt/2�, we perform the following sequence
of steps until a given value γ̂ is determined:

1. if γ < minΓt−1 or γ > maxΓt−1, we generate AV (1)
γ ,

RV (1)
γ , and OV (1)

γ as explained above for the case of
arbitrary k;

2. we update AV (1)
γ , RV (1)

γ , and OV (1)
γ to account for the

arrival of pt , performing the same operations that would
be performed by update(pt ) with k = 1;
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3. if |AV (1)
γ | = 1 and max

p∈OV (1)
γ

dist(p, a) ≤ 2γ where a

is the only point in AV (1)
γ , set γ̂ = γ and exit.

Observe that this procedure is akin to the search for a feasible
value of γ performed by Procedure query, and will surely
stop at a value γ̂ = O (ΔW ). Once γ̂ is computed, Mt is
set equal to 12γ̂ , which, together with rt computed before,
determines the set Γt . At this point, Steps 1) and 2) above
are repeated for all values of γ ∈ Γt , with γ > γ̂ , so to have
the sets AV (1)

γ , RV (1)
γ , OV (1)

γ updated at the end of time t
for every γ ∈ Γt .

The following lemma shows thatMt is indeed a tight upper
bound on ΔW .

Lemma 3 We have:

ΔW ≤ Mt < 6(1 + β)ΔW ,

where W is the current window, up to and including pt .

Proof Let AV (1)
γ̂

= {a}. The following sequence of inequal-
ities follows by Invariant 1(b) of Lemma 1, by the properties
of RV (1)

γ̂
, and by the above definition of γ̂ .

OPT1,W ≤ max
q∈W dist(p, a)

≤ max
q∈W dist(p, RV (1)

γ̂
∪ OV (1)

γ̂
) +

+ max
p∈RV (1)

γ̂
∪OV (1)

γ̂

dist(q, a))

≤ 4γ̂ + 2γ̂ = 6γ̂ .

Therefore, it follows that Mt = 12γ̂ ≥ 2OPT1,W ≥ ΔW .
For what concerns the upper bound onMt , observe that either
γ̂ is the initial value in Γt , hence, γ̂ ≤ rt/2 ≤ ΔW /2, or its
preceding value inΓt , γ ′ = γ̂ /(1+β), is such that |AV (1)

γ ′ | >

1 or AV (1)
γ ′ contains only one point a and there exists a point

q ∈ OV (1)
γ ′ with dist(q, a) > 2γ ′. In either case, we have

that ΔW > 2γ ′ = 2γ̂ /(1 + β), which implies that Mt <

6(1 + β)ΔW . ��
The following theoremsummarizes themain result regard-

ing the α-oblivious version of our algorithm presented in this
subsection.

Theorem 5 Consider a stream S of points from a met-
ric space under the sliding window model. Let αW and
DW be, respectively, the aspect ratio and the doubling
dimension of the current window W. For fixed parameters
ε, β > 0, at any time t the α-oblivious version of our algo-
rithm for the k-center problem requires working memory of
size M = O

(
k · (log(αW )/ log(1 + β))(32(1 + β)/ε)DW

)
,

processes each point p ∈ S in time O
(
M + k2

)
, and

is able to return a (2 + ε)-approximation to the k-center
problem for W in time O

(
k2 · (log(log(αW )/ log(1 + β))+

(32(1 + β)/ε)DW
))
.

Proof First we observe that Γt ∈ O (log(αW )/ log(1 + β)).
Reasoning as in the proof of Theorem2, it is immediate to see
that, for each guess γ , the aggregate size of all sets of valida-
tion and coreset employed by the algorithm, including those
required to compute Mt , is still O

(
k(32(1 + β)/ε)DW

)
.

Hence the claimed bound on M follows. For what concerns
the time required to process each point, the computation of
rt requires O

(
k2

)
time while the computation of Mt and the

update of all sets maintained in the workingmemory requires
time O (M). Finally, the query time and the approximation
factor follow from Theorem 4 substituting α with αW . ��
Similarly to what we remarked at the end of the previous
subsection for the doubling dimension, we observe that now
the amount of working memory required by the algorithm
to analyze the entire stream S will depend on the maximum
value of αW , which is upper bounded by the aspect ratio α

of the entire stream but can in fact be substantially smaller.

4 Diameter estimation

In this section, we present an algorithm for accurate diameter
estimation in the sliding windowmodel. Let S be a stream of
points from a metric space, with a sliding window of length
N . Fix an accuracy parameter ε > 0 and let ε′ be such that
ε = ε′/(1 − ε′). Suppose that we run the α-oblivious algo-
rithm for the k-center algorithm discussed in the previous
section, with k = 1 and accuracy ε′. Also, in the algorithm,
set δ = ε′/(2(1 + β)) instead of δ = ε′/(1 + β). For a
time step t , let T be the set of points returned by Procedure
query() after the t-th point has been processed with Proce-
dure update. We have:

Lemma 4 Let ΔW and ΔT be the diameters of the current
window W and of the coreset T , respectively. Then

ΔT ≤ ΔW ≤ (1 + ε)ΔT .

Proof The lower bound on ΔW is immediate since T ⊆ W .
For what concerns the upper bound, let γ̂ be the smallest
estimate for which both |AVγ̂ | ≤ 1 and |C | ≤ 1 in Procedure
query(). By reasoning as in the proof of Lemma 2,we obtain
that γ̂ /(1 + β) ≤ OPT1,W . Hence,

max
p∈W dist(p, T ) < δγ̂ = ε′

2(1 + β)
γ̂ <

ε′

2
OPT1,W ≤ ε′

2
ΔW .

For each point p ∈ W , we define its proxy point
π(p) as the closest point to p in T , namely, π(p) =
argminq∈T dist(p, q). Let p, q be two points of W such that
dist(p, q) = ΔW . We have that
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ΔW = dist(p, q)

≤ dist(p, π(p)) + dist(π(p), π(q)) + dist(q, π(q))

≤ ε′ΔW + dist(π(p), π(q))

≤ ε′ΔW + ΔT .

Therefore, ΔT ≥ (1 − ε′)ΔW and, since ε = ε′/(1 − ε′),
this implies ΔW ≤ 1/(1 − ε′)ΔT = (1 + ε)ΔT . ��
Let DW be the doubling dimension of the current window.
By repeating the argument in the proof of Theorem 2, we
obtain that the coreset size is

|T | = O

((
32

δ

)DW
)

= O

((
64(1 + β)(1 + ε)

ε

)DW
)

,

since δ = ε′/(2(1 + β)) and ε′ = ε/(1 + ε). Lemma 4
implies that an estimate of ΔW within a factor (1+ ε) can be
obtained by computing the exact diameter of the coreset T in
time O

(|T |2). If, due to the exponential dependency on DW ,
the coreset size is too large to afford a quadratic computation
of its diameter, one can compute instead maxq∈T dist(p, q),
for an arbitrary point p ∈ T , which yields an estimate of ΔT

within a factor 2, whence and estimate ofΔW within a factor
2(1 + ε), in linear time.

The following theorem summarizes the results of this sec-
tion:

Theorem 6 Consider a stream S of points from a met-
ric space under the sliding window model. Let αW and
DW be, respectively, the aspect ratio and the doubling
dimension of the current window W. For fixed parame-
ters ε, β > 0, at any time t our algorithm for diam-
eter estimation requires working memory of size M =
O

(
(log(αW )/ log(1 + β))(64(1 + β)(1 + ε)/ε)DW

)
,

processes each point p ∈ S (i.e. slides the window) in time
O (M), and it is able to return

– an estimate within a factor (1+ε) to the diameterΔW in

time O
(
log

(
log(αW )
log(1+β)

)
+ (64(1 + β)(1 + ε)/ε)2DW

)
;

– an estimate within a factor 2(1+ ε) to the diameter ΔW

in time O
(
log

(
log(αW )
log(1+β)

)
+ (64(1 + β)(1 + ε)/ε)DW

)
.

Proof The proofs of the bounds on M and on the process-
ing time are obtained along the same lines as Theorem 4, by
using k = 1, δ = ε′/(2(1 + β)), with ε′ = ε/(1 + ε),
and by substituting α with αW , in the light of the result
of Sect. 3.3. The bounds on the accuracy of the estima-
tions and on the time required to compute them follow
from Lemma 4 and the subsequent discussion on com-
puting/estimating the diameter of the coreset, and from

the fact that, for k = 1, Procedure query() requires
O

(
log(log(αW )/ log(1 + β)) + (64(1 + β)(1 + ε)/ε)DW

)

time. ��

5 Experiments

To assess the practical viability of our approach, we designed
a set of experiments to

– compare approximation quality, execution time, and
memory usage (in terms of the number of points stored in
the working memory) of our k-center algorithm against
the state-of-the-art algorithm in [14];

– test the ability of our k-center algorithm to adapt, at each
time t , to the specificity of the window Wt , as captured
by its doubling dimension DW and its aspect ratio αW ;

– compare approximation ratio, execution time, and mem-
ory usage of our (1+ε)-approximate diameter algorithm
against the state-of-the-art algorithm in [14].

5.1 Experimental testbed and datasets

All tests were executed using a Java 13 implementation
of the algorithms on a Windows machine running on
an AMD FX8320 processor with 12GB of RAM, and
the running times of the procedures were measured with
System.nanoTime. The points of the datasets are fed to
the algorithms through the file input stream.

We experimented with datasets often used in the cluster-
ing literature. Specifically, we used both a low-dimensional
dataset, Higgs, and for a higher-dimensional dataset,
Covertype, which serves as a stress test for our
dimensionality-sensitive approach. The Higgs dataset2

contains 11 million points representing high-energy parti-
cle features generated throughMonte-Carlo simulations. The
points of this dataset have 28 attributes, 7 of which are a
function of all the others. We considered only these seven
“high-level” features, hence regard the data as points in R

7

using Euclidean distance. The Covertype dataset3 con-
tains� 500 thousand 54-dimensional points from geological
observations of US forest biomes. We interpret the data as
points inR54 using Euclidean distance. In some experiments,
wewill also use artificial datasets consisting points randomly
extracted from (subspaces of) R100, using again Euclidean
distance.

2 http://archive.ics.uci.edu/ml/datasets/HIGGS
3 https://archive.ics.uci.edu/ml/datasets/covertype
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5.2 Comparison with the state-of-the-art k-center
algorithm

We designed implementations of the non-oblivious and of
the α-oblivious version of our k-center strategy, respectively
referred to as our- sliding and our- oblivious hereinafter,
and an implementation of the state-of-the art sliding win-
dow algorithm in [14], referred to as css- sliding. Due to
the NP-hardness of the k-center problem, it is unfeasible to
compute the optimal solution for each window so to mea-
sure the exact approximation factor of the solutions returned
by the algorithms. As a workaround, we assess the quality
loss incurred by our space-restricted streaming algorithms
with respect to the most accurate, polynomial-time sequen-
tial approximation gon running on the entire window, hence
using unrestricted space.

For the Higgs dataset, we tested several values of k in
[10, 100], and several window sizes N in [103, 106]. For
brevitywe report only the results for k = 20, since the behav-
iors observed for the other values exhibit a similar pattern.
For our- sliding and our- oblivious, we set ε = 1 and
β = 0.2. For a fair comparison, we searched the parameter
space of css- sliding so to determine a value of its param-
eter ε (the equivalent of our parameter β) so to enforce that
the algorithms use approximately the same working mem-
ory. As a result, for css- sliding we set ε = 0.01 which,
in all of our tests, makes its working memory compara-
ble yet slightly larger than the one used by our- sliding
and our- oblivious, which gives a competitive advan-
tage to css- sliding in the comparison with respect to the
approximation quality. Similarly, for Covertypewe report
experimentswith k = 20 andwindow lengths in [103, 3·105].
Due to the higher dimensionality of the dataset, which calls
for a finer control on accuracy, we set ε = 0.5 and β = 0.1
for both our- sliding and our- oblivious, which brings us
to set ε = 0.01 for css- sliding to attain a similar, yet higher,
memory usage of the latter w.r.t to the former algorithms.

The results are reported in the plots of Figs. 1, 2, 3, and
4 for the dataset Higgs, and in the plots of Figs. 5, 6, 7,
and 8 for Covertype. In the plots, the blue lines refer to
css- sliding, the orange lines to our- sliding, the yellow
lines toour- oblivious, and the purple ones to the execution
of the sequential algorithm gon on the entire window. Each
point in a plot represents an average over 10,000 consecutive
windows.

The comparison of the algorithms’ memory usage is
reported in Figs. 1 and 5. As expected, the working memory
required by both css- sliding and our algorithms is mostly
insensitive to the the window length, while the memory
usage of gon clearly grow linearly with it. Note that our-
obliviousmaintains consistently less points inmemory than
our- sliding, as it does not maintain the data structures rel-
ative to infeasible estimates, rebuilding them on the fly when

Fig. 1 Memory usage (Higgs)

Fig. 2 Clustering radius (Higgs)

Fig. 3 Update time (Higgs)
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Fig. 4 Query time (Higgs)

Fig. 5 Memory usage (Covertype)

Fig. 6 Clustering radius (Covertype)

Fig. 7 Update time (Covertype)

Fig. 8 Query time (Covertype)

needed. Figures 2 and 6 compare the clustering radii obtained
by the four algorithms. Remarkably, on the Higgs dataset
our- sliding and our- oblivious, even for the relatively
large value of ε = 1, return a clustering whose radius essen-
tially coincides with the one returned by running gon on
the full window, and it is consistently and decidedly smaller
than the one returned by css- sliding. Similarly on the
Covertype dataset, the radii returned by our algorithms are
consistently smaller than the ones returned by css- sliding,
albeit not quite matching the radius of gon. By lowering the
ε parameter one would obtain better results at the cost of an
increased memory usage. The update time (Figs. 3 and 7),
seems rather insensitive to N for both css- sliding our-
sliding and our- oblivious, while it is clearly negligible
for gon, where it simply entails discarding the oldest point
of the window and inserting the new one. Finally, as shown in
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Figs. 4 and 8, the query times of css- sliding our- sliding
and our- oblivious are clearly much smaller than the one
of gon, which grows linearly with the window length. The
query times of our- sliding and our- oblivious are com-
parable to those of css- slidingbut slightly higher especially
in the case of the Covertype dataset, which is conceivably
due to its higher dimensionality.

Overall, the experiments provide evidence that, with
respect to the state-of-the-art algorithm in [14], our algo-
rithms our- sliding and our- oblivious offer an approx-
imate solution whose quality is much closer to the one
guaranteed by best sequential algorithm run on the entire
window, within comparable space and time budgets. More-
over the experiments show that theα-oblivious version of our
algorithm consistently maintains less points in the working
memory, without compromising neither execution times nor
the quality of the solution.

5.3 Adaptiveness to dimensionality and aspect ratio

One of the prominent features of our algorithms is their abil-
ity to adapt to the inherent complexity of the window Wt ,
as captured by its dimensionality DW , and, in the case of
our- oblivious, also by its aspect ratioαW . The experiments
reported below are aimed at testing such adaptiveness.

First, we investigate the dependency of the memory usage
as a function of DW . To this purpose, we used several artifi-
cial datasets consisting of points ofR100 randomly extracted
from the unit subcube [0, 1]d with d ranging from 1 up to 25
(by fixing 100 − d components to zero), making sure to fix
the aspect ratio for all the datasets by periodically injecting
“extreme” points in the stream4. For each of the datasets,
we report the number of points maintained in the working
memory by our- sliding (we omit for brevity the results of
our- oblivious, as they exhibit the same behavior) when
used on a window of length N = 105 points with parameters
β = 0.1, ε = 1 and k = 20. All quantities are averaged over
10,000 consecutive windows and reported together with their
95%confidence intervals.As plotted in Fig. 9, for dimensions
in the range [1, 15] the memory growth is clearly exponential
with the dimension of the subspace, as suggested by the the-
ory. For larger values of the subspace dimension, the growth
slows downas the coreset size approaches thewindow length.

In a second experiment, we assessed the capability of our
algorithms to adapt to the dimensionality of the data dynam-
ically, as the window slides over sets of points of varying
dimensionality.Wegenerated an artificial dataset (DD) of ran-
dom points in R100, where the first portion of points belongs
to a subspace of dimension 1 (i.e., a line), the middle por-
tion of points belongs to a subspace of dimension 10, and

4 We remark that the doubling dimension of a subspace of [0, 1]d is
linearly related to d.

Fig. 9 Memory usage versus subspace dimension

the last portion belongs again to a line. In order to fix other
features of the dataset that may influence memory usage, the
points are generated so to make sure that the aspect ratio of
all the windows is roughly the same, so that our- oblivious
is not influenced by the variability of αW . As before, we
set β = 0.1, ε = 1 and k = 20 for both our- sliding
and our- oblivious. The windows length is N = 104. The
memory usage of our- sliding and our- oblivious, plot-
ted in respectively Figs. 10 and 11, respectively, is low in
the windows that cover the points in the first and third por-
tion, and much higher in the windows that cover the points
in the second portion, with a transition phase for the win-
dows spanning the two types of subspaces. This property is
very appealing, as the algorithms automatically adapt to the
dimension DW of the active window Wt to maintain as few
points as possible, even without any prior knowledge on the
doubling dimension.Weobserve that the higher level of noise
in the plot for our- oblivious is due to the higher variabil-
ity of the range of guesses Γt (which mostly depends on the
variability of rt ), as opposed to the fixed range Γ used by
our- sliding.

Finally, we present some experiments on an artificial
dataset (alpha) of random points in R100, where the aspect
ratio varies substantially from window to window while the
doubling dimension remains stable. In order to have multi-
ple aspect ratios in the same dataset, we generated the points
as follows. All the points have the first five coordinates dis-
tributed uniformly in some range and the others set to 0. In the
first portion of the stream 90% of the points have coordinates
in [0, 10] and 10% of the points have coordinates in [0, 100].
In the second portion of the stream 90% of the points have
coordinates in [0, 0.01], hence the minimum distance among
any two points will be around 103 times smaller than before,
and 10% of the points have coordinates in [0, 10], hence the
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Fig. 10 our- sliding memory usage (DD)

Fig. 11 our- oblivious memory usage (DD)

diameter will be around 10 times smaller than before, for an
overall factor 100 increase in the aspect ratio. Finally, the last
part of the stream has the same distribution as the first one.

Once again we set β = 0.1, ε = 1 and k = 20 for
both our- sliding and our- oblivious and set the window
length N = 104. Figure 12a and b show the memory usage
of the two algorithms, as a function of the step t , while
Fig. 12c plots how the extremal values rt/2 and 2Mt/δ of
range Γt (used by our- oblivious to attain obliviousness
to the aspect ratio) evolve with t . We first observe that the
memory usage of our- oblivious is slightly lower than the
one of our- sliding. This feature, as seen in previous exper-
iments, does not arise only in tailor-made artificial datasets
but also in real-world ones (see Figs. 1 and 5), giving a com-
petitive advantage to the oblivious version of the algorithm

over the non-oblivious one. Somewhat surprisingly, however,
thememory usage of our- sliding also seems to adapt to the
shape of Γt although it uses a fixed range Γ for the guesses.
This phenomenon is due to the fact that at each time t , for
each guess γ ∈ Γ −Γt , the number of validation and coreset
points maintained by our- sliding is rather small.

5.4 Comparison with the state-of-the-art diameter
algorithm

As for the k-center algorithm, we implemented our diameter
approximation algorithm, hereinafter referred to as our-
diameter, and we tested it against the sliding window
algorithm in [14], which we will refer to as css- diameter.
For efficiency, we substituted the expensive quadratic-time
naive computation of the exact diameter, wherever it was
required, with the following greedy heuristic (referred to
greedy- diameter) proposed in [32]: starting from a ran-
dom point p0, select the point p1 farthest away from p0, then
select the point p2 farthest from p1, and return dist(p1, p2).
While, theoretically, dist(p1, p2) is only guaranteed to be
within a factor 2 from the actual diameter, it has been
observed that, in most cases, the difference between the two
quantities is, in fact, very small [32]. In light of this fact, in
the experiments we used greedy- diameter both as a base-
line to compute the diameter ΔW of the window W , using
the entire window as an input, and as a means of computing
the diameter ΔT of the coreset T . Thus, in the experiments
we do not differentiate between the two variants to obtain
ΔT (exactly or approximately) described in Sect. 4.

For what concerns the Higgs dataset, we experimented
with window lengths varying in [103, 106] and parameters
ε = 0.5 and β = 0.1, for our- diameter, and ε =
0.001, for css- diameter, so to make sure, for fairness,
that css- diameter requires approximately the same amount
of working memory as our- diameter (but not less). All
the quantities in the plots are averaged over 10,000 con-
secutive windows. Figure 13, reports the memory usage of
both algorithms together the (linear) memory usage of the
baseline. Figure 14 compares the accuracy exhibited by the
algorithms. Specifically, for each value of the window length
the figure reports the ratio of the distance returned by each
algorithm to the distance computed by greedy- diameter
when run on the entire window. Surprisingly, the solution of
css- diameter already exhibits rather good accuracy albeit,
in theory, the algorithm only guarantees a (3 + ε) approx-
imation. Our algorithm our- diameter turns out slightly
more accurate than css- diameter, offering a good trade-off
between the quality of the solution and the memory usage.
We remark that css- diameter delivers results of compara-
ble quality also for larger values of ε (that is, smaller memory
usage), hence it seems that the algorithm is less effective in
exploiting larger memory budgets.
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Fig. 12 Memory usage of our- sliding (a), our- oblivious (b), and
extremal values for Γt (c)

Fig. 13 Memory usage (Higgs)

Fig. 14 Diameter approximation (Higgs)

For what concerns the Covertype dataset, we repeated
the sameexperimentwithwindow lengths varying in [103, 2∗
105] and parameters ε = 1 and β = 1, for our- diameter,
and ε = 0.001, for css- diameter, again to ensure, for fair-
ness, that css- diameter requires approximately the same
amount of working memory. The results concerning the
memory requirements and the approximation are reported
in Figs. 15 and 16.

Due to higher dimensionality of the dataset we were
forced to increase the values of ε and β for our- diameter
in order to keep the memory requirements reasonable and
below the window length. Nonetheless the approximation
quality featured by our- diameter is superior to the one
of css- diameter and matches the one of the baseline for
smaller window lengths, while it degrades for larger win-
dows, remaining however always within 10% of the estimate
provided by the baseline. This degradation is probably caused
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Fig. 15 Memory usage (Covertype)

Fig. 16 Diameter approximation (Covertype)

by the high dimensionality of the dataset, which forced us to
use larger values of ε and β to keep memory under control.

Regarding update and query times, for both the Higgs
and Covertype datasets, we observed for all algorithms
the same behaviors discussed for the k-center problem (plots
are omitted for brevity). Namely, update and query times are
independent of the window length and linear in the working
memory, for both our- diameter and css- diameter. Also,
the query timesour- diameter and css- diameterare com-
parable, with the former being slightly larger for the higher
dimensional Covertype dataset.

6 Conclusions

In this paper, we have shown how to attain coreset construc-
tions yielding accurate streaming algorithms for the k-center

and diameter estimation problems under the sliding window
model. While the algorithms require very limited amounts of
workingmemory for windowsW of low doubling dimension
DW , the approach quickly degrades as DW grows large. An
interesting, yet challenging, research avenue is to investigate
whether this steep dependence on DW can be ameliorated by
means of alternative techniques (e.g., the use of randomiza-
tion).
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